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ERROR CONTROL FOR THE FEM APPROXIMATION
OF AN UPSCALED THERMO-DIFFUSION SYSTEM

WITH SMOLUCHOWSKI INTERACTIONS

OLEH KREHEL AND ADRIAN MUNTEAN

Abstract. We analyze a coupled system of evolution equations
that describes the effect of thermal gradients on the motion and
deposition of N populations of colloidal species diffusing and in-
teracting together through Smoluchowski production terms. This
class of systems is particularly useful in studying drug delivery,
contaminant transport in complex media, as well as heat shocks
thorough permeable media. The particularity lies in the modeling
of the nonlinear and nonlocal coupling between diffusion and ther-
mal conduction. We investigate the semidiscrete as well as the fully
discrete a priori error analysis of the finite elements approximation
of the weak solution to a thermo-diffusion reaction system posed
in a macroscopic domain. The mathematical techniques include
energy-like estimates and compactness arguments.

Key words. Thermo-diffusion, Soret and Dufour effects, colloids,
Smoluchowski interactions, finite element approximation, conver-
gence analysis, a priori error control.

MSC 2010. 65N15; 65L60; 80A20

1. Introduction

We are interested in quantifying the effect of coupled macroscopic
fluxes1 on the aggregation, fragmentation and deposition of large pop-
ulations of colloids traveling through a porous medium. To do so, we
are using a well-posed partly-dissipative coupled system of quasilinear
parabolic equations posed in a connected open set Ω with sufficiently
smooth boundary. The particular structure of the system has been
obtained via periodic homogenization techniques in [21] [see e.g. Ref.
[17] for a methodological upscaling procedure of reactive flows through
arrays of periodic microstructures].

1In this context, the fluxes are driven by a suitable combination of heat and
diffusion gradients [15].
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2 OLEH KREHEL AND ADRIAN MUNTEAN

The primary motivation of this paper is to develop and analyze
appropriate numerical schemes to compute at macroscopic scales ap-
proximate solutions to our thermo-diffusion system with Smoluchowski
interactions. Accounting for the interplay between heat, diffusion,
attraction-repulsion, and deposition of the colloidal particles is of para-
mount importance for a number of applications including the dynamics
of the colloidal suspension in natural or man-made products (e.g. milk,
paints, toothpaste) [12], drug-delivery systems [2], hierarchical assem-
bly of biological tissues [27], group formation in actively interacting
populations [30], or heat schocks in porous materials [5]. Further de-
tails on colloids and their practical relevance are given in [10, 23], e.g.

The discretizations shown in this paper have been successfully used in
[22] to capture the effect of multiscale aggregation and deposition mech-
anisms on the colloids dynamics traveling within a saturated porous
medium in the absence of thermal effects. Now, we are preparing
the stage to include the Soret and Dufour transport contributions –
cross-effects between molecular diffusion and heat conduction; for more
details on the macroscopic modeling of thermo-diffusion, we refer the
reader to the monograph by De Groot and Mazur [15]. The a priori es-
timates are obtained in a similar fashion as for problems involving reac-
tive flow in porous media (see, for instance, [24, 9] and references cited
therein), however specifics of the cross transport, interaction terms,
and of the non-dissipative (ode) structure play here an important role
and need to be treated carefully. For the numerical analysis of case
studies in cross diffusion, we refer the reader for instance to [13, 3] and
[31]. Note that there is not yet a unified mathematical approach to
deal with general cross-diffusion or thermo-diffusion systems. Due to
the presence of the nonlinearly coupled transport terms, essential diffi-
culties arise in controlling the temperature gradients (and the gradients
in the concentrations of colloidal populations) especially in more space
dimensions (see e.g. [4] for a nice discussion of a related PDE system
posed in one space dimension), the problem sharing many common
features with the Stefan-Maxwell system for multicomponent mixtures
(compare Refs. [6, 19, 16] and the literature mentioned therein).

In this paper, we investigate the semidiscrete as well as the fully
discrete a priori error analysis of the finite elements approximation
of the weak solution to a thermo-diffusion reaction system posed in a
macroscopic domain that allows for aggregation, dissolution as well as
deposition of colloidal species. The main results are summarized in
Theorem 4.7 and Theorem 5.2. The mathematical techniques used in
the proofs include energy-like estimates and compactness arguments,
exploiting the structure of both the interaction terms and nonlocal
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coupling. Once these a priori estimates are proven and, additionally,
corrector estimates for the homogenization process explained in [21]
become available, then the next natural analysis step is to prepare
a functional framework for the design optimally convergent MsFEM
schemes approximating, very much in the spirit of [18, 26], multiscale
formulations of our thermo-diffusion system.

