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Validation of qualitative microbiological
test methods
Pieta C. IJzerman-Boona* and Edwin R. van den Heuvelb,c

This paper considers a statistical model for the detection mechanism of qualitative microbiological test methods with a
parameter for the detection proportion (the probability to detect a single organism) and a parameter for the false positive
rate. It is demonstrated that the detection proportion and the bacterial density cannot be estimated separately, not even in a
multiple dilution experiment. Only the product can be estimated, changing the interpretation of the most probable number
estimator. The asymptotic power of the likelihood ratio statistic for comparing an alternative method with the compendial
method, is optimal for a single dilution experiment. The bacterial density should either be close to two CFUs per test unit
or equal to zero, depending on differences in the model parameters between the two test methods. The proposed strategy
for method validation is to use these two dilutions and test for differences in the two model parameters, addressing the
validation parameters specificity and accuracy. Robustness of these two parameters might still be required, but all other vali-
dation parameters can be omitted. A confidence interval-based approach for the ratio of the detection proportions for the two
methods is recommended, since it is most informative and close to the power of the likelihood ratio test. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

New or alternative microbiological test methods (e.g. a rapid
sterility test) must be validated before they are used in prac-
tice. Regulatory guidelines, such as the European Pharmacopoeia
(EP) 5.1.6 [1] and the United States Pharmacopoeia (USP) <1223>
[2], describe requirements for a successful validation study. They
give recommendations on design and analysis of experimental
studies and provide minimal acceptance criteria. However, the
EP and USP have different views on the necessary validation
parameters. For qualitative tests, they both require specificity,
limit of detection, and robustness, but the EP also requires accu-
racy and precision, although they only discuss accuracy, and the
USP requires repeatability and ruggedness, although they only
discuss ruggedness.

The EP and USP define specificity in similar ways. It is the ability
to detect the required range of micro-organisms that may be
present in the test sample. They also mention that extraneous
matter in the test system (e.g. growth medium) should not inter-
fere with the test. However, there is no clear description of the
proposed experiment nor do they provide criteria for accepting
the alternative method.

The limit of detection (LOD) is defined in both EP and USP
as the lowest number of micro-organisms in a test sample that
can be detected under the stated experimental conditions. It
refers to the number of micro-organisms in the original sample
before any dilution or incubation steps, and not to the number
of micro-organisms present at the time of testing. Both guide-
lines recommend to determine first an inoculum that provides
at least 50% of the samples showing growth in the pharma-
copoeial or compendial method and then to test repeated sam-
ples (at least five) with both methods at this inoculum. Their

proportions of positive test samples should be compared with
a chi-square test and this test should not be significant. The
USP suggests a second approach where they make use of a
serial dilution experiment from which the most probable num-
ber (MPN) can be calculated [3]. The suggested criterion is that
the 95% confidence intervals on the MPN for both methods
should overlap.

Both the EP and USP define robustness as a measure of the
capacity of the alternative method to remain unaffected by small
but deliberate variations in method parameters. They recognize
that robustness of the alternative method need not be com-
pared with the pharmacopoeial method. Both guidelines feel that
robustness is best suited for evaluation by the supplier of the
equipment, unless critical parameter settings are modified by the
user. The USP mentions that general criteria cannot be set a priori
and that they should be tailored for each method.

The EP proposes for accuracy to study the degree of agreement
between the alternative and pharmacopoeial method, because
a side-by-side comparison of the methods on identical samples
with a low probability of failure requires too many tests to demon-
strate equivalence. They suggest to determine the false positive
and false negative rates for the alternative method against the
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pharmacopoeial method using a standardised, low-level inocu-
lum. They specify that the frequency of recovery (true positives)
of the alternative method is at least as high as for the pharma-
copoeial method.

The USP describes ruggedness as a measure of precision, which
coincides with the definition in chemical method validation (ICH
Q2(R1) [4]), where the test result may be affected by a variety of
normal test conditions (e.g. analysts, reagents, instruments, etc.).
They do not provide any experimental settings to be able to esti-
mate this measure of precision nor provide any criteria to be
able to judge the level of precision, but instead they leave the
investigation of ruggedness to the supplier.

The purpose of this article is to demonstrate that under cer-
tain statistical assumptions, the only parameters that must be
validated for an alternative qualitative method are specificity and
accuracy. They should be studied in a comparison with respect
to the compendial method. This conclusion follows from a sta-
tistical formulation of microbiological detection mechanisms and
an investigation of the optimal experiment to evaluate these
parameters. Robustness may still be required, but this is outside
our scope, because we believe that robustness is not a separate
parameter, but rather an investigation of the stability of the vali-
dation parameters. Our view on method validation for microbio-
logical qualitative tests differs from the view of the guidelines, but
our goal is not to discredit the guidelines, it is rather to provide
a statistical perspective that would complement and improve
the guidelines.

The paper is organized as follows. The next section presents
the statistical model for detection of single organisms for qual-
itative tests. Three specific choices of detection mechanisms,
which fall within this general description, have been published
in literature before (e.g. [3,5–8]). The detection mechanisms
are used to formulate the expected proportions of positive
test samples in specific validation experiments. Section 3 then
describes likelihood-based methods for statistical inference and
uses asymptotics to optimize the validation experiment. Simu-
lations supporting the proposed strategy for validation are pre-
sented in Section 4. The final section links the parameters of our
detection mechanisms to the validation parameters and discusses
our theory in relation to the current guidelines.

