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CHAPTER I 

INTRODUCTION AND BRIEF SURVEY OF LITERATURE 

1.1. Subjeat matterand aontents of the thesis 

Heat or mass transfer processes are important in many fields of 

engineering. Extensive research on these subjects is strongly 

demanded by the need to control large amounts of energy for industrial 

and domestic use. For example, understanding of heat transfer processes 

is of paramount importance in electricity-producing plants, where heat 

is produced either by combustion of conventional fuels like coal, oil 

or gas, or by nuclear processes. This heat is required to generate 

steam for a turbine and either water under high pressure or liquid 

metals are used as an intermediate heat transport medium. 

A field of renewed interest, in which mass transfer plays an important 

part, is in apparatus for the production of hydrogen and oxygen from 

water by electrolysis. Aternative energy sourees producing the 

electricity required for electralysis may be the sun or the wind. 

However, it is also possible that nuclear energy will become a main 

souree of energy. Hydrogen is attractive as a fuel of the future 

because it is ecologically clean, can be transported efficiently 

through underground pipelines, and eventually can be mixed with natura! 

gas; cf. Matbis (1976). 

In most practical cases,heat and mass transfer takes place at the 

interface between a solid wall and a fluid; the transport character­

istics are strongly dependent on the geometry of the set-up. Another 

important parameter is the strength of the acceleration field in 

which the fluid is situated. In this thesis,restriction has been made 

to horizontal walls upon which a fluid is initially at rest in the 

earth's gravitational field. The more complex case, where a fluid is 

forced to flow parallel to the wall, will not be considered de~pite 

its great practical importance in engineering. 



One of the most characteristic features in such a configuration is 

the occurrence of buoyancy effects in the fluid. Buoyancy forces 

arise as a result of density variations in a fluid subject to 

gravity. In heat transfer the so-called Bénard problem, where a 

horizontal layer of fluid is heated from below, is well-known 

cf. Benard (1901). In that case, density differences are caused 

by variations in temperature. It bas been shown by Rayleigh (1906) 

that the so-called Rayleigh number plays a dominant part in the 

Benard problem. When the Rayleigh number exceeds a critica! value, 

the flow pattern becomes unstable and heat transfer by natural 

convection occurs. Similar behaviour can be observed when, instead 

of differences in temperature, differences in concentration of a 

solute are present in a liquid (e.g. salt in water). Here the 

so-called salinity Rayleigh number has the same significanee as 

the ordinary Rayleigh number in heat transfer, A comparatively 

recent development in the field of natural convection bas been the 

study of fluids in which there are gradients of two or more 

properties with different diffusivities. This is the case in 

binary mixtures and the stability properties of such a system 

have been reviewed by Turner (1973). 

Another well-known buoyancy problem, which bas certain similarities 

to the systems previously discussed, occurs when differences in 

density are caused by liquid-gas or liquid-vapour transitions, 

This is the case during electralysis and boiling respectively. 

It is this problem to which this thesis will be devoted. 

At the wall, transitions from liquid to vapour can occur when the 

wall is superheated, i.e. when it has a temperature which is higher 

than the saturation temperature at ambient pressure. Vapour bubbles 

nucleate at the wall in tiny cavities which have dimensions of 

approximately 10-6 m and smaller. A review of the mechanism of 

this so-called heterogeneaus nucleation bas been presented by Cole 

(1974). It is noted that the nucleation properties of these 

cavities are not readily reproducible ; also, the way in which the 

cavities and their different sizes are distributed over the wall 

can hardly be controlled in most engineering applications. These 

facts represent a major cause of the difficulty of predicting 
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adequately heat transfer rates in boiling. \ 

In a similar way, gas bubbles are formed when there is supersaturation 

of gas dissolved in the liquid directly above the wall. In this thesis 

no further attention will be paid to the physico-chemical aspects of 

nucleation. 

In practical engineering, heat and mass transfer processes with phase 

transitions are often more advantageous than transfer processes in 

which only natural conveetien plays a part ; in the former processes 

the periodic growth and departure of bubbles causes forced liquid 

conveetien on a small scale which contributes substantially more to 

the transport rate than natural conveetien does. 

Unfortunately, there is an upper limit to the heat or mass flow 

obtained in this way. For a sufficiently high driving temperature 

difference, respectively concentratien difference, the number of 

bubbles at the wall becomes so large that these bubbles coalesce to 

form a coherent vapour or gas film that separates the wall from the 

bulk liquid. lt has been shown experimentally by Yu and Mesler (1977) 

that, in boiling near the peak heat flux (i.e. in transitional 

boiling), a thin liquid layer remains at the wall between vapour and 

wall. Yu and Mesier called this layer the maaro-tayer and the 

properties of this layer are very important for an understanding of 

the transition from nucleate boiling, or pool boiling, to film 

boiling. One of the characteristic properties of this macro-layer 

is the rate of growth of dry areas within it. When 'this dry-area 

growth rate is large, a rapid transition to film boiling occurs, 

often leading to damage of the wall. However, except for the aspect 

of dry area growth in a liquid film at a horizontal solid wall, the 

transition to film boiling or to film mass transfer will not be 

considered in the present work. 

In this thesis, only situations with sufficiently low superheating 

or supersaturation will be considered, under conditions where the 

so-called single-bubble approach may be used. This means that the 

distance between the individual bubbles is so large that one bubble 

may be considered as infinitely far away from its neighbours. 
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To understand the physics of the transport process and consequently 

ultimately to he ahle to find means of increasing the peak flux and 

thus the efficiency of engineering set ups, knowledge of the time of 

adherence at the wall and of the departure diameter of the bubhle is 

essential, This is also illustrated by the many (semi-empirica!) 

correlations for heat and mass transfer rates that are availahle in 

li terature. Almos t all of these correlations requirè knowledge of the 

frequency of bubhle departure and of the hubble size. 

The description of the mechanisms of bubbZe departure, for the 

compZeteZy different cases of both rapidZy-growing vapour bubbZes and 

sZowZy-growing gas bubbZes~ forma the subject of this thesis. 

In Chapter 2 of this thesis both the departure phenomena and the 

underZying growth proaesses wiU be iUustrated with the aid of 

reZativeZy simpZe modeZe in whiah the bubbZe is represented as a 

sphere or a sphericaZ segment, On the basis of the insight in the 

bubble behaviour and its mathematieaZ description~ obtained in this 

way~ an extension wiZZ be presented in Chapter J to cyUndricaUy 

symmetrie vapour bubbZes in water under subatmospheria pressures, 

Numeriaal methods wiU be used to cal-auZate the bubbZe shape, and the 

resuUs are compared to experimental data obtained by high-speed 

cinematography. In Chapter 4 both the hydrodynamic mechanism of 

microZayer formation and the meehanism of dry area growth under the 

. infiuenoe of eapiZZary foraes wiU be investigated. The importance 

of these proeesses for bubbZe departure has already been stressed in 

Chapter 2, 

1.2. Early theories on bubbZe departure 

The earliest and even now perhaps best known expression for the 

departure diameter was presented by Fritz (1935). Although Fritz 

suggests that his equation can be applied for growing vapour bubbles, 

his model is only derived for static bubbles where the hydrastatic 

force balances the normal component of the capillary force and where 

the upward huoyancy force halances the downward force of adhesion at 

the wall. Fritz bimself already remarked that in case of rapid 

evaporation a situation of exact dynamic equilibrium will hardly be 

reached,but he adds that experiments show his equation to he 
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approximately valid. Indeed, it turns out that, for many liquids 

boiling in the region of atmospheric pressures, Fritz 1s equation holds 
when the contact angle, occurring in this equation, is considered as 

an empirical parameter which has to be fitted to the experimental 

data fo~ departure radii, This bas been shown experimentally by Han and 

Griffith (1965), and by Cole a~d Rohsenow (1969) among others. 

InSection 2.4.2, this fact, which accounts for the success of 

Fritz 1s equation, will be explained theoretically. It is, however, 

stressed there that the _agreement with experiment is purely accidental 

since, in reality, for rapidly growing vapour bubbles, surface tension 

forces and the forèe of adhesion do not play an important part as 

compared with inertia forces. 

When adhering, slowly-growing gas bubbles are considered, the 

surface tension and adhesion forces do play important parts, and 

Fritz'sequation agrees fairly well with experimental data, provided 

that the apparent contact angle at the time of break-off is known. 

thin liquid layerî 
where deviat1on,; 
from the spheric4t 
shape occur \ 
. . 

gas·liquid interface 

bulk lquid, supersaturated 
with gas 

9a=apparent 
contact angle 

Fig. l.I. Regions around a quasi-static gas bubble. 

Frictional forces cause the bubble to deviate from the static 

shape near the wall 
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However, even for slowly-growing gas bubbles 1 dynamic equilibrium 

does not hold everywhere. Apart from the fact that growth induces a 

pressure field which diminishes the total upward force 1 deformations 

from the static shape may be expected near the wall since the bubble 

contact perimeter is growing, Since this growth has the character of 

slip along the wall, with a growth rate often lagging behind the 

bubble growth rate, shear stresses will occur locally. As a 

consequence, an apparent contact angle, with a value varying in time, 

is observed. This apparent contact angle is a result of the hydro­

dynamica of the pro·cesst. It must not be confused with the dynamic­

receding contact angle, which is independent of the hydrodynamica of 

the process,and is purely determined by the local intermolecular 

interactions at the bubble contact perimeter ; cf, Section 4.2.2, 

and Fig. l.I. 

Consequently, in addi ti on to Fri tz 's treatment 1 a description for the 

apparent contact angle has to be developed. In Section 4. 3, the 

latter problem will be considered in more detail. 

1.3. GPOWth of a t~e bubble 

It will be clear from the foregoing discussion that it is of 

paramount importance to have an accurate knowledge of the mechanism 

of bubble growth in order to be able to predict departure radii and 

times. In addition, for gas bubbles, which always grow relatively 

slowly, additional information is required for the growth rate of 

the bubble contact radius in order to be able to calculate the 

downward force of adhesion, For these reasous much attention will be 

paid to the subjects of both bubble growth and growth of a dry area 

caused by capillary effects. 

The earliest expression for bubble growth follows from a treatment 

given by Rayleigh (1917), who considered the Collapse of a spherical 

cavity in an infinitely extended, incompressible liquid. In the 

bubble, a constant pressure was assumed to be present. Since the 

expression for bubble growth basedon Rayleigh's approach did, in 

genera!, not agree with experimental growth rates of gas and vapour 

bubbles, it was obvious that the problem had to be considered from 
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a different point of view. Bo~njacovié (1930) neglected the hydra­

dynarnies of the problem by assuming that the excess pressure in the 

bubble is negligible. In that case the bubble only grows by diffusion 

of gas into the bubble, or by diffusion of heat to the bubble, the 

sensible heat being converted into latent heat of vaporization at the 

vapour-liquid interface. 

Experiments performed by Jakob (1958) showed that Bosnjacovié's 

approach was very fruitful. However, strictly speaking, Bosnjacovié's 

result is not completely correct. For rapidly-growing vapour bubbles, 

heat transport by radial conveetien must also be included ; for 

slowly-growing gas bubbles, a correction due to the curvature of the 

spherical bubble boundary has to be taken into account. Birkhof, 

Margulies and Horning (1958) -and Scriven (1959) independently derived 

the correct expressions. In Section 2.2.3 the points-of-view of 

Rayleigh and Bo~njacovié are brought together. It will be shown that 

initially, shortly after nucleation, a Rayleigh-type of growth 

exists, whereas later, after a transitional period, the Bosnjacovié­

mode of growth is reached asymptotically. This growth behaviour will 

be presented in one algebraic expression. Thus, a unified treatment 

of bubble growth is obtained. Comparison will be Iliade to the unified 

treatment of Prosperetti and Plesset (1978), and it is shown that 

the agreement with the roodels reviewed by them is good. 

Experimental investigations show that, under many conditions, the 

growth rate of a vapour bubble oscillates around an average value. 

Not only oscillations in the bubble shape, but also oscillations in 

the bubble volume have been observed; cf. Van Stralen (1968), and 

Schmidt (1977), who pointed out that oscillations in the bubble 

shape may be caused by surface tension. However, volume oscillations 

cannot be explained in this way. One explanation may be that periadie 

evaporation and condensation occur around a mean rate of evaporation 

cf. Zijl, Moalem and Van Stralen (1977). Another explanation is that 

compressibility effects in the vapour become important, and that there 

is a periadie expansion and compression. In Section 2.5~ these two 

possibilities will be considered theoretically ; it turns out 

that the first process, which shows a strong damping, will indeed 

occur for sufficiently smal! bubbles. 
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For relatively large bubbles the second mechanism, which bas a much 

lower damping, is the governing process. For gas bubbles similar 

results can be obtained. However, in the latter case the oscillati~n 

frequency will be very high. Consequently, oscillations cannot be 

observed with equipment having a response time which is only a few 

orders of magnitude smaller than the bubble adherence time. 

In the following Chapters it will be assumed that the amplitude of 

the bubble oscillations is so small that they have negligible effect 

on bubble departure and may consequently be ignored for the present 

purpose. 

l, 4. Micro- and adsorption layers. Dry areas 

In principle, the theory for bubble growth mentioned above only 

applies to free bubbles in an infinitely-extended, initially uniformly 

superheated or supersaturated liquid under zero gravity conditions. 

