

A framework for computing the greedy spanner

Citation for published version (APA):
Bouts, Q. W., Brink, ten, A. P., & Buchin, K. (2014). A framework for computing the greedy spanner. In 30th
ACM Symposium on Computational Geometry (SoCG, Kyoto, Japan, June 8-11, 2014) (pp. 11-19). Association
for Computing Machinery, Inc. https://doi.org/10.1145/2582112.2582154

DOI:
10.1145/2582112.2582154

Document status and date:
Published: 01/01/2014

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/2582112.2582154
https://doi.org/10.1145/2582112.2582154
https://research.tue.nl/en/publications/68b2e48e-95f4-4c68-96f8-a4e083f311ca

A Framework for Computing the Greedy Spanner∗

Quirijn W. Bouts Alex P. ten Brink Kevin Buchin
Department of Mathematics and Computer Science

TU Eindhoven, Eindhoven, The Netherlands
q.w.bouts@tue.nl k.a.buchin@tue.nl

ABSTRACT
The highest quality geometric spanner (e.g. in terms of
edge count, both in theory and in practice) known to be
computable in polynomial time is the greedy spanner. The
state-of-the-art in computing this spanner are a O(n2 logn)
time, O(n2) space algorithm and a O(n2 log2 n) time, O(n)
space algorithm, as well as the ‘improved greedy’ algorithm,
taking O(n3 logn) time in the worst case and O(n2) space
but being faster in practice thanks to a caching strategy.

We identify why this caching strategy gives speedups in
practice. We formalize this into a framework and give a
general efficiency lemma. From this we obtain many new
time bounds, both on old algorithms and on new algorithms
we introduce in this paper. Interestingly, our bounds are
in terms of the well-separated pair decomposition, a data
structure not actually computed by the caching algorithms.

Specifically, we show that the ‘improved greedy’ algorithm
has a O(n2 logn log Φ) running time (where Φ is the spread
of the point set) and a variation has a O(n2 log2 n) run-
ning time. We give a variation of the linear space state-
of-the-art algorithm and an entirely new algorithm with a
O(n2 logn log Φ) running time, both of which improve its
space usage by a factor O(1/(t− 1)), where t is the dilation
of the spanner.

We present experimental results comparing all the above
algorithms. The experiments show that our new algorithm
is much more space efficient than the existing linear space
algorithm - up to 200 times when using low t - while being
comparable in running time and much easier to implement.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations

∗Q. W. Bouts and K. Buchin are supported by the Nether-
lands Organisation for Scientific Research (NWO) under
project no. 639.023.208 and 612.001.207 respectively.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SoCG’14, June 8–11, 2014, Kyoto, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2594-3/14/06 ...$15.00.

General Terms
Algorithms, Theory

Keywords
computational geometry, spanners, well-separated pair de-
composition

1. INTRODUCTION
We consider graphs on sets of points in Rd whose edges

are weighted according to the Euclidean distance measure.
If the shortest path in the graph between two points is at
most t times larger than the direct Euclidian distance, then
we say that these points have a t-path; if all pairs of points
have t-paths, the graph is a t-spanner.

For any t > 1, we can efficiently find a t-spanner with

O
(

n
(t−1)d−1

)
edges for fixed d [10]. These graphs approx-

imate Euclidean distances while containing only few edges,
making them a useful tool in many areas.

For example, in wireless network design, bounded degree
spanners are used to minimize problems with interference
while maintaining connectivity [7]. Since their introduction
in network design [11] and geometry [5], much research has
been done on spanners (see [8, 10] for surveys). They have
been used as a tool in various geometric and distributed
algorithms since.

Some well-known graphs are t-spanners for fixed t, such as
the Delaunay triangulation. There also exist many construc-
tions parameterizable with arbitrary t > 1 which produce a
t-spanner for that value, each having an advantage over the
other construction methods. Various quality measures of
spanners are: total number of edges, maximum degree, to-
tal weight, computation speed and space usage, scaling to
higher dimensions and diameter. For an in-depth treatise of
many spanner constructions, see the book [10].

The spanner construction resulting in the highest qual-
ity spanners known to be computable in polynomial time is
the greedy spanner [9]. This spanner has maximum degree

O
(

1
(t−1)d−1

)
and total weightO

(
w(MST)

(t−1)2d

)
, where w(MST)

is the weight of a minimal spanning tree on the same in-
put [10]. Also in practice its weight and degree is much
smaller than of other well-known algorithms. Figure 1 shows
the difference between the greedy spanner and the Θ-spanner.

After proving the above qualities of the greedy spanner,
the initial Θ(n3 logn) time, Θ(n2) space algorithm was im-
proved to a Θ(n2 logn) time, Θ(n2) space algorithm [2],

a O(n2 log2 n) time, O
(

n
(t−1)d

)
space algorithm [1] and a

Figure 1: The Greedy-spanner (left) and Θ-graph
(right) on the USA, zoomed in on Florida, using
t = 2 and for the Θ-graph, k = 6 for which it was
recently proven it also achieves a dilation of 2.