2. STATISTICAL DETECTION OF
MICRO-ORGANISMS

Consider a dilution i from which multiple test samples may be
collected for validation purposes. Let Yhij be the number of
micro-organisms in test sample j from dilution i intended for
microbiological method h (alternative: h D 1, pharmacopoeial:
h D 2). In principle, multiple dilutions may be used . i D 1, ..., m/,
and the number of test samples collected for each method may
differ per dilution . j D 1, ..., nhi/. It is assumed that the total num-
ber of organisms in dilution i is Ni and the average number of
organisms per test unit is �i . The relation between Ni and �i is
given by �i D v � Ni=Vi , with Vi the volume of dilution i and v the
volume of each test sample. The parameter �i in dilution i may be
referred to as the bacterial density of dilution i.

Given the number of micro-organisms Ni in dilution i, the
marginal distribution of Yhij is binomial with parameters Ni

and pi , with pi D v=Vi . This distribution is true only when
the micro-organisms in the dilution are randomly distributed

throughout the dilution, that is, no clotting, no repelling, or
any other systematic or dynamic positioning of the organisms
in the dilution. In case the proportion pi is small, the binomial
distribution is close to the Poisson distribution with parameter
Nipi � �i ; see [3]. Additionally, if we would view Ni random
with a Poisson distribution, the marginal distribution of Yhij would
be Poisson too. Therefore, we will assume that Yhij has a Pois-
son distribution with parameter �i . Furthermore, we will assume
that Yhi1, ..., Yhinhi are independent although they are correlated in
practice. This correlation can be neglected when the volume Vi is
large with respect to v.n1i C n2i/, the total volume collected from
dilution i [7].

2.1. Detection Mechanisms

When a test sample j from dilution i is tested with microbiolog-
ical method h, we would obtain an outcome Zhij indicating the
absence or presence of micro-organisms in the test sample (Zhij 2

f0, 1g). It seems reasonable to assume that the outcome of a test
sample is affected by the number of organisms Yhij present in
the test sample. Thus, the detection mechanism of microbiological
method h can be described by a conditional probability

�h . y/ D P
�

Zhij D 1jYhij D y
�

, (1)

with y 2 f0, 1, 2, ..., Nig the number of organisms present in the
test sample. In practice, the detection mechanism for both micro-
biological methods is typically unknown and a validation study is
performed to provide more knowledge on these mechanisms, in
particular on the difference or similarity of �1 .�/ and �2 .�/ for the
alternative and compendial method.

In the past, several assumptions have been made directly
or indirectly on the detection mechanism in (1). For instance,
many decades ago, it was assumed that the limit of detec-
tion of growth-based sterility tests (e.g. current pharmacopoeial
method) was equal to one (e.g. [3,9]). This would imply that
�2 .y/ D 1Œ1,1/ .y/, with 1A .y/ equal to one when y 2 A and
zero otherwise. Recently, this assumption has been relaxed to
limits of detection L larger than one [7], resulting in a detection
mechanism for microbiological method h equal to

�h . y/ D 1ŒLh ,1/ . y/ , (2)

with Lh 2 f1, 2, ...g the limit of detection of microbiologi-
cal method h. We will refer to this specific formulation in (2)
as the deterministic mechanism. Indeed, when the number of
micro-organisms in a test sample is at least equal to the limit of
detection Lh, the microbiological method will detect the presence
of micro-organisms with 100% certainty and when the number is
lower than this limit of detection, the test sample is considered
sterile with again 100% certainty.

The deterministic mechanism does not involve any stochas-
tic component, thus another assumption for (1) is the binomial
mechanism. This was introduced for the accuracy of enumeration
tests [8] and it assumes that each micro-organism is detected with
a certain a priori probability �h 2 Œ0, 1�, i.e.

�h . y/ D

(
1Œ1,1/ . y/ if �h D 1

1 � .1 � �h/
y if �h < 1

. (3)

In this approach, the a priori probability �h is referred to as the
detection proportion of method h and represents the probability
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of detecting a single micro-organism, that is, �h.1/ D �h. Thus,
in case the detection proportion is equal to one, the binomial
mechanism reduces to the deterministic mechanism with a limit
of detection of one.

The detection mechanisms (2) and (3) do not allow for false
positive test results. Indeed, the probability of a positive (or
contaminated) test result is equal to �h .0/ D 0 for both
mechanisms. This assumption may be realistic for growth-based
methods, because these methods cannot detect non-viable
micro-organisms, but it may not be true for direct microbiological
methods that would also detect particles or other cell material.
This means that we should consider detection mechanisms with
�h .0/ D �h, with �h 2 Œ0, 1/. The binomial mechanism is then
extended to the zero-deflated binomial mechanism

�h . y/ D

(
�h C .1 � �h/ 1Œ1,1/ . y/ if �h D 1

1 � .1 � �h/ .1 � �h/
y if �h < 1

. (4)

The term zero-deflated is used because the number of negative
test results (i.e. detecting zero organisms) is reduced due to the
false positives. The parameter �h of method h is still referred to
as the detection proportion of method h, although �h.1/ D 1 �
.1 � �h/ .1 � �h/ ¤ �h when �h > 0.

