
 

Polynomial optimization and a Jacobi-Davidson type method
for commuting matrices
Citation for published version (APA):
Bleylevens, I. W. M., Hochstenbach, M. E., & Peeters, R. L. M. (2013). Polynomial optimization and a Jacobi-
Davidson type method for commuting matrices. (CASA-report; Vol. 1326). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/a451b107-602c-4a37-b990-9c3b6a554216


                                        

 

 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 13-26 
November 2013 

 
 

Polynomial optimization and a Jacobi-Davidson  
type method for commuting matrices 

 
by 
 

I.W.M. Bleylevens, M.E. Hochstenbach, R.L.M. Peeters 
 

 

 
 

 

 

Centre for Analysis, Scientific computing and Applications 

Department of Mathematics and Computer Science 

Eindhoven University of Technology 

P.O. Box 513 

5600 MB Eindhoven, The Netherlands 

ISSN: 0926-4507 

 

 

 

 

 

 



Polynomial optimization and a Jacobi–Davidson type method for commuting
matrices

Ivo W. M. Bleylevensa, Michiel E. Hochstenbachb, Ralf L. M. Peetersa

aDepartment of Knowledge Engineering
Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands

Tel: 0031-43-3883455, Fax: 0031-43-3884910
bDepartment of Mathematics and Computer Science

TU Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Abstract

In this paper we introduce an new Jacobi–Davidson type eigenvalue solver for a set of commuting matrices, called JD-
COMM, used for the global optimization of so-called Minkowski-norm dominated polynomials in several variables.
The Stetter–Möller matrix method yields such a set of real non-symmetric commuting matrices since it reformulates
the optimization problem as an eigenvalue problem. A drawback of this approach is that the matrix most relevant
for computing the global optimum of the polynomial under investigation is usually large and only moderately sparse.
However, the other matrices are generally much sparser and have the same eigenvectors because of the commuta-
tivity. This fact is used to design the JDCOMM method for this problem: the most relevant matrix is used only in
the outer loop and the sparser matrices are exploited in the solution of the correction equation in the inner loop to
greatly improve the efficiency of the method. Some numerical examples demonstrate that the method proposed in
this paper is more efficient than approaches that work on the main matrix (standard Jacobi–Davidson and implicitly
restarted Arnoldi), as well as conventional solvers for computing the global optimum, i.e., SOSTOOLS, GloptiPoly,
and PHCpack.

Keywords: Multivariate polynomial optimization, global optimization, solving systems of polynomial equations,
Stetter–Möller matrix method, commuting matrices, Jacobi–Davidson, correction equation, Arnoldi
2000 MSC: 12D10, 13P10, 13P15, 65H10, 65H17, 65F15, 65F50, 65K10

1. Introduction

Finding the global minimum of a real-valued multivariate polynomial is a problem that has several useful appli-
cations in system and control theory [9] as well as in many other fields including statistics, mathematical finance,
economics, systems biology, etc. Multivariate global polynomial optimization is often challenging because of the
non-convexity of the problem and the existence of local optima. In this paper we design a new Jacobi–Davidson type
eigenvalue solver which efficiently computes the global optimum of a special class of polynomials.

This special class under consideration is the so-called Minkowski-norm dominated class of polynomials in several
variables (see Section 2). The problem of finding a global minimum of a polynomial from this class can be refor-
mulated as an eigenvalue problem by applying the Stetter–Möller matrix method [8, 21]. This yields a set of real
nonsymmetric large commuting matrices Ap, Ax1 , . . . , Axn , where Ap is usually moderately sparse, while the matrices
Ax1 , . . . , Axn are generally very sparse. It turns out that the leftmost real eigenvalue (i.e., with smallest real part) of the
matrix Ap gives the value of the global optimum. More details, including some algebraic backgrounds, are given in
Section 2.
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This approach for global optimization of a Minkowski-norm dominated polynomial was previously described in
[1]. In that paper the focus lies on improving the efficiency of computing the action of the matrices Ap, Ax1 , . . . , Axn

on a vector by the development of a matrix-free approach. Thus, the explicit construction of the large matrices is
avoided by associating the system of first-order conditions with an nD-system of difference equations.

Because only one eigenvalue of the large matrix Ap is needed, it is a plausible choice to consider iterative eigen-
value solvers. We here describe a new Jacobi–Davidson (JD) [27, 11] type method for this problem. The essence
of this new approach is that it computes an eigenvalue of the (moderately) sparse matrix Ap while using one of the
much sparser matrices Ax1 , . . . , Axn in the inner loop, resulting in a much more efficient process. Hereby, it attempts
to compute the smallest real eigenvalue of the matrix Ap. The assumption we make here is that all the (relevant)
eigenvalues have algebraic multiplicity one. Pseudocode for the resulting JD method for a set of commuting matrices,
that will be denoted by JDCOMM, is given in Section 3.

In Section 4 the proposed approach is illustrated by means of some experiments and its performance is compared
to that of a conventional Jacobi–Davidson method, two methods based on implicitly restarted Arnoldi (Matlab’s eigs
and Krylov–Schur), and three other methods for multivariate polynomial optimization: SOSTOOLS, GloptiPoly, and
PHCpack. Finally, we end with some concluding remarks in Section 5.

2. Algebraic Background

In this section we briefly recall some relevant background information; for more details we refer to [3]. The
special class of polynomials under consideration is the class of Minkowski-norm dominated polynomials which was
previously studied in [1]. This class concerns polynomials of the form:

pβ(x1, . . . , xn) = β (x2d
1 + · · · + x2d

n ) + q(x1, . . . , xn), (1)

where q(x1, . . . , xn) is a real polynomial of total degree less than 2d, and β is a positive real number. The total degree
of the polynomial

q(x1, . . . , xn) =
∑

γ1,...,γn

aγ1,...,γn xγ1
1 · · · xγn

n (2)

is defined as usual as: max{γ1 + · · · + γn : aγ1,...,γn , 0} (see [2]). This class of dominated polynomials is of interest
because information about the global minimum of q may be obtained from pβ by letting β tend to zero; see [8, 13].
The presence of the term β (x2d

1 + · · ·+ x2d
n ) ensures that pβ has a global minimum because of its dominating behavior.

The first-order conditions of a polynomial pβ, given by:

∂pβ
∂x1

(x1, . . . , xn) = 0, . . . ,
∂pβ
∂xn

(x1, . . . , xn) = 0, (3)

yield a system of polynomial equations. The location of the global minimum of pβ corresponds to a solution of the
set of first-order conditions (3).

