
 

Matrix gauge fields and Noether's theorem

Citation for published version (APA):
Graaf, de, J. (2014). Matrix gauge fields and Noether's theorem. (CASA-report; Vol. 1414). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0bca58d3-4f2e-45c8-8f35-727cf279675e


                                        

 

 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 14-14 
May 2014 

 
 

Matrix Gauge fields and Noether’s theorem 
 

by 
 

J. de Graaf 
 

 

 

 

 

 

 

 
 

 

 

Centre for Analysis, Scientific computing and Applications 
Department of Mathematics and Computer Science 
Eindhoven University of Technology 
P.O. Box 513 
5600 MB Eindhoven, The Netherlands 
ISSN: 0926-4507 

 

 

 



 

 

 

 

 

 



Matrix Gauge Fields

and

Noether’s Theorem
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Preface and Summary

These notes are about systems of 1st and 2nd order (non-)linear partial differential equa-
tions which are formed from a Lagrangian density Lψ : RN → C ,

Symbolically : x 7→ Lψ(x) = L(ψ(x) ;∇ψ(x) ;x) ,

by means of the usual Euler-Lagrange variational rituals. The non subscripted L will denote
the ’proto-Lagrangian’, which is a function of a finite number of variables:

L : Cr×c × CNr×c × RN → C .

In this L one has to substitute matrix-valued functions ψ : RN → Cr×c and ∇ψ : RN →
CNr×c for obtaining the Lagrangian density Lψ. In our considerations the role and the
special properties of the proto-Lagrangian L are crucial.
These notes have been triggered by physicist’s considerations: (1) on obtaining the ’classi-
cal’, that is the ’pre-quantized’, wave equations for matter fields from variational principles,
(2) on conservation laws and (3) on ’gauge field extensions’. For the humble mathematical
anthropologist the rituals in physics textbooks have not much changed during the last four
decades. Neither have they become much clearer. Compare e.g. [DM] and [W].
The underlying notes give special attention to the following
• In expressions (=’equations’) for Lagrange densities often both ψ and its hermitean

transposed ψ† appear. Are they meant as independent variables or not? Mostly,
from the context the suggestion arises that ’variation’ of ψ and ’variation’ of ψ† lead
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to the same Euler-Lagrange equations. Why? Our remedy is doubling the matrix
entries in the proto-Lagrangian and thereby making the Lagrangian density explicitly
dependent on both ψ , ψ† and their derivatives: So for Lψ(x) we take expressions like
Lψ(x) = L (ψ(x) ;ψ(x)† ;∇ψ(x) ;∇ψ(x)† ;x). A suitable condition is then that the
Lagrangian functional

L[ψ] =

∫
RN

Lψ(x) dx

only takes real values (Thm 2.4).

• For ’free gauge fields’ the situation is somewhat different. Now the dependent varia-
bles, named Aµ , 1 ≤ µ ≤ N , take their values in some fixed Lie-algebra g ⊂ Cc×c.
Although g mostly contains complex matrices it is a real vector space in interesting
cases. (Note that u(1) = iR is a real vector space!). Therefore it needs a separate
treatment.

• The traditional conservation laws for quantities like energy, momentum, moment of
momentum, . . . , turn out to be based on External Infinitesimal Symmetries of the
proto-Lagrangian. This means the existence of a couple of linear mappings

K : Cr×c → Cr×c ,L : CNr×c → CNr×c , together with an affine mapping

x 7→ −sa+ esAx , such that for all matrices P ∈ Cr×c ,Q ∈ CNr×c and x ∈ RN ,

L(esKP ; esLQ ;−sa+ esAx) = L(P ,Q ;x) + O(s2) .

Of course the presented conservation laws are just special cases of Noether’s Theorem.

• For the construction of gauge theories one needs, in physicist’s terminology, a ’glo-
bal symmetry of the Lagrangian’. To achieve this, an Internal Symmetry of the
proto-Lagrangian L is required here: For some fixed Lie-group G ⊂ Cc×c, the proto-
Lagrangian satisfies

L(PU ; QU ; x) = L(P ; Q ; x) , for all P ∈ Cr×c ,Q ∈ CNr×c , U ∈ G , x ∈ RN .

Roughly speaking, a gauge theory for a Lagrangian based system of PDE’s is some
kind of symmetry preserving extension of the original Lagrangian density with new
(dependent) ’field’-variables x 7→ A(x) = [A1(x), . . . ,AN(x)] on RN added, such that
the original ’quantities’ ψ become subjected to the ’gauge fields’ A and viceversa.
Since about a century, Weyl 1918, it is well known that, given the existence of some
’global symmetry group’ G of L, an extension of type

Lψ,A(x) = L(ψ ;∇ψ + ψ ·A ;x) + G(A ;∇A ;x) ,

is often possible. This extension has to exhibit what physicists call, a ’Local Symme-
try’ : The Lagrangian density remains unaltered if in Lψ,A the quantities ψ and A are,
each in their own way, subjected to group actions taken from Gloc = C∞(RN ;G),
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which is the group of smooth maps RN → G. The added ’gauge fields’ A have to
take their values in the Lie Algebra g of the symmetry group G.

Summarizing, ’locally symmetric’ means, symbolically,

L
(
ψU ;∇(ψU)+(ψU)·(ACU) ;x)+G(ACU ;∇(ACU) ;x

)
=

= L
(
ψ ;∇ψ + ψ ·A ;x

)
+ G

(
A ;∇A ;x

)
, for all U ∈ Gloc .

• The considerations in the underlying notes not only include the standard hyperbolic
evolution equations of pre-quantized fields. Wide classes of parabolic/elliptic systems
turn out to have gauge extensions as well. Note the subtle extra condition (5.14) in
Thm 5.5 which is, besides internal symmetry of the proto-Lagrangian, necessary for
gauge extensions. Its necessity lies in the fact that one has to reconcile the complex
vector space, in which the ψ take their values, with the real vector space g, the Lie-
Algebra. In the standard preludes to quantum field the requirement (5.14) is never
discussed, but manifestly met with.

• These notes do not contain functional analysis or differential geometry. The reader
will find only bare elementary considerations on matrix-valued functions: The co-
lumns of the x 7→ ψ(x) ∈ Cr×c might describe the ’pre-quantized wave functions’ of
individual elementary particles, whereas the ’components’ of x 7→ A(x) ∈ gN , with
g ⊂ Cc×c, might represent the pre-quantized gauge fields. For an elementary and
very readable account on the differential geometrical aspects, see the contributions
3-4 in [JP].
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1 Foretaste: Some gauge-type calculations
For functions Ψ : RN → Cr×c we consider, by way of example, the PDE

Γµ
(
∂µΨ + ΨAµ

)
+MΨ = f, (1.1)

with prescribed matrix valued coefficients

Γµ : RN → Cr×r, Aµ : RN → Cc×c, 1 ≤ µ ≤ N, M : RN → Cr×r,

and prescribed right hand side f : RN → Cr×c. All considered functions are supposed to
be sufficiently smooth. The summation convention for upper and lower indices applies.
In physics each column of Ψ may represent a ’classical-particle wave’. The Aµ may then
represent ’gauge fields’.

Theorem 1.1
Let U , V : RN → Cc×c and suppose them invertible with U−1 , V−1 : RN → Cc×c.
The function Ψ̂ = ΨU : RN → Cr×k, with Ψ any solution of (1.1) is a solution of

Γµ
(
∂µΨ̂ + Ψ̂Âµ

)
+MΨ̂ = f̂ , (1.2)

if and only if we take the new coefficients Âµ = U−1AµU − U−1(∂µU) and f̂ = fU .
In addition we have ˆ̂Aµ = (UV)−1Aµ(UV)− (UV)−1(∂µ(UV)) = V−1ÂµV − V−1(∂µV).

Proof: Multiply (1.1) from the right by U and rearrange. �

In the next Theorem a ’transformation property’ for matrix valued functions is derived.

Theorem 1.2
Let Aµ : RN → Cc×c and Âµ = U−1AµU − U−1(∂µU). Define

Fµν = ∂µAν − ∂νAµ −
(
AµAν −AνAµ

)
. (1.3)

Then
F̂µν = ∂µÂν − ∂νÂµ −

(
ÂµÂν − ÂνÂµ

)
= U−1FµνU . (1.4)

Proof: First note that from ∂µ(U−1U) = ∂µI = 0 it follows that ∂µ(U−1) = −U−1(∂µU)U−1.
Calculate

∂µÂν = ∂µ
(
U−1AνU − U−1(∂νU)

)
=

= U−1(∂µAν)U − U−1(∂µU)U−1AνU + U−1Aν(∂µU) + U−1(∂µU)U−1(∂νU)− U−1(∂µ∂νU).

and

ÂµÂν =
{
U−1AµU − U−1(∂µU)

}{
U−1AνU − U−1(∂νU)

}
=

= U−1
(
AµAν

)
U−
(
U−1AµU

)(
U−1(∂νU)

)
−
(
U−1(∂µU)

)(
U−1AνU

)
+
(
U−1(∂µU)

)(
U−1(∂νU)

)
.

Interchange the indices for two more terms and add according to (1.4). All rubbish terms
cancel out. �

We now look for sesqui-linear conservation laws which hold for suitable classes of Aµ
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Condition 1.3
K : RN → Cr×r, is such that
i: KΓµ = (KΓµ)†, ii: ∂µ(KΓµ) = 0, iii: KM +M †K† = 0.

Here, the dagger † denotes ’Hermitean transposition’.
Note that in the important special case that Γµ = (Γµ)†, Γµ is constant and M = −M †,
the condition is satisfied by K = I, the identity matrix. In the case of the Dirac equation
one could take K = Γ0. Cf. [M], Messiah II pp. 890-899. 1

Theorem 1.4
Let K : RN → Cr×r satisfy Condition 1.3.
Fix some J ∈ Cc×c.
Let Aµ : RN → Cc×c satisfy A†µJ + JAµ = 0, 1 ≤ µ ≤ N .
Let U : RN → Cc×c satisfy U †(x)JU(x) = J , x ∈ RN .
a. For any solution Ψ of (1.1) with f = 0, there is the conservation law

N∑
µ=1

∂µTr
(
J−1[Ψ†KΓµΨ]

)
= 0 . (1.5)

b. This conservation law is a gauge invariant local conservation law.
That means Tr

(
J−1[Ψ̂

†
KΓµΨ̂]

)
= Tr

(
J−1[Ψ†KΓµΨ]

)
, 1 ≤ µ ≤ N .

Proof
a. Take f = 0 in (1.1)and multiply from the left with Ψ†K:

Ψ†KΓµ
(
∂µΨ

)
+ Ψ†KΓµΨAµ + Ψ†KMΨ = 0. (1.6)

The Hermitean transpose reads(
∂µΨ

)†
(KΓµ)†Ψ +A†µΨ†(KΓµ)†Ψ + Ψ†M †K†Ψ = 0. (1.7)

Multiply (1.6) from the right with J−1 and (1.7) from the left with J−1. Add those two
identities and take the trace. Use Condition 1.3 and the properties Tr(AB) = Tr(BA),
Tr(A + B) = Tr(A) + Tr(B) and ∂µTr(A) = Tr(∂µA). The sum of the 1st terms of (1.6),
(1.7) result in

Tr
{
J−1
[
Ψ†(KΓµ)∂µΨ + (∂µΨ)†(KΓµ)†Ψ

]}
=

= ∂µTr
{
J−1Ψ†(KΓµ)Ψ

}
− Tr

{
J−1Ψ†∂µ(KΓµ)Ψ

}
= ∂µTr

{
J−1Ψ†(KΓµ)Ψ

}
.

The sum of the 2nd terms of (1.6), (1.7) is

Tr
{
Ψ†KΓµΨ

(
AµJ−1 + J−1A†µ

)}
= 0.

