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We study the dynamics of the interface between two immiscible fluids in contact with
a chemically homogeneous moving solid plate. We consider the generic case of two
fluids with any viscosity ratio and of a plate moving in either directions (pulled or
pushed in the bath). The problem is studied by a combination of two models, namely,
an extension to finite viscosity ratio of the lubrication theory and a Lattice Boltzmann
method. Both methods allow to resolve, in different ways, the viscous singularity
at the triple contact between the two fluids and the wall. We find a good agreement
between the two models particularly for small capillary numbers. When the solid
plate moves fast enough, the entrainment of one fluid into the other one can occur.
The extension of the lubrication model to the case of a non-zero air viscosity, as
developed here, allows us to study the dependence of the critical capillary number for
air entrainment on the other parameters in the problem (contact angle and viscosity
ratio). C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4814466]

I. INTRODUCTION

The problem of a solid plate pulled from a liquid bath has attracted considerable attention in the
past including the seminal contributions from Landau, Levich, Derjaguin, and Bretherton.1–3 The
problem has continued to be investigated, with a particular focus on the situation of partial wetting
for which a dynamical wetting transition is observed: a liquid film is deposited only when a critical
speed of withdrawal is exceeded (see Refs. 4 and 5 for reviews). Much less is known about the
reversed case, where the solid is plunged into the liquid. Again, a dynamical wetting transition has
been observed, now resulting in the entrainment of an air film or air bubbles.6–16 Despite the viscosity
contrast between the liquid in the reservoir and that of the surrounding air, the dynamics inside the
air is very important for this process. The perturbation analysis by Cox17 suggested that the critical
speed is inversely proportional to the viscosity of the liquid, 1/η�, with logarithmic corrections due
to the viscosity of the air, ηg. This is similar to the scenario for air entrainment by viscous cusps,18, 19

such as observed for impacting liquid jets.20

Recently, in the experiment of plunging a plate into reservoirs of different liquids Marchand
et al.8 observed that the dependence on η� is much weaker than predicted; enforcing a power-law
fit to their data would give a small exponent, in between −1/2 and −1/3 rather than the expected
−1. This implies that air viscosity plays an important role on the onset of air entrainment even
if it is orders of magnitude smaller than the liquid viscosity. The importance of air was already
highlighted in similar dip-coating experiments, where a reduction of the ambient pressure was
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shown to significantly enhance the critical speed of entrainment.6 Yet, this raises another paradox:
the dynamical viscosity of the air is virtually unchanged by a pressure reduction.

In this paper we provide a new framework to study air entrainment by advancing contact lines, in
which the two-phase character of the flow is taken into account. The usual lubrication approximation
is valid for small (liquid) contact angles and does not take into account the flow inside the gas. Since
both assumptions are no longer valid near the onset of air entrainment, we extend the lubrication
approximation such that it allows for large angles and a nonzero gas viscosity. This generalized
lubrication theory is validated by comparing to Lattice Boltzmann simulations. We show that the
meniscus shapes obtained from the generalized lubrication model agrees well with the simulations.
Note, however, that such simulations are limited in terms of viscosity ratio and spatial resolution
(i.e., the separation between the capillary length and the microscopic cutoff given by the interface
width or, equivalently, by the effective slip length21), and cannot achieve experimental conditions
for air entrainment. To compare to experiments and to explore the parameter space, in particular the
importance of air viscosity ηg, we therefore provide a detailed study using the generalized lubrication
model.

II. FORMULATION

We consider a smooth, chemically homogeneous solid plate translating across an interface
of two immiscible fluids at a constant speed Up (positive/negative for plunging/withdrawing). As
sketched in Fig. 1, the two fluids are contained in a reservoir much larger than all the lengths of the
problem and the plate can be inclined to any angle α. If the plate is not moving (Up = 0) there is no
flow in the fluids, and the interface equilibrates to a static shape due to balance between capillarity
and gravity. The interface makes an equilibrium angle θ e with the solid as a result of intermolecular
interaction between the three phases at the contact line. Neglecting the contact angle hysteresis, θ e

takes a well-defined value determined by Young’s law. The contact line equilibrates at a distance �

above the bath, which can be expressed as

� = ±�γ

√
2[1 − cos(α − θe)]. (1)

Here, �γ =√
γ

(ρ�−ρg )g is the capillary length, defined by surface tension γ , gravity g, and the density
difference ρ� − ρg. The ± sign depends on whether θ e is smaller (±) or larger (−) than the plate
inclination α. When addressing the transition to air entrainment, we will consider the upper phase A
in Fig. 1 to be gaseous, while phase B is a liquid. We therefore use subscripts “�” and “g” to indicate
liquid and gas phase, respectively.