Because 2d exceeds the total degree of the polynomial q(x1, . . . , xn), the leading monomials of ∂pβ
∂xi

, for i = 1, . . . , n,

are x2d−1
i , with respect to any ordering of the monomials of ∂pβ

∂xi
based on their total degree (total degree monomial

ordering). Because of this property (which is due to the special structure of the polynomial pβ) the system of first-
order conditions is in a Gröbner basis form with respect to any total degree monomial ordering (see [2]). Recall that
computation of a Gröbner basis for a system of polynomials can be seen as a generalization of Gaussian elimination
for a system of linear equations.

Proposition 1. I = 〈
∂pβ
∂x1
, . . . ,

∂pβ
∂xn
〉, the ideal generated by the partial derivatives of pβ, is a zero-dimensional ideal in

R[x1, . . . , xn]. This implies that the system of first-order conditions (3) admits a finite number of solutions in Cn.

Proof. See [3], [8, Thm. 2.1, Prop. 3.1], and the references given therein.
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Now we consider the quotient space R[x1, . . . , xn]/I, which is a finite dimensional linear vector space of dimension
N = (2d − 1)n. We let

B = {xα1
1 · · · x

αn
n : α1, . . . , αn ∈ {0, 1, . . . , 2d − 2}} (4)

be the monomial basis for this quotient space. For i = 1, . . . , n, we introduce the linear multiplication operators Axi

on R[x1, . . . , xn]/I by:

Axi : R[x1, . . . , xn]/I → R[x1, . . . , xn]/I : g 7→ xi · g. (5)

Each operator represents multiplication by xi modulo the ideal I. With respect to the monomial basis B, each (linear)
operatorAxi is represented by an N × N real nonsymmetric matrix Axi . In such a matrix Axi the entry in position (k, l)
denotes the coefficient of the kth monomial of B in the normal form of the product of xi and the lth monomial of B.
The matrix Axi is commonly called the ith companion matrix [21], the multiplication table [31] or the representation
matrix [22] for the variable xi. The matrices Axi have the following natural properties.

Proposition 2. We have the following properties:

(i) The matrices Ax1 , . . . , Axn commute pairwise:

Axi Ax j = Ax j Axi for all i, j ∈ {1, . . . , n}. (6)

(ii) The set Ax1 , . . . , Axn is a matrix solution for the system of equations (3):

∂pβ
∂xi

(Ax1 , . . . , Axn ) = 0 for all i = 1, . . . , n. (7)

Proof. See [8].

Because the involved matrices commute, they have a common basis of eigenvectors. The variety V(I), the solution
set of (complex) zeros of I, contains all the n-tuples (λ1, . . . , λn) of eigenvalues of (Ax1 , . . . , Axn ) corresponding to all
common eigenvectors.

In the case of polynomial optimization, the N eigenvalues λ(1)
i , . . . , λ(N)

i of a matrix Axi are the values of the ith co-
ordinates, xi, at the stationary points of the polynomial pλ(x1, . . . , xn). Computing all real eigenvalues of the matrices
Ax1 , . . . , Axn provides a way to determine all locations of the stationary points of pβ (solutions of (3)).

The method of rewriting the problem of finding solutions of a set of polynomial equations into an eigenvalue prob-
lem of a set of commuting matrices, is called the Stetter–Möller matrix method and can only be applied to systems
of polynomial equations which generate a zero-dimensional ideal. This method is described in [21] and a similar
approach can be found in [8].

More generally, for a polynomial f (x1, . . . , xn) a similar set-up can be used to introduce a linear operatorA f (x1,...,xn)
as follows:

A f (x1,...,xn) : R[x1, . . . , xn]/I → R[x1, . . . , xn]/I : g 7→ f (x1, . . . , xn) · g. (8)

The (linear) operator A f can be represented by the N × N matrix A f (x1,...,xn) with respect to the same monomial basis
B. The following property will be key to the approach we propose.

Proposition 3. Let f be a polynomial in R[x1, ..., xn]. The matrix A f commutes with the matrices Ax1 , . . . , Axn and
satisfies A f (x1,...,xn) = f (Ax1 , . . . , , Axn ).
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Proof. Commutativity of Ax1 , . . . , Axn makes the definition of f (Ax1 , . . . , Axn ) unambiguous. Together with linearity
of the operators, the proposition follows. See [1].

Therefore, if v is a common eigenvector of the matrices Ax1 , . . . , Axn for the eigenvalues (λ1, . . . , λn), then v is also an
eigenvector of A f (x1,...,xn) with corresponding eigenvalue f (λ1, . . . , λn):

A f v = f (Ax1 , . . . , Axn ) v = f (λ1, . . . , λn) v. (9)

Let us recall that one can compute the ith coordinates of the stationary points of the polynomial pβ by using the
eigenvalues of the matrices Axi . It follows from the work of Frobenius on commutative matrices, see [5], that all
the eigenvalues of Ax1 , . . . , Axn can be organized, in a unique way, into n-tuples (x1, . . . , xn) which share a common
eigenvector. These n-tuples constitute the stationary points of pβ. For every polynomial f , the eigenvalues of A f

evaluate f at the stationary points. In particular, this holds for the polynomial f = pβ:

Proposition 4. The eigenvalues of the matrix Apβ(x1,...,xn) are the function values of the polynomial pβ(x1, . . . , xn) at its
stationary points.

Proof. See [1].

This makes clear why this approach is particularly useful for global polynomial optimization: the leftmost real
eigenvalue (i.e., with smallest real part) of the matrix Apβ(x1,...,xn) is the value of the global minimum of pβ(x1, . . . , xn).
For convenience of notation, we will write Ap(x1,...,xn) or Ap instead of Apβ(x1,...,xn) from now on; we will choose β = 1
in the experiments in Section 4.

Note that we are interested in the smallest real eigenvalue of the real-valued matrix Ap(x1,...,xn), for which we can
select a real-valued corresponding eigenvector v. Because the real-valued matrices Axi share the same eigenvector v,
the interesting eigenvalues of the matrices Axi (the coordinates of the stationary points) have to be real as well.

The approach described in this section has some promising properties which are used in designing a more efficient
optimization method: (i) because of the commutativity of the matrices Ap, Ax1 , . . . , Axn they have common eigen-
vectors, (ii) the matrices Ax1 , . . . , Axn are much sparser than the matrix Ap, and finally, (iii) only the smallest real
eigenvalue and corresponding eigenvector of the matrix Ap are required to locate the (guaranteed) global optimum of
pβ (without addressing any (possible) local optimum pβ contains). As a side effect we here also use the fact that all the
involved eigenvectors are structured in a special way, called the Stetter structure (see [1]), which makes it easy to read
off the values of xi, the locations of the stationary points, from the eigenvectors (this holds for algebraic multiplicity
one).