Note that the detection mechanisms in (3) and (4) are not new
and have been used outside microbiology in for instance bioas-
says for insect viruses [6]. For these bioassays, the susceptibility
of an insect for a virus and the unknown ingestion of virus parti-
cles both contribute to the mortality probability of an insect. The
susceptibility would correspond to our detection proportion �h

and the virus particles would correspond to the unknown num-
ber of organisms y in our test sample. The false positive rate �h

in (4) would then correspond to control mortality, that is, the
probability of death of an insect that is unrelated to the virus.
Moreover, our zero-deflated detection mechanism is essentially
a special case of Abbott’s formula [5] for the effectiveness of
an insecticide.

2.2. Proportions of Positive Test Results

In microbiology, it is very difficult to spike samples with an exact
number of micro-organisms. Thus, the detection mechanism in
(1) cannot be estimated directly from different (spiked) levels of
y. Even stronger, it is also impossible to spike exact numbers of Ni

in dilution i, although they might be known approximately when
some kind of special reference material (e.g. BioBalls™, [10]) is
used. This is the reason for constructing multiple dilutions (serial
or non-serial dilution experiments) with different bacterial densi-
ties. Thus, we can only estimate expected proportions of positive
(or negative) test results for each of the different dilutions, that is,
we obtain only information on the mean �hi D E

�
�h
�

Yhij
��

.
Under the assumption that the number of micro-organisms

Yhij is Poisson distributed with parameter �i , the expected pro-
portion �hi for detection mechanism (2) is given by the Poisson
probability

�hi D 1 �
Lh�1X
yD0

"
�

y
i

yŠ
exp .��i/

#
. (5)

The parameters Lh and �i are in principle unknown, although the
parameter �i is sometimes assumed to be known approximately
when appropriate reference material is used.

Estimation of the limit of detection together with the bac-
terial density has been discussed elsewhere for the setting of
non-serial dilutions, which were also fully tested in order to mea-
sure all spiked organisms [7,11]. This approach has generalized
the MPN method [3], because it simultaneously estimates the bac-
terial density �i and the limit of detection Lh, instead of just the
bacterial density. This method has been referred to as the most
probable limit (MPL) of detection [12], but it assumes detection
mechanism (2).

For detection mechanisms (3) and (4), the expected proportion
is given by

�hi D 1 � .1 � �h/ exp .��h�i/ , (6)

with essentially three unknown parameters �h, �h, and �i . The
zero-deflated binomial detection mechanism extends the MPN
method with two parameters, because the MPN method assumes
and uses a Poisson probability of 1 � exp .��i/ for dilution i,
not taking into account the two additional parameters .�h, �h/

for method h. Clearly, when the false positive rate would be
neglectable (�h � 0), the expected proportion in (6) reduces to
the Poisson probability 1 � exp .��h�i/, which is still a general-
ization of the MPN and is called the one-hit model in bioassays for
insecticides [6].

The expected proportion in (6) identifies a serious problem for
the estimation of the three parameters involved. The parameters
�h and �i appear in the (zero-deflated) Poisson probability as a
product. This demonstrates that the parameters �h and �i are not
identifiable and only the product �hi D �h�i can be estimated,
in addition to the false positive rate �h. Thus, an experiment with
just one method makes it impossible to estimate the three param-
eters. Note that this issue of identifiability is unrelated to the
number of dilutions. Indeed, in case multiple dilutions are used
their densities may be proportional to the first dilution, that is,
�i D �1=di�1 with d the dilution factor for serial dilutions. Each
dilution would then help to estimate �h�1 but not to separate �h

and �1. Moreover, an experiment with both methods, even when
the detection proportions �1 and �2 are different, will not help
in the estimation of all five parameters �1, �2, �1, �2, and �i . An
increased value for the bacterial density can easily be compen-
sated with lower values of �1 and �2, as long as the ratio between
�1 and �2 remains constant. Only if this ratio would be known or
if the detection proportion of the compendial method would be
known (e.g. equal to one), the density �i can be estimated. On
the other hand, the ratio of �1 and �2 can always be estimated in
the general setting of the expected proportion in (6). As a conse-
quence, it would be possible to test the individual or combined
null hypotheses �1 D �2 and �1 D �2 with an appropriate experi-
ment. A natural test statistic for this null hypothesis would be the
likelihood ratio test, because the method of maximum likelihood
(ML) seems the most natural method of estimation (Section 3).

An interesting observation is that if the detection mechanism
of method h is of the binomial type (�h � 0), but the determin-
istic detection proportion (5) is fitted to the experimental data,
then the limit of detection Lh would be most likely estimated with
one (Lh D 1/ and the bacterial density �i would be estimated
with an estimate for �hi D �h�i . Indeed, the deterministic pro-
portion in (5) substituted with these obtained estimates would
become an estimate of the binomial proportion 1 � exp .��h�i/

from (6) with �h � 0. This would imply that the MPL estimate of
the bacterial density�i in (5) is equal to the true density multiplied
with the detection proportion �h. Thus, only when this detection1

2
2
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proportion would be one, the MPL method of [7] would estimate
the density correctly. [11] have emphasized that in addition to
a limit of detection of one, a high ratio between the MPL esti-
mate and the assumed true density is important. They called this
the recovery of spiked micro-organisms, which now appears to
be directly related to the detection proportion for the binomial
detection mechanism.

