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ABSTRACT 
Modelling and simulation can play an important role 
for design support and product development of 
responsive building elements (RBEs). There is, 
however, limited guidance on how to model such 
adaptable construction elements in an appropriate 
way. This paper investigates two different strategies 
for representing the dynamic aspects of RBEs using 
whole-building performance simulation tools. 
Simulations are performed for two case studies: (i) a 
coating with variable emissivity/absorptivity 
properties, (ii) a storage wall with switchable 
insulation. The results show that a simplified 
simulation strategy is not always capable of 
accurately capturing the relevant physical phenomena 
in RBEs. Especially when thermal storage effects are 
involved, the adaptation needs to take place during 
simulation run-time, to prevent significant errors in 
the results. 

INTRODUCTION 
Traditionally, buildings have been designed as static 
objects. They provide shelter and protection, and 
once constructed, their main components usually do 
not change anymore. Recently, however, a new trend 
towards design and development of responsive 
building elements (RBEs) has been observed 
(Wigginton and Harris 2002; Heiselberg 2009). Such 
buildings try to take advantage of the variability in 
ambient conditions and occupants’ requirements, by 
changing their shape or physical properties over time 
in response to these transient conditions. 
Innovative materials and components such as 
switchable windows (Baetens et al. 2010), variable 
emissivity coatings (Agrawal and Loverme 2011; 
Karlessi et al. 2009) and dynamic insulation systems 
(Kimber et al. 2014; Burdajewicz et al. 2011) can 
now facilitate the design of dynamic facades (Loonen 
et al. 2013) or building constructions with adaptable 
thermal storage capacity (Hoes et al. 2011; Hoes et 
al. 2013). The application of such RBEs is gaining 
popularity because they can help realise energy 
savings, while maintaining high levels of indoor 
environmental quality. This makes them useful 
components for the design and operation of nearly 
zero energy buildings with comfortable indoor 
conditions. 

Successful design of buildings with RBEs is, 
however, a challenging task. The performance of 
RBEs is very case-specific, and largely determined 
by dynamic interactions between building structure, 
occupants, weather conditions and HVAC systems. 
Prescription-based, traditional design methods, rules-
of-thumb and simplified calculations have only 
limited value in supporting decision-making in the 
complex design process of buildings with RBEs. 
Dynamic simulations on the other hand are able to 
provide insights into building performance aspects of 
RBEs throughout the various stages of the building 
design process (Ochoa and Capeluto 2009; Andresen 
et al. 2009). Simulation-based support can also be a 
helpful tool in the product development process of 
innovative RBE concepts. 
Currently, however, there is a lack of models for 
performance prediction of buildings with RBEs in 
most building performance simulation (BPS) 
software tools. Whereas extensive quality assurance 
procedures are in place for ensuring the accuracy and 
credibility of BPS predictions in general (Franconi 
2011), there is hardly any guidance on such issues in 
the context of performance prediction of buildings 
with RBEs. 
The aim of this paper is to develop a better 
understanding of different modelling approaches and 
their consequences in the context of RBEs. After an 
initial overview of the potential and current 
limitations of modelling and simulation for RBE, this 
is done by analysis of two different RBE case 
studies: (i) a building envelope construction with 
variable absorptivity and emissivity properties, and 
(ii) an internal wall with variable thermal storage by 
means of dynamic insulation. 

MODELING AND SIMULATION OF 
RESPONSIVE BUILDING ELEMENTS 
Most state-of-the-art building energy simulation 
(BES) tools (e.g. ESP-r, EnergyPlus, TRNSYS, IES-
ve) are legacy software, which stem from a time 
when adaptability of building components was not a 
primary consideration (Ayres and Stamper 1995). 
The building’s shape and thermophysical material 
properties in these tools are therefore usually not 
changeable over time. Some tools have application-
oriented capabilities for modelling e.g. phase change 
materials or switchable windows, but in general, the 



options for performance prediction of buildings with 
RBEs are limited (Loonen 2010; Crawley et al. 
2008). There are three main reasons for the present 
difficulties: 
 