Section 3 introduces the new Jacobi–Davidson eigenvalue solver for commuting matrices, JDCOMM, which uses
all these properties to improve the performance of the optimization method described in the present section. For
further background of the constructive algebra and systems theory aspects of this approach we also refer to [7].

3. A Jacobi–Davidson type method for commuting matrices

Since the size of the commuting matrices mentioned in the previous section is usually very large, i.e., of dimension
N × N with N = (2d − 1)n, and because we are interested in only one eigenvalue, we consider iterative eigensolvers.
More particularly we are interested in subspace methods.

In this paper, a new Jacobi–Davidson type method is proposed for this problem. This method consists of an outer
loop, where a subspace is constructed onto which the matrix is projected, and an inner loop, used for an inexact solve of
the correction equation, which may be viewed as an inexact Newton step.1 This type of eigensolver may be preferable
over, for instance, Krylov methods (such as implicitly restarted Arnoldi, as described in [28] and implemented in
Matlab’s eigs) for three reasons.

1See [27, 11] and the rest of this section for more background information on the standard Jacobi–Davidson method.
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First, the eigenvalue of interest may not be near the exterior of the spectrum of Ap. This implies that it may be
difficult for Krylov methods to find the wanted eigenvalue(s) (see also the experiments with Matlab’s eigs and an
implementation of Krylov–Schur [29] in Section 4). Second, approaches based on matrix transformations (see, e.g.,
[18] for an overview, and, for instance, [19]) are not applicable: shift-and-invert Arnoldi methods are infeasible as
these require a known shift (target); in our problems we do not have a shift beforehand. Third, and most importantly,
our method is able to make effective use of the action with sparser (and hence cheaper) commuting matrices in the
inner iterations: it computes the eigenvalues of the sparse matrix Ap while using one of the much sparser matrices Ax1 ,
. . . , Axn in the inner loop (see Properties (i) and (ii) in Section 2), often resulting in a much more efficient process.
In our approach we target the smallest (leftmost) real eigenvalue of Ap as it corresponds to the value of the global
minimum of pβ (see Property (iii) in Section 2). Still, an Arnoldi type method such as eigs may work well if the
sought eigenvalue of Ap is relatively exterior.

In [20, 16], shift-and-invert Cayley transforms are exploited to find the rightmost eigenvalue. We believe that
although this method could be worthwhile for difficult cases with clustered eigenvalues, it will often be not competitive
in comparison with Arnoldi.

Jacobi–Davidson type methods generally spend most of the computational effort in the inner loops, and since we
work with sparser matrices in these inner iterations, a speedup can be expected. As we will see in the experiments
in Section 4, the new Jacobi–Davidson type method for commuting matrices may impressively outperform standard
Jacobi–Davidson and methods based on implicitly restarted Arnoldi (Matlab’s eigs and Krylov–Schur) as well as
some other conventional optimization methods for this problem.

The Jacobi–Davidson subspace expansion works as follows. Suppose we have an approximate eigenpair (θ, v) for
Ap, where v has unit norm and θ is the Rayleigh quotient of Ap and v: θ = v∗Apv. We now look for an update t ⊥ v
such that the updated vector v + t is an eigenvector of Ap:

Ap(v + t) = λ (v + t). (10)

Rearranging the terms gives:

(Ap − θIn) t = −(Apv − θ v) + (λ − θ) v + (λ − θ) t, (11)

where

r := Apv − θ v (12)

is the residual with respect to the matrix Ap. If we discard the (λ−θ) t term, which is asymptotically second-order, and
project out the unknown quantity (λ − θ) v by the projector In − vv∗, which also fixes r, we get the Jacobi–Davidson
correction equation for the matrix Ap:

(In − vv∗)(Ap − θIn) t = −(Apv − θ v), t ⊥ v. (13)

The solution of (13) is sometimes also referred to as inner iterations or inner loop. A key factor of Jacobi–Davidson is
that one may solve (13) inexactly; generally it is neither necessary nor attractive to solve it exactly; see also the com-
ments in Section 4.9. Still, the vast majority of the computational work is spent by (inexactly) solving this correction
equation. Therefore, the simple but crucial idea is to make use of one of the sparser matrices Axi , i = 1, . . . , n (which
have the same eigenvectors as Ap) in the correction equation (13).

To be able to use the much sparser matrices Ax1 , . . . , Axn in the inner loop and to create a faster convergence, we
propose the following: since v is an approximate eigenvector for Ap, it is also an approximation eigenvector for Axi .
Let η be the Rayleigh quotient of Axi and v: η = v∗Axi v. Instead of (10) we now wish to update the vector v such that
we get an eigenvector for Axi :

Axi (v + t) = µ (v + t)

for a certain eigenvalue µ of Axi (this eigenvalue will be the ith coordinate of the global minimum). Using the
approximate value η for Axi , this leads, similarly to (11), to:

(Axi − ηIn) t = −(Axi v − ηv) + (µ − η) v + (µ − η) t.
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By again neglecting the higher-order term (µ − η) t and projecting out the unknown term (µ − η) v we get the Jacobi–
Davidson correction equation for the matrix Axi :

(In − vv∗)(Axi − ηIn) t = −(Axi v − ηv), t ⊥ v. (14)

The advantage of this correction equation over (13) is that the matrix-vector products with Axi spent for approximately
solving this equation are generally much cheaper than matrix-vector multiplications with Ap. Typical practical ex-
amples indicate that the number of nonzeros of Axi is often 10% or less of the number of nonzeros of Ap; see the
experiments in Section 4, where we also discuss the choice of i.

Remark 1. We note that preconditioning of the correction equation and the use of harmonic Ritz values is generally
infeasible in our context as a target is necessary for these techniques; i.e., a reasonably good guess of the value of the
wanted eigenvalue. This knowledge will generally be unavailable.

Remark 2. When the eigenvalue of Ap corresponding to the minimal value of the polynomial has an algebraic mul-
tiplicity larger than one, there are multiple minima with the same minimal value at different locations. Typically, the
Jacobi–Davidson method may converge to a multiple eigenvalue, albeit at a slower speed of convergence. A detected
eigenvector of the matrix Ap (which is not uniquely defined) will generally fail to have a Stetter structure and will not
be an eigenvector of the Axi matrices. In this case, one may first separately determine the nullspace corresponding to
the multiple eigenvalue of Ap, and then project this space onto the Axi matrices to obtain the eigenvectors. If the xi

coordinates of the minimizers are distinct (which will always be the case for at least one index i) we can retrieve the
eigenvectors with Stetter structure and, as a result, read off the coordinates of the minimizers.