When the plate is moving, the viscous drag generated by the moving plate gradually deforms the
fluid-fluid interface. As long as the speed of the plate is lower than a threshold value, the meniscus
equilibrates at a new distance � from the bath level (see Fig. 1). For positive Up the plate is moving
downwards so that � is lower than the static equilibrium height, while the opposite holds for negative
Up. The contact line is assumed to be straight so that the problem can be treated as two-dimensional.
The interface is described by the film thickness profile h(x). The origin x = 0 is chosen at the contact
line. When the plate is moving beyond a critical speed, the meniscus can no longer equilibrate to a
steady state. In the case of receding contact lines (withdrawing plate) this leads to the deposition of
a liquid film,22–28 while air will be entrained for advancing contact lines.6–10, 29–31

In this study we only focus on viscous flows, for which the Reynolds number is assumed to be
zero. Thus for incompressible fluids, the flow fields in the fluids are described by Stokes equations
and continuity,

ηg∇2 �ug − �∇ pg − �∇	g = 0, �∇ · �ug = 0, (2)

and

η�∇2 �u� − �∇ p� − �∇	� = 0, �∇ · �u� = 0, (3)

where �ug and �u�, pg and p�, 	g and 	� are the corresponding velocity fields, pressures and gravita-
tional potentials in phase A and phase B, respectively. When considering air entrainment, phase A
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FIG. 1. Schematic diagram showing a plate moving with speed Up with respect to an interface of two immiscible fluids.
The plate has an inclination α, here drawn with α = π /2 for the case of a vertical plate. The interface touches the wall at
the contact line with an angle assumed to be the same as the equilibrium contact angle θe. The meniscus profile is described
by h(x) or the local angle θ (s), where s is the arc length of the interface measured from the contact line. The total meniscus
deformation is quantified by �, the distance between the contact line and the level of the bath.

is assumed to be a gas of viscosity ηg, and phase B is a liquid of viscosity η�. The relative viscosity
is expressed by the viscosity ratio R = ηg/η� which, in practical situations, can be very small.

To solve for the flow fields and the interface shape, we need to specify appropriate boundary
conditions. At the steady interface, the velocities parallel to the interface ut are continuous and the
velocities normal to the interface un vanish, so

ut
g = ut

� (4)

and

un
g = un

� = 0. (5)

In each phase, we define the normal stress σ n ≡ n̂ · σ̂ · n̂ at the interface, where n̂ is the unit vector
normal to the interface and the stress tensor σ̂ is defined as (in cartesian coordinates)

σi j ≡ −pδi j + η

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (6)

The normal stress discontinuity across the interface is related to the curvature κ and to the surface
tension γ by Laplace’s law

σ n
� − σ n

g = γ κ. (7)
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By contrast, the tangential stress component σ t ≡ t̂ · σ̂ · n̂ is continuous across the interface,

σ t
g = σ t

� . (8)

At the solid/fluid boundary (y = 0), the velocity normal to the wall uy(y = 0) vanishes as no
penetration of fluid through the solid is allowed, i.e.,

uy(y = 0) = 0. (9)

Regarding the velocity component parallel to the wall, ux(y = 0), the situation is more subtle
because of the moving contact line singularity:4, 32 imposing a no-slip boundary condition leads to
diverging stress fields and calls for a microscopic mechanism of regularization. In Sec. III we present
two methods to solve the flow equations, which naturally involve different regularizations of the
singularity: a generalized lubrication model and Lattice Boltzmann simulations. The microscopic
boundary condition will therefore be discussed separately below.

III. METHODS

In this section we present two methods to determine the meniscus shape sketched in Fig. 1.
We first present a model that can be considered as a generalization of the standard lubrication
approximation. We then present the Lattice Boltzmann method, which is a rather different approach
to solve for the flow and the meniscus shape. The models will be refereed to as GL (Generalized
Lubrication model) and LB (Lattice Boltzmann).

A. Generalized lubrication model

1. Derivation

The lubrication approximation has been a very efficient framework to deal with thin film flows.33

This systematic reduction of the Navier-Stokes equations is very suitable for numerical simulations
and in many cases allows for analytical results.4 It is usually derived for flows that involve a single
phase that constitutes a “thin” film, i.e., the slopes dh/dx are assumed small. However, the expansion
parameter underlying the analysis is not the interface slope, but the capillary number Ca = Uη�/γ .33

This means that a lubrication-type analysis can be performed whenever surface tension dominates
over viscosity. Indeed, it was shown in Ref. 34 that the lubrication approximation can be generalized
to large interface angles θ , giving a perfect agreement with the perturbation results by Voinov35

and Cox.17 Here we further extend this approach by taking into account, besides of the effect of a
large slope, also of the viscous flows on both sides of the interface. The goal is to provide a model
that can deal with moving contact lines in cases where both phases are important (as in Fig. 1). In
particular, this will allow us to study the air entrainment transition. Let us now derive this generalized
lubrication model. As mentioned in Sec. II, the interface curvature κ is determined by the normal
stress difference across the interface. In curvilinear coordinates, we write

γ κ ≡ γ
dθ

ds
= σ n

� − σ n
g , (10)

where θ is the local interface angle and s is the arc length (see Fig. 1). The normal stresses have to be
determined from the flows in the fluids, which themselves depend on the shape of the interface. For
the usual lubrication theory in which the interface slope is small, the leading order contribution to
the flow reduces to a parabolic Poiseuille flow inside the film. This can be generalized to two-phase
flows and large interface slopes: as long as the capillary number is small, the interface curvature is
small as well and the leading order velocity field is given by the flow in a wedge (Fig. 2). The wedge
solutions have been obtained analytically by Huh and Scriven,32 for any viscosity ratio R = ηg/η�

and for any wedge angle θ . Figure 2 shows the corresponding streamlines. Based on these exact
solutions, the local normal stress can be determined, thus giving the local curvature of the interface
through Eq. (10).
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wed 

FIG. 2. Streamlines of the flow in a wedge of angle θwed , which in this case is close to π . This flow solution has been derived
analytically by Huh and Scriven,32 and is used here to derive a generalized lubrication model.