Cooper and Lloyd (1969) and, independently, Van Ouwerkerk (1970, 1971) 

extended the theory for heat transfer controlled vapour bubble growth 

at a horizontal wall, again under zero gravity conditions in a 

uniformly superheated liquid. Although, qualitatively speaking the 

results do not differ greatly from Bo~njacoviê 1 s result for the growth 

rate of a free bubble, the hydrodynamic and heat transfer processas 

in this case are much more complex because of the existence of a thin 

liquid layer between the bubble and the wall ; cf. Fig. 1.2. The 

generally accepted name for this layer in literature is the 

(evaporating) mioro-layer This name bas for the first time been 

proposed by Moore and Mesier (1961). Since the micro-layer evaporates 

during adherence, it contributes considerably to the bubble growth 

ra te. 

The determination of the thickness of formation of this liquid layer 

is presented inSection 4.1. Use will be made of Landau and Levich 1 s 

(1942) salution for the free coating problem, rather than of the 

boundary layer approach suggested by the forementioned authors. 

Van Ouwerkerk also considered tbe rate of growth of the dry area in 

the micro-layer. During nucleate boiling this growth rate is almost 

completely determined by evaporation from the micro-layer for common 

mated.als like water on steel. Impor,tant conclusions from Van Ouwer-
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Therm al 

bulk liquid 
conveelion region 

therm al 
boundary layer 
In microlayer 
and watt 

gravitational acceleration I axis of symmetry t Hydrodynamic regions 

----î 

microlayer 

bulk liquid 
poten1ial flow region 

vapour-liquid 
interface 

Fig. 1.2. Flow- and thermal regions around a rapidly-growing vapour 
bubble 

kerk's analysis are that the bubble growth rate is hardly affected 

by the existence of a dry area and is almost independent of the 

thermal properties of the wall as well, 

In contrast to vapour bubbles, the almost quasistatic gas bubbles 

do not have a similar liquid microlayer between buhble and wall. 

For these bubbles the thickness of formation, as calculated with 

Landau and Levich's expression, results in a value which is large with 

respect to the bubble dimensions ; i.e., the latter model does not 

hold for that case, Gas bubbles have almost the shape of spherical 

segments and the radius of the bubble base in contact with the wall 

·(the so-called bubble contact radius) is equal to the dry area radius. 

Sirice vaporization does not play an important part for gas bubbles, 

the growth of this dry area is governed by capillary effects. 
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In reali ty, this so-called "dry" area is not completely dry, for 

complete drying would be a vialation of the adherence or no-slip 

condition for the liquid at the wall. In fact, a microscopically 

thin liquid layer remains at the wall ; cf. Scheludko, Tschaljowska 

and Fabrikant (1970). In this non-Newtonian layer, with a thickness 

of 10-7m and smaller, the adsorption force field near boundaries 

plays an important part, resulting in the so-called disjoining 

pressure ; cf. e.g. De Feijter and Vrij (1972). The earlier mentioned 

microlayer, which has a thickness varying from approximately 10-6m to 

10- 4m, may, from this point of view, be considered as a bulk liquid, 

that can be described by the theory of Newtonian fluids. It is 

somewhat misleading that the name miaro-layer is already in use for 

this macroscopie layer. In this thesis, the name adsorption layerwill 

be used for the microscopie layer in which the disjoining pressure 

plays a dominant part. Since an adsorption layer at a wall does not 

evaporate completely ; cf. Wayner, Kao and Lacroix (1976), the wall 

surface covered by this layer forms a thermal insulation for the 

heat flux, in a similar way as a dry area does. For this reason, 

the name dry area for the wall surface covered by the adsorption 

layer is acceptable for the present purpose. 

In literature hardly any attention has been paid to the process of 

dry area formation caused by capillary forces. Experiments on this 

subject have been reported by Scheludko,Tschaljowska and Fabrikant 

( 1970), and by Cooper and Merry ( 1972) ; however, a theoretica! 

treatment bas not yet been given. For that reasou a model has been 

proposed in Section 4.2 and in Appendix C. In contrast to this, the 

process of dry area formation by evaporation, i.e. the so-called 

dry-out, will not be considered in this thesis, since this subject 

has been treated extensively in the literature; cf. e.g. Cooper and 

Merry(l972, 1974), and Yu and Mesler (1977). 
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1. 5. Bubb'Le departure 

Knowing the growth rate of the bubble, the acceleration of the centre 

of mass of a free bubble with the same growth rate can be determined 

by Green's momentum equation; cf. Lamb (1974). When the latter 

equation may be considered as .an approximation for bubbles at a wall, 

the following description holds : when the displacement of the bubble 

centre from the wall has become equal to the bubble radius, the bubble 

will depart, provided that the upward buoyancy force exceeds the 

downward force of adhesion at the wall. For vapour bubbles this is the 

case, and the departure radii obtained in this way agree quantitatively 

with experimental results obtained by Moalem, Zijl and Van Stralen 

(1977), and by Cooper, Judd and Pike (1978) ; cf. Sectien 2.3.2, 

It is stressed here that in the fore--mentioned case, liquid 

acceleration is the governing mechanism for departure, and in general, 

during adherence there is no balance between upward buoyancy force 

and downward inertia and adhesion forces. Of course, the model of an 

accelerating growing sphere is a simplification, since in reality the 

growing bubble foot is decelerating ; cf. Chapter 3. However, in both 

cases, liquid accelerated by gravity determines the departure radius 

and adherence time. Models for predietien of the adherence time based 

on a balance of forces in fact only present a lower limit for the 

adherence time ; cf. e.g. Witze, Schrock and Chambré (1968), and 

Kiper (1971). 

Since gas bubbles grow very slowly with respect to vapour bubbles, 

the above--mentioned explanation of departure does not apply, and a 

balance of the upward buoyancy force and the downward force of 

adhesion determines the adherence time and break-off radius. In 

Sec ti on 4 .• 2 this equilibrium of farces has been treated 

in the way discussed by Kabanow and Frumkin (1933). 

An expression for the bubble growth rate has to be substituted in the 

expressions for departure mentioned above. For vapour-bubbles, 

growing in a realistic non-uniformly-superheated liquid at a wall, 

it is relatively simple to express the parameter descrihing bubble 

growth in other physical parameters like ambient pressure and 
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surface tension in the following way. After bubble departure, cold 

bulk liquid, with a temperature approximately equal to the saturation 

temperature at ambient pressure, flows to the superheated wall. 

Initially, this liquid is heated only by conduction and, aftersome 

time, when the thermal penetration thickness has grown so large that 

the Rayleigh number exceeds its critica! value, it is also heated by_ 

natura! convection. Next, when the thermal boundary layer has become 

sufficiently thick, nucleation takes place at a certain cavity. 

Since the required superheating for nucleation at a cavity with 

prescribed dimensions depends among others on surface tension, the 

final thickness of the thermal boundary layer will also depend on the 

value of the surface tension. 

This process has been described by Han and Griffith (1965). Combination 

of their model with the theories of vapour bubble growth and departure 

developed in this thesis, results in an expression for the bubble 

departure radius which is independent of both the superheating and 

the dimensions of the cavity where the bubble has been nucleated; 

cf. Section 2.4.2. 

The derivation of a similar expression relating the departure radius 

to the ambient pressure has not been attempted for gas bubbles 

because such an expression would depend greatly on the way in which 

supersaturation is producedat the wall (e.g. by electrolysis, or by 

leadinga gas through the liquid etc.). 

1. 6. The equations desc:ri.bing the evoZ.ution of the coupl-ed te~e:ruture 

and fl.CM fie Us 

1.6.1. The basic equations of motion 

Until now, relatively simple algebraic expressions have been 

discussed in order to understand, at least approximately, the main 

aspects of bubble departure and of the underlying growth processes, 

However, from a fundamental point of view, the picture obtained in 

this way is not fully satisfactory, since, in the models mentioned 

before, deviations from the spherical bubble shape have been neglected; 

i.e. the hydrodynamic theory holding for free spherical bubbles has 
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been used. Another unsatisfactory approximation was the determination 

of the contribution of the evaporating liquid microlayer to bubble 

growth. The presentstion given inSection 2.4.1 only holds for the 

rather unrealistic case of bubble growth in an initially uniformly 

superheated liquid under zero gravity conditions. 

For these reasons the growth and departure of cylindrically symmetrie 

vapour bubbles in water boiling at subatmospheric pressures bas been 

treated numerically and the results are compared to experimental data 

in Chapter 3. 

Theoretically speaking, the flow and temperature fields of the gas and 

vapour in the bubble and of the liquid surrounding the bubble can 

adequately be described by the basic continuum formulation for 

Newtonian fluids, expressing conservation of mass, of momentum and of 

energy, complemented with a diffusion equation for the gas dissolved 

in the liquid and with expressions for the normal and tangential 

stresses ; cf. e.g. Bird, Stewart and Lightfoot (1960). In order to 

obtain a solution of these equations, appropriate boundary and initia! 

conditions have to be prescribed. 

1.6.2. The boundaxy aonJ:itions for ao'Lid waz:la and fr>ee interfaaea 

In general, boundary conditions at the solid wall are the condition 

of impermeability and of no-slip or adherence. 

At the gas-liquid interface there is a discontinuity in normal stress 

cauded by surface tension. This effect is described mathematically by 

the Laplace-Kelvin equation. There is also a discontinuity in the 

tangential stress over the gas-liquid interface. This effect is 

described by the Marangoni-Gibbs condition; cf. Traykov and Ivanov 

(1977). However, in the flow field around the bubble, potential flow 

may be assumed, cf. Section 3.1, and in that case, the Marangoni­

Gibbs condition must be disregarded. 

For the thermal or energy equation it is usually assumed that there is 

no jump in temperature across a vapour-liquid interface. This bas been 

verified experimentally by PrÜger (194:1). Also for gas bubbles it may 

be assumed that there is no jump in concentration across the interface. 
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The pressure at the gas-liquid or vapour-liquid interface may be 

approximated by the thermadynamie equilibrium expressions of Henry 

and Clapeyron respectively. 

At the bubble boundary the displacement of this interface can be 

related to the inflow of gas or vapour, thus resulting in a second 

boundary condition for respectively the mass or heat diffusion 

equation. 

As a result of the solution for an initially prescribed gas-liquid 

interface, the normal component of the liquid velocity is also known 

at t = 0· Equating the rate of displacement of the gas-liquid 

interface to this normal velocity component results in aso-called 

kinematic boundary condition from which the evolution in time of the 

interfacial coordinates can be determined. 

At the location of the dry area radius, where the adsorption layer 

and the microlayer meet, both the thickness of the layer . and the 

so-called contact angle between the adsorption layer and the micro­

layer have to be prescribed. From these two conditions the a priori 

unknown position of the perimeter of the adsorption layer or dry area 

can be determined as a function of time from a partial differential 

equation of the parabolic type ; cf. Section 4.2. 

1. 6. 3. The initiaZ aonditiona 

Initial conditions must be prescribed for the position and the 

normal component of the velocity of the vapour-liquid, or gas­

liquid, interface. For growing bubbles, the choice of these 

conditions is not of great consequence since their influence 

dampes away rapidly. This is in contrast to imploding bubbles 

where small variations in the initial conditions are amplified; 

cf. Plesset (1954 a). 

However, the choice of the initial temperature field in which the 

bubble grows is shown to be of great influence on the rate of growth 

and the adherence time. In Section 3.3.2, measurements of initia! 

temperature fields will be reported. The latter fields have been used 
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as initial conditions for the temperature field and comparison of 

shape and size of computed bubbles with experimental bubbles, growing 

in similar temperature fields, will be reported. 

1. 8, 4. WeU-posedne88 of the pa.Ptial differential system 

After having derived the partial differential equations and the 

relevant boundary and initial conditions, the first question which 

must be answered is whether the resulting system represents a well­

posed problem. This is a crucial question, especially for the 

application of the collocation method, which will be used in this 

thesis, since this metbod will also produce 11solutions" of ill-posed 

problems. In this thesis, the well-posedness will not be proved 

mathematically, but comparison with situations where well-posedness 

is established in.the literature-has served as a guideline. 

1. 8. 5, Methode of solution 

The advent of fast digital computers with a large memory capacity 

bas made it possible to find solutions for problems by application 

of numerical approximation methods where analytica! methods are hard 

to apply. In this thesis numerical methods are considered as methods 

which map the space-time continuum in a finite number of discrete 

space-time points. 

This definition of a numerical metbod does not touch upon the 

question whether it is convenienf or not to use a digital computer 

to evaluate the values of the variables at the discrete points. 

An example of an analytical solution, inspired by a numerical method, 

will be presented in Appendix C, There the equation of motion of the 

gas-liquid interface of a liquid layer under the action of forces 

normal to that interface has been derived from the equations of 

steady Stokes or creeping flow and their boundary conditions,by use 

of the local collocation approximation ; cf. Finlayson (1972). 

Even when numerical approximation methods are adopted, finding the 

solution of the problem is far from trivial both for theoretical and 
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practical reasons. To knowhow good an approximation metbod is, 

error bounds must be determined. An engineering approach rather than 

a mathematica! approach is adopted bere; the error is considered to 

be sufficiently small when an approximation with smaller discretization 

interval did not result in an obvious change in the solution. 

Furthermore, thee convergence of the metbod is proved in Section 

3.2.3. The theoretica! results will receive support from comparisons 

with experiments. 

The treatment is complicated because many length- and time scales 

are involved. (e.g. low bubble departure frequency, high volume 

oscillation frequency ; large bulk region, thin boundary layers). 