It may also happen that a matrix Axi has eigenvalues of multiplicity larger than one, which means that one coor-
dinate of the (global or local) minimizers is identical. If for this (or another) reason the convergence of the method
seems to be slow, it may be beneficial to switch to another operator Ax j at no additional costs; see also Section 4.8.

For ease of presentation, we assume in the rest of the paper that the algebraic multiplicity of all the eigenvalues
involved is one. However, we briefly mention that in an unreported experiment (p(x1, x2, x3, x4, x5) = (x6

1 + x6
2 + x6

3 +

x6
4 + x6

5)− 7x3
1x4x5 + 8x2

1x2x2
3 + 5x2x3x2

4x5 − x2x4
3 − 4x2

3x4x5, matrix size 3125× 3125), JDCOMM is able to handle the
case of numerically multiple eigenvalues well (JDCOMM finds the correct minimizer, and is 5 times faster than JD).

In the following algorithm we give the pseudocode for the JDCOMM method, the Jacobi–Davidson type method
for commuting matrices. Note that in the subspace extraction phase of every (outer) iteration (line 5 of the algorithm)
we need to work with Ap, since we should head for the smallest real eigenvalue of Ap.

Algorithm JDCOMM: A Jacobi–Davidson type method for commuting matrices

Input: A device to compute Apv and Axi v for arbitrary vectors v, where the action with Axi is (much) cheaper than
the action with Ap; a starting vector v1 (default: random) and a tolerance ε
Output: An approximate eigenpair (θ, v) of Ap

1: t = v1, V0 = [ ]
for k = 1, 2, . . .

2: rgs(Vk−1, t)→ Vk

3: Compute kth column of Wk = ApVk

4: Compute kth row and column of Hk = V∗k ApVk = V∗k Wk

5: Extract the leftmost real Ritz pair (θ, c), an eigenpair of Hk

6: v = Vkc
7: r = Wkc − θ v
8: Stop if ||r|| ≤ ε
9: Compute η = v∗Axi v

10: Solve (approximately) t ⊥ v from:
(In − vv∗)(Axi − ηIn) t = −(Axi − ηIn) v

A few comments on this algorithm are in order. The starting vector v, which is one of the input arguments for the
method, is by default chosen as a random vector. Choosing random values for the starting vector is a common choice
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when computing eigenvalues iteratively. In line 2, rgs stands for repeated Gram–Schmidt, or any other numerically
stable orthonormalization method. In line 5, we select the leftmost real eigenvalue θ of Hk. If it happens that Hk

only contains complex eigenvalues, we select one eigenvalue of the complex conjugate pair with the smallest real part
as the next best alternative. Not shown in the pseudocode, but generally necessary in practice, are restarts. If the
dimension of the search space reaches a specified constant maxdim in line 5, we reduce the search space to dimension
mindim, continuing with the space spanned by the best mindim Ritz vectors, that is, the Ritz vectors corresponding to
the most promising Ritz values. In our context, this means that we order the Ritz values θ with respect to increasing
real part, first those with imaginary part satisfying |Im(θ)| < threshold, for some threshold value, and subsequently the
remaining ordered Ritz values. The correction equations in line 10 are solved approximately with an iterative method.
In our experiments in Section 4, we take 10 steps of GMRES.

Note that, since we are interested in real eigenvalues only, it could be an option to modify the algorithm such that
we obtain the solutions using only real arithmetic. This is the subject of [23] for a conventional JD method but this is
outside the scope of the present paper.

Another important property of this polynomial optimization approach is that it can be used in a matrix-free fashion,
which means that in the method the matrices Ap, Ax1 , . . . , Axn are not needed in explicit form. It is sufficient to have a
routine that performs the matrix-vector products Apv and Axi v (for at least one i) for arbitrary vectors v. This property
is not used in the present paper but it may make the method even more time efficient as well as more memory efficient.
The matrix-free matrix-vector multiplication can be carried out by associating the system of first-order derivatives of
pβ with an nD-system of difference equations, as described extensively in [1].

Our method inherits the favorable convergence properties of standard Jacobi–Davidson, as we show in the follow-
ing propositions.

Proposition 5. Suppose z is an eigenvector corresponding to a simple eigenvalue λ of Ap and a simple eigenvalue µ
of Axi (for some i). If the correction equations (14) are solved exactly and JDCOMM converges to (λ, z), the method
converges asymptotically quadratically.

Proof. The proof is inspired by, e.g., [12]. Suppose v = z + ε e, where e ⊥ z, ‖z‖ = 1, and ‖e‖ = 1, where ‖ · ‖ denotes
the two-norm. This means that tan(v, z) = ε. It can be readily verified that θ, the Rayleigh quotient of v with respect
to Ap, satisfies |λ − θ| = O(ε). Similarly, η, the Rayleigh quotient of v with respect to Axi , satisfies |µ − η| = O(ε).

If we solve (14) exactly, we get:

v + t = (v∗(A − ηI)−1v)−1 (µ − η)−1(z + ε (µ − η)(A − ηI)−1e).

Since by assumption (A − ηI)−1 is bounded on z⊥, for the updated vector v + t we have:

tan(v + t, z) = O(ε2),

which shows the quadratic convergence.

However, in practice we often solve the correction equations inexactly, which leads us to the next result. Introduce
the notation

r̃ := Axi v − ηv

for the residual associated with Axi (cf. (12) and (14)).

Proposition 6. We make the same assumptions as in Proposition 5, except that we now solve the correction equations
(14) inexactly with a norm reduction:

‖(In − vv∗)(Axi − ηIn) t̃ + r̃‖ ≤ ξ ‖̃r‖, t̃ ⊥ v.
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If JDCOMM converges to (λ, z), the method converges asymptotically linearly, provided that:

ξ < (κ((A − ηI)|z⊥ ))−1 ,

where κ denotes the condition number of a matrix, and (A − ηI)|z⊥ indicates the restriction of the operator as a map
from z⊥ onto itself.

Proof. The assumptions imply that there exists a ξ̃ ≤ ξ and f ⊥ v, ‖f‖ = 1, with:

(In − vv∗)(Axi − ηIn) t = −̃r + ξ̃ ‖̃r‖ f, t ⊥ v.

As in [12, Th. 5.3], it follows that:

‖̃t − t‖ = ξ̃ κ((A − ηI)|z⊥ ) ‖t‖ + O(‖t‖2),

where t is the exact solution of (14). This yields an asymptotically linear convergence.