1. User interface. Input for constructions and 
material properties to BPS programs is normally 
given in the form of scalar values (typical exceptions 
are solar shading properties and window openings for 
natural ventilation, both of which can be functions or 
time series). This information is then processed once, 
prior to the actual simulation run, and is not updated 
in the simulation engine afterwards. Users of the 
(usually proprietary) simulation tools have limited 
flexibility to extend the functionality for modelling 
RBEs through the non-modifiable user interface. 
2. Solution routines for energy balance equations. 
Many of the widely used methods for solving the 
differential equations in BES tools can only work 
with time-invariant parameters (Clarke 2001). For 
example, the Conduction Transfer Function method 
in TRNSYS’ multi-zone building model is optimized 
for computational performance, but has shortcomings 
that prohibit modelling the transient aspects of 
modern construction types, such as phase change 
materials (Delcroix et al. 2012). EnergyPlus was 
recently extended with a new finite difference 
scheme for conduction, to allow for modelling 
temperature- or time-dependent material properties 
(Pedersen 2007; Tabares-Velasco and Griffith 2012). 
Practical use of these new algorithms is still limited, 
and its potential largely unexploited. 
3. Control strategies. Most BES tools use simplified 
expressions for building systems control algorithms, 
and have a limited range of sensor and actuator 
options (Hoes et al. 2012). Advanced control is one 
of the major elements needed for performance 
assessment of RBEs. The lack of options is currently 
a significant barrier for performance prediction of 
advanced operation strategies with RBE as time-
varying actuators. 
 
Despite the limitations in existing software tools, 
researchers and engineers have developed numerous 
customized simulation strategies for predicting the 
performance of RBEs in whole-building performance 
simulation programs (Loonen et al. 2010). So far, 
most of these attempts have used workarounds, 
which tend to rely on approximations or 
simplifications.  
The simplest approach for representing RBEs is by 
subdividing the year into smaller periods (e.g. 
seasons), each with distinct building properties (Joe 
et al. 2013; Hoes et al. 2011; Loonen et al. 2011). 
The downside of this approach is that the correctness 
of thermal history effects cannot be guaranteed due 
to the absence of methods for explicit state 
initialization (Hoes et al. 2012). With short-term 
adaptation cycles (e.g. hours), in particular, this can 
lead to significant prediction errors, as it would 

almost defeat the purpose of dynamic simulations. 
The approach is also limited for implementing 
feedback-based control strategies, which cannot be 
calculated a priori but depend on simulation 
variables. 
A second approach uses separate models to represent 
different states of the RBE. For example, DeForest et 
al. (2013) used simulations to predict the 
performance of smart windows that switch optical 
properties in the infrared wavelength range. The lack 
of capabilities to model the behaviour of the window 
in COMFEN was circumvented by running two 
separate annual simulations with static window 
properties (a reflecting and a normal state), and 
reassembling them in the post-processing phase to 
resemble dynamic switching. This method captures 
switching of instantaneous solar gains, but fails to 
account for effects of delayed thermal response due 
to capacitance. Using a similar technique in cases 
where thermal mass is involved in RBE operation, 
without respecting transient thermal energy storage 
effects during their transitions, would probably lead 
to significant errors in the results (Erickson 2013). 
The discrete nature of this method also introduces 
problems in modelling RBEs with intermediate 
states, and hysteresis effects during transitions. These 
inaccuracies may eventually compromise decision-
making based on simulation outcomes, but little is 
known about these effects. One of the goals of this 
paper is to quantify such effects, by contrasting the 
simplified approach to one that more closely 
resembles reality by updating RBE operation within a 
simulation. This latter approach is done using ESP-r 
(Clarke 2001). 

RESPONSIVE BUILDING ELEMENTS IN 
ESP-r 
Similar to other simulation tools, ESP-r, by default, 
assumes constructions with time-invariant properties. 
However, the finite difference control-volume 
approach that forms the numerical foundation of 
ESP-r does not pose fundamental limitations for 
making the properties vary with time. ESP-r’s 
modular structure and open source distribution 
moreover enables users to accomplish this with 
relatively few code modifications. 
The implementation that is used in the present 
research reuses existing features from the variable 
thermophysical properties and material property 
substitution facilities which were developed two 
decades ago (Nakhi 1995; MacQueen 1997). 
The key difference with normal ESP-r is that in this 
implementation, not only such factors as incident 
solar radiation, internal gains and ventilation 
exchange, but also nodal coefficients of equations in 
the transient heat conduction model are updated at 
every time-step of the simulation. These coefficients, 
contained in subroutine MZCOE1, are used to 
establish the building-side matrix equations. For 
reasons of computational efficiency, this is normally 
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Methodology 
In this case study, we investigated two types of 
thermotropic coatings, by changing: 
I Solar absorptivity (α) (λ: 0.28 – 2.8 μm) 
II Thermal longwave emissivity (ε) (λ > 3 μm)  
 
