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Control to Facet by Piecewise-Affine
Output Feedback

Luc C. G. J. M. Habets, Pieter J. Collins, and Jan H. van Schuppen

Abstract—The control-to-facet problem plays an important role
in the design of feedback controllers for piecewise-affine hybrid
systems on polytopes. In the literature, necessary conditions and
sufficient conditions for solvability by static state feedback exist. In
this paper, we extend these results to the case of continuous piece-
wise-affine static output feedback. For the construction of a con-
troller, a triangulation of the output polytope is made which sat-
isfies additional conditions to guarantee compatibility with the in-
duced subdivision of the state polytope. In the state feedback case,
the use of this special type of triangulation is not required.

Index Terms—Control system synthesis, output feedback, piece-
wise-affine hybrid systems, triangulation of polytopes.

I. INTRODUCTION AND MOTIVATION

I N the past 15 years, the study of hybrid systems has be-
come a very active research area. Reasons for this rapidly

growing interest are manifold. For example, if an engineering
system, described by continuous-time dynamics, is controlled
by a computer, then the closed-loop system is hybrid in the sense
that its behavior is determined by the interaction between the
continuous dynamics of a physical system, and the discrete dy-
namics that model the operation of a computer. Furthermore,
the dynamics of control systems often contain discontinuities,
or become hybrid after modeling. Examples of hybrid systems
are abundantly available, ranging from the modeling of car en-
gines to (air) traffic control and robot motion planning.
One particular class of hybrid systems, the class of piece-

wise-affine hybrid systems, has received a large amount of atten-
tion. A piecewise-affine hybrid system consists of a discrete au-
tomaton, with a continuous-time affine system on a polyhedral
set at each discrete mode, and a switching mechanism between
discrete and continuous dynamics. This class of systems was
introduced by Sontag in [20] and [21], and has become popular
because it is appropriate for the modeling of many real-world
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systems (see, e.g., [1] and [7]), and its mathematical structure
allows for useful theoretical results.
Several approaches exist for controlling piecewise-affine

hybrid systems. A popular approach, developed by Morari
and Bemporad et al. (see, e.g., [3] and [4]) is based on time
discretization of the system, and is geared to performance op-
timization by computational methods. A completely different
methodology is the so-called control-to-facet approach (see
[9]–[11]). The idea of this approach is to apply continuous
state feedback at each discrete mode of the hybrid system in
order to influence the switching behavior of the underlying
discrete automaton. Assuming that the facet through which
the continuous state leaves the state polytope determines the
next transition of the underlying discrete automaton, a central
question in this method is how an affine system on a polytope
can be steered to a particular (set of) facet(s), without leaving
the state polytope before reaching this so-called exit facet.
The solution to the control-to-facet problem is an important

building block for the control of hybrid systems. The problem
of facet-blocking can be solved by linear programming and,
hence, has polynomial complexity, though the full control-to-
facet problem is NP-complete due to the need to solve a bi-linear
inequality to force exit [18]. The method has been implemented
in [6] and [8]. In [11], the control-to-facet method has been com-
bined with a backward recursion algorithm on the discrete dy-
namics in order to achieve some a priori given control objec-
tives. A related method for the control of multi-affine systems
on rectangles is developed in [2].
Whereas in [9]–[11] the facet-blocking and control-to-facet

problem were studied from a rather general point of view, some
special cases were investigated in more detail by Broucke and
co-workers. In [19], [13], and [14], the class of so-called affine
hypersurface systems, i.e., affine systems on -dimensional
polytopes, with independent inputs, was studied, both
on simplices [19], [13] and on general polytopes [14]. In the
simplex case, a necessary and sufficient condition to solve the
control-to-facet problem using continuous state feedback was
obtained, and it was shown that this feedback is realizable by
affine state feedback. On general polytopes, similar results were
obtained under a rather mild controllability condition, and with
affine feedback replaced by piecewise-affine feedback. In [5],
the equivalence of continuous and affine state feedback for
solving the control-to-facet problem was studied for affine sys-
tems on simplices that are not necessarily hypersurface systems.
Also in this paper we study the problems of facet blocking

and control-to-facet for affine systems on polytopes, but instead
of using state feedback, like in the references mentioned above,
we attempt to solve these problems by static output feedback.

0018-9286/$31.00 © 2012 IEEE
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So we assume that only partial observations are available, and
that instead of the complete state, only the output may be used
for feedback. The output feedback is assumed to be static in the
sense that the input is a function of the output at the same time
instant.
In [9] and [11], solvability conditions for the state feedback

case are described by linear inequalities at the vertices of the
state polytope, and a continuous piecewise-affine state feedback
can be constructed after triangulation of the state polytope. The
problem in the static output feedback case is that the observed
output is the same on an affine subspace of states which may
intersect more than one facet. For a given observed output, the
input has to be chosen in such a way that it is suitable for all
states that correspond to this output simultaneously. In partic-
ular, the input has to satisfy several linear inequalities at the
same time. To handle this more complicated situation, we first
construct a special subdivision of the output polytope based on
a notion of compatibility with the state polytope and the output
map. For this purpose the so-called chamber complex [16], [17]
is used. In this setting, one necessary condition and one suffi-
cient condition for solvability of the control-to-facet problem
can be obtained in terms of linear inequalities at the vertices
of the chamber complex. Next, a triangulation of the output
polytope is made that is a refinement of the chamber complex.
Based on this triangulation and the computed inputs at its ver-
tices, a continuous piecewise-affine static output feedback is
constructed that solves the control-to-facet problem.
The main differences between the state feedback solution to

the control-to-facet problem described in [9] and [11], and the
static output feedback solution that is presented in this paper,
are as follows.
1) In the state feedback case, the solvability conditions are
stated on the inputs at the vertices of the state polytope. For
static output feedback it is not enough to consider only the
inputs at the vertices of the output polytope; in Section IV
it will be shown that all vertices of the chamber complex
of the output polytope have to be checked.