1In the non-covariant form, i.e. the original form, of Dirac’s equation one has Γ0 = I,Γκ = γ0γκ , 1 ≤
κ ≤ 3 , where the γµ , 0 ≤ µ ≤ 3 are Dirac-Clifford matrices, which make the Dirac equation covariant
proof.
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The sum of the 3rd terms of (1.6), (1.7)

Tr
{
J−1Ψ†(KM +M †K†)Ψ

}
= 0.

Thus, we find (1.5)
b. By putting hats on Ψ and Aµ our considerations can be rephrased for PDE (1.2).
Remind that from U †JU = J it follows that J−1U † = U−1J−1. Finally

Tr
(
J−1U †[Ψ†KΓµΨ]U

)
= Tr

(
U−1J−1[Ψ†KΓµΨ]U

)
= Tr

(
J−1[Ψ†KΓµΨ]

)
.

�

2 Stationary points of complex-valued functionals
In this section we pay some attention to the Euler Lagrange field equations in the com-
plex field case. Most physics textbooks start, in a rather verbose way, with 18th century
variational rituals. However most of them become suddenly very vague, or fall completely
silent, when state functions involving complex variables come into play! In order to get
some feeling for such Lagrangians, we first mention a finite dimensional toy result.

Theorem 2.1
Let

f : Cn × Cn 3 (z;w) 7→ f(z, w) ∈ C

be an analytic function of 2n complex variables with the special property f(z, z?) ∈ R , for
all z ∈ Cn. Here z = x+ iy, z? = x− iy.
a. Consider the function

R n × R n 3 (x; y) 7→ g(x, y) = f(z, z?) = f(x+ iy, x− iy) ∈ R .

The relations between the (real) partial derivatives of g at (x, y) and the (complex) partial
derivatives of f at (z, z?) are

∂g

∂x
(x, y) =

∂f

∂z
(z, z?) +

∂f

∂w
(z, z?)

∂f

∂z
(z, z?) =

1

2

(∂g
∂x

(x, y)− i
∂g

∂y
(x, y)

)
∂g

∂y
(x, y) = i

∂f

∂z
(z, z?)− i

∂f

∂w
(z, z?)

∂f

∂w
(z, z?) =

1

2

(∂g
∂x

(x, y) + i
∂g

∂y
(x, y)

)
(2.1)

∂f

∂w
(z, z?) =

∂f

∂z
(z, z?)
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b. For g to have a stationary point at (a ; b) ∈ R n × R n each one of the following three
conditions is necessary and sufficient

• ∂g

∂x
(a, b) =

∂g

∂y
(a, b) = 0 ,

• ∂f

∂z
(a+ ib, a− ib) = 0 ,

• ∂f

∂w
(a+ ib, a− ib) = ”

∂f

∂z?
(a+ ib, a− ib) ” = 0 .

(2.2)

c. If the special property f(x+ iy, x− iy) ∈ R is relaxed to φ(f(x+ iy, x− iy)) ∈ R for
some non-constant analytic φ : C→ C, then the ’stationary point result’ b. still holds.

Proof: Straightforward calculation �

In Theorem 2.4 an ∞-dimensional generalisation of this result is presented.

A special bookkeeping
In the sequel, for the above variable z, usually a matrix Z ∈ Cr×c will be taken. In order to
explain our bookkeeping and also for some special properties, we now consider an analytic
function of 2 matrix variables

F : Cr×c × Cc×r → C : (Z ; W) 7→ F (Z ,W) . (2.3)

Because of Hartog’s Theorem, see [H] Thm 2.2.8, it is enough to assume analyticity with
respect to each entry of each matrix separately.
The (complex!) partial derivatives of F are gathered in matrices,

(Z; W) 7→ F (1)(Z,W) ∈ Cc×r , (Z; W) 7→ F (2)(Z,W) ∈ Cr×c ,

with [
F (1)

]
ij

=
[∂F
∂Z

]
ij

=
∂F

∂Zji
,

[
F (2)

]
k`

=
[∂F
∂W

]
k`

=
∂F

∂W`k

. (2.4)

In our notation the C-linearization of F at (Z,W), for ε ∈ C , |ε| small, reads

F (Z + εH,W + εK) = F (Z,W) + εTr
{

[F (1)]H}+ εTr
{

[F (2)]K
}

+ O(|ε|2). (2.5)

Notation: Sometimes, in order to avoid excessive use of brackets, it is convenient to write
Tr
{
F (1) : H} instead of Tr

{
[F (1)]H}.

Also, without warning, in proofs sometimes Einstein’s summation convention for repeated
upper and lower indices will be used.
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Next split Z in real and imaginary parts Z = X + iY and introduce the function

F̃ : R r×c × R r×c → C : (X; Y) 7→ F̃ (X ,Y) = F (Z,Z†) = F (X + iY ,X> − iY>).
(2.6)

The R -linearization of F̃ at (X ,Y) for ε ∈ R , |ε| small, can now be written

F̃ (X + εA ,Y + εB) = F̃ (X ,Y) + εTr
{∂F̃
∂X

A + εTr
{∂F̃
∂Y

B
}}

+ O(ε2), (2.7)

with

Tr
{∂F̃
∂X

A
}

= Tr
{

[F (1)]A
}

+ Tr
{

[F (2)]A>
}

= Tr
{(

[F (1)] + [F (2)]>
)
A
}
,

Tr
{∂F̃
∂Y

B
}

= Tr
{

i[F (1)]B
}

+ Tr
{
− i[F (2)]B>

}
= Tr

{
i
(

[F (1)]− [F (2)]>
)
B
}
,

(2.8)

where the matrices X,Y,A,B are all real. The (complex) derivatives F (1) ,F (2) are taken
at (Z,Z†). In the usual (somewhat confusing) notation, this corresponds to

∂F̃

∂X
=
∂F

∂X
=
∂F

∂Z
+
[∂F
∂Z†

]>
,

∂F̃

∂Y
=
∂F

∂Y
= i

∂F

∂Z
− i
[∂F
∂Z†

]>
, (2.9)

and, similarly sloppy,
∂F

∂Z
=

1

2

(∂F
∂X
− i

∂F

∂Y

)
,

[∂F
∂Z†

]>
=

1

2

(∂F
∂X

+ i
∂F

∂Y

)
. (2.10)

If it happens that Z 7→ F (Z,Z†) is R -valued, the results of Theorem (2.1) can be rephrased.

Theorem 2.2
Let, as in (2.3),

F : Cr×c × Cc×r 3 (Z; W) 7→ F (Z,W) ∈ C .

be analytic. Suppose F (Z,Z†) ∈ R , for all Z ∈ Cr×c. Write Z = X + iY. Denote

F̃ : R r×c×R r×c → R : (X; Y) 7→ F̃ (X ,Y) = F (Z,Z†) = F (X + iY ,X>− iY>) ,

• We have
F (1)(Z,Z†) = [F (2)(Z,Z†)]†. (2.11)

Further, for the function F̃ to have a stationary point at (A ; B) ∈ R r×c×R r×c each one
of the following three conditions is necessary and sufficient

• ∂F̃

∂X
(A,B) =

∂F̃

∂Y
(A,B) = 0

• F (1)(A + iB, A> − iB>) = ”
∂F

∂Z
(A + iB, A> − iB>) ” = 0

• F (2)(A + iB, A> − iB>) = ”
∂F

∂Z†
(A + iB, A> − iB>) ” = 0.

(2.12)
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Proof: Is mostly a reformulation of the preceding theorem. It follows directly from (2.9)-
(2.10). �

In order to build the concept of Lagrangian density we need an analytic function, named
proto-Lagrangian,

L : Cr×c × Cc×r × CNr×c × Cc×Nr × RN → C,
(P; Q>; R ; S>; x) 7→ L (P; Q>; R ; S>; x) ,

(2.13)

where
P ∈ Cr×c , R = col

[
R1 , . . . ,RN

]
, Rµ ∈ Cr×c , 1 ≤ µ ≤ N ,

Q> ∈ Cc×r , S> = row
[

S>1 , . . . , S
>
N

]
, S>µ ∈ Cc×r , 1 ≤ µ ≤ N .

Instead of (2.13) it will be convenient sometimes to denote the proto Lagrangian by

L (P; Q>; . . . ,Rµ, . . . ; . . . , S>µ , . . . ; x).

It will be required that L (O; O>; O ; O>; x) = 0.
The (complex) partial derivatives of L , cf. (2.4)-(2.5), with respect to its 2N + 2 matrix
arguments are denoted, respectively,

L (o) , L (o?) , L (1) , . . . ,L (N) , L (1?) , . . . ,L (N?) .

The (real) partial derivatives of L , with respect to the vector variable x is denoted L (∇) .
For any given matrix-valued function Ψ : RN → Cr×c, we define a Lagrangian density
Lψ : RN → C, by substitution of Ψ, its 1st derivatives ∂µΨ = Ψ, µ , 1 ≤ µ ≤ N , and the
hermitean transposed of all those, in L :

x 7→ Lψ(x) = L (Ψ(x); Ψ†(x);∇Ψ(x) ;∇Ψ†(x) ;x ), (2.14)

where
∇Ψ(x) = col

[
∂1Ψ(x) , . . . , ∂NΨ(x)

]
∈ CNr×c ,

∇Ψ†(x) = row
[
∂1Ψ

†(x) , . . . , ∂NΨ†(x)
]
∈ Cc×Nr .

Also the matrix-valued functions

x 7→ [L (µ)
ψ ](x) = [L (µ)](Ψ(x); Ψ†(x);∇Ψ(x) ;∇Ψ†(x) ;x ) ∈ Cc×r,

similarly x 7→ [L (µ?)
ψ ] ∈ Cr×c, and x 7→ L (∇)

ψ ∈ RN , will be used.

On a suitable space of functions Ψ : RN → Cr×c, it often makes sense to define the
Lagrangian functional

Ψ 7→ L(Ψ ,Ψ†) =

∫
RN

L (Ψ(x); Ψ†(x);∇Ψ(x) ;∇Ψ†(x) ;x ) dx ∈ C. (2.15)
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Remark 2.3 The Lagrangian functional L remains the same if we replace L by

L (Ψ; Ψ†;∇Ψ ;∇Ψ†; x) + ∂µw
µ(Ψ,Ψ†, x),

with wµ a vectorfield which vanishes sufficiently rapidly at infinity.
Therefore the functional Ψ 7→ L(Ψ ,Ψ†) is R -valued if

L (Ψ; Ψ†;∇Ψ ;∇Ψ†; x) − L (Ψ; Ψ†;∇Ψ ;∇Ψ†; x) = ∂µW
µ(Ψ,Ψ†, x) ,

i.e. the divergence of a vector field.
Note that L may be R -valued while Lψ is not !!

If we split Ψ into real and imaginary parts: Ψ = ΨRe + iΨIm and Ψ,µ = ΨRe ,µ + iΨIm ,µ ,
the R -directional derivatives with respect to ΨRe and ΨIm of the Lagrangian functional
L are explained by〈
DΨRe

L , A
〉

=
d

dε
L(Ψ + εA , Ψ† + εA>)

∣∣∣
ε=0

=

=
d

dε

∫
RN

L (Ψ(x) + εA(x); Ψ†(x) + εA>(x);∇
(
Ψ(x) + εA(x)

)
;∇
(
Ψ†(x) + εA>(x)

)
;x) dx

∣∣∣
ε=0

,

with A : RN → R r×c , and ε ∈ R , |ε| small.〈
DΨIm

L , B
〉

=
d

dε
L(Ψ + ε iB , Ψ† − ε iB>)

∣∣∣
ε=0

=

=
d

dε

∫
RN

L (Ψ(x) + ε iB(x); Ψ†(x)− ε iB>(x);∇
(
Ψ(x) + ε iB(x)

)
;∇
(
Ψ†(x)− ε iB>(x)

)
;x) dx

∣∣∣
ε=0

,

with B : RN → R r×c , and ε ∈ R , |ε| small.

