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viii 

Algae are present in nearly every body of  water on the surface of  the earth.  These 
microscopic organisms produce over half  of  the oxygen on earth, and are vital to life 
on the planet.  However, algae can also cause significant and expensive environmental 
damage when their local ecosystem is thrown out of  balance by, for example, the 
addition of  pollutants to the water.  Counting and identifying the species of  algae in 
water can help with understanding this complex process, as well as being useful for 
monitoring the safety of  drinking water, measuring developing algae blooms, and 
protecting aquacultures.  However, the technology for achieving this is lacking.   

The PhD work presented here tackles this problem by integrating tools from two 
different fields: optics and microfluidics.  We use a femtosecond laser to machine a 
piece of  glass to include a microchannel to transport water with algae and a waveguide 
which can transmit light.  This chip, together with a laser and a simple optical detector, 
allows us to obtain light-based  “fingerprints” of  different species of  algae as a sample 
flows through the device.  We can use these measurements to extract information 
about the algae size and shape, and then we can classify the species using neural 
networks which can be trained to recognize patterns.  Besides this optical 
identification, we also showed that we can use microfluidics and optics to passively 
sort the algae by size, which is a useful tool for pre-sorting the samples before doing 
measurements. 

This new technology provides a novel tool with which we can automatically and 
rapidly count and identify the algae in water.  It will allow researchers, regulatory 
agencies, aquaculture farmers, and ship owners to save money and time in sample 
collection, and could lead to a better understanding of  the way we impact the 
environment.   
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 1.1 Introduction 
As primary producers of  oxygen, algae are important organisms for understanding 
and monitoring the environment.  Algae species dynamics – the amount and 
concentrations of  the species in a body of  water – vary in response to changing 
environmental conditions.  These conditions can include the concentration of  
nutrients, temperature, light conditions, and intentional or unintentional human 
intervention.  This sensitivity to the environment makes algae a useful biomarker for 
changes occurring in the water and surrounding area.1,2  Beside the use of  algae as 
surrogate sensors, monitoring species dynamics can be useful in identifying and 
studying harmful algae blooms, which can occur when the local nutrient supply 
changes.  These blooms may consist of  toxin-producing algae3,4 or non-toxin-
producing algae.  Even in the latter case, the bloom can destroy the local environment, 
causing damage to other aquatic life.5   

Algae monitoring is therefore essential not only for studying environmental changes, 
but also as a public health necessity.  Indeed, as part of  an increasing worldwide effort 
to understand and control the impact of  human activity on the environment, algae 
monitoring is enforced in government regulations on water quality.  Finally, algae 
monitoring is also of  economic importance in the farming of  algae as a fuel source, 
when a population of  desired algae needs to remain uncontaminated by other species. 

Knowing the amount and type of  algae in a given body of  water is clearly useful for 
many applications, but there is a lack of  quick and low-cost methods for doing so.  
The most common method of  identifying algae is to manually identify specimens in a 
water sample.  This process is slow and limited in scope, but the existing alternative 
technologies have yet not offered adequate flexibility or automation to replace it.   

This thesis describes work done to address this technology gap; the approach 
presented here takes advantage of  integrated optical and microfluidic 
technology to enable the automatic identification of  algae.   

This introduction presents some background on algae and their identification, 
followed by an overview how the lab on a chip field has intersected with algae.  

 1.2 Algae basics 
“Algae” is a broad term, encompassing organisms from the micro- to the macro-scale.  
It is not itself  a formal taxonomical term but rather a general classification of  
organisms, which share some morphological and ecological traits.  Algae species range 
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in size from the several meters of  the gigantic kelp forest in Californian shores, to the 
centimetres of  the invasive seaweed Caulerpa taxifolia that caused great damage upon 
its accidental introduction to the Mediterranean sea, to the submillimetre scale of  the 
microalgae in Figure 1.   

In this thesis, the term “algae” is used to refer exclusively to submillimetre 
phytoplankton (“microalgae”) for simplicity.  The term phytoplankton specifies 
organisms that are drifting in water, and which use light or energy from chemical 
reactions to convert inorganics into organic compounds, through photosynthesis or 
chemosynthesis.  Algae are distinct from plants; they lack specialized tissue forming 
roots, leaves, stems, and vascular tissue, and their reproductive systems and life cycles 
are typically simpler.   

Algae exhibit a wide array of  morphologies, as illustrated in Figure 1.  They are found 
in fresh or salt water and in a broad range of  values for pH, temperature, turbidity, 
oxygen levels, and carbon dioxide levels.   

All algae contain chlorophyll-a, which enables the conversion of  carbon dioxide, 
water, and light into oxygen and carbohydrates.  Algae also contain accessory pigments 
which work in conjunction with chlorophyll-a to widen the range of  wavelengths 
which can be used by the algae, as well as protective pigments which protect from 
photodamage.6  These pigments – which can include carotenoids, xanthophylls, and 

 
Figure 1.  Microscope images of some of the algae species used in this research:       

(a) Cyanothece aeruginosa, (b) Navicula pelliculosa, (c) Microcystis viridis, (d) Chlorella vulgaris, 
(e) Pseudokirchneriella subcapitata, (f) Pseudanabaena sp., (g) Monoraphidium griffithii, 

(h) Anabaenopsis sp., (i) Scenedesmus acuminatus. 
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the fluorescent phycobilins – have different wavelengths of  peak light absorption, 
ranging from roughly 400 nm through 700 nm (see Table 1).   

The different phyla (groups of  species) of  algae possess different typical 
combinations of  these pigments, lending them the colours which are often the basis 
for the informal names of  the group (for example, “green algae” for the chlorophyta, 
“brown algae” for diatoms, and “red algae” for the rhodophyta).7  Different colours 
are prominent in different geographic regions or environments, as certain species or 
families are better adapted to certain intensities or wavelengths of  light.   

Algae can exist alone or as aggregates, with or without flagella for motion control.  
Algae surfaces feature a simple cell membrane, made of  a lipid bilayer 7-8 nm thick.  
Additional structures and materials may also be present.7   

The density of  algae is only slightly higher than that of  fresh or sea water, generally 
between 1.03 and 1.10 g/cc.  Algae need to control their depth to access light and to 
move to regions of  undepleted nutrients.  Some algae can control motion with 
flagella, while some others regulate their position by controlling their buoyancy with 
gas-filled structures inside the cell or by producing liquids with lower density than 
water.7    

It is evident that algae are a widely diverse set of  organisms, and thus pose interesting 
challenges in their identification as well as interesting opportunities for their use. 

1.2.1 Monitoring algae species dynamics 

Monitoring the species dynamics – the amount and concentration of  the species in a 
body of  water – can help identify and study harmful algae blooms (HABs, see 
Figure 2).  Algae blooms can occur when the local environment changes, particularly 
when the limiting nutrient (usually phosphorus or nitrogen) rapidly becomes available 
in higher supply.  Blooms can be particularly harmful if  they consist of  toxin-

Table 1.  Spectral ranges (approx.. half-maximum values) of absorption and emission 
for some common algae pigments.  Data compiled from various sources.6,8–10 
 

Pigment Absorption 
maximum  

Emission 
maximum  

Chlorophyll-a 400-440 nm 660-690 nm

Chlorophyll-b 520-570 nm 640-670 nm
Phycocyanin 500-560 nm 630-670 nm

Phycoerythrin 470-510 nm 550-590 nm
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producing species such as cyanobacteria, also known as blue-green algae.  The 
cyanotoxins produced by these species have been known to cause mass animal 
mortalities, and can have neurotoxic or hepatoxic effects in humans.3,4,11,12  Even a 
bloom of  non-toxin-producing algae can have serious consequences, as the 
accumulated biomass of  the bloom can cause local oxygen depletion or habitat 
destruction by blocking light to submerged vegetation.5   

The formation of  algae blooms are complex events, involving the interplay of  many 
variables; better methods of  monitoring the dynamics of  the species and the local 
environment would help to detect, understand, and respond to such events.5,13,14   

As described by Anderson et al.,  

“All too frequently, public perception of  whether nutrient over-
enrichment has reached undesirable levels has been based on acute, 
obvious or easily measured symptoms, such as high biomass algal 
blooms, massive fish kills, and oxygen deficits.  Because of  this focus, a 
broad array of  indirect, chronic, often-subtle but serious impacts of  
nutrient pollution on aquatic ecosystems remain underemphasized and, 
in some cases, poorly understood.”   

(from D. Anderson et al.5) 

Further interest in algae monitoring comes from the need to inform and enforce 
government regulations.  For example, a European Parliament directive requires the 

 
Figure 2.  Harmful algae bloom (HAB) in Lake Erie.  Photo credit: the Michigan Sea 

Grant, www.miseagrant.umich.edu 
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monitoring of  recreational water quality, which can include the use of  algae and 
cyanobacteria as markers thereof.15  The success of  the Dutch provinces in meeting 
these water quality standards is shown in Figure 3.   

 Concerns over the introduction of  foreign algae species by the dumping of  ship 
ballast water has also prompted the need for fast-response, portable algae species 
monitoring.16  Algae have also been proposed and studied as a fuel source; farming 
algae for this purpose may also require an accurate understanding and monitoring of  
the species distribution. 

1.2.2 Economic impacts of  algae growth 

In the EU, it is estimated that HABs cost approximately €589 million/year.17  These 
costs include damage to commercial fisheries, treating illnesses, negative impacts on 
tourism and recreational facilities, and the costs of  monitoring and management of  
the blooms.  This is a world-wide problem: in the USA, HABs cost at least $82 
million/year18 (about €67 million/year), and in China, a single algae bloom lasting two 
weeks caused an estimated loss of  €4.5 million to commercial fisheries in 2005.19 

 

Figure 3. Water quality in the Netherlands, by province, based on the results of 
2011-2013 according to the standards set in Directive 2006/7/EC of the 

European Parliament.15 

0% 20% 40% 60% 80% 100%

Gron.

Limb.

Utr.

Zeel.

Z.Hol.

Flev.

N.Hol.

N.Brab.

Overij.

NL average

Fri.

Dren.

Geld.

Failed all years Failed at least once Passed all years Excellent all years



Chapter 1.  Introduction: Algae meet microfluidics 7 

 

 1.3 Performance requirements for algae identification 
technology 

The United States Environmental Protection Agency performed a National Lakes 
Assessment (NLA) in 2007.  1157 lakes across the country were sampled and the 
phytoplankton in each sample were counted and identified by species.  This data 
provides a useful glimpse into the ranges of  abundance (number of  cells per volume 
of  water) and number of  species seen in situ.  This data will be used to identify some 
performance requirements of  an automated algae identification system. 

1.3.1 Typical algae distributions 

The NLA data show a mean highly nonlinear distribution of  phytoplankton 
abundance (Figure 4).  The mean abundance was 3.8x104 cells/mL and the median 
abundance 7.16x103 cells/mL.  The maximum abundance measured was 4.99x106 
cells/mL water, which was measured in Caruth Lake, Texas; over 99.9% of  the cells 
taken in this sample were the cyanobacteria Microcystis. 

Species dynamics and distributions 

Most sites had a large number of  species present: between 1 and 69 species were 
identified at the sites, with the median number of  species at 24 (Figure 5, top).  Of  the 

 
Figure 4.  Abundance of phytoplankton measured by the US EPA National Lakes 

Assessment 2007 study.20  The inset shows the distribution of the abundance values 
captured in the first data point of the main graph. 
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1157 test sites, 884 sites (76%) had 10 or fewer species representing 90% of  the 
phytoplankton population, and 925 sites (80%) had 5 or fewer species responsible for 
70% of  the phytoplankton population.  However, a much smaller number of  species 
dominate the population; examples from four randomly-selected test sites from the 
EPA NLA data demonstrate this effect (Figure 5, bottom).   

 The vast majority of  sites had a small number of  species (<10) with an abundance of  

 

 

 
Figure 5.  (Top) Distribution of phytoplankton species as measured in the US 
EPA NLA.  (Bottom) Distribution of phytoplankton species by abundance 

(thousands of cells per mL water) for four randomly-selected locations.  Source 
of raw data: US EPA NLA (2007).20 
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at least 10% that of  the most abundant species (Figure 6).  The single-most dominant 
species accounted for, on average, half  of  the phytoplankton measured (Figure 7).  
The number of  species present was not significantly related to the abundance of  cells 
present (Figure 8).   

1.3.2 Performance requirements 

All of  this data can provide tools for setting device performance requirements.  While 
user needs would define the ultimate benchmarks, routine monitoring could focus on 
either the few species that dominate the population, or could measure the relative 
abundance of  the most populous species before or during an algae bloom.  In cases 
where this type of  strategy would be acceptable, this suggests a set of  technological 
benchmarks that should be met by an automated monitoring system.   

 

Figure 6. Number of species with an abundance at least 10% that of the most 
abundant species.  Data from US EPA NLA.20 

 

Figure 7.  Relative dominance of the single most abundant species.  The relative 
dominance of the most populous species varies widely, but on average it is 

responsible for about half of the phytoplankton in a given sample.  Data from US 
EPA NLA.20 
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Concentration and species abundance 

First, the system should be able to handle high concentrations of  hundreds of  
cells/mL, while still being able to handle the more common case of  having tens of  
cells/mL.  The method should be able to distinguish between several (up to 10) 
species regularly and over a longer term than provided by manual identification.  The 
analytical method should not depend on having similar concentration levels of  each 
species, but rather be flexible enough to accommodate the most abundant species 
representing between 20% and 100% of  the local population.   

Measurement volume and time 

According to the National Oceanic and Atmospheric Administration (USA), the time 
for an algae population in the ocean to double can be from hours to a few days in 
good conditions.21  Any system will have a trade-off  between the volume of  sample 
and the time over which the sample is analysed.  The rate of  algae growth suggests 
useful monitoring data would be provided from a system that can provide time 
resolution on the scale of  around a day in low-concentration conditions and around 
an hour in high-concentration conditions.   

An EPA standard operating procedure for phytoplankton identification calls for 
between 2.5 and 50 mL samples to be used.22   

 

 

Figure 8.  The US EPA NLA data20 shows no significant correlation between the total 
phytoplankton abundance and the number of species present. 
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Potential failure scenarios 

A system that conforms to these guidelines should be able to provide useful 
monitoring in the vast majority of  cases.  It would potentially fail in two situations: 
one, where the concentration of  algae is so high that it exceeds the capacity of  the 
sensor (i.e., in an algae bloom), and second, in the case where there is a low 
concentration of  many different species.  In the first case, the growth of  the algae 
bloom would have already been monitored, and the device could presumably warn the 
user of  the excessive concentration.  In the second case, automated computer 
clustering would be likely to fail.  This case may be of  less interest for (for instance) 
regulatory monitoring but it may well be of  interest for research purposes, and thus 
complementary identification approaches may be required.   

 1.4 Traditional algae identification methods 
To illustrate which characteristics of  algae have successfully been used for 
identification, an overview of  existing methods for algae classification is presented 
here.  We will first present methods that require laboratory-based equipment 
unsuitable for in situ use.  We then continue with several field methods which seek to 
automate these approaches proven in a laboratory setting, and lastly we present 
remote techniques, which provide rapid and large-area data on phytoplankton 
concentration.   

1.4.1 Laboratory-based identification processes 

The most common traditional and current method of  single-cell algae identification is 
using light microscopy.  For water monitoring purposes, this requires collecting a 
sample, bringing it to the lab, fixing the cells, storing the sample, and later imaging the 
sample to manually count and identify the species present.  While this is a reliable 
method, it is too time-consuming and slow to use for rapid monitoring.7  

Optical methods 

Optical methods are a promising approach for algae identification, as algae have a 
variety of  shapes and structures (i.e. morphological identification) and contain 
coloured pigments necessary for photosynthesis (i.e. pigment identification). 

Automated morphological identification that relies on using image recognition has 
been achieved primarily on stationary specimens on a microscope.23–26  More recently, 
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species identification through image recognition has also been attempted for moving 
samples in a stream of  water.25  The approach faces several challenges: large amounts 
of  data are collected, and must be compared quickly against large libraries of  shapes 
in computationally-heavy processes.  Additionally, expensive optics and good lighting 
are required to ensure good image quality, and for a moving algae sample in particular, 
a high-speed camera is needed to obtain adequately good images.   

The second main automation approach to algae identification is based on measuring 
the contents of  the algal cells, usually relying on pigment analysis.  As described in 
section 1.2, algae possess a wide range of  pigments and these have been used to 
distinguish between species or between different lines of  the same species.   

Flow cytometry, commonly used in biomedical applications for cell counting or 
sorting, can also be applied to algae.  In a flow cytometer, the cells are 
hydrodynamically focused into a narrow stream, and passed in front of  one or more 
light sources which excite autofluorescence in the algae.  The system collects the 
scattered light and the excited fluoresced light from a large number of  samples.  These 
measurements are used to calculate parameters such as the ratio of  chlorophyll to the 
algae size (as measured by side scattering) or to some accessory pigments, such as 
phycoerythrin (PE) or phycocyanin (PC) (see Table 1).  These parameters are then 
input into a cluster analysis which distinguishes the different groups present within the 
sample. 

The most common flow cytometric approach for algae is to excite fluorescence at one 
single wavelength and measure the fluorescence emission at multiple wavelengths.27–30  
Excitation at multiple wavelengths with the emission measured only at one has also 
been demonstrated for species classification.31–34   

Measuring both the fluorescent and non-fluorescent pigments for algae classification 
offers more data than purely fluorescent methods such as flow cytometry, but at the 
cost of  a significantly slower and more complicated system.  This can be done on a 
single intact cell or in bulk after lysing a sample of  cells, typically using a 
chromatography and spectrometry approach.  Raman spectroscopy, for example, has 
only been attempted a few times as a classification method, and on fairly small 
datasets.35,36  It has been used more often for compositional analysis of  a fixed, 
concentrated sample of  algae.37,38  An alternative spectroscopic method, Fourier 
Transform Infrared (FTIR) spectroscopy, was used to distinguish two very similar 
diatoms which are very difficult to differentiate by microscopy.39  FTIR has also been 
used for classifying cyanobacteria.40   
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1.4.2 Field-deployable identification technologies 

These laboratory techniques have also been developed for in situ application with 
limited success.  Handheld fluorescence meters are available; rather than the single-cell 
approach of  a flow cytometer, they measure the total amount of  chlorophyll present 
in a given amount of  water.  The submersible FlowCAM system acquires fluorescence 
measurements and photographs of  particles in the size range 10 µm – 600 µm with a 
throughput rate of  up to 3 mL/min depending on the particle size of  interest.41  
Designed to be deployed from – and tethered to – a fixed object, it requires 67 W for 
normal operation and weighs 48 kg, with a volume of  approximately 0.25 m3.  The 
submersible Cytobuoy system similarly provides a cluster analysis based on in-situ 
measurements of  scattering and fluorescence of  particles in water, with an option for 
triggering selective image capture as well.31,32  These systems offer reasonable 
throughput rate but at a high price and with limited portability.  