4. Numerical experiments

4.1. Brief overview
All results in this section are obtained with Matlab version R2007B running on an AMD Dual-Core Opteron

(F2216, 2.4 GHz) machine with 8GB of internal memory. For the numerical experiments in this section we test an
implementation of the new JDCOMM method described in this paper. We compare our method with an implementa-
tion of a conventional Jacobi–Davidson method, denoted by the JD method and described in [11]. Moreover, we add
timings of Matlab’s eigs, based on implicitly restarted Arnoldi [28], with the option “SR” (smallest real part), until
the first real eigenvalue is detected. Also, we compare with another method based on an implicitly restarted Arnoldi
technique: an implementation of the Krylov–Schur [29] method, where in every iteration we select the smallest real
Ritz value.2

4.2. Experiment 1
For the first experiment a polynomial pβ with n = 4, d = 4, and β = 1 is considered:

p1(x1, x2, x3, x4) = (x8
1 + x8

2 + x8
3 + x8

4) + 2.4x4
1x2

3 + 0.5x2
1x2x4 (15)

+ 9.4x1x4
2x3 + 9.7x1x3

2x2
4 − 1.6x3

2x3
4 − 10.4x3x2

4.

Using the involved quotient space R[x1, x2, x3, x4]/I of dimension N = (2d−1)n = 2401, the matrices Ap, Ax1 , Ax2 , Ax3 ,
and Ax4 are constructed explicitly. We are interested in the smallest real eigenvalue and corresponding eigenvector of
the matrix Ap. Table 1 shows the differences in the number of nonzero elements of all matrices involved. The matrices
Axi , i = 1, . . . , 4, are much sparser than the matrix Ap. See also Figure 1 for a representation of the sparsity structure
of the matrices.

Table 1: Sparsity of the 2401 × 2401 matrices Ap and Ax1 , Ax2 , Ax3 , Ax4 : number of nonzeros (nnz), and relative filling (Experiment 1).

Matrix nnz % filled
Ap 182604 3.17
Ax1 9571 0.17
Ax2 8196 0.14
Ax3 9783 0.17
Ax4 8028 0.14

2We sort the Ritz values on increasing real part, and then select the first Ritz value θ with |Im(θ)| ≤ 10−12. If there is none, we select the first
other Ritz value.
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Figure 1: Sparsity structure of the matrices Ap and Axi , i = 1, . . . , 4 (Experiment 1).

In this case, we can compute all the eigenvalues of the matrix Ap using a direct solver and select the smallest real
one as being the global optimum of polynomial p1(x1, x2, x3, x4). Alternatively, we can compute all the eigenvalues
of the matrices Ax1 , Ax2 , Ax3 , and Ax4 and read off the coordinates of the stationary points from the corresponding
eigenvectors. The global optimum of p1(x1, x2, x3, x4) can then be selected from all the stationary points by computing
the function values of them and by picking out the smallest real one. Computing all the eigenvalues (using Matlab’s
eig method) of the matrices Ap, Ax1 , Ax2 , Ax3 , and Ax4 using a direct solver takes 105, 29, 25, 39, and 36 seconds
respectively. The global minimizer we are looking for has value ≈ −616.8 and is attained at the point x1 ≈ −1.956,
x2 ≈ 2.380, x3 ≈ 1.810, and x4 ≈ 2.098.

A more efficient way of computing the global optimum is by using a Jacobi–Davidson type method to compute
only the smallest real eigenvalue of the matrix Ap as described in this paper. Table 2 shows the results of a conventional
JD method, applied to the matrix Ap, and the new JDCOMM method, which also works on Ap but exploits one of
the sparser matrices Axi to solve the correction equation. However, note that we may also use the JDCOMM method
in a matrix-free fashion. The settings used for both the JD and JDCOMM methods are as follows: the tolerance
for the residual norm for the convergence of the eigenpair is 10−6 and the minimal and maximal dimensions of the
search spaces, mindim and maxdim, respectively, are 30 and 75. All correction equations are solved with 10 steps of
GMRES.

The second and third columns of Table 2 contain the number of matrix vector products (denoted by MV) of the
method with the matrix Ap and the matrices Axi , respectively. Thus, these columns represent the number of iterations
of the outer loop and inner loop to solve the correction equation with one of the matrices Axi in the algorithm. The
fourth column shows the number of floating point operations (flops) needed to perform all matrix-vector products.
The number of flops is defined here as the sum of the products of the number of multiplications with the number of
nonzeros of the corresponding matrices. For instance, the JDCOMM method that iterates with the matrix Ax1 in the
inner loop and with the matrix Ap in the outer loop requires 130 iterations with the matrix Ap and 680 iterations with
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Table 2: Comparison between performance of JD and JDCOMM (Experiment 1).

Method MV Ap MV Axi Flops ·108 Time (s)
JD 823 0 1.50 6.0
JDCOMM Ax1 130 680 0.30 2.6
JDCOMM Ax2 130 680 0.29 2.6
JDCOMM Ax3 163 943 0.39 3.8
JDCOMM Ax4 128 658 0.29 2.5

the matrix Ax1 . This takes 130 · 182604 + 680 · 9571 ≈ 0.30 · 108 flops for the matrix-vector products. Finally, column
five shows the total computation time required.

We mention that all methods successfully compute the correct leftmost real eigenvalue ≈ −616.8, corresponding
to the global minimum of the polynomial. The performance of the JDCOMM method for any i is better than that of
the JD method, both in terms of computation time and in required floating point operations.

Figure 2 shows the plot of the norms of the residuals in the eigenvalue equation (at each JD outer step) against
the number of matrix vector products with Ap, which represents the main part of the computational effort. Note that
JDCOMM also carries out matrix-vector products with the Axi matrices, but these are much cheaper.
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Figure 2: Residual norms against matrix vector products with Ap for the JD and JDCOMM methods (Experiment 1).

To reveal the performance of a Krylov based eigenvalue solver on this example, we also apply the Matlab eigs
method, which is an implicitly restarted Arnoldi method [28], to this problem. This method computes the requested
smallest real eigenvalue in 7.4 seconds as the 43rd eigenvalue. The Krylov–Schur method [29] applied to Ap, with
the same minimum and maximum subspace dimensions, computes the desired eigenvalue as 11th in 2.3 seconds. We
note that this is the only example where Krylov–Schur is faster than JDCOMM.

To put the performance of the JDCOMM approach of this paper into perspective, we will briefly discuss the results
of the computation of the global minimum of polynomial (15) by the software packages SOSTOOLS (v2.0), Glop-
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tiPoly (v3.0), and PHCpack (v2.3.66) which employ totally different approaches. SOSTOOLS is a Matlab toolbox for
formulating and solving sum of squares (SOS) problems [24, 25]. This toolbox uses the Matlab solver SeDuMi [30]
to solve the involved semi-definite programs (SDP). GloptiPoly [10] solves a multi variable polynomial optimization
problem by building and solving convex linear matrix inequality (LMI) relaxations of the problem, also using Se-
DuMi. It produces a series of lower bounds which converge to the global optimum of interest [14, 15]. PHCpack
[32] uses polynomial homotopy continuation methods to numerically solve systems of polynomial equations. Note
here that PHCpack is able to compute all the solutions of the system of equations. We have here used the PHCpack
interface to call its functionality from within Matlab [6]. Using default parameter settings, SOSTOOLS, GloptiPoly,
and PHCpack successfully compute the same global optimum, in 6.6, 5.9, and 32.9 seconds, respectively.