Consequently, it is impossible to obtain one general numerical 

salution that covers the complete flow and temperature fields from 

bulk liquid to liquid microlayer. 

Another difficulty in bubble dynamics stems from the fact that, at 

the gas-or vapour-liquid interface, the pressure is prescribed as 

a boundary condition. This is in contrast to the situation at a 

solid wall, where the velocity is prescribed instead. In order to 

solve for the flow field in the liquid, this pressure condition bas 

to be transformed into a velocity condition by integration of the 

momenturn equations. In genera!, such an integration is not possible 

beforehand. 

There are, however, three important cases where this pressure problem 

does not arise, i.e. where the momenturn equations can easily be 

integrated without knowing the salution of the velocity field 

beforehand. These cases are : (i) potential flow, (ii) boundary 

layer type flow, (iii) Stokes flow. Consequently, only these three 

kinds of flow have been considered in this thesis. 

For reasans of computational efficiency the gZobaZ orthogonal 

collocation method, cf. Finlayson (1973), bas been chosen for the 

salution of the potential flow field in the bulk liquid, As has 

already been mentioned, the creeping flow field in the liquid 

microlayer bas been treated by thè ZoaaZ collocation method, 

Different methods have been used by Yeh (1967), Flesset and Chapman 

(1971), and Hermans (1973) for descrihing the behaviour of a bubble 
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in a potential flow field, 

In the way described above, the hydrodynamica! theory for finding 

the bubble shape results in a set of coupled, non-linear, ordinary 

differential equations which can easily be solved numerically with 

the aid of a computer. 

Simultaneously with the hydrodynamic equations, the temperature or 

diffusion equation has to be solved. However, a full description of 

the temperature or concentration field is not required ; only 

knowledge of the temperature or concentratien at the vapour-liquid 

interface is needed in order to determine the excess pressure in the 

bubble. For. that reason, finding the temperature or concentration at 

the bubble boundary will supply the necessary condition for solving 

the hydrodynamic equations. From this point of view plausible 

simplifications will be introduced, resulting in one additional 

ordinary differential equation, coupled with the hydrodynamic 

equations mentioned before ; cf. Section 3.3. For the formulation 

of the diffusion problem use bas been made of the formulation with 

fractional derivatives ; cf. Oldham and Spanier (1974). 
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CHAPTER 2 

INTRODUCTION TO BUBBLE DYNAMICS : 

GROWTH AND DEP ARTURE OF A SPHERICAL BUBBLE 

2.1. Introduetion to the basia equatione 

This Chapter provides an introduetion to the physics of bubble growth 

and departure, and presents the main results based on the assumption 

that the bubble keeps its spherical shape. 

The starting point of all calculations will be the equations of 

conservation of mass, momentum and energy, complemented by the 

diffusion equation and by expressions for the comp~ ents of the stress 

tensor. Because of their frequent use in this thesis, the latter 

equations will be presented bere in rotationally symmetrie spherical 

coordinates for an incompressible liquid with constant viscosity n, 
constant thermal conductivity À, constant specific heat c; and 

constant diffusion coefficient K in case of diffusion of a dissolved 

gas. Furthermore, viseaus dissipation will be neglected. Under these 

restrictions the equations are ; cf. e.g. Bird, Stewart and Lightfoet 

(1960), and cf. Fig. 2.1, 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

(2. I .5) 
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g=gr<WJiational 
accelerahon 

z =bubble 
velocity 

p <r,el 

liquid 

Fig. 2.1. Gas or vapour bubble in an infinitely extended liquid, 

The plane z = 0 represents a vitual wall which does not 

repreaent a boundary for the liquid; cf. also Section 2.3.2. 

In equations (2.1.2, 3, 4, 5) the Laplace operator V2 is given by 

·t·a( a)· 1 a( ·a) v2 = ."?' Tr r2 rr + r2sine 1rn' sine ':ro' • (2,1,6) 

Since the gas or vapour phase is compressible, the basic conservation 

equations for that phase are more complex, However, the latter 

equations will hardly be used, and will only be mentioned at the 

appropriate places, For the same reasons, the components of the 

stress tensor will not be presented explicitly in this Section. 

As willbe clear from comparison of equation (2,1.4) with equation 

(2.1.5), heat transportand mass diffusion are described by similar 

equations. 

This similarity bas even been stressed by using K for the mass 

diffusion coefficient in (2,1.5) insteadof the usual symbol D. 

In the following,the thermal diffuaivity will be defined in the 

usual way as K ~ À/pc • It will be clear from the context whether K 

represents the heat or mass diffusion coefficient, In this way a 

unified treatment has been made possible. 
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As is well-known in the theory of fluid dynamics, it is aften 

advantageous to introduce a stream function 1j! in order to satisfy the 

continuity equation (2.1.1), This stream function is defined as 

follows 

u=- 1 2t 
r r 2sine ae , (2. I. 7) 

(2. 1.8) 

In this way the continuity equation (2.1.1) has been replaced by 

equations (2.1.7, 8), and only the momentum equations (2, 1.2, 3) 

remain. 

By taking the ê/()6 of (2.1.2) and the ()/êr of (2.1.3) the following 

equation, in which the pressure is eliminated, replaces the two 

equations (2.1.2, 3) : 

(2.1.9) 

where 

(2.1.10) 

and the Jacobian is defined by 

(2.1.11) 

The vorticity ~ = rot ~ has only one co~onent, no~l to the cross~ 

sectional plane under consideration 

(2.1.12) 

Consequently, equation (2,1.9) describes the diffusion and conveetien 

of vorticity in the flow field. 
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Equation (2.1.9) shows that no.vorticity is produced in the flow 

field, i.e. w = 0 is a possible solution of (2.1.9). As can be 

inferred from the boundary conditions for (2.1.9), vorticity is 

producedat the boundaries of the flow field, and equation (2.1.9) 

describes the diffusion and convection of vorticity into the flow 

field. Sufficiently far away from the boundaries, or initially aft~r 

start of motion, the flow field may be assumed to be vortex-free, 

hence D2w = 0. The latter equation can be satisfied identically by 

the introduetion of a velocity potential ~. The velocity potential 

is defined in such a way that: 

(2. 1. 13) 

where 

'"' = (.a_ .!. L) 
v a.r • .r ae • (2.1.14) 

Substitution of (2.1.13) in the continuity equation (2.1,1) 

results in the Laplace or potential equation for the velocity 

potendal 

(2,1.15) 

In this case of so-called potential flow, the momenturn equations can 

be integrated, resulting in an explicit expression for the pressure 

in the flow field. Substitution of (2.1.13) in (2.1~2, 3) results 

in the well-known Bernoulli equation ; 

(2,1.16) 

In (2, I, 16) p
00 

is a function of t only ; it represents the pressure 

far away from the bubbles under consideration. Substitution of 

(2,1.15) in (2.1.16) shows that viscous effects vanish in the 

formulation of incompressible potential flow. However, this does not 

mean that there are no viscous stresses present in the flow field. 

In Chapters 2 and 3 of this thesi~ the flow in the bulk liquid 

surrounding the bubbles has been described using potent.ial flow 
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theory. The solution of the diffusion equations (2.1.4, 5) enters in 

the calculations since the boundary conditions for (2.1.15) depend on 

the concentratien or tempersture at the bubble boundary. 

In Section 2.2 an introduetion to the phenomenon of bubble growth 

will be presented, starting from the assumption of radially symmetrie 

flow and temperature fields. The latter assumption is the starting 

point of many approaches preseneed in the literature. The case of 

radially symmetrie flow and tempersture fields has been considered 

because in this way the basic steps, also required in more complex 

calculations, can be shown in a relatively simple way. 

The treatment given in this Section also shows the assumptions 

on which various well-established theories are based. In this way, a 

unified treatment of these theories is presented. 

In Section 2.3 and Appendix A, the assumption of a spherically 

symmetrie flow field will be relaxed, and the combined process of 

growth and translation of spherical bubbles will be considered. 

In this way a preliminary discussion of various modes of bubble 

departure will be presented. The latter results will be applied in 

Section 2.4 for vapour bubbles in a non-homogeneaus initial 

tempersture field. 

In Section 2.5 the assumption of spherical symmetry is used again 

when considering oscillations in the bubble volume, and the assumption 

of negligible vapour compressibility. 

In Chapter 3 the assumption of a spherical bubble shape will be 

relaxed, and deviations from the spherical shape will be considered, 

assuming a rotationally symmetrie potential flow field. It will be 

shown there, that an important,mode of bubble departure is governed 

by concentratien of the bubble foot, caused by gravitational acce 

acceleration. 

Finally, it is noted that, in the thin liquid layer between bubble 

and wall, the potential flow approximation no longer holds. 

In that case, either boundary layer flow or Stokes flow will be 

assumed. The appropriate equations will be presented in Chapter 4 

and Appendix C. 
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2.2. BubbZe «rowth 

2. 2.1. The equations of radiaZ motion 

For a radially expanding bubble, growing in a superheated or 

supersaturated liquid, the behaviour of the gas or vapour phase will 

be considered first. In this thesis, only the case p• << p, i.e. the 

case where the gaseous phase has a density which is much smaller than 

the liquid density, will be considered. For gases surrounded by a 

liquid, e.g. H2 - or CD2-bubbles in water, this condition is always 

satisfied. For boiling, it ·represents a restrietion to situations 

sufficiently far away from the critical point. 

Since p1 << p, and since the gaseous phase is kept within a 

relatively small volume, disturbances in the pressure of the gaseous 

phase are damped away much more rapidly than in the liquid. 

Consequently, the pressure in the gaseous phase is assumed to be 

homogeneous, i.e. apl(r,t)/ar = o. 

Further, when the process of evaporation at the vapour-liquid 

interface is considered, it is assumed that the vapour is in 

thermadynamie equilibrium with the liquid. Consequently, when no 

other gases or vapours are present in the bubble, it follows from 

Clapeyron's law that the temperature is homogeneaus along the bubble 

boundary. 

For sufficiently small variations around the saturation temperature 

Ts(p~), belonging to the pressure p
00

, the Clapeyron equation may be 

linearized, resulting in: 

p (t) = p + Pl~ {T (t) - T }. 
1R ~ T 1R s 

s 
(2.2.1) 

In (2,2.1) p
1
R represents the vapour pressure at the bubble boundary 

r • R(t), p
00 

represents the pressure far away from the bubble where 

the saturation temperature is equal to T (p ), and T R represents the s 00 1 

vapour temperature at the bubble wall, In (2.2.1) it is also assumed 

that the vapour density p1 and the latent heat of vaporization i 

vary so little that they may be considered as constant over the 

temperature and pressure ranges involved. 
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For a spherical vapour bubble, fed by evaporation at its boundary, 

Cho and Seban (1969) derived the following expression for the radial 

vapour velocity at the vapour-liquid interface r ~ R(t) : 

(2.2.2) 

Here Cho and Seban's expressionbas been presented in a linearized 

form, combined with the linearized Clapeyron equation (2,2, I), 

The first term between brackets in the right-hand side of (2,2.2) 

results from the influence of temperature on vapour density. The 

second term represents the effect of pressure on the compressible 

vapour. 

Equation (2.2.2) must be coupled to the hydrodynamic and thermal 

equations of the liquid. In order to show the basic steps, a free 

bubble, far away from walls and under zero gravity conditions will 

be considered in this Section. 

In that case, conservation of total (liquid and vapour) mass at the 

spherical interface r R(t) results in ; cf. Hsieh (1965) : 

(2.2.3) 

In the case under consideration, where compressibility effects in the 

vapour are neglibigle, the vapour velocity is so small that 

(Pl/P )u1r << ur. Since also P1 << p, equation (2.2.3) becomes 

equivalent to the well-known kinematic boundary aandition that holds 

at the interface of two immiscible fluids without phase transitions: 

(2.2.4) 

Equation (2.2,4) expresses that in the hydrodynamiaa of the 

detePmination of R(t)1 · only the Ziquid motion needs to be aonsidePed. 

Combining (2.2.4) with the continuity equation for the liquid (2.1.1) 

results for spherical symmetry in : 

(2.2.5) 
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In this case, the momenturn equation for the liquid (2.1.2) in the 

r--direction can be integrated, resulting in an explicit expression 

for the pressure in the liquid: 

(2.2.6) 

Application of equation (2.2.6) at r = R(t) results in the 

so-called Rayleigh equation: 

(2.2. 7) 

For prescribed pR(t), equation (2.2.7), expressing the balance 

between inertia and pressure effects, constitutes the so-called 

dynamia boundary aondition, 

The normal stress at the vapour-liquid interface can be calculated 

using (2,2.5), resulting in: 

(2.2.8) 

The Laplace-Kelvin equation for the discontinuity of normal stresses 

over the curved gas-liquid interface, substituted into a momenturn 

balance àt the gas-liquid interface, cf. Hsieh (1965), results in: 

(2.2.9) 

Combination of (2.2.7, 8, 9) results in the so-called extended 

Rayleigh equation, cf. Van Stralen (1968), or Rayleigh-Plesset 

equation, cf. Plesset and Prosperetti (1977): 

(2.2.10) 

When pure vapour bubbles are considered, the pressure term in (2.2.10) 

is given by the Clapeyron equation (2.2.1). It follows from (2.2.10) 

that, for a certain bubble radius R = R , a situation of (unstable) 
e 

dynamic equilibrium exists. The superheating TR- T
8 

of the vapour 

in this dynamic equilibrium situation is given 6y: 

25 



2crT (p ) 
s "" (2. 2. 11) 

A ther-mal boundary condition at the vapour-liquid interface 

r' = r-R(t) = 0 , cf. Fig. 2. I, is given by the heat requirentent for 

vaporization or condensation at the bubble boundary 

À(~\ - À (!;_) = p R.(R(t) - u (R(t), tJ) 
ór}r'•O 1 ar r'=O 1 1r 

(2.2.12) 

In (2.2.12),terms accounting for compressibility of the vapeur, 

mechanical wor~and viscous dissipation have heen neglected with 

respect to the term containing the enthalpy of vaporization R. ; cf. 