1.4.3 Remote techniques 

Lastly, the identification of  algae blooms and quantification of  average algae biomass 
in situ is possible with satellite imaging (Figure 9) or by measuring the absorption or 
scattering of  light under water.  Both techniques can provide information about a 
large volume quickly, but at the cost of  specificity.  Satellite data provides an average 
measurement of  the chlorophyll load of  water, but lacks specificity at the species level 
and is not sensitive enough for early detection of  outbreaks.43  Scattering or 

 

Figure 9.  Algae blooms surrounding the 51 km long St. Matthew Island in the 
Bering Sea.  The image was taken by the MODIS (Moderate Resolution Imaging 
Spectroradiometer) satellite, owned by NASA.  Source: NASA/MODIS Ocean 

Color Image Gallery.42 
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absorption measurements can also offer a measurement of  the total amount of  
chlorophyll, but are heavily dependent on the type of  algae present and offer 
distinguishing only at the colour level, rather than the species level.44 

 1.5 Algae on lab on a chip devices 

1.5.1 Lab on a chip 

The research and development of  lab on a chip devices – characterized by the 
miniaturization of  laboratory equipment or functions onto the microscale – has 
grown rapidly over the past few decades.  This growth was driven by a desire to mimic 
and take advantage of  the scalability of  mass parallel microfabrication technology, 
with the goals of  making small-scale, low-cost, portable devices.45 

These lab on a chip devices typically contain some form of  fluid transport, commonly 
in channels with cross-sections on the scale of  tens or hundreds of  micrometres.  The 
fluidics are then combined with on-chip functionalities including biological, optical, 
mechanical, electrical, or chemical-based sensing and actuation.  Having a 
measurement volume on a similar scale to the object being measured can yield 
advantages in signal-to-noise ratio and reduce the power or the volume of  reagents 
required.  Using small, enclosed fluidic channels leads to more predictable fluid 
behaviour due to the low Reynolds number of  the flow.  This can offer more control 
over the local chemical and thermal environment, and allows the user to take 
advantage of  forces, which scale advantageously with decreasing length scales.   

Interested readers are referred to some of  the many related reviews on, for example, 
optofluidics46, on-chip cell handling47, on-chip flow cytometry48, and system 
integration and requirements.49,50   

1.5.2 Algae in lab on a chip devices 

The use and study of  algae in microdevices is spread over several fields and 
applications, and is not restricted exclusively to detection.  Figure 10 shows a general 
overview of  the uses of  algae in microdevices, classifying them into three categories: 
the on-chip use of  algae as fuel or sensors, the growth and manipulation of  algae on-
chip, and the detection or identification of  algae.  In some cases, of  course, these 
functionalities may be combined.   



Chapter 1.  Introduction: Algae meet microfluidics 15 

 

The first category includes examples such as algae serving as biosensors or fuel.  Algae 
have been used as on-chip biosensors through measuring, for example, optical51, 
conductometric52,53, and amperometric54 markers of  enzyme inhibition in the algae. 

There are many other potential applications of  algae as biosensors that have been – or 
may be – implemented in a lab on a chip device.  One overview of  such applications is 
presented by Brayner et al.2  Algae have attracted attention as potential fuel sources 
and this interest has also translated down into the world of  microdevices.  In this 
capacity, algae have been used as a power source, for example, in a micro 
photosynthetic cells.55,56  Micro-scaled optofluidic devices have also been exploited as 
bioreactors for growing algae as a fuel source.57–59   

The second category (algae growth and manipulation on a chip) includes on-chip 
culturing60,61, imaging with an on-chip microscope62, the manipulation of  algae by 
hydrodynamic tweezers63, and the lysis of  algal cells64, sometimes combined with a 
subsequent analysis of  cell contents.65  These applications can, of  course, overlap with 
the first category.  Other goals for manipulating the algae are to analyse their contents, 
to study the properties of  the algae themselves, or to use them as test cells for 
technology development. 

 
Figure 10.  Overview of the use of algae in lab on a chip or MEMS devices.  We 

classify the work reported in the literature into detection or counting technologies, 
technologies for the growth and manipulation of algal cells, and for the use of algae 

for other purposes. 
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The third category – phytoplankton counting and identification – has been performed 
using impedance spectroscopy66, scattering67, and fluorescence.8,68,69   

An algae classification chip by Benazzi et al. used free-space, non-integrated optics and 
showed clear classification of  a sample of  three mixed algae species, with the results 
well-aligned to those obtained from a commercial flow cytometer.66  In a second 
device, the photosensitive polymer SU-8 was used to define channel walls and grooves 
for seven optical fibres arranged around the channel.8  The fibres were used to 
illuminate the sample and to collect fluoresced and scattered light.  This chip was able 
to simultaneously perform fluorescence and impedance cytometry, and was used to 
classify particles in a mixed sample containing one species of  algae and two different 
types of  microspheres with different sizes and fluorescent dyes.   

An improved device was presented by Hashemi et al. featuring a similar optical setup 
but with flow focusing in two dimensions instead of  one (Figure 11).69  This micro-
scaled flow cytometer had optical fibres embedded in a polydimethylsiloxane (PDMS) 
chip, with external optical filters and photomultiplier tubes collecting the scattered and 
fluoresced light.  In the first published prototype, fluorescence was excited at 488 nm 

 

Figure 11.  The microflow cytometer for algae identification presented by Hashemi et 
al.68  Two wavelengths of light illuminate the sample, while two wavelengths of 

fluoresced light and the scattered light are measured with photomultiplier tubes.  The 
flow is focused first in-plane with the sheath flow inlets (top image), and then in the 

out-of-plane direction by wrapping the sheath flow around the sample flow with 
grooves in the top and bottom of the channel (bottom image) (Reprinted from 68. 

Copyright Biomicrofluidics, 2011, American Institute of Physics.) 
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and three algae species were tested separately from one another in the microflow 
cytometer and in a commercial  flow cytometer for comparison.69 Three unmixed 
algae species were tested separately: Synechococcus sp. (cyanophyta), Nitzschia dissipata 
(bacillariophyta), and Thalasstostra pseudonana (bacillariophyta).  When overlaid, the 
scatter plots comparing the various optical parameters show clustering by species, 
most distinctly in the plot comparing phycoerythrin (PE) to chlorophyll (CHL).  In 
comparison to the commercial flow cytometer, similar trends were observed in the 
PE-CHL plots, but the data comparing the CHL to side scatter and PE to side scatter 
were less consistent between the microflow cytometer and the commercial device.  
Nevertheless, the system was able to detect the small Synechococcus (~1 µm) which 
was not detectable by the impedance spectroscopy based methods described by 
Benazzi et al.66   

Later work by the same group used two excitation lasers, at 404 nm and 532 nm, with 
the scattered light measured at 532 nm.68  The best results were found at the lowest 
flow rate used: 167 nL/min.  Four species of  algae were tested: Synechococcus sp. 
(cyanophyta, diameter ~1 µm), Karenia brevis (dinophyta, on the order of  10’s of  
microns), Alexandrium (dinophyta, also 10’s of  microns), and Pseudo-nitzchia 
(baillariophyta, high-aspect-ratio cylinder of  length in the 10’s of  microns and width in 
the microns).  The analysis of  the CHL, PE, and side scatter signals showed 
differences in the mean values of  each species.  However, there was significant overlap 
between the species due to wide variability within a single species.  This makes 
classification based on these three parameters alone quite difficult. 

 1.6 Conclusions and relation to thesis 
There is significant need in the research and market worlds for technology which can 
automate the process of  algae identification.  Lab on a chip methodologies are 
uniquely well-suited to tackling this problem, as they offer well-integrated fluidic 
handling and sensing technologies which match well with the size and properties of  
algae.  The ability to reliably, quickly, and cheaply distinguish and count several species 
in a mixed sample would go far to improving the state of  the art.   

This thesis explores various methods of  identifying algae, primarily using optical 
methods, and with a focus on glass-based devices which are fabricated using 
femtosecond laser micromachining.  This fabrication technique and a first device 
which measures morphological features of  algae will be presented in the next chapter.  
Following that is a focus on analytical work related to this device: signal processing 
and pattern recognition, evaluating device performance and exploring the use of  
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models to help interpret the data collected experimentally.  The fourth chapter focuses 
on developing complementary technology which could improve the performance of  
the algae identification device.  Specifically, it compares and evaluates two methods of  
passive size- and shape-based sorting both analytically and experimentally.  The final 
chapter brings together all of  these technologies with discussion and conclusions 
presented on their suitability for use together in the field.   

 



 

 

2 .  
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 2.1 Introduction 
As exhibited in Chapter 1, algae exist over a wide variety of  shapes and sizes.  Algae 
cells absorb and scatter light, and these properties are often used to examine the 
optical properties of  bulk volumes of  water containing large numbers of  cells.  Here, 
we present a method to identify individual algal cells by monitoring intensity variations 
of  a light signal transmitted through them.  We use a glass-based microchip with a 
microchannel and waveguide included on a monolithic substrate, and demonstrate its 
use for building up a library of  signals from different algal species.  The glass chip is 
made with a relatively  uncommon microfabrication technique: femtosecond laser 
micromachining.  This chapter starts with an introduction to this technique before 
explaining the principles, characterization steps, and the experimental setup specific to 
our device.  Some sample results are shown along with a description of  the overall 
analytical approach.  The next chapter focuses specifically on the data analysis, with 
various pattern recognition approaches examined and evaluated. 

 2.2 Microfabrication with a femtosecond laser 
The design and abilities of  microscale devices are often limited by the fabrication 
processes available.  For lab on a chip devices, the most common manufacturing 
techniques have inherent two-dimensionality, or limited three-dimensionality.  
However, the creation of  three-dimensional features for microdevices has many 
applications, and, in the case of  the present project, allows the creation of  uniquely 
robust optofluidic devices with a high signal-to-noise ratio.  This is accomplished in 
glass by means of  a two-step process: selective exposure of  the glass to femtosecond 
laser irradiation, and subsequent etching. 

Ultrashort pulses of  light – i.e. pulses shorter than a picosecond – can be used to 
locally modify glass in such a way that the properties of  the glass at the laser focal 
volume are permanently altered.70,71  This alteration of  the glass properties is a highly 
non-linear process: only regions in which the laser intensity exceeds a threshold value 
are affected. As a typical order of  magnitude, in silica glass, the material used in this 
work, instant power must be in the range of  a gigawatt per millimetre square to induce 
non-linear absorption effects.  By moving a specimen under a femtosecond laser 
beam, truly three-dimensional patterns can be defined on the surface or inside the 
bulk of  the glass (see setup, Figure 12).   

Among the possible modifications induced by the laser beam, two are of  particular 
interest for optofluidic device manufacturing.  First, the index of  refraction of  the 
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modified glass is increased relative to the surrounding pristine glass.  Second, the 
modified glass exhibits an increased etching rate in hydrofluoric acid or potassium 
hydroxide.  The type of  modifications induced by the laser depends on various laser 
parameters, such as the beam intensity, the pulse duration, the net fluence, and on 
focusing parameters like the numerical aperture. By modulating the laser exposure 
conditions while fabricating the device, one can combine on a single device zones with 
increased refractive indices and zones with increased etching rates. Features on the 
surface of  the material will be etched, while waveguides can be created by producing 
continuous regions of  high refractive index under the surface of  the material, where 
they are protected from the etchant.  For optofluidic applications in particular, three-
dimensional waveguides and microchannels can be combined in a single monolithic 
piece of  material, with a single fabrication process.  

2.2.1 Examples of  femtosecond laser fabrication 

Femtosecond lasers have been used for microfabrication in a variety of  applications, 
ranging from the purely optical to the purely mechanical, with combinations of  
optomechanics, optofluidics, and mechatronics also demonstrated. 

As an example from microfluidics, femtosecond lasers have been used to produce 3D 
microchannel structures which work as microfluidic mixers.72  The technology is 
particularly well-suited to this problem: the low Reynolds numbers typical in 

 

Figure 12.  The final stage of the femtosecond laser micromachining setup.  At the 
bottom are two stages, which move the sample in the horizontal plane.  The position 
of the laser focus is controlled in the z-axis by moving the final objective on a third 

stage mounted perpendicularly to the horizontal plane.  

horizontal plane stages 

glass sample 

objective on 
z-stage 
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microfluidic systems mean that the main mechanism for mixing liquids is the slow 
process of  diffusion.  Using three-dimensional geometry to mix and stretch flows to 
increase the area of  contact between two liquids is an effective solution that is difficult 
to realize with more standard methods of  microfabrication.   

In micromechanics, three-dimensional flexures73 or linear guidance mechanisms with 
integrated electronic actuation74 can be manufactured with these lasers.  Three-
dimensional shapes fabricated in glass can also be used as a mould for soft polymer 
replication, enabling the low-cost replication of  complex microstructures (Figure 13) 
which can create surfaces with specifically engineered optical or mechanical 
properties.75 

Further functionalities can be created by taking advantage of  the change of  refractive 
index of  the laser-modified zones.  This has led to the creation of  optofluidic chips 
with, for example, integrated waveguides for illuminating and collecting light from 
passing cells76, a device with a microchannel and integrated Mach-Zender 
interferometer77, and a “nano-aquarium”  for observing living cells.78  The 
combination of  optics and mechanics has also led to optomechanical devices such as a 
distance encoder based on a linear guidance mechanism and multiple waveguides 

 

Figure 13.  Polymeric 3D microstructures created by replicating a glass mould 
fabricated by a femtosecond laser.  The material used here is PDMS; it was poured as 

a liquid onto the mould, cured, removed, and coated with gold to produce these 
SEM images.  The scale bars are all 100 µm long. 
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which align or misalign with one another as the mechanism moves.79 

The first device presented in this chapter was fabricated off-site at Translume, a 
company which produces femtosecond laser fabricated microdevices.  Later devices, 
including those presented in the other chapters of  this thesis, were fabricated with a 
range of  laser conditions.  A typical set of  parameters for microchannel fabrication 
was a laser power of  240 mW with a repetition rate of  800 kHz, resulting in a pulse 
energy of  300 nJ.  Circularly polarized light was used, because with linearly polarized 
light the etching rate will vary according to the angle between the polarization and the 
writing direction.  The writing was usually done at 5 mm/s in the x-y plane, although 
this varied between 1 mm/s and 10 mm/s depending on the position accuracy 
required for the device.   

 2.3 System principle and experimental setup  

2.3.1 System design 

The heart of  the system consists of  a glass (fused silica) chip with curved waveguide 
and microchannel fabricated with a femtosecond laser as described above.  The system 
is shown schematically in Figure 14.  The waveguide (8 µm x 8 µm) starts near one 
edge of  glass, curves around 90 degrees, and ends perpendicular to a straight 
microchannel.  The guided monochromatic light traverses the channel, exits the chip, 
and its intensity is measured with a four-quadrant photodetector next to the chip, as 

 

Figure 14.  Schematic of the system: a curved waveguide directs single-mode 1550 nm 
laser light across a microchannel onto a photodetector while algae or other samples are 

transported in front of the beam.  

x

y
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depicted in Figure 14.  The curved design of  the waveguide prevents unguided light 
from reaching the detector.  The waveguide is fabricated in the bulk of  the substrate, 
buried at a depth of  50 µm from the surface, so that the light is symmetrically 
distributed about the middle depth of  the microchannel.  The waveguide ends 500 µm 
from the nearest channel wall; this distance is enough that the light exiting from the 
waveguide expands enough to illuminate the entire height of  the channel.  This 
expansion is defined by the numerical aperture of  the beam, as described in the next 
section. 

The channel is 100 µm x 100 µm in cross-section and 4 cm long.  As the channel is 
fabricated on the surface of  the glass, a thick film made out of  PDMS is used for the 
fourth wall of  the channel.  The PDMS is not permanently bonded onto the glass, so 
that the channel can be easily cleaned if  necessary.  Fluidic access to the channel is 
provided by through-holes machined through the bulk of  the glass at either end of  
the channel.  PDMS cylinders with holes punched through them are used as tubing 
plugs and bonded permanently to the glass at the inlet and outlet.   

2.3.2 Beam characterization 

Normalized frequency and numerical aperture 

The properties of  a waveguide can be described using dimensionless numbers that 
relate to the behaviour of  the light wave inside of  and after exiting the waveguide. 

The normalized frequency 

	 2
3.1 	

depends on the light wavelength λ, the waveguide radius a, and the indices of  
refraction of  the core and cladding, ncore and ncladding respectively.  The normalized 
frequency is used to calculate the number of  modes which can be propagated through 
the waveguide; if  ν<2.41, only single-mode light can be propagated.  In the device 
described in this chapter, we have λ=1550 nm, a~4 µm, ncore = 1.455, and ncladding = 
1.45, resulting in a normalized frequency of  ν = 1.95, indicating that the waveguide is 
single mode for this wavelength of  light.  

The numerical aperture  

	
sin 3.2 	
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of  the waveguide indicates the half-angle θ at which the light will diverge after exiting 
the waveguide into a medium of  index n. In the device described here, the theoretical 
NA is 0.12 when the beam exits the waveguide.   

The radius of  curvature (18 mm) of  the waveguide is dictated by the difference in 
index of  refraction of  the modified glass and pristine glass (Δn ~ 5x103).  A curved 
waveguide can cause optical losses if  the conditions of  total internal reflection are no 
longer met.   