We denote the quantities derived from the Huh-Scriven solutions by capital symbols, e.g.,
normal stress is denoted by �n, velocity by �U , and pressure by P. For the Huh-Scriven solutions, it
turns out that the non-isotropic part of the normal stress at the interface vanishes so that

�n = −P. (11)

Approximating the normal stresses by the Huh-Scriven solutions, Eq. (10) becomes

γ
dθ

ds
= �n

� − �n
g = Pg − P�. (12)

Since Pg − P� are defined up to an integration constant, it is convenient to differentiate Eq. (12)
once with respect to s, giving

γ
d2θ

ds2
= d Pg

ds
− d P�

ds
=

[
�∇ Pg − �∇ P�

]
int

· ês . (13)

The index “int” indicates that the quantities inside the brackets are to be evaluated on the interface
and ês = t̂ is the unit vector tangent to the interface.

When Stokes equation (2) is applied, Eq. (13) can be rephrased in terms of Huh-Scriven velocity
fields

γ
d2θ

ds2
=

[
ηg∇2 �Ug − η�∇2 �U� − �∇(	g − 	�)

]
int

· ês . (14)

The viscous contributions on the right-hand side can be expressed in terms of R and θ in the form

η�

[
ηg

η�

∇2 �Ug − ∇2 �U�

]
int

· ês = 3η�Up f (θ, R)

h2
, (15)

where

f (θ, R) ≡ 2 sin3 θ [R2 f1(θ ) + 2R f3(θ ) + f1(π − θ )]

3[R f1(θ ) f2(π − θ ) − f1(π − θ ) f2(θ )]
,

f1(θ ) ≡ θ2 − sin2 θ,
(16)

f2(θ ) ≡ θ − sin θ cos θ,

f3(θ ) ≡ (θ (π − θ ) + sin2 θ ).

The gravity terms in (14) can be simplified to
�∇[	g − 	�]int · ês = −(ρ� − ρg)g sin(θ − α), (17)

where ρg and ρ� are the densities of the two phases.
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The final result of the analysis is a generalized form of the lubrication equation, which after
scaling all lengths with the capillary length lγ =√

γ

(ρ�−ρg )g becomes

d2θ

ds2
= 3Ca

h2
f (θ, R) + sin(θ − α). (18)

In the reminder we will use the same symbols for rescaled lengths. Once more, the capillary number
is defined based on the viscosity of the liquid, Ca = η�Up/γ . This equation must be complemented
by the geometrical relation

dh

ds
= sin θ. (19)

Note that for all numerical examples in the rest of the paper, we consider a vertical plate, for which
α = π /2.

One easily verifies that the standard lubrication equation is recovered when taking the limit of
vanishing R, θ , and α. Namely, f (0, 0) = −1 and (18) reduces to

h′′′ = 3Ca

h2
− h′ + α. (20)

When considering a single phase with arbitrary angle, one recovers the equation previously proposed
in Ref. 34, with f (θ , 0) instead of f (θ , R).

2. Slip boundary condition

It is important to note that Eq. (18) is derived from the Huh-Scriven solution with no-slip
boundary condition. Near the contact line, however, this induces a divergence of the pressure and
of the shear stress, which scale as ∼η�Up/h and ∼ηgUp/h in the liquid and the gas, respectively. A
purely hydrodynamic approach to regularize the singularity is to impose a slip boundary condition
on the solid wall. No analytical solution for the flow in a wedge with slip can be obtained. However,
as contact line flows are only mildly affected by the details of the microscopic conditions,4, 5, 36 as for
example, can be seen in the Cox-Voinov law for one-phase case contact line motion, the dependence
on the microscopic cutoff length (e.g., slip length) is of a weak logarithmic, here we proceed by
a phenomenological regularization. We therefore consider the standard lubrication equation, which
can be derived including a Navier slip boundary condition. It reads

h′′′ = 3Ca

h(h + 3λs)
− h′ + α, (21)

where λs is the slip length. In comparison to (20), the effect of slip can be summarized by a correction
factor h/(h + 3λs) for the viscous term. Indeed, this weakens the singularity such that the equations
can be integrated to h = 0.37 We simply propose to use the same regularization factor for the viscous
term in (18), i.e.,

d2θ

ds2
= 3Ca

h(h + 3λs)
f (θ, R) + sin(θ − α), (22)

where we have assumed the slip length to be independent of R. The appropriate boundary conditions
are that the equilibrium contact angle θ e is recovered at the contact line, and that the interface attains
the angle of the reservoir at infinity:

h(s = 0) = 0; θ (s = 0) = θe; θ (s → ∞) = α. (23)

The meniscus shape is now fully determined by the lubrication equation (22), geometry (19) and
boundary conditions (23). For a given value of the capillary number Ca, the model parameters are the
viscosity ratio R, the contact angle θ e, and the microscopic length λs. Below, we compute the shape
of the meniscus for different parameters by numerical integration, using a 4th order Runge-Kutta
numerical scheme. As the boundary conditions are imposed at different locations, the solution is
determined using a shooting algorithm.
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B. Lattice Boltzmann method