The paper has the following structure: Section 2 presents the setting
of the model equations and briefly summarizes the meaning of the
parameters and model components. We anticipate already at this point
the main results. In Section 3, we list the main mathematical analysis
aspects of our choice of thermo-diffusion system and briefly recall a
collection of approximation theory results that are used in the sequel.
Section 4 and Section 5 constitute the bulk of the paper. This is the
place where we give the details of the proof of the semidiscrete and
fully discrete a priori error control, i.e. the proofs for Theorem 4.7 and
Theorem 5.2.

2. Formulation of the problem. Main results

Let I denote an open sub-interval within the time interval (0, T ],
and let x ∈ Ω be the variable pointing out the space position. The
unknowns of the system are the temperature field θ, the mobile col-
loidal populations ui (i ∈ {1, . . . , N}), and the immobile (already de-
posited) colloidal populations vi (i ∈ {1, . . . , N}). N ∈ N represents
the amount of the monomers in the largest colloidal species considered.
All unknowns depend on both space and time variables (x, t) ∈ Ω× I.

Definition 1. Given δ > 0, we introduce the mollifier:

Jδ(s) :=

{
Ce1/(|s|2−δ2) if |s| < δ,

0 if |s| ≥ δ,
(1)

where the constant C > 0 is selected such that∫
Rd

Jδ = 1,

see [11] for details.

Definition 2. Using Jδ from (1), define the mollified gradient:

(2) ∇δf := ∇
[∫

B(x,δ)

Jδ(x− y)f(y)dy

]
,

where B(x, δ) ⊂ Rd is a ball centered in x ∈ Ω with radius δ.
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With the Definition 2 at hand, the following inequalities hold for all
f ∈ L∞(Ω) and g ∈ Lp(Ω;Rd) (with 1 ≤ p ≤ ∞):

‖∇δf · g‖Lp(Ω) ≤ C‖f‖L∞Ω‖g‖Lp(Ω;Rd)(3)

‖∇δf‖ Lp
(Ω)
≤ C‖f‖L2(Ω),(4)

where the constant C depends on the choice of the parameter δ and
structure of the mollifier Jδ.

For all t ∈ I, the setting of our thermo-diffusion equations is the
following: Find the triplet (θ, ui, vi) satisfying

∂tθ +∇ · (−K∇θ)−
N∑
i=1

Ti∇δui · ∇θ = 0 in Ω(5)

∂tui +∇ · (−Di∇ui)− Fi∇δθ · ∇ui+(6)

+ Aiui −Bivi = Ri(ui) in Ω(7)

∂tvi = Aiui −Bivi in Ω(8)

−K∇θ · n = 0 on ∂Ω(9)

ui = 0 on ∂Ω(10)

θ(0, ·) = θ0(·) in Ω,(11)

ui(0, ·) = u0
i (·) in Ω,(12)

vi(0, ·) = v0
i (·). in Ω.(13)

Here for all i ∈ {1, . . . , N}, the parameters K, Di, Fi and Ti are ef-
fective transport coefficients for heat conduction, colloidal diffusion as
well as Soret and Dufour effects. Furthermore, Ai and Bi are effective
deposition coefficients. θ0 is the initial temperature profile, while u0

i

and v0
i are the initial concentrations of colloids in mobile, and respec-

tively, immobile state. General motivation on the ingredients of this
system (particularly on Soret and Dufour effects) can be found in [15].
Note that as direct consequence of fixing the threshold N , the system
coagulates colloidal species (groups) until size N only.

This particular structure of the system has been derived in [21]
by means of periodic homogenization arguments (two-scale conver-
gence), scaling up the involved physicochemical processes from the pore
scale (microscopic level, representative elementary volume (REV)) to
a macroscopically observable scale.

Remark 2.1. Theorem 4.4 in [21] ensures the weak solvability of the
system (5)–(13). Furthermore, under mild assumptions on the data
and the parameters the weak solution is positive a.e. and satisfies a
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weak maximum principle. The basic properties of the weak solutions to
(5)–(13) are given in Section 3.

Denoting by θh(t) the continuous-in-time and semidiscrete-in-space
approximation of θ(t) and by θh,n the corresponding fully discrete ap-
proximation, with similar notation for the other unknowns, we can
formulate our main result: For all t, tn ∈ I, the following a priori
estimates hold:

‖θh(t)− θ(t)‖+
N∑
i=1

‖uhi (t)− ui(t)‖+
N∑
i=1

‖vhi (t)− vi(t)‖

≤ C1‖θ0,h − θ0‖+ C2(‖u0,h
i − u0

i ‖+ ‖v0,h
i − v0

i ‖) + C3h
2(14)

and

‖θh,n − θn‖+
N∑
i=1

‖uh,ni − uni ‖+
N∑
i=1

‖vh,ni − vni ‖

≤ C4‖θh,0 − θ0‖+ C5

(
N∑
i=1

‖uh,0i − u0
i ‖+

N∑
i=1

‖vh,0i − v0
i ‖

)
+ C6(h2 + τ).(15)

The constants C1, . . . , C6 depend on data, but are independent of the
grid parameters h and τ . The hypotheses and the results under which
(14) and (15) hold are stated in Theorem 4.7 and Theorem 5.2, respec-
tively.