O(n3 logn) time, O(n2) space algorithm that works well in
practice [6] (time bounds assume fixed t). While the linear
space algorithm allows us to compute greedy spanners on
much larger sets than before – quadratic space usage limits
us to about 13.000 points – the space usage of the algorithm
is still quite large (especially for low t) and the algorithm re-
quires extensive tweaking to have acceptable performance.

We give two new algorithms for the greedy spanner: a
variation of the known linear space algorithm and an en-

tirely new algorithm. Both use O
(

n
(t−1)d−1

)
space, giving

a O
(

1
t−1

)
improvement over the state-of-the art in theory.

In practice, the entirely new algorithm uses up to a factor
200 less space than the other two algorithms, while being
comparable in speed for high values of t (factor 2 slower for
uniformly distributed points with t = 2) and being faster
for lower values of t (about a factor 9 for t = 1.1 on the
same data), while being by far the simplest to implement.
The variation improves both the speed and space usage of
the original for lower values of t significantly, while staying
comparable for higher t.

However, the time usage of both algorithms is hard to an-
alyze. We prove a O(n2 log2 n) time bound for the variation

and a O(n2 logn log Φ) bound (where Φ =
maxu,v∈V,u 6=v |uv|
minu,v∈V,u 6=v |uv|

is the spread of the point set) for the new algorithm. To get
these time bounds, we prove that the caching used by our
algorithms really makes the algorithm efficient. We present
a generalized argument in this paper in the form of a frame-
work for analyzing greedy spanner algorithms. We use this
framework to obtain time bounds for the Improved-Greedy
algorithm [6] (which also uses a caching strategy) and a vari-
ation on that algorithm for which no cubic worst-cases are
known, explaining its performance in practice and provid-
ing upper bounds that match known lower bounds [2]. The
framework generalizes the (ad-hoc) arguments used to prove
that the state-of-the-art sub-cubic-time algorithms are near-

quadratic.
The framework and the arguments used in the applica-

tion of the framework use the well-separated pair decom-
position [3] extensively. This data structure was already
used in the linear space algorithm and has several known
connections with the greedy spanner [2]. Our framework
adds another connection to this: the time bound we prove
on our algorithm is O

(
n logn

∑m
i=1 |Ai|+ |Bi|

)
(which is

O(n2 logn log Φ)), where m is the number of well-separated
pairs and {Ai, Bi} is the i-th well-separated pair and Ai
and Bi are sets of points. The algorithm itself however does
not compute this well-separated pair decomposition, which
partly explains its low space usage and ease of implementa-
tion, as the WSPD provides neither.

The rest of the paper is organized as follows. In Section 2
we review a number of well-known definitions, algorithms
and results. In Section 3 we give our new algorithm. In Sec-
tion 4 we present our framework, give our efficiency lemma
and give a detailed example application. In Section 5 we
list the results that follow from our framework. Finally, in
Section 6 we present experimental results for all relevant
algorithms.

2. PRELIMINARIES
Let V be a set of points in Rd, and let t ∈ R be the

intended dilation (1 < t). Let G = (V,E) be a graph on V .
For two points u, v ∈ V , we denote the Euclidean distance
between u and v by |uv|, and the distance in G by δG(u, v)
(if the graph G is clear from the context we will simply write
δ(u, v)). We say a pair of points has a t-path if δ(u, v) ≤
t · |uv|. A graph G has dilation t if all pairs of points have
t-paths. In this case we say that G is a t-spanner.

Algorithm GreedySpannerOriginal(V, t)
1. E ← ∅
2. for every pair of distinct points (u, v) in ascending order

of |uv|
3. do if δ(V,E)(u, v) > t · |uv|
4. then add (u, v) to E
5. return E

Consider algorithm GreedySpannerOriginal introduced by
Keil [9]. Given V and t, we define the greedy spanner as the
result of this algorithm with parameters V and t. Obvi-
ously, the greedy spanner is a t-spanner. We also have the
following [10, Corollary 15.1.3]:

Lemma 2.1. The greedy spanner has at most O
(

n
(t−1)d−1

)
edges.

We will now treat the well-separated pair decomposition
(WSPD) as introduced by Callahan and Kosaraju [3, 4]. A
WSPD is parameterized with a separation constant s ∈ R
with s > 0. It is a set of pairs of nonempty subsets of V .
Let m be the number of pairs in a WSPD. We number the
pairs, and denote every pair as {Ai, Bi} (with 1 ≤ i ≤ m).
If u and v are distinct points, then we say that (u, v) is ‘in’ a
well-separated pair {Ai, Bi} if u ∈ Ai and v ∈ Bi, or v ∈ Ai
and u ∈ Bi. A WSPD has the property that for every pair
of distinct points u and v, there is exactly one i such that
(u, v) is in {Ai, Bi}.

For two nonempty subsets Xk and Xl of V , we define
min(Xk, Xl) to be the shortest distance between the two cir-
cles around the bounding boxes ofXk andXl and max(Xk, Xl)

the longest distance between these two circles. Let diam(Xk)
be the diameter of the circle around the bounding box of Xk.
We require that all pairs in a WSPD are s-well-separated,
where s is the separation constant of the WSPD, defined
as min(Ai, Bi) ≥ s ·max(diam(Ai), diam(Bi)) for all i with
1 ≤ i ≤ m.