Hsieh (1965). 

Since K >>K, the temperature gradients in the vapeur are smoothed 
l 

out more rapidly than in the liquid. Since also À «À, the term 
. l 

À
1 

(aT
1
/ar')r'=O may be neglected with respect to the term 

À (aT/ar')r' =O in the left-hand side of equation (2.2.12). 

Substitution of (2,2.2) in (2.2,12) then results in: 

(2.2.13) 

A secend thermal boundary condition is that the temperature of the 

liquid at the vapour-liquid interface TR(t) equals the vapour 

temperature at the interface T
1
R(t), i.e. TR(t) = T

1
R(t). From this 

latter condition, combined with equation (2.2.13), it is seen that, 

for fin#ing the temperature field in the Uquidi the vapour phase 

needs no fUY'ther. aonaidemtion. 

When steady growth of vapour bubbles is considered with no 

implosions or oscillations, the temperature T
1
R = TR at the bubble 

boundary decreases so slowly that the secoud term in the right-hand 

side of (2.2.13) may be neglected, resulting in: 

À (at) p 
r'=O 

P ti<t> 
1 

(2.2.14) 
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In Beetion 2.5, however, the full equation (2.2.13) will be considered 

in the context of bubble oscillations, where compressibility of the 

vapeur may not be neglected. 

The energy equation (2.1.4) for spherically symmetrie flow and 

temperature fields in the liquid reads : 

()T /R) 2
• ()T _ K(()

2T + 3_ ()T) 
ät '+\ r R ar - ()r2 r ()r 

(2.2. 15) 

The trans·formation r' = r-R results in : 

(2.2.16) 

As a mathematica! simplification, the non-linear term in the left­

hand side of (2.2.16) will be neglected. This means that heat 

transport by radial conveetien is approximated by assuming that all 

liquid in the thermal boundary layer surrounding the bubble bas 

radial velocity R(t), independent of r'. This can also beseen from 

equation (2.2.15). When taking r = R in the non-linear term, the 

remaining expression <lT/3t + R(<lT/or) equals the time derivative in 

a coordinate system moving with the velocity of the bubble boundary. 

Later on, in Sectien 2.2.2, this latter assumption will be relaxed. 

If initially, at t = 0, the temperature in the liquid is homogeneous, 

i.e. T(r,O) = T
00

, the solution of the simplified equation (2.2,16) 

also satisfies the following equation; cf. Oldham (1973): 

(2.2.17) 

In (2.2.17), 
0
n;Î represents the so-called Riemann-Liouville integral 

operator of order 1/2. In general, the Riemann-Liouville integral of 

order -v > 0 is defined by; cf. Ross (1975), and Appendix B: 

t 
Dv f(t) = ---1--- f 

c t r(-v) t'=c 
f(t I) 

--~~~~-- dt', V< Q, 
(t-t') +v 

(2.2.18) 
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Substitution of (2,2.14) into (2.2.17) results in: 

(2.2.19) 

where the dimensionless Jakob number is defined as: 

(2.2.20) 

When pure gas bubbles are considered, equation (2.1.5) for the 

concentratien field C(r,t) in a spherically symmetrie situation bas 

to be solved. In an analogous way,the equations equivalent to the 

set (2.2.19,20) can be derived; cf. also Epstein and Plesset (1950): 

(2.2.21) 

Here K represents the diffusivity of the gas in the liquid, and the 

dimensionless Jakob number becomes: 

c-c 
co s 

Ja=--. pl (2.2.22) 

In this case,the equation equivalent to Clapeyron's law (2.2.1) is 

given by Henri' s law: 

p1 = p + k(CR-C ). 
R "" s 

(2.2.23) 

2.2.2. DifjUBion-controlled bubble growth 

The diffusion equations (2.2.19) or (2.2.21) have to be solved 

simultaneously with the extended Rayleigh equation (2.2.10). However, 

as will be proved in Subsectie~ a, in many practical situations 

inertia, viscous and surface tension effects are negligible and 

equations (2.2.1) and (2.2.23), combined with equation (2.2.10), 

simplify to TR = Ts and CR = Cs respectively. In that case,equations 

(2.2. 19,20) simplify to: 

(2.2.24) 
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The salution of (2.2.24) can be determined with Euler's equation; 

cf. Oldham and Spanier (1974): 

Dv tq r(q+l) tq-v q > -1. 
0 t r(q-v+l) ' 

(2.2.25) 

From (2.2.25),it follows that the salution of (2.2.24), when R(O) 0 

is prescribed as the initial condition, becomes: 

(2.2.26) 

In the following two Subsections, the two limiting approximations 

Ja << 2w and Ja >> 2w will first be discuseed in conneetion with 

their most obvious physical interpretation. 

a). Ja << 2TI, Gas bubbles 

When gas bubbles are considered, the approximation Ja << 2n usually 
applies. In that case,equation (2.2.26) simplifies to: 

R(t) • (2JaKt)i, (2.2.27) 

The thickness ó of the diffusion boundary layer around the gas­

liquid interface is of the order of (K~)l; consequently, in this case 

ö >> R. Substitution of r' • ó into the radial convection term of 

(2.2.16) shows that this term is negligible with respect to the 

last term between brackets in the right-hand side (the curvature 

term). 

If R(O) I 0, then deviations from equation (2.2.27) may initially be 

expected; cf. Manley (1960). Equation (2,2.27) bas also been verified 

experimentally by the latter author for air bubbles in water. 

Substitution of (2,2.27) into (2.2.7,23) shows that, if the time of 

growth is sufficiently long, the assumption CR= Cs holds indeed, as 

will be shown in the following example: 
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Numeriaal example: hydrogen bubbles in ~ter 

Substitution of expression (2.2.27) into the inertia, surface tension 

and viscous termsof the Rayleigh equation (2.2.10) results in: 

R~ + ~ R2 + 2cr/pR + 4nR/pR = JaK/4t + (cr/p)(2/JaKt)! + 2n/pt. At 

atmospheric pressure (100 kPa) and room temperature (293 K), 

K = 3 x 10-~ m2 /s, v = n/p = I x Io-6 m2 /s and Cs/p 1 = 1.5 x 10-6
• 

As an example, the case C
00 

= 11Cs will be considered, i.e. 

Ja= 1.5 x 10- 5
; cf. equation (2.2.22). From the numerical values it 

follows that inertia effects are negligible with respect to viseaus 

effects. Under the assumption that surface tension effects are 

negligible, it follows from Henri's equation (2.2.23) that the 

viscous term in the Rayleigh equation (2.2.10) may be neglected when 

2V/t << kC
00

/p. Since, at atmospheric pressure and room temperature, 

kp 1 /p = 6.7 x 10 7 m2 /s 2 , the latter condition becomes: t >> 2 x 1o-9s, 

When surface tension is dominating over viseaus effects, the following 

condition must hold for the validity of (2.2.27): cr(2/JaKt)! << kC
00

, 

Since a= 0.07 N/m and p = 10 3 kg/m3 , the latter condition becomes: 

t >> 0.2 s. 

When the hydrogen bubble does not immediately depart from the wall 

after formation, cf. Section 2.3, the latter time is short with 

respect to the adherence time; cf. Section 4,3, Consequently, for 

gas bubbles adhering at a wall, only the diffusion controlled mode 

of growth has a practical meaning. 

b). Ja >> 2rr. Vapour bubbles 

When Ja>> 2n, expression (2.2.26) results in an equation, also 

obtained by Bo~njacovic (1930): 

R(t) = :T Ja(Kt)i. 
n 

(2.2.28) 

The assumption Ja >> 2n is a common one when vapour bubbles are 

considered. 

In the latter case, it follows that the thermal boundary layer bas 

a thickness o which is small compared to R. Substitution of r' = o 
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into the radial conveedon term of equation (2.2.16) shows that the 

latter term bas the same order of magnitude as the second order 

term Ko 2T/(or') 2 • That is, the radial convection term mustbetaken 

into account. 

Equation (2.2.28) has in fact been derived by assuming that the 

radial velocity of the liquid is equal to R for every r in the flow 

field. The latter approach has been relaxed by Flesset and Zwick 

(1952), who derived a more accurate equation than (2.2.19), taking 

into account radial convection. However, their result is restricted to 

bubble growth with Ja >> I only; cf. also Frosperetti and 

Flesset (1978). 

Flesset and Zwick's approximation has the following form: 

T -T (t*) D-1 (RzdR ) • KI Ja oo R 
o t* dt* T -T 

00 s 

In (2.2.29) the variabie t* is related to t by: 

t 
t*(t) = f R4 (t') dt' • 

0 

(2.2.29) 

{2.2.30) 

Comparison of equations (2.2.29,30) with equation (2.2.19) shows 

that, in Plesset and Zwick's result, the curvature term is missing. 

Due to their improved description of radial convection, the left­

hand side of (2.2.19) has been changed intheleft-hand side of 

(2.2.29) where the 'time' variable t* has been introduced. 

Substitution of the trial solution R = y'ts into the left-hand side 

of (2.2.29) and use of (2.2.30) results in: 

3s 
D-i (Rz dR) = _r_<..::4:.:::s..:..+.:..1 > ____ .....::.,s ...-... , s-i 

o t* dt* 3s 2s+l Y t • 
f(4s+l + D (4s+1)4s+l 

(2.2.31) 

In (2.2.31) use has also been made of Euler's equation (2.2.25). 

In the special case where s = l. equatio~ (2.2.31) results in: 
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(2.2.32) 

From (2.2.32) combined with (2.2.29) it follows that, when the 

vapour temperature T1R = TR is independent of t, and equal to the 

saturation temperature T , the growth constant y' equals 2(3/~)~JaKI, 
s 

or equivalently; cf. also Plesset and Zwick (1954 b, 1955): 

R(t) 
1 

Ja (Kt) 2 • (2.2.33) 

In the limit Ja+® , both Birkhof, Margulies and Horning (1958) and, 

independently, Scriven (1959) presented an exact proof of (2.2.33) 

based on a similarity transform. However, their starting point was 

the assumption TR(t) = T
8 

and, therefore, their metbod cannot be 

extended to situations where TR(t) depends on time, as will be the 

case in the following Sections. 

In view of the important contribution of radial convection, the 

frequently used expression 'diffusion-controlled mode of growth' is 

somewhat misleading in the case Ja>> 2~. 

Substitution of (2.2.33) into (2.2.1,10) shows that, fora 

sufficiently long time of growth, the condition TR = Ts indeed 

applies. However, especially in water boiling at subatmospheric 

pressures and in boiling liquid metals, this condition is usually 

not reached during adherence at the wall. For these cases,surface 

tension and viscous effects may be neglected. However, inertia 

effects must be included; cf. Section 2.2.3. 

a). Intermediate va lues of Ja 

In view of solution (2.2.33), expression (2.2.26) can be modified to 

the following expression for intermediate values of the Jakob number: 

2~ ~ ~ 
Ja{l + (I + JJa) }(Kt) (2.2.34) 

Although this relation has no exact basis, it represents the correct 

values reasonably well, as has been shown in Table 2. I, where 
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Table 2.1. Comparison of equation (2.2.34) with Scriven's numerical 

result for the bubble growth constant y when Ja + ~ 

Ja y Yscriven y- y . Sen ven, x 100 
y Scriven 

1.965 x 10-4 2,002.x w-:t 2.000 x 10-2 0.1 

1.697 x 10-2 2.016 x JQ-1 2.000 x w-1 0.8 

3.546 x w-z 3.032 x 10-1 3.000 x IQ-1 I. I 

5.881 x w-2 4.052 x 10-1 4.000 x w-l I. 3 

1.166 x 10 .... 1 6, 102 x JO-l 6.000x w-1 I. 7 

I. 850 x w-1 8. 154 x JO-l 8.000 x JO-l 1, 9 

3.420 x w-1 1,226 1,200 2.2 

5.152 x to-1 1,637 1.600 2.3 

6.977 x 10...;1 2.046 2.000 2,3 

1.175 3.064 3.000 2.1 

1.668 4.078 4.000 2.0 

2.671 6.096 6,000 1,6 

3.683 8,106 8.000 I, 3 

5.719 1,212 1.200 1.0 

7. 760 1,613 1.600 0,8 

9.803 2.014 x 10 2.000 x 10 0,7 

1,019 x JQ2 2,0Q2.x JQ2 2.000 x J02. 0,1 

8.182 x JQ2 1,601 x 101 1,600 x lOS 0,04 

comparison has been made to Scriven's (1959) numerical values of the 

bubble growth constant y in the intermediate region as a function 

of the Jakob number Ja. 