The following Sections focus exclusively on the proof of these in-
equalities.

3. Concept of weak solution. Technical preliminaries.
Available results.

Our concept of weak solution is detailed as follows:

Definition 3. The triplet (θ, ui, vi) is a solution to (5)-(13) if the fol-
lowing holds:

θ, ui ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)),

vi ∈ H1(0, T ;L2(Ω)),
(16)
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and for all t ∈ J and φ ∈ H1(Ω) :

(∂tθ, φ) + (K∇θ,∇φ)−
N∑
i=1

(Ti∇δui · ∇θ, φ) = 0,(17)

(∂tui, φ) + (Di∇ui,∇φ)− (Fi∇δθ · ∇ui, φ)

+ (Aiui −Bivi, φ) = (Ri(u), φ),(18)

(∂tvi, φ) = (Aiui −Bivi, φ).(19)

To be able to ensure the solvability of our thermo-diffusion problem,
we assume that the following set of assumptions on the data (i.e. (A1)-
(A2)) hold true:

(A1): Ti, Fi, Ai, Bi are positive constants for i ∈ {1, . . . , N},
and there exist m and M such that: 0 < m ≤ K ≤ M and
0 < m ≤ Di ≤M .

(A2): θ
0 ∈ L∞+ (Ω) ∩H2(Ω), u0

i ∈ L∞+ (Ω) ∩H2(Ω), v0
i ∈ L∞+ (Γ) for

i ∈ {1, . . . , N}.
Fix h > 0 sufficiently small and let Th be a triangulation of Ω with

max
τ∈Th

diam(τ) ≤ h.

Let Sh denote the finite dimensional space of continuous functions on
Ω that reduce to linear functions in each of the triangles of Th and
vanish on ∂Ω. Let {Pj}Nh

j=1 be the interior vertices of Th with Nh ∈ N.
A function in Sh is then uniquely determined by its values at the points
Pj. Let Φj be the pyramid function in Sh which takes value 1 at Pj,

but vanishes at the other vertices. Then {Φj}Nh
j=1 forms a basis for Sh.

Consequently, every ϕ in Sh can be uniquely represented as

(20) ϕ(x) =

Nh∑
j=1

αjΦj(x), with αj := Φ(Pj), j ∈ {1, . . . , Nh},

see e.g. Ref. [20].
A smooth function σ defined on Ω which vanishes on ∂Ω can be

approximated by its interpolant Ihσ in Sh defined as:

(21) Ihσ(x) :=

Nh∑
j=1

σ(Pj)Φj(x).

We denote below by ‖ · ‖ the norm of the space L2(Ω) and by ‖ · ‖s
that in the Sobolev space Hs(Ω) = W s

2 (Ω) with s ∈ R. If s = 0 we
suppress the index.

We recall that for functions v lying in H1
0 (Ω), the objects ‖∇v‖ and

‖v‖1 are equivalent norms. Let us also recall Friedrichs’ lemma (see, for
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instance, [7, 8]): there exist constants cF > 0 and CF > 0 (depending
on Ω, see Ref. [28] for explicit expressions for these constants) such
that

(22) cF‖σ‖1 ≤ CF‖∇σ‖ ≤ ‖σ‖1, ∀σ ∈ H1
0 (Ω).

The following error estimates for the interpolant Ihσ of σ [cf. (21)]
are well-known (see, e.g., [7] or [8]), namely for all σ ∈ H2(Ω)∩H1

0 (Ω)
we have

‖Ihσ − σ‖ ≤ Ch2‖σ‖2(23)

‖∇(Ihσ − σ)‖ ≤ Ch‖σ‖2.(24)

Testing the equations (5)-(6) with ϕ ∈ Sh leads to the following semi-
discrete weak formulation of (5)-(13) as given in Definition 4.

Definition 4. The triplet (θh, uhi , v
h
i ) is a semidiscrete solution to (5)-

(13) if the following identities hold true for all t ∈ I and ϕ ∈ Sh:

(∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · ∇θh, ϕ) = 0(25)

(∂tu
h
i , ϕ) + (Di∇uhi ,∇ϕ)− (Fi∇δθh · ∇uhi , ϕ)

+ (Aiu
h
i −Biv

h
i , ϕ) = (Ri(u

h), ϕ)(26)

(∂tv
h
i , ϕ) = (Aiu

h
i −Biv

h
i , ϕ)(27)

θh(0) = θ0,h(28)

uhi (0) = u0,h
i(29)

vhi (0) = v0,h
i .(30)

Here, θ0,h, u0,h
i , and v0,h

i are suitable approximations of θ0, u0
i , and v0

i

respectively in the finite dimensional space Sh.