When calculating the C-directional derivatives DΨL ,DΨ†L , the variables Ψ ,Ψ† are con-
sidered to be independent. These derivatives are supposed to be elements in the (complex)
linear dual of L2(RN ;Cr×c). They are explained by

〈
DΨL , H

〉
=

d

dε
L(Ψ + εH , Ψ†)

∣∣∣
ε=0

=

=
d

dε

∫
RN

L (Ψ(x) + εH(x); Ψ†(x);∇
(
Ψ(x) + εH(x)

)
;∇Ψ† ; x ) dx

∣∣∣
ε=0

,

with H : RN → Cr×c , and ε ∈ C , |ε| small.〈
DΨ†L , K

〉
=

d

dε
L(Ψ , Ψ† + εK)

∣∣∣
ε=0

=

=
d

dε

∫
RN

L (Ψ(x); Ψ†(x) + εK(x);∇Ψ(x) ;∇(Ψ†(x) + εK(x)) ;x ) dx
∣∣∣
ε=0

,

with K : RN → Cc×r , and ε ∈ C , |ε| small.

For H ,K ,A ,B vanishing sufficiently rapidly at ∞ a partial integration leads to the
standard Euler-Lagrange expressions for the functional derivatives of L.
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Theorem 2.4
Assume that L is R -valued. (Cf. Remark 2.3). If Ψ satisfies any one of the following
three Lagrangian systems

DΨL = [L (o)
ψ ]−

N∑
µ=1

∂

∂xµ
[L (µ)

ψ ] = 0 ,

DΨ†L = [L (o?)
ψ ]−

N∑
µ=1

∂

∂xµ
[L (µ?)

ψ ] = 0 ,


DΨRe

L =
∂L

∂ΨRe

−
N∑
µ=1

∂

∂xµ
∂L

∂ΨRe ,µ

= 0 ,

DΨIm
L =

∂L

∂ΨIm

−
N∑
µ=1

∂

∂xµ
∂L

∂ΨIm ,µ

= 0 .

,

(2.16)
with L = L (Ψ(x); Ψ†(x);∇Ψ(x) ;∇Ψ†(x) ;x ) , then it also satisfies the other two.

Proof: With the notation (2.8)-(2.10) we obtain

∂L

∂ΨRe

= L (o) + [L (o?)]> ,
∂L

∂ΨIm

= iL (o) − i[L (o?)]> , (2.17)

and, the other way round,[
L (o?)

]>
=

1

2

( ∂L
∂ΨRe

+ i
∂L

∂ΨIm

)
, L (o) =

1

2

( ∂L
∂ΨRe

− i
∂L

∂ΨIm

)
, (2.18)

and similar expressions with (o) , (o?) replaced by (µ) , (µ?) and Ψ ,ΨRe ,ΨIm replaced
by Ψ,µ ,ΨRe ,µ ,ΨIm ,µ. Then

DΨL = 1
2

(
DΨRe

L − iDΨIm
L
)

[
DΨ†L

]>
= 1

2

(
DΨRe

L+ iDΨIm
L
) DΨRe

L = DΨL+
[
DΨ†L

]>[
DΨIm

L
]>

= iDΨL − i
[
DΨ†L

]> .

If we take into account that the entries of the matrix valued functions DΨRe
L and DΨIm

L
are R -valued, we find [

DΨ†L
]†

=
[
DΨL

]
, (2.19)

from which the theorem easily follows. �

Examples 2.5 (Matter Fields)
a) Let Γµ and M be constant complex matrices with Γµ† = Γµ and M = −M †. Then the
Lagrangian density

Lψ = i Tr
{
Ψ†Γµ∂µΨ + Ψ†MΨ

}
, (2.20)

for Ψ : RN → Cr×c, satisfies the condition of Theorem (2.4) and leads to (1.1) with A = 0.

b) Let Γµ , 1 ≤ µ ≤ N : RN → Cr×r. Let Aµ , 1 ≤ µ ≤ N : RN → Cc×c.
Let M : RN → Cr×r.
Suppose both the existence of K : RN → Cr×r, having inverse K−1(x), for all x ∈ RN ,
and an invertible J ∈ Cc×c with J† = J , such that:
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(KΓµ)† = KΓµ, , 1 ≤ µ ≤ N, A†µ(x)J + JAµ(x) = 0, 1 ≤ µ ≤ N, x ∈ RN ,

and KM +M †K† − ∂µ
(
KΓµ

)
= 0.

Then the Lagrangian density

Lψ = i Tr
{
Ψ†K(Γµ∂µΨ)J−1 + Ψ†K(ΓµΨAµ)J−1 + Ψ†KMΨJ−1

}
, (2.21)

for Ψ : RN → Cr×c satisfies L −L = ∂µw and hence the condition of Theorem (2.4).
It leads to the ’matter-field equation’

Γµ∂µΨ + ΓµΨAµ +MΨ = 0 (2.22)

Indeed. Taking suitable combinations we find respectively

Tr
{
Ψ†KΓµ(∂µΨ)J−1 + J−1(∂µΨ)†(KΓµ)†Ψ)

}
= Tr

{
J−1∂µ[Ψ†KΓµΨ)]

}
+

Tr
{
J−1[Ψ†∂µ(KΓµ)Ψ)]

}
,

Tr
{
Ψ†K(ΓµΨAµ)J−1 + J−1A†µΨ†(KΓµ)†Ψ

}
= Tr

{[
AµJ−1 + J−1A†µ

]
Ψ†(KΓµ)Ψ

}
= 0,

Tr
{
Ψ†KMΨJ−1 + J−1Ψ†M †K†Ψ

}
= Tr

{
J−1Ψ†KMΨ + J−1Ψ†M †K†Ψ

}
=

= Tr
{
J−1
[
Ψ†(KM +M †K†)Ψ

]}
.

Ultimately we find

Lψ −Lψ = ∂µTr
{
J−1[Ψ†KΓµΨ)]

}
= ∂µTr

{
[Ψ†KΓµΨ)]J−1

}
. (2.23)

The Euler-Lagrange equations are

K
(
Γµ∂µΨ + ΓµΨAµ +MΨ

)
J−1 = 0, (2.24)

from which K and J−1 can be cancelled.

c) The Lagrangian density

Lψ = Tr
{

[∂µΨ]†Θµν [∂νΨ] + Ψ†RΨ
}
, (2.25)

with Θµν , R : RN → Cr×r and [Θµν ]† = Θνµ , R† = R, is R -valued. It leads to the 2nd
order equation ∑

µ,ν

∂

∂xµ
Θµν ∂

∂xν
Ψ −RΨ = 0 . (2.26)

d. The Lagrangian density for functions Ψ = col[
ψ1

ψ2
] : RN+1 → C2,

Lψ = Tr
[
Ψ†( i∂tΨ + ∆Ψ + VΨ)

]
, with x 7→ V (x) ∈ C2×2 , V † = V , (2.27)

leads to a R -valued Lagrangian functional L. Indeed

Lψ−Lψ = i∂tTr
[
Ψ†Ψ

]
+∂x1Tr

[
Ψ†(∂x1)Ψ−(∂x1Ψ)†Ψ

]
+. . .+∂xNTr

[
Ψ†(∂xN )Ψ−(∂xNΨ)†Ψ

]
.

The Lψ of (2.27) leads to the Schrödinger equation for a particle with spin 1
2
.
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3 Free Gauge Fields
The ’field variables’ to be considered in this section are smooth functions

A : RN → Cc×c × · · · × Cc×c︸ ︷︷ ︸
N times

: x 7→ A(x) = col[A1(x), . . . ,Aµ(x), . . . ,AN(x)] , (3.1)

with Aµ(x) ∈ g, with g ⊂ Cc×c some fixed real Lie algebra. 2 This means that g is a
R -linear subspace in Cc×c which is not necessarily a C-linear subspace. On g we impose
the usual ’commutator’-Lie product

{Aµ ,Aν} =
(
AµAν − AνAµ

)
.

Important examples are matrix Lie Algebras of type

gJ = {X ∈ Cr×r ∣∣X†J + JX = 0 } , with fixed invertible J ∈ Cr×r .

Note that gJ is always a R -linear subspace in Cr×r, but not necessarily C-linear.
However: {J−1 = J†} ⇒ {X ∈ gJ ⇒ X† ∈ gJ}.
Next, by Pg : Cc×c → g, we denote the real orthogonal projection with respect to the real
inner product X, Y 7→ Re Tr[X†Y ].

Remarks 3.1
Consider Cc×c as a real vector space with standard real inner product X, Y 7→ Re Tr[X†Y ].
By Pg : Cc×c → g, we denote the real orthogonal projection with respect this inner product.

• The Hermitean conjugation map X 7→ X† is R -linear symmetric and orthogonal.

• If ∀X ∈ g : X† ∈ g, in short g† = g, it follows that ∀X ∈ Cc×c : Pg(X
†) = (PgX)†.

• For fixed K,L ∈ Cc×c the mapping X 7→ KX†L is R -linear. Its R -adjoint is Y 7→
LY †K.

• For any fixed invertble J ∈ Cc×c the mapping

QJ : Cc×c → Cc×c : X 7→ QJX =
1

2
(X − J−1X†J) , (3.2)

is a R -linear mapping which reduces to the identity map when restricted to gJ .

• QJ is a R -linear projection on gJ iff J = J†.

• QJ is a R -linear orthogonal projection on gJ if J = J−1 = J†.
In this special case QJ = Pg, with g = gJ .

2In physics textbooks one often denotes iAµ, instead of Aµ, cf. [DM]. For resemblance with Electro-
magnetism, I suppose. Because of u(1) = iR ? To this author the factor i is not convenient in all other
cases.
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• If we modify the standard real inner product on Cc×c to X, Y 7→ Re Tr[X†J2Y ], the
projection QJ is orthogonal iff J = J†.

Proof
• Re Tr[(X†)†Y ] = Re Tr[XY ] = Re Tr[X†(Y †)]. Also Re Tr[(X†)†(Y †)] = Re Tr[(X)†(Y )].
• Since g is supposed to be an invariant subspace for X 7→ X† and the latter is symmetric,
also g⊥ is invariant.
• Re Tr[(KX†L)†Y ] = Re Tr[KX†LY †] = Re Tr[X†(LY †K)] .
• For X ∈ g holds (I −QJ)X = 0 , iff X ∈ g .
• Q2

J = QJ iff J = J† .
•• 1

2
Re Tr[(X − J−1X†J)†J2Y ] = 1

2
Re Tr[X†J2Y ]− 1

2
Re Tr[X†J2(J−1Y †J†2J−1)] .

The 2nd term equals −1
2
Re Tr[X†J2(J−1Y †J ] , for all X, Y , iff J = J† . �

Associated with A, cf. (3.1), we introduce covariant-type partial derivatives
∇A
µ , 1 ≤ µ ≤ N of functions U ∈ C∞(RN :Cc×c) by

∇A
µU = ∂µU − {Aµ ,U} = ∂µU − adAµU . (3.3)

One has the Leibniz-type rules

∇A
µ (UV ) = (∇A

µU)V + U(∇A
µV ) ,

Tr
[
U(∇A

µV )
]

= ∂µTr
[
UV
]
− Tr

[
(∇A

µU)V
]
.

(3.4)

Note that if U ∈ C∞(RN :g) then also ∇A
µU ∈ C∞(RN :g).