As shown by Callahan and Kosaraju [3, 4], for any V
and any s > 0, there exists a WSPD (called the canoni-
cal WSPD) of size m = O(nsd) [10, Lemma 9.4.5] that can
be computed in O(n logn+nsd) time and can be represented
in O(sd) space.

We now state three properties of the WSPD. The ref-
erences provided contain statements that are similar but
slightly different from the properties stated here – see [1]
for proofs how the following statements follow from the ref-
erences.

Observation 2.2 (Bose et al. [2, Observation 1]).
For s = 2t

t−1
and for every i with 1 ≤ i ≤ m, the greedy span-

ner includes at most one edge (u, v) with (u, v) in {Ai, Bi}.

Fact 2.3 (Narasimhan and Smid [10, Lemma 11.3.4]).
Let γ and ` be positive real numbers, and let {Ai, Bi} be a
well-separated pair in the WSPD with length `(Ai, Bi) = `.
The number of well-separated pairs {A′i, B′i} such that the
length of the pair is in the interval [`/2, 2`] and at least one
of R(A′i) and R(B′i) is within distance γ` of either R(Ai) or
R(Bi) is less than or equal to csγ = O

(
sd(1 + γs)d

)
.

Fact 2.4 (Callahan [3, Chapter 4.5]).

m∑
i=1

min(|Ai|, |Bi|) = O
(
sdn logn

)
3. A SIMPLE GREEDY SPANNER

ALGORITHM
We observe that algorithm GreedySpannerOriginal repeat-

edly adds the edge (u, v) with minimal |uv| such that (u, v)
does not have a t-path. This reformulation can be exploited
to save on space usage [1].

We will now consider algorithm Lazy-Greedy , that follows
this reformulation much more directly, resulting in a very
simple linear space algorithm. Unfortunately, it becomes
hard to analyze its running time. The algorithm uses a
priority queue Q of pairs of points (u, v) ordered by |uv|.

It is clear that the space usage of this algorithm is

O
(

n
(t−1)d−1

)
(due to the size of E), and that O(n3 logn) is

an upper bound on its time complexity, if we implement line
8 by doing a single Dijkstra computation sourced at a. By
the reformulation above, it is also clear that the algorithm
is correct.

However, it is unclear whether the algorithm becomes
faster than O(n3 logn) through the use of the ‘caching’ in-
volved by storing results in Q and marking points as clean
or dirty. The experiments we have performed suggest the
running time of the algorithm is near-quadratic instead of
cubic. However, if for given n we take V = {2i | 1 ≤
i ≤ n}, it is easy to see that the running time of the al-
gorithm is Ω(n3 logn). This situation is the same as the one
for the Improved Greedy algorithm introduced by Farshi
and Godmundsson [6]: that algorithm is also approximately
quadratic in all experiments, but, as proven by Bose et al. [2],

has a cubic lower bound on certain inputs such as {2i | 1 ≤
i ≤ n}.

Algorithm Lazy-Greedy(V, t)
1. E ← ∅
2. Q← {(a, b) | b is the nearest neighbor of a}
3. for a ∈ V
4. do Mark a as clean
5. while Q is not empty
6. do Extract (a, b) = min(Q) from Q
7. while a is marked as dirty
8. do Compute the nearest neighbor without

t-path k for a
9. if such a k exists
10. then Insert (a, k) into Q
11. Mark a as clean
12. Extract (a, b) = min(Q) from Q
13. Add (a, b) to E and to Q
14. for (a, b) ∈ Q
15. do Mark a as dirty
16. return E

We will explain the discrepancy between the experimental
results and the theoretical results by proving the following.
For a given set of points V we define the spread of V as

Φ(V) =
maxu,v∈V,u 6=v |uv|
minu,v∈V,u 6=v |uv|

.

Fact 3.1. Algorithm Lazy-Greedy and the Improved
Greedy algorithm run in O(n2 log(n) log(Φ)) time, where Φ
is the spread of the input.

In experiments, Φ is typically not large, while it is expo-
nential in n for {2i | 1 ≤ i ≤ n}. If, for a family of inputs
Vi, Φ(Vi) = O(p(|Vi|)) where p is a polynomial, we say this
family has polynomial spread. On such families, the running
time of these two algorithms becomes O(n2 log2 n). Poly-
nomial spread is a very weak assumption that is satisfied
by nearly all realistic data sets, explaining the speed of the
above algorithm in experiments and showing that this speed
is not an ‘accident’ of the tested data sets.

4. THE GREEDY SPANNER ALGORITHM
FRAMEWORK

We first give some definitions and properties. We then
define the type of algorithm that will fit our framework and
give the main efficiency lemma. Finally, we give a detailed
example application of the theorem.