2) In the state feedback case described in [9] and [11], any
triangulation of the state polytope can be used for the con-
struction of a piecewise-affine feedback law. For static
output feedback, only so-called compatible triangulations
can be applied. In particular, the triangulation of the output
polytope has to be a refinement of the chamber complex.

The case of dynamic output feedback has also been consid-
ered by the authors, and can be reduced to the case of static
output feedback. The method relies on constructing an observer
with sufficiently high gain such that the error in estimating the
observable part of the system state by the observer state is neg-
ligible. The details of this reduction are beyond the scope of this
paper, and will be presented elsewhere.
This paper is organized as follows. Section II contains the

exact problem formulation, and Section III is devoted to compat-
ibility of subdivisions and to triangulation of the output polytope.
A solution for the static output feedback case is presented in
Section IV. In Section V, some examples are given, and we end
with some concluding remarks in Section VI. In Appendix A,
we present complete statements and proofs of the results on
convex polytopes that are needed throughout the paper.

II. PROBLEM DESCRIPTION

Let be a full-dimensional polytope, and denote by
the set of vertices of , and by the set of all faces

of . More specifically, for integers , we denote by
the set of all faces of of dimension . In particular,
is the set of all facets of , and is the set of

all vertices. Furthermore, if is a point on the boundary of ,
then denotes the set of all facets of that contain
the point .
Let be a Lipschitz-continuous function, and

consider the autonomous system on the polytope .
Let be a facet of , with normal vector , pointing out of
. Then the exit set of is defined as the set of points

of through which a state trajectory can leave , i.e.,

Facet is blocked if , i.e., for all
.

Definition II.1: Let be the trajectory of the au-
tonomous system on polytope , with initial state

. This trajectory is said to leave polytope by crossing
facet of at time if:
(i) ;
(ii) is an element of the exit set of ;
(iii) .
Note that in condition (iii), we consider an extension of the

trajectory outside the polytope. If is only defined on itself,
then may be temporarily extended to a Lipschitz-continuous
function on . This extension is only required for a correct in-
terpretation of condition (iii) of Definition II.1, and is not used
elsewhere in this paper. It is straightforward to show that con-
dition (iii) is independent of the extension that is chosen.
Remark II.2: Definition II.1, adopted from [11, Def. 4.5], is

a slight modification of the control-to-facet problem as formu-
lated in, e.g., [10], [5], [18], [19], and [13]. In these papers, con-
dition (ii) states that may be any point of the facet .
In Definition II.1, condition (ii) is slightly more restrictive, be-
cause it requires that belongs to the exit set of facet .
The reason for defining crossing a facet in this way is the ap-
plicability of our results in the framework of piecewise-affine
hybrid systems on polytopes. This will be elaborated upon after
the statement of Problem II.6.
In this paper we consider the following class of systems:
Definition II.3: An affine control system on a full-dimen-

sional polytope in , with inputs and outputs is given
by

(1)

Here denotes the state, denotes the input,
with a polytope in , called the input polytope, and
denotes the output, with a polytope

in , called the output polytope. In particular, ,
, , and . Without loss of generality

we assume that is of full row rank; in particular .
The dynamics described in (1) remain valid as long as the

state trajectory remains in the state-polytope . Let
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denote a set of admissible exit facets. In this
paper, we want to solve the problem of steering every state tra-
jectory to an admissible exit facet, using static output feedback.
In a hybrid systems context this corresponds to the enabling of
favorable and the disabling of unfavorable discrete transitions
at a given discrete location.
For an exact description of this control problem, we first have

to specify which class of output feedback laws we consider.
Definition II.4: Let be an affine system on a polytope, with

input polytope and output polytope . A static output feed-
back is a Lipschitz-continuous function giving input

(2)

A static output feedback is called affine if there exist
and such that for all .

A static output feedback is called piecewise-affine if there
exists a polyhedral subdivision of , matrices

, and vectors ,
such that

(3)

The exact definition of a polyhedral subdivision is provided in
Definition III.1 of Section III.
A function is called admissible as a static output

feedback if . The closed-loop system of the affine
system and the static output feedback is given by

(4)

If is affine, then the closed-loop system (4) will be an au-
tonomous affine system; if is piecewise-affine, then (4) is an
autonomous piecewise-affine system. Note that for every initial
state , (4) will have a unique solution, because is Lip-
schitz-continuous.
In this paper, we focus on the following two control problems:
1) Problem II.5 (Blocking Facets): Let be a

subset of the set of facets of state polytope . Find a piecewise-
affine output feedback such that for the closed-
loop system (4) all facets are blocked.
If in Problem II.5, the set is equal to , all facets

should be blocked. If output feedback is a solution to this
problem, then all trajectories of the closed-loop system remain
in the polytope forever. In a hybrid systems context this re-
flects a deadlock in the discrete dynamics: the corresponding
discrete location cannot be left, and as soon as the discrete au-
tomaton visits this location, no further discrete transitions can
occur. Often, the opposite property of guaranteeing liveness of
the discrete dynamics is more important for a hybrid system.
This means that in every discrete location it is guaranteed that a
discrete transition will occur in finite time. For this property one
has to verify that all state trajectories leave the state polytope in
finite time by crossing an admissible exit facet.
2) Problem II.6 (Control-to-Facets): Let de-