2.2.3. BubbLe growth affeated by Ziquid inertia 

When inertia may not be neglected, the Plesset and Zwick equations 

(2.2,29,30) for T1R = TR' substituted into Clapeyron's equation 

(2.2. 1), have to be solved simultaneously with the Rayleigh equation 

(2.2. 10). 
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For the present purpose, Plesset and Zwick's formulation (2.2.29,30) 

of the heat transport process will be replaced by the following 

simpler equation: 

(2. 2. 35) 

Equation (2.2.35) is similar to expression (2.2.19) where the 

curvature term bas been neglected. However, a correction term l/3i 

has been introduced intheleft-hand side of (2.2.19) to account for 

radial convection. 

First,it will be shown that this correction represents a good 

approximation. Substitution of the trial solution R y'ts into 

(2.2.35) results in: 

(2.2.36) 

When s =! is substituted into (2.2.36), the right-hand side of this 

equation becomes identical with the right-hand side of (2.2.32); i.e. 

in that case, (2.2.35) gives the same result as the more correct 

equations (2.2.29,30}. 

When s = 1, Plesset and Zwick's equations (2.2.29,30) result in: 

~ 1 r<f> 1 

D-* (R2 ddR*) = -r -- y't 2 , (2.2.37) 
o t t 5 :~ r<tt> 

as can be deduced from (2.2.31). 

In the latter case, s • I, it follows from (2.2.36) that the left­

hand side of approximation (2.2.35) equals: 

(2.2.38) 

From (2.2.37,38) it follows that fors = 1: 
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(2.2.39) 

Consequently, also fors= 1, (2.2.35) represents an acceptable 

approximation of the more correct equations (2.2.29,30). 

As will be shown in the following part of this Section, inclusion of 

inertia effects will result in a gradual transition from growth with 

s = 1 for small t, to growtb witb s = i for large times. In that case, 

equation (2.2.35) may be used during this transition as a reasonable 

approximation upon which tbe subsequent calculation can conveniently 

be based. 

Since the surface tension and viscous stresstermsin (2.2.10) are 

negligible with respect to inertia terms, substitution of (2.2.35) 

in (2.2.10) results in: 

D-~R 
Ril+ ~R.2 + fy2

(
0 

t ~ - 1) 0, (2.2.40) 
o\-(3K) Ja 

where 

(2.2.41) 

Initially; sbortly after start of bubble growth, I 0D~~R.I << K!Ja 

and,in that case,integration of (2.2.40) results in: 

R.(t) 
R 3 

({R(~)} (2.2.42) 

After an initia! stage of growth where, during a relatively short 

time, R > O, R bas grown to a value much larger than R and the 
0 

solution of (2.2.42) is given by: 

R(t) = y t, ( 
0 2.2.43) 
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Initially, Ris so small that IRRI << ~2 • In thelimit for large time 

the term RR is also unimportant, as bas been shown in Section 2.2.2. 

As an approximation, this term will be neglected for all t. Further­

more,it is assumed that R2 can be linearized toy R. This 
0 

approximation is motivated by the fact that initially R = y and, 
0 

for advanced growth,the term R2 does not play a part. Under these 
approximations,equation (2.2.40) simplifies to: 

In (2.2.44) the characteristic timeT is defined by: 

2 

T == 3(~a) K, 
0 

(2.2.44) 

(2.2.45) 

The solution of (2.2.44) equals; cf. Oldham and Spanier (1974), and 

Appendix B: 

(2.2.46) 

Differentiation of (2.2.46) gives: 

(2.2.47) 

Integration of (2.2.46) results in: 

(2.2.48) 

From (2.2.46,47,48),it follows that,for t + 0, R + 0~ R + y
0

, ~ + -oo 

and R! + 0, which is in agreement with the previous assumptions. For 

t >> T the diffusion controlled mode (2.2.33) is reached 

asymptotically. 
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In the previous discussion, a unified treatment of the coupled 

hydrodynamic and thermal processes occurring during bubble growth 

has been presented, resulting in equation (2.2.48) for the bubble 

radius as a function of time. However, in the literature both the 

expressions of Cooper and Vijuk (1970) and of Mikic, Rohsenow and 

Griffith (1970) are in frequent use. 

The equation of Cooper and Vijuk is an ad hoc interpolation between 

equations (2.2.43) and (2.2.33) which hold for t/T « I and t/T » I 

respectively. Their expression reads: 

t 
T 

(2.2.49) 

Also on the basis of an interpolation, Mikic, Rohsenow and Griffith 

solve the following equation insteadof equation (2.2.44): 

o. (2.2.50) 

In (2.2.50), the linearization of (2.2.40) with R2 = Y R bas not 
0 -! 

been introduced. Instead, the semi-integral operator 
0

Dt/T has been 

replaced by (~t/T)i. The latter approximation is only valid for 

asymptotic growth, i.-e. for t/T >> I; initially, when R = y
0

, this 

approximation results in a value for the heat flux to the bubble 

which is ~/2 times larger. The expression for transitional growth, 

following from (2.2.50) is: 

4 2. 1] <;r> • (2. 2.51) 

Fig. 2 •. 2. compares the results of (2.2.48,49,51). It is observed 

that the differences are marginal. 

For growing sodium vapour bubbles, Dalle Donne and Ferranti (1975) 

numerically solved the Rayleigh equation (2.2.10), coupled with the 
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10 

Mikic, Rohsenow and Grilfith 11970l 

Caoper and Vijuk !1970l 

10 
tlt 

10 1<il 

Fig.2.2. Comparison of the radius vs. time relationships 

represented by equations (2.2.48,49,51) 

11f 

heat diffusion equation (2.2.15) and boundary condition (2.2.14). In 

this way, these authors did notmake use of the thin boundary layer 

assumption upon which the Flesset and Zwick equation (2.2.29) is ~based. 

Similarly, Prosperetti and Flesset (1978) solved the Rayleigh 

equation (2.2.10), coupled with the Flesset and Zwick equation 

(2.2.29) for the same sodium bubbles as considered by Dalle Donne and 

Ferranti. It is noted that both authors accounted for variations in 

p1 as a function of TR' and they used the equilibrium pressure­

temperature relationship instead of the linearized Clapeyron equation 

(2.2.1). For Ja~ 10 the agreement between the two approaches was 

good and. consequently, it was proved in this way that the Flesset 

and Zwick approximation (2.2.29) may be used when vapour bubble growth 

is considered. 
Theofanous and Fatel(1976) replaced the linearized Clapeyron equation 

(2.2. I) by p1 (TR) = p + [{p
1
(T)- p }/(T-T ))(TR-T ). This turns 

(X) 00 (X) 00 s s 
out to be an improvement, especially when relatively high superheats 

are considered, as is often the case for boiling liquid metals, 
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Prosperetti and Plesset also compared Mikic, Rohsenow and Griffith's 

expression (2.2.51) (where Theofanus and Platel's suggestion was 

included) to their own results. The agreement was good; in the 

transitional stage, Mikic, Rohsenow and Griffith's equation results 

in a value which is only a few percents too low. As a matter of 

course, equations (2.2.48, 49,-51) do not repreeent the, usually 

unimportant, short time of growth after nucleation, where bubble 

growth is dominated by surface tension. 

2.3. Bubble departure 

2.3.1. Initial acceleration of a free bubble 

First, a free bubble, i.e. a bubble far away from walls, will be 

considered. However, in contrast to the situation described in 

Section 2.2, the bubble is growing in a gravitational field with a 

force per unit mass g. 

Initially, after start of acceleration caused by the buoyancy force, 

the hydrodynamic boundary layer around the bubble and the thin viscous 

wake bebind the bubble do not yet affect the rise velocity and, 

consequently, potential flow theory may be applied. 

In Appendix A, the following coupled equations are derived on the 

basis of a cylindrically symmetrie potential flow field around a 

growing, and translating, spherical bubble: 

P1R-P.,. 20'
0 ·------+ p pR (2.3.1) 

d (2 3•) 4 3 8 1 dt 3 1TpR z • 3 1TpR g - 3 1TO' R. (2.3.2) 

In (2.3.1,2), z is the coordinate parallel to the asis of rotational 

symmetry, and z is the upward translation velocity of the bubble 

centre; cf. Fig. 2.1. In (2.3.1,2), viscous effects have been 

neglected, 
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Equation (2.3.1) is the extended Rayleigh equation (2.2.10), modified 

by the addition of a term (z/4) 2
• Rowever, in the following discussion, 

this term may be neglected with respect to other terms. 

When a bubble translates, heat or mass transfer to the bubble wall by 

convection will become important with respect to diffusion, cf. e.g. 

Yao and Schrock (1976); however, also this effect is assumed to be so 

small that it may be neglected. Consequently, the solutions for bubble 

growth presented in Section 2.2, also apply during the initial stage 

of bubble acceleration. 

Equation (2.3.2) expresses that the so-called impulse of the bubble 

is equal to the relative velocity between bubble and liquid multiplied 

by the so-called virtual mass of the bubble. The virtual mass is 

given by half the mass of the displaced liquid. Equation (2.3.2) will 

be referred to as the Green equation; cf, Lamb (1974). 

In (2.3.1,2), the surface tensionais written as a= a
0 

+a' cos 0, 

which expresses a possible change of surface tension along the bubble 

wall. The effect of this gradient is discussed in Section 2.3.3. 

! 
When surface tension gradients may be neglected, and when R{t) « t 2

, 

cf. equation (2.2.34), the initial acceleration z follows from 

(2.3.2), and is given by: 

4 
z = 5 g. (2.3.3) 

Similarly, when R(t) ~ t, cf. equation (2.2.43), the initial 

acceleration of the bubble centre is given by: 

I 
z = 2 g. (2.3.4) 

2.3.2. Aaaele~ation aont~olled bubble departu~ 

Up till now, only free bubbles, far away from walls, have been 

considered. However, in reality, the bubble originates, via a 

nucleation process, in a tiny cavity at the wall. This bubble starts 

growing, and between the solid wall and the bubble, a liquid layer 

remains, which is very thin when bubble growth is sufficiently rapid; 
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cf. Fig. 1.2. InSection 4.1, the formation of this so-called liquid 

microlayer will be considered in detail. 

Due to the presence of this layer, it is as if the bubble starts 

growing as a hemisphere with its base moving smoothly over the solid 

wall, and because the microlayer evaporates, the growth rate, given 

by expression (2.2.34), prediets too low a value; a correction for 

this effect will be accounted for inSection 2.4.1. 

In the following discussion, a model for bubble departure will be 

given, based on a more detailed description that is presented in 

Chapter 3. 

The gravitational acceleration causes the bubble to depart from the 

wall. When it is assumed that expression (2.3.2) for a free bubble 

also holds approximately at a solid wall, it is found for the dis­
placement of the centre of the bubble that, in the diffusion-

controlled mode of growth; cf. also Fig. 2.1: 

(2.3.5) 

After a certain time, the bubble bas only one point of contact with 

the wall, i.e. z = R. When it is assumed that, at that instance, the 

bubble breaks away from the wall, then the following expressions are 

found for the adherence time and departure radius: 

and 

R dep 

i 
(11) 
2g (2.3.6) 

(2.3.7) 

where Y is the bubble growth constant, defined by R(t) = y(Kt)!. 

During the process of acceleration, the bubble contact radius 

R (R2-z2 )! is given by: c 

t < td • ep (2.3.8) 
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The growth rate of the bubble base, R , is positive for t < 
c 

z. 
td /2~. ep2. 

and contraction of the bubble base t·akes place for 

as can be observed from the following expression: 

R (t) 
c 

h2K - rt g2t3 

R (t) 
c 

t > td /2 3 , ep 

(2.3.9) 

Finally it is noted that ~ is aZ~s negative. This turns out to be 
c 

of great importance for the determination of the thickness of 

formation of the liquid microlayer; cf. Section 4.1. The expression 

for ~ is given by: c 

(2. 3. 10) 

Experimentally, Cooper, Judd and Pike (1978) found expressions 

similar to (2.3.6,7), however, with the factor 5/2 replaced by 

4 in (2.3.6), and with the factor 5/2 replaced by 13.5 in (2.3.7). 

Since these two factors have not the same value, it is concluded 
1 

that deviations from the growth law R ~ t 2 occurred in their 

experiment. This may be due to the fact that, in reality, the 

bubble does not grow in a uniformly superheated liquid; cf.· also 

Section 2.4.2. 

When the bubble growth rate is given by R(t) = y
0
t, cf. equation 

(2.2.43), the following expressions are obtained in a similar way 

as discussed befote: 

t dep 

R dep 
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0 =--g 

(2.3.1l) 

(2.3.12) 

(2.3.13) 

(2.3.14) 

(2.3.15) 



(2.3.16) 

From equation (2.3.15), it is observed that the bubble contact 

radius grows when t < td /21, and contraction of the bubble foot 
ep ~ . 

takes place when t > td /2. From equation (2.3.16) it is observed ep 
that also in the inertia-controlled mode of growth, ~ < 0. c 

Finally,it is noted that equations (2.3.12,13) have been verified 

experimentally by Sabbotin, Sorokin, Orechkin and Rudryavtsev (1972) 

for boiling liquid potassium. In this case, the relationship R « t was 

verified as well. 

2.3.3. The validity of aeaeleration aontPolled depaPtuP8 and otheP 

modes of buhble depaPtuPe 

In the previous Section, a model of departure caused by bubble 

acceleration was proposed. This model is based on a more detailed 

study, presented in Chapter 3, where it is shown that gravitational 

acceleration causes a deceleration of the growth rate of the bubble 

contact radius R • Both in Section 2.3.2 and in Chapter 3, it is c 
assumed that departure takes place when Re bas become zero. 