In this section we discuss some of the key features of the LB method. In a LB model,
the following discrete Boltzmann equation is solved for the single particle distribution function
fi, α(x, t) over a 2D square lattice:

fi,α(x + ei�t, t + �t) − fi,α(x, t) = �i,α(x, t), (24)

where

�i,α(x, t) = − 1

σα

[ fi,α(x, t) − f eq
i,α(x, t)]

is the single time relaxation, linear BGK collision operator,38 f eq
i,α(x, t) is the discrete Maxwell

distribution function defined as

f eq
i,α(x, t) = ραwi

[
1 + ei · uα

c2
s

+ ei · uα

2c4
s

− uα · uα

2c2
s

]
, (25)

where

ρα =
∑

i

fi,α, ραuα =
∑

i

fi,αei , (26)

and wi , ei in (25) are the weights and the corresponding lattice speeds, respectively.39, 40 The
weights, wi , corresponding to the two-dimensional and 9 velocity model, D2Q9, are given by
w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 = w6 = w7 = w8 = 1/36. The total fluid density
is ρ = ∑

αρα and the total hydrodynamic velocity is u = ∑
αραuα/ρ. The effective kinematic

viscosity is related to the relaxation time of the different components ν = ∑
α c2

s (σαcα − 0.5),41

cα = ρα/ρ is the concentration, and cs = 1/
√

3 is the speed of sound on the lattice. In absence of an
external force, each component satisfies the ideal gas equation of state p = c2

s ρ. For multicomponent
simulation we are using two distribution functions (α = 1, 2), whereas for multiphase simulations
we restrict ourselves to only one distribution function (α = 1).

1. Multiphase/multicomponent model

The multicomponent/multiphase algorithm is based on a standard Shan-Chen lattice Boltzmann
method.41–43 The non-ideal nature of the fluid is introduced by adding an internal force and shifting
the lattice Boltzmann equilibrium velocity as

ueq
α = u′ + σαFα

ρα

, where u′ =

∑
α

ραuα/σα∑
α

ρα/σα

. (27)

For the non-ideal interaction the force Fα in the Shan-Chen model41, 43 is given by

Fα = −Gαα′ψα(x)
∑

i,α 
=α′
wiψα′ (x + ei )ei , (28)

where {α, α′} = {1, 2} are indices for two fluid components while the coupling parameter Gαα′ is
the strength of the interaction and determines the surface tension in the model. This force allows
for the spontaneous formation of an interface between the different fluid components, i.e., no
interface tracking is needed. For multicomponent simulations G12 = G21 = G, G11 = G22 = 0,
ψα = ρα . In the case of multiphase simulations α = 1, ψ = 1 − exp (− ρ). The equation of state is
modified to p = c2

s (ρ1 + ρ2) + Gc2
s ρ1ρ2 and p = c2

s ρ + G
2 c2

s ψ
2, respectively, for multicomponent

and multiphase simulations, where the first term corresponds to the ideal gas and the second term
is the non-ideal part due to the external Shan-Chen force. Many validation studies exist, showing
that the hydrodynamical fields, u(x, t), ρ(x, t) satisfies the Navier-Stokes equations with a non-ideal
Pressure tensor, under a suitable multiscale Chapman-Enskog expansion.
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2. Boundary conditions for LB simulations

The no-slip boundary condition for the fluid corresponds to the bounce back boundary
condition39 for the distribution functions fi, α(x, t) defined at the boundary nodes.

The surface wetting for multicomponent simulations is introduced by adding an additional force
at the wall44, 45

Fads
α = −Gads

α ρα(x, t)
∑

i

wi s(x + ei )ei , (29)

where s(x + ei) = 1 for a wall node and is 0 for a fluid node. The parameter Gads
α can be varied

to control the wetting properties of the wall; in all our simulations we have used Gads
1 = −Gads

2 .
Similarly for multiphase simulations we fix a wetting parameter, ρw for the nodes in the wall and
calculate the Shan-Chen force (28) at the wall44

Fads = −Gψ(ρw)
∑

i

wi s(x + ei )ei , (30)

where s(x + ei) = 1 for a wall node and is 0 for a fluid node. The parameter ρw is varied to
control the equilibrium contact angle at the wall. Let us stress that all LB methods, independent
of the underlying kinetic model, describe the multi-phase or the multi-component dynamics via a
diffuse interface approach. There exists therefore a natural regularizing microscopic length which
is on the order of the interface width, typically a few grid points. Such a length scale is also on
the order of the effective slip length that must be used whenever a quantitative comparison between
the hydrodynamical behavior of the LB and the evolution of the equivalent Navier-Stokes system is
made, as shown recently, for example, in Ref. 21.

IV. COMPARING THE LUBRICATION MODEL AND LATTICE BOLTZMANN SIMULATIONS

In this section we compare the results of the GL model and the LB simulations. Since the latter
are limited to moderate viscosity ratios R, the comparison is done for R = 0.03, 0.8, and 1. We
further explore the parameter space in Sec. V, using only the lubrication approach.