4.1 Partition Functions
Let (a, b), (u, v) ∈ V 2 be two pairs of points and let c ∈ R.

We say that (u, v) is c-close-by to (a, b) if |au|, |bv| ≤ c|ab| or
if |av|, |bu| ≤ c|ab|. Obviously, if (u, v) ∈ E lies on a t-path
from a to b, then (u, v) is t-close-by to (a, b). We say that a
set X ⊆ V 2 of pairs of points is (c, cl, cu)-regular if we can
pick (a, b) ∈ X so that for all (u, v) ∈ X, (u, v) is c-close-by
to (a, b) and cl|ab| ≤ |uv| ≤ cu|ab|.

Lemma 4.1. Given a (c, cl, cu)-regular set X and cd ∈
R+, the number of greedy spanner edges (u, v) that are t +
cd-close-by to some (a, b) ∈ X and with min(a,b)∈X |ab| ≤
|uv| ≤ max(a,b)∈X |ab|, is O

(
cdl (1 + c+ cd)

d 1
(t−1)2d

)
.

Proof. We first note that all such greedy spanner edges
are c+ t+ cd-close-by to the (a, b) mandated by the c-close-
byness of X. Using Observation 2.2 and Fact 2.3, we can
bound the number such greedy spanner edges of length lg
with |ab|/2 ≤ lg ≤ 2|ab| by csγ with s = 2t

t−1
and γ =

c + t + cd. For edges with 22i−1|ab| ≤ lg ≤ 22i+1|ab| for
i ≥ 1, we can take γ = c+t+cd

2i
and ` = 22i|ab|. For edges

with 22i−1|ab| ≤ lg ≤ 22i+1|ab| for i ≤ −1, we can cover the
area at most c+t+cd away from a or b by 2−2id balls of radius
(c + t)22id and invoke Fact 2.3 with ` = |ab|22id and γ =
c+t+cd. This geometric sum has a value proportional to the

case i = b 1+log2 cl
2
c, which is O

(
cdl (1 + c+ cd)

d 1
(t−1)2d

)
.

We define a partition function P as a function taking a
finite V ⊆ Rd and returning some subset of P(V 2) (where P
is the power set operator). We require

⋃
X∈P (V)X = V 2 and

for all X,Y ∈ P (V), X ∩Y = ∅. We say that P is (c, cl, cu)-
regular if for all V and all X ∈ P (V), X is (c, cl, cu)-regular.

We define an example WPSD-based partition function.
Given V , let {Ai, Bi} be a WSPD, then define

PW (V) =

{{(u, v) | (u ∈ Ai ∧ v ∈ Bi) ∨ (u ∈ Bi ∧ v ∈ Ai)} | 1 ≤ i ≤ m}

Then PW is (1
s
, 1, 1 + 2

s
)-regular [1]. We call PW the well-

separated pair partition function.

4.2 Greedy Spanner Algorithms
We consider a greedy spanner algorithm A, which has a

subroutine (or some other contiguously executed operation)
O whose efficiency we are interested in, for example line 8
of algorithm Lazy-Greedy .

We say that A is incremental if it finds the edges of the
greedy spanner in ascending order of length, and so builds
up a graph G on the input V . Given an operation O and
a partition function P , we say a function f is a partition
association if it maps executions of O on a point set V to
an element of P (V).

We now define (cd, cs)-sporadicness for an operation O
of an incremental algorithm A with respect to a partition
function P and a partition association f for O and P . Let
V be an input and let X ∈ P (V). Let EX be the set of
executions of O that are mapped to X by f . We require
that there exists a EX ′ ⊆ EX with |EX ′| + cs ≥ |EX| for
which the following holds. We order EX ′ = {e1, . . . , e|EX′|}
in ascending order according to the number of steps taken by
A since it started on V until it started with that execution ei.
Let 1 ≤ i < |EX ′| be an integer and let xi the first greedy
spanner edge found after ei+1. Our requirement is that there
exists some u, v ∈ V so that (u, v) is cd-close to some pair
(a, b) ∈ X, |uv| ≤ |xi|, and the shortest distance between u
and v in the graph that A is building up at the time that ei
was executed is different from the shortest distance between
u and v in the graph at the time that ei+1 is executed.

Main Lemma 4.2. Let A be an incremental algorithm with
an operation O, a (c, cl, cu)-regular partition function P and
a partition association f . If O is (cd, cs)-sporadic with re-
spect to P and f , then for any input V and X ∈ P (V),
the number of operations that f associates with X is cs +

O
(
cdl (1 + c+ cd)

d 1
(t−1)2d

)
. Furthermore, if T (X) is an up-

per bound on the time taken by any execution of O associated

with X by f , then the total time taken by O is

O
((
cs + cdl (1 + c+ cd)

d 1
(t−1)2d

)∑
X∈P (V) T (X)

)
.

Proof. We use the same variables as used in the defini-
tion of sporadicness. By definition (and because edges only
get added) we have that (u, v) gained a shorter path be-
tween two executions of O. As |uv| ≤ |xi|, we have that
(u, v) has a t-path just before ei+1 is executed, by defi-
nition of the greedy spanner. It gained this new t-path
just after ei, so some greedy spanner edge was added t-
close-by to (u, v). Lemma 4.1 then gives us that |EX ′| =

O
(
cdl (1 + c+ cd)

d 1
(t−1)2d

)
. By |EX ′|+cs ≥ |EX| the lemma

follows.