Remark 3.1. Note that vi as solution to (8) can be expressed as:

vi(t) =

(∫ t

0

Aiui(s)e
Bisds

)
e−Bit + v0

i e
−Bit for all t ∈ I.(31)

We will make this substitution later and also use (31) to obtain an
error estimate for vhi based on the error estimate for uhi . This path can
be followed due to the linearity of the equation. If the right-hand side
of the ordinary differential equations becomes nonlinear, then a one-
sided Lipschitz structure is needed to allow for the Gronwall argument
to work.
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Remark 3.2. The existence of solutions in the sense of Definition 3
is ensured by periodic homogenization arguments in [21], while the ex-
istence of solutions in the sense of Definition 4 follows by standard
arguments. We omit to show the details of the existence proofs. Note
that the existence of the respective solutions is nevertheless re-obtained
here by straightforward compactness arguments. The proof of unique-
ness of both kinds of solutions follows the lines of [21].

We represent the approximate solutions to the system (5)–(13) by
means of the standard Galerkin Ansatz as:

uhi (x, t) :=

Nh∑
j=1

αij(t)Φj(x),

θh(x, t) :=

Nh∑
j=1

βj(t)Φj(x),

vhi (x, t) :=

Nh∑
j=1

γij(t)Φj(x)

for all (x, t) ∈ Ω × I. Based on the Galerkin projections, the semidis-
crete model equations read:

Nh∑
j=1

β′ij(t)(Φj,Φk) +

Nh∑
j=1

βij(Ki∇Φj,∇Φk)

−
N∑
i=1

Ti

Nh∑
j=1

Nh∑
l=1

βij(t)αil(t)(∇δΦl · ∇Φj,Φk) = 0

(32)

Nh∑
j=1

α′ij(t)(Φj,Φk) +

Nh∑
j=1

αij(Di∇Φj,∇Φk)

− Fi
Nh∑
j=1

Nh∑
l=1

αij(t)βl(t)(∇δΦl · ∇Φj,Φk) = (Ri(

Nh∑
j=1

αij(t)Φj),Φk).

(33)
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To abbreviate the writing of (32)-(33), we define: Define

αi := αi(t) = (αi1(t), . . . , αi,Nh
(t))T ,

β := β(t) = (β1(t), . . . , βNh
(t))T ,

γi := γi(t) = (γi1(t), . . . , γi,Nh
(t))T ,

G := (gjk), gjk := (Φj,Φk),

Hu
i := (huijk), h

u
ijk := (Di∇Φj,∇Φk),

Hθ := (hθjk), h
θ
jk := (K∇Φj,∇Φk),

M := (mjkl), mjkl := (∇δΦl · Φj,Φk).

Then (32)-(33) become:

(34)



Gβ′ +Hθβ −
∑N

i=1 Tiα
T
i Mβ = 0

Gα′i +Hu
i αi − FiβTMαi +G(Aiαi −Biγi)

= (Ri(
∑Nh

j=1 αΦj),Φk)

Gγ′i = AiGαi −BiGγi
β(0) = β0

αi(0) = α0
i

γi(0) = γ0
i .

Note that (34) is a nonlinear system of coupled ordinary differential
equations. Based on (A1)–(A2), we see not only that Hθ and Hu

i

are positive definite, but also that the right-hand side of the differen-
tial equations form a global Lipschitz continuous function, fact which
ensures the well-posedness of the Cauchy problem (34) on I and even-
tually on its continuation on the whole interval (0, T ]; we refer the
reader to [1] for this kind of extension arguments for ordinary differen-
tial equations. Essentially, we get a unique solution vector

(β, αi, γi) ∈ C1(Ī)N
h × C1(Ī)NN

h × C1(Ī)NN
h

satisfying (34); see [29] for the proof of the global Lipschitz property
of the right-hand side of a similar system of ordinary differential equa-
tions.

4. Semi-discrete error analysis

Our goal is to estimate the a priori error between the weak solutions
of (60)–(65) and the weak solutions of (5)–(13). We proceed very much
in the spirit of Thomeée [32]; cf., for instance, Chapter 13 and Chapter
14.

We write the error as a sum of two terms:
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(35) θh − θ = (θh − θ̃h) + (θ̃h − θ) = ψ + ρ.

In (35), θ̃h is the elliptic projection in Sh of the exact solution θ, i.e.