However, in reality, a small contact area with radius Rd can remain, 

where Rd is the so-called dry area radius; cf. Fig. 1.2. At this 

contact perimeter, a downward-directed force, with a maximum value 

equal to the surface tension force of adhesion is present. This 

surface tension force equals F
0 

= 2~crRdsin00 ; cf. e.g. Kabanow and 

Frumkin (t933). Consequently, the upward buoyancy force, F = 
= (4/3)1TpgR3 , must be larger than the maximum downward forc! F

0 
to 

cause bubble departure. 

When the bubble is growing at a sufficiently high rate, an inertia 

force, resisting departure, must also be included in the force 

balance, as will be shown in the following discussion. 
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In Appendix A, expressions are presented for the equations of motion 

of a spherical bubble, a distance z away from a solid wall. The 

derivation of these equations is only valid when z >> R; however, in 

this Section, these expressions will be used as an approximation to 

show the behaviour of a spherical bubble attached to the wall at a 

relatively small contact area. In that case, z = R, and, with 

neglect of viscous effects and of surface tension gradients, the 

following expression is obtained from (A 19): 

(2.3.17) 

In (2.3.17), the downward force, Fd' exerted by the wall on the 

bubble, has been substracted from the upward buoyancy force. When 

the left-hand side of (2.3.17) is positive, as is usually the case 

during adherence, the latter term represents a downward force of 

inertia Fi; cf. Fig. 2.3. 

When diffusion-controlled growth is considered, where R(t) = y(Kt)!, 

the inertia force becomes Fi = npy4
K

2 /12. For this latter case, the 

downward inertia force has been calculated exactly by Witze, Schrock 

and Chambré (1968). The latter authors found a three times larger 

force than is obtained from approximation (2.3.17). 

solid wal! 

Fig.2.3. Force balance of a spherical bubble with one point 

of contact at a horizontal wall 
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Consequently, the bubble adheres at the wall as long as the following 

inequality is satisfied: 

(2.3. 18) 

and in the mode of diffusion-controlled growth, the latter condition 

results in: 

(2.3. 19) 

where use bas been made of expression (2.3.7) to calculate Fg. 

For rapidly-growing steam bubbles, at atmospheric an~ subatmospheric 

pressures~ condition (2.3.19) is usually satisfied, ~nd consequentlY., 

the adherence time and departure radius may be described by equations 

(2.3.4,5); cf. also Section 2.4.2. 

On the other hand, for slowly-growing gas bubbles, the inequality 

(2.3.19) is usually not satisfied, and the bubble adheres until the 

following condition holds: 

F = F. + F
0

• g 1. 
(2. 3.20) 

Since F0 depends on the growing dry area radius, the departure of 

gas bubbles is governed by the growth of the dry area radius which, 

in this case, equals the bubble contact radius; cf. Fig. l.I. The 

growth of the bubble contact area has been considered in Section 

4. 3, where equations for the prediction of the break-off radius are 

also discussed. 

A third possible mode of departure exists, due to the occurrence of 

surface tension gradients along the bubble boundary. 

From equation (2,3.2) it is observed that a surface tension gradient 

along the bubble boundary causes bubble acceleration in a direction 
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opposite to the direction of that gradient. Consequently, for 

departure assisted hy a gradient in surface tension, the surface 

tension gradient must he negative in the z-direction and, since 

surface tension increases with decreasing temperature, there must 

he a positive temperature gradient in the z-direction along the 

hubble wall. 
Such a gradient does not exist in usual boiling situations, where 

the temperature gradient outside the thermal boundary layer around 

the bubble is usually negative, and where hardly any temperature 

gradient exists along the bubble boundary; cf. Kenning and Toral 

(1977). Consequently, departure is not assisted by that force. 

However, in boiling of binary mixtures, a positive gradient in 

concentration of the solute can exist, and since surface tension 

depends considerably on concentration, surface tension gradients 

possibly play a part in these systems. However, in this thesis, 

only one-component systems will be considered. 

When hydrogen is formed electrolytically, a continuous jet of tiny 

H2-bubbles is usually observed; cf. e.g. Trividi and Funk (1970). 

Also, during nucleate boiling at relatively high heat fluxes, the 

latter phenomenon eau be observed. The buoyancy force at this stage 

is still quite small, and it does not significantly affect bubble 

dynamics. The mechanism by which this mode of departure is caused 

bas not yet been clarified exactly. Han and Griffith (1965) suggest 

that the inertia force tends to lift the bubble off the surface if 

growth of the bubble decelerates rapidly enough. From equation 

(2.3.17), it is observed that, when R(t) oc ts, where s < l/4, the 

inertia force is negative indeed, and Fi + -oo when t + 0. 

Finally, it is remarked that in the literature, the departure of 

rapidly-growing vapour bubbles is treated as a balance of forces, 

rather than by an acceleration process, as is proposed bere; cf. 

e.g. Witze, Schrock and Chambré (1968), and Kiper (1971). 

When the force balance (2.3.20) is applied, the surface tension force 

of adhesion may be neglected when sufficiently high bubble growth 

rates are considered. For diffusion-controlled growth, this force 

balance then results in: 
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R dep (2.3.21) 

Comparison of (2.3.21) with (2.3.7), shows that both the acceleration 

model and the force balance model yield a similar result, except for 

a difference in the numerical factors. However, as is clear from 

equations (2.3.8,9,10}, the acceleration model also describes the 

contraction of the bubble foet during adherence. 

2.4. Vapouv bubbles at a wall 

2.4.1. Enhanaement of g~owth ~ate by mia~olayer evapovation 

A detailed description of the hydrodynamic processes that occur in 

the liquid microlayer will be found in Chapter 4. However, as a 

preliminary to these more-detailed discussions, this Sectien provides 

a semi-quantitative treatment of the heat transfer process in the 

microlayer, and the treatment is extended for more realistic 

situations in Chapter 3. 

For ease-of-presentation, consideration of bubble growth in this 

Sectien is restricted to diffusion-controlled growth only, and is 

further restricted to situations wbere the time of growth is short 

compared with departure time. Under these conditions, the bubble is 

hemispherical, and R(t} = Rc(t) = y(Kt)!; cf. equation (2.3.8). 

According to equation (2.2.34), the volume of vapeur that has 

entered into the bubble because of evaparatien of liquid at the 

vapour-liquid interface of the bubble cap is given by: 

21T ~ 3 i 
Ja {I + (I + 

3
Ja) }] (Kt} (2 .4. I) 

The total volume of vapeur that has entered into the bubble by 

evaporation of liquid, both at the bubble cap and at the vapour­

liquid interface in the microlayer, is given by: 
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(2.4.2) 

In the following treatment, the volume of vapour that has entered 

into the bubble by evaporation of liquid at the vapour-liquid 

interface in the microlayer, will be considered first. 

At the location r ~ Re, where the leading edge of the colder vapour 

moves over the hotter liquid at the wall, cf. Fig. 1.2, the heat 

flux is very high. This flux decreases with decreasing r. Moreover, 

the surface of the liquid microlayer in the region R - Ar < r < R 
c - - c 

is larger than a surface in a region R' - Ar < r < R' with R' < Re. 

Consequently, most of the vapour that enters the bubble by 

evaporation of the liquid microlayer comes from the outer part of 

this layer. Since the thermal penetration thickness at that location 

is smaller than the microlayer thickness, the microlayer may be 

assumed as half infinite; cf. also Van Ouwerkerk (1970, 1971). 

Since there is negligible convection in the microlayer and heat 

fluxes in the radial direction are negligible with respect to the 

flux to the wall, the one-dimensional heat diffusion equation may be 

used. In a similar way as for equation (2.2.17), this equation can 

be written as: 

K~ D-l ar • T(r,z,t) - T~, 
tr t az w 

where tr is determined by the implicit relationship 

R (t ) - r. c r 

(2.4.3) 

(2.4.4) 

In the same way as in expression (2.2.12), the heat requirement for 

vaporization at the vapour-liquid interface in the microlayer is 

given by: 

{2.4.5) 

where h is the thickness of the microlayer and u
1
(r,h,t) is the 

velocity of the vapour entering the bubble at z = h. 
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Since the thin liquid microlayer rests on the impermeable solid 

wall, the vapour-liquid interface of the microlayer cannot be 'blown 

away' as the bubble cap. Consequently, jah/atj << ju1 (r,h,t)l. Under 

this approximation, substitution of (2,4.5) in (2.4.3) results in: 

(2.4.6) 

But TM = Ts in the asymptotic diffusion-controlled mode of growth, 

and (2.4.6) results in: 

, for t > tr. (2.4.7) 

The total volumetrie flow of vapour from the evaporating microlayer 

into the bubble can be found by integration of u1 (r,h,t) over the 

total wetted surface under the bubble. When the effect of a possible 

dry area is neglected this results in: 

Rc(t) t 
V = 2n J u1 (r',h,t)r'dr' = 2n f u

1
(t ,h,t)R (t )R (t )dt. 

M r'=O 0 r c r c r r tr= 

(2.4.8) 

For small adherence times, where R (t) = y(Kt)~, equation (2.4.8) 
c 

can easily be integrated, resulting in: 

(2.4.9) 

or, after integration with respect to time: 

(2.4. 10) 

Since the saturated vapour may be considered as incompressible for 

the relatively slow process of bubble growth, the requirement of 

conservation of vapour mass results in: 

(2.4.11) 
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Substitution of expressions (2,4,1,2,10) in (2.4.11) results in a 

simple expression for y in the limiting case of Ja >> I only. When 

x is defined so that y = 2x(3/n)iJa, then (2.4. 11) gives the 

following equation for x: 

o. (2.4.12) 

The real salution of (2.4.12) gives x I. 234. 

When there is no contribution to growth due to microlayer evaporation, 

x= 1. When there is only growth caused by microlayer evaporation, 
! 

x = 1/3 2 = 0.5773. It fellows therefore that the combined effect of 

both modes of growth is smaller than the sum of the separate effects. 

A dr,y area ~ith radius Ra ~iZZ be fo~ed both by capillary effects 

and by evaparatien of the microlayer. Dry area formation caused by 

capillary effects will be treated in detail in Sectien 4.2. Dry 

area formation by evaporation, or 'dry-out' as it is called, has 

been treated numerically by many authors; cf. e.g. Yu and Mesler 

(1977), and Caoper and Merry (1972, 1973). 

In the analysis of dry-out, thermal properties of bath the wall and 

the liquid play an important part, and an analytica! salution for 

Rd(t) cannot be found. 

Van Ouwcrkerk (1970, 1971) presentedan analytica! salution for 

equal thermal properties of liquid and wall under the assumption 

that the thickness of formation of the microlayer o* is proportional 

tot~. However, as will be shown in Sectien 4,1, a more complex 
• l 

analysis results in ó ct. t 3 , which makes an analytica! salution for 

Rd(t) even more difficult. Consequently, dry-out will not be 

considered further in this thesis. 
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2.4.2. The injtuenae of non-homogeneaus initial temperature fields 

on grohlth and departure 

In practical situations, the liquid above the superheated wall with 

temperature T is not superheated uniformly, but its temperature 
w 

decreases with increasing distance from the wall until the homo-

geneaus temperature of the bulk liquid TB < Tw is reached. TB may 

even be lower than the saturation temperature T • s 

During bubble growth, the bubble pushes the hot liquid upwards, 

resulting in a convection process that will be described numerically 

in Section 3.3.2. Consequently, the temperature T
00 

at the edge of 

the thermal boundary layer around the bubble cap is a function of 

the azimuthal angle e and of time t. 

In principle,expression (2.2.17) is only valid for time independent 

T00 (9) at all values of 9. However, in the following treatment, it is 

assumed that T
00

(9,t) changes sufficiently slowly, so that equation 

(2.2.17) may be used as an approximation when T (9,t) varies. 
00 

The total heat flow to the vapour-liquid interface at the bubble cap 

can be found by integrating qR(S,t) over the surface of the bubble 

cap, resulting in: 

u-ea(t) 
2UR2 (t) 1 qR(8,t) sin 8 d8, 

8=0 
(2.4.13) 

where 8a(t) is the apparent contact angle, which is entirely 

determined by the bubble dynamics; cf. also Fig. 2.1. 

The surface area of the bubble cap A(t) equals: 

u-9a(t) 
A(t) = 2uR2 (t) 1 sin 9 d8 = 2wR2 (t){1 + cos 9 (t)}. 

9=0 a 
(2.4.14) 

The mean temperature T
00 

at the edge of the thermal boundary layer is 

defined as: 
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1T-8a(t) 

f T
00

(8,t) sin 0 d0. 

0=0 

(2.4. 15) 

The factor I+ cos 0 (t) in (2.4.14) is a slowly varying function of a 
t compared to R(t) and R(t). For that reason,this factor can be 

brought under the Riemann-Liouville integral operator 0D~6 in 

(2.2.19), resulting in an equation similar to -(2.2.19): 

where the dimensionless Jakob number is defined as 

Ja = pc(T -T )/p
1
t. w s 

(2.4. 16) 

In (2.4.16), the correction factor 36, accounting for radial 

convection has been introduced, as well as the global heat 

requirement ~R= p
1
!VR. 

If vaporization at the vapour-liquid interface in the liquid micro­

layer is negligible, then VR(t) = V(t). When it is further assumed 

that the dependenee on t of TR - T = T - T , as is the case in the 
co s "" 

diffusion controlled mode of growth, is negligible, the salution of 

(2.4.16) results in expression (2,2.34) where Ja bas been replaced 

by Ja(T -T )/(T-T ). 
00 s w s 

In the following discussion, this result will be used to calculate 

the bubble departure radius as a function of ambient pressure. 