Given the waveguide and channel properties described above, a NA of  0.12 means 
that the beam radius  

	
4 μ 500 ∗ 3.3 	

as the beam crosses the threshold from the glass to the water of  the channel is 
45.7 µm, with the half-angle of  the beam cone in the water 

	 sin sin ∗ 0.09	rad 3.4 	

with respect to the optical axis. 

Measurements of  beam intensity distribution 

The quadrant photodetector was temporarily replaced with a CCD camera with a 
phosphor coating for infrared sensitivity to capture images of  the intensity profile of  
the beam after it crosses the channel and exits the chip.  While the beam would ideally 
have a single-mode Gaussian profile, in reality the roughness of  the machined surfaces 
also affects the beam intensity profile (Figure 15).  The potential negative effects of  
this surface roughness are negated somewhat by the use of  differential, rather than 
absolute, measurements with the photodetector.  Even an asymmetrical intensity 
distribution can provide useful data as long as it is stable when there are no objects 
interacting with the beam. 

2.3.3 Experimental procedure 

During experiments, a syringe pump moves particle- or algae-laden water through the 
channel.  A fibre-coupled laser source (1550 nm) was butt-coupled to the waveguide at 
the edge of  the glass piece.  The glass chip is shown in Figure 16, with a fibre coupled 
to the waveguide at the bottom left of  the image.   
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The photodetector (New Focus model 2903) returns two signals: one, the intensity of  
the total detected light (Itotal=A+B+C+D, as on Figure 14) and the other, the 
difference between the two upstream detectors and the two downstream detectors 
(ΔX=(A+B)-(C+D), as on Figure 14).  A microscope objective (20x) and a camera 
were positioned above the channel, so that the particles or algae could later be 
identified manually and used to calculate the accuracy of  the automated classification 

  

Figure 15. The beam intensity after its exit from the chip.  The image was captured 
with an infrared-sensitive CCD camera while the channel was filled with water.  

 

  

Figure 16.  The microchannel system in the experimental setup.  The two transparent 
cylinders with tubing inserted are the PDMS inlets and outlets; the metal cylinder in 

the bottom left corner is the optical fibre from the 1550 nm laser. 
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system.  The photodetector signal was monitored and triggered the collection and 
storage of  100 ms of  data at 2 kHz from the photodetector any time the ΔX signal 
passed over a user-programmable threshold; simultaneously, the camera was triggered.  
This image is later used for measuring the accuracy of  the detection method.  

The use of  the camera is necessary for device development in the lab, but ultimately 
not necessary in a field-deployable device.  It imposes significant limitations on the 
maximum flow rate that can be used in the channel; if  the flow rate is too high, the 
images will be too blurred to positively identify the specimens. 

2.3.4 Samples 

Nine algae cultures from the Norwegian Water Research Institute and polystyrene 
latex microspheres of  three sizes (5 µm, 10 µm, and 20 µm; from Corpuscular Inc., 
USA) were used as specimens in this work. The algae cultures were stored in Z8 
buffer80, and diluted with deionized water as necessary before use.  20 cells of  each 
species were imaged and their dimensions measured to find statistical data about the 
size of  each species (Table 2). 

Table 2.  The nine species of algae from the Norwegian Water Research Institute 
 

Species Name Abbrev. Culture number* ESD†  (µm) AR§ 

Cyanothece aeruginosa S1 NIVA-CYA 258/2 12.5 ± 1.1 1.4 

Scenedesmus acuminatus S2 NIVA-CHL 58 8.1 ± 1.1 3.6 

Chlorella vulgaris S3 NIVA-CHL 19 6.2 ± 1.0 1 

Microcystis viridis S4 NIVA-CYA 122/3 8.0 ± 0.8 1.5 

Anabaenopsis sp. S5 NIVA-CYA 417 10.2 ± 1.5  

Navicula pelliculosa S6 NIVA-BAC 42 5.5 ± 0.3 2.0 

Pseudokirchneriella 
subcapitata 

S7 NIVA-CHL 1 4.2 ± 0.7  

Pseudanabaena sp. S8 NIVA-CYA 504 6.8 ± 0.5 3.9 

Monoraphidium griffithii S9 NIVA-CHL 8 8.4 ± 1.8 17.4 

 

*The culture numbers are assigned by the supplier to indicate the specific strain and 
are provided here for reference. 
†Equivalent spherical diameter.   
§Average aspect ratio = largest dimension / smallest dimension; only presented for 
roughly ellipsoidal or cylindrical species 
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The device was tested with three separate types of  samples.  The first dataset is 
composed of  microspheres of  three diameters; the second dataset is a mixture of  five 
species: the cyanobacteria Cyanothece and the algae Chlorella, Microcystis, Anabaenopsis, 
and Monoraphidium. The last dataset is based on field-collected water containing 
detritus with added Cyanothece cells.   

For this third set, water was collected from the slow-moving Dommel River, which 
passes through the campus of  the Eindhoven University of  Technology.  It was 
filtered to remove all particles above 100 µm (to avoid clogging the microchannel), 
and lab- cultured Cyanothece cells were added to the water.  A micrograph of  the 
resulting detritus-Cyanothece mix is shown with the results of  the experiments in 
Chapter 3 (section 3.3.2). 

Data preparation 

Before being used in analysis, each photodiode signal is normalized so that the initial 
25 ms of  data have an average value of  0. From each signal obtained, various features 
of  the signal are extracted and used in the pattern recognition approaches, which are 
described in the following chapter. 

 2.4 System characterization and initial results 

2.4.1 Sample data 

Figure 17 shows sample data from 9 species of  algae cells.  It should be noted that 
these examples are not specifically chosen as statistically representative of  each 
species, but are rather intended to show examples of  the types and general properties 
of  the data acquired.   

Each plot shows the total intensity of  light hitting the quadrant photodetector, Itotal, 
and the differential signal ΔX.  The smallest species, such as the Pseudanabaena sp. (S8) 
and Navicula pelliculosa (S6) have very low signal-to-noise ratios, particularly visible in 
the high-noise Itotal signals. 

2.4.2 Characterization and optimization experiments  

In the species-recognition results in the following chapter, the quadrant photodiode 
collects data at 2 kHz, with a flow speed of  0.4 µL/min.  Ultimately, though, it would 
be ideal to run a field-deployable version of  the system as quickly as possible (within 
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practical financial constraints), to increase the throughput rate.  A series of  
characterization experiments examine the limitations of  the systems response to flow 
speed (Figure 18 and Figure 19) and the level of  trigger used to indicate the presence 
of  a particle (Figure 20).  

 

Figure 17. Differential (ΔX) and total (Itotal) photodiode signals obtained from nine 
species of algae, with corresponding micrographs, forming the basis of a library for 
comparison of data obtained by the optofluidic chip.  Data was collected at 2 kHz 

for 100 ms; 70 ms of data are shown here, with the scaling on the y-axis in arbitrary 
units.   



30  Chapter 2: Fabrication, modelling, and characterization of algae identification system  

 

Flow speed effects 

Increasing the system flow speed causes a decrease in the amount of  light blocked per 
particle (Figure 18).  This was measured by calculating the value of  h defined as 

	 max min 3.5 	

i.e., the difference between the maximum and minimum of  the Itotal signal while a 
particle passed in front of  the photodetector.  By default, the system collects data at 2 
kHz.  The average velocity in the channel 

	 3.6 	

is the flow rate Q divided by the channel cross-section (width W times height H).  
While the velocity of  any given particle can vary from near-zero (if  the particle is near 
a wall) to twice the average (at the channel centre), the average will be used for some 
estimates of  the effect of  flow speed on sampling behaviour. 

A particle traveling at Vave crosses the sampling zone defined by the width of  the 
beam, which is just under 100 µm.  The time to cross the beam  

	
3.7 	

 

Figure 18.  Effect of flow speed on the change (h) and minimum (b) of total light 
intensity at two different sampling rates (2 kHz & 4 kHz) of the photodetector.  A 

sample recording (inset) shows the values being measured. 
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is 0.054 s for a flow rate of  1 µL/min.  At 2 kHz, this means that the 108 samples 
should be taken while the particle crosses the beam.  For a flow rate of  10 µL/min, 
this drops accordingly to 11 samples and for a flow rate of  20 µL/min, 5 samples.  
The effect of  this decrease can be seen in Figure 18, as the ability of  the system to 
accurately represent the change in light intensity decreases as the flow rate increases.  
This behaviour is analogous to that described by the Nyquist sampling criterion in 
electrical engineering, which states that the sampling rate used to measure a time-
variant system must be at least twice the rate of  the highest-frequency signal of  
interest.   

While low flow speeds may improve the system’s ability to resolve the signal, they can 
cause other problems particularly when sampling with polystyrene latex (PSL) 
microspheres.  The density of  PSL is greater than that of  water, so the microspheres 
eventually settle out of  the flow during testing.  This effect is demonstrated in 
Figure 19, where a measurement of  particle concentration is made as a function of  
time for tests of  1, 2, and 5 minutes at a constant flow speed of  10 µL/min.  The 
apparent concentration decreases with increasing sample time. 

Threshold choice 

While the system is running, it continuously monitors the ΔX signal.  If  this signal 
exceeds a threshold value (because of  the passing of  a particle), data from the 
photodiode is saved and a photo of  the channel contents is taken.  The user has to set 
the threshold which defines an item of  interest; too low a threshold means too much 
data with only noise and no algae, and too high a threshold risks missing cells.  To find 

 

Figure 19.  Results of particle counting experiment at different flow speeds.  The 
apparent concentration decreases over time as particles settle out of the flow due to 

gravity. 
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an acceptable range of  threshold values, continuous video was taken while water with 
10 µm PSL microspheres was flown through the channel at 1 µL/min.  The 
photodiode signal was continuously recorded, and later analysed with various 
threshold levels to compare the number of  events to the number of  particles seen in 
the video.   

The threshold is defined as a multiple of  the standard deviation of  the noise on the 
signal (Figure 20).  A threshold of  10 times the noise value provided a good match 
between the video and the photodetector; this was equivalent to a voltage of  about 11 
mV.  The experiments with algae samples used a threshold value in this range, with a 
slightly lower value for very small species.  In this experiment, 10 µm diameter beads 
were used with a flow rate of  1 mL/min.   

The choice of  this threshold is a combination of  experimentally-informed statistics 
and value choices for the end user.  First, as shown previously, higher flow rates 
adversely impact the system’s ability to accurately measure the changes in the light 
intensity distribution.  Therefore, for higher flow rates the threshold could be lowered 
to adjust for this effect.  Second, it may be that the user would prefer to have a higher 
rate of  false positives – that is, data which contains only noise– than risk missing the 
passage of  an algal cell.  In this case, a lower threshold would also be appropriate.   

 

Figure 20. Effect of the trigger threshold (as a multiple of the standard deviation of 
the noise) on the particle count.  The black points show the actual particle count, as 
counted from a video recording taken at the same time.  The experiment used 10 µm 

microspheres with a 1 µL/min flow rate. 
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2.4.3 Self-alignment of  high aspect ratio particles 

Some algae species are highly non-spherical; when they are sent through the sensor 
system studied here, they are not forced into a particular orientation by external 
means.  However, here the laminar flow inherent in microfluidics provides a benefit in 
the form of  the time-independent Poiseuille flow field.  The fluid at the centre of  the 
channel is moving the fastest, with the flow at the walls constrained by the no-slip 
condition.  This difference in flow speeds results in a velocity gradient perpendicular 
to the channel which causes high-aspect-ration particles to self-align in the direction 
of  the flow.  This was studied with a sample of  Monoraphidium algae, a highly non-
spherical species with aspect ratios occasionally exceeding 20:  A MATLAB-based 
automated image analysis script measured the angle θ (inset, Figure 21) and aspect 
ratio of  the Monoraphidium cells as they passed through the microchannel.   

The percentage of  cells with an angle within 10° of  the channel axis was found; for 
samples with an aspect ratio greater than 6, 80% of  the samples were within this 
measurement (Figure 21).  The percentage of  aligned particles is, unsurprisingly, 
dependent on the aspect ratio, and not significantly dependent on flow rate.  The 
channel is very long compared to its cross-section, so presumably any flow-rate-
dependent differences in the time to alignment have been rendered irrelevant. 

 

Figure 21.  Orientation of high-aspect-ratio particles, represented as a percentage of 
particles with a long axis angled within 10° of the channel axis.  
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2.4.4 Microsphere and algae size correlations 

Literature on algae suggests that knowledge of  the size distribution of  the algae 
present in a body of  water can be a valuable tool for monitoring the species 
dynamics81.  With this motivation, PSL microspheres were used to examine the 
specimen size dependence of  the photodetector signals, independent of  the varied 
geometries of  the algae.  Additionally, nine species of  algae (Table 1) were measured 
and similarly examined.  The total change in the Itotal signal during each passing 
specimen (that is, the value of  h in equation 3.5) was recorded from samples of  each 
size of  particle and species of  algae.  

The microspheres had nominal sizes of  5, 10, and 20 µm but in reality each size 
contained a wide spread of  diameters around the nominal mean.  Therefore, the actual 
diameter of  each microsphere was measured individually from the photo taken by the 
system as the sphere passed the sensing region.  An MATLAB script was created to 
automatically perform this task.  The channel depth was larger than the depth of  
focus of  the microscope objective, so the processing step also removed poorly-
focussed images from consideration, to prevent errors in diameter measurements.  
After this step, 2994 recorded microsphere datasets remained.  The results of  the 
comparison, shown in Figure 22, are presented with the spheres grouped into integer 
diameters.  The microspheres were tested in a mixture of  glycerol and water, to 
prevent their sinking to the bottom of  the channel.  The data of  the microspheres and 

   

Figure 22.  Microsphere (top) and algae (bottom) size compared to h, the change in 
total light intensity ( as in equation 3.5).  The algae equivalent spherical diameters 
(ESDs) are calculated as an average for the species, rather than by measuring the 

individual cells as they pass by the sensor. 
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algae are thus presented separately, as the index of  refraction of  glycerol is different 
than that of  water.   

Monocultures of  algae were run through the system, one species at a time, until at 
least one thousand instances of  each species had been recorded.  The images were 
examined to rule out any samples that could not be positively identified as that species 
with a high degree of  certainty.  Of  the remaining data, 525 samples were chosen at 
random from each species and the photodiode signals compared to the species size., 
represented by the average equivalent spherical diameter (ESD) for the species.  This 
value was determined by calculating the volume of  20 cells of  the species from 
microscopy images, and finding an average and standard deviation of  the ESD.   

This approach had to be used for the algae due to high uncertainties that would be 
present in the in-channel size measurements.  These uncertainties were lower with the 
microspheres because they were in glycerol which has a higher index of  refraction, 
which led to clearer images.   

Both the microsphere and monoculture algae data showed that the average total 
change in the total intensity photodiode signal max(Itotal)-min(Itotal) closely correlated 
well with the microsphere diameter or algae ESDs.   

2.4.5 Overview of  classification strategy 

The ultimate goal of  the system is to identify the species of  an individual algal cell as 
it passes the sensor.  To this end, multiple pattern recognition were compared after the 
sensor data had been pre-processed. 

Data pre-processing followed several steps: first, the micrograph of  the channel and 
algae for each dataset was examined to manually identify the algae or particles.  
Second, several features of  the total-intensity and difference signals (Itotal and ΔX in 
Fig. 1) were extracted and subsets of  these signal features were used to explore the 
species recognition capabilities of  the system.  Both discriminant analysis and neural 
networks were used for this pattern recognition problem.  The resulting classifications 
could then be compared, on a cell-by-cell basis, with a manual identification of  each 
cell from the photo captured as the cell passed in front of  the interrogating laser 
beam.   

This procedure was followed on several different datasets.  The first was a dataset 
consisting of  microspheres, intended to predict the size of  the sphere from the 
photodiode signal.  The second dataset consisted of  5 mixed algae species, intended to 
predict the species of  each cell.  Lastly, a field-collected sample was spiked with 
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cultured algae, to test the differentiation between the algae and the detritus present in 
the field sample.  The details of  the analysis and classification methods are presented 
in the following chapter. 

 2.5 Optical modelling 
As morphologically-complex cells, algae are difficult to model optically on a single-cell 
basis.  However, some of  the species used here have relatively simple shapes and can 
be modelled to some extent.  A three-dimensional ray tracing model was used to 
explore how the variables of  algae shape, size, index of  refraction, and absorption 
play a role in the measurements.  Furthermore, the models were used to examine the 
relative effects of  these variables and whether they could be distinguished from one 
another.  Lastly, they were used as a first-order approximation of  the effects of  the 
algae being located in different parts of  the channel cross-section, since this is not 
controlled in the experiments.  The models are based on the algae being represented 
as combinations of  ellipsoids.  The rays are refracted at the surface of  the algae and 
absorbed by the algae, depending on their path length. 

2.5.1 Mathematical and geometrical basis 

A refracted ray  

	 n n c c 3.8 	

depends on the angle of  the incident ray, I with respect to the incident normal ray N 
and the indices of  refraction n1 and n2 as in Figure 23 with  

	 n
n
n 3.9 	

	 c ∙ 3.10 	

	
c 1 n 1 c 3.11 	

To identify rays which interact with the algae, we look for the intersections of  a ray  

	 I 	P 	Dα	 3.12 	

with origin P = (px, py, pz), normalized direction D = (dx, dy, dz), and length α with an 
ellipsoid which satisfies 
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with centre point (cx, cy, cz) and semi-principal axes of  length rx, ry, rz. 

The ellipsoid-ray intersections are defined by the solutions to the system of  equations 

	 p d α x
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p d α z
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	 3.14 	

The number of  real roots of  this system of  equations corresponds to the number of  
intersections, at lengths α along the line of  the ray.  The MATLAB function solve yields 
the following solutions for α: 

	
, 	 p c d r r d p r r d p r r c d d r r

c d d r r d d p r r d d p r r d r r r d r r
c d r c d r c d r 	c d r c d r d p r
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d r r d r r d

3.15 	

 

Figure 23. Refraction at a curved surface, to illustrate the equations  3.8 -3.11. 
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2.5.2 Model steps and geometric simplifications 

The above two expressions for refraction (3.3) and ray-ellipsoid interactions (3.10) are 
combined in a three-dimensional model of  the system as illustrated in Figure 24.  In 
the model, all non-algae interfaces are ignored; this means the refraction at the 
surfaces of  the channel and the chip are not taken into account, since they should just 
scale the whole image.   