θ̃h satisfies for all t ≥ 0:

(K∇(θ̃h(t)− θ(t)),∇ϕ)−
N∑
i=1

(Ti∇δui · ∇(θ̃h(t)− θ(t)), ϕ) = 0

(36)

for all ϕ ∈ Sh.

Lemma 4.1. Let k ∈ C1(Ω̄), b ∈ L∞(Ω,R3), and ∇ · b ∈ L∞(Ω).
Suppose that γ ∈ H1

0 (Ω) is a weak solution to the elliptic boundary-
value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω.(37)

Additionally, assume

∂Ω ∈ C2.(38)

Then we have

‖γ‖2 ≤ C‖δ‖.(39)

Proof. The proof of this result is a particular case of the proof of Theo-
rem 4 given in [11, p. 317]. We omit to repeat the arguments here. �

Remark 4.2. The condition (38) can be relaxed to Ω being a con-
vex polygon, see [14, p. 147] (compare Theorem 3.2.1.2 and Theorem
3.2.1.3).

Lemma 4.3. Let k ∈ L2(Ω) and b ∈ L∞(Ω,R3), and k(x) ≥ m > 0,
and m > ‖b‖∞CF , where CF is the constant entering (22). Suppose
that γ ∈ H1

0 (Ω) is a weak solution of the elliptic boundary-value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω.(40)

Then we have

‖γ‖2 ≤ C‖δ‖.(41)

Proof. We can directly verify that

m‖γ‖2 ≤ (k∇γ,∇γ) = (δ, γ) + (b · γ,∇γ)

≤ ‖δ‖‖γ‖+ ‖b‖∞‖γ‖‖∇γ‖
≤ ‖δ‖‖γ‖+ ‖b‖∞CF‖∇γ‖2.

Here, we used the Friedrichs inequality (22). Since m > ‖b‖∞CF , we
have (41). �
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Lemma 4.4. Take k ∈ L∞(Ω)∩H1(Ω) and b ∈ L∞(Ω,R3)∩H1(Ω,R3)
and assume that there exist m and M such that 0 < m ≤ k(x) ≤ M
for all x ∈ Ω. Let w ∈ H2(Ω) ∩H1

0 (Ω) satisfying

(k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ) = 0 for all ϕ ∈ Sh.(42)

Then the following estimates hold:

‖∇(wh − w)‖ ≤ C1h‖w‖2(43)

‖wh − w‖ ≤ C0h
2‖w‖2.(44)

Here, the constant C1 depends on Th, m, and M . The constant C0 de-
pends additionally on the upper bound of ∇k and b in the corresponding
L∞-norm.

Proof. We proceed very much in the spirit of Ciarlet estimates. By
(A1), we have that

m‖∇(wh − w)‖2 ≤ (k∇(wh − w),∇(wh − w)) =

(k∇(wh − w),∇(wh − ϕ)) + (k∇(wh − w),∇(ϕ− w)) =

(b · ∇(wh − w), wh − ϕ) + (k∇(wh − w),∇(ϕ− w)) ≤
‖b‖∞‖∇(wh − w)‖‖wh − ϕ‖+M‖∇(wh − w)‖‖∇(ϕ− w)‖

Take ϕ := Ihw - the Clement interpolant of w. Then we have:

m‖∇(wh − w)‖ ≤ ‖b‖∞(‖wh − w‖+ ‖Ihw − w‖)
+ M‖∇(Ihw − w)‖ ≤ C1h‖w‖2,(45)

which yields

‖∇(wh − w)‖ ≤ (C1h+ C2‖b‖∞h2)‖w‖2

+
‖b‖∞
m
‖wh − w‖.(46)

It is worth noting that (46) leads to (43) when we show later that (at
least)

‖wh − w‖ ≤ Ch‖w‖2.

Next, we show (44) using a duality argument. Let γ ∈ H1
0 (Ω) solve

the problem

−∇ · (k∇γ − bγ) = δ in Ω, γ = 0 on ∂Ω.

Then

(wh − w, δ) = (wh − w,−∇ · (k∇γ − bγ))

= (k∇(wh − w),∇γ)− (b · ∇(wh − w), γ)

= (k∇(wh − w),∇(γ − ϕ))− (b · ∇(wh − w), γ − ϕ)

+ (k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ).
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Let ϕ := Ihγ and use (42):

(wh − w, δ) ≤M‖∇(wh − w)‖‖∇(γ − Ihγ)‖
+ ‖b‖∞‖∇(wh − w)‖‖γ − Ihγ‖.