The expected proportions in (5) and (6) have been obtained by
choosing a specific form of the detection mechanism in (1), but
�hi can also be modelled directly with a curve of the form �hi D

g .˛h C ˇh log .�i//, with g : R ! .0, 1/ an inverse link func-
tion, ˛h and ˇh > 0 microbiological method-specific parameters,
and�i the expected concentration or bacterial density for dilution
sample i. This approach is common in quantal response bioassays.
In this form, the expected proportion would typically be equal to
zero for a blank concentration, thus a generalization that would
make it possible to include also false positives is the following

�hi D �h C .1 � �h/ g .˛h C ˇh log .�i// . (7)

This model has essentially four unknown parameters �h, ˛h, ˇh,
and �i . In caseˇh would be equal to one and the link function is of
the complementary log-log form, the expected proportion in (7)
becomes the zero-deflated binomial in (6), but in microbiology,
the logistic model is frequently applied (e.g. [13]), although often
incorrectly. Indeed, the general form in (7) also has the disadvan-
tage that it is non-identifiable, because the product ˇh log .�i/

has similar issues as the product �h�i discussed earlier. Further-
more, the linear combination ˛hC ˇh log .�i/ introduces another
issue, because the unknown concentration makes it possible to
shift the parameter ˇh log .�i/ with a certain value that would
then be compensated in the intercept ˛h. Only when the bac-
terial density �i is known, it is possible to fit model (7) with
logistic regression approaches [14]. Another issue is the lack of
interpretation of the general form (7) in terms of an underlying
detection mechanism �h .�/, in particular for the logistic model. It
is unknown which detection mechanism �h .�/ would lead to (7)
with a logistic function. This makes the general form less suitable
for further study, and we will therefore focus on the special case
of the zero-deflated binomial mechanism.

3. LIKELIHOOD-BASED INFERENCE

Assuming a proportion of positive test results �hi D

�hi.�h, �h,�i/ of the form (6) for method h at dilution i, the
null hypothesis H0 : �1 D �2 ^ �1 D �2 would indicate
that both microbiological test methods are identical. This null
hypothesis induces the null hypotheses H0 : �1i D �2i D �i

for all dilutions i. Considering just one dilution and defining
the number of positive test samples tested with method h
for dilution i by Zhi� D

Pnhi
jD1 Zhij , the ML estimator for the

proportion of positive test results for dilution i is equal to
O�i D .Z1i� C Z2i�/=.n1i C n2i/ � NZ�i�. The ML estimator for the
proportion �hi under the alternative hypothesis of �1i ¤ �2i is
given by O�hi D Zhi�=nhi � NZhi�. The likelihood ratio test statistic
for dilution i is then given by

LRTi D 2
2X

hD1

�
Zhi�

�
log NZhi� � log NZ�i�

�
C .nhi � Zhi�/

�
log.1 � NZhi�/ � log.1 � NZ�i�/

��
.

(8)

Note that in case one of the estimates NZhi� equals zero or one, the
corresponding term in (8) involving this estimate is set equal to
zero, because limx#0x log x D 0.

The asymptotic distribution of likelihood ratio statistic LRTi is
derived by approximating this test statistic with a second-order
Taylor expansion around �i . Because the zero-order and
first-order terms vanish under the null hypothesis, the asymptotic
behavior of LRTi is determined by the second-order term of the
Taylor expansion. When the sample sizes for the two methods are
equal, that is, n1i D n2i D n, the second-order term becomes

n

2

 
O�1i � �ip
�i.1 � �i/

�
O�2i � �ip
�i.1 � �i/

!2

. (9)

Because
p

n. O�hi � �i/ converges to N.0,�i.1 � �i// under the
null hypothesis, and the sum of two normal distributions con-
verges to a normal distribution again, the second-order term in
(9) converges to a 	2- distribution with 1 degree of freedom. This
asymptotic result is a well-known result due to [15].

Under the alternative hypothesis, we can derive the asymptotic
distribution when we consider local alternatives, that is, �hi D

�iCn�1=2
hi with�i D .�1iC�2i/=2, the average of the two true
expected proportions of positive results. The Taylor expansion of
the likelihood ratio test LRTi with respect to �i remains the same.
Furthermore, by writing O�hi � �i D O�hi � �hi C �hi � �i , it can
be seen that

p
n. O�hi��i/ converges to N.
hi ,�i.1��i//. Hence,

the second-order term in (9) now converges to a non-central
	2-distribution with 1 degree of freedom, and with non-centrality
parameter

nc D
.
1i �
2i/

2

2�i.1 � �i/
D

n.�1i � �2i/
2

2�i.1 � �i/
. (10)

The non-central 	2-distribution can be used to determine the
optimal value �O for the bacterial density �i for dilution i and the
minimal sample size nO to achieve a prespecified power with the
likelihood ratio test under the alternative hypothesis. The optimal
values �O and nO will depend on the parameters �1, �2, �1, and
�2. However, the structure of the non-centrality parameter in (10),
a product of n with a function of .�1i ,�2i), implies that the bac-
terial density can be optimized independently of the sample size.
Furthermore, because each dilution would select the same opti-
mal bacterial density �O, a multiple dilution experiment does not
contribute to the power of the likelihood ratio test.