Further, this model ignores the wave properties of  light; that is, it does not account 
for interference of  the coherent monochromatic light as a result of  its interaction with 
the algae cell. 

The beam’s initial intensity is a Gaussian distribution, defined such that the intensity 
of  the beam at 50 µm from the optical axis is 1/e the intensity at the centre to mimic 
the actual beam dimensions.  Unless otherwise specified, it has NA=0.12. 

Unless otherwise specified, the algae default to a position in the centre of  the channel 
cross-section, and the distance from the algae to the detector is 1 cm. 

Simulation steps 

The overall steps of  the simulation allow the user to determine the algae and beam 
properties, and then traces a large number of  rays while moving the algae along the 

 

Figure 24.  Layout of the modelled system.  Note that while the figures shows only 
rays in one x-z plane for simplicity, the rays are in three dimensions in the 

calculations and examples shown below.    
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channel.  Specifically: 

1. Parameterize algae: user specifies algae position in cross-section and its radius 
(sphere) or axis lengths (ellipsoid), as well as the algae index of  refraction and 
absorption coefficient. 

2. Determine algae’s position along the channel length (the position moves by a 
user-determined step at each repeat of  the simulation). 

3. For each ray, calculate the ray’s intensity depending on its distance from the 
center of  the optical axis of  the Gaussian beam.  Use equation 3.15 to calculate 
whether there is a ray-algae interaction.   

a. If  none: propagate the ray in a straight line, and record final intensity & 
position on a “detector” 

b. If  an algae-ray intersection: 

i. calculate position of  first intersection point  

ii. refract the ray at that point (ray enters algae) 

iii. calculate next intersection point; calculate path length inside the 
algae and decrease ray intensity from absorption 

iv. refract the ray at that point (ray exits algae) 

v. free space propagation until detector 

vi. record the ray’s final position & intensity on the detector, with the 
ray’s intensity decreased according to its path length in the algae 

vii. after all rays have been propagated, calculate the total intensity and 
differential signals, corresponding to Itotal and ΔX in Figure 14. 

2.5.3 Sample results 

Ray tracing (demonstrated with a sphere) 

A function within the program allows the production of  a ray trace for beams on the 
y-z plane, which can more easily demonstrate the effect of  different variables on the 
model results.  Other than the algae position, shape, and optical properties, the user 
can set several parameters to control the simulation: the spatial resolution of  the rays, 
the beam’s numerical aperture, the algae size, and the spatial resolution of  the algae 
movement (Figure 25). 
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Using a 6 µm radius sphere as an example yields the signals seen in Figure 26 for total 
beam intensity Itotal and differential signal ΔX.  The real part of  the index of  refraction 
was taken as 1.4, with the imaginary part, representing the absorption, as indicated on 
the figure.   

 

    
a)  Spatial resolution of the rays 

    
b)  Beam NA 

    
c)  Algae size 

Figure 25.  The effects of the modelling parameters set by the user.  While the actual 
simulation results are 3-D, only a 2-D slice of rays is shown for clarity. 

z 
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The ΔX signal does not depend on the amount of  absorption, indicating that the 
main effect here is due to the refraction of  the beams; the sphere is essentially acting 
as a lens, collecting the light and focusing it on the detector segment behind it.   

The light intensity signal shows the opposite case: the amount of  absorption plays a 
strong role in the value of  h (the amount of  light blocked as the object passes the laser 
beam, equation 3.5).  Logically, spheres that absorb more light affect the intensity 
more than those which absorb less.  An absorbance of  zero leads to almost no change 
in the total intensity signal.  This raises the question of  how much the optical 
absorbance of  the algal cells will interfere with measurements of  the algae 
morphology. 

 

 

 

Figure 26.  Sample results of the modelled Itotal and ΔX signals obtained from a 6 µm 
sphere.  The top plot shows total light intensity dropping as the sphere moves across 

the beam, with the effect greater for spheres with higher absorption.  The bottom 
plot shows the difference between the upstream and downstream halves of the 

photodiode, as in Figure 14. Some noise can be seen because of the discrete nature 
of both the light rays and the algae positioning.   
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Comparison of  sphere radius and absorption  

To compare the effects of  algae size and absorption, the model was used to study the 
total change in light intensity h created by passing spheres with different properties 
across the beam (Figure 27).  The results show that the two factors interact 
significantly, and that any attempt to definitively measure algae size with this sensor 

 

 

Figure 27.  (Top) Normalized change in light intensity h (i.e. h as in equation 3.5, with the 
total light intensity set to one) as spheres of  Re(nsphere)=1.6 with various sizes  and 

absorption values traverse the modelled beam.  (Bottom) the modelling results 
compared to experimental values from polystyrene latex (PSL) microspheres, 

Re(nPSL)=1.6.   
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will be limited in part by the uncertainties in the optical absorption of  the species in 
question. 

Effect of  particle position in the channel  

It is common in microfluidics to use a focusing technique to force particles to assume 
a certain position in the channel cross-section.  This is often done with flow focusing, 
where a clean, particle-free sheath fluid enters the main channel on either side of  the 
sample fluid, forcing the sample fluid and particles towards the centre of  the channel.  
The motivation for this can be to keep the particles away from the walls of  the 
channel, or to control their axial speed along the channel.  However, this technique 
does require either a supply of  clean water or another actuation system to reliably 
control the cross-sectional position of  the particles, neither of  which is desirable in a 
field-deployable device unless strictly necessary.  Because of  this, the system presented 
here has no particle focusing mechanism, and microspheres or algae are free to 
assume any position in the channel cross-section.   

Figure 28 shows the photodetector response (differential signal ΔX and the total 
intensity Itotal) as a 5 µm radius sphere moves along the channel, with the sphere in 
different positions along the channel height.   

For both signals, the 40 µm offset in the channel height causes the signal to decrease 

  
Figure 28. Normalized photodetector signals of a 5 µm sphere moving along the 
channel at different heights.  The amount of y-offset from the channel centre is 

indicated in the legend (in µm).  The bottom axis is the sphere’s position along the 
channel, with 0 the intersection with the optical axis. 
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to about 75% of  its value at no offset.  If  we compare this effect to that of  the sphere 
radius, we see that the height position causes a decrease in light intensity on the order 
of  the decrease caused by a radius change of  one micron (Figure 29).  These results 
suggest that the effect of  the particle position is negligible compared to the overall 
variability in particle or algae size, and that the trade-off  of  system simplicity for 
slightly more uncertainty is warranted. 

2.5.4 Algae modelling 

Five species of  algae and various sizes of  microsphere were modelled using the ray 
tracing mechanism described above.  The five species (see Table 3) were chosen 
because they could be reasonably modelled with combinations of  spheres and 
ellipsoids.   

The index of  refraction of  the algae was taken as n = Re(n) + Im(n), with Re(n) = 
1.05 and 0.005.  These values are taken from theoretical and experimental studies 
looking at the inherent optical properties of  phytoplankton cells.41,82,83 

The models show that the total light intensity corresponds reasonably well to the algae 
models (Figure 30).  The modelled differential signals show a clear similarity to the 
measured signals but lack higher-order features seen in the experiments.  From this we 
can conclude that the refraction and absorption of  light, while relevant, is insufficient 
to fully describe the behaviour of  the system during measurements.    

 

Figure 29.  The change in light intensity on the photodetector (as a percentage of the 
total light intensity) caused by spheres from 1-7 µm radius, compared to a 5 µm radius 

sphere being offset by 10, 20, 30, and 40 µm in the y-direction. 

0 offset
40 um offset

0.0%

0.1%

0.2%

0.3%

0 2 4 6 8

C
ha

ng
e 

in
 li

gh
t i

nt
en

si
ty

 h

Total light intensity on photodetector (sum signal)

By radius, assuming zero offset
By offset, assuming 5 um sphere



Chapter 2: Fabrication, modelling, and characterization of algae identification system 45 

 

Limitations of  the approach 

A more complete model of  the algae could perhaps provide further information on 
which aspects of  the cells are affecting which properties of  the signals.  This in turn 
might lead to insights about which features of  the signals should be used as input to 
the neural networks for classification.  For this to happen, a more complex and refined 
model of  the algae cells themselves would be necessary, and a more complete model 
of  the optics would be required.  A model of  the algae would need to include detailed 
optical properties of  the internal microscopic and sub-micron features unique to each 
species.  The optical model would need to take into account the wave nature of  light, 
with the wave front distorted by passing through the algae cell.  The model would 
need to account for interference of  the coherent monochromatic light as a result of  
these sub-micron algae features. 

 

Table 3.  Microspheres and species of algae used in modelling, along with a 
description of the combinations of spheres and ellipsoids used to model the species.  
 

Species Picture Model Dimensions 

polystyrene 
microsphere 

 
sphere variable radius 

Chlorella 

 

sphere radius = 3 µm 

Cyanothece 
 

ellipsoid 
radii =  

6, 8, 6 µm 

Microcystis 

 

two 
ellipsoids 

radii =  
4, 3, 3 µm 

Monoraphidium  ellipsoid 
radii =  

4, 70, 4 µm 

Scenedesmus 

 

four 
ellipsoids 

radii =  
5, 2, 2 µm 
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Figure 30.  Experimental (left) and modelled (right) sum signals from 5 algae (see 
Table 3).  The signals are on an arbitrary but consistent scale; the green images on 

the right depict the three-dimensional models of the algae used. 
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 2.6 Conclusions 
A simple glass device is presented, featuring a sub-surface curved waveguide and a 
surface microchannel.  Light transmitted by the waveguide crosses the channel and is 
measured with a quadrant photodetector.  The system provides optical “fingerprints” 
of  spheres or algae suspended in the flow.   

Characterization measurements provide insights into the system’s behaviour under 
varying conditions.  The signal properties change when the flow rate is increased or 
when user-defined sensitivity thresholds are modified.  This suggests that a higher 
flow speed will require faster data collection than currently being implemented.  The 
laminar flow inherent in microfluidics causes the high-aspect ratio particles to self-
align, which increases the repeatability of  measurements of  highly non-spherical algae 
species.  For example, over 80% of  particles with aspect ratios greater than 6 were 
aligned to within 10° of  the channel’s long axis.  The total light intensity incident on 
the detector corresponds well to the sample’s physical size (diameters for spheres, or 
equivalent spherical diameter for the algae species). 

Simple ray-based optical model were created to mimic the system’s measurements.  It 
was found that offsets of  the sample in the y-direction cause small errors in size 
measurements, which is important for a device with no flow focusing.  As expected, 
the optical absorption of  the sample greatly affects the total light incident upon the 
detector.  Lastly, some of  the algae species were modelled, with their geometries 
represented as combinations of  ellipsoids.  These models showed similar overall 
patterns to those found experimentally, but lacked some of  the higher-order features 
seen in the experiments.  More detailed models of  the tiny internal features of  the 
algae cells, coupled with a wave-based model of  the optics, could potentially yield 
further insights into which properties of  the cells influence the signals.  If  a model 
were shown to accurately represent the signals obtained experimentally, perhaps this 
could even be used to interpret measurements of  previously unencountered species.  
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 3.1 Introduction 
The previous chapter discussed the fabrication, design, and characterization of  a 
microfluidic chip for classifying and quantifying algae species in water. Here we study 
the device performance and classification methods for data analysis.  Specifically, the 
results from two pattern recognition methods are compared: discriminant analysis 
classification and neural network pattern recognition.  Since the neural network yields 
a higher success rate, its algorithm parameters are subsequently tuned to optimize the 
classification.   

Both methods require the selection of  features from the input signal.  The algorithms 
for classification depend on matching these sets of  features, rather than matching the 
shape of  the signal itself.84  For these tests, five metrics were initially selected from 
each of  the two photodiode signals. One was rejected for showing no difference 
across the different types of  samples, leaving four distinct parameters extracted from 
each photodiode signal: the maximum value, the minimum value, the sum of  the 
signal, and the sum of  the signal after it was normalized and rectified. Each algae cell 
produces two photodiode signals (the Itotal signal and the ΔX signal), so there are a 
total of  eight signal features to describe each algae or microsphere recorded 
(Figure 31). 

The discarded feature for the signals was the signal length (in the time domain). If  the 

 

abbrev. ΔX signal features Itotal signal features
F1 max(ΔX) max(Itotal)
F2 min(ΔX) min(Itotal)
F3 Σ(ΔX) Σ(Itotal)
F4 Σ(abs(ΔX))/max(ΔX) Σ(abs(Itotal))/max(Itotal)

 

Figure 31. Signal features used as input to the DA and NN pattern recognition 
systems  
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particles or algae had been focused to a fixed position in the channel cross-section, the 
length of  each signal might have been a useful measurement of  the physical length of  
the specimen. Since no such focusing was used, the lack of  correlation between the 
signal length in time and the specimen physical length is unsurprising. 

 3.2 Pattern recognition methods 
Both discriminant analysis and neural networks are methods for taking a set of  inputs 
and providing a prediction of  the correct output value.  In the case of  algae 
classification, they take in the signal features mentioned above and output a prediction 
of  the species that created that signal. 

Both methods require training before use.  In this initial step, a subset of  the inputs 
and the corresponding correct outputs are designated as training data.  This data is 
used to define some function that maps from inputs to outputs.  The method is then 
tested: the remaining input samples are classified by the software.  In order to validate 
the methods and identify the misclassifications, the results are compared to a manual 
(i.e. human done) classification to characterize the performance of  the method.  The 
correct classification is defined, in this case, as the manual identification of  the algae 
species from the photo taken by the system.  

3.2.1 Discriminant analysis 

Discriminant analysis (DA) is a statistical pattern matching method whereby the d 
features of  a signal are represented as vectors x=[x1, x2, x3, … xd] in d-dimensional 
space. The training data is used to define groups, or clusters, in the d-dimensional 
parameter space.  The goal of  the DA is to classify the unknown test data into the 
groups that are statistically most likely to belong to. In the most intuitive application, 
using Euclidean distances, the DA method could identify the mean position of  all the 
groups in the d-dimensional space, and then classify an unknown vector as belonging 
to the group whose mean it is closest to. More complex approaches allow for non-
linear methods of  determining the group membership.  An example is using 
Mahalanobis distances, which generalizes this idea by defining “distance” in terms of  
how many standard deviations a point is from a mean, rather than using absolute 
distance.85  

In this work, we use the Mahalanobis distances and the built-in discriminant analysis 
tool (the “classify” command) of  MATLAB (R2010b, The MathWorks) to do DA 
classification. 70% of  the data from each group is used for training.  The remaining 
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30% is treated as unknown, and is classified and then evaluated.  These values were 
chosen to be comparable with the split of  data used in the neural networks (next 
section).  

3.2.2 Neural networks 

Inspired by biological neurons, artificial neural networks (NN) are used for pattern 
recognition or machine learning.  For supervised pattern recognition, the goal of  the 
system is to find some mapping which produces the desired output values given a set 
of  inputs.  The NN approach allows for a more complex, adaptive, non-linear 
weighting of  the various signal features than discriminant analysis, often yielding 
better results.84  

An NN uses a multi-layered network to link the input vectors with their intended 
output values (Figure 32). The network consists of  three layers: input, hidden, and 
output layers. The input layer transmits a signal to the hidden layer, where the input is 
weighted and/or transformed in a series of  hidden neurons.  The output layer receives 
the results of  the hidden layer and assigns the signal to an associated group.  

The training step is used to adjust the hidden layer to optimize the mapping from 
input to output by minimizing the output errors.  This process is iterative, and the 
algorithm used to update the weights and transformations can have a significant effect 

 

Figure 32.  Schematic overview of a neural network architecture.  Four input 
parameters (equivalent to our signal features) are fed into a hidden layer with 5 

neurons.  They are recombined in the output layer which has three classes.  Each of 
three classes is assigned a value based on the hidden layer results; the class with the 

highest value is the predicted species of the sample. 
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on the results.   

We initially use the neural network pattern recognition tool (the nprtool command) of  
MATLAB with the default settings to do classification. With this tool, the fraction of  
data to be considered training, validation, and unknown data can be selected by the 
user; we use 60%, 10%, and 30% respectively, and use a network with 10 hidden 
neurons.  A rule of  thumb in neural networks is that the number of  examples from 
each group in the training data should be about 5-10 times as high as the number of  
features.  Otherwise, over-training can occur.  Since 8 features are being used, 
assigning 60% of  the data to training fulfils this criterion, though more data in the 
training group could be beneficial.  However, these values were used in the interests 
of  having a large enough number of  unknown samples for statistical analysis.  A 
discussion of  avoiding over-training will be included in the neural network 
optimization process (section 3.4). 

 3.3 Results: Neural networks vs. discriminant 
analysis 

3.3.1 Test 1: Sizes of  microspheres 

The first dataset contained a mixture of  microspheres, of  nominal diameters 5 µm, 10 
µm, and 20 µm. The actual diameters were measured from micrographs taken before 
the experiments; the measured diameters (mean ± standard deviation) were 
6.15±0.52 µm, 11.05±0.26 µm, and 20.20± 1.25 µm.  Data was only included in the 
sample set if  the associated photo was sufficiently well-focused that the microsphere’s 
diameter could be determined from the picture. A total of  983 microspheres were 
successfully sampled, with 182, 496, and 305 microspheres of  5, 10, and 20 µm 
diameters, respectively.  

The rate of  successful identification overall was 85% with the NN, and 77% with the 
DA, as shown in Figure 33. The largest difference between the two methods was seen 
with the 20 µm microspheres; only 42% of  the actual 20 µm microspheres were 
identified as such by the DA.   

An examination of  just two of  the signal features – the sum of  the ΔΧ signal and the 
sum of  the Itotal signal for each microsphere occurrence shows that while the mean 
values of  these two features may differ by size, they exhibit significant overlap 
(Figure 34). Examining some of  the other features (data not shown) shows a similar  
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situation – different microsphere sizes have different mean values, but significant 
overlap. While the use of  all eight features is intended to provide better classification 

 

                 (a)                                                            (b) 

Figure 33. Results of (a) discriminant analysis and (b) neural network classification of 
microspheres by size.  The horizontal axes represent the real size of the 
microspheres, as identified manually from the photographs taken during 

experiments, while the vertical axes are the output classes returned by the pattern 
recognition analyses.  The areas marked with diagonal stripes indicate correct 

classifications; i.e., output class = target class. 