Next, as in section 1, for given Aµ,Aν ∈ C∞(RN :g) , 1 ≤ µ, ν ≤ N , define

Fµν = ∂µAν − ∂νAµ − {Aµ ,Aν} ∈ C∞(RN :g) , (3.5)

to which Theorem 1.2 applies.
For the construction of a R -valued Lagrangian density GA for the Gauge field(s) A we again
employ a proto Lagrangian G , which is now an analytic function of N(N − 1) complex-
matrix variables and just smooth in N real variables:

G : Cc×c × · · · × Cc×c︸ ︷︷ ︸
1
2
N(N−1) times

× Cc×c × · · · × Cc×c︸ ︷︷ ︸
1
2
N(N−1) times

× RN → C . (3.6)

The 1st set of entries to this function is labeled by the ordered pairs (µν) , 1 ≤ µ < ν ≤ N .
The 2nd set of entries is labelled by the ordered triple (θρ?) , 1 ≤ θ < ρ ≤ N . We denote

{ . . . , Pµν , . . . ; . . . , Qθρ?, . . . ;x} 7→ G ( . . . Pµν , . . . ; . . . Qθρ?, . . . ;x) ∈ C ,

with 1 ≤ µ < ν ≤ N and 1 ≤ θ < ρ ≤ N . The 3 bunches of variables get their
corresponding partial derivatives denoted by, respectively, cf. (2.4),

G (µν)(. . . , Pθρ, . . . ; . . . , Qθρ?, . . . ;x) , G (θρ?)(. . . , Pθρ, . . . ; . . . , Qθρ?, . . . ;x) , G (∇) .
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Let the Lie algebra g be fixed. On G we put the condition, take Qθρ? = P †θρ,

∀ {Pµν}1≤µ<ν≤N ⊂ g ∀x ∈ RN : G (. . . , Pµν , . . . ; . . . , P
†
θρ, . . . ;x) ∈ R . (3.7)

The Lagrangian density we want to consider is found by replacing Pµν → Fµν , Qθρ? → F †θρ,

x 7→ GA(x) = G ( . . . ,Fµν(x), . . . ; . . . ,F †θρ(x), . . . ;x ) ∈ R . (3.8)

Note that if g = gJ , for some fixed J ∈ Cc×c, we have F †θρ = −JFθρJ−1 , θ < ρ.
As in the previous section, a corresponding useful notation is

x 7→ G (µν)
A (x) = G (µν)( . . . ,Fµν(x), . . . ; . . . ,F †θρ(x), . . . ;x ) ∈ Cc×c. (3.9)

The Lagrangian density GA depends on the field variables x 7→ Aµ(x) , 1 ≤ µ ≤ N , and
their derivatives. All being functions in a vectorspace over R . In the important special
case g = gJ the hermitean conjugate notation of the field variables Aµ need not even occur.
Finally, note that, because of (2.11) and (3.8), we have

G (θρ?)
A (x) = (G (θρ)

A )†(x) , 1 ≤ θ < ρ ≤ N . (3.10)

Notation 3.2 In order to visually simplify the formulae to come, it is useful to extend
the set of functions G (µν)

A , cf.(3.9), to ’full’ labels 1 ≤ µ, ν ≤ N in the following way,

Ĝ (µν)
A =


G (µν)
A if 0 ≤ µ < ν ≤ N , as before,
0 if µ = ν ,

−G (νµ)
A if 0 ≤ ν < µ ≤ N .

(3.11)

Theorem 3.3
Fix a matrix Lie algebra g ⊂ Cc×c. Consider the Lagrangian density GA of (3.8).
A. The Euler-Lagrange equations for the free gauge fields Aµ , 1 ≤ µ ≤ N , with values in
the Lie algebra g ⊂ Cc×c, read

N∑
µ=1

Pg

((
∇A
µ

(
[PgĜ

(µκ?)
A ]†

))†)
= 0 , 1 ≤ κ ≤ N , (3.12)

with ∇A
µ as in (3.3).

B. In the special case g† = g the Euler-Lagrange equations simplify to
N∑
µ=1

(
∇A
µPgĜ

(µκ)
A

)
= 0 , 1 ≤ κ ≤ N . (3.13)

C. If we take g = gJ , with J = J† = J−1, the latter becomes
N∑
µ=1

∇A
µ

(
QJ [Ĝ (µκ)

A ]
)

= 0 , 1 ≤ κ ≤ N , (3.14)

where QJZ = 1
2
Z− 1

2
JZ†J , Z ∈ Cc×c.

15



Proof
A. In order to calculate the (directional) derivatives of the Lagrangian functional G =∫

GA dx with respect to the free gauge fieldsAκ , 1 ≤ κ ≤ N , we first expand a perturbation
of x 7→ Fµν(x) by substitution of the gauge fields x 7→ Aµ(x) + εδµκH(x) , ε ∈ R ,

Fµν;ε,κ =
[
∂µ(Aν + εδνκH)− ∂ν(Aµ + εδµκH)− {Aµ + εδµκH ,Aν + εδνκH}

]
=

=
[
∂µAν − ∂νAµ − {Aµ ,Aν}

]
+ ε δνκ

[
∂µH− {Aµ ,H}

]
− ε δµκ

[
∂νH− {Aν ,H}

]
=

= Fµν + εδνκ∇A
µH− εδµκ∇A

νH .

Consider the expansion

G (. . . ,Fµν;ε,κ , . . . ; . . . ,F †θρ;ε,κ, . . . ;x) − G (. . . ,Fµν , . . . ; . . . ,F †θρ, . . . ;x) =

= ε
∑

1≤µ<ν≤N

Tr
[
[G (µν)
A ][δνκ∇A

µH− δµκ∇A
νH ] +

+ ε
∑

1≤θ<ρ≤N

Tr
[
[G (θρ?)
A ][δρκ∇A

θH− δθκ∇A
ρHκ ]†

]
+ O(ε2) =

=
ε

2

N∑
µ, ν=1

Tr
[
[Ĝ (µν)
A ][δνκ∇A

µH− δµκ∇A
νH ] +

+
ε

2

N∑
θ, ρ=1

Tr
[
[Ĝ (θρ?)
A ][δρκ∇A

θH− δθκ∇A
ρH ]†

]
+ O(ε2) =

=
ε

2

N∑
µ=1

Tr
[
[Ĝ (µκ)
A ][∇A

µH
]
− ε

2

N∑
ν=1

Tr
[
[Ĝ (κν)
A ][∇A

νH ]
]

+

+
ε

2

N∑
θ=1

Tr
[
[Ĝ (θκ?)
A ][∇A

θH
]
− ε

2

N∑
ρ=1

Tr
[
[Ĝ (κρ?)
A ][∇A

ρH ]†
]

+ O(ε2) =

= ε
N∑
µ=1

Tr
[
[Ĝ (µκ)
A ][∇A

µH
]

+ ε

N∑
µ=1

Tr
[
[Ĝ (µκ?)
A ][∇A

µH ]†
]

+ O(ε2) =

= 2εRe
N∑
µ=1

Tr
[
[Ĝ (µκ?)
A ]†[∇A

µH]
]

+ O(ε2) = 2εRe
N∑
µ=1

Tr
[
[PgĜ

(µκ?)
A ]†[∇A

µH]
]

+ O(ε2) =

= −2εRe
N∑
µ=1

Tr
[
∇A
µ

(
[PgĜ

(µκ?)
A ]†

)
H
]

+
N∑
µ=1

∂µ(. . .) + O(ε2) =
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= −2εRe
N∑
µ=1

Tr
[ (

Pg

((
∇A
µ

(
[PgĜ

(µκ?)
A ]†

))†))†
H
]

+
N∑
µ=1

∂µ(. . .) + O(ε2) . (3.15)

In this derivation we used, respectively, the antisymmetry µ↔ ν of [Ĝ (µν)
A ] and [δνκ∇A

µH−
δµκ∇A

νH ], the Leibniz rule(3.4), the fact that Re Tr
[(
. . .
)†H] expresses the real inner

product on Cc×c and Pg the real orthogonal projection on g.
Also properties like Tr[AB] = Tr[BA] , Tr[A{B ,C}] = Tr[{A ,B}C] play a crucial role.
The result now follows by the usual variational practices.
B. If g† = g the real linear mappings {.}† and Pg commute, which greatly simplifies the
result of A.
C. Use Remarks 3.1. �

Example 3.4
A. For convenience we restrict to Lie-algebras with property g† = g. We will consider
general Lagrangians which are (real) quadratic in Fµν . Here, in our summation expressions,
we write µ < ν instead of 1 ≤ µ < ν ≤ N . Start from the proto Lagrangian

G =
∑

µ<ν , θ<ρ

h(µν)(θρ)Tr[PµνQθρ?] with h(µν)(θρ) = h(θρ)(µν) ∈ C . (3.16)

Note ∑
µ<ν,θ<ρ

h(µν)(θρ)Tr[PµνP
†
θρ] ∈ R .

For the derivatives of G we find,

G (µν)(. . . , Pµν , . . . ; . . . , Qθρ?, . . . ) =
∑
α<β

h(µν)(αβ)Qαβ?

G (θρ?)(. . . , Pµν , . . . ; . . . , Qθρ?, . . . ) =
∑
α<β

h(αβ)(θρ)Pαβ

If we take Qθρ? = P †θρ , one easily checks (3.8),

G (µν)†(. . . , Pµν , . . . ; . . . , P
†
θρ, . . . ) =

∑
α<β

h(µν)(αβ)Pαβ =
∑
α<β

h(αβ)(µν)Pαβ = G (µν?) .

The Lagrangian density
GA =

∑
µ<ν, θ<ρ

h(µν)(θρ)Tr[FµνF †θρ] , (3.17)

can now be put in (3.13) to find the Euler-Lagrange equations. Note however, that Pg

cannot be put ’through’ the h(µν)(θρ) if those are non-real numbers!
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So, let us restrict to g† = g ànd h(µν)(θρ) ∈ R . Anti-symmetrize h(µν)(θρ) to full labels:

ĥ(µν)(θρ) =


h(µν)(θρ) if µ < ν , θ < ρ or µ > ν , θ > ρ

0 if µ = ν and/or θ = ρ

−h(νµ)(θρ) if µ > ν , θ < ρ

−h(µν)(ρθ) if µ < ν , θ > ρ

In this special case

Ĝ (µν)
A =

1

2

N∑
α,β=1

ĥ(µν)(αβ)F †αβ ,

and, since F †αβ ∈ g, the E-L-equations (3.13) become

1

2

N∑
α,β=1

N∑
µ=1

ĥ(µκ)(αβ)

(
∂µF †αβ − {Aµ ,F †αβ}

)
= 0 , 1 ≤ κ ≤ N . (3.18)

B. For gauge fields on Minkowski space, with coordinates x0, x1, x2, x3 and
metric [gµν ] = diag(1,−1,−1,−1), one usually takes, cf. [DM],

h(µν)(αβ) = gµαgνβ = (−1)1+δµ0δµα(−1)1+δν0δνβ = (−1)δµ0+δν0δµαδνβ .

Hence
ĥ(µκ)(αβ) = sgn(κ− µ) sgn(β − α) (−1)δµ0+δκ0δµαδκβ .

In this special case the Lagrangian density (3.17) reads

GA =
∑

0≤µ<ν≤3

(−1)δµ0+δν0Tr
[
FµνF †µν

]
. (3.19)

The corresponding Euler-Lagrange equations are

3∑
µ=0

(−1)δµ0+δκ0∇A
µ F †µκ = 0 , 0 ≤ κ ≤ 3 . (3.20)

For dim g = 1 the term adAµF †µκ vanishes. This simplification, viz. ∇A
µ = ∂µ , leads

to standard electromagnetism in Minkowski space. Indeed, if we put A†0 = −Φ and
col[A†1 ,A

†
2 ,A

†
3] = A, then (3.20) turns into Maxwell’s equations ’in potential form’

∂

∂t
divA+ ∆Φ = 0

∂2

∂t2
A−∆A+ grad

( ∂
∂t

Φ + divA
)

= 0
(3.21)
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If the pair A,B satisfies (3.21), then the pair E = −∂ A
∂t
− gradΦ , B = rotA , satisfies the

classical Maxwell equations.