note the set of all admissible exit facets. Find a piecewise-affine
output feedback such that all state trajecto-
ries of the closed-loop system (4) with arbitrary initial state

leave the polytope in finite time by crossing
an admissible exit facet .
In the control of piecewise-affine hybrid systems on poly-

topes, a usual control objective is to prevent undesirable
switching between certain discrete states. For this one has to
guarantee that the continuous state does not leave the polytope
through a nonadmissible facet. However, it is possible that
the exit point belongs to several facets. In the approach to the
control of hybrid systems described in [11], it is assumed that in
that case only those events can occur, that correspond to facets
that are crossed. Since, by definition, blocked facets cannot be
crossed, the control objective can be restated as to block all
nonadmissible facets (Problem II.5, with ).
In this situation, it is still possible that an exit point belongs to
the intersection of a blocked and a nonblocked facet, but no
trajectory will cut the blocked facet transversely, and the event
corresponding to the blocked facet will not occur.
Note that blocking all nonadmissible exit facets is not suffi-

cient for solving Problem II.6. If a closed-loop system admits
both trajectories that leave in finite time and trajectories that
remain in forever, then the corresponding output feedback
law does not solve Problem II.6, because it does not guarantee
departure from polytope in finite time.
Proposition II.7: A piecewise-affine static output feedback

solves Control Problem II.6 for the nonempty
set of admissible exit facets if and only if the following two
conditions are satisfied:
(i) the output feedback solves Problem II.5 for the set

;
(ii) all state trajectories of closed-loop system (4) leave the

polytope in finite time.
Proof: Assume that is an output feedback

that solves Problem II.6. Then condition (ii) is satisfied, so it
suffices to prove (i). Let , and let . Then

, because the trajectory does not cross .
Hence, , and indeed facet is blocked with respect
to closed-loop system (4).
Assume that is an output feedback that sat-

isfies conditions (i) and (ii). According to (i), all facets
are blocked with respect to the closed-loop dy-

namics, and blocked facets cannot be crossed. At the same time,
(ii) states that all trajectories of closed-loop system (4) leave
polytope in finite time. Furthermore, [11, Lemma 4.7] im-
plies that a trajectory that leaves in finite time, crosses at least
one facet. Hence, it must cross a facet .
In [9] and [11], control-to-facet problems similar to Problems

II.5 and II.6 have been solved using state- instead of output feed-
back. First a necessary condition and a sufficient condition for
solvability are obtained, formulated as sets of linear inequal-
ities on the inputs at the vertices of the state polytope . The
second step is to realize these inputs at the vertices by an admis-
sible piecewise-affine state feedback law. Since the state poly-
tope is convex, and the closed-loop system piecewise-affine,
this approach guarantees that on all nonadmissible exit-facets
the vector field of the closed-loop system is pointing into the
state polytope. Additionally one can check that the state poly-
tope is left in finite time. For the construction of the state feed-
back law, a triangulation of the state polytope is used. There
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are no special requirements on this triangulation, because the
solvability conditions are completely independent of the chosen
triangulation.
For our solution of the output feedback Problems II.5 and II.6,

we use a similar approach. This problem with partial observa-
tions is more difficult, because one observed output cor-
responds to a set of states . The
set may intersect several facets of , so the corresponding
input has to satisfy constraints with respect to all these
facets at the same time. For this purpose we first construct a spe-
cial polyhedral subdivision of the output polytope, that meets
certain compatibility conditions with the state polytope and the
output map. Section III is devoted to this subject. Next, we set
up a system of linear inequalities for the inputs at each vertex
of this polyhedral subdivision. If these inequalities have a solu-
tion, a piecewise-affine output feedback is obtained by refining
the subdivision to a triangulation, and interpolating the inputs
at the vertices of the triangulation. This part of the construction
will be elaborated in Section IV.

III. SUBDIVISION OF THE OUTPUT POLYTOPE

A. Polyhedral Complexes

In order to handle the different constraints on the inputs, and
to construct a piecewise-affine output feedback, we need a sub-
division of the output polytope with special properties. For this
we introduce in this section the so-called chamber complex (see,
e.g., [16] and [17]). Using this subdivision, one may obtain a
necessary and sufficient condition for the solvability of Problem
II.5 and a sufficient condition for the solvability of Problem II.6.
The construction of the control law will be based on a triangu-
lation that refines the chamber complex.
Definition III.1: A polyhedral complex is a finite collection

of polytopes that satisfies the following two conditions:
1) if , then for all faces of ,
2) if , then either is a face of both and ,
or .

The underlying space of is . A polyhedral
complex is a called a polyhedral subdivision of a polytope
if . A polyhedral complex is called a refinement of
polyhedral complex if

A polytope of dimension with vertices is called a -sim-
plex. A polyhedral subdivision of polytope is called a tri-
angulation of if every is a simplex. The vertex set of a
polyhedral complex is the union of all polytopes that
consist of one point, and is denoted .
In the sequel we will need a subdivision of the output poly-

tope , such that it satisfies a compatibility condition
with the state polytope and the output map :
Definition III.2: Let be a full-dimensional polytope in ,

and let , with a surjective linear map,
i.e., , where is a matrix of rank . A polyhe-
dral subdivision of polytope is called -compatible if

(5)

Fig. 1. (a) Polyhedral subdivision of a polytope in into three triangles and
two quadrangles; (b) subdivision of the same polytope into polyhedra which do
not form a polyhedral complex. The intersection of and is not a face
of .

where denotes the inverse
image of a set under .
In words: a polyhedral complex of is -compat-

ible, if for every polytope , the vertices of the polytope
are mapped to vertices of by the mapping .