After a bubble has departed from the wall, cold liquid with bulk 

temperature TB flows to the wall. This liquid is heated through 

contact with the wall which has a temperature T and, when a 
w 

sufficient part of the liquid above the heated wall becomes super-

heated, nucleation will start again. This process repeats ltself 

continuously, and for that reason, the thermal boundary layer in 

contact with the wall is sametimes called the relaxation layer; cf. 
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Van Stralen, Cole, Sluijter and Sohal (1975). 

According to a theory fora perfectly conducting wall, described by 

Han and Griffith (1965), the time between bubble departure and 

nucleation, the so-called waiting time, is given by: 

t 
w 

(2.4.17) 

Further, according to Han and Griffith's theory, the required wall 

superheating to nucleate a cavity with radius R is given by: 
0 

T - T w s 

4crT s 
= p R.R • 

l 0 

(2.4.18) 

From expressions (2.4.17,18), the initial thickness H, defined as 

H = (~Kt )~, of the thermal boundary layer in which the bubble starts w 
growing equals: 

(2.4.19) 

As an approximation, it is assumed that the initial temperature 

profile in the relaxation layer is linear; cf. Section 3.3.2 for 

experimental evidence of this assumption. Consequently: 

(2.4.20) 

During growth, the bubble pushes part of the hot liquid upward. 

However, after a sufficient growing time, the upper edge of the 

boundary layer surrounding the upper part of the bubble bas a 

temperature T8• Consequently, the temperature profile in the 

relaxation boundary layer may again be approximated by expression 

(2.4. 20), corrected by replacing. H by ÇH, where ç represents the 

ratio in which the initial temperature profile has been stretched. 

At the time of departure, where R • Rdep' the surface of the bubble 
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in contact with the thermal relaxation boundary layer equals 

2~~HRd . In that case,the mean tempersture defined by equation ep 
(2.4.15) follows from (2.4.20), resulting in: 

(2.4.21) 

In the following discussion, restrietion will be made to the case 

TB= Ts and Ja>> I. Under these conditions, the bubble radius vs. 

time, near the time of departure, following from equations 

(2.4.16,21) is given by; cf, also equation (2.2.33): 

R(t) 
~ 3ÇR

0 
! 

2 (~) ~ Ja(Kt) 
dep 

From (2.4.22), an expression for the bubble growth constant 

y = ~Kt)~ near the departure time can easily be derived. 

(2.4.22) 

Substitution of the latter expression in equation (2.3.7) for the 

departure radius results in: 

.1 (R Ja~)-7K' 
R = (365 )7 ~o~----

dep 2 s~z g; 
(2.4.23) 

From (2.4.23), it follows that the radius of departure depends only 

slightly on the value of g. This effect bas been found experimentally 

by Siegel and Keshock (1964). 

Introduetion of expression (2.2.20) for the Jakob number (where T
00 

is replaced by Tw) and equation (2.4.18) for R
0

, results in the 

following equation for Rd : ep 

R = dep (2.4.24) 

The result (2.4.24) is independent of the initial superheating 

Tw - Ts and of the cavity radius R
0

• 
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Equation (2.4.24) forms a theoretica! proof of an empirica! 

express ion obtained by Cole and Rohsenow (1969), as will be shown 

in the following discussion. 

Following the latter authors, equation (2.4.24) is non-dimensionalized 

by writing: 

! 
2R (E.i.) 
_d...,.e..._p_a_ = 3. 34 

pcT ~ 
(PI~ s) 

= a.. (2.4.25) 

The dimensionless number pcTs/p 1 ~ is approximately inversely 

proportional to pressure, and the right-hand side of (2.4.25) hardly 

depends on pressure. 

Using experimental values of several authors for the departure 

diameter 2Rdep of steam bubbles, Cole and Rohsenow found: 

(2.4.26) 

For organic liquids like acetone, carbon tetrachloride and methanol 

they found: 

(2.4.27) 

In the following discussion, Cole and Rohsenow's equation (2.4.25) 

will be compared with Fritz's(l935)equation for the maximum radius 

of static adhering bubbles. Fritz's equation reads: 

R dep 
I 

0.0107 9 (...2:.) ' 
0 pg (2.4.28) 

where 9 is the natural contact angle in degrees. For water boiling 
0 i 

at atmospheric pressure, (pcTs/p 1 ~)
4 ~ 10~, and comparison of 

equations (2.4.25,27) with equation (2.4.28) shows that the latter 

equation gives the same result as Cole and Rohsenow's equation for 

9
0 

= 75°. Probably this agreement, and the interpretation of 9
0 

as 

a 'mean' contact angle, is the explanation of the frequent use of 
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Fritz's equation in the literature for cases far beyond its range of 

validity, which is restricted to static bubbles. 

It is remarked that there must be a maximum pressure p for which tr 
Cole and Rohsenow's expression holds. For higher pressures,the 

bubble growth rate given by equation (2.4.22) becomes so low that 

departure is no longer governed by acceleration; cf. Section 2.3.2, 

but by the rate of growth of the bubble contact radius; cf. Sections 

2.3.3 and 4.3. In the latter case,the departure diameter is virtually 

independent of pressure, cf, e.g. equation (2.4.28),and consequently 

the adherence time will increase with increasing pressure, instead 

of the decrease predicted by equation (2.4.25}. 

The transitional pressure ptr' where the surface tension force of 

adhesion at the bubble foot begins to play a part, can easily be 

estimated when it is assumed that the maximum bubble radius of this 

'sticking' mode of adherence is described by Fritz' s equation 

(2.4.28). This type of adherence will become important when Rd ep 
calculated with Fritz's equation equals Rd calculated with Cole ep 
and Rohsenow's equation. 

Since Cole and Rohsenow's expression prediets that Rd ~ 1/p
00

, and ep 
in Fritz's expression R ~ 0 it follows, as a rough estimation, dep o' 
that ptr = (75°/0

0
) x 100 kPa. 

From (2.4.28) it is observed that the pressure ptr' where transition 

from the accelerating to the sticking mode of departure takes place, 

strongly depends on the wetting properties of the system. When the 

heating wall is fatty, or when the wall is coated with a non-wetting 

agent (e.g. teflon), 8 may be in the range of 90° to 110° and the 
0 

sticking mode will already be observed at atmospheric pressures. 

On the other hand, the heat transfer process will be optimized 

when the walls are well-wetted. For example, with clean steel or 
0 

copper walls 0
0 

S 5 , and ptr ~ 1500 kPa. In this way, small bubbles 

with high departure frequency can be obtained at high pressures, 

resulting in a high peak heat flux. 
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A reduction of the peak heat flux bas been observed experimentally 

by Diesselhorst, Grigull and Rahne (1977),where the wallis coated 

with the non-wetting material PTFE. 

It is noted that there is also a lower limit for the pressures where 

(2.4.25) holds. For low pressures, bubble growth becomes inertia­

controlled, and equations (2.2.33) and (2.3.7), upon which the 

previous treatment is based, lose their validity. 

2.5. VoLume oaaiLLationa 

In reality, an exact asymptotic, diffusion-controlled mode of growth 

is unlikely to occur. Dèviations in ambient pressure, e.g. caused by 

the sudden start of growth of neighbouring bubbles, may cause 

fluctuations in the bubble growth rate. In the following discussion, 

deviations from the asymptotic diffusion-controlled mode of growth 

will be considered as an example. 

When, during bubble growth, the temperature at the vapour-liquid 

interface is constant and equal to the saturation temperature, the 

flow of heat to the bubble is just sufficient to supply the required 

heat for vaporization to maintain this mode of bubble growth. lf the 

growth rate decreases for some reason, less heat of vaporization is 

required, and the temperature of the liquid at the bubble boundary 

will increase. Consequently, the vapour temperature will rise, and 

an increase of vapour pressure will result. This pressure increase 

will cause an acceleration of the bubble growth process which, after 

some time, results in a higher bubble growth rate than the original 

one, and requires more heat of vaporization. This heat requirement 

causes the temperature of the liquid at the bubble boundary to 

decrease, resulting in alowering of the pressure, etc •• 

From this qualitative description,it is learned that the interaction 

between inertia and thermal effects determines the character of the 

bubble response, To describe this process quantitatively for the case 

Ja>> l,it will be shown in the following discussion that ~adial 

convection does not play a part. 
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As becomes clear from the discussion of Section 2.2.2, heat transport 

takes place both by diffusion and by,radial convection. Since the 

thermal boundary layer around the vapour-liquid interface at the 

bubble cap has a certain thickness, the radial velocity of the 

liquid at the edge of this boundary layer is lower than the velocity 

of the bubble boundary. Consequently, an additional convective 

contribution of 3~- 1 = 0.72 times the heat flux without this effect 

is added to the heat transport rate and to the bubble growth rate; 

cf. Section 2.2.2. 

When, due to inertia effects, the bubble growth rate is smaller than 

that given by the heat transfer controlled rate, the correction for 

radial convection will be smaller. It becomes zero for a non-growing, 

non-imploding bubble, and for an imploding bubble the radial 

convection phenomenon bas 'to be accounted for by a negative correction. 

Consequently, for a bubble growth rate oscillating around a mean 

value, the contribution of the oscillations to radial convection may 

be assumed to vanish in linear theory. This also follows from 

equations (2.2.29,30), as has been discussed by Piesset and Zwick 

(1952). 

Under these conditions, the temperature oscillations of the vapour 

may bedescribed by equation (2.2.19) with neglect of the second 

term in the right-hand side (the curvature term) since Ja>> 1. 

Substitution of (2.2.19) in the Rayleigh equation (2,2,10), with 

neglect of viscosity and surface tension, and combined with 

Clapeyron 1s equation (2.2.1), then results in equation (2.2.40) with 

a factor K~ insteadof the corrected factor (3K)!. 

Let the perturbation in the bubble radius be represented by: 

E(t) R(t) - R."(t). (2.5.1) 

In (2.5.1), R
00

(t) represents the diffusion-controlled mode of growth 

given by equation (2.2.33). In the following discussion, it will be 

assumed that ie(t)l << R
00

(t), in such a way that terms in powersof 

e, Ë, and higher derivatives, greater than one, can be neglected. 
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In this way, substitution of (2.5.1) in (2.2.40), without the 

correction factor 3~ for the disturbance g,, results in; cf. Appendix 

B: 

(2.5.2) 

In (2.5.2),it has been assumed that the perturbation is initiated at 

time t • t
0 

after onset of bubble growth at t = 0 and, in the 

derivation of (2.5.2), use has been made of the following rule for 

piecewise defined functions; cf. Oldham and Spanier (1970): 

where e*(t) is defined by: 

B*(t) = {O 
B(t) 

0 < t < t 
0 

t > t 
0 

0 < t < t 
0 

t > t 
0 

(2.5.3) 

(2.5.4) 

For sufficiently large times t
0

, the second term in (2.5.2) may be 

neglected since R~ ~ 1/t~ and,similarly, the last term of (2.5.2) 

is negligible. 

Further, equation (2,5.2) will be simplified by assuming that R~(t) 

in the first term of (2.5.2) is only slowly depending on t with 

respect to the fast response of E(t) to a sudden perturbation. In 

that case, R~(t) may be replaced by R~(t0), and (2.5.2) ,simplifies' 
to: 

0, (2.5.5) 

where T is given by equation (2.2.45). In the derivation of (2.5.5), 

composition rule (B5) for B(t ) = 0 has been used. 
0 

Taking the D~ = d~ of (2.5.5), and making use of the law of 

exponentials (B2), results in: 
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o. (2.5.6) 

-' Taking the t D ~ of (2.5.5) and using composition rules (BS) and 
0 t 

(B6) for E(t
0

) = 0, Ê(t
0

) = 0 results in: 

.l 
Jly 

{ 0 } 

21" IR ( t ) 
00 0 

€ = o. (2.5.7) 

Substitution of (2.5.6) in (2.5.7), while eliminating the term 
J 

t D~E, results in a third order ordinary differential equation: 
0 

The general solution of (2.5.8) is: 

€ = A sin (oot) + B cos (oot) 
0 0 

where 

l 
32oo(t-t ) 

( 0 ) • 

2 

exp (-

(2.5.8) 

(2.5.9) 

(2.5.10) 

Since D~ exp (t) = exp (t) and, for sufficiently large t, 

t n! exp (t) + exp (t), cf. Oldham and Spanier (1974), the last 
0 

term in (2.5.9) cannot be a solution of the original equation 

(2.5.5). Consequently, the response in bubble growth rate to a 

perturbation in acceleration Ë(t ), introducedat timet= t , is 
0 0 

given by: 

Ë(t ) w(t-t ) 
Ê(t) = ~ sin{oo(t-t )} exp {- Î 0 

}. 

ûl 
0 

3 
(2.5.11) 
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From (2.5.ll),it follows that the asymptotic,diffusion-controlled 

mode of growth is stable with respect to small perturbations in 

growth rate. These perturbations and the corresponding inertia 

effects are cancelled almost immediately in the manner of a rapidly­

damped oscillation. 

In a similar way,it can be shown that the initial,inertia-controlled 

mode of growth is stable as well, In the latter mode of growth, the 

perturbations are damped out without oscillations. 