For this single dilution experiment, the optimal bacterial den-
sity �O was numerically determined for different settings of the
parameters �1, �2, �1, and �2, and the power was calculated for a
sample size of n equal to 150, 200, and 250 (Table I). We assumed
a perfect pharmacopoeial method (�2 D 1, �2 D 0), a detection
proportion of �1 D 0.7 for the alternative method, and different
values for the false positive rate �1. The value of 0.7 was chosen
because the guidelines suggest for quantitative methods that the
recovery of the alternative method compared with the pharma-
copoeial method should at least be 70%. Table I demonstrates
that approximately 200 samples are needed at the optimal �O to
detect this difference in detection proportions with 80% power
when neither of the two methods has false positives.

The numerical calculations demonstrated further that the opti-
mal density �O is either close to two or equal to zero. When the
difference in the false positive rates would dominate the likeli-
hood ratio test more than the difference in detection proportions,
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Table I. Asymptotic power at optimal bacterial densities and at a density � D 2,
for �2 D 1, �2 D 0, and �1=�2 D 0.7.

Power (%) at �O Power (%) at � D 2

�1 �O n D 150 n D 200 n D 250 n D 150 n D 200 n D 250

0.00 1.84 69.0 81.0 88.7 68.8 80.8 88.6
0.01 1.90 67.2 79.3 87.4 67.1 79.2 87.3
0.02 1.95 65.4 77.6 86.0 65.3 77.6 86.0
0.03 2.01 63.5 75.9 84.5 63.5 75.9 84.5
0.04 0.00 69.7 81.5 89.1 61.7 74.1 83.0
0.05 0.00 79.2 89.3 94.7 59.8 72.2 81.3

Figure 1. Optimal density values for different settings of the alternative method and
a compendial method with �2 D 0.01 and �2 D 0.95.

the optimal density is zero, otherwise it is close to two. Other set-
tings provide a similar picture as illustrated in Figure 1. In this
setting, the compendial method had a false positive rate �2 D

0.01 and a detection proportion �2 D 0.95. The optimal bacterial
density �O is either in the range of 1.5 to 2.5 (not all data shown)
or equal to zero for settings of practical interest.

Note that an optimal density for estimation of the detection
proportion �h for a binomial detection mechanism (i.e. no false
positives) would be � D 1.59=�h for method h [16,17] when the
density � can be set precisely. This differs from our optimal con-
centration �O. The reason is that �O is determined by maximizing
the power for a comparison of two methods instead of mini-
mizing the standard error of the parameter estimate for a single
method, which is a different optimization problem. Our optimal
bacterial density depends on all four parameters �1, �2, �1, and �2,
but even if we would assume a binomial detection mechanism,
we would still end up with a different optimal value �O, because
it would depend on both detection proportions �1 and �2. More-
over, when the detection proportions would be equal, the power
is reduced to the significance level and thus independent of the
bacterial density, that is, under the null hypothesis there is no
optimal concentration. On the other hand, it is expected that
the optimal density for testing two detection proportions for
the binomial mechanism is in the range of 1.59=�1 and 1.59=�2,
because this optimal density would most likely provide small
standard errors on both parameter estimates, which makes test-
ing most powerful asymptotically. This may explain our observed
range of 1.5 to 2.5 for the optimal bacterial density.

Although the optimal density depends on the parameters �1,
�2, �1, and �2, choosing a value of � equal to two as a general
strategy, even if it is unequal to the optimal bacterial density, may
still give a reasonable power, although it does not give the opti-
mal power. Table I presents the asymptotic power values under
this strategy of � D 2 for a single dilution. The results show
that if the optimal density would be zero, then the use of a bac-
terial density with � D 2 would lead to a drop in power. The
drop can be substantial. For �1 D 0.05 and a sample size of
150 test samples per method, the power reduces from approxi-
mately 80% to 60%. Otherwise, when the optimal value �O is in
the range of 1.5 to 2.5, the power at � D 2 is quite similar to the
optimal power.

Thus, when the false positive rates are known to be close to zero
or almost equal, an appropriate strategy to test the null hypoth-
esis H0 : �1 D �2 is the use of a single dilution with a bacterial
density around � D 2. Spiking this level does not have to be very
precise, because deviations from � D 2 have only small effect on
the power. When the false positive rates are not known or known
to be quite different, a single dilution with � D 2 might be insuf-
ficient to test the null hypothesis H0 : �1 D �2 ^ �1 D �2. Even if
this single dilution would have a high power, it does not give any
information about the underlying parameters.

Considering the fact that there exist roughly two optimal dilu-
tions (either at �O D 0 or at �O D 2), we suggest to perform
validation experiments with only two dilutions: a blank dilution
(�1 D 0/ and additionally a dilution with a bacterial density
around two (�2 D � � 2). For this two dilution experiment,
we can estimate the false positive rate �h and the product of the
detection proportion and the bacterial density �h D �h�with ML.
The ML estimators are given by

O�h D O�h1, O�h D log.1 � O�h1/ � log.1 � O�h2/. (11)

with O�h1 the estimated proportion of positive test results at the
blank dilution for method h and O�h2 the estimated proportion
of positive tests results at the non-blank dilution. The estimator
O�h in (11) can be viewed as a generalized MPN estimator. It has
two differences compared with the original MPN. First, there is an
additional first term, which can be viewed as a downward correc-
tion in case there is a false positive rate. Indeed, if the false positive
rate is zero, then the proportion of positive results in the blank
dilution would equal zero, and the first term would disappear.
Secondly, it is not the bacterial density itself that is estimated, but
the product of the detection proportion and the density .�h� for
method h/. If the detection proportion would be one, which cor-
responds to the assumption in [3], we get back the original MPN1
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estimator for a single non-blank dilution. Note that the estimator
does not exist if all samples are tested positively in either the
blank or the non-blank dilution or in both.