The results for this section are computed for θ e = π /2 and α = π /2. The lattice separa-
tion in LB is 0.01 (in capillary length units), which will be related to an effective slip length
from the comparison with the lubrication model. We will see that this lattice separation corre-
sponds to effective slip length of 0.002, which is larger than the slip length of common fluids
(λs = 10−6 − 10−5). However, in order to obtain results for realistic values of effective slip length,
we need to do simulations with larger capillary length (characteristic length scale). This leads to
computationally expensive for lattice Boltzmann simulations. For instance, reducing slip length by
one order of magnitude will require 10 times bigger LBM simulation domain size and time. This is
why we choose a moderate value of slip length = 0.002 for our comparisons.

A. Meniscus rise

We first compare the meniscus rise � for viscosity ratios R = 0.03, 0.8, and 1 in Fig. 3. When the
plate is at rest, Ca = 0, the meniscus is perfectly horizontal � = 0 due to the choice of θ e and α. Let
us first consider the case where both liquids have identical viscosity, R = 1, but are still immiscible
due to the nonzero surface tension. This case is perfectly symmetric in the sense that Ca → −Ca
gives � → −�: there is no difference between plunging and withdrawing. This symmetry is indeed
observed in Fig. 3. Blue diamonds represent LB simulations, while the dashed-dotted line is the
GL model. We use this symmetric case to calibrate the microscopic parameter of the GL model. A
nearly perfect fit is achieved for slip length λs = 0.002, which is a reasonable value given that the
grid size used in the LB simulation is 0.01. As Ca increases, the viscous forces increasingly deform
the interface, leading to a change in �.

It is interesting to see to what extent the same microscopic parameter λs is able to describe
different viscosity ratios. We first mildly decrease the viscosity ratio to R = 0.83 and still find a
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FIG. 3. Meniscus deformation � as a function of Ca for θ e = π /2. Ca is negative/positive when the plate is moving
upward/downward. Symbols: Results of Lattice Boltzmann (LB) simulation. Lattice separation = 0.01. Curves: Results of
the lubrication-type (GL) model with a slip length λs = 0.002. All lengths are scaled by the capillary length �γ .

very good agreement between LB an GL (red circles and dotted line, respectively). With respect
to the case R = 1 we see that |�| is slightly smaller at a given value of Ca. This means that for
the same speed, the meniscus is deformed by a smaller amount due to the lower viscosity of the
upper phase. When further decreasing the viscosity ratio to R = 0.03 (green squares, dashed line),
some differences between LB and GL becomes apparent (the same value for λs is maintained). The
meniscus in GL is systematically below the value obtained in LB. A possible explanation for this
difference is the sensitivity of the result on the microscopic contact angle imposed as a boundary
condition. Still, both models agree reasonably well and display very similar trends. In particular, we
find that much larger values of Ca can be achieved due to the strong reduction of the viscosity in the
upper phase. This effect is most pronounced for the plunging case, for which the liquid is advancing.
This is consistent with experimental observations that advancing contact lines can move much more
rapidly than receding contact lines.4, 5, 8 The breakdown of the steady solutions, which signals the
transition to air/liquid entrainment, will be discussed in details in Sec. V.

B. Shape of the meniscus

A much more detailed test for the two models is to investigate the detailed structure of the
interface: How well do the shapes of the menisci compare between GL and LB? In Fig. 4, we show
the dynamical meniscus profiles for Ca = 0.019, 0.028, and 0.036, in the case of equal viscosities,
R = 1. Note that the contact line position is held constant at x = 0, so that the bath appears at
different heights due to the increase in magnitude of � with speed. The agreement of the results
of GL model and LB simulation is very good in particular for Ca = 0.019 and 0.028, even down
to the contact line region (Fig. 4(b)). For larger plate velocities some differences become apparent.
These differences may be due to different reasons. First, one has to notice that a large Ca is also
accompanied by a large viscous stress contribution, leading to a larger bending of the interface and
therefore to the possibility to leave the realm of application of the GL model. Second, as said, in the
LB approach the effective slip length is an output and not an input as for the GL, and it is not clear
that one would need a finer tuning of it as a function of the capillary number, in order to match the
GL behavior.
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FIG. 4. Dynamical meniscus profiles −x vs h for R = 1 (θ e = π /2 and λs = 0.002 for the GL model, lattice separation
= 0.01 for the LB simulation). All lengths have been scaled by the capillary length. The contact line is at x = 0 so that the
bath is at different x for different Ca. (a) Curves: Results of GL model. Symbols: Results of LB simulation. (b) Zoom in on
the contact line region.

An even more detailed characterization of the meniscus shape is provided by the local angle of
the interface θ vs h, see Fig. 5. Clearly, both the GL model and the LB simulation exhibit the same
nontrivial variation of the contact angle. At small scales, the angle approaches θ e = π /2, while at
large scale the meniscus evolves towards the reservoir θ = α = π /2. In between, the angle changes
significantly due to the well-known effect of “viscous bending”:4 the balance of viscosity and surface
tension leads to a curvature of the interface. Very similar variations of the meniscus angle have been
obtained experimentally.46

V. MAXIMUM SPEEDS AND TRANSITION TO AIR ENTRAINMENT

In this section we discuss the physics of air entrainment in the case of a plunging plate (Ca > 0).
For realistic situations the viscosity ratio R is typically very small, of order 10−2 for water and much
smaller for very viscous liquids. This regime can be accessed by the GL model only, as LB is restricted
to moderate viscosity contrasts. In the first part of this section we discuss how the transition to air
entrainment is captured in our model in terms of a bifurcation diagram. Next we study the effect of
viscosity ratio on the critical speed. In the last part we investigate how the critical speed depends on
the microscopic parameters such as the slip length and the static contact angle.