4.3 Example application
We now apply our framework to the algorithm Lazy-Greedy .

Obviously, the algorithm is incremental. The operation O
that we will investigate is the Dijkstra computation of line 8.

We first define our partition function PSW , called the
sourced well-separated pair partition function, as follows. Given
an input V , let {Ai, Bi} be the canonical WSPD. For v ∈ V
we define Xv = {i | 1 ≤ i ≤ m, v ∈ Ai} and Yv = {i | 1 ≤
i ≤ m, v ∈ Bi} We then define

PSW (V) ={{(u, v) | v ∈ Bi} | u ∈ V, i ∈ Xv} ∪
{{(u, v) | v ∈ Ai} | u ∈ V, i ∈ Yv}

Note that PSW is (1
s
, 1, 1 + 2

s
)-regular [1]. We will now give

a useful property:

Lemma 4.3.
∑m
i=1 |Ai|+ |Bi| =

∑
v∈V |Xv|+ |Yv| =

O(sdn log Φ)

Proof.
∑m
i=1 |Ai|+ |Bi| =

∑
v∈V |Xv|+ |Yv| is obvious.

We partition Xv into sets Xv,1, . . . , Xv,r as follows. We
put the (index of the) well-separated pair with the smallest
length into Xv,1, as well as all pairs at most twice as long.
We repeat this for the remaining pairs for Xv,2, . . . , Xv,r
(add the pair with smallest length of the remaining pairs
to Xv,2, etc) until we run out of pairs. By construction,
r = O(log Φ), and we have |Xv,i| = O(sd) by Fact 2.3 us-
ing γ = O

(
1
s

)
(an upper bound on the diameter of the

bounding box of a well-separated set divided by its length).
Analogously, |Yv,i| = O(sd). The lemma follows.

We define a partition association function f as follows.
We execute line 8 at a source a, resulting in either k or the
result that a has a t-path to all other points. In the first
case, we associate the execution with the X ∈ PSW (V) with
(a, k) ∈ X. In the second case, we associate the execution
with the X ∈ PSW (V) with (a, b) ∈ X, where b was the
previous key of a.

We will now show that O is sporadic with respect to PSW
and f . We will use the variables from the definition of spo-
radicness. We ignore executions (that is, filter them from
EX so they won’t end up in EX ′) that fall into the ‘second
case’ of our definition of f . Picking cs = 1 then suffices, as
we ignore at most 1 execution per X ∈ PSW (V). Now we
consider an execution ei (1 ≤ i < |EX ′|).

Let (a, k) be the pair computed by ei and (a, k′) the pair
computed by ei+1. We have k 6= k′, for if they are equal,
then the (a, b) extracted from Q just before ei+1 must have
b = k. This means no other element could have been ex-
tracted from Q in between and as a was cleaned after ei. It

follows that (a, k) was added as an edge, giving it a t-path.
Line 8 will therefore never again output it, contradicting
k = k′.

We therefore choose (u, v) = (a, k) for the definition. As
(a, k) ∈ X, we can pick cd = 1 to satisfy that (u, v) needs
to be cd-close to some element of X. |uv| ≤ |xi| is satis-
fied as the elements extracted from Q have monotonically
increasing length. Lastly, as k 6= k′, (a, k) must have a t-
path just after ei+1, while it did not have one just before ei,
so its network distance has changed. This shows that O is
(1, 1)-sporadic.

Setting T (X) = O
(
n logn+ n

(t−1)d−1

)
, Lemma 4.2 then

gives us that the running time of O is

O

 1

(t− 1)2d

∑
X∈PSW (V)

T (X)

 =

O

((
n logn+

n

(t− 1)d−1

)
1

(t− 1)2d

∑
v∈V

|Xv|+ |Yv|

)
=

O

(
n2 logn log Φ

1

(t− 1)3d
+ n2 log Φ

1

(t− 1)4d−1

)

Theorem 4.4. Algorithm Lazy-Greedy computes the greedy

spanner in O
(
n2 logn log Φ 1

(t−1)3d
+ n2 log Φ 1

(t−1)4d−1

)
time

while using O
(

n
(t−1)d−1

)
space.

5. MORE APPLICATIONS OF THE
FRAMEWORK

5.1 Improved-Greedy
We will now apply our framework to obtain time bounds

on Algorithm Improved-Greedy and a variant of it, and on
a variant of [1]. It was originally conjectured [6] that this
algorithm had a running time of O(n2 logn). An example
forcing a Ω(n3 logn) running time is {2i | 1 ≤ i ≤ n} [2].
Our framework gives the following:

Theorem 5.1. Algorithm Improved-Greedy computes the
greedy spanner in

O
(
n2 logn log Φ 1

(t−1)3d
+ n2 log Φ 1

(t−1)4d−1

)
time and O(n2)

space.