Approximate 100(1 � ˛)% confidence intervals for propor-
tions or their differences have been discussed in literature exten-
sively [18,19]. It is well-known that the simple large sample

approximation suffers from aberrations, in particular for pro-
portions close to the boundary of zero or one. Instead, Wil-
son’s approach for proportions or differences in proportions can
be used, which is computationally simple and performs better
[18,19]. Thus, we propose to use Wilson’s approach for confidence
intervals on �h and on �1 � �2.

Table II. Simulated coverage probabilities, type I error rates and
powers related to the false positive rates for the experiment with
two dilutions (blank and � D 2).

Powers (%)

Coverages (%) of CIs Based on CI LRT

�1, �2 n �1 �2 �1 � �2 �1 � �2 LRT1

0.005, 0.005 150 95.5 95.5 99.7 0.3 5.2
200 90.8 92.1 99.6 0.4 5.4
250 96.2 96.5 99.7 0.3 8.6

0.03, 0.005 150 94.9 96.4 96.9 29.3 53.8
200 94.5 91.8 97.0 43.7 60.5
250 94.6 96.5 97.5 59.5 71.0

0.03, 0.03 150 95.2 95.7 97.0 3.0 5.8
200 94.2 95.1 96.0 4.0 6.2
250 93.8 94.3 96.3 3.7 4.4

Table III. Simulated coverage probabilities and type I error rates related to the
ratio of detection proportions for the experiment with two dilutions (blank and
� D 2).

Type I error rates (%)

Coverages (%) of CIs Based on CI LRTs

�1, �2 �1, �2 n �1=�2 �1=�2 LRT� LRT2

0.005, 0.005 1, 1 150 94.6 5.4 5.6 5.6
200 94.8 5.2 5.4 5.1
250 95.4 4.6 4.6 4.6

0.03, 0.005 1, 1 150 95.3 4.7 4.8 4.4
200 93.5 6.5 6.5 6.4
250 93.6 6.4 6.5 6.3

0.03, 0.03 1, 1 150 96.3 3.7 3.8 3.5
200 95.3 4.7 4.7 5.3
250 95.5 4.5 4.5 4.4

0.005, 0.005 0.7, 0.7 150 96.6 3.4 3.4 3.2
200 94.0 6.0 6.1 6.3
250 95.6 4.4 4.4 4.4

0.03, 0.005 0.7, 0.7 150 95.5 4.5 4.5 4.3
200 94.3 5.7 5.7 6.3
250 95.7 4.3 4.3 5.0

0.03, 0.03 0.7, 0.7 150 95.5 4.5 4.5 4.0
200 94.3 5.7 5.8 5.8
250 94.5 5.5 5.6 5.1
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Approximate confidence limits for �h are derived with the
delta method on the estimate log O�h. The variance �2

h of O�h is
approximated by

�2
h D

�h1

.1 � �h1/nh1
C

�h2

.1 � �h2/nh2
, (12)

where the covariance term vanishes due to independence of
the test samples from the different dilutions. An estimate O�h
for this variance is straightforward by substituting the estimates
O�h1 and O�h2 into (12). The approximate variance of log O�h, using
the delta method, is �2

h=�
2
h and it can be estimated by O�2

h=
O�2

h .
Hence, the confidence limits for �h can now be approximated by

exp
�

log O�h ˙ z1�˛=2 O�h= O�h

�
, with z1 � ˛=2 the 100(1-alpha/2)th

percentile of the standard normal distribution. Using the asymp-
totic normality of log O�h and then transforming it back to the
original scale has the advantage that it avoids lower confidence
limits, which are negative [20]. Finally, a confidence interval for the
ratio �1=�2 of the detection proportions is derived from the esti-

mator log
�
O�1= O�2

�
and the delta method. The confidence limits

are given by

exp

�
log

�
O�1= O�2

�
˙ z1�˛=2

q
O�2
1 =
O�2
1 C O�

2
2 =
O�2
2

	
. (13)

Note that the estimator log
�
O�1= O�2

�
is related to the estimator

of the log relative potency in bioassays, when the false positive
rates �1 and �2 are identical. Indeed, if �1 D �2, then the detec-
tion proportions for the alternative and compendial methods in
(6) satisfy the assumption of similarity in bioassays [21], that is,
�1.�/ D �2 .��1=�2/, with �h .x/ D 1 � .1 � �h/ exp .��hx/ , �
any concentration, and �1=�2 the true relative potency. If the false
positive rates are unequal, similarity does not hold anymore and
the potency estimate must depend on the false positive rates (as
it does in our case). In bioassays, similarity is an important aspect
[22], because it would indicate that the tested product behaves

as a dilution of the reference standard to which it is compared.
However, in microbiological method validation, we do not just
test for similarity, because this would focus only on equality of
the false positive rates. For validation, we are much more inter-
ested in the detection proportions, even if the false positive rates
might be different, because this part would truly demonstrate
whether organisms in a test sample are better detected with
the alternative method than with the pharmacopoeial method.
The confidence interval for the ratio of detection proportions in
(13) can then be used to compare the performances of the two
methods, whether similarity (�1 D �2) would hold or not.