 1.4

 1.6

 1.8

2

 2.2

 2.4

0 1 2 3 4

θ

h

(a) GL, Ca = 0.019
GL, Ca = 0.028
GL, Ca = 0.036
LB, Ca = 0.019
LB, Ca = 0.028
LB, Ca = 0.036

 1.6

 1.8

2

 2.2

 2.4

 2.6

0  0.05  0.1  0.15  0.2

θ

h

(b) GL, Ca = 0.019
GL, Ca = 0.028
GL, Ca = 0.036
LB, Ca = 0.019
LB, Ca = 0.028
LB, Ca = 0.036

FIG. 5. Local meniscus angle θ vs h for R = 1. Identical parameters as in Fig. 4.
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FIG. 6. Meniscus fall � versus Ca (θ e = 2.8 rad, R = 0.01, λs = 10−5). The horizontal dashed line indicates the minimum
value of � for a static meniscus (= −√

2, with θ e = π ).

A. Maximum speed for advancing contact lines

We first consider a case where the equilibrium contact angle is close to π . For such a hydrophobic
substrate we expect air entrainment to occur at relatively small Ca,9, 10 and therefore relatively weak
curvature of the interface. This is important, since the assumption underlying the GL model is that
the interface curvature is weak.34 We will therefore focus on θ e = 2.8 rad and explicitly verify how
strongly the interface is curved for our numerical solutions. For most fluids, the slip length is in
order of magnitude of 1–10 nm which corresponds to λs = 10−6 − 10−5. Thus in the following
calculations, we take λs = 10−5. Figure 6 shows the drop of the meniscus � as function of Ca for
a viscosity ratio R = 0.01 (λs = 10−5, i.e., on the order of 10 nm). As Ca increases, the contact
line equilibrates at a lower position resulting in a more negative value of �. However, when Ca
achieves a certain critical value, stationary solutions cease to exist. This corresponds to a maximum
plate velocity, or critical capillary number Cac. By analogy to deposition of liquid films for plate
withdrawal,26–28, 47, 48 this can be identified as the onset of air entrainment: above Cac, unsteady
solutions will develop, with a downward motion of the contact line.8 As can be seen in Fig. 6, the
critical point arises close to � = −√

2, which according to (1) corresponds to a meniscus with
apparent contact angle π . This is the analogue of the withdrawal case, for which � = +√

2 and the
apparent contact angle vanishes at the transition.23, 27 Note that viscous effects push system slightly
below this maximum extent of deformation for a perfectly static meniscus, with the critical point
slightly below � = −√

2.
Interestingly, for a range of speeds Ca < Cac one actually finds more than one solution (cf.

Fig. 6). Upon decreasing �, the capillary number first increases and then decreases close to the critical
point. We refer to the solution branches around Cac as the upper and lower branch, respectively.
Once again, an identical bifurcation structure was previously observed for the withdrawing plate
case.27, 49, 50 To compare these two types of solutions, we show the corresponding meniscus profiles
for Ca = 0.017 in Fig. 7. At a large distance from the contact line, the solutions are almost identical
in shape. Zooming in on the contact line region, however, we see the lower branch (red dashed curve)
solution displays a “finger” that explains the larger magnitude of � with respect to the upper branch.

B. Effect of viscosity ratio

A key parameter for the transition to air entrainment is the viscosity ratio R. Figure 8 shows
the meniscus fall � as function of Ca for different viscosity ratios: R = 0, 10−4, 10−3, and 10−2.
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FIG. 7. Meniscus profiles for the upper branch (black solid curve) and the lower branch (red dashed curve) solutions for
Ca = 0.017 (θ e = 2.8 rad., R = 0.01, λs = 10−5). Here we define z = � − x. So the bath level is at z = 0.

At Ca = 0, all cases have the same value of � = −1.15 corresponding to a static bath with contact
angle θ e = 2.8. Now we consider the result for R = 0, for which there are no viscous effects in
the air (ηg = 0). We observe that � decreases with Ca, but without any bifurcation. It appears that
steady meniscus solutions can be sustained up to arbitrarily large plate velocities. In fact, the curve
is consistent with the scaling � ∼ −√

Ca at relatively large Ca, corresponding to a simple balance
between gravity and viscosity. For R 
= 0, however, the situation becomes fundamentally different.
While the curves follow the same trend as for R = 0 at small Ca, a deviation appears at larger speeds
that ultimately leads to a critical point. Each nonzero viscosity ratio has a well-defined critical speed,
with Cac increasing when the viscosity ratio R is reduced.
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R=0.0001
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FIG. 8. Meniscus fall � versus Ca for different viscosity ratios (θe = 2.8 rad, λs = 10−5). For the case the gas phase has no
viscosity, R = 0, steady-state menisci can be maintained to arbitrarily large velocity (within our numerical resolution).
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FIG. 9. Critical capillary number Cac versus viscosity ratio R for different slip lengths λs (θ e = 2.8 rad). The dashed line
indicates a power law with exponent −1, which is valid for large R.