 

 Figure 34. Plot of the sum of the Itotal signal versus the sum of the ΔX signal for 
each microsphere occurrence. This sample data shows significant overlap between 

the groups, and serves as an example of why discriminant analysis may not be 
sufficient for classification.   
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results than using merely two, the results nonetheless suggest that even in the eight-
dimensional feature space used by the DA, there is too much overlap between the 
different groups, particularly the 10 µm and 20 µm spheres, to distinguish them by 
these parameters alone. 

3.3.2 Test 2: Cyanothece & detritus 

The second dataset used to test the microchip and classification algorithms was 
designed to mimic the conditions in a field test.  Water was collected from the slow-
moving Dommel River, which passes through the campus of  the Eindhoven 
University of  Technology.  It was filtered to remove all particles above 100 µm (to 
avoid clogging the microchannel), and lab- cultured Cyanothece cells were added to the 
water.  

This dataset was chosen to characterize the system’s ability to distinguish the toxin-
producing cyanobacteria from surrounding detritus and other algae, in an attempt to 
simulate the conditions of  a cyanobacteria bloom. A compound micrograph 
(containing images of  cells from multiple separate micrographs) of  the solution is 
shown in Figure 35.  The green ellipsoidal Cyanothece can be visibly distinguished from 
the detritus, which exhibit a wide array of  morphology and which even includes other 
types of  algae.  In total, 106 Cyanothece cells and 216 pieces of  detritus were sampled.  

The results of  this classification were quite successful, with the NN and DA methods 
yielding correct identifications 95% and 94% respectively. For the NN, 8.6% of  the 

 
Figure 35. Detritus from the Dommel River mixed with lab-cultured Cyanothece 

(green ellipsoids).  Scale bar is 100 µm long. 
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specimens classified as Cyanothece were, in fact, false positives, while 3.2% of  the 
specimens classified as detritus were false negatives. The DA yielded no false 
negatives, but 15.8% of  the Cyanothece classifications were false positives.  

To conclusively decide between these two approaches for this particular type of  test, 
more types of  detritus and a larger number of  samples would be necessary. These 
preliminary data reveal an interesting difference between the classification methods: 
while the NN method yields more average successful classifications, it also has a 
higher rate of  false negatives.  In some situations, it might be more desirable to 
choose settings which yield more false positives than false negatives or vice versa.  For 
example, it might be deemed preferable to overestimate rather than underestimate the 
actual number of  toxin-producing cyanobacteria.  On the other hand, false positives 
may be an expensive error in settings like aquaculture or regulatory compliance 
monitoring.  

3.3.3 Test 3: five mixed algae species 

The third dataset was based on a sample containing a mixture of  four phytoplankton 
and one cyanobacterium.  The species were Cyanothece aeruginosa, Chlorella vulgaris, 
Microcystis viridis, Anabaenopsis sp., and Monoraphidium griffithii.  The cell sizes of  these 
species range from a few microns (Chlorella) to the tens of  microns (Cyanothece and 
Monoraphidium).  These species were chosen out of  the nine available species primarily 
because they were distinctive enough to be reliably identified.  The Navicula, 
Pseudokirchneriella, and Pseudanabaena are all very small, difficult to distinguish with the 
microscopy system on the detector platform, and have lower signal-to-noise ratios 
than most of  the other species.  The Scenedesmus was left out because there is a very 
high variability in that species over its growth cycle.  An examination of  that species at 
the time of  the experiments showed that the cells were quite polydisperse, and that it 
would probably need to be treated as two different groups from the classification 
point of  view. 

The five species were mixed together and run through the sensor until there were over 
1000 datasets collected.  The species of  each sample was manually identified from the 
photo; if  the photo was too unclear to identify certainly it was removed from the 
dataset to ensure a careful analysis of  the neural network results.  The data from the 
first ~100 cells of  each species comprised the dataset, for a total of  509 samples.  The 
rate of  successful identification for all five species was on average 78% with the NN, 
and 67% with the DA, shown in Figure 36.  
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Both methods had low success (<50%) with the Chlorella, and the DA had even worse 
results with Microcystis. These two species are the smallest of  the five, and they had 
lower signal-to-noise ratios than the other species. To illustrate this, the signal-to-noise 
ratio (SNR) of  the Chlorella and Cyanothece was calculated with the Itotal signal for each 
sample.  The SNR was defined as the ratio of  the minimum value of  the signal to the 
RMS value of  the noise.  For the Chlorella the average SNR was 8.7 and for the 
Cyanothece 56.4.  This is likely a contributing factor to their lower classification rates. 
This hypothesis is supported by the fact that the misclassified Chlorella (NN & DA) 
and Microcystis (DA) were almost all misclassified as each other or as Monoraphidium, the 
third-smallest species.  

This suggests that for higher-accuracy classification of  small (<7 µm equivalent 
diameter) algae, there may be other signal features which lend themselves to the 

 

             (a)                                                             (b) 

Figure 36.  Results of (a) neural network and (b) discriminant analysis classification 
of a mixture of five algae species, based on the eight signal features obtained from 
the photodiode signals collected during each algae occurrence. The horizontal axes 
represent the real species, as identified manually from the photographs taken during 

experiments, while the vertical axes are the output classes returned by the pattern 
recognition analyses. The areas marked with diagonal stripes indicate correct 

classifications; i.e., output class = target class.    
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distinguishing of  these species. It would be beneficial to use a smaller microchannel 
and laser beam to illuminate the channel, to increase the proportion of  light affected 
by these small samples.  Using a smaller wavelength of  light might also help; this 
would require a smaller waveguide in order to maintain single-mode transmission.    

 3.4 Neural network optimization 
While the default values of  the nprtool yield promising results, there are several 
variables which can be manipulated to optimize the neural network performance.  In 
the following section, each variable was changed and then tested 10 times with the 
same dataset (5 mixed algae species).  Each time that the test was run, the input data 
was randomly re-assigned to be training, validation, or test data, in order to see if  the 
new set of  variables was susceptible to over-training to a certain set of  test data.  The 
results present the percentage of  the test data that was correctly identified, with the 
bar height showing the mean of  the 10 tests and the error bars showing the standard 
deviation.  Ideally we want the method with the highest mean and a low standard 
deviation, which means that the method is both accurate and robust against random 
initial training conditions.  Note that by default, MATLAB shows the final 
classification of  all of  the data (including the training and validation data), and in the 
previous section this is what was shown.  However, in the following sections only the 
results of  the “test” data are shown, as it represents a more difficult task that is more 
representative of  real usage. 

3.4.1 Training algorithm 

The training algorithms determine how the weights and bias values of  the hidden 
neurons are updated.  There are 12 options for training algorithm functions 
appropriate to pattern recognition available with MATLAB’s Neural Network toolbox, 
listed in Table 4; the number of  hidden neurons and other variables were kept 
constant at the default values. 

The functions trainbr, trainrp, trainlm, and trainr all showed high success rates and low 
standard deviations (Figure 37).  The trainscg method, which is the default, showed 
high variability.  The trainr method took one to two orders of  magnitude more time to 
train than the other three high-performing methods, so it will be excluded from 
further analysis. 
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Table 4.  Available training algorithms and function names
 

Function Algorithm

trainbfg BFGS quasi-Newton backpropagation

trainbr Bayesian regularization backpropagation

traincgb Conjugate gradient backpropagation with Powell/Beale Restarts  

traincgf Conjugate gradient backpropagation with Fletcher-Reeves updates 

traincgp Conjugate gradient backpropagation Polak-Ribiére updates

traingd Gradient descent backpropagation

traingdm Gradient descent with momentum backpropagation

traingdx 
Gradient descent with momentum and adaptive learning rate 
backpropagation 

trainlm Levenberg-Marquardt backpropagation

trainoss One step secant backpropagation

trainrp 

Resilient backpropagation

trainscg 

Scaled conjugate gradient backpropagation (the default method)

 

 
Figure 37. Percent of correctly classified samples from a sample with 5 mixed algae 
species, depending on the training algorithm.  The error bars are the result of the 
analysis being run 10 times with each method, with a randomly-selected subset of 

data used for training, validation, and classification each time. 

0%

20%

40%

60%

80%

100%

%
 o

f 
sa

m
pl

es
 c

or
re

ct
ly

 c
la

ss
ifi

ed

Training algorithm



60  Chapter 3: Analysis of results from algae identification system 

 

3.4.2 Number of  hidden neurons 

The default training method (trainscg) and the three highest-performing methods 
(except for trainr) were used to test the effect of  the number of  hidden neurons.  In 
each case, increasing the number of  neurons improved the results up to a point at 
which the success rate more or less plateaued (Figure 38).  Trainlm was the quickest to 
hit this plateau at only 2 hidden neurons; the default trainscg saw little improvement 
with more than 3 neurons.  Trainbr and trainrp both improved rapidly until the 10 
hidden neuron mark, with trainbr having the highest success rate and lowest variability 
at 50 neurons. 

3.4.3 Performance function and regularization parameter 

The performance of  a neural network must be evaluated at each iterative step in order 
to improve.  There are four options for how a network’s performance is measured.  In 
each case this is done with a calculation of  the error of  the network, but the method 
by which the error is calculated is different.  The four methods available are the mean 
squared normalized error (MSE), the sum squared error (SSE), the mean absolute 
error (MAE), and the sum of  absolute errors (SAE).  The latter two methods 
underperform compared the other two and are not available for all training methods, 
and so are discarded as options.  The MSE option performed as well or better than 

 
Figure 38. Percentage of correctly classified algae from the mixture of 5 species, 
using various numbers of hidden neurons with four of the top training methods. 
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SSE for all of  the top performance functions (trainbr, trainlm, trainrp) and can be 
used for all three of  them, so it is selected as the default. 

The MSE performance function is, by default, simply a sum of  the errors squared.  
However, it also allows manipulation of  a regularization parameter which penalizes 
high weight values in the network.  If  the regularization parameter is not zero, the 
values of  the weights themselves are also a factor in the error calculation.  Including 
this term helps to prevent over-training specific to a set of  training data.  The results 
of  changing the regularization parameter are shown in Figure 39; the trainbr method 
already includes an automated optimization of  this parameter and it is thus not 
included in the figure. 

Increasing the regularization parameter has the most effect on the default trainscg 
method, where it increases the performance of  the network significantly.  The trainrp 
method shows a very slight improvement up to the 0.1 level, and then both it and the 
trainlm algorithms decrease in performance rapidly.  

3.4.4 Trade-off  between certainty and samples identified 

A neural network outputs a matrix containing values which are analogous to posterior 
probabilities – an array of  values which indicate the relative likelihood that a sample is 
a member of  a given class.  By default, each sample is assigned to the class with the 
highest output value.  The values range from 0 to 1.  In this test, the class is only 

 
Figure 39. Effect of the regularization parameter in the MSE error performance 

function.  The default value is 0; higher values cause the network to penalize large 
weights and biases in the network.  
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definitively assigned if  the output value of  the highest-probability class is above a 
threshold value.  This is conceptually equivalent to requiring a specified level of  
certainty before assigning a species to a sample.  This behaviour can also be 
manipulated to bias the network towards, for example, preferring false negatives over 
false positives.  

The results (Figure 40) show that trainbr returns results with high certainty: even if  the 
required certainty goes from 0.05 to 0.9, the percentage of  results classified and the 
percentage of  correct classifications remain nearly constant.  The other three methods 
show dramatic drop-offs in the number of  classified samples as the certainty 
threshold increases above 0.5.   

    

    
Figure 40.  The results of the imposition of a “certainty threshold” in the neural 
network results: a higher certainty requirement leads to fewer specimens being 

classified.  The label on the top left of each plot indicates the training method and 
number of hidden neurons.   
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3.4.5 Best classification results  

The best result obtained during these procedures was with the method trainbr with 50 
hidden neurons, using the mse performance function This combination resulted in 
75.9% ± 2.9% of  the algae in a sample of  5 mixed species being correctly classified.  
This value reports only the percentage of  correctly identified specimens from the test 
data, and does not include the data used to train and validate the network.  With those 
data included, the success rate is 91.0% ± 1%.  A breakdown of  the classification 
results by species is shown in Figure 41.   

For comparison, the default settings (trainscg with 20 hidden neurons, mse performance 
function) result in 61.5% ± 18.7% of  the test algae being correctly classified.  With 
the training and validation data included, the default settings result in 69% ± 7.8% 
correct classifications.  Figure 42 shows an overview of  all of  the results obtained by 
the top three training methods, along with the default method, for various parameters.   

  

Figure 41.  Results of the classification of five mixed species of algae, with the 
optimized neural network.  These data can be directly compared to those in 

Figure 36, where the results from the default NN settings are shown. The horizontal 
axes represent the real species of the algae, while the vertical axes are the output 

classes returned by the NN analysis. The areas marked with diagonal stripes indicate 
correct classifications; i.e., output class = target class.  
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 3.5 Discussion 
For each of  the datasets, the NN classification gave better average results than the DA 
classification. This is a trend seen in other works requiring pattern recognition, for 
example, the analysis of  data from an electronic tongue86, the classification of  medical 
data from clinical laboratory studies87, predicting pollen season severity88, and 
modelling fish species distributions.89  

A benefit of  both of  these signal-feature-based methods is that data from other 
sensors which may be added onto the device in the future (including sensors that give 
off  only one data point per algae, such as the ratio of  emitted fluorescence at two 
different wavelengths) can be incorporated fairly seamlessly into the data handling and 
pattern recognition.  

However, one major disadvantage to the signal-feature-based methods lies in the 
selection of  features to use. To identify the best subset of  m parameters out of  a 
possible d parameters, one of  several algorithms can be followed with no guarantee of  
finding the actual optimum. To identify the true optimum, it would be necessary to 
run the neural network again for each possible combination of  features, for each 
possible value of  m, requiring 2d-1 separate training and classification procedures.  

The rule of  thumb mentioned in the neural network introduction was to keep the 
number of  features less than around 1/5 or 1/10 the number of  training samples; 
otherwise, over-training can occur and decrease the overall performance of  the 

 

Figure 42.  Results from the three top-performing training methods and the default 
training method.  The solid marker represent the best performance at that number of 

neurons, with the hollow markers showing results from other sets of parameters. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 10 100

%
 c

la
ss

ifi
ed

 c
or

re
ct

ly

# hidden neurons

trainbr

trainlm

trainscg

trainrp



Chapter 3: Analysis of results from algae identification system 65 

 

classification method. To ensure that we were not over-training the classification, the 
neural network analysis was repeated multiple times, each time removing a different 
one of  the eight features to see if  removing one feature improved the performance. 
This test was completed only with the five mixed species (dataset 2), since it had the 
lowest average number of  training data sets per type of  specimen. This procedure 
showed that the average classification performance did not improve upon removing 
any of  the features, so all eight features were left in for the analyses.  

Neural network optimization 

The optimization process provides a clear improvement in the percentage of  algae 
correctly classified.  It also significantly improves the repeatability of  the classification 
results when a different random subset of  the data is selected for training and 
validation.  The best method found (trainbr with 50 hidden neurons) yields a 23% (14 
percentage points) higher success rate than the default values.  The most significant 
change from the default settings (Figure 36) is in the classification of  the Chlorella.  
These cells have a low signal-to-noise ratio compared to the other four species, and 
the default NN is not able to handle this well.   

The trainbr algorithm includes a process to automatically optimize the regularization 
parameter, which, as described in section 3.4.3, helps to prevent over-training.  This 
likely contributes to the high success rates of  this approach; the algae data is 
inherently noisy, an inevitable result of  the variations between cells of  the same 
species.  Additionally, the rule of  thumb that suggests having at least 5-10 times as 
much training data per group as features is satisfied, but not by a large margin – there 
are between 5 and 10 times as many training datasets as features in the 5 mixed species 
case.  Both of  these facts suggest that there may be some susceptibility to over-
training in this task, and that the trainbr algorithm’s success is likely due at least in part 
to its robustness against this problem.   

Alternative pattern recognition methods 

Two approaches to pattern recognition were presented here, each a common 
technique used in similar situations, but other techniques for pattern recognition may 
offer advantages or alternative benefits. For example, both of  the techniques 
presented here require initial training data, placing them in the class of  supervised 
pattern recognition techniques. Unsupervised pattern recognition techniques, in 
comparison, are designed to form the groups in the first place. This can be done by 
identifying data clusters according to criteria chosen by the designer, who can select 
how similar data must be to be considered a group. This approach can, of  course, 
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over- or under-estimate the total number of  groups, but it has the major advantage of  
not requiring prior knowledge of  the types of  organisms being encountered by the 
device. For a field-deployable device, using a pattern recognition method that can be 
transformed to an unsupervised method is advantageous. Unsupervised learning has 
been used in both neural network and discriminant analysis classification methods.84,86  

Wavelet matching 

Wavelet matching is a possible complementary approach for this problem, in which 
the actual shape of  the signal (rather than selected representative features) is matched. 
This is done through a convolution process, whereby a set of  signals (wavelets) are 
convolved against a test signal to see which provides the best overlap. Each wavelet 
shape is convolved multiple times against the same test signal, but with different 
scaling in the time and amplitude axes. This approach is useful particularly for very 
noisy signals, but requires that each sample in a set have the same overall shape. It is 
limited, though, by requiring an initial set of  wavelets to match the sample data to. 
This means that wavelet analysis alone would not be adequate for an unsupervised 
learning method, although it would be possible to use the correlation of  a signal to a 
wavelet as a feature input into a neural network or discriminant analysis pattern 
recognition system. 

 3.6 Conclusions 

The use of  neural networks (NN) for classification proved more successful than 
discriminant analysis (DA) in each of  the datasets examined here.  The performance 
gap between the DA and NN increased for more complicated problems: when only 
two groups (Cyanothece & detritus) were present, the NN results were nearly identical 
to the DA’s.  With three groups (three sizes of  microspheres) tested, the NN 
outperformed the DA by 8 percentage points.  In the test with five groups (five 
species of  algae) the optimized NN’s rate of  successful classification was 24 
percentage points higher than the DA’s. 