Finally, imposing the ’Lorenz-Gauge’
∂

∂t
Φ + divA = 0, we find the usual wave equations

∂2t Φ−∆Φ = 0 , ∂2tA−∆A = 0 . For more details see Appendix B.

4 Noether Fluxes
’Infinitesimal symmetries’ of the Lagrangian density L lead to local conservation laws for
the solutions of the Euler Lagrange equations. So we are told by Emmy Noether’s famous
theorem. First we have a short look at the needed concepts as formulated within our
special (simple) context.

Definition 4.1 A Conservation Law or Noether Flux is a vectorfield on RN , with com-
ponents V µ

ψ , 1 ≤ µ ≤ N , which arise from a set of functions of Proto-Lagrangian type,
V µ , 1 ≤ µ ≤ N , cf. (2.13), such that for all solutions Ψ of the Euler Lagrangian system,
cf. Th 2.4, we have

N∑
µ=1

∂

∂xµ
V µ
ψ (x) = 0 , where V µ

ψ (x) = V µ(Ψ(x),Ψ†(x),Ψ,µ(x),Ψ†,µ(x), x) . (4.1)

A conservation law can be named ’trivial’ for several reasons: It may happen that for all
solutions Ψ the fluxes V µ

ψ = 0. Another reason for triviality occurs if for all functions
Ψ, whether they are solutions or not, the identity (4.1) is satisfied. For example if the
components V µ

ψ arise from the curl of an arbitrary vector field depending on Ψ.

Two types of symmetries will be considered here: ’Internal symmetries’ and ’External
symmetries’. They can be formulated in terms of the proto-Lagrangian only.
External symmetries regard transformations of the spatial variables x. We restrict to affine
transforms.

Definition 4.2 (Internal symmetries)
A set of linear mappings K ,Lλµ : Cr×c → Cr×c , 1 ≤ λ, µ ≤ N , is said to generate an
internal (local) symmetry of the proto-Lagrangian L if for all P,Qµ ∈ Cr×c, all x ∈ RN ,
and s ∈ R , |s| small, one has

L (esKP; (esKP)†; . . . esL
λ
µQλ . . . ; . . . (e

sLλµQλ)
† . . . ; x) =

= L (P; P†; . . .Qµ . . . ; . . .Q
†
µ . . . ; x) + O(s2) , (4.2)

In many cases the K ,Lλµ are realized by left and/or right multiplication with some fixed
matrices in Cr×r or Cc×c.
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Many times there is a special type of internal symmetry which is related to a linear mapping
A : RN → RN in the ’outside world’,

L (P; P†; . . . (esA)λµQλ . . . ; . . . ((e
sA)λµQλ)

† . . . ; x) =

= L (P; P†; . . .Qµ . . . ; . . .Q
†
µ . . . ; x) + O(s2) , (4.3)

Definition 4.3 (External symmetries)
The affine mapping x 7→ −sa + esAx on RN , where a ∈ RN and A : RN → RN , a linear
mapping, is said to generate an external (local) symmetry of the proto-Lagrangian L if
for all P,Qµ ∈ Cr×c, all x ∈ RN , and s ∈ R , |s| small, one has

L (P; P†; . . .Qµ . . . ; . . . (Qµ)† . . . ; −sa+ esAx) =

= L (P; P†; . . .Qµ . . . ; . . .Q
†
µ . . . ; x) + O(s2) . (4.4)

Remarks 4.4
• The order constant in O(s2) may depend on all independent variables of L .

• If in (4.2)-(4.4) exponents like esK are replaced by I + sK we get equivalent conditi-
ons. However in many practical applications the terms O(s2) are identically zero if
exponentials are used.

• Local symmetry (4.4) implies

L (∇)(P; P†; . . .Qµ . . . ; . . .Q
†
µ . . . ; x) · (Ax− a) = 0 .

We now first consider two types of conservation laws in connection with affine transforma-
tions in space.
For any vector a ∈ RN we define the Translation operator Ta by

TaΨ(x) = Ψ(x− a).

For any matrix A ∈ RN×N we define the dilation operator RA by

RAΨ(x) = Ψ(eAx).

Theorem 4.5
Suppose that, for some K : Cr×c → Cr×c and some a ∈ RN , the proto-Lagrangian L
has internal local symmetry (4.2) with Lλµ = δλµK and external local symmetry (4.4) with
A = O. Then for any solution Ψ of the Euler-Lagrange system one has the conservation
law

N∑
µ=1

∂

∂xµ

{
Tr
[
[L (µ)

ψ ] · (KΨ−aλ∂λΨ) + [L (µ?)
ψ ] · (KΨ−aλ∂λΨ)†

]
+aµLψ

}
= 0 . (4.5)
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Proof: By ∼= we mean equality up to a term O(s2). We study

L
(
esKTsaΨ, TsaΨ

†esK
†
, ∂µ[esKTsaΨ], ∂µ[TsaΨ

†esK
†
], x− sa

)
.

With our conditions it can be written

L (esKΨ(x−sa); (esKΨ(x−sa))†; . . . ∂µe
sKΨ(x−sa) . . . ; . . . ∂µ(esKΨ(x−sa))† . . . ; x−sa) ∼=

∼= L (Ψ(x− sa); Ψ(x− sa)†; . . .Ψ,µ(x− sa) . . . ; . . .Ψ,µ(x− sa)† . . . ; x− sa) =

= Lψ(x− sa) = (TsaLψ)(x) . (4.6)
Differentiate the first line of this at s = 0 and use L (∇) ·a = 0 ,

Tr
{

[L (o)
ψ ](KΨ− aλ∂λΨ) + [L (o?)

ψ ](Ψ†K† − aλ∂λΨ†)+

+[L (µ)
ψ ](K∂µΨ− aλ∂λ∂µΨ) + [L (µ?)

ψ ](∂µΨ
†K† − aλ∂λ∂µΨ†)

}
. (4.7)

If Ψ is a solution we use (2.16) and replace [L (o)
ψ ] by ∂

∂xµ
[L (µ)

ψ ], etc. Now (4.7) can be
written as a divergence, which constitutes the left hand side of (4.5), apart from the last
term inside { }. Together with the derivative aλ∂λLψ = ∂µ(aµLψ) at s = 0 of the final
line of (4.6) we arrive at the wanted conserved current (4.5). �

Example 4.6 Let Γµ andM be constant complex matrices with Γµ† = Γµ andM = −M †.
Then the Lagrangian density

Lψ = Tr
{

iΨ†Γµ∂µΨ + Ψ†MΨ
}
, (4.8)

for Ψ : RN → Cr×c satisfies the condition of Theorem 4.1 for K = O and all a ∈ RN .
The conservation law reads
∂

∂xµ
Tr
{
−aλΨ†Γµ∂λΨ+aµΨ†Γλ∂λΨ+aµΨ†MΨ

}
=

∂

∂xµ
Tr
{
−aλΨ†Γµ∂λΨ

}
= 0. (4.9)

This can be checked directly for solutions of the PDE: Γµ∂µΨ + MΨ = 0. Observe that
in this special case Lψ = 0 for solutions.
Also the Lagrangian of Example (2.5b), with constant matrices K, M, Γµ, Aµ leads to
conservation laws of this type.

Theorem 4.7
Suppose that, for some K : Cr×c → Cr×c and some A ∈ RN×N with TrA = 0, the proto-
Lagrangian L has internal local symmetry (4.2) with Lλµ = K + [A]λµI and external local
symmetry (4.4) with a = 0. Then for any solution Ψ of the Euler-Lagrange system one
has the conservation law

N∑
µ=1

∂

∂xµ

{
Tr
[
[L (µ)

ψ ](KΨ(x) + Aαβ x
β Ψ,α(x)) +

+ [L (µ?)
ψ ](KΨ(x) + Aαβ x

β Ψ,α(x))†
]
− Aµβx

β Lψ

}
= 0 .

(4.10)
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Proof: We study

L
(
esKRsAΨ ; RsAΨ†esK

†
; . . . ∂µ[esKRsAΨ] . . . ; . . . ∂µ[RsAΨ†esK

†
] . . . ; esAx

)
.

With our conditions it can be written,

L (Ψ(esAx); Ψ(esAx)†; . . . ∂µΨ(esAx) . . . ; . . . ∂µΨ(esAx)† . . . ; esAx) ∼=

∼= L (Ψ(esAx); Ψ(esAx)†; . . . (esA)λµΨ,λ(e
sAx) . . . ; . . . (esA)λµΨ,λ(e

sAx)† . . . ; esAx) ∼=
∼= L (Ψ(esAx); Ψ(esAx)†; . . .Ψ,µ(esAx) . . . ; . . .Ψ,µ(esAx)† . . . ; esAx) ∼=
∼= L (Ψ(esAx); Ψ(esAx)†; . . .Ψ,µ(esAx) . . . ; . . .Ψ,µ(esAx)† . . . ; esAx) =

= Lψ(esAx) = (RsALψ)(x). (4.11)

Differentiate the first line of this at s = 0 and use L (∇) ·Ax = 0 :

Tr
{

[L (o)
ψ ](KΨ(x)+Aαβ x

β Ψ,α(x))+[L (µ)
ψ ]∂µ(KΨ(x)+Aαβ x

β Ψ,α(x)) +

+ [L (o?)
ψ ](KΨ(x) + Aαβ x

β Ψ,α(x))† + [L (µ?)
ψ ]∂µ(KΨ(x) + Aαβ x

β Ψ,α(x))†
}
. (4.12)

If Ψ is a solution we use (2.16) and replace [L (o)
ψ ] by ∂

∂xµ
[L (µ)

ψ ], etc. Now (4.12) can
be written as a divergence, which constitutes the left hand side of (4.10), apart from the
last term between { }. Together with the derivative at s = 0 of the final line in (4.11):
Aµβ∂µLψ = ∂µ(Aµβx

β Lψ), use TrA = 0, we arrive at the conserved current (4.10). �

Next we deal with internal symmetries only. They play a crucial role in Gauge theories.
A simple case first.

Theorem 4.8
Suppose that, for some linear K : Cr×c → Cr×c the proto-Lagrangian L satisfies (4.2) with
Lλµ = δλµK. Then for any solution Ψ of the Euler-Lagrange system one has the conservation
law

N∑
µ=1

∂

∂xµ
Tr
{

[L (µ)
ψ ]KΨ + [L (µ?)

ψ ](KΨ)†
}

= 0 , (4.13)

Proof: Calculate the derivative

∂

∂s
L
(
esKΨ, (esKΨ)†, ∂µ[esKΨ], ∂µ[esKΨ]†, x

)
, at s = 0 .

With the notation of (2.5) one finds

Tr
{

[L (o)
ψ ][KΨ] + [L (o?)

ψ ][KΨ]† + [L (µ)
ψ ][KΨ,µ] + [L (µ?)

ψ ][KΨ,µ]†
}

= 0.
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If Ψ happens to be a solution of the Lagrangian system, then with (2.16) this becomes

Tr
{

[
∂

∂xµ
L (µ)
ψ ][KΨ] + [

∂

∂xµ
L (µ?)
ψ ][KΨ]† + [L (µ)

ψ ][KΨ], µ + [L (µ?)
ψ ][KΨ]†, µ

}
= 0,

which leads to the wanted ’conserved current’, since K is supposedly constant. �

In gauge applications K is often realized by a right multiplication by some A ∈ Cc×c. In
such cases KΨ in (4.13) should be replaced by ΨA.