Proof. We use PSW as our partition function. We asso-
ciate executions of line 8 with the X ∈ PSW (V) such that
(u, v) ∈ X (with u, v the variables of the algorithm). This
operation is (1, 1)-sporadic as follows. We exclude from EX
the (u, v) pairs that end up being greedy spanner edges. Let
ei be an execution of line 8. ei sets d[u, v] to the network dis-
tance of (u, v). Then, when ei+1 is executed, d[u, v] > t·|uv|,
but once d[u, v] has been updated to the current network dis-
tance by ei+1, d[u, v] ≤ t·|uv| (for ei+1 did not give an edge),
and so the network distance of (u, v) changed as required.
The theorem then follows by applying Lemma 4.2 and using
the analysis from Section 4.3.

Algorithm Improved-Greedy(V, t)
1. E ← ∅
2. for u, v ∈ V
3. do d[u, v] =∞
4. for u ∈ V
5. do d[u, u] = 0
6. for every pair of distinct points (u, v) in ascending order

of |uv|
7. do if d[u, v] > t · |uv|
8. then Perform a Dijkstra computation from

u and update d[u,w] to the distances
found

9. if d[u, v] > t · |uv|
10. then Add (u, v) to E
11. return E

5.2 Doubled-Improved-Greedy
In [2], the authors noted that doing a Dijkstra computa-

tion not just sourced at u as per line 8, but also a Dijkstra
computation sourced at v, resulted in a O(n2 logn) running
time on {2i | 1 ≤ i ≤ n}. They gave an input for which this
variation of the algorithm has a Ω(n2 log2 n) running time.
We now prove this lower bound is tight. We refer to the
variation as Doubled-Improved-Greedy.

Theorem 5.2. Algorithm Doubled-Improved-Greedy
computes the greedy spanner in

O
(
n2 log2 n 1

(t−1)3d
+ n2 logn 1

(t−1)4d−1

)
time and O(n2)

space.

Proof. As operation O we pick a single Dijkstra com-
putation. We use PSW as our partition function. We pick
the same partition association (extended to also associate
the new Dijkstra computations) as Theorem 5.1. O is still
(1, 1)-sporadic on the variation by the same argument as
used above.

We will use the (stronger) formulation of Lemma 4.2 that
says that |EX| = O(1). Let 1 ≤ i ≤ m and let EXu,i
be the set of executions associated with the X ∈ PSW (V)
such that X consists of pairs of points, either of which
is u, that are in the i-th well-separated pair. We note
that

∑
u∈Ai

|EXu,i| =
∑
u∈Bi

|EXu,i|, as every operation
‘triggers’ another operation on the ‘other side’ of the well-
separated pair. Using that |EXu,i| = O(1) by Lemma 4.2
and using Fact 2.4, we can bound the number of operations
executed by

m∑
i=1

O

(
1

(t− 1)2d

)
min(|Ai|, |Bi|) = O

(
n logn

1

(t− 1)3d

)
The theorem follows.

5.3 WSPD-Greedy-Lazy
We will now give a variation on the algorithm from [1]. We

will refer to the original as WSPD-Greedy. Instead of recom-
puting ClosestPair(j) for all nearby well-separated pairs,
we use a strategy similar to Lazy-Greedy : all pairs are ei-
ther dirty or clean. Whenever we add an edge, all pairs are
marked as dirty. If we extract a dirty well-separated pair, we
compute ClosestPair(j) for it, update its entry in the queue
and mark it as clean. If we extract a clean pair, we add
its entry in the queue as a greedy spanner edge. Instead of
filling up the queue with pairs of similar lengths, we add all
of them at the start of the algorithm (with keys computed
by ClosestPair(j)).

●●●●

Input size (vertices)

D
ur

at
io

n
(s

ec
)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 20000 40000 60000 80000 100000 120000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

●

●

●

●

Input size (vertices)

M
em

or
y

us
ag

e
(m

b)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 20000 40000 60000 80000 100000 120000

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 2: The left plot shows the running time for t = 2 on variously sized uniformly distributed instances.
The right plot shows the memory usage on the same data

We also change that if an edge is added, the pair the
edge originated from is re-added to the queue. This al-
lows us to compute a different WSPD with s = 4 instead
of s = 2t

t−1
while maintaining correctness, which in turn re-

duces its space usage (not counting space needed to store all
the edges found by the algorithm) from n

(t−1)d
to n

(t−1)d−1 .

However, the running time of the algorithm is no longer eas-
ily analyzed.

We call this variation WSPD-Greedy-Lazy. We can ana-
lyze the running time of the algorithm using our framework:

Theorem 5.3. Algorithm WSPD-Greedy-Lazy computes
the greedy spanner in

O
(
n2 log2 n 1

(t−1)3d
+ n2 logn 1

(t−1)4d−1

)
time and

O
(

n
(t−1)d−1

)
space.