Note that the compatibility notion for subdivisions introduced
in [15, Ch. 9] is different from the one described in Definition
III.2. Therefore, the results from [15, Ch. 9] are not directly
applicable in the context of this paper.
The compatibility condition (5) can be stated in several equiv-

alent ways.
Lemma III.3: Let be a full-dimensional polytope in ,

and be a surjective linear map. A polyhedral
subdivision of polytope is -compatible if
and only if one of the following equivalent conditions holds:
(i) ;
(ii) ,
where denotes the convex hull of .

Proof:
Equation (5) (i): Assume that (5) holds, and let

. Then ,
and by taking convex hulls we obtain

. To prove the opposite inclusion,
let . Then there exist ,

, and
such that and . In particular,

and . Since
and are polytopes, and is a linear map, it follows that

, and , so
.

(i) (5): Assume that (i) holds, and let . Then (i)
implies that

Hence, if , then ,
i.e., , and .
Equation (5) (ii): Assume that (5) holds, and let .
From (5) the inclusion is
trivial, so it suffices to prove the inclusion in the opposite
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direction. Since , we have ,
and by only considering the vertices of we obtain

(ii) (5): Assume that (ii) holds. Let , and
. According to (ii) we have .

The next lemma states that in a compatible subdivision , the
vertices of the inverse image of a polytope coincide with
the vertices of the inverse images of the single vertices of .
Lemma III.4: Let be a full-dimensional polytope in
, and be a surjective linear map. Let

be an -compatible polyhedral subdivision of polytope
. Then for all we have

(6)

Proof:
“ ”: Let . Since subdivision is

-compatible, we have . So,
obviously , and there exist ,

and such
that and . For
we have ; hence,
. So, in particular for .

Since is a vertex of , and , it
follows that for all . Hence,

.
’ ’: Let for some . Then
in particular and , so

. There exist ,
and such that

and . Since polyhedral subdivi-
sion is -compatible, and for all we
have , it follows from Lemma III.3
(ii) that for . Furthermore, is
linear, so

i.e., is a convex combination of ,
. Since is a vertex of and also ,

we must have that for all
. In particular, , and

is both a vertex of and a convex combination
of . We conclude that , ;
hence, .

Property (6) is of particular interest for polytopes that are
simplices. Any point of a simplex can be uniquely repre-
sented as a convex combination of the vertices of . If (6) is
satisfied for simplex , then the next lemma states that every
state can be written as exactly the same convex
combination of certain states , whose corresponding out-
puts are vertices of . The exact statement of the result is
as follows:

Lemma III.5: Suppose that is a full-dimensional polytope
in , and is a surjective linear map. Let be a
-dimensional simplex contained in , with
vertex set . Assume that

(7)

Let be such that , and define
by . Then

(i) For all , there exist ,
such that .

(ii) If belongs to a particular facet of ,
then for all , the point in ( ) belongs to

.
Proof:

(i) Let . Since , it is obvious
that , so is a convex combination
of the vertices of . According to (7), is a
convex combination of points in .
For we denote

. Then there exist scalars ,
such

that:
1) ;

2) .

For we define . Then

and . Subsequently we define for
and

if
if

Then , and, if , then .
Furthermore

For , we define .
Then implies , and implies that

, so in
particular . Since the output map is linear, it
follows that

On the other hand, since is a -dimensional simplex,
is the unique representation of as

convex combination of . It follows that
for . We conclude that

with , .
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(ii) Suppose that , for some facet of . Let
denote a normal vector of pointing out of . Then there
exists such that

Clearly because . Suppose that there
exists an such that . Then

, and we obtain

which contradicts the fact that .

If is a so-called compatible triangulation of the output
polytope, i.e., is a compatible polyhedral subdivision and a
triangulation at the same time, then Lemma III.4 and Lemma
III.5 imply that the properties described in Lemma III.5 hold in
every simplex of triangulation . In Section IV, this observa-
tion will play a prominent role in the proof of our solution to
the facet-blocking problem using piecewise-affine output feed-
back. However, before turning to this main result, we have to
investigate how compatible triangulations can be obtained.

B. Construction of a Compatible Triangulation

In order to generate a compatible subdivision, we start
with the so-called chamber complex of as defined in,
e.g., [17].
Definition III.6: Let be an polyhedron in ,

a surjective linear map, and . The chamber complex
of is defined as the collection of polytopes
, where

(8)

is the chamber of .
Note that the chamber complex is a polyhedral subdivision of

the output polytope .
The next result states that the chamber complex is indeed a

polyhedral complex that combines the properties we are inter-
ested in.
Theorem III.7: The chamber complex of is an

-compatible polyhedral subdivision of the polytope
.

The fact that the chamber complex is a polyhedral subdivision
of is stated, but not proved, in [17]. Using [17, Prop. 2.4] one
may also show that this polyhedral subdivision is -com-
patible, but again, no proof is given. Because of the fundamental
importance of Theorem III.7, we provide a complete proof in the
Appendix. Theorem A.11 states that the chamber complex is a
polyhedral subdivision, and compatibility is an immediate con-
sequence of Theorem A.12.
The construction of the chamber complex of is

relatively straightforward. Let denote the collection of faces
of such that , where .