The neural network performance was optimized by exploring the use of  different 
numbers of  neurons and training algorithms; the best results were obtained by an 
algorithm which is inherently non-susceptible to overtraining (trainbr).  In addition to 
having the highest average correct classifications, the best results from trainbr also had 
one of  the lowest standard deviations, meaning that it had highly repeatable results 
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even when a different random subset of  the data was used for training.  Furthermore, 
it yielded a high certainty compared to the other methods. 

This data analysis, coupled with the monolithic optofluidic chip presented in the 
previous chapter, yields data suitable for the classification of  microspheres and algae.  
It can provide sufficient information for the classification of  five different algae 
species with 76% accuracy when only the test subset of  the data is included, and 91% 
when all data is included.  Its promise as a field-deployable device was demonstrated 
by a success rate of  over 90% in distinguishing between cyanobacteria and field-
collected detritus. 
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 4.1 Motivation: Phylogenetics vs phenetics 
Taxonomy – the classification of  living organisms – is a means of  classifying and 
organizing species to express their relationships with other species or organisms.  
There are two approaches to algae taxonomy: phenetics and phylogenetics.  Phenetics 
groups organisms with  similarities in observable traits like morphology (shape, size, 
patterns, etc.).  Phylogenetics, on the other hand, is based on molecular (typically genetic) 
analysis and aims to classify species based on their evolutionary relationship.  Various 
algae taxa have been presented over the years, based on one or both of  these 
approaches.   

Each of  these approaches offers value in different applications.  Phylogenetic 
classification may be useful particularly to researchers trying to understand the 
complex relationships between species, their environments, and evolution.  However, 
the genetic or evolutionary background of  a particular algae species does not 
necessarily correspond to predictable behaviour or responses to environmental 
stimuli.  There can be species which are quite far apart on a phylogenetic tree which 
nevertheless exhibit very similar behaviours or appearances, and which thrive 
(sometimes together) under similar conditions.  For applications like predicting and 
measuring planktonic blooms, a phenetic approach may yield more useful information 
while being technically simpler. 

A technological approach to algae identification which responds primarily to the cell 
morphology would serve many purposes within the phycological community.  To this 
end, this chapter looks at size- or shape-sensitive particle sorting methods.  After a 
review of  some classification schemes using morphological data, an overview of  some 
existing passive sorting techniques are presented.  Two methods are chosen and 
compared: optofluidic sorting with a laser beam, and inertial sorting in a spiral 
microchannel.  This work is intended to complement the size- and shape-sensitive 
optical identification methods presented previously in this thesis. 

4.1.1 Phenetic classification schemes 

Interest in phenetic classification of  algae has recently enjoyed a resurgence, triggered 
by a paper by Reynolds et al in 2002 which followed up on work by their group from 
the 1980’s on.90  A few phenetic classification schemes have been presented and 
tested, but all of  them seek to create classes of  algae based on morphological traits 
and/or ecological behaviour, rather than evolutionary history. 
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The proposed scheme of  Reynolds et al. featured 31 “functional” groups of  
freshwater algae, based on shared features of  the species in the group.90  The groups 
are defined by a combination of  habitat, tolerances, sensitivities, and morphology.  
The habitats are defined by factors including the depth of  water, the location of  the 
species in that depth, the degree of  mixing in the water, the nutrient conditions, and 
the time of  year.  The tolerances are defined with respect to high or low levels of  
light, carbon, specific or general nutrients, or turbidity.  The sensitivities are to other 
species, flow conditions, light conditions, and to rising or falling levels of  pH, Si, or 
CO2.  

In 2010 and 2011, Kruk proposed a simpler scheme with seven groups that uses a 
combination of  seven primarily morphological traits.91,92  The groups are defined by 
the presence or absence of  flagella, siliceous structures, mucilage (a viscous, gelatinous 
substance which sheathes the cell), or aerotopes (gas vesicles).  Further classification 
was provided by threshold values of  the volume, the surface to volume ratio, and the 
maximum linear dimension.  Descriptions of  the groups are given in Table 5.   

Table 5.  The morphology-based algae groups proposed by Kruk et al.91.  
 

Group Description 
Examples from our algae 

species 

I Small organisms with high S/V 

   

II 
Small flagellated organisms with 
siliceous exoskeletal structures 

 

III Large filaments with aerotopes  

IV 
Organisms of  medium size lacking in 

specialized traits 
   

V 
Unicellular flagellates of  medium to 

large size 
 

VI 
Non-flagellated organisms with 

siliceous exoskeletons 

VII Large mucilaginous colonies 
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As of  a review in 2009, 63 studies had used the classification of  Reynolds (2002) for 
algae studies.93  This review also pointed out errors that had been made in the 
placement of  certain species into the incorrect Reynolds codon, and suggests some 
modifications to make the habitat descriptions less ambiguous.  

A meeting of  the 14th Workshop of  the International Association of  Phytoplankton 
Taxonomy and Ecology showed numerous examples of  studies demonstrating the use 
of  morphological groups (rather than phylogenetic classifications) to characterize the 
seasonal variations in algae communities in water, or to compare the communities in 
ecologically similar bodies of  water.94 

In general, the features which define these groups can provide inspiration for the 
development of  identification technology, which could be tailored to identifying the 
relevant traits.  The sorting methods presented in this chapter are morphology-
sensitive; thus, the relevance of  size in particular is further explored. 

Using algae size distributions to understand ecosystems 

Various studies have sought to understand the relationship between algae size 
distribution and population dynamics, functional behaviour, or ecosystem properties.   

The spectra of  size distributions of  organisms in an environment usually follow a 
power function N=Mα where N is the abundance of  a given size range and M the size 
of  cells in that range.  Huete-Ortega et al. found that the factor α changed for 
different oceanographic conditions, and concluded that size distributions could 
provide an efficient description of  the transient state of  a varying ecosystem.95  
Correlations have also been suggested between the species richness (number of  
species) and the size distribution.96  It has also been shown that the algae dynamics in 
a body of  water could be described by the size distribution of  the community81, and 
that photosynthetic behaviour changes as a function of  algae cell size.97 

Further motivation for size-based measurements comes from correlating models to 
measurements.  Baird proposes a size-based approach to model the interaction of  
different plankton species with each other and with their environment.98  The model 
encompasses organisms from the sub-micron to the millimetre scale, and combines 
water, light, and wind conditions with size-based models of  biomass, nutrient uptake, 
and predator-prey relationships.  The authors mention the lack of  knowledge of  the 
size-distribution of  biomass in a given location as a key limitation in the application of  
this model.98   
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 4.2 Passive particle sorting methods 
To address this demand for technologies which are sensitive to algae morphology, this 
chapter looks at size- and shape-sensitive sorting techniques.  First, an overview of  
literature on passive particle sorting is presented.  “Passive” refers here to systems in 
which a particle experiences a force related to its size or shape (i.e., excluding systems 
with separate measurement and actuation steps).  The focus is on forces created by 
fluidics or hydrodynamics, by channel geometry, or by optics.  We only include 
approaches suitable for particles in the 1-50 µm range and which allow throughput 
rates on an order similar to that of  the system presented in chapter 2, or which can be 
scaled up to be comparable. 

Unless otherwise specified, the following definitions are used: 
 
Symbol Meaning 
W microchannel width 
H microchannel height 
Dh microchannel hydraulic diameter, Dh=2HW/(W+H) 
r spherical particle radius 
a, b ellipsoid particle radii (short, long) 
m particle mass 
µ fluid viscosity 
ρp particle density 
ρ fluid density 
U fluid velocity (Umax = maximum velocity) 
I laser light intensity 
n index of  refraction 
c speed of  light  
λ wavelength of  light 

4.2.1 Sorting particles with optical forces 

A single light source provides two forces on an object in the beam, one in the 
direction of  the beam propagation and one perpendicular to it.  The first is due to 
scattering: the change in momentum of  reflected photons imparts a force on the 
particle in the direction of  the light propagation.  The second force is due to the 
refraction of  light passing through the particle.  If  the light intensity is not symmetric, 
then the change in momentum from refraction is not symmetric either, and leads to a 
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net force perpendicular to the optical axis.  This force is towards the highest optical 
intensity in the case nparticle>nmedium and away from it if     nparticle<nmedium.   

For Mie particles – objects with size comparable to or larger than the optical 
wavelength – the scattered field has been solved for spheres, spheroids, and cylinders.   

For spheres, the scattering force 

	

2
, sin 2

/

4.1 	

and gradient force 

	

2
, sin 2 cos

/

4.2 	

depend on the refractive index of  the medium n1, the distance  in the transverse 
direction (perpendicular to the axis of  light propagation) from the centre of  the 
sphere to the centre of  the illumination δ, the angle between the incident photon and 
the particle surface θ1, and the polar angle φ.99  The values of  Qs and Qg are 
dimensionless factors defined as  

	 4.3 	

where P is the incident power and n1P/c is the incident momentum per second in a 
medium with refractive index n1.100  Note that the value of  QS increases with an 
increase in the ratio of  the sphere’s refractive index to the medium’s refractive index. 

The laser light intensity distribution for a Gaussian beam 

	
,

2
exp

2
4.4 	

depends on the radial position δ from the axial centre of  the beam, as well as the 
beam power P and width 

	

1 4.5 	

as a function of  the distance z from the beam waist, along the beam propagation axis. 
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Some examples of  particle manipulation with optical forces are shown below, in 
Section 4.2.3. 

4.2.2 Sorting particles with inertial microfluidics  

In contrast with optical forces, inertial microfluidics approaches to particle 
manipulation rely only on the forces inherent in the fluid dynamics of  a system.  One 
of  the commonly-cited properties of  microfluidics is the ability to work at such low 
Reynolds numbers that inertial effects are negligible.  However, this is an 
oversimplification that is not necessarily always valid.  In fact, it is possible to create 
flow conditions in a microchannel where inertial forces are non-negligible while still 
remaining in a laminar regime.  These inertial forces can be taken advantage of  for 
particle sorting. 

The Segre-Silberberg effect: inertial sorting in a straight channel 

When a fluid entraining small, neutrally buoyant particles flows along a straight 
channel, two forces cause the particles to cross the fluidic streamlines.  The particle 
experiences an asymmetric shear force from the Poiseuille flow profile which pushes 
the particles towards the channel walls.  This force competes with the wall-induced lift 
forces, which push the particles away from the walls.  In order for the shear forces to 
be large enough to have significant effect, the particle size must be relatively large: 
dparticle/Dh>0.07 is required as a rule of  thumb.   

This combination of  forces defines a set of  equilibrium positions for the particles in 
the channel cross-section (Figure 43).  In a circular channel, there is an annulus of  
equilibrium positions at a fixed distance from the centre of  the channel.  The exact 
position of  this equilibrium location varies with Reynolds number; it is between 0.6R 
and 0.8R for  Re<350.101  For a square channel there can be four or eight equilibrium 
positions, depending on the flow conditions.  A high aspect ratio (rectangular cross-
section) channel has two equilibrium positions.  

This particle focusing effect has been demonstrated in numerous works from the Di 
Carlo group.  This group showed that, for example, 9 µm particles at Re=90 in 50 µm 
square channels reached an equilibrium position after 1 cm of  channel.102   

 

Biasing with Dean force: inertial sorting in a spiral channel 

The Segre-Silberberg effect in a straight channel creates a symmetric set of  
equilibrium positions depending on the channel shape.  In order to sort particles into 
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a unique position according to their size, a biasing force must be applied which 
collapses the multiple equilibrium solutions to a single point.   

This can be accomplished with the use of  a curved channel shape.  In a curved 
channel, two counter-rotating secondary flows (“Dean flows”) form in the direction 
perpendicular to the main flow direction (Figure 43).  The combination of  flow forces 
from the Dean flow and the previously-described shear and wall lift forces create a 
biased (non-symmetric) equilibrium position in the channel cross-section for particles 
in the flow. 

The Dean flow is characterized by the dimensionless Dean number103 

	

2 2
4.6 	

Assuming Stokes drag from the Dean flow on the particles, the force created on the 
particles by the Dean flow  

 

Figure 43.  (Top) Particle sorting in a straight channel using the Segre-Silberberg 
effect: particles in a rectangular channel with Re>>1 self-align to equilibrium 

positions due to inertial forces.  (Bottom) A spiral channel (geometry not to scale) 
creates a counter-rotating secondary Dean flow, which provides an asymmetrical bias 

to the particle equilibrium positions. 
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ρU 4.7 	

works with or against the lift forces 

	
4.8 	

which depend on the lift coefficient CL, which in turn depends on the particle’s 
position in the channel cross-sectional.104 

The ratio of  the lift forces to the Dean forces on a particle  

	
R ~

2 a
D

4.9 	

is dependent on the cube of  the particle radius a.  If  the ratio RLD is lower than one, 
the particles will be dragged around the channel following the Dean flows.  If  the 
ratio is larger than one, the particles will occupy an equilibrium position.  The non-
constant lift coefficient makes it impossible to analytically solve for a specific cut-off  
particle size, but the ratio does indicate the existence of  a cut-off  size above which 
particles will be focused.104 

This approach has been demonstrated by the Di Carlo group with an asymmetrically 
wavy channel, used to manipulate particles from 2-17 µm in diameter.  They observed 
two limitations in the migration of  particles: a loss of  focusing occurred at a/D-
H<0.07 and at De>20.  In both of  these cases, the Dean drag becomes much larger 
than the lift forces, pulling the particles out of  the equilibrium positions and dragging 
them around the channel with the secondary flows.  The group has also applied this 
technique to sort particles by deformability105 and aspect ratio.106 

The Papaustky group has demonstrated the use of  spiral microchannels to induce 
Dean flow to bias the inertial microfluidic forces and sort particles.  This approach 
has been successfully used to sort 1.9 µm particles from 7.3 µm particles at De=0.47 
and to sort 10, 15, and 20 µm polystyrene latex (PSL) microspheres at De=14.4.107,108  
The same device could also sort neuroblastoma cells (~15 µm diameter) from glioma 
cells (~8 µm diameter) with 80% efficiency, and with a high throughput rate of  ~1 
million cells per minute.  A spiral channel with cross-section 500 µm x 110 µm sorted 
red blood cells and white blood cells with at 95% efficiency in a 500x diluted blood 
sample.109 
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4.2.3 Combining or competing optical & fluidic forces 

Many groups have used optical or fluidic forces for sorting particles; here, we 
highlight a few applications that have specifically used a combination of  both.  Each 
example shown has the laser beam oriented differently with respect to the direction of  
flow. 

Kim et al used a single laser beam directed perpendicularly across a channel to sort 
5 µm PSL particles transversely across streamlines by size (Figure 44).99    A 532 nm 
laser beam had 1.42 W of  power and a 70 µm waist directed across a channel that was 
300 µm wide and 100 µm high.  A mean flow velocity of  80 µm/s was used.  No 
initial focusing mechanism was used to ensure that all particles started in the same 
section of  the channel cross-section.  Therefore, due to the Poiseuille flow profile in 
the channel, the amount of  lateral displacement of  the particles depended on their 
initial positions.  Displacements of  between 20 and 60 µm were observed; the 
particles were in the laser beam for approximately 1 s. 

Helmbrecht et al. demonstrated a photophoretic device designed to serve as an optical 
chromatography system.100,110  A two-beam optical trap was aligned along the same 
axis as the fluid flow.  The measured velocity of  the particle (and thus the 
effectiveness of  trap) was used to back-calculate the particle’s optical properties.   

A last example, from the Squier group, used a 2 W laser diode bar focused with a 
cylindrical microlens.111  The laser axis was perpendicular to the channel flow, with the 
long axis of  the laser bar at an angle to the flow (similar to the geometry shown in 
Figure 45).  By tuning the flow rate and laser power, they were able to identify the 
combinations where the drag force on a particle was not able to overcome the optical 
force from the laser.  With slower flows or lower laser power levels, the particles 

 
Figure 44.  The cross-type single-beam particle sorter used by Kim et al; image is 

from Figures 1 and 6 in their paper. 99 
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would instead travel along the line of  the laser light until exiting the light field at the 
farthest downstream position.  2-10 µm particle were used, although later work from 
the same group showed the setup was also able to manipulate particles around 100 µm 
in diameter.112 

 4.3 Optofluidic sorting experiments 

4.3.1 Principle 

We choose a layout similar to that used by the Squier group to explore the optical 
force effects on particles in a microchannel.111,112  A high aspect-ratio bar laser diode is 
focused inside a microchannel through which particle-laden water is flown. As 
illustrated in Figure 45, the channel axis is aligned in the x direction.  The laser beam 
propagates in the z direction, with its bar orientation θ defined with respect to the y 
axis.  In these experiments, θ~55°.  As the particles traverse the laser beam, the optical 
forces pull them towards the point of  highest intensity (along the line defined by the 
bar laser) while the fluidic forces pull them downstream.  This combination results in 
a net displacement in the +y direction.  The scattering optical forces also exert a force 
in the +z direction.   

4.3.2 Modelling the combined optofluidic forces 

A model of  the combined optofluidic forces was created to estimate the required 
conditions for causing adequate particle displacement in the y direction.  The solution 
for the Stokes flow in a rectangular channel from White113 is used: 

 

Figure 45.  Chip layout for initial experiments.  The fluid is traveling in the x direction, 
and the laser propagates along the z axis.   



80  Chapter 4: Sorting algae with optical & fluidic forces 

 

for –a<y<a, -b<z<b 

16
1 1

cosh 2

cosh 2

∗
cos 2

, , ,…

4.10 	

	
3
4

1
192 tanh

nπb
2a

n
, , ,…

4.11 	

The drag force on a spherical particle 

	 6 4.12 	

depends on the particle radius r, the fluid viscosity μ, and on the velocity difference U 
between the particle and the fluid.114  In these simulations, we assume that the 
particles have matched the downstream (x-direction) velocity of  the local fluid 
streamlines before the particle encounters the optical field. 

The optical gradient force exerted by the laser bar diode acts on the particle in the x 
and y directions, and the scattering force acts in the z direction.  For the following 
calculations, the z direction forces and motion will be ignored as the interest is in y 
displacement. 

The balance of  forces on the particle yields the system of  differential equations which 
govern the motion of  the particle 

	
cos 4.13 	
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which depends on the drag and gradient forces, Fdrag and Fgradient.   