Using the standard approximation properties for Ihγ, we get:

(wh − w, δ) ≤ (C1Mh+ C2‖b‖∞h2)‖γ‖2‖∇(wh − w)‖.(47)

Using δ := wh −w in (47), and either Lemma 4.1 or Lemma 4.3, we
obtain:

‖wh − w‖ ≤ (C1Mh+ C2‖b‖∞h2)C3‖∇(wh − w)‖.(48)

Using (48) in (46) leads to:

‖∇(wh − w)‖ ≤ C1h‖w‖2 + C2h‖∇(wh − w)‖.(49)

After solving the recurrence in (49), (43) is proven, and hence (44)
follows from (48). �

Lemma 4.5. Let θ̃h be defined by (36), and let ρ := θ̃h − θ. Then the
following estimates hold:

‖ρ(t)‖+ h‖∇ρ(t)‖ ≤ C(θ)h2 t ∈ I,(50)

‖ρt(t)‖+ h‖∇ρt(t)‖ ≤ C(θ)h2 t ∈ I.(51)

Proof. Using Lemma 4.4, we have that ‖∇ρ‖ ≤ C1h‖θ‖2 and ρ ≤
C0h

2‖θ‖2, so (50) follows by adding these estimates.
To obtain (51), we differentiate (36) with respect to time:

(k∇ρt,∇ϕ)− (bt · ∇ρ+ b · ∇ρt, ϕ) = 0

Assuming k uniformly bounded, which it is, since it doesn’t depend on
θ in our case:

m‖∇ρt‖2 ≤ (k∇ρt,∇ρt) = (k∇ρt,∇(θ̃ht − ϕ+ ϕ− θt))
= (k∇ρt,∇(ϕ− θt)) + (k∇ρt,∇(θ̃h − ϕ))

= (k∇ρt,∇(ϕ− θt)) + (bt · ∇ρ+ b · ∇ρt, θ̃h − ϕ)

We have used (36) in the last equation since (θ̃h − ϕ) ∈ Sh. Thus we
get that

m‖∇ρt‖2 ≤M‖∇ρt‖‖∇(ϕ− θt)‖+ (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)‖θ̃h − ϕ‖
Now, take ϕ := Ihθt to obtain:

m‖∇ρt‖ ≤M‖∇ρt‖Ch‖θt‖2 + (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)(‖ρt‖+ Ch‖θt‖2)

≤ m

2
‖∇ρt‖2 + Ch2‖θt‖2

2 + Ch(‖ρt‖+ Ch‖θt‖2)

+ C2(u)‖∇ρt‖‖ρt‖+ C2(u)Ch‖∇ρt‖‖θt‖2.
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Using Young’s inequality a few times, it finally follows that:

‖∇ρt‖2 ≤ C1h
2 + C2‖ρt‖2,(52)

where C1 and C2 are independent of h.
Now, we use the duality argument as in Lemma 4.4 to gain:

(ρt, δ) = (ρt,−∇ · (k∇γ − bγ)) = (k∇ρt,∇γ)− (b · ∇ρt, γ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ) + (k · ∇ρt,∇ϕ)− (b · ∇ρt, ϕ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ).

Choosing ϕ := Ihγ and δ := ρt yields

‖ρt‖2 ≤ C1‖∇ρt‖(Mh+ ‖b‖∞h2)‖γ‖2

≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖δ‖ ≤
≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖ρt‖.

We now see that

‖ρt‖ ≤ C(u, θ)h‖∇ρt‖.(53)

Combining (52) and (53) leads to convenient recurrence relations, thus
proving the statement of the Lemma. �

Lemma 4.6. Let θ̃h be defined by (36). Then:

‖∇θ̃h(t)‖∞ ≤ C(θ) t ∈ I.(54)

Proof. We rely now on the inverse estimate:

‖∇ϕ‖∞ ≤ Ch−1‖∇ϕ‖ ∀ϕ ∈ Sh(55)

The statement (55) is trivial to prove for linear approximation func-
tions, since in this case ∇ϕ is constant on each triangle. Using Lemma
4.5 and the known error estimate for Ihθ, we have:

‖∇(θ̃h − Ihθ)‖∞ ≤ Ch−1‖∇(θ̃h − Ihθ)‖
≤ Ch−1(‖∇ρ‖+ ‖∇(Ihθ − θ)‖) ≤ C(θ).(56)

�

The main result on the a priori error control for the semi-discrete
FEM approximation to our original system is given in the next Theo-
rem.
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Theorem 4.7. Let (θ, ui, vi) solve (16)-(19) and (θh, uhi , v
h
i ) solve (60)-

(65), and let assumptions (A1)-(A2) hold. Then the following inequal-
ities hold:

‖θh(t)− θ(t)‖ ≤ C‖θ0,h − θ0‖+ C(θ)h2 t ∈ I,
(57)

‖uhi (t)− ui(t)‖ ≤ C‖u0,h
i − u0

i ‖+ C(ui)h
2 t ∈ I, i ∈ {1, . . . , N}.