For every subset , we define .
The set of all such faces , with any subset of such
that is nonempty, forms the chamber complex of . In-
deed, if , then , where

denotes the boundary of [see Lemma A.4 (2)]; hence,
. So, the full-dimen-

sional chambers must be intersections of faces of such
that . In practice, it often suf-
fices to compute all full-dimensional chambers, which are given
by chambers for which is nonempty.
An illustrative example of this approach is given in Section V,
Example V.2.
The next result states that any refinement of the chamber com-

plex is still an -compatible subdivision of .
Theorem III.8: Let be a polyhedral subdivision of which

refines the chamber complex of . Then is -
compatible.
For the purpose of constructing a static output feedback law,

we are particularly interested in polyhedral subdivisions of the
output polytope that are both triangulations and -com-
patible. The existence of a triangulation of a given polyhedral
subdivision is a well-known result in the literature (see [15] for
a recent monograph on triangulations). A simple construction
is the lexicographic triangulation (see, e.g., [12, Section 2] and
references therein):
Theorem III.9: Let be a polyhedral subdivision of the poly-

tope . Then there exists a triangulation that refines . More-
over, can be chosen so that .
Finally, triangulations of the chamber complex turn out to be

the only -compatible triangulations of the output poly-
tope .
Theorem III.10: Let be a triangulation of the polytope
. Then is an -compatible triangulation of if and

only if is a refinement of the chamber complex of .
Theorem III.8 and Theorem III.10 are combined in Theorem

A.12, a complete proof of which is given in the Appendix.
At this point, it is straightforward how an -compatible

triangulation of the output polytope may be con-
structed. The first step is to construct the chamber complex of

. This can be done by computing intersections of
for all faces , with . In the second
step this chamber complex is triangulated in such a way that

. According to Theorem III.8 or Theorem III.10,
this triangulation will be -compatible.

IV. SOLVABILITY CONDITIONS AND CONSTRUCTION OF A
PIECEWISE-AFFINE OUTPUT FEEDBACK

If is an -compatible triangulation of the output poly-
tope , and if for every vertex a corresponding input

is fixed, then an admissible piecewise-affine output
feedback is easily constructed. For every , let
denote the simplex in of smallest dimension, that contains
the point . Then can be written in a unique way as a convex
combination of the vertices of

with for all , and .
Next we define the output feedback by

(9)
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Then is a continuous function, and affine on every simplex of
. Furthermore, for all .
The key idea behind our approach to solve Problems II.5

and II.6 is to choose the inputs , in such a
way that in all states corresponding to output , the
vector is pointing in a direction, that locally
fulfills the control objective. Since the dynamics of the system
is convex, an inequality on the inner product of a fixed vector
and the vector field of the closed-loop

system that is valid in all vertices of a facet of , extends to
all points of the facet. Furthermore, since the triangulation
of is -compatible, it is a refinement of the chamber
complex of , and every vertex of corresponds to a
vertex of . Combining these observations, it is pos-
sible to formulate a necessary and sufficient condition for solv-
ability of Problem II.5 and a sufficient condition for solvability
of Problem II.6 in terms of a set of linear inequalities on the in-
puts corresponding to the vertices of the chamber complex of

. The exact statement is given in the following theorem:
Theorem IV.1: Consider an affine system (1) on a full-dimen-

sional polytope in . Let be a set of admis-
sible exit facets, and let denote the linear output
map , with . Let be the chamber
complex of . For all we define the set of inputs
that satisfy all relevant linear inequalities at output by

(10)

where denotes the unit normal vector of facet , pointing
out of polytope . Then
(i) Problem II.5 is solvable if and only if for all

.
(ii) Problem II.6 is solvable if there exists a direction

such that

(11)
Proof:

(i) Let be a piecewise-affine output feedback,
solving Problem II.5. We first show that for all

, i.e., the necessity of condition (i).
Let , and define . We will show that

, i.e.,

(12)

Let . Then and
, so the output corresponding to state is . Let

. The closed-loop system is described by

Since the output-feedback solves Problem
II.5, the direction of the vector field of the closed-loop

system in the point does not have a positive component
in the direction of

Since and , we have

and indeed (12) holds.
Next, assume that for all . We will
show that Problem II.5 is solvable, i.e., the sufficiency of
condition (i).
First we fix for every point an input .
Let be a triangulation of the chamber complex of

with the property that , cf. Theorem
III.9; in particular is an -compatible triangulation
of the output polytope . Let be the
piecewise-affine output feedback, corresponding to inputs

and triangulation , as defined
in (9). We will prove that the feedback law is a
solution for Problem II.5, by verifying that

Let , and let . Define .
Let (with ) be the set of vertices of
simplex , i.e., the simplex in of smallest dimension,
that contains . Since can be written in a unique way as
a convex combination of vertices of , there exist unique

such that:
(1) ,
(2) .
Output feedback law (9) fixes the input corresponding
to output by

We will show that this input guarantees that

Since and , it is clear that
. Furthermore, since triangulation

is -compatible, Lemma III.4 implies that
. So, ac-

cording to Lemma III.5 (ii), and using the fact that
, there exist , ,

such that .
Recall that for all : , and that
is a facet of , not belonging to . So, according to

(10), we have for each

(13)

Since and , can be written as a
convex combination of vectors .
In combination with (13) this implies that
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We conclude that in state the vector field of the
closed-loop system satisfies

This completes the proof of (i).
(ii) Assume that condition (11) is satisfied. Choose direction

, and for all an input
such that

(14)

Since is a convex polytope, inequality (14)
at the vertices of automatically extends to
the polytope itself

(15)

Let be the piecewise-affine static output feed-
back as constructed in (9). Since for all

, the sufficiency proof in (i) guarantees that output
feedback law solves Problem II.5, i.e., all non-
admissible exit facets are blocked. Therefore, it suffices to
show that all state trajectories of the closed-loop system
leave in finite time. We do so by showing that in every
point of the state polytope the velocity in the direction
of the vector is strictly positive.
Let . We define , and denote
the vertex set of the corresponding simplex by

. Like in the proof of part (i)
there exist vectors , ,
and numbers , such that:
1) ;
2) ;
3) .
Then the vector field of the closed-loop system in satis-
fies

where the last inequality follows from (15) and the fact
that for all we have .