Substituting in the expressions for the optical gradient force and the drag force yields 
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where 

	
4.16 	

is the distance of  the centre of  the particle from the centre of  the beam, and defines 
the vector along which the gradient force acts. 

These equations are not solvable analytically, and so the solutions are found 
numerically with the Euler method.  At each time step, the drag forces and optical 
forces are calculated and used to find the particle’s new velocity and position.  
Specifically, the equation 

	 , 4.17 	

is solved by defining a time step Δt such that 

	 4.18 	

and numerically solving 

	 , 4.19 	

so that, in the x direction, 

	
4.20 	

	 4.21 	

with the velocity and position in y found similarly.   

The values of  Qg were estimated from those calculated for a sphere by Ashkin.115 

Validation of  forces and time step choice  

To choose the appropriate time step Δti and to validate the fluidic force expressions, 
the optical forces are set to zero and the particle is set initially at rest.  The drag force 
on the particle (Equation 4.12) should cause it to accelerate from rest to match the 
fluid velocity, with the particle’s x velocity following an exponential curve with a time 
constant  

	 2
9

4.22 	
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The time steps Δt should be small enough that the solution to the differential 
equation does not oscillate about the analytical solution in time.  

As an example, the effect of  the choice of  Δt is shown for a 15 µm radius particle 
accelerated from rest (Figure 46).  The simulation converges well for Δt≤1 µs, for a 
flow speed of  400 µm/s.   For higher flow rates, the time step should be decreased 
accordingly.   

To compare the numerical solution behaviour with the analytical time constant τ, a 
10 µm radius particle is accelerated from rest in a fluid moving at constant velocity.  
The time constant τ is 23.3 µs when calculated analytically using equation 4.22; the 
numerical solution yields the same behaviour of  the particle (Figure 47).   

     

Figure 46.  The results of the numeric simulation of the motion of an initially-
quiescent particle in a moving fluid (velocity 400 µm/s), to optimize the choice of 
the time step Δt.  The vertical axis u is the flow speed of a particle after release..   

 

 

Figure 47.  Comparison of the velocity and drag force on a spherical particle starting 
at rest in a moving fluid, as calculated analytically and numerically. 
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4.3.3 Simulation results 

Figure 48 shows the net optical gradient force (amount of  force, not directionality) 
exerted on a 5 µm radius sphere crossing the bar diode.  The particle is assumed to be 
on the x-y plane (i.e. at z=0, which is at the centre of  the channel, height-wise).  The 
forces are small (<1 nN); however, on the microscale this is not too small to cause an 
effect.  For example, a constant 0.4 nN force over a long enough time would cause a 
5 µm radius sphere to accelerate to a terminal velocity of  4.8 mm/s in water.  

The optical forces illustrated in section 4.2.1 are combined with the fluidic forces 
shown in section 4.2.2, using the Eulerian method described in section 4.3.1.  The 
optical forces attract the particle to the position of  highest optical intensity, creating a 
potential well along which the particle can travel.  The drag forces of  the fluid will act 
to push this particle out of  the well, with the final particle position depending on the 
ratio of  the optical and fluidic forces. 

An example of  the simulated trajectories of  particles in the middle plane of  the 
channel height (at z=0) are shown in Figure 49.  The particles are released at different 
positions in the channel width: 0 µm (in the centre of  the channel), or at ±20 µm in 
the y direction.  A 1 W laser beam with a 10 µm beam radius in the short direction and 
a 100:1 aspect ratio shines across the channel at an angle of  α=45°.  The indices of  
refraction used are those of  polystyrene latex (n=1.6) in water (n=1.33).  

These simulations highlight a few issues with this approach which remain relevant 
even if  the exact properties of  the beam or particles change.  First, the amount of   

 

Figure 48.  Net optical gradient force experienced by a 5 µm radius particle flowing 
along a channel with a laser diode bar oriented at θ=45° and a beam waist of 5 µm at 

the middle of the channel height. 



84  Chapter 4: Sorting algae with optical & fluidic forces 

 

offset in the transverse direction is quite small, especially for small particles.  The 
beam width needs to be well-matched to the particle size to make any significant 
effect.  Second, the amount of  transverse displacement that the particles experience 
depends not only on the particle size, but also on the particle’s initial position in the 
channel.  Particles which are directed by the optical force towards a slower streamline 
have a larger total displacement than those directed towards a faster streamline with 
more drag. 

 

 

 

Figure 49.  Top view of simulated particle trajectories as they pass through the laser 
bar oriented at 45⁰ to the channel axis (ie, θ=45⁰ in Fig. 9)  The values in the legend 
represent the particle radii.  The initial position is indicated by the y-axis intersection 

in each graph: (from top to bottom) +20, 0, and -20 µm from the centre of the 
channel.  
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4.3.4 Experimental setup 

A proof-of-concept setup, inspired by the work of  the Squier group111,112, was built 
using off-the-shelf  components to experimentally study this technique.  An 805 nm 
laser diode with a maximum output of  1 W was used (Thorlabs L808P1WJ).  The 
light produced by the diode had a high (100:1) aspect ratio in the plane perpendicular 
to propagation.  A cage mount system with a dichroic mirror and lenses aimed the 
focal point of  the beam at a glass microchannel (Figure 50).  The channel was 
illuminated from below with a white light source to enable imaging of  the particles 
and their positions.  A camera mounted on a microscope recorded the channel and 
particles at the position of  the laser beam. 

Measurements of  the laser beam showed that the threshold current was 1.0±0.03 A 
(manufacturer specifications: 1.0 A average, 1.2 A max).  The total power output of  

     

 

  

Figure 50.  Parts and layout of experimental setup, in exploded (top) and assembled 
(bottom) view.   
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the beam was 1.16 W with only one lens; the dichroic mirror caused losses of  16.3% 
of  the power.   

The 1W laser produces a significant amount of  heat.  A Peltier device was used to 
measure the temperature of  the diode during operation to ensure that it did not 
overheat.  The laser was mounted onto a heat sink and a small computer fan was used 
to cool the laser during operation.  This provided enough heat removal that the 
cooling function of  the Peltier device was not necessary. 

4.3.5 Microchannels 

Microchannels were fabricated with a femtosecond laser as described in Chapter 2.  
The glass chip had a straight channel fabricated on one surface, with through-holes 
traversing to the other surface of  the glass at the ends of  the channel, to allow fluidic 
access (Figure 51).  The channel was 100 µm wide, 60 µm high, and 4 cm long.  As 
with the original algae chip, the fourth channel wall is formed by placing a piece of  
PDMS placed on the glass.   

4.3.6 Experimental results of  optofluidic separation  

Experiments were performed with 5 µm diameter PSL microspheres.  A very low flow 
rate was required to observe the effects of  the optical gradient force.  The syringe 
pump used was not able to go as low as desired with the syringes available.  Therefore, 

    

Figure 51.  (Left) Channel design, not to scale.  (Right) Microscope images of the 
fabricated channel from a stereo microscope.   The bottom picture is focused at the 
bottom surface of the channel to show the roughness, with the inlet visible on the 
left. A high speed x-y translation speed was used in the machining, resulting in the 
imperfections visible at the corners of the channels.  The channel is 100 µm wide, 

60 µm high, and 4 cm long.   
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during experiments the pump was run at the minimum speed and then turned off  so 
that the flow rate would slowly decrease over time as the pressure built up in the 
system slowly reached atmospheric pressure.   

The video recording was used to determine the initial velocity of  the particles, the 
offset of  the particles in the y direction caused by the laser beam, and to determine if  
the fluid flow rate was approximately constant while the particle was traversing the 
beam (see examples, Figure 52).   

MATLAB scripts were written to automatically trace the trajectories of  multiple 
particles from a video (Figure 53).  The results show offsets of  between 0 µm and 
13 µm depending on the local flow velocity (Figure 54). Particles in faster-moving 
streamlines were displaced less because of  the higher drag forces. 

 

 

 

Figure 52.  A single particle (top example) or a doublet (bottom example) enter the 
beam, are deflected upwards, and exits the beam at the point that the fluidic drag forces 
exceed the optical gradient force.  As a visual aid, a red “+” symbol has been overlaid 

in each photo in the same position in the top example, and the doublet has been circled 
in each picture in the bottom. 
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The particles’ z-position also changed due to optical scattering forces. This was visible 
but not quantifiable from the particle’s motion in or out of  focus while in the beam 
(see example in Figure 52). 

It was observed that particle doublets (two connected particles) traversed further 
along the optical beam than single particles, and that they aligned so that the long axis 
of  the doublet was parallel to the long axis of  the laser cross-section (Figure 52).  This 
is a logical outcome: in this configuration, the doublets would have twice as much 
optical  force as a single particle, but less than twice the drag force, leading to more 

 

Figure 53.  Traces of particle motion from the automated MATLAB script.  The 
lines are overlaid on the image of the channel at the beginning of the recording.  The 

particle closer to the wall has a lower velocity and is displaced further than the 
particle near the centre of the channel.  

 

Figure 54.  Offset in the channel width caused by the particle traversing the laser bar.  
Due to the low flow rates used the fluid velocity was not always constant; samples 

with a visibly fluctuating flow rate are indicated with dark points. 
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displacement than the single particles. 

The 5 µm particles were chosen because of  the low flow rate: larger particles settled 
out of  the flow before they reached the laser beam.  This limitation could be 
overcome by increasing the density of  the fluid (for example, by adding glycerol to the 
water) but this also causes an increase in the fluid’s index of  refraction, decreasing the 
strength of  the optical gradient force.   

The advantages and disadvantages of  this technique are discussed at the end of  this 
chapter, so that they can be compared with those of  the fluidic sorting presented next. 

 4.4 Size-separation with fluidic forces 
To compare optical sorting with fluidic sorting, a spiral microchannel was used to test 
the inertial Dean flow sorting of  microspheres and algae. 

4.4.1 Experimental  

The microchannel used for separation had a cross-section of  350 µm wide x 100 µm 
high.  It was in the shape of  an Archimedean spiral with three loops, an initial radius 
of  5 mm, and a final radius of  10 mm.  The Dean number (De) is a function of  the 
radius of  curvature and thus varies over the channel length, but an average can be 
calculated for a given flow rate.  The flow rates in our experiments are all between 
0.4 mL/min and 4 mL/min, yielding average Dean numbers between De = 7.9 and 
De=31.5 respectively. 

Microchannel fabrication 

The microchannel was fabricated using soft lithography.  First, a negative mask of  the 
channel design was printed on a transparency sheet with an ordinary office laser 
printer.  Photoresist (SU-8) was spin-coated onto a silicon wafer using the 
manufacturer’s recommended parameters for a 100 µm thick layer.  The photoresist 
was exposed to ultraviolet light through the printed mask, so that the channel pattern 
was cross-linked and the remaining photoresist could be removed by developer.    

Since the mask was made on a laser printer rather than by a professional mask 
supplier, there was some minor light leakage through the “black” parts of  the mask.  
This necessitated some minor adjustments from a standard photolithography process.  
To prevent cross-linking in the dark areas, the exposure time was kept as short as 
possible.  The substrate was left in the developer for a long time to remove as much 
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extraneous cross-linked SU-8 as possible.  Despite these steps, there was still some 
poorly-adhered but cross-linked SU-8 visible on the wafer outside of  the channel 
pattern.  To remove this, the substrate was coated with PDMS which was cured, 
removed, and discarded.  The extra SU-8 adhered well enough to the PDMS that it 
was pulled off  the wafer with the silicone, and the wafer could be used for ordinary 
replication after that.   

PDMS silicone was prepared at a 1:10 hardener:base ratio and poured on the 
wafer/photoresist mould.  After the PDMS had cured in an oven at 90°C for 1.5 
hours, it was removed from the mould, and holes were punched at the channel inlet 
and outlets.  The PDMS channel and a glass microscope slide were both exposed to 
oxygen plasma and then put in contact with one another, permanently bonding them. 

Setup 

The experimental setup (Figure 55) consisted of  the spiral microchannel, a syringe 
pump which flowed the sample through the channel at a user-chosen flow rate, and a 
camera with a microscope objective positioned directly above the channel exit.  The 
transparent channel was illuminated from below.  The camera was set to capture 120 
frames per second. 240 frames were captured at each flow rate (0.4 mL/min to 
3.6 mL/min in increments of  0.2 mL/min) for each sample type. 

Samples 

Experiments were run with three sizes of  polystyrene latex (PSL) microspheres, 

 

Figure 55.  Experimental setup for particle sorting in a spiral channel. 
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nominally 5, 10, and 20 µm.  Micrographs showed the actual sizes of  the microspheres 
to be 6.2±0.5 µm, 11.1±0.2 µm, and 20.2±1.3 µm (mean ± standard deviation) 
respectively.  Three species of  algae were also tested, with the goal of  separating 
highly non-spherical samples; pictures of  the species are in Figure 57.  The three 
species used were Chlorella vulgaris (spheres with 6.0±1.0 µm diameter), Cyanothece 
aeruginosa, (ellipsoids with a long axis of  15.6±2.3 µm and short axis 11.1±1.0 µm) and 
Monoraphidium griffithii (high aspect ratio cylinders approximately 137±35 µm long by 
7.9±1.5 µm diameter).  

4.4.2 Data analysis 

The analysis of  the images is automated using MATLAB as follows: 

1. Create a background.  Form a background image by taking the mean value of  
each pixel over 100 images from the same dataset.  This must be repeated 
separately for each dataset because whenever the sample was changed, the 
channel moved slightly with respect to the camera. 

2. Background subtraction. Identify the mean value of  the background image 
in a rectangle on the far right of  the image (Figure 56a) and in the same 
location on the image with particles (Figure 56b).  Subtract this difference from 
the particle image.  Then, create a new background-subtracted image where the 
value of  each pixel is  

	 	 , 	 , , 4.23 	

(Figure 56c).  Finally, use a low-pass filter to remove the background noise 
from the image (Figure 56d). 

3. Sum over many images.  Step 2 is repeated for all images in the set.  The 
images are summed together, and then summed column-wise and normalized 
to create a plot of  the particle distribution across the channel (see examples, 
Figure 57). 

4. Image registration subtraction.  The datasets are not all in exactly the same 
x-y position due to small shifts in the channel position with respect to the 
camera.  To account for this in the data analysis, MATLAB’s image registration 
tool is used to identify the translation that best aligns each background image to 
a reference background image.  The values are used to shift the particle 
distributions in x to make them comparable.  
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4.4.3 Results 

An example of  the results (for flow rate 1.6 mL/min) is shown in Figure 57.  At this 
flow rate, the smallest particles (the 5 µm spheres and the Chlorella algae) do not focus 
but remain spread across the channel.  The medium sized particles (10 µm spheres 
and Monoraphidium), focus, but not as strongly as the largest particles (20 µm spheres 
and Cyanothece).  The largest particles both focus to a position closer to the channel 
wall than the medium particles.  Both the Monoraphidium and the Cyanothece are  more 
spread out and further from the wall than the 10 and 20 µm spheres. 

The average positions of  the microspheres and algae in the channel as a function of  
flow rate are shown in Figure 58.  The smallest microspheres (5 µm) and algae species 
(Chlorella) do not focus at any speed but remain scattered around the channel cross-
section.  These particles are very small compared to the width of  the channel, and the 
shear forces across them are consequently very low.  In this case, the ratio RLD is much 
smaller than one, and the Dean flow drag forces are much larger than the lift forces.   

The larger particles (10, 20 µm) and algae (Monoraphidium and Cyanothece) can be 
focused, and can be distinguished from one another.  Of  particular interest for 
morphology-based sorting, the Monoraphidium & Cyanothece have similar equivalent  

  

(a)                                            (b) 

  

(c)                                             (d) 

Figure 56.  Image processing. (a) shows a background image, and (b) an image with 
particles.  (c) shows the result of background subtraction, and (d) the result of the 

low-pass filter, which removes noise from the image. 
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Figure 57.  (Top rows) Micrographs of the three different sizes of microspheres 

and species of algae used in this study.  (Middle rows) Examples of images 
captured at the end of the channel at 1.6 mL/min.  (Bottom rows) Normalized 

distributions of the particles/algae across the channel cross-section at 1.6 mL/min, 
each combining the particles in 240 images. 
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Figure 58.  Position of the microspheres (top plot) and algae cells (bottom plot) as a 
function of the flow rate through the channel.  The data points represent the peak 
position in the particle distribution, with the error bars representing its full-width 

half-maximum (FWHM) width.   
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spherical diameter to one another, but can still be separated because of  their very 
different shapes.  The Cyanothece, which are ellipsoids of  10-15 µm, behave very 
similarly to the 10 µm spheres.  They are initially focused near the edge of  the channel 
and the position of  this focus moves towards and across the channel centre with 
increasing flow rate.  The Monoraphidium, which have a high aspect ratio, tend to 
remain closer to the centre of  the channel even at low flow speeds.  The small cross-
section of  the Monoraphidium in the plane perpendicular to the flow direction suggests 
that the shear and lift forces from the fluid are very small compared to the Dean 
forces acting on the larger cross-section of  the particles in the other directions.   

Separation efficiency 

A separation efficiency η was defined for the separation of  two species, and applied to 
the measurements of  the particle positions in the channel.  This value was defined by 
identifying the point xsep in the channel width where a certain fraction η of  one 
species would pass to the left of  xsep and the same fraction of  the other species would 
pass to the right of  xsep.  This separation efficiency was found for the separation of  
the 10 and 20 µm spheres and of  the Monoraphidium  from the Cyanothece (Figure 59).  
The microspheres could be separated with an efficiency of  >90% for many of  the 
flow rates tested, with the best results at 1.6 mL/min (η=96%).  The Monoraphidium 
and Cyanothece separated the best at 3.2 mL/min, which yielded η=77%. 

 

Figure 59.  Separation efficiency of the 10 and 20 µm microspheres and of two 
species of algae in the spiral microchannel. 
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The higher separation efficiency of  the microspheres compared to the algae is likely 
due at least in part to the higher polydispersity of  the algae.  This can be seen in the 
coefficient of  variation (the ratio of  the standard deviation to the mean) of  
measurements taken from 20 cells or particles of  each type, from optical microscope 
images.  The Monoraphidium have a coefficient of  variation of  0.25 in the length and 
0.20 in the diameter.  The Cyanothece have a coefficient of  variation of  0.15 along the 
long axis and 0.09 in the short axis.  In contrast, the coefficient of  variation of  the 
sizes of  the 10 and 20 µm spheres is 0.02 and 0.06, respectively.   