4.3. Experiment 2
Let us consider a Minkowski-norm dominated polynomial in 5 variables (n = 5), a maximal total degree of 6

(d = 3) and β = 1:

p1(x1, x2, x3, x4, x5) = (x6
1 + x6

2 + x6
3 + x6

4 + x6
5) + 18x3

1x2x5 + 13.1x2
1x2 (16)

− 5.3x1x2x3
3 − 1.2x1x2x2

4x5 − 5.9x1x2x4 − 8.3x1x3x2
4

− 16.9x1x4x5 − 8.2x3
2x3x5 − 10.1x2x3

4x5 − 1.5x2
3x4x5.

The corresponding quotient space R[x1, x2, x3, x4, x5]/I has dimension N = (2d − 1)n = 3125 and using this, one can
construct the matrices Ap, Ax1 , Ax2 , Ax3 , Ax4 , and Ax5 of dimensions 3125× 3125. Table 3 shows the differences in the
number of nonzero elements of all the involved matrices.

Table 3: Sparsity of the 3125 × 3125 matrices Ap and Ax1 , . . . , Ax5 : number of nonzeros (nnz), and relative filling (Experiment 2).

Matrix nnz % filled
Ap 2566878 26.28
Ax1 163384 1.67
Ax2 168203 1.72
Ax3 165275 1.69
Ax4 155427 1.59
Ax5 166238 1.70

Here the outer tolerance is chosen as 10−8 and the minimal and maximal dimensions of the search spaces as
mindim=40 and maxdim=90. The detected eigenvalue ≈ −1.4266 · 105 is the smallest real eigenvalue of the matrix
Ap, which corresponds to the global minimum of the polynomial. The coordinates of this global minimizer are
x1 ≈ −7.991, x2 ≈ −7.633, x3 ≈ 6.344, x4 ≈ 6.094, and x5 ≈ −7.102.

The times and the number of matrix vector products needed by the JD and JDCOMM methods for the computation
of the leftmost real eigenvalue are summarized in Table 4.

Table 4: Comparison between performance of JD and JDCOMM (Experiment 2).
Method MV Ap MV Axi Flops ·109 Time (s)
JD 5974 0 15.33 237.0
JDCOMM Ax1 177 947 0.61 13.9
JDCOMM Ax2 194 1134 0.69 16.5
JDCOMM Ax3 167 837 0.57 12.7
JDCOMM Ax4 215 1299 0.75 18.9
JDCOMM Ax5 193 1123 0.68 16.4

Also in this example, the JDCOMM methods with the matrices Axi again need less computation time. Matlab’s
eigs did not successfully compute the same smallest real eigenvalue of the matrix Ap. Krylov–Schur uses much more
time: 4623 seconds, but also needs larger subspace dimensions (minimum 51, maximum 101, as the eigenvalue is
detected as 51st) for convergence. To compute the same global minimizer including its location, SOSTOOLS and
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PHCpack need 5.3 and 100 seconds. GloptiPoly indicates after 5.7 seconds that it can not accurately solve this
problem and gives a global minimum close to the wanted one.

4.4. Experiment 3
In the third experiment we consider a polynomial pβ with n = 4, d = 5, and β = 1:

p1(x1, x2, x3, x4) = (x10
1 + x10

2 + x10
3 + x10

4 ) − 11.2x7
1x3 − 1.3x2

1x4
2x4 + 6.7x2

1x2x3 + 12x2
1x3x5

4 (17)

+ 13.4x1x5
2 − 8.8x1x4

2x4 − 3.4x1x2
2x6

3 − 5.1x1x2x5
4 − 1.5x3

2x4
3.

The quotient space R[x1, x2, x3, x4]/I has dimension N = (2d − 1)n = 6561, which yields matrices Ap, Ax1 , Ax2 , Ax3 ,
and Ax4 of dimensions 6561 × 6561. Table 5 shows the differences in the number of nonzero elements of all the
involved matrices; see also Figure 3.

Table 5: Sparsity of the 6561 × 6561 matrices Ap and Ax1 , . . . , Ax4 : number of nonzeros (nnz), and relative filling (Experiment 3).

Matrix nnz % filled
Ap 4056866 9.42
Ax1 96171 0.22
Ax2 93643 0.22
Ax3 101322 0.24
Ax4 123148 0.29

Figure 3: Sparsity structure of the matrices Ap and Axi , i = 1, . . . , 4 (Experiment 3).

Computing all the 6561 eigenvalues of the matrices using the direct method Eig takes 1286, 602, 692, 645, and 628
seconds for the matrices, Ap and Ax1 , . . . , Ax4 , respectively. The results of computing the smallest real eigenvalue of
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the matrix Ap using the JD and JDCOMM methods, are displayed in Table 6. The parameters for the JD methods are
chosen here as 10−8 for the tolerance on the residual norm and mindim=50 and maxdim=90 for the restart parameters
of the minimal and maximal dimensions of the search spaces. Again, all the methods compute the same global

Table 6: Comparison between performance of JD and JDCOMM (Experiment 3).
Method MV Ap MV Axi Flops ·108 Time (s)
JD 1299 0 52.70 107.0
JDCOMM Ax1 174 914 7.94 22.8
JDCOMM Ax2 174 914 7.91 22.5
JDCOMM Ax3 148 628 6.64 17.6
JDCOMM Ax4 185 1035 8.78 25.6

optimum of ≈ −2.959 · 104 and this global optimum is attained at the stationary point with coordinates x1 ≈ 3.029,
x2 ≈ −2.388, x3 ≈ 2.792, and x4 ≈ −2.793. In this case, the JDCOMM methods again perform better than the
conventional JD method in terms of required flops and computation time. Computing the same smallest real eigenvalue
using an Arnoldi based method yields the following: assuming the prior knowledge that one should require eigs to
compute the 16th eigenvalue, it needs 42 seconds to compute this eigenvalue. Krylov–Schur on Ap uses 30 seconds.

SOSTOOLS and PHCpack compute the same global optimum and same location in 49.0 and in, as much as,
9967.2 seconds. GloptiPoly indicates after 37.1 seconds that global optimality can not be assured (status=0) and
returns an inaccurate approximation of the sought eigenvalue.