Proof. We need to bound the number of ClosestPair(j)
calls done by the algorithm. We use PW as our partition
function and associate an execution of O with the well-
separated pair it is performed on. Let (ui, vi) be the out-
put of execution ei and let (ui+1, vi+1) be the output of
execution ei+1. We first show that (ui, vi) 6= (ui+1, vi+1):
suppose they are equal, then (ui, vi) would have been the
lowest element of Q and be cleaned. It would immediately
extracted again, still being the lowest element of Q, and
then be added as an edge as it is clean. It gains a t-path,
and therefore it cannot be the output of ei+1, reaching a
contradiction. (ui, vi) is therefore no longer the closest pair
of points without t-path when ei+1 is executed and as edges
only get added, this means it must have gained a t-path (as
opposed to (ui+1, vi+1) losing a t-path), which means it must
have changed network distance, making O (1, 0)-sporadic.

Using Lemma 4.2 with

T (X) = O

((
n logn+

1

(t− 1)d−1

)
min(|Ai|, |Bi|)

)
(with i the index of the well-separated pair corresponding

to X) and Fact 2.4, we conclude that the running time of
WSPD-Greedy-Lazy is

O

 1

(t− 1)2d

∑
X∈PW (V)

T (X)

 =

O

(
1

(t− 1)2d

m∑
i=1

T (X)

)
=

O

(
1

(t− 1)3d

m∑
i=1

(
n logn+

1

(t− 1)d−1

)
min(|Ai|, |Bi|)

)
=

O

(
n2 log2 n

1

(t− 1)3d
+ n2 logn

1

(t− 1)4d−1

)

5.4 Other algorithms
We note that WSPD-Greedy and the two algorithms from [2]

also fit our framework. We will call the main algorithm
from [2] BCFMS-Greedy. The algorithm from [1] readily fits
using the well-separated pair partition function as per Theo-
rem 5.3 – sporadicness is particularly easy as a recalculation
can only occur if a greedy spanner edge was added close by,
which alters the network distance of its endpoints.

We define the length-bunched partition function PL as
follows. If dm = minu,v∈V,u6=v |uv|, then

PL(V) = {{(u, v) | dm2i ≤ |uv| ≤ dm2i+1} | u ∈ V, i ∈ N}

It is easy to see that PL is (2, 1, 2)-regular. We can use PL
to show that [2] fits our framework.

We associate the Dijkstra-Undo and Dijkstra-Bounded with
their origin and length bucket. Again, sporadicness is eas-
ily proven as recalculations only occur if a greedy spannner
edge was added nearby. One could consider a ‘lazy’ vari-
ant of this algorithm using a queue (containing the nearest
neighbor without t-path as discovered by Dijkstra-Bounded)

●● ●●

Input size (vertices)

D
ur

at
io

n
(s

ec
)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 20000 40000 60000 80000 100000 120000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

●

●

●

●

Input size (vertices)

M
em

or
y

us
ag

e
(m

b)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 20000 40000 60000 80000 100000 120000

0
20

0
40

0
60

0
80

0
10

00

Figure 3: The left plot shows the running time for t = 2 on variously sized clustered instances. The right plot
shows the memory usage on the same data

and dirty/clean flags, in which Dijkstra-Undo and Dijkstra-
Bounded are only triggered if a dirty entry is extracted from
the queue. This may improve its speed in practice, but does
nothing to improve space requirements.

6. EXPERIMENTAL RESULTS
We have run the algorithms discussed above on point sets

whose size ranged from 500 to 128,000 points. As Improved-
Greedy and Doubled-Improved-Greedy perform nearly iden-
tically, we only included Improved-Greedy in our results.

We generated 2D point sets from several distributions.
We have recorded space usage and running time (wall clock
time). The results are averages over several runs where new
point sets were generated for each run. We discuss both a
low dilation (t = 1.1) and a higher dilation (t = 2) setting.
The low t settings is the main use case for the lazy algorithms
since this is where the memory usage becomes a problem
even in the non-lazy linear space algorthm.

We consider two distributions. First we have a uniform
distribution, where we draw points uniformly at random
from the square. Secondly we have a clusted point set. To
generate the clustered point set we used the same method
as [1], that is for n points, it consists of

√
n uniformly dis-

tributed point sets of
√
n uniformly distributed points.

6.1 Environment
The algorithms have been implemented in C++. The ran-

dom generator used was the Mersenne Twister PRNG – we
have used a C++ port by J. Bedaux of the C code by the de-
signers of the algorithm, M. Matsumoto and T. Nishimura.
We have implemented all other necessary data structures
and algorithms not already in the std ourselves. The imple-
mentations do not use parallelism and run in a single thread.

Our experiments have been run on a server using an Intel
Xeon E5530 CPU (2.40GHz) and 8GB (1600 MHz) RAM.
It runs the Debian 7 OS and we compiled for 64 bits using
G++ 4.7.2 with the -O3 option.

6.2 Dependence on instance size
We have compared running time and space usage of the

algorithms discussed above for different values of n. We
plotted the results using t = 1.1 on both uniform (Fig. 4)
and clustered points (Fig. 5).

The Improved-Greedy and BCFMS-Greedy algorithms use
quadratic memory, which makes running them on large point
sets infeasible no matter which dilation is used. We used
instance sizes starting at n = 500, doubling n each time.
The largest instance we could run BCFMS-Greedy on was
n = 4.000. Improved-Greedy could reach n = 8.000 before
running out of memory at n = 16.000.