 4.5 Discussion and conclusions 
In this chapter, we demonstrated that both optical and inertial microfluidic sorting 
techniques can offset particles positions in the cross-section of  a flow.  The optical 
gradient forces method can create a cross-streamline displacement of  small particles.  
However, this approach has several drawbacks.  First, the amount of  displacement 
depends strongly on the initial velocity, which means that the particles should be 
focused in both dimensions of  the channel cross-section for this technique to be 
useful as a reliable sorting mechanism.  This is not an unexpected result, but since 
two-dimensional flow focusing is complicated, it was not used in this preliminary 
exploration.  Second, the optical forces are rather weak (typically in the nN range) and 
strongly depend on the optical field gradient.  A very optimally-focused laser beam is 
required to achieve this high gradient, along with low flow speeds.  While feasible in a 
lab setting, this requirement makes this approach less attractive in a device intended 
for field work.   

The performance of  the optical system could be improved.  A more focused beam 
would provide stronger gradients, particularly valuable for the 5 µm particles which 
had a diameter smaller than the beam waist. The particle size was not optimal: the 
optical gradient force scales with the particle radius squared, while the drag force 
scales with the radius.  The sorting would thus work better for larger particles, but 
larger particles will also be affected by the gravitational forces which scale as the 
radius cubed.  Many of  the algae specimen are both larger and of  lower density than 
the microspheres tested here, but they also have a lower index of  refraction, 
decreasing the optical gradient forces.  The polystyrene has an index of  refraction 
approximately 1.2 times that of  water’s, while the index of  refraction of  microalgae 
have been reported at 1.01 to 1.07 times that of  water.116,117 

Applegate et al. calculated the optical force that a 5 W laser in the same configuration 
would exert 100 pN on a 20 µm diameter sphere of  the same material as tested 
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here.112  100 pN is the same drag force as exerted on a 20 µm particle in water moving 
at a velocity of  0.6 mm/s.    For comparison, the slowest mean water velocity in the 
flow rate characterization experiments of  Chapter 2 were at 1.7 mm/s.  The best 
separation results found with the spiral microchannel had a mean water velocity of  
760 mm/s. 

Besides this much higher throughput rate, the fluidic approach has significantly lower 
instrumentation requirements: the only thing required is a pump and the appropriate 
choice of  channel geometry.  Its main drawback is the relative lack of  flexibility.  The 
optical system can be tuned, altered, and controlled to suit the desired sorting 
parameters; this feature may be desirable in a more complex device, particularly in a 
lab setting.  The inertial system is restricted to changing the cut-off  size of  the 
focused particles by tuning the flow rate to match the desired size. 

A further factor in favour of  the fluidic sorting for this application is that of  cost.  
The optical approach requires several components: a laser diode, diode power supply, 
a fan or other cooling system, and focusing lenses.   Not only do these components 
require careful engineering to ensure that they retain their correct positions for 
focusing, but the number of  components and their careful assembly make this 
approach more costly. 

For potential use of  this technology in a field-deployable sorting device, the 
separation of  the particles would have to be exploited by either an in-situ 
measurement of  the particle position or by separating the channel into multiple 
outlets. 
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The identification of  algae species is a vital and challenging problem.  The simple, 
robust optofluidic device and analytical methods presented in the 2nd and 3rd chapters 
yields data suitable for the classification of  microspheres and algae.  Besides 
classification, size-sensitive information can be extracted, which can be useful to 
phycologists studying species dynamics.  Furthermore, the detection approach – that 
of  a single laser source illuminating a single detector – is simple and requires a 
minimum number of  components, and yet provides enough data to yield successful 
and useful results for the measurement and classification of  algal cells.   

The device presented has many inherent advantages compared to traditional 
microfluidic devices.  Its monolithic nature renders it robust against mechanical 
failure, provides inherent alignment of  the waveguide and the microchannel, and the 
material (glass) is chemically and thermally stable.  The integrated, sub-surface curved 
waveguide provides a high signal-to-noise ratio.  Creating a device with these 
properties is made possible by the use of  a femtosecond laser for fabrication, through 
which the three-dimensional optical and mechanical structures of  the device can be 
formed from a single piece of  material.   

Characterization experiments showed that the microfluidic nature of  the device 
provides advantages that improve the system performance.  Specifically, high aspect 
ratio particles are aligned to the axis of  the flow by fluidic forces before they reach the 
sensor region, increasing repeatability in the measurements.  Further characterization 
studies on the device’s sensitivity to the flow rate and trigger levels set by the user 
were useful in the laboratory experiments, and can inform later decisions about the 
hardware used for a field-deployable device. 

Simple optical models were created to study the interaction of  the light transmitted by 
the waveguide with the passing algae and microspheres.  The models show that the 
changes in the total light intensity correspond reasonably well to the data obtained 
from algae cells, particularly when using particle volume as a metric.  However, while 
the more complex differential signals are similar to the measured signals, they lack 
higher-order features seen in the experiments.  From this we can conclude that the 
ray-based model of  the light refraction and absorption provides relevant information, 
but cannot fully describe the behaviour of  the system during measurements.  A 
complete model, including the micro- and nano-scale features within the algae and the 
wave nature of  the light, may provide further insight into the formation of  the optical 
intensity distributions. 

A study of  two pattern recognition approaches showed that neural networks 
consistently outperformed discriminant analysis for predicting the algae species from 
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the photodiode signals.  The initial neural network results were already promising: for 
a mixture of  river-collected detritus and lab-cultured Cyanothece, the system had a 
success rate of  over 90%.  The samples from a mixture of  three sizes of  microspheres 
were correctly identified by size 85% of  the time, and the cells in a mixture of  five 
algae species were correctly identified at a rate of  78%. 

The neural network results were improved by an optimization process; the most 
significant improvement resulting from this study was using a training algorithm that 
automatically optimizes the regularization parameter, preventing overtraining.  This 
process resulted in an increase in the rate of  algae identification; the cells from the five 
mixed species were, in the end, identified correctly for 91% of  the samples.  The 
worst results were found for the species Chlorella, which have a diameter only four 
times larger than the wavelength of  the light.  This suggests some room for 
improvement in future developments.  First, a shorter wavelength of  light could be 
used, and second, a smaller channel and narrower beam could be adapted.  In the 
latter case, a pre-sorting step would be required to separate out the larger algae from 
the flow.  

To explore options for size-sorting, two techniques were explored.  Both optical 
forces and inertial microfluidic forces provide passive, size-sensitive sorting of  small 
particles in a flow.  The gradient forces from a high aspect ratio laser bar diode caused 
polystyrene microspheres to cross the streamlines of  the flow.  Simulations and results 
from the literature show that this effect is size-sensitive, and experimental results were 
obtained which demonstrated the effect of  flow rate on the ability of  5 µm particle to 
traverse the flow.  However, this technique required extremely low flow rates and was 
highly sensitive to the positioning of  the components, for the optical configuration 
used in our experiments. Better optical focusing would improve the results, although 
the flow rates shown in other setups in the literature are still very low even with better 
setups.   

A second method, using high flow rates in a spiral-shaped channel, relied on inertial 
forces and secondary flows to sort the particles by shape and size.  Both microspheres 
and algae could be sorted with this method; 10 and 20 µm spheres could be separated 
with a separation efficiency of  96%.  Two algae species with very similar volumes but 
very different shapes could be sorted into distinct streamlines with a separation 
efficiency of  77%.   

A major point of  comparison between these techniques is the throughput rate: the 
optical setup worked with flow velocities on the order of  10’s of  microns per second, 
while the fluidic separation worked at 100’s of  millimetres per second.  The optical 
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setup could perform more complex and flexible sorting tasks which may be highly 
relevant in other applications.  For the relatively low-complexity sorting done here, the 
inertial fluidic sorting system is more appropriate for a field-deployable device.  This 
technique complements the device in the previous chapters, not only by providing a 
size-sensitive method for pre-sorting algae towards different detectors, but it may also 
serve as the foundation for a high-throughput morphology-sensitive algae monitor.   

Device performance and potential field deployability 

The ultimate goal of  this project was to combine optics and fluidics to identify the 
species of  algae, using technology not only suitable for a lab but which could be 
adopted for use in the field.  This means that the materials should be able to withstand 
a range of  temperatures and harsh environmental conditions, the device should be 
adequately small and low-powered to work on a remote platform, and the analytical 
method should not require a high-performance computer on board.  Further, the 
number of  species and throughput rate of  the device should be informed by the 
requirements of  end-users and by data on typical algae species dynamics.   

The material used, glass, is chemically and thermally robust, and can withstand harsher 
conditions than many materials commonly used in microfabrication.  Portable systems 
with pre-defined neural networks implemented on microcontrollers have been 
demonstrated for other applications, so this approach should be technically feasible on 
a portable system.   

However, various other aspects of  the current device design would need to be 
modified to improve performance, specifically in the realm of  fluid manipulation and 
sample handling.  First, for a continuous flow-through device, a robust pump would 
be needed to create a constant flow rate, in a range suitable for microfluidics.  To 
decrease the chances of  the pump interfering with the sample, a pump could be 
attached at the exit of  the device to create a negative pressure at the outlet of  the 
microchannel, which is the opposite of  the setup used in this work so far.   

The two other main concerns are those of  throughput rates and microchannel 
clogging.  To sample as much water as possible, the device throughput rate would 
need to be increased as much as possible without loss of  information.  As it is used 
currently, the device’s flow rate is limited by the need to take clear photos of  the algae 
in the microchannel for separate, manual identification to confirm the device 
performance.  Without this limitation, the flow rate could be significantly increased, as 
long as the collection rate of  the photodiode data increased correspondingly.  Even 
with the photodiode and data acquisition system presently used, the data collection 
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rate could be increased at least 20 fold if  the in-situ images were not collected. The 
other aspect to throughput rate – that of  data analysis – would depend on the 
eventual system.   

For example, a requirement that at least 1000 cells should be sampled as a minimum, a 
sample with 100 cells/mL could be measured in 30 minutes at a flow rate of  
333 µL/min, and a sample at 10 cells/mL in 12 hours at 139 µL/min.  Note that these 
flow rates are significantly higher than those used in the identification system in 
Chapter 2 of  this work, but also much lower than those used in the fluidic pre-sorting 
system in Chapter 4.   

The potential for channel clogging would be significant in an uncontrolled, outdoor 
environment.  An ideal system would be able to handle phytoplankton ranging in size 
from 1 µm up to several hundred micrometers118, which could be accomplished by 
creating multiple parallel sensing channels of  different sizes, with a rough size-based 
pre-sorting step upstream of  the sensors.   

A hybrid approach with a multi-tier pre-filtering step based on the inertial 
microfluidics of  Chapter 4 could be a solution.  As an example, the first sorting step 
could work as a filter to remove overly large particles.  A second sorting step could 
split the particles into two size bins, which each group directed towards a detector 
more suitable for that size range.  A last step could sort each group of  particles by size 
and measure their location in the cross-section, as well as potentially serving as an up-
concentrator for the particles.  

In conclusion, the technology presented in this thesis provides a set of  tools which, 
combined, are more powerful than the sum of  their components.  A single monolithic 
device – one with the ability to pre-sort algae cells by size and shape and classify the 
species with a powerful and adaptable analytical method – will offer new possibilities 
for algae monitoring to commercial sectors, regulatory bodies, and scientists seeking 
to understand the complex dynamics of  these life forms without which life as we 
know it would not exist. 
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The dynamics of  algae species – the amount and concentrations of  the species in a 
body of  water – vary in response to changing environmental conditions.  Factors such 
as temperature, light conditions, and intentional or unintentional interventions by 
humans can all affect the species dynamics, which makes algae a useful biomarker for 
changes occurring in the water.  Monitoring the species dynamics can help identify 
and understand harmful algae blooms (HABs), which cost the European Union an 
estimated €600 million/year.  These blooms can destroy aquaculture, and are 
particularly harmful if  they consist of  toxin-producing algae.  The sampling and 
identification of  algae in water are also required for ballast water monitoring and 
regulatory compliance.  Despite all these application areas, the methods for 
monitoring algae are expensive and slow, which is the motivation for the work in this 
thesis. 

This thesis presents lab-on-a-chip technologies designed to address this problem.  The 
combination of  optics and microfluidics on a single device creates a powerful and 
robust approach to algae species classification.  The heart of  the technology is a glass 
microchip fabricated with a femtosecond laser.  This fabrication technique allows for 
the creation of  a microchannel and a buried curved waveguide in a single piece of  
glass.  A laser and photodetector respectively provide and detect light that is 
transmitted across the microchannel as water with algae is flown through the device.   
The photodetector signals are processed with a neural network, which is trained to do 
pattern recognition on algae samples.  After an optimization of  the neural network, it 
was capable of  correctly identifying the species of  ~90% of  the algae cells in a 
mixture of  five different species.  

For implementation in a field-deployable device, issues of  channel clogging and pre-
sorting of  the sample by size of  cell must be addressed.  To this end, we explore the 
use of  both optical and fluidic forces for passive size-sorting.  The first method relies 
on the gradient optical forces from a high aspect ratio laser bar diode, which causes 
entrained particles to cross the streamlines of  the flow.  With a combination of  
simulations and experiments we demonstrate that this approach is feasible and size-
sensitive.  The second method, using high flow rates in a spiral-shaped channel, relies 
on inertial forces and secondary flows to sort the particles by shape and size.  Both 
microspheres and algae could be sorted with this method, with separation efficiencies 
of  96% (spheres) and 77% (algae).  A major point of  comparison between these 
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techniques is the throughput rate: the fluidic technique worked successfully with flow 
velocities several orders of  magnitude higher than those used in the optical setup.  
The optical approach can perform more complex and flexible sorting tasks, but for 
the relatively low-complexity sorting done here, the inertial fluidic system is more 
appropriate for a field-deployable device.   

In summary, the technology presented in this thesis provides a set of  tools which, 
combined, can pre-sort algae cells by size and shape and classify the species with a 
powerful and adaptable analytical method. 
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De dynamica van algensoorten – de hoeveelheid en concentratie van soorten in een 
waterlichaam – varieert met de veranderende omstandigheden in de omgeving.  
Factoren als temperatuur, lichtomstandigheden, en opzettelijk of  onopzettelijk 
menselijk gedrag kunnen de dynamica van algensoorten beïnvloeden.  Algen zijn 
daarom een nuttige biomarker voor de veranderingen in een waterlichaam.  Het 
monitoren van de populatiedynamica kan helpen om het ontstaan van schadelijke 
algenbloeien, die de Europese Unie een geschatte €600 miljoen per jaar kosten, te 
identificeren en te begrijpen,  Deze bloeien kunnen de aquacultuur verwoesten en ze 
zijn vooral schadelijk als ze uit soorten bestaan die toxisch zijn.  Ook voor het 
monitoren van ballastwater en het naleven van regelgeving zijn het bemonsteren en 
identificeren van algen in water verplicht. Ondanks deze vele toepassingen zijn de 
bestaande methoden voor het monitoren van algen duur en langzaam; dit is de 
motivatie van dit werk. 

Dit proefschrift presenteert lab-on-a-chip-technologie die ontworpen is om dit 
probleem aan te pakken.  De combinatie van optica en microfluïdica in één apparaat 
leidt tot een krachtige en robuuste methode om algensoorten te identificeren.  Het 
hart van de technologie wordt gevormd door een glazen microchip, gefabriceerd door 
een femtoseconde-laser.  Met deze techniek kunnen, in één stuk glas, zowel een 
vloeistofkanaaltje als een gekromde lichtgeleider in dezelfde processtap worden 
gemaakt.  Een laser produceert licht dat door de lichtgeleider naar het kanaaltje wordt 
geleid; het licht kruist het kanaaltje waarin water stroomt dat algen bevat, en daarna 
valt het licht op een fotodetector.  De signalen van de fotodetector worden 
geanalyseerd door een neuraal netwerk dat is getraind op patroonherkenning.  Na een 
optimalisatie van het neurale netwerk konden 90% van de algen in een mengsel van 5 
soorten correct worden geïdentificeerd. 

Om dit alles in een draagbaar en praktisch inzetbaar apparaat uit te kunnen voeren, 
moeten problemen van het verstoppen van kanalen en het voorsorteren van algen 
worden opgelost.  Daarom hebben we de mogelijkheid onderzocht om optische of  
fluïdische krachten te gebruiken voor het automatisch scheiden en sorteren van de 
algen.  De eerste methode gebruikt de krachten die worden veroorzaakt door een 
optische gradiënt, om deeltjes of  cellen te verplaatsen loodrecht op de stroomlijnen.  
Door middel van een combinatie van simulaties en experimenten hebben we 
aangetoond we aan dat deze benadering haalbaar is, en gevoelig is voor de afmeting 
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van de algen zodat de methode gebruikt kan worden om algen te scheiden en 
sorteren.  In de tweede methode, die gebruik maakt van hoge vloeistofsnelheden in 
een spiraalvormig kanaal, worden de deeltjes gesorteerd op grootte en vorm door 
traagheidskrachten en secundaire vloeistofstromingen.  Zowel micro-deeltjes als algen 
konden met deze methode gesorteerd worden, met scheidingsrendement van 96% 
(micro-deeltjes) en 77% (algen).  Een belangrijk verschil tussen deze twee technieken 
is de doorvoersnelheid: de fluidische techniek werkt met vloeistofsnelheden die ordes 
van grootte hoger zijn dan die van de optische methode.  De laatste methode kan wel 
complexere en flexibelere sorteertaken uitvoeren, maar in verband met de relatieve 
lage complexiteit van de toepassing is het op traagheid gebaseerde fluidische systeem 
geschikter voor implementatie in een draagbaar apparaat. 

Samenvattend, bieden de in dit proefschrift gepresenteerde technieken 
gereedschappen die het, samen genomen, mogelijk maken om algen te sorteren op 
grootte en vorm, en waarmee verschillende algensoorten kunnen worden classificeerd 
door middel van een krachtige en flexibele analysemethode. 
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