4.5. Experiment 4

In this experiment we study an optimization problem of the same dimensions as the previous one: n = 4, d = 5,
and β = 1, with the following Minkowski-dominated polynomial:

p1(x1, x2, x3, x4) = (x10
1 + x10

2 + x10
3 + x10

4 ) + 3x5
1x2x3x4 + x5

1x3x2
4 (18)

+ 7x5
1x3x4 − 5x3

1x2
3x4 − 7x2

1x2x2
3x2

4 − 5x1x3
3x3

4 − 5.

The involved quotient space and thus also the matrices Ap, Ax1 , Ax2 , Ax3 , and Ax4 are of dimension 6561 × 6561.
Table 7 shows the differences in the number of nonzero elements between the matrices.

Table 7: Sparsity of the 6561 × 6561 matrices Ap and Ax1 , Ax2 , Ax3 , Ax4 : number of nonzeros (nnz), and relative filling (Experiment 4).

Matrix nnz % filled
Ap 1255231 2.92
Ax1 45717 0.11
Ax2 59756 0.14
Ax3 41129 0.10
Ax4 41712 0.10

The global minimizer, the smallest real eigenvalue of the matrix Ap we are looking for, has value ≈ −206.5
and is located at the point with coordinates x1 ≈ 1.79, x2 ≈ 1.43, x3 ≈ −1.54, and x4 ≈ 1.54, which are the
corresponding eigenvalues of the matrices Ax1 , Ax2 , Ax3 , and Ax4 . The location of these eigenvalues with respect to the
entire eigenvalue spectrum of each matrix is depicted with big red dots in Figure 4.

The smallest real eigenvalue of the matrix Ap is not located very close to the exterior of the spectrum: there are 34
complex valued eigenvalues with a real part smaller than −206.5; see the top-left subfigure of Figure 4.

The smallest real eigenvalue is computed with the JD and JDCOMM method using various search space parame-
ters. The minimal (mindim) and maximal (maxdim) dimensions of the search space are varied between 5 and 100. See
Table 8 for the results. Blanks in this table indicate that the corresponding method with these settings is unable to con-
verge to the requested eigenvalue using a maximum of 1000 outer iterations. Note here that the standard JD method
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Figure 4: Eigenvalue spectra of the matrices Ap and Axi , i = 1, . . . , 4 (Experiment 4).

on the matrix Ap computes the requested eigenvalue only in the case when the maximum search space dimension
maxdim is 100, whereas the JDCOMM method using the matrix Ax2 works in all cases with a superior performance.
Note also that the increase of maxdim from 25 to 50 more than halves the computation time of the JDCOMM method
on the matrix Ax2 .

Table 8 also shows the difficulty of choosing the optimal search space parameters for the JD and JDCOMM
method. We remark that determining the best parameter settings for a certain problem is still very much an open
problem.

Table 8: Comparison between performance of JD and JDCOMM using various search space settings (Experiment 4).
Time (s)

mindim maxdim JD JDCOMM Ax1 JDCOMM Ax2 JDCOMM Ax3 JDCOMM Ax4

5 30 11.6
10 15 10.0
10 25 15.4
10 50 10.7 6.1
10 75 6.8 41.5
10 100 140 10.1 7.7 20.8 20.7

In Table 9 we give the more detailed results (with respect to required matrix vector products and flops) of the
situation where all the eigenvalue methods succeed to compute the requested eigenvalue; mindim is 10 and maxdim
is 100 (corresponds to last row of Table 8).

Figure 5 shows the plot of the norms of the residuals in the eigenvalue equation (at each JD outer step) against the
number of matrix vector products with Ap. All methods compute the same global minimum and the identical location.

We also apply the Matlab eigs method to this problem: it computes the requested smallest real eigenvalue in 58
seconds as the 151st eigenvalue. Krylov–Schur uses much more time: 258 seconds, but also needs larger subspace
dimensions (minimum 16) for convergence.
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Table 9: Details of the performance of JD and JDCOMM with mindim = 10 and maxdim = 100 (Experiment 4).

Method MV Ap MV Axi Flops ·109 Time (s)
JD 5941 0 7.5 140
JDCOMM Ax1 237 1607 0.4 10.1
JDCOMM Ax2 302 2322 0.5 7.6
JDCOMM Ax3 725 6975 1.2 20.8
JDCOMM Ax4 636 5996 1.1 20.7
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Figure 5: Residual norms against matrix vector products with Ap for the JD and JDCOMM methods (Experiment 4).

Comparing the performance of the JDCOMM method in this example with SOSTOOLS, GloptiPoly, and PHC-
pack, we find that these methods compute the same minimizer and require 42, 39, and 141 seconds, respectively.

4.6. Experiment 5
As a second-last experiment, we briefly mention the following problem. Let

p1(x1, x2, x3, x4, x5) = (x6
1 + x6

2 + x6
3 + x6

4 + x6
5) + 5x2

1x2x4x5 (19)

− 7x2
1x2

3 − 6x2
1x3

4 + 14x2
1x2

4 + 4x1x3
2

+ 9x1x2
2 − 4x1x2x5 + 2x1x3

3x4 − 3x2
2x2

5

− x2
2x3

3 + 3x2x2
4 + x2

3x2
5 + 8x3x4x3

5 + 7x4
4 − 5,

with global minimum ≈ −2063.72 assumed in x1 ≈ −3.56, x2 ≈ 3.24, x3 ≈ 3.59, x4 ≈ 3.50, and x5 ≈ −3.92. In
this case, there are 80 (complex) eigenvalues left of the leftmost real eigenvalue of Ap. While, Matlab’s eigs takes
28 seconds to compute this eigenvalue (as the 156th), JDCOMM takes 4.4 seconds with mindim=40, maxdim=50 for
81 MVs with Ap (3274924 nonzeros) and 881 MVs with Ax4 (188083 nonzeros). Here the JD method is unable to
compute the interior eigenvalue −2063.72 of the matrix Ap1 within 1000 iterations. The fact that the eigenvalue 3.50
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of the matrix Ax4 lies in the exterior of the corresponding eigenvalue spectrum explains the superior performance of
the JDCOMM method. Krylov–Schur uses 1237 seconds, also needing larger subspace dimensions (min 86, since the
value is detected as 86th eigenvalue) for convergence. The methods SOSTOOLS, GloptiPoly and PHCpack require
3.4, 5.7 and 69 seconds to come up with the same global minimizer.