Theorem IV.1 is the main result of this paper. Part (i) de-
scribes a necessary and sufficient condition for the solvability
of Problem II.5 (the facet-blocking problem) in terms of a finite
number of linear inequalities (the linear inequalities that define
) that have to be satisfied for a finite number of points ,

namely the vertices of the chamber complex of . Fur-
thermore, an explicit construction of the corresponding piece-
wise-affine static output feedback is given. By construction, this
static output feedback is also continuous. Part (ii) only provides
a sufficient condition for the solvability of Problem II.6 (the con-
trol-to-facets problem).
The construction of the feedback law in the proof of Theorem

IV.1 is based on a triangulation of the chamber complex
of with the property that , i.e., without
introducing new vertices. However, if the conditions on the in-
puts at the vertices of the chamber complex of are ful-
filled, every triangulation that is a refinement of the chamber
complex will lead to a piecewise-affine controller that solves
the problem. If a triangulation contains a vertex that is not
a vertex of the chamber complex of , then the corre-
sponding input has to satisfy (in case (i)). How-
ever, the existence of a suitable input is already guaranteed by
the conditions described in Theorem IV.1. Therefore, the only
difference that these additional vertices cause is a change in the
piecewise-affine output feedback law. This is due to the fact that
the chosen triangulation is used explicitly in the construction of
the feedback law.
The sufficient condition of Part (ii) may be verified in a finite

number of steps in a way that is similar to the state feedback case
described in [11]. For a fixed direction and a fixed vertex
of , the condition on is

(16)

The input can, therefore, be chosen to be a vertex of ,
such as the vertex maximizing . Hence, if

, then a solution to Part (ii) can be found
by enumerating all possible tuples , with

the input corresponding to output , and for each pos-
sibility, attempting to solve (16) for , which is a system of
linear inequalities. This yields a finite algorithm.

V. SEVERAL EXAMPLES

A. Examples of Static Output Feedback

We start with a simple illustration of the construction of a
piecewise-affine output feedback law, that solves a given con-
trol-to-facets problem. In this example, the construction of a
compatible triangulation is straightforward.
1) Example V.1: Consider the system

on state polytope with input set .
Clearly, the output polytope is . We want to solve
Problem II.6 with the facets and as admissible
exit facets.
Let , , , and .

The chamber complex of consists of the vertices ,
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Fig. 2. Polytope defined by vertex set ,
.

, , , the edges joining with , with , with
, and with , and finally the full chamber . There

are two triangulations possible, one based on the diagonal from
to and the other based on the diagonal from to .

Both triangulations are -compatible. Every vertex of
corresponds to two vertices of , with -coordinate 0 and

1, respectively. According to Theorem IV.1, the input is
required to be an element of the set as defined in (10). In
this example, turns out to be nonempty for all ;
straightforward computations show that the input choice
, satisfies all constraints. So, a

piecewise-affine output feedback law, based on the triangulation
with the diagonal from to , and blocking all facets except
the admissible ones, is given by

if
if

It is easily verified that in all vertices of the closed-loop vector
field has a strictly positive component
in the direction of . Therefore, all trajectories of
the closed-loop system will leave in finite time. Hence, the
output feedback law solves Control Problem II.6.
The next example is more involved because in this case the

chamber complex is nontrivial. The goal is to find a solution to
a given facet-blocking problem.
2) Example V.2: Consider the polytope

with vertices

and facets

Let be the output map given by

The polytope , the chamber complex of , and
its triangulation are shown in Figs. 2 and 3, respectively. The
chamber complex has six two-dimensional chambers, each of
which is the intersection of the projection of two facets of

Fig. 3. Chamber complex of under projection map
.

The vertex set of chamber complex of consists of the
points for and the points
and . The point is the intersection of the pro-
jection of the edge joining and , with the projection of the
edge joining and . The point is the intersection of the
projection of the edge joining and , with the projection of
the edge joining and .
Consider the facet-blocking problem with blocked facets ,
and and corresponding outward normals

Since the triangle
equals the intersection , the inputs at the vertices
of have to be chosen in such a way that both and are
blocked at the same time. An analogous statement holds for
the triangle , which is
equal to . So the inputs at the vertices of have
to guarantee that both and are blocked.
Consider the affine system

The linear equation determining the constraint on the input
at vertex of the chamber complex due to the need to block
facet with normal are given from (10) as

where is the point on satisfying .
We see that the vertex of the chamber com-

plex is the projection of the vertex of the state
polytope, which is a vertex of both and . To block facet
, we require and to block facet we require

. The latter inequality is implied by the former,
which reduces to . At the vertex , we only need to
block facet at vertex , yielding the single
condition . At the vertex there
are two constraints on the input. In order to block facet at
the point , we require and in
order to block facet at the point we require

. By combining these two inequalities we obtain
.