These observations can be interpreted as follows. As long as the viscosity of the air has a
negligible effect on the flow, the curves are indistinguishable from the case R = 0. Deviations of the
R = 0 curve signal that the air flow starts to influence the shape of the meniscus. Physically, this
arises because the interface slope approaches π , leaving only a narrow wedge angle for the air flow.
Figure 2 illustrates that the recirculation in the air induces significant velocity gradients: despite the
small air viscosity, the stresses in the small wedge of air become comparable to those in the liquid.
Mathematically, this can be derived from the function f (θ , R) as defined in (16). For small R and
θ close to π , we can approximate

f (θ, R) � f (θ, 0) − 4R � −2(π − θ )3

3π
− 4R (31)

as long as π − θ � 2πR. For θ very close to π , f (θ , R) has a different asymptotic form, see the
Appendix for details. The first term in (31) represents the (relative) viscous contribution inside the
liquid, which vanishes in the limit θ → π . The second term represents the viscous contribution in
the air, which will be significant once (π − θ ) ∼ R1/3. Noting that the contact line is receding from
the point of view of the air phase, one understands that a critical speed appears when the effect of
the air becomes important.

The dependence of the critical speed Cac on the viscosity ratio R is shown in Fig. 9 (for various
slip lengths). First, we consider the limit R � 1, for which the upper fluid is actually much more
viscous than the bottom fluid. This is the usual case of a receding contact line that is completely
dominated by the upper (receding) phase. In this limit we expect the critical speed to scale with the
viscosity of the upper phase, denoted ηg, such that Uc ∼ γ /ηg. Since we have based the capillary
number on the viscosity η�, we obtain Cac ≡ Ucη�/γ ∼ R−1. This is indeed observed in Fig. 9 at
R � 1. However, our main interest here lies in the opposite limit, i.e., R  1, as for air entrainment.
As already mentioned, the critical speed seems to increase indefinitely by reducing the viscosity
ratio. This suggests that for the limiting case of R = 0, steady menisci can be sustained at arbitrarily
large plunging velocities. Our numerical resolution does not allow for a perfect determination of the
asymptotics for R  1. Enforcing a power law fit, Cac ∼ Rβ , in the range R = 10−4 − 10−1, one
obtains β = −0.67. This (effective) exponent suggests that both phases play an important role in
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FIG. 10. Scaled curvature |hdθ /ds| vs h for Ca very close to Cac (λs = 10−5).

determining the critical speed. Namely, the exponent would be β = −1 if only ηg were important,
while β = 0 corresponds to the case where η� is the only relevant viscosity.

Finally, we briefly verify the assumption of small curvature, necessary for the strict validity of
the model. In Fig. 10 we plot the dimensionless curvature, h|dθ /ds|, as a function of h in the vicinity
of the critical point (R = 10−5, 10−4, and 10−3, λs = 10−5). At small scales, h|dθ /ds|  1 for all Ca,
consistent with the assumption of small curvature. However, the curvature increases significantly
when approaching the bath due to the bending of interface from a large contact angle to π /2. The
magnitude is acceptable in this regime, in particular since viscous effects become less important at
large scales. Inclining the plate angle to values close to π would further reduce this bending effect,
and extend the range of validity of the GL model.

C. Dependence of the critical speed on microscopic parameters

Apart from the viscosity ratio, the GL model contains two parameters: the slip length λs and
the microscopic (equilibrium) contact angle θ e. Here we discuss the dependence of Cac on these
parameters. The slip length was varied already in Fig. 9, with values λs = 10−5, 10−4, and 10−3. As
expected for wetting problems, we see a weak increase of Cac with λs. A larger λs reduces the range
over which viscous dissipation is effective. This leads to a (logarithmic) reduction of the viscous
dissipation, while the capillary driving remains unaltered. Hence, larger velocities can be achieved
before air entrainment occurs.

The dependence of the critical speed on θ e is investigated in Fig. 11. The figure reveals that
there is no obvious universal scaling behavior for Cac down to viscosity ratios as small as R = 10−4.
Enforcing a power-law fit, different θ e would give rise to different exponents. We do clearly see that
Cac decreases with θ e, which is further emphasized in Fig. 12. Consistent with the results in Refs. 9
and 10, the critical speed vanishes in the hydrophobic limit where θ e → π . We note that for contact
angles that are not close to π , the shape of the meniscus displays significant curvatures. In this sense,
we expect that our results are not fully quantitative solutions of the Stokes flow problem.
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FIG. 11. Critical speed Cac as a function of R for different static contact angle θ e (λs = 0.001). Symbols are results of
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FIG. 12. Critical speed Cac as a function of static contact angle θ e for R = 0.001 and λs = 0.001.
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FIG. 13. Figure extracted from Ref. 8. Dimensionless entrainment (critical) speed, denoted as Cae versus the viscosity ratio
ηg/η� for silicon-oil/air (•, �, data from Ref. 8), silicon-oil/air (� data from Ref. 6), and various liquids/air (� data from
Ref. 11). Curve: Numerical results from our generalized lubrication model (slip length λs = 10−5, θ e = 50◦).