Because the variability of these properties has an 
influence on different energy flow paths, we expect 
that they will lead to different performance. 
The coating is modelled to switch instantaneously, 
but only one of the properties at a time. This means 
that when the case with variable absorptivity is 
investigated, the value for emissivity is left in the 
default state. Table 1 shows the material properties 
that were analysed. Unless noted otherwise, the 
threshold surface temperature for switching states is 
20°C. Depending on the application area, the coating 
is applied to all opaque interior or exterior surfaces. 
We investigated two modelling strategies, (A) 
discontinuous, where the behaviour of the coating is 
approximated by two simulation runs with fixed 
properties, and (B) run-time, where changes are 
implemented during the course of one simulation. 
 

Table 1: Material properties thermotropic coating. 
 Low High Default  
Absorptivity (α) 0.3 0.7 0.65 
Emissivity (ε) 0.3 0.9 0.84 

Results – outdoor application 
Figure 2 shows the surface temperature of the 
exterior roof layer for three days in summer (4-6 
July). In the situation with fixed high absorptance 
(dashed line), higher temperatures are reached than is 
the case for fixed low absorptance (solid black line). 
Temperature of the thermotropic coating closely 
follows one of the two states with static properties 
around the switching point of 20°C.  

 
Figure 2: Exterior surface temperature. Thermotropic α 
coating and fixed low and high absorptivity, (4-6 July). 

 
The same type of behaviour is observed in the results 
with variable emissivity (Figure 3, period: 30 Aug.–1 
Sep.). In this situation, a temperature difference 
between the high and low case is not only present 
during the day, but also at night when the radiant heat 
transfer coefficient from the roof to the sky and 
surroundings differs with emissivity. 

 
Figure 3: Exterior surface temperature. Thermotropic ε 

coating and fixed low and high emissivity, (30 Aug-1 Sep). 
 

To evaluate the effect of different modelling 
strategies, a comparison of heating energy 
consumption and thermal comfort, predicted by the 
two methods is presented in Table 2. The differences 
in heating energy consumption are very small (less 
than three percent). The difference in discomfort 
hours is also negligible. Use of the simplified, 
discontinuous, modelling approach in this case could 
therefore be justified, because the predicted 
difference will likely not lead to a different design 
decision.  
This result is not unexpected because the coating is 
applied outside of the thermal insulation layer. 
Therefore, temperature changes immediately follow 
switching actions, because almost no thermal energy 
is stored in the construction. 
 

Table 2: Comparison of results for the two modelling 
approaches (discontinuous and run-time). 

 Discont. Run-time 
Heating Energy (kWh)   
Thermotropic α 2492  2525 
Thermotropic ε 2321 2393 
Thermal Comfort (wPPDh)   
Thermotropic α 65 67 
Thermotropic ε 74 76 
 
In Figure 4, we compare the results of coating 
designs other than the two from Table 2. Open 
squares and triangles represent cases with fixed 
surface absorptivity and emissivity, respectively. 
From left to right, the results move from 0.9 to 0.1 
(absorptivity) and 0.1 to 0.9 (emissivity) in 
increments of 0.1. Results in purple and blue indicate 
thermotropic coatings α and ε, and show that 
dynamic properties can always perform better than 
the best static design solutions. The colour tints 
indicate the switching temperature from 0°C (dark) to 
50°C (bright) in steps of 10°C. By tuning this 
parameter in the materials development phase, it is 
possible to establish a clear effect on the energy 
versus comfort trade-off. In future research, the 
effects of tuning coating specifications could be 
investigated in response to a wider range of specific 
design conditions. 
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Figure 6: Interior surface temperature. Thermotropic ε 
coating and fixed low and high emissivity
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thermodiodes (based on the thermosyphon effect), 
which make it possible to change the direction of 
heat transfer in a construction from conducting to 
insulating. This makes it possible to direct the heat 
flow to the wall during a summer day and reverse the 
heat flow when the stored energy is needed in the 
building. Al-Nimr et al. (2009) propose a ‘smart 
insulation’ system based on fluids and a movable 
partition. Another dynamic system is the ‘switchable 
insulation’ proposed by Horn et al. (2000). Their 
system changes the thermal conductivity by using a 
metal hydride to change the pressure of hydrogen gas 
inside a panel. They show that the conductivity of the 
panel can be changed by about a factor of 50. 