All previous considerations can be applied to matrix gauge fields as well if we replace Ψ
by A = col[. . . ,Aµ, . . .]. Some subtleties occur however because the range of the functions
Aµ is not the whole of Cc×c but some real linear subspace g of it. See Appendix A for more
details.

This section is concluded with conservation laws for non-commutative free gauge fields
which come from the special Lagrangian density (3.8).

Theorem 4.9
Consider the proto-Lagrangian G of (3.6) with property (3.7) and Lagrange density as
denoted in (3.8). For convenience restrict to g = g† only.
a. Suppose G (∇)

A ·a = 0, for some a ∈ RN then we have the conservation law

N∑
µ=1

∂

∂xµ

( N∑
κ=1

Re Tr
[
PgĜ

(µκ)
A : (a ·∇)Aκ

]
− aµGA

)
= 0 . (4.14)

b. If for some S = [Sλµ ] ∈ RN×N , with TrS = 0, the assumptions

G (∇)
A ·Sx = 0 and Re

N∑
µ, ν=1

Tr
[
Ĝ (µν)
A :

N∑
α=1

Sαµ∂αAν
]

= 0 , (4.15)

hold, then we have the conservation law

N∑
µ=1

∂

∂xµ

( N∑
κ=1

2Re Tr
[
PgĜ

(µκ)
A (Sx · ∇)Aκ

]
− (Sx · eµ)GA

)
= 0 . (4.16)

Proof
a. Start from

d

ds
G ( . . . ,Fµν(x− sa), . . . ; . . . ,F †θρ(x− sa), . . . ;x− sa )

∣∣∣
s=0

=
d

ds
GA(x− sa)

∣∣∣
s=0

.

Calculate the left hand side with the chain rule and use the assumptions

−
∑
µ<ν

Tr
[
G (µν)
A : (a · ∇)Fµν

]
−
∑
µ<ν

Tr
[
G (µν?)
A : (a · ∇)F †µν

]
− a · G ∇

A =
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= −2Re
∑
µ<ν

Tr
[
G (µν)
A : (a · ∇)Fµν

]
. (4.17)

With

(a · ∇)Fµν = ∂µ(a · ∇Aν)− ∂ν(a · ∇Aµ)− {Aµ , a · ∇Aν} + {Aν , a · ∇Aµ} ,

and the antisymmetries µ↔ ν, the expression (4.17) becomes, (mind the hatˆ),

−Re
N∑

µ,ν=1

Tr
[
Ĝ (µν)
A : ∂µ(a · ∇Aν)− {Aµ , a · ∇Aν}

]
=

−Re
N∑

µ,ν=1

∂

∂xµ
Tr
[
Ĝ (µν)
A : (a·∇Aν)

]
+ Re

N∑
µ,ν=1

Tr
[
∂µĜ

(µν)
A : (a·∇Aν) + Ĝ (µν)

A :{Aµ , a·∇Aν}
]
.

The 2nd term is equal to

Re
N∑
ν=1

N∑
µ=1

Tr
[
∇A
µPgĜ

(µν)
A : (a · ∇Aν)

]
= 0 ,

because of the E-L-equations (3.13).
The right hand side of the 1st formula of this proof equals −∂µ(aµLA). Hence (4.14).
b. Start from

d

ds
G ( . . . ,Fµν(esSx), . . . ; . . . ,F †θρ(e

sSx), . . . ; esSx )
∣∣∣
s=0

=
d

ds
GA(esSx)

∣∣∣
s=0

.

Calculate the left hand side with the chain rule and use G (∇)
A ·Sx = 0,

2Re
∑
µ<ν

Tr
[
G (µν)
A : (Sx · ∇)Fµν

]
=

= Re
N∑

µ, ν=1

Tr
[
Ĝ (µν)
A : ∂µ

(
(Sx · ∇)Aν

)
− {Aµ , (Sx · ∇)Aν}− Sαµ∂αAν

]
.

Because of the assumption the very final contribution vanishes. Then we proceed as in
part a. �

Note The orthogonality condition (4.15) is inspired by combining Thm 4.7 with Appendix
A. Indeed, another way to obtain the preceding Theorem is to rewrite Thms 4.5, 4.7 in
terms of A with the aid of the table in Appendix A.

Theorem 4.10
Consider the proto-Lagrangian G of (3.6) with property (3.7) and Lagrange density as
denoted in (3.8). For convenience consider g = g† only. Suppose G satisfies

G ( . . . , esBPµνe
−sB, . . . ; . . . , e−sB

†
P †θρe

sB† , . . . ;x) = G ( . . . , Pµν , . . . ; . . . , P
†
θρ, . . . ;x) ,

(4.18)
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for all Pµν ∈ g ⊂ Cc×c , 1 ≤ µ < ν ≤ N , some fixed B ∈ g and (small) s ∈ R .
Then, for any solution x 7→ . . .Aµ(x) . . . of the Lagrangian system of Theorem 3.3 one has
the conservation law

N∑
µ=1

∂

∂xµ
Re
( N∑
ν=1

Tr
[
[Ĝ (µν)
A ] : {B ,Aν}

])
= 0 . (4.19)

Proof In (4.18) replace Pµν → Fµν and Qθρ → F †θρ and put the derivative to s equal to 0
at s = 0,∑
1≤µ<ν≤N

Tr
[
[G (µν)
A ] : (BFµν −FµνB)]

]
+

∑
1≤θ<ρ≤N

Tr
[
[G (θρ?)
A ] : (−B†F †θρ + F †θρB

†)]
]

= 0 .

(4.20)
Due to the anti-symmetry in µ↔ ν of

BFµν −FµνB = ∂µ{B ,Aν}− ∂ν{B ,Aµ}− {B , {Aµ ,Aν}} ,

applying convention (3.11), together with G (µν?)
A = [G (µν)

A ]†, the 1st term of (4.20) equals
the Re -part of

N∑
µ=1

N∑
ν=1

Tr
[
[Ĝ (µν)
A ] : (BFµν −FµνB)

]
=

=
N∑
µ=1

N∑
ν=1

∂

∂xµ
Tr
[
[Ĝ (µν)
A ]{B ,Aν}

]
−

N∑
ν=1

N∑
µ=1

∂

∂xν
Tr
[
[Ĝ (µν)
A ]{B ,Aµ}

]
+

−
N∑
ν=1

N∑
µ=1

Tr
[
[∂µĜ

(µν)
A ]{B ,Aν}

]
+

N∑
µ=1

N∑
ν=1

Tr
[
[∂νĜ

(µν)
A ]{B ,Aµ}

]
+

−
N∑
µ=1

N∑
ν=1

Tr
[
[Ĝ (µν)
A ]{B , {Aµ ,Aν}}

]
. (4.21)

On the 2nd line we apply the E-L-equations (3.13) together with ∂νĜ
(µν)
A = −∂νĜ (νµ)

A .
This together with the 3rd line leads to

−
N∑
ν=1

N∑
µ=1

Tr
[
{Aµ , Ĝ (µν)

A }{B ,Aν}
]

+
N∑
µ=1

N∑
ν=1

Tr
[
{Aν , Ĝ (µν)

A }{B ,Aµ}
]

+

−
N∑
µ=1

N∑
ν=1

Tr
[
[Ĝ (µν)
A ]{B , {Aµ ,Aν}}

]
.

These 3 terms add up to 0 because for each pair µ, ν separately we can apply the identity

−Tr
[
{M ,G} : {B ,N}

]
+ Tr

[
{N ,G} : {B ,M}

]
= Tr

[
G : {B , {M ,N}}

]
, (4.22)
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for matrices G,B,M,N ∈ Cr×r .
(Of course the two terms on the 3rd line of (4.21) are equal. But then, using that equality,
the latter trick no longer works for each index pair µ, ν separately!)
Thus we found out that (4.20) corresponds to (4.19). �

5 Static/Dynamic Gauge Extensions of Lagrangians
A basic ingredient for this section is a (fixed) Lie-groupG ⊂ Cc×c of invertible c×c-matrices.
Its Lie-algebra g is a R -linear subspace of Cc×c. Important examples are (subgroups of)
GJ , for some fixed invertible matrix J ∈ Cc×c. The relevant definitions are as in section 3,

GJ =
{
U ∈ Cc×c ∣∣ U†JU = J

}
, gJ =

{
A ∈ Cc×c ∣∣ A†J + JA = 0

}
. (5.1)

In the discussion to follow suitable subspaces of

the group Gloc = C∞(RN :G) and the R -linear space C∞(RN :g)

will be used. It will be tacitly assumed that the behaviour at∞ of the considered subspaces
is such that our formulae make sense. The C∞-smoothness condition can often be relaxed.
Neither of those assumptions will bother us.
The group action from the right of C∞(RN :G) on C∞(RN :Cr×c) is naturally defined by

C∞(RN :Cr×c)× C∞(RN :G) → C∞(RN :Cr×c) : (ΨU)(x) = Ψ(x)U(x).

For each 1 ≤ µ ≤ N , a group action from the right of C∞(RN : G) on C∞(RN : g) is
defined by

C∞(RN :g)×C∞(RN :G) → C∞(RN :g) : (AµCU)(x) = U−1(x)Aµ(x)U(x)−U−1(x)(∂µU)(x) .

In the proof of Thm 1.2 it has been shown that this action (’gauge transform’)is indeed a
(inhomogeneous) group action. This means

[AµCU ]CV = AµC(UV) . (5.2)

As before, for given Aµ,Aν ∈ C∞(RN :g) , 1 ≤ µ, ν ≤ N , define

Fµν = ∂µAν − ∂νAµ − {Aµ ,Aν} ∈ C∞(RN :g) . (5.3)

Then
U−1FµνU = ∂µ(AνCU)− ∂ν(AµCU)− {(AµCU) , (AνCU)} . (5.4)

Theorem 5.1
Fix a matrix Lie-Group G ⊂ Cc×c. Suppose a proto-Lagrangian L , cf. (2.13), to be
G-invariant, i.e. 3

∀U ∈ G ∀P ∈ Cr×c ∀R ∈ CNr×c ∀x ∈ RN :

3Property (5.5) is named Global Gauge Invariance by physicists. The conclusion of Theorem 5.1 is
named, in physicists’ vernacular, the property of Local Gauge Invariance. In mathematicians’ jargon
however, the usage of ’global’, as opposed to ’local’, usually refers to a more involved (more difficult)
notion.
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L (PU ; U†P† ; RU ; U†R† ; x) = L (P ; P† ; R ; R† ; x) (5.5)

Then, for all x ∈ RN , the statically gauge extended Lagrangian density

Lψ,A(x) = L (Ψ ; Ψ† ; . . . , ∂µΨ + ΨAµ , . . . ; . . . , ∂µΨ
† +A†µΨ† , . . . ;x) , (5.6)

with any Ψ ∈ C∞(RN :Cr×c) , Aµ ∈ C∞(RN :g) , 1 ≤ µ ≤ N ,

equals the statically gauge extended Lagrangian density

LψU , ACU(x) = (5.7)

= L (ΨU ;U †Ψ† ; . . . , ∂µ(ΨU)+(ΨU)(AµCU) , . . . ; . . . , ∂µ(ΨU)†+(AµCU)†(ΨU)†, . . . ;x) ,

with any U ∈ C∞(RN :G) .

In (5.6),(5.7) we wrote Ψ instead of Ψ(x), etc.