On the uniform point set even the linear space WSDP-
Greedy algorithm runs into trouble quite quickly for low t.
At n = 32.000 it already consumes about 4GB of memory,
whereas the lazy variant, WSPD-Greedy-lazy consumes only
200MB. The clear winner with respect to both memory us-
age and time is the Lazy-Greedy algorithm running almost
9 times as fast as WSPD-Greedy and using only 17MB.

The WSPD is usually very small on clustered point sets.
Nevertheless, the Lazy-Greedy algorithm again uses a lot
less memory for only roughly a factor 2 decrease in speed.
For n = 64.000 the WSPD-Greedy algorithm uses just over
1GB, its lazy variant reduces this to 254MB and Lazy-Greedy
only used 27MB.

As the dilation increases and space usage becomes less of
an issue for the non-lazy linear space algorithm it becomes
more competative (but still hard to implement). Figure 2
shows that for for a high dilation of t = 2 the non-lazy linear
space algorithm has started to become faster. The memory
usage is still vastly bigger as is shown on the right. For low t,
which is our main use case, the Lazy-Greedy algorithm uses
roughly a factor 40 less memory on clustered point sets and
more than a factor 200 less on uniform point sets, allowing
greedy spanners to be computed on larger points sets than
before.

●● ●●

Input size (vertices)

D
ur

at
io

n
(s

ec
)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 10000 20000 30000 40000 50000 60000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

●

●

●

●

Input size (vertices)

M
em

or
y

us
ag

e
(m

b)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 10000 20000 30000 40000 50000 60000

0
10

00
20

00
30

00
40

00

Figure 4: The left plot shows the running time for t = 1.1 on variously sized uniformly distributed instances.
The right plot shows the memory usage on the same data

●● ●●

Input size (vertices)

D
ur

at
io

n
(s

ec
)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 10000 20000 30000 40000 50000 60000

0
50

00
10

00
0

15
00

0

●

●

●

●

Input size (vertices)

M
em

or
y

us
ag

e
(m

b)

● BCFMS−Greedy
Improved−Greedy
WSPD−Greedy
WSPD−Greedy−Lazy
Lazy−Greedy

0 10000 20000 30000 40000 50000 60000

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 5: The left plot shows the running time for t = 1.1 on variously sized clustered instances. The right
plot shows the memory usage on the same data

7. CONCLUSION
We have presented our framework of an abstract greedy

spanner algorithm satisfying certain properties and have shown
that this implies that a part of this algorithm will then be ex-
ecuted only few times. We have shown that many algorithms
fit this framework, giving many new subcubic bounds, both
on old and on new algorithms introduced in this paper.

In practice, the novel algorithm we present enormously
decreases memory usage over the previous state-of-the-art
algorithm. For low values of t, it is also significantly faster,
while never being much slower even for high t. This both
enables larger point sets to have their greedy spanner cal-
culated, and enables lower values of t to be used. The new
algorithm is also very simple to implement.

Our results could be improved in several ways. One could
try to remove some logn factors from our algorithms or from
our analysis, one could try to reduce the dependency on t
or change a dependency on log Φ to logn. A general sub-
quadratic time algorithm remains elusive. It might also be
interesting to generalize our results to more general metric
spaces.

8. REFERENCES
[1] S. P. A. Alewijnse, Q. W. Bouts, A. P. ten Brink, and

K. Buchin. Computing the greedy spanner in linear
space. CoRR, arXiv:1306.4919, 2013.

[2] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and
M. Smid. Computing the greedy spanner in
near-quadratic time. Algorithmica, 58(3):711–729,
2010.

[3] P. B. Callahan. Dealing with Higher Dimensions: The
Well-Separated Pair Decomposition and Its
Applications. PhD thesis, Johns Hopkins University,
Baltimore, Maryland, 1995.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields. J.
ACM, 42(1):67–90, 1995.

[5] L. P. Chew. There are planar graphs almost as good
as the complete graph. J. Comput. System Sci.,
39(2):205 – 219, 1989.

[6] M. Farshi and J. Gudmundsson. Experimental study
of geometric t-spanners. ACM J. Experimental
Algorithmics, 14, 2009.

[7] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and
A. Zhu. Geometric spanners for routing in mobile
networks. IEEE J. Selected Areas in Communications,
23(1):174–185, 2005.

[8] J. Gudmundsson and C. Knauer. Dilation and detours
in geometric networks. In T. Gonzales, editor,
Handbook on Approximation Algorithms and
Metaheuristics, pages 52–1 – 52–16. Chapman &
Hall/CRC, Boca Raton, 2006.

[9] J. M. Keil. Approximating the complete euclidean
graph. In 1st Scandinavian Workshop on Algorithm
Theory (SWAT), volume 318 of LNCS, pages 208–213.
Springer, 1988.

[10] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, New York,
NY, USA, 2007.

[11] D. Peleg and A. A. Schäffer. Graph spanners. Journal
of Graph Theory, 13(1):99–116, 1989.