Methodology 
In this case study, we investigated two modelling 
strategies, method 1, discontinuous (cut ‘n paste), 
where the behaviour of the dynamic insulation is 
approximated by two simulation runs with a fixed 
insulation state (coupled or decoupled), and method 
2, run-time, where the insulation material is changed 
during the simulation. One full month (October) is 
simulated  to investigate the differences between both 
methods. Every three days the wall changes from 
insulation state without time delay. The simulation 
time step is 10 minutes. 

Results 
Figure 8 shows the simulated surface temperatures of 
the partition wall in zone A for the fixed insulation 
states (coupled and decoupled). The coupled state 
(insulation layer with high conductivity; thin solid 
line) shows less temperature fluctuations than the 
decoupled state (insulation layer with low 
conductivity; thin dashed line), since the concrete 
wall is able to store the solar gains and other internal 
gains. As mentioned, for method 1 and 2, every three 
days the wall switches to the other insulation state. In 
Figure 8, the state of the dynamic insulation is 
indicated with different shades: grey shade indicates 
the coupled state and no shade indicates the 
decoupled state. Method 1 (cut ‘n paste) is composed 
of the results for the fixed insulation states and thus 

matches those lines exactly. This is not the case for 
method 2 in which the history effect of the storage 
capacity is taken into account. The influence of this 
history effect is clear from the graphs in Figure 9. 
The graphs show the temperatures of the construction 
layers in the partition wall for a period of 6 days 
(indicated with the dashed box in Figure 8). 
 
Temperature; surface: 

Temperature; insulation material: 

 
Temperature; storage wall: 

 
Figure 9: Surface temperature and construction 

temperatures of the partition wall with dynamic insulation. 
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Figure 8: Surface temperature of partition wall (zone A) for coupled sequence, decoupled sequence, method 1(cut ‘n paste; 

grey background indicates ‘coupled’, white background indicates ‘decoupled’) and method 2 (advanced). Simulation period: 
16-31 October; the dashed box indicates the six days which are analysed in detail in Figure 9. 
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The bottom graph of Figure 9 shows, for method 1, a 
clear jump in the temperature of the storage wall 
during the switch from decoupled to the coupled 
state. This jump is not visible for method 2. It is clear 
that this jump might cause differences in the 
simulated performance indicators between the two 
methods. We investigated the potential effect of this 
on the energy use for heating (no discomfort 
occurred during this month). Figure 10 shows the 
cumulative heating energy use for method 1 and 
method 2 for the whole month; indicating a 27% 
difference between the two methods towards the end. 
Depending on the number of switches and the 
amount of energy stored during each state, this 
difference will likely grow. It is safe to assume that 
method 2 results in more accurate results since 
history effects are taken into account. 
 

 
Figure 10: Cumulative heating energy for the simulation 
period (16-31 October); a difference of 27% is observed 
between method 1 (cut ‘n paste) and method 2 (run-time). 

 

CONCLUSIONS 
This paper has introduced the current limitations and 
highlighted some potential advantages of more 
widespread use of modelling and simulation to 
support informed decision-making in the design of 
buildings with responsive building elements (RBE). 
We have analysed two simulation strategies to 
represent RBE in whole-building simulation tools. 
The simple, discontinuous approach combines the 
results from separate simulation runs with fixed 
properties. The more advanced run-time approach, on 
the other hand, effectively models state transitions 
during one simulation, but required code 
modifications, and is less user-friendly. With respect 
to these different modelling approaches, this paper 
has shown that: 
 Thermal mass has a big influence on the proper 

selection of performance prediction strategies 
for RBEs.  

 In cases where RBE operation is decoupled 
from thermal storage (e.g. exterior coatings with 
varying surface properties), a decoupled 
simulation approach is adequate.  

 When the RBE operation does affect the 
amount of energy stored in the thermal mass 
(e.g. storage walls with switchable insulation), 
these dynamic effects have to be taken into 
account during simulation run-time.   

 The simplified approach is not always able to 
capture all heat transfer phenomena during RBE 
state transitions. 

 Choosing a non-appropriate simulation strategy 
can lead to significant prediction errors that, in 
turn, can result in sub-optimal design decisions. 
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