Proof Straightforward calculation. �

Example 5.2 Consider the proto-Lagrangian, cf. (2.13),

L (P; Q>; R ; S>; x) = i Tr[Q>(
∑
µ

ΓµRµ +MP)]

with fixed Γµ,M ∈ Cr×r and [Γµ]† = Γµ ,M † = −M . Put G = U(c) ⊂ Cc×c, that is the
unitary group GI , with I the identity matrix. Our proto-Lagrangian is U(c)-invariant

i Tr[U†P†(ΓµRµU +MPU)] = i Tr[P†(ΓµRµ +MP)] , U ∈ U(c) ,

because U† = U−1 and the properties of Tr.
Then the statically extended Lagrangian density

Lψ,A(x) = i Tr[Ψ†
(
Γµ(∂µΨ + ΨAµ) +MΨ

)
] , (5.8)

with any Ψ ∈ C∞(RN :Cr×c) , Aµ ∈ C∞(RN :u(c)) , 1 ≤ µ ≤ N ,

equals the statically extended Lagrangian density

LψU , ACU(x) = i Tr[U †Ψ†
(
Γµ(∂µ(ΨU) + ΨU(U−1AµU − U−1∂µU)) +MΨU

)
] , (5.9)

with any U ∈ C∞(RN :U(c)) .

Note that, if M is replaced by the ’nonlinearity’ iΨΨ†, the argument still holds. �
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Theorem 5.3
• Suppose that the statically gauge extended Lagrange density Lψ,A, cf. (5.6) leads to an
R -valued Langrangian functional Lψ,A. The E-L-equations are

L (o)
ψ,A −

N∑
µ=1

( ∂

∂xµ
[L (µ)

ψ,A ]− [AµL (µ)
ψ,A ]

)
= 0 ,

Pg

(
Ψ†[L (κ)†

ψ,A + L (κ?)
ψ,A ]

)
= 0 , Pg

(Ψ†[L (κ)†
ψ,A −L (κ?)

ψ,A ]

i

)
= 0 , 1 ≤ κ ≤ N .

(5.10)
Here Pg : Cc×c → Cc×c denotes the R -orthogonal projection on g.
• If it happens that Pg( iZ) = iP⊥

g Z , Z ∈ Cc×c, the 2nd line in (5.10) reduces to

Ψ†L (κ)†
ψ,A + (Pg −P⊥

g )Ψ†L (κ?)
ψ,A = 0 , 1 ≤ κ ≤ N . (5.11)

• In the important special case g = gJ , with J = J† = J−1, (5.11) can be written

L (κ)
ψ,AΨ− JΨ†L (κ?)

ψ,A J = 0 , 1 ≤ κ ≤ N . (5.12)

Proof • The perturbed statically extended Lagrangian Lψ,A reads

L (Ψ + εH ; Ψ† + ε?K ; . . . , ∂µ(Ψ + εH) + (Ψ + εH)(Aµ + εκδµκH) , . . . ;

; . . . , ∂µ(Ψ† + ε?K) + (A†µ + εκδµκH†)(Ψ† + ε?K) , . . . ;x)

The results of
d

dε

∣∣
ε=0

,
d

dε?
∣∣
ε?=0

,
d

dεκ

∣∣
εκ=0

, 1 ≤ κ ≤ N , being put to 0 are,

for all functions H ,K ,H ,

Tr
[
L (o) :H

]
+
∑
µ

Tr
[
L (µ) :∂µH

]
+
∑
µ

Tr
[
L (µ) :HAµ

]
= 0 ,

Tr
[
L (o?) :K

]
+
∑
µ

Tr
[
L (µ?) :∂µK

]
+
∑
µ

Tr
[
L (µ?) :A†µK

]
= 0 ,

∑
µ

Tr
[
L (µ) :ΨδµκH

]
+
∑
µ

Tr
[
L (µ?) :δµκH†Ψ†

]
= 0 , 1 ≤ κ ≤ N .

The usual partial integration techniques applied to the first two lines lead to the E-L-
equations for Ψ. Also use Theorem 2.4.
From the final line we arrive at (5.10) because of the trace identity

Tr
[
XZ + YZ†

]
= Re Tr

[(
X† + Y

)†
Z
]
− i Re Tr

[(X† − Y

i

)†
Z
]
. (5.13)

• If for X,Y ∈ Cc×c one has Pg(X + Y) = 0 and P⊥
g (X − Y) = 0, it follows that

X + (Pg −P⊥
g )Y = 0 and also Y + (Pg −P⊥

g )X = 0.
• In this special case (Pg −P⊥

g )Y = −JY†J and Pg[Y
†] = [PgY]†. �
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Examples 5.4
Note that in the E-L-equations (5.10) the Aµ occur only ’algebraically’.
The ∂µA are not involved!
a. For the Lagrangian densities from examples 2.5a and 5.2 the 2nd set of E-L-equations
(5.12) does not depend on A. If we choose g = gJ , the 2nd line reads

Ψ†ΓκΨ = 0 , 1 ≤ κ ≤ N .

It means that Ψ can only take values in a cone in Cr×c. If one of the Γκ = Γκ† is strictly
positive, the only solutions are Ψ = 0, the trivial ones. If a nontrivial choice for Ψ is
possible it can be substituted in the 1st E-L-equation and we are left with an algebraic
equation for the Aκ.
b. For the Lagrangian densities from example 2.5c, again with g = gJ , the 2nd set of
E-L-equations becomes

N∑
µ=1

[∂µΨ + ΨAµ]†ΘµκΨ − J
( N∑
µ=1

[Ψ†Θκµ[∂µΨ + ΨAµ]
)
J = 0 , 1 ≤ κ ≤ N ,

which is algebraic in the Aκ . �

Finally we want to consider the dynamically gauge extended Lagrangian density or
Gauge field extended Lagrangian density of type Lψ,A(x) + GA(x) .

Theorem 5.5
Fix a matrix Liegroup G ⊂ Cc×c with Lie algebra g ⊂ Cc×c and property g† = g.
Fix a proto Lagrangian of type (2.13)

(P; Q>; R ; S>; x) 7→ L (P; Q>; R ; S>; x) ,

leading to a R -valued Lagrangian functional L. Require the special property

∀P ∀R ∀x : Pg

(P†
[
L (κ)†(P; P†; R ; R†; x) − L (κ?)(P; P†; R ; R†; x)

]
i

)
= 0 . (5.14)

Fix a second proto Lagrangian of type (3.6) and such that

∀Rµν ∈ g : G (. . . , Rµν , . . . ; . . . , R
†
θρ, . . . ;x) ∈ R .

Consider the dynamically extended Lagrangian density

Lψ,A(x) + GA(x) = L (Ψ ; Ψ† ; . . . , ∂µΨ + ΨAµ , . . . ; . . . , ∂µΨ
† +A†µΨ† , . . . ;x) +

+ G ( . . . ,Fµν(x), . . . ; . . . ,F †θρ(x), . . . ;x ) (5.15)
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with any Ψ ∈ C∞(RN :Cr×c) , Aµ ∈ C∞(RN :g) , 1 ≤ µ ≤ N .

• The Euler-Lagrange equations are, with L (o)
ψ,A instead of L (o)

ψ,A(x), etc.,

[L (o)
ψ,A]−

N∑
µ=1

( ∂

∂xµ
[L (µ)

ψ,A ]− [AµL (µ)
ψ,A ]

)
= 0 ,

Pg

(
Ψ†[L (κ)†

ψ,A + L (κ?)
ψ,A ]

)
− 2

∑N
µ=1

(
∂µPg[Ĝ

(µκ)
A ]− {Aµ ,Pg[Ĝ

(µκ)
A ]}

)†
= 0 , 1 ≤ κ ≤ N .

(5.16)
Here Pg : Cc×c → Cc×c denotes the R -orthogonal projection on g.
• In the special case g = gJ , with J = J† = J−1, the 2nd line in (5.16) can be rewritten

L (κ)
ψ,AΨ− JΨ†L (κ?)

ψ,A J − 2
N∑
µ=1

(
∂µPg[Ĝ

(µκ)
A ]− {Aµ ,Pg[Ĝ

(µκ)
A ]}

)
= 0 , 1 ≤ κ ≤ N .

(5.17)

Proof • The perturbed gauge supplemented Lagrangian reads

L (Ψ+εH ; Ψ†+ε?K ; . . . , ∂µ(Ψ+εH)+(Ψ+εH)(Aµ+εκδµκH) , . . . ;

; . . . , ∂µ(Ψ†+ε?K)+(A†µ+εκδµκH†)(Ψ†+ε?K) , . . . ;x) +

+ G (. . . ,Fµν,εκ , . . . ; . . . ,F †θρ,εκ, . . . ;x) , 1 ≤ κ ≤ N ,

where

Fµν;ε,κ = Fµν + εκ δνκ

[
∂µH− {Aµ ,H}

]
− εκ δµκ

[
∂νH− {Aν ,H}

]
,

The results of
d

dε

∣∣
ε=0

,
d

dε?
∣∣
ε?=0

d

dεκ

∣∣
εκ=0

, being put to 0 are, respectively,

Tr
[
L (o) :H

]
+
∑
µ

Tr
[
L (µ) :∂µH

]
+
∑
µ

Tr
[
L (µ) :HAµ

]
= 0 ,

Tr
[
L (o?) :K

]
+
∑
µ

Tr
[
L (µ?) :∂µK

]
+
∑
µ

Tr
[
L (µ?) :A†µK

]
= 0 ,

∑
µ

Tr
[
L (µ) :ΨδµκH

]
+
∑
µ

Tr
[
L (µ?) :δµκH†Ψ†

]
+

− 2
∑
µ

Re Tr
[(

Pg∂µĜ
(µκ?)
A + Pg{A†µ ,PgĜ

(µκ?)
A }

)†
[H]
]

= 0 , 1 ≤ κ ≤ N .

With (5.13) the 3rd set of equations can be rewritten

Re Tr
[(

Ψ†([L (κ)]† + [L (κ?)]
)†H] + iRe Tr

[(
iΨ†([L (κ)]† − [L (κ?)]

)†H]+
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− 2
∑
µ

Re Tr
[(

Pg∂µĜ
(µκ)
A − {Aµ ,PgĜ

(µκ)
A }

)† †
[H]
]

= 0 , 1 ≤ κ ≤ N .

Because of assumption (5.14) the iRe Tr-term cancels. The assumption g† = g enables us
to interchange † and Pg.
• Finally (5.17) follows as in the proof of Thm (5.3). �

Finally we want to find the conservation law of ’conserved currents’.

Theorem 5.6
Consider proto-Lagrangians L and G as in Theorem 5.5. Suppose for some B ∈ g they
both have the invariance properties

L (PesB; (PesB)†; . . .Qλe
sB . . . ; . . . (Qλe

sB)† . . . ; x) =

= L (P; P†; . . .Qλ . . . ; . . .Q
†
λ . . . ; x) + O(s2) , (5.18)

G ( . . . , e−sBRµνe
sB, . . . ; . . . , esB

†
R†θρe

−sB† , . . . ;x ) =

= G ( . . . ,Rµν , . . . ; . . . ,R
†
θρ, . . . ;x ) + O(s2) . (5.19)

Then, the solutions to the E-L-system (5.16) satisfy the conservation law

N∑
µ=1

∂

∂xµ

{
Tr
[
L (µ)
ψ,A :ΨB

]
+ Tr

[
L (µ?)
ψ,A :B†Ψ†

]
+

N∑
κ=1

2Re Tr
[
PgĜ

(µκ)
A : {Aκ ,B}

]}
= 0.