Performing similar calculations at the other vertices yields
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Fig. 4. Flow on polytope ,
with exit facet .

Hence, the facet-blocking problem with blocked facets ,
and can be solved with a piecewise-affine static output feed-
back with . Note that it is impossible to solve this
facet-blocking problem with an affine static output feedback
with .
The following example describes a system that can be con-

trolled by an affine state feedback but not by a static output feed-
back.
3) Example V.3: Consider the system

on state polytope given by with
vertex set ,

, and input polytope . For this
system we want to solve the control-to-facet Problem II.6 with
exit facet (see Fig. 4).
It is easily verified that this control problem is solvable by

static state feedback, for example by taking

However, this problem is not solvable by a piecewise-affine
static output feedback. To verify this claim, we consider the
input for . If output , then . So the
state can be any point on the horizontal line from vertex ( ,
1) to vertex (2, 1). To avoid exit through the facet (if

), we require , so . Similarly, to avoid
exit through facet , we need , so . Hence,

, and in every point on the line segment from ( , 1)
to (2, 1), the first component of the closed-loop vector field is
equal to 0. Furthermore, exit through the facets or

has to be avoided, which leads to the requirement
at both ( , 1) and (2, 1). Since we must

have when . This implies that in every point on
the line segment from ( , 1) to (2, 1), the second component of
the closed-loop vector field is smaller than or equal to 0. Hence,
state trajectories starting with cannot cross this line seg-
ment, and therefore, they cannot leave through the required
exit facet .

B. Beyond Static Output Feedback

Note that in Example V.3, the system is observable as a linear
system, since

Hence, it would be possible to control the system by a dynamic
output feedback if it were possible to prevent exit of the poly-
tope during a time interval, long enough to obtain a sufficiently
accurate measurement of state to apply a robust state feed-

back solution. Indeed, for the given system, we can construct a
static output feedback which prevents the state from leaving the
polytope, by taking

(17)

Then the closed-loop system satisfies and
. So the state vector moves along a vertical line in the di-

rection of the fixed point . Since is observed,
also the value of can be determined. Since Problem II.6 is
solvable by static state feedback, one may obtain an output feed-
back solution, by switching in finite time from the static output
feedback (17) to a suitable dynamic output feedback law.
The problem of finding necessary and sufficient conditions

under which Problem II.6 is solvable, using a combination
of static and dynamic output feedback, requires an analysis
of high-gain dynamic observers and topological robustness
criteria. Partial results have been obtained by the authors, and
will be reported elsewhere due to the different techniques that
are required in this approach.

VI. CONCLUSION

In this paper, we have extended the control-to-facet approach
for synthesis of controllers for piecewise-affine hybrid systems
to the case of systems with partial observations. The resulting
control laws are continuous piecewise-affine functions of the
output, with the pieces based on a triangulation of the chamber
complex of the output polytope. For the facet-blocking problem,
the control law can be computed by the solution of a linear pro-
gramming problem; for the control-to-facet problem a sufficient
condition for every solution of the closed-loop system to leave
the state polytope is that there is a direction in which the flow
is positive. The conditions for the existence of a solution of
the facet-blocking problem are also necessary in the case that
the initial state is unknown and may lie anywhere in the state
polytope.
If the set of possible initial states is a subset of the state

polytope, or if the state is required to leave through one of the
exit facets, then dynamic output feedback may be required to
solve the problem. This will be discussed in future work. An-
other topic for further research is to find controllers for which,
for almost every initial point, the corresponding state trajectory
leaves through one of the specified exit facets.

APPENDIX

In this Appendix, we state and prove some “folk theorems”
on polyhedral subdivisions and triangulations that are needed in
the construction of a piecewise-affine output feedback, but for
which proofs are not available in the literature.
Let be a full-dimensional polytope in with (closed)

faces . We denote by the -skeleton of , consisting of
all faces of of dimension at most , i.e., .
Let be a surjective affine map, and .

Definition A.1: The chamber complex is defined
as the collection , where

is the chamber of ; it is the minimal cell of the collection
that contains .
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Remark A.2: In Definition III.6 and throughout the paper,
the chamber complex was denoted in a slightly different
way as the chamber complex of . In this appendix the
short notation is adopted. Furthermore, in the notation

of the chamber complex and of the chamber
of , we omit the pair of polytope and affine map, if it
is clear from the context to which polytope and affine map
they refer.
It is immediate that the chamber complex consists of

closed polytopes whose union is . The goal of this
appendix is to show that chamber complex is a polyhe-
dral subdivision of the polytope that is -compatible (cf.
Definition III.2).
We begin with a result that relates the faces of a polytope on

the one hand and the intersection of this polytope with an affine
subspace on the other.

Lemma A.3: Let be a full-dimensional polytope,
and an affine subspace of .
1) If and , then .
2) If , then there exists a unique
such that .

Hence, there is a natural bijection between
and .

Proof:
1) If is a hyperplane such that , then

. Since and
is a supporting hyperplane of such that ,

it follows that is also a supporting hyperplane of ,
so is a face of (which is equal to
if ).

2) If , then the claim is trivial. If , then
clearly and since is an affine subspace,
it follows that . Choose . Since

, there exists a unique face of such that
. By Part 1 above, is a face of .

Since and is an affine subspace,
. Since and are faces of and

, we must have .

The next result describes how the dimension of facets of
and the dimension of facets of are related to the

boundary of and the image of the boundary of .
Lemma A.4: Let be a full-dimensional polytope,

be surjective and . Then:
1) if and , then

;
2) if and , then

;
3) if , then there exists such that

.
Proof:

1) If , then is injective. So
is a bijective continuous mapping from to . There-
fore, we must have .