4.7. Experiment 6
As a last experiment, we briefly study the following problem. Let

p1(x1, x2, x3) = (x22
1 + x22

2 + x22
3 ) − 10.4x8

1x2x8
3 − 0.1x7

1x2
2x7

3 (20)

− 14.4x4
1x2

2x4
3 − 11.9x4

1x2x6
3 + 0.1x2

1x9
2 + 15.7x2

1x2
2x9

3

− 5.2x2
1x2

2x3 − 12.6x2
1x11

2 x5
3 + 12.3x9

2x6
3 − 9.9x18

3

with global minimum ≈ −75234.02 assumed in x1 ≈ 1.6159, x2 ≈ 1.6416, and x3 ≈ 1.7629. In this case, there
are 42 eigenvalues left of the leftmost real eigenvalue of Ap. The dimensions of the matrices Ap, Ax1 , Ax2 , and Ax3 are
9261×9261. The matrix Ap is filled for 6.43% with non-zero elements and the other matrices for 0.063%, 0.074%, and
0.047%. Computing all the eigenvalues of the matrix Ap using a direct method takes 3864 seconds. The locations of
the wanted eigenvalues with respect to the entire eigenvalue spectrum of the matrices Ap and Ax1 , . . . , Ax3 are depicted
with red dots in Figure 6.
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Figure 6: Eigenvalue spectra of the matrices Ap and Axi , i = 1, . . . , 3 (Experiment 6).

While, Matlab’s eigs takes 255 seconds, JD takes 1256 seconds to compute this minimum. However, the JD-
COMM methods need only 276, 399, and 184 seconds using the sparser matrices Ax1 , Ax2 , and Ax3 with mindim=50,
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maxdim=100; all within 2500 iterations. The total numbers of flops used by the Jacobi–Davidson methods JD and
JDCOMM is 4.23 · 1010, 7.99 · 109, 8.61 · 109, and 5.53 · 109. Krylov–Schur needs 256 seconds. SOSTOOLS and
GloptiPoly both indicate numerical problems after 909 and 880 seconds. PHCpack computes the solution given above
in 255 seconds.

Finally, we present a concise overview of all results in Table 10.

Table 10: Summary of timings of all experiments in seconds. For JDCOMM, the best of the Axi is indicated. An asterisk indicates insufficient
accuracy.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
eig 105 128 1286 1005 138 3864
eigs 7.4 — 42 58 28 255
JD 6.0 237 107 140 — 1256
JDCOMM 2.5 12.7 18 8 4.4 184
Krylov–Schur 2.3 4623 30 258 1237 256
SOSTOOLS 6.6 5.3 49 42 3.4 909
GloptiPoly 5.9 100 37* 39 5.7* 880
PHCpack 32.9 5.7 9967 141 69 255

4.8. The choice of the matrix Axi

In principle, we may take any Axi in the inexact solution of the correction equation (14), since these matrices
all commute with Ap. A natural thought is to select the Axi with the fewest nonzeros, which is also our general
recommendation in the absence of other information. However, in practice, the success of the choice may mainly
depend on how easy or difficult it is to find the correct eigenvalue of Axi . This partly depends on whether or not the
wanted eigenvalue of the matrix Ap is in the interior of the spectrum or more towards the exterior, and whether the
eigenvalue is a part of a cluster of eigenvalues. These properties will often be hard to predict beforehand.

In difficult cases, it may be hard to find interior eigenvalues without the use of a preconditioner. Therefore, if an
approximate value for a coordinate xi of the global minimum is known, this might be very beneficial for the process, as
we may then use a preconditioner based on this target for (14) (see, e.g., [26] for an overview of some preconditioning
techniques). In this case, it is natural to use the corresponding Axi in the inner iterations.

Moreover, we may also select the matrix Axi adaptively: starting with the one having the fewest nonzeros, we may
switch to another matrix Ax j during the calculations if the process stagnates for a longer period.

4.9. Exact versus inexact solutions of the correction equation
A key feature of JD methods is to use inexact solves of the correction equations (13) or (14) to speed up conver-

gence to the required eigenvalue. The general assumption and practice in this field is that an exact solve is neither
necessary nor attractive for matrices of these dimensions because there is no guarantee that the overall convergence
will be faster, with some exceptions, such as the situation with very sparse matrices.

Although we expect that a direct solve of (14) with JDCOMM is not a competitive approach, we have performed
the experiments with the exact approach and the results are as follows: using exact solves JDCOMM computes the
eigenvalue of Experiments 1–4 in 279, 188, 904, 17073 seconds, respectively. For Experiment 5 it is not possible
to compute an eigenvalue in this fashion within 22.000 seconds/2500 iterations. Experiment 6 takes 51232 seconds.
Recall that the fastest computation times for all the experiments with inexact solves with JDCOMM are: 2.5, 12.7,
17.6, 7.6, 4.4, and 184 seconds.

5. Discussion and conclusions

We have designed a new and efficient Jacobi–Davidson eigenvalue solver to use in combination with a method
to compute the global optimum of multivariate Minkowski-norm dominated polynomials pβ(x1, . . . , xn). To compute
this global minimum we use the Stetter–Möller matrix approach, which reformulates the problem as an eigenvalue
problem and which yields a commuting set of nonsymmetric real-valued matrices Ax1 , . . . , Axn , Ap. Using the fact
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that the matrices Axi , associated with monomial multiplication by xi, commute with the target matrix Ap, we have
developed a Jacobi–Davidson type method, denoted by JDCOMM. The JDCOMM method is able to exploit the
generally much sparser matrices Axi in the inner iterations, instead of the matrix Ap, which greatly increases its
efficiency. In this set-up, this method is able to target the smallest real-valued eigenvalue, which corresponds to the
value of the global optimum.

As experiments show, the JDCOMM method computes the smallest real eigenvalue corresponding to the global
minimum of the polynomial, also if its location is not close to the exterior of the spectrum. In this case experiments
show that the proposed method may typically beat standard JD, eigs and a Krylov-Schur implementation (based on
implicitly restarted Arnoldi), and standard polynomial optimization routines such as SOSTOOLS, GloptiPoly and
PHCpack.

An important note is that, unfortunately, we generally can not be sure that we have indeed found the smallest
eigenvalue; this is an inherent issue of iterative methods. For Hermitian eigenvalue problems certain techniques may
be exploited to increase reliability such as finding more eigenvalues than asked for, block versions of the method,
rerunning the method with another starting vector, “locking”, etc. (see, e.g., [17]). A probabilistic approach was
proposed in [4]. Still, these techniques generally do not give a 100% guarantee. For non-Hermitian problems, this
matter is even more unexplored.

Finally, we remark that the proposed method may also be interesting in the situation of changing β (when β → 0;
see Section 2), as we may attempt to reuse information from a previous run. This is left for future research.

Acknowledgments: We thank the referees for their helpful suggestions.
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