(5.20)

Proof Add the Lagrange densities Lψ,A and GA and put to 0 the
d

ds
of the expression

L (ΨesB ; esB
†
Ψ† ; . . . , ∂µΨesB + ΨAµesB , . . . ; . . . , esB

†
∂µΨ

† + esB
†A†µΨ† , . . . ;x) +

+ G ( . . . , e−sBFµνesB, . . . ; . . . , esB
†F †θρe

−sB† , . . . ;x )

One finds,

Tr
[
L (o)
ψ,A :ΨB

]
+
∑
µ

Tr
[
L (µ)
ψ,A :∂µΨB

]
+
∑
µ

Tr
[
L (µ)
ψ,A :ΨAµB

]
+

+ Tr
[
L (o?)
ψ,A :B†Ψ†

]
+
∑
µ

Tr
[
L (µ?)
ψ,A :B†∂µΨ†

]
+
∑
µ

Tr
[
L (µ?)
ψ,A :B†A†µΨ†

]
+

+
∑
µ<ν

Tr
[
G (µν)
A :{Fµν ,B}

]
+
∑
θ<ρ

Tr
[
G (θρ?)
A :{B† ,F †θρ}

]
= 0 . (5.21)
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Rewrite the 3rd term and the 6th term:∑
µ

Tr
[
L (µ)
ψ,A :ΨAµB

]
=
∑
κ

Tr
[
L (κ)
ψ,A :Ψ{Aκ ,B}

]
+
∑
µ

Tr
[
AµL (µ)

ψ,A :ΨB
]
,

∑
µ

Tr
[
L (µ?)
ψ,A : (ΨAµB)†

]
=
∑
κ

Tr
[
L (κ?)
ψ,A : (Ψ{Aκ ,B})†

]
+
∑
µ

Tr
[
A†µL

(µ?)
ψ,A : (ΨB)†

]
.

These identities, together with the 1st E-L-equation of (5.16) turn the first 6 terms of
(5.21) into∑

µ

∂µTr
[
L (µ)
ψ,A :ΨB

]
+
∑
µ

∂µTr
[
L (µ?)
ψ,A :B†Ψ†

]
+

+
∑
κ

Tr
[
L (κ)
ψ,A :Ψ{Aκ ,B}

]
+
∑
κ

Tr
[
L (κ?)
ψ,A : (Ψ{Aκ ,B})†

]
With Trace identity (5.13) and condition (5.14) the latter becomes∑

µ

∂µTr
[
L (µ)
ψ,A :ΨB

]
+
∑
µ

∂µTr
[
L (µ?)
ψ,A :B†Ψ†

]
+

+ 2
N∑

κ, µ=1

Re Tr
[(

Pg∂µĜ
(µκ)
A − {Aµ ,PgĜ

(µκ)
A }

)
: {Aκ ,B}

]
. (5.22)

Next, because of (anti)symmetry, B ∈ g being constant and the definition of Fµν , the final
2 terms of (5.21) equal to

Re
N∑

µ,ν=1

Tr
[
Ĝ (µν)
A :{Fµν ,B}

]
= Re

N∑
µ,ν=1

Tr
[
Ĝ (µν)
A : ∂µ{Aν ,B}

]
+

− Re
N∑

µ, ν=1

Tr
[
Ĝ (µν)
A :∂ν{Aµ ,B}

]
− Re

N∑
µ, ν=1

Tr
[
G (µν)
A :{{Aµ ,Aν} ,B}

]
=

= 2Re
N∑

µ,ν=1

Tr
[
Ĝ (µν)
A : ∂µ{Aν ,B}

]
− Re

N∑
µ, ν=1

Tr
[
G (µν)
A :{{Aµ ,Aν} ,B}

]
.

(5.23)
If we add (5.22), (5.23), we arrive at (5.20), up to a term

− Re
N∑

κ, µ=1

(
2 Tr

[
{Aµ ,PgĜ

(µκ)
A } : {Aκ ,B}

]
+ Tr

[
PgG

(µκ)
A :{{Aµ ,Aκ} ,B}

] )
.
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Split the first term in this summation. It becomes,

− Re
N∑

κ, µ=1

(
Tr
[
{Aµ ,PgĜ

(µκ)
A } : {Aκ ,B}

]
−Tr

[
{Aκ ,PgĜ

(µκ)
A } : {Aµ ,B}

]
+

+ Tr
[
PgG

(µκ)
A :{{Aµ ,Aκ} ,B}

] )
.

Each term in this sum equals 0 because of the trace identity

Tr
[
{M ,G} : {K ,B}

]
− Tr

[
{K ,G} : {M ,B}

]
+ Tr

[
G : {{M ,K} ,B}

]
= 0.

Indeed, note that for any M,G,K,B ∈ Cc×c,

Tr
[

MGKB−GMKB−MGBK + GMBK−KGMB + GKMB +

+ KGBM−GKBM + GMKB−GKMB−GBMK + GBKM
]

= 0 .

�
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A Addendum on Free Gauge Fields
If we put

GA(x) = G ( . . . ,Fµν(x), . . . ; . . . ,F †θρ(x), . . . ;x ) =

= G (. . . , ∂µAν−∂νAµ−{Aµ ,Aν}, . . . ; . . . , ∂µA†ν−∂νA†µ+{A†µ ,A†ν}, . . . ;x ) =

= L (A(x) ; A†(x) ; . . . , ∂µA(x), . . . ; . . . , ∂µA†(x), . . . ; x) , (A.1)

with A = col[. . . ,Aµ, . . .], which now plays the role of Ψ in section 2, we get, in accordance
with our notation in section 2,

L (o)
A = row [ . . . . . . . . . . . . −

∑N
µ=1 {Ĝ (µκ)

A ,Aµ} . . . . . . ]

L (1)
A = row [ 0 G (12)

A G (13)
A . . . G (1κ)

A . . . G (1N)
A ]

L (2)
A = row [ −G (12)

A 0 G (23)
A . . . G (2κ)

A . . . G (2N)
A ]

L (3)
A = row [ −G (13)

A −G (23)
A 0 . . . G (3κ)

A . . . G (3N)
A ]

. . . = row [ . . . . . . . . . . . . . . . . . . . . . ]

L (κ)
A = row [ −G (1κ)

A −G (2κ)
A −G (3κ)

A . . . 0 . . . G (κN)
A ]

. . . = row [ . . . . . . . . . . . . . . . . . . . . . ]

L (N)
A = row [ −G (1N)

A −G (2N)
A −G (3N)

A . . . −G (κN)
A . . . 0 ]

(A.2)
With convention (3.15) the lower N rows of this table simplify to

L (µ)
A = row [. . . , Ĝ (µκ)

A , . . .] , 1 ≤ µ, κ ≤ N . (A.3)

Table (A.2) enables to reduce the proof of Theorem 3.2 to an application of Theorem 2.4.

Because of property (3.7) it is obvious that all ’components’ of L (µ?)
A , 0 ≤ µ ≤ N, are the

hermitean transposed of the components of L (µ)
A , 0 ≤ µ ≤ N . Only for L (o?)

A this is not
immediately obvious. Let us check it in an ad hoc way by calculating the κ-th component
of L (o?)

A . In (A.1) replace {A†µ ,A†ν} by the perturbation {A†µ + εδµκH ,A†ν + εδνκH}.
Now differentiate the result to ε. At ε = 0 it becomes∑

1≤µ<ν≤N

Tr
[
G (µν?)
A : {δµκH ,A†ν} + {A†µ , δνκH}

]
=

=
∑

κ<ν≤N

Tr
[
G (κν?)
A : {H ,A†ν}

]
+

∑
1≤µ<κ

Tr
[
G (µκ?)
A : {A†µ ,H}

]
=

=
∑

κ<ν≤N

Tr
[
{A†ν , G

(κν?)
A } : H

]
+
∑

1≤µ<κ

Tr
[
{G (µκ?)

A ,A†µ} : H
]

= Tr
[ N∑
µ=1

{Ĝ (µκ?)
A ,A†µ} : H

]
.
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Finally one finds [ N∑
µ=1

{Ĝ (µκ?)
A ,A†µ}

]†
= −

N∑
µ=1

{Ĝ (µκ)
A ,Aµ} .

Remark on Thm 4.9-b: If it happens that

G (. . . , esS
λ
µ∂λAν−esS

θ
ν∂θAµ−{Aµ ,Aν}, . . . ; . . . , esS

λ
µ∂λA†ν−esS

θ
ν∂θA†µ+{A†µ ,A†ν}, . . . ;x ) =

= G (. . . , ∂µAν−∂νAµ−{Aµ ,Aν}, . . . ; . . . , ∂µA†ν−∂νA†µ+{A†µ ,A†ν}, . . . ;x ) + O(s2) ,

it follows that
Re
∑
µ<ν

Tr
[
G (µν)
A : Sλµ∂λAν − Sθν∂θAµ

]
= 0 .

B Electromagnetism
Some more details on Example 3.4B:

GA =
∑

0≤µ<ν≤3

(−1)δµ0+δν0Tr
[
F †µνFµν

]
G (01)
A = −F †01 G (02)

A = −F †02 G (03)
A = −F †03 G (12)

A = F †12 G (13)
A = F †13 G (23)

A = F †23
Now (3.19) reads, for 0 ≤ κ ≤ 3,

κ = 0 : ∂1G
(01)
A + ∂2G

(02)
A + ∂3G

(03)
A =

= −∂1(∂0A†1 − ∂1A
†
0)− ∂2(∂0A

†
2 − ∂2A

†
0)− ∂3(∂0A

†
3 − ∂3A

†
0)

= −∂0(∂1A†1 + ∂2A†2 + ∂3A†3) + ∂1∂1A†0 + ∂2∂2A†0 + ∂3∂3A†0
κ = 1 : −∂0G (01)

A + ∂2G
(12)
A + ∂3G

(13)
A =

= ∂0(∂0A†1 − ∂1A
†
0) + ∂2(∂1A†2 − ∂2A

†
1) + ∂3(∂1A†3 − ∂3A

†
1)

= ∂0∂0A†1 + ∂1(−∂0A†0 + ∂1A†1 + ∂2A†2 + ∂3A†3)− (∂1∂1 + ∂2∂2 + ∂3∂3)A†1
κ = 2 : −∂0G (02)

A − ∂1G (12)
A + ∂3G

(23)
A =

= ∂0(∂0A†2 − ∂2A
†
0)− ∂1(∂1A

†
2 − ∂2A

†
1) + ∂3(∂2A†3 − ∂3A

†
2)

= ∂0∂0A†2 + ∂2(−∂0A†0 + ∂1A†1 + ∂2A†2 + ∂3A†3)− (∂1∂1 + ∂2∂2 + ∂3∂3)A†2
κ = 3 : −∂0G (03)

A − ∂1G (13)
A − ∂2G (23)

A =

= ∂0(∂0A†3 − ∂3A
†
0)− ∂1(∂1A

†
3 − ∂3A

†
1)− ∂2(∂2A

†
3 − ∂3A

†
2)

= ∂0∂0A†3 + ∂3(−∂0A†0 + ∂1A†1 + ∂2A†2 + ∂3A†3)− (∂1∂1 + ∂2∂2 + ∂3∂3)A†3
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If we put A†0 = −Φ and col[A†1 ,A
†
2 ,A

†
3] = A we get Maxwell’s equations ’in potential form’

∂

∂t
divA+ ∆Φ = 0

∂2

∂t2
A−∆A+ grad

( ∂
∂t

Φ + divA
)

= 0
(B.1)

If the pair A,B satisfies this pair, then the pair E = −∂ A
∂t
− gradΦ , B = rotA , satisfies

the classical homogeneous Maxwell equations:

∂tB = rot ∂tA = rot(−E − gradΦ) = −rotE

∂tE = ∂t∂tA− grad ∂tΦ = −∆A+ grad divA = rot rotA = rotB

Finally, imposing the ’Lorenz-Gauge’
∂

∂t
Φ + divA = 0, we find the usual wave equations

for Φ and A.
Any solution to the system (B.1) can be reduced to a solution which satisfies the Lorentz
condition, by means of a ’gauge transform’ Φ 7→ Φ− ∂tΛ , A 7→ A− gradΛ, leading to the
same E,B-fields. cf. Jackson [J], p.241.

Similar results can be found for more general free fields governed by

G1 =
∑
µνθ?ρ?

gµθ
?

gνρ
?

Tr
[
JF †θ?ρ?J

−1Fµν
]
.
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