2) Since the inclusion is trivial, we only have
to show that . Let . Then there
exists such that . If , then

, and we are done. If , then there

exists an , such that and ,
because and the affine mapping is
not injective since .
Let be the straight line through and . Then for all

we have , and the line is contained in the
supporting hyperplane of . So intersects the boundary
of . Choose . Then , and therefore,

.
3) Let be a hyperplane in such that . Then

is a supporting hyperplane of , and we can take
.

The following lemma is trivial.
Lemma A.5: If , then .
Proof: Immediate from

.
We now briefly recall some simple facts about sets and func-

tions. For any function , with
equality if is injective, with equality if
is surjective, and .

Lemma A.6: Let be an affine subspace of , and set
. Suppose . Then

if, and only if, .
Proof: Suppose and . Then by

Lemma A.4(2) there exists a face such that is in-
jective on and . Since is
injective on and , we have

so . Hence

and a similar consideration holds for .
By Lemma A.3,

, so

If , then
, and from the above considerations

we have
.

Conversely, if , we have
,

and can deduce

Hence
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Since , this implies
and so

.
The previous lemma often allows us to reduce statements to

either that of full-dimensional cells, or to one-dimensional im-
ages. The following crucial lemma relates chambers of points
lying on a line segment.

Lemma A.7: Let with . Then
for all on the line segment between and with .
Proof: Clearly, if and lies between and

, then . By Lemma A.6, by restricting to the line
between and , we can assume .
Suppose there exists a face of such that there exists

a point between and in but . Since if
we have by Lemma A.4(2), we

can find a possibly different with . Let be the
closest point of to . Then by Lemma
A.4(1), and since , there exists vertex of such
that . Since is a vertex of , we have that for all

, there exist such that where
are the directions of the edges (1-faces) of starting at .

Taking , we see that there is an edge starting at
with tangent vector such that points in the direction of ;
in particular, . Since the vertex at the end of does
not project between and , we have . Hence, and
do not lie in the interior of the same chamber of , a contra-

diction.
Corollary A.8: Suppose . Then or

. In particular, if , then
.
Proof: If , there exists

. Then there exists such that lies in
the relative interior of the line segment joining and , so

by Lemma A.7. However, since and
we have by Lemma A.5. Hence,
.

The following result is converse to Lemma A.7
Corollary A.9: Suppose . Then .
Proof: By Lemma A.6, it suffices to consider the case

. By Lemma A.4, there is at least
one face of of dimension such that .
Hence, , so . Hence, by
Corollary A.8, .
The following lemma is also crucial; it shows that any

chamber which is a subset of another is actually a face of the
other chamber.

Lemma A.10: Let and . Then
is a face of .

Proof: By Lemma A.6, it suffices to consider the case
. By Corollary A.9 if ,

then . Further, it clearly suffices to consider the
case , since otherwise we could
restrict to a proper face of . Hence, is a polyhedral
subset of .
Suppose is not a facet of . Then there is a facet of
which intersects the relative interior of a facet of . We

can, therefore, choose such that
and lies in the relative interior of a facet of . We need

to consider two cases, either there is an -dimensional
face of such that , or there is no such face,
but there are two -dimensional faces , of such
that and

.
Consider the first possibility, that there is an -dimen-

sional face of such that . Let be the (unique)
point in with . Choose a vector at parallel to
such that points from inside . Then and span
an -dimensional face of such that intersects
the interior of . Hence, there is a point
such that , which contradicts Corol-
lary A.8.
Consider the second possibility. Then it cannot be the case

that both and map under into the -dimensional
subspace spanned by , for then their intersection would
have dimension . Without loss of generality, suppose
that does not map into the subspace spanned by .
Then intersects the relative interior of , again a
contradiction.

Theorem A.11: Let be a full-dimensional poly-
tope, be surjective, and . Then the
chamber complex is a polyhedral subdivision of .

Proof: Since every chamber is the intersection of
convex sets, it is itself convex. If , then .
By Lemma A.7, for any , the set is convex,
and is the relative interior of . In particular, if ,
then .
If is a face of and , then by

Corollary A.9, and by Lemma A.10. Hence, all the
faces of a chamber are also chambers.
If and are chambers, then is either

empty, or a polytope. Choose in the relative interior of this in-
tersection. Then is a face of both and by Lemma
A.10. Hence, .
Recall from Definition III.2 that a polytopic subdivision of
is -compatible if for every full-dimensional cell of , we

have .
Theorem A.12: Let be a full-dimensional poly-

tope, be a surjective linear map, and .
Let be the chamber complex of induced by . Then a poly-
hedral subdivision of is -compatible if is a refinement
of . If is a simplicial subdivision (triangulation), then is
-compatible only if it is a refinement of .
Proof: Suppose is a polyhedral subdivision of refining

, and let be a cell of . Then the chamber complex of
under has a single full-dimensional cell, namely .

Since by Lemma A.4(1,2) the -skeleton of any polytope maps
into the -skeleton of the chamber complex, it follows by taking

that is compatible.
Conversely, suppose that is a compatible triangulation. Let
be an -dimensional cell of and a face of such

that intersects the interior of . By Lemma A.4, we can,
without loss of generality, assume that is injective on , and
so .
Since is -compatible with , we have

by definition. Since is a face of ,
.
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Hence

Thus, . Since is a
simplex and is a polytope, this implies . Since

whenever , we have
for any . Hence, refines .
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