The confidence intervals for the difference between false posi-
tive rates and for the ratio of detection proportions can of course
also be used to test null hypotheses �1 D �2 and �1 D �2. Alter-
natively, the likelihood ratio tests can be applied too. For the null
hypothesis on the false positive rates, the likelihood ratio test LRT1

in (8) can be applied, whereas LRT2 in (8) would test the combined
null hypothesis H0 : �1 D �2 ^ �1 D �2 and does not specify
whether rejection of this null hypothesis is caused by a difference
in detection proportions, in false positives, or in both. A specific
likelihood ratio test, say LRT� , for the null hypothesis H0 : �1 D �2,
which would be the most important part of the validation study,
can easily be formulated too, but it does not have a closed-form
expression.

4. SIMULATIONS

Simulations have been carried out in order to evaluate the perfor-
mance of the confidence intervals and the likelihood ratio tests for
the proposed experiment with a blank dilution and a dilution with
a bacterial density of about two. Coverage probabilities as well
as type I errors and powers were evaluated. A variety of parame-
ter settings was considered, but different settings did not provide
additional insights. We provide only the results for detection pro-
portions of 0.7 and 1, and false positive rates equal to 0.005 and
0.03. Per parameter setting we performed 1000 simulations.

Table IV. Simulated coverage probabilities and powers related to the ratio of
detection proportions for the experiment with two dilutions (blank and � D 2).

Powers (%)

Coverages (%) of CIs Based on CI LRTs

�1, �2 �1, �2 n �1=�2 �1=�2 LRT� LRT2

0.005, 0.005 0.7, 1 150 96.0 68.7 68.7 69.6
200 95.0 82.7 82.8 82.4
250 95.6 87.6 87.6 87.5

0.03, 0.005 0.7, 1 150 95.3 68.9 69.1 65.4
200 95.2 79.9 80.0 75.9
250 95.6 87.0 87.0 83.3

0.005, 0.03 0.7, 1 150 94.8 69.1 69.1 72.2
200 94.7 81.6 81.5 83.9
250 95.8 88.3 88.3 90.4

0.03, 0.03 0.7, 1 150 95.9 67.6 67.6 68.7
200 95.7 80.1 80.2 79.7
250 93.6 88.7 88.7 88.51
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Table II presents the results for the false positive rates. The
coverage probabilities of the Wilson confidence intervals without
continuity correction [18] for �1 and �2 are close to the nominal
level of 95%. The coverage probabilities of the Wilson confidence
interval (without continuity correction) for �1 � �2 are gener-
ally higher than 95%. This is in line with the results in [19] for
differences in proportions below 0.05. Along with this, the power
for testing equality of false positive rates based on the confidence
interval for the difference, is generally lower than the power of
LRT1. The conservativeness of the confidence interval-based test
is also reflected in the type I errors that are below 5%. The rela-
tively high power of LRT1 is accompanied by a type I error that is
sometimes slightly higher than the nominal value of ˛ D 0.05,
but it is still acceptable.

For the ratio of the detection proportions �1=�2, the coverage
probabilities of the approximate 95% confidence intervals are
well around their nominal value, see Tables III and IV. Corre-
spondingly, in Table III the type I error rates for the confidence
interval-based test are around 5%. Also the type I error rates of the
likelihood ratio tests are close to 5%. Apparently, the difference
in false positive rates between the alternative and compendial
method hardly increases the type I error rate with LRT2. This is not
surprising, since the expected proportions of positive test results
in (6) are not much affected by the low false positive rates when
� D 2 and the detection proportions are between 0.7 and 1.

Comparing the power of LRT� with the power of LRT2, Table IV
demonstrates that in cases where a higher false positive rate
(partly) compensates for a lower detection proportion, LRT2 has
more difficulties in detecting the difference between the two
methods. This is due to the fact that LRT2 tests the null hypothesis
H0 : �12 D �22, while LRT� tests the null hypothesis H0 : �1 D �2.
Conversely, in cases where a higher false positive rate accompa-
nies a higher detection proportion, LRT2 has a higher power than
LRT� . In case of equal false positive rates, the powers of LRT2 and
LRT� are similar but not identical, since they still test different null
hypotheses. Furthermore, Table IV demonstrates that the power
of LRT� is similar to the power of the confidence interval-based
test for H0 : �1 D �2, which is simpler to calculate and
more informative.