(58)

Proof. With an error splitting as in (35), it is enough to show a suitable

upper bound for ψ := θh − θ̃h. We proceed in the following manner:

(∂tψ, ϕ) + (K∇ψ,∇ϕ) = (∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · θh, ϕ)

+
N∑
i=1

(Ti∇δuhi · θh, ϕ)− (∂tθ̃
h, ϕ)− (K∇θ̃h,∇ϕ)

= −(∂t(θ + ρ), ϕ)− (K∇(θ + ρ),∇ϕ) +
N∑
i=1

(Ti∇δuhi · θh, ϕ)

= −(∂tρ, ϕ)− (K∇ρ,∇ϕ) +
N∑
i=1

(Ti∇δui · ∇ρ, ϕ)

+
N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ), ϕ).

After eliminating the terms that vanish due to the definition of the
elliptic projection, we obtain the following identity:

(∂tψ, ϕ) + (K∇ψ,∇ϕ)

= −(∂tρ, ϕ) +
N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · (∇θ +∇ρ)), ϕ).(59)

We can deal with the second term on the right hand side of (59) as
follows:

∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ
= (∇δuhi −∇δui) · ∇θh +∇δui · (∇θh −∇θ −∇ρ)

= (∇δuhi −∇δui)(∇ψ +∇θ̃h) +∇δui · ∇ψ
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Now using ϕ := ψ as a test function and relying on the bound

‖∇θ̃h‖∞ < C(θ)

(available cf. Lemma 4.6), we obtain:

1

2
∂t‖ψ‖2 +m‖∇ψ‖2 ≤ 1

2
‖∂tρ‖2 +

1

2
‖ψ‖2

+
N∑
i=1

(C‖uhi − ui‖2 + ε‖∇ψ‖2 + ε‖ui‖∞(‖∇ρ‖2 + ‖∇ψ‖2) + ‖ψ‖2).

Gronwall’s inequality gives

‖ψ(t)‖2 ≤ ‖ψ(0)‖2 + C

∫ t

0

(‖∂tρ‖2 + ‖∇ρ‖2 +
N∑
i=1

‖uhi − ui‖2).

The estimate

‖ψ(0)‖ ≤ ‖θh,0 − θ0‖+ ‖θ̃h(0)− θ0‖ ≤ ‖θh,0 − θ0‖+ Ch2‖θ0‖2,

together with the estimate ‖uhi − ui‖ ≤ C(u)h2 give the statement of
the Theorem. �

5. Fully discrete error analysis

Let τ > 0 to be a small enough time step and use tn := τn while
denoting θn := θ(tn) and uni := ui(tn). The discrete in space approxi-

mations of θn and uni are denoted as θh,n and uh,ni , respectively.

Definition 5. The triplet (θh,n, uh,ni , vh,ni ) is a discrete solution to (5)-
(13) if the following identities hold for all n ∈ {1, . . . , N} and ϕ ∈ Sh:

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) = 0,(60)

1

τ
(uh,n+1

i − uh,ni , ϕ) + (Di∇uh,n+1
i ,∇ϕ)− (Fi∇δθh,n · ∇uh,n+1

i , ϕ)

+ (Aiu
h,n+1
i −Biv

h,n+1
i , ϕ) = (Ri(u

h,n), ϕ),(61)

1

τ
(vh,n+1
i − vh,ni , ϕ) = (Aiu

h,n+1
i −Biv

h,n+1
i , ϕ),(62)

θh,0 = θ0,h,(63)

uh,0i = u0,h
i ,(64)

vh,0i = v0,h
i .(65)
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Here, θ0,h, u0,h
i , and v0,h

i are the approximations of θ0, u0
i , and v0

i re-
spectively in the finite dimensional space Sh.

Remark 5.1. To treat (60) and (61), we use a semi-implicit discretiza-
tion very much in the spirit of Ref. [25]. Note however that other
options for time discretization are possible.

Theorem 5.2. Let (θ, ui, vi) solve (16)-(19) and (θh, uhi , v
h
i ) solve (60)-

(65), and assumptions (A1)-(A2) hold. Then the following inequality
holds:

‖θh,n − θn‖+
N∑
i=1

‖uh,ni − uni ‖+
N∑
i=1

‖vh,ni − vni ‖

≤ C1‖θh,0 − θ0‖+ C2

N∑
i=1

‖uh,0i − u0
i ‖+ C3

N∑
i=1

‖vh,0i − v0
i ‖

+ C4(h2 + τ).(66)

The constants C1, . . . , C4 entering (66) depend on controllable norms
of θ, ui, but are independent of h and τ .