VI. DISCUSSION AND CONCLUSIONS

In this paper we present, compare and employ two distinct models to study the meniscus defor-
mation and the onset of air entrainment in a dip-coating geometry. The first model is a generalization
of the lubrication theory to a two-phase flow situation, in which a slip length is introduced to resolve
the viscous singularity. The second model is a numerical one based on the discretization of the
Boltzmann equation, namely, the Lattice Boltzmann method for multiphase/multicomponent fluids.
In this model the viscous singularity is removed by the lattice discretization, which effectively intro-
duces an effective slip length to the system.51 The effective slip length also depends on the choice
of multiphase/multicomponent model.

The results of GL and LB have a good agreement, in particular when Ca is relatively small.
When exploring larger values of Ca, the two models start to differ as shown in Fig. 3, which can
be attributed to different physics at microscopic and hydrodynamical scales (e.g., the non-zero
interface thickness in the LB or strong viscous bending of interface breaks the hypothesis of small
interface curvatures made in the GL approach). Yet, qualitative features, such as the bending of the
meniscus and the dependence on viscosity ratio, are consistent for the two models. The transition to
air entrainment for θ e close to π involves relatively weak curvatures and is thus captured by the GL
model. For the LB simulations the main challenge is given by the large viscosity contrasts, which is
still not fully achievable for the multiphase/multicomponent LB model used here.

In the second part of this paper, the critical speed of air entrainment is investigated by the
GL model. We have found a strong dependence of critical speeds on the air viscosity, which is
consistent with the experiments performed by Marchand et al.8 Remarkably, both our theoretical
results and the experimental results from Ref. 8 differ from Cox’s model in which Cac is predicted
to depend only logarithmically on air viscosity.17 For comparison, we have added in Fig. 11 the
predictions of Cox’s model, from Eq. (8.3) of Ref. 17, represented by the dashed curves (top curve for
θ e = 0.87 rad, bottom one for θ e = 3.0 rad). For large R, we find that both models predict Cac scales
as R with scaling −1. This regime corresponds to the usual dewetting case for which the critical
speed only depends on the viscosity of the more viscous fluid.23, 27, 28 Note that in Cox’s model,
there is an undetermined factor ε which is defined as the ratio of the microscopic length scale to the
macroscopic length scale. Here we take ε to be the same value as λs, which is 10−3. Interestingly,
both the models predict exactly the same values of Cac for θ e = 0.87 rad when R is large, which
we consider as a coincidence since ε is an adjustable parameter. For θ e = 3.0 rad, Cox’s and our
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results differ by a factor. More interesting things occur at small R, it is clearly shown in Fig. 11 that
for Cox’s model (red top curve ) Cac increases extremely slowly (logarithmically) as R is decreased.
By contrast, our model predicts a moderate increase of Cac. Interestingly, such a weak logarithmic
relation has been observed in the case of liquid impacting on liquid,19, 20 for which there is no moving
contact line. Both our theoretical results and experimental results from Ref. 8 therefore suggest that
the mechanism leading to air entrainment can be fundamentally different depending on whether a
contact line is present or not.

The GL model is directly compared with experiments in Ref. 8, see Fig. 13, and shows that
the model is able to qualitatively capture the dependence of Cac on the viscosity ratio ηg/η�.
Quantitatively, however, the agreement is not satisfactory. We believe this is due to the relatively
large meniscus curvatures encountered in the experiments (static contact angle of the substrate
≈50◦), pushing the problem beyond the assumptions of the model. It would be interesting to explore
other methods to achieve a more quantitative description of air entrainment by advancing contact
line, in particular for large values of Ca. From an experimental perspective, more insight could be
obtained by varying the gas viscosity or by replacing the air by a liquid of low viscosity. It would
also be interesting to perform experiments with a substrate of large static contact angles.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF f (θ , R)

We discuss the behavior of the function f (θ , R) when θ is close to π and R close to zero. As
presented in Sec. III A 1, f (θ , R) is defined as

f (θ, R) ≡ 2 sin3 θ [R2 f1(θ ) + 2R f3(θ ) + f1(π − θ )]

3[R f1(θ ) f2(π − θ ) − f1(π − θ ) f2(θ )]
,

f1(θ ) ≡ θ2 − sin2 θ,
(A1)

f2(θ ) ≡ θ − sin θ cos θ,

f3(θ ) ≡ (θ (π − θ ) + sin2 θ ).

First, we expand the terms in both the numerator and the denominator in series of (π − θ ) and
keep the leading order terms only, we end up with

f (θ, R) � −2[π2 R2 + 2π R(π − θ ) + (π − θ )4/3]

2π2 R + π (π − θ )
. (A2)

The asymptotic behavior of f (θ , R) depends on the relative magnitude between (π − θ ) and
R. For R  π − θ , f (θ , R) can be approximated as

f (θ, R) � f (θ, 0) − 4R � −2(π − θ )3

3π
− 4R. (A3)

The contribution of air viscosity, represented by −4R, will become significant once (π − θ ) ∼ R1/3.
When θ is very close to π such that π − θ  R, f (θ , R) goes to a different asymptotic form,

i.e.,

f (θ, R) � −R. (A4)
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If we substitute this asymptotic form of f (θ , R) into the generalized lubrication equation (22), we
will see the liquid viscosity will be canceled out in the multiple CaR so that the asymptotic equation
does not depend on liquid viscosity. This means in this asymptotic limit, air viscosity completely
dominates the flow.
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