5. CONCLUSIONS AND DISCUSSION

Based on a stochastic formulation of the detection mechanism
�h.y/ of qualitative test method h, the relevant validation param-
eters are specificity and accuracy. Specificity is clearly related to
the false positive rate �h of method h, because extraneous mat-
ter in the test system should not interfere with the test method.
The accuracy is related to the ratio �1=�2 of detection proportions
�1 and �2 for the alternative and compendial method, respec-
tively. The detection proportions indicate the probability of cor-
rectly detecting one micro-organism. To validate the alternative
method, a comparison with the compendial method is needed
using an experiment with two dilutions. One dilution should con-
tain approximately two CFUs per test unit and the other dilution
is a blank. To test whether the specificity differs between the two
methods, a likelihood ratio test is recommended (which is not dif-
ficult to calculate). To give insight in the size of the false positive
rates for the two methods, the Wilson confidence intervals can be
reported. On the other hand, for the accuracy, we would recom-
mend a confidence interval-based test. It has a similar power to
the likelihood ratio test for testing the null hypothesis H0 : �1 D

�2, but it is simpler to calculate and it is more informative. For a

significance level of ˛ D 0.05 and a power of 80%, approximately
200 test samples per dilution per test method are required to find
an accuracy of at most 70% for the alternative method relative to
the compendial method.

Our proposed strategy deviates from the current regula-
tory guidances at several points. First of all, the guidances
request more validation parameters to be validated. Assuming
our stochastic detection mechanisms, other validation parame-
ters will not give additional insight in differences between the
test methods. Although we assumed a (zero-deflated) binomial
detection mechanism, we believe that our strategy remains valid
whenever �1.y/ is systematically larger or smaller than �2.y/ for
y > 1, irrespective of the number of parameters involved or the
shape of the detection mechanisms. Our dilution experiment may
not necessarily be optimal anymore, but it will always provide
information on differences between the detection mechanisms.
Secondly, the suggested validation experiments in the guid-
ances with five ten-fold dilutions will most likely not result in
an optimal experiment for testing differences between detection
mechanisms. When �1.y/ is ordered with respect to �2.y/ for
y > 1, there will be a single dilution that maximizes the dif-
ference between the detection mechanisms. Consequently, the
suggested approach to compare the MPN between the alterna-
tive and the compendial method using routine experiments will
also lose power compared with our two dilution approach. More-
over, our stochastic formulation of the detection mechanisms
has changed the interpretation of the MPN and demonstrates its
lack of suitability for validation purposes, particularly in the pres-
ence of false positives. Finally, the guidances underestimate the
number of test samples needed to detect relevant differences in
specificity and accuracy. A low number of test samples introduces
the risk of approving an alternative test method with a detection
proportion that is substantially less than 70% of the detection
proportion of the compendial method.

The USP <1223> is currently under revision, but it seems that
their view on the choice of validation parameters did not change
yet. However, they did improve the statistical parts, eliminated
a few unnecessary comparisons (like the one on agreement
between the alternate and compendial method), which is in line
with our view, and increased sample sizes for validation. The
most important change in our opinion is a shift in scope towards
equivalence testing. In terms of our models for detection of
micro-organisms, their approach would only be suitable when
the alternate and compendial method do not provide or have
hardly any false positives. Our focus here has been on traditional
hypothesis testing, but our proposed methods for construction of
confidence intervals on the ratio of detection proportions and on
the difference in false positive rates make it possible also to per-
form equivalence testing on accuracy and specificity separately.

Our strategy is also different from the approach by [12] and
[7]. They imposed the deterministic detection mechanism and
assumed no false positives. Under their assumptions, they only
required an estimate for the limit of detection of the alternative
method without any comparison with the compendial method.
However, the limit of detection quantifies the detection per-
formance after all preparation steps, thus they needed also an
estimate of the recovery of the alternative method with respect
to the compendial enumeration test to investigate if organisms
are lost during testing. This approach would also be acceptable
when the detection mechanism is of the binomial form, because
the recovery estimate would be related to the accuracy �1=�2

(see our discussion in Section 2.2). However, when false positives
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would occur, our approach for validation with the zero-deflated
binomial mechanism would be more appropriate and a direct
comparison with the compendial qualitative test method should
be conducted.

For the validation of analytical limit tests, both specificity and
limit of detection should be determined (ICH Q2(R1), [4]). These
estimates can be obtained without making any comparisons to an
existing method and are therefore different from our approach.
However, we do believe that our detection mechanisms may also
be valuable for limit tests, because they provide better insight
in how the limit tests would detect low levels of quantities. The
advantage of validation of limit tests is that spiking low levels
of quantities or concentrations is not a real problem, contrary to
microbiological method validation. This means that the detection
proportion can be directly estimated.

The binomial mechanism was suggested and applied by [8],
who used it for enumeration tests. Their goodness-of-fit test on
a real case study did not demonstrate the need for an alterna-
tive detection mechanism, indicating that their assumptions were
reasonable. Their binomial detection mechanism for enumeration
tests would lead to our binomial detection mechanism for quali-
tative tests. Thus, our choice of a zero-deflated binomial detection
mechanism may also be considered realistic, but more research
is needed on possible other shapes for the detection mecha-
nisms of qualitative test methods. One particular question is what
shape of detection mechanism will lead to a logistic curve for
the expected proportion of positive test results. This is important,
because logistic regression is frequently applied for validation,
but not suitable under our assumed detection mechanisms. Addi-
tionally, more research should be conducted on goodness-of-fit
tests, in particular on the selection of optimal designs, because
goodness-of-fit tests require more than our proposed two dilu-
tions to be able to test the validity of our zero-deflated detection
mechanism. Introducing additional dilutions for goodness-of-fit
would then diminish the performance of the proposed hypothe-
sis tests on specificity and accuracy.
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