Proof. Similar with the methodology of the proof of the semidiscrete a
priori error estimates, we split the error terms into two parts:

θh,n − θn = ρθ,n + ψθ,n := (θh,n −Rhθ
n) + (Rhθ

n − θn),(67)

uh,ni − uni = ρui,n + ψui,n := (uh,ni −Rhu
n
i ) + (Rhu

n
i − uni ),(68)

where Rhθ and Rhui are the Ritz projections defined by:

(K∇(Rhθ − θ),∇ϕ) = 0, ∀ϕ ∈ Sh,(69)

(Di∇(Rhui − ui),∇ϕ) = 0, ∀ϕ ∈ Sh, i ∈ {1, . . . , N}.(70)

Here, ψθ,n and ψui,n satisfy the following bounds:

‖ψθ,n‖ ≤ Ch2‖θn‖2,(71)

‖ψui,n‖ ≤ Ch2‖uni ‖2,(72)
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so it remains to bound from above ρθ,n and ρui,n. We can write for ρθ,n

the following identities:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ) =

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) +
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)

− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)− (K∇Rhθ

n+1,∇ϕ)

=
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)− (K∇θn+1,∇ϕ)

=
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθ
n, ϕ)

+ (∂tθ
n+1, ϕ)−

N∑
i=1

(Ti∇δun+1
i · ∇θn+1, ϕ).

After re-arranging the terms in the former expression, we obtain:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ)

=
N∑
i=1

(Ti(∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1), ϕ)︸ ︷︷ ︸

A

+ (∂tθ
n+1 − 1

τ
(θn+1 − θn), ϕ)︸ ︷︷ ︸
B

− 1

τ
(ψθ,n+1 − ψθ,n, ϕ)︸ ︷︷ ︸

C

.

Let us deal first with estimating the term C, then B, and finally, the
term A.

To estimate the term C, we use our semidiscrete estimate for ‖∂tψ‖
stated in Lemma 4.5, we get:

‖1

τ
(ψθ,n+1 − ψθ,n)‖ = ‖1

τ

∫ tn+1

tn
∂tψ

θ‖ ≤ CC(θ, u)h2.

The term B can be estimated as follows:

B = (
1

τ

∫ tn+1

tn
(s− tn)∂ttθ(s)ds, ϕ) ≤ τ

2
( sup
[tn,tn+1]

|∂ttθ|)‖ϕ‖ = CB(θ)τ‖ϕ‖.
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Finally, to tackle the term A, we proceed as follows:

A = (∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1, ϕ)

= (∇δuh,ni · (∇θh,n+1 −∇θn+1) +∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)

≤ ε‖uh,ni ‖∞(‖∇ρn+1‖2 + ‖∇ψn+1‖2) + Cε‖ϕ‖2

+ (∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)︸ ︷︷ ︸

D

.

At its turn, the term D can be expressed as:

D = (∇θn+1 · (∇δuh,ni −∇δuni ), ϕ) + (∇θn+1 · (∇δuni −∇δun+1
i ), ϕ)

≤ ‖∇θn+1‖∞(ε‖∇δ(uh,ni − uni )‖2 + Cε‖ϕ‖2) + (∇θn+1 ·
∫ tn+1

tn
∂t∇δui, ϕ)︸ ︷︷ ︸

E

.

Finally, the term E can be estimated as:

E ≤ ‖∇θn+1‖∞‖∂t∇δui‖∞τ‖ϕ‖.

Adding together all the terms, and then substituting ϕ := ρθ,n+1 we
finally obtain:

1

τ
‖ρθ,n+1‖2 +m‖∇ρθ,n+1‖2 ≤ 1

τ
‖ρθ,n‖2 + (CB(θ)τ)2

+ (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2 + C‖ρθ,n+1‖2

:= C‖ρθ,n+1‖2 +Rn,(73)

where the reminder Rn is defined by:

Rn :=
1

τ
‖ρθ,n‖2 + (CB(θ)τ)2 + (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2

For Rn it holds:

Rn ≤ C(θ, u)(h2 + τ)2.

Note that we can derive a similar estimate for ρui,n+1, which we then
add to (73).

To conclude, we denote

en := ‖ρθ,n‖2 +
N∑
i=1

‖ρui,n‖2,
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to obtain the short structure
1

τ
en+1 ≤ 1

τ
en + C(en+1 +Rn).

From here it follows that:

(1− Cτ)en+1 ≤ en + CτRn.

For sufficiently small τ , we can instead write the expression

en+1 ≤ (1 + Cτ)en + CτRn.

Iterating the later inequality, we obtain

en+1 ≤ (1 + Cτ)n+1e0 + Cτ

n∑
j=1

Rj.

Finally, this argument yields

en+1 ≤ C‖θh,0 − θ0‖+ C‖uh,0i − u0
i ‖+ C(θ, u)(h2 + τ),

which proves the Theorem 5.2. �
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