From the extended Rayleigb-equation (2.2.10), combined with the 

Clapeyron equation (2.2.1), it follows that the temperature 

oscillates as TR(t) - T = pT R (t )~(t)/p 1 t. Consequently, the first s s <XI 0 

and second termsin the rigbt-hand side of (2.2.13) have amplitudes 

of Ë(t )/wand pR2 (t )wË(t )p respectively. From this, it follows 
0 (X) 0 0 (X) 

that compressibility effects in the vapour may only be neglected 

when the following condition is satisfied: 

(2.5.12) 

where ~is the so-called Minnaert frequency, cf. Minnaert (1933), 

defined by: 

w = 
M 

3clpPco l 1 
(cl~ ) Roo' 

(2.5. 13) 

If condition (2.5.12) is not satisfied. the vapour behaves as a 

compressible gas, as bas also been shown numerically for imploding 

vapour bubbles by Cho and Seban (1969). In the latter case,the bubble 

bas radial pulsations with frequency wM, and the damping is low. 
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CHAPTER 3 

DEVlATIONS FROM THE SPHERICAL SHAPE 

3.1. Introduetion 

In Sectien 2.3.2, a model has been proposed to describe the departure 

of sufficiently large spherical vapour bubbles. The basis of this 

model has been Green's momenturn equation for the initial acceleration 

of free spherical bubbles. The departure times and radii, determined 

in this way, were shown to be in good agreement with experimental 

data. However, in view of the oversimplifying assumption of a free, 

spherical bubble one must expect that equations (2.3,8, 9, 10) and 

(2.3.14, 15, 16) for the bubble contact radius Rc(t) only reprasent 

a semi-quantitative description of the evolution in time of R (t). 
c 

In this Chapter, the assumption of a spherical bubble will be relaxed 

and the case where the flow field is bounded by a horizontal wall 

will be considered. Initially, at t = 0, it is assumed that a 

growing hemispherical bubble is formed, It will be further assumed 

that there is cylindrical symmetry, but that the bubble will deviate 

from the spherical shape due to gravity. As will be shown in this 

Chapter, the main distortien will be a decrease in growth rate of 

the bubble foot, leading to contraction and ultimately to departure. 

An effect of less importance will be a flattening of the bubble dome. 

When the bubble growth rate is sufficiently high, the viscous boundary 

layers around the bubble cap and the solid wall will remain sufficiently 

thin during adherence; consequently, the assumption of potential flow 

is acceptable. The only region of importance for the bubble shape, 

namely the meniscus region near r = Re• where viscous effects may 

play an important part, will be treated seperately in Sectien 4.1.2. 

Bubbles satisfying the above-mentioned conditions occur in water boiling 

at pressures lower than, say, 50 kPa. Comparison of theoretical results 

with experiments on such bubbles will be reported. 
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A situation which has many similarities with the above-discussed 

case bas been considered by Walters and Davidson (1962, 1963), these 

authors considered the initial motion of a gas bubble in an infinitely­

extended, inviscid liquid. Both for two-dimensional bubbles (Walters 

and Davidson (1962)) and for three-dimensional bubbles (Walters and 

Davidson (1963)) it was found ~hat, at a certain time after bubble 

formation, a liquid tongue is formed at the rear of the ascending 

bubble. Comparison between non-growing and growing bubbles showed that 

for expanding bubbles the changes in shape occur more slowly; cf. 

Walters and Davidson (1963). 

As a matter of course, tongue formation at the rear of the bubble 

cannot take place when the bubble is located at a solid wall, as is 

the case under consideration in this Chapter. However, since the 

bubble foot can move over the wall, cf. Section 2.3.2, it may be 

expected that contraction of the bubble foot will occur instead of 

tongue formation. 

The departure of a non-growing bubble, initially formed as a hemisphere 

at a wall, will be discussed in Section 3,2, This enables us to describe 

the numerical method, the so-called global collocation method, which 

will be used to solve this non-linear problem. On the basis of the 

results obtained in Section 3. 2 , the departure of water vapour bubbles 

under low pressure will be considered in Section 3.3. 

3. 2. Initial accelemtion of non-gr>O'I.Ving bubbles 

3.2.1, Tne equations of motion 

The rotationally symmetrie solution of potential equation (2. 1 .15), with­

out singularities in e • 0 and r + =, bas the following form when 

only one bubble is considered; cf, also appendix A: 

p. (cos e) 
,P(r, e, t) • • ! Bj (t) J '+I 

J-o ~ 
(3.2.1) 

In (3,2.1 ), the expansion coefficient Bj is a function of time, 

but not of the spatial coordinates r,e, p.(cos 6) represents the 
J 
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Legendre polynomial of degree j with argument cos 6. 

When the normal component of the velocity at the solid wall is zero, 

i.e. when (a~/ae)6 .. ~ 12 = 0, the coefficients for odd Legendre 

polynomials are zero, i.e. 13 2j+l = 0, j = 0, I, ••• •""• 

In the latter case, a series expansion similar to (3,2.1.) may be 

written as: 

~(r, e, t) = I: b. (t) 
j=o J 

(3.2.2) 

Following Yeh (1967) and Hermans (1973), the bubble radius is also 

expanded in Legendre polynomials: 

R( e, t) I: aj (t)Pj (cos 6) , 
j=o 

or, when a solid wall is present at e 

R(e, t) = I: a.(t)P
2

.(cos e). 
j=o J J 

(3.2.3) 

TT/2: 

(3.2.4) 

The series expansions (3.2.2, 4) may be applied only when the bubble 

radius is single-valued, i.e. when for every angle e there is only one 

value for R(S). The latter restrietion is quite severe and is,for 

instance,not satisfied when bubble implosion and fragmentation are 

considered. However, when only bubble growth is treated, this 

difficulty does not arise. 

Insteadof the Rayleigh-Plesset equation (2.2.10), the Bernoulli 

equation (2.1.16), applied at the bubble boundary r = R(B,t), will 

be used as the dynamic boundary condition. By neglecting the normal 

viscous stresses, the latter condition yields: 

.2.i = -.!{(a~/ + (.!_ .2.!)2
} - PIR - p"'- gR cos 6 + 

at 2 ar R ae p 

+...I!.. 
pR ~

I + 2(! aR)2 - ! ;:/R I - R! ~eR cot 8 J ~ Rae R
38

2 o 

-------:---';.;;.__ + ------"7"7;;-
1 aR 2 S/2 I aR 2 l/2 

{I + <ïï "iïiï> l {t + <ïï aa> l 

at r = R(e, t) • 
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The vapour pressure at the vapour-liquid interface, piR' follows 

from Clapeyron's equation (2.2.1). For the time being, it is assumed 

~PIR is known. The term pgR cos 6 represents the hydrostatic 

pressure. Equation (3.2.5) is the only equation where gravity occurs 

and, provided that the initial conditions reprasent spherical symmetry, 

deviations from the spherical bubble shape are due to this term only. 

Equation (3.2.5) may be considered as an equation of motion 

descrihing the evolution in time of the velocity potential at the 

bubble boundary. To find the evolution in time of the bubble boundary 

r = R(6, t), a kinematic boundary condition must be prescribed as well. 

Similar to equation (2.2,4) , this will be the condition that the 

normal component of the rate of displacement of the bubble boundary 

equals the normal component of the liquid velocity at the bubble wall. 

In general, the coordinates of the moving interface are given by the 

following implicit relationship: 

F(r, 6, t) = 0 • (3,2.6) 

The unit vector normal to the interface is given by: 

aF I aF 

n = VF (ar• r 1fä) 
(nr • n6) = Tm;TVF = _:...::;.._;;;.....;;.;;.....__"...."..,.",.. 

1 v.r 1 2 2 1/2 ' (3,2.7) 

{(aF) + <! aF) J 
ar r a6 

Equation (3.2,6) generally bas the form of a multivalued relation 

between r and 6, but from physical considerations it is known that 

at least bne solution exists which is written as: 

r = ~(6, t) • (3.2.8.) 

In (3. 2.8), the index À denotes the choice of the salution if 

equation (3.2.6) is multivalued for r with respect to 6. Equation 

(3.2.8) can be written as r- ~(6, t) = 0 and leads to the following 

expression for !!.: ( I a~ 
1·-räa) 

À 
!!.À = (nrÀ' n6À) '" 1/2 <3•2 •9 ) 

{I + (.!.,__ 3~)2} 
~ a6 
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At a fixed angle a, the time derivative of the coordinates of the 

bubble boundary is given by: 

a aRÀ 
ät(r, e)interface a (~ f O) • (3.2,10) 

From (3,2,9 ,10), it follows that, for a fixed angle a, the normal 

component of the rate of displacement of the bubble boundary is 

given by: 

(3.2.11). 

Equating the normal component (u.n,) R of the liquid vel9city at the 
-- r= À 

vapour-liquid interface to the normal component of the rate of 

displacement of the vapour-liquid interface, results in: 

(3,2.12) 

Equation (3.2.12) is a partial differential equation of the hyperbalie 

type for ~(a, t), By making use of the metbod of characteristics, 

cf. e.g. Whitham (1974), a multivalued salution can be found. Sluyter 

(1978) performed such calculations for imploding gas bubbles. However, 

in the following Sections, multivaluedness will not be considered. 

Consequently, the index À of RÀ will be omitted, and R(e, t) may be 

expanded in the series (3,2.3) or (3,2,4). 

3.2.2. The global collocation method. 

In this Section, a metbod will be presented for the determination 

of the expansion coefficients ~.(t) and a.(t) ór a.(t) and b.(t). 
- 1 1 . 1 1 

Analytica! methods will not be attempted, but a numerical salution 

metbod will be applied instead. 

A finite number of N angles ek, k = 0,1, ••• N-1, is selected to 

discretize the continuous flow field. The way in which these angles 

are distributed over the interval of e-values will be discussed 

in Section 3.2.3. 
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When the values of the N bubble radii ~{t) = R(ek, t) have been 

calculated, the values of R(e, t) between the angles ek can be 

found by interpolation. For that purpose, the series (3.2.4) will 

be cut after N terms, resulting in the following linear system for 

the expansion coefficients aj(t): 

N-1 
~(t) = .r [!]k· a.(t) , 

J=o - J J 
(3.2.15;) 

where the matrix~ bas elements [f]kj which are: 

(3. 2 .16) 

Generally, the matrix denoted by (3.2.16) bas a low condition number, 

and is therefore well-suited for machine computations; cf. e.g. Hayes 

(1970). 

When the values of a.(t), j = O,l, ••••• N-1, are obtained from the J . 
known values of ~(t), k = O,l, •••• N-1, at a certain timet, by 

solving numerically the linear set (3,2.15) , the value of aRtae 
can be determined by differentiation of series (3.2.4) which is 

cut after N terms. 

Provided that (a~/ae)~ and (a;/ar)Rk are known, the value of 

~(t)/dt follows from the kinematic boundary condition (3.2.12). 

In this way, the kinematic boundary condition bas only been satisfied 

at the N discrete angles ek' A metbod were an equation is satisfied· 

only at discrete points rather than over a complete continuous 

range of values is called a collocation method; ~f. Finlayson (1972). 

the metbod applied bere is the global collocation method, since 

only one interpolstion function or so-called trial function bas been 

used for the complete interval of e-values. 

In the same way as with the series (3,2.4), the series.(3,2.2) 

for ; will also be cut after N terms, where each term is a solution 

of the potential equation (2.1.15). Defining ;{~(t), ek' t} = -k(t), 

the following set of linear equations for bj(t) is derived from 

(3.2.2.): 
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n-1 
= E 

j=o 

where the matrix ~{t) has elements [g{t)]kj defined by: 

P2j(cos Bk) 

R {t) 2j+ 1 
k 

2 2 

(3.2.17) 

{3.2.18) 

Since R, êR/38 and a R/36 are known, the value of (3~/at) R 
r= k 

can now be determined from (3.2.5), for prescribed values of 

~k(t), by solving the linear set (3.2.17) to find bj(t) and, 

consequently, a;,/ar and a~/ae. In order to find d~k/dt, the following 

expressionmust be used: 

d d 
dt ~k(t) = dt (, {Rk{t), 

a;, 
+{ 

(r, ak, t) 

ar } r=~(t) (3.2.19) 

Since the matrix (3,2.18) is mostly ill-conditioned, the calcu­

lation of b.(t) will be performed with the aid of a scaled matrix 
* J g (t), with elements defined by: 

* ~(t) 2j+l 
[~ (t)]kj = {~(t) } p 2j (cos ak} • (3.2.20) 

• In (3.2.20) R (t) is the mean radius defined by: 

* 1 N-1 
R (t) = N E ~(t) • (3.2.21) 

k=o 

* When the bubble·has a hemispherical shape, then ~(t) = R (t), 

and the matrix Q*(t) becomes independent of tand equal toP. 
= = 

Consequently, this matrix is also well-suited for machine computations, 

and even for deviations from the hemispherical shape, the condition 

number will remain within reasonable limits, 

Now the expansion coefficients bj(t) follow from 4k(t) by performing 

the following two calculations. 

(i) The coefficients ~(t) are calculated with the matrix equation: 

N-1 * il-
(,k(t)- _r (9 (t)Jk. b.(t). 

J=O J J 
(3.2.22} 
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* (ii) From the calculated values of b.(t), b.(t) is determined as 
J J 

follows: 

(3.2.23) 

Combination of the expressions_ for d~(t)/dt and d~k(t)/dt, obtained 

by the collocation metbod discuseed above, results in a system of 

non-linear, coupled, first-order ordinary differential equations. 

In short-hand notation these equations can be written as: 

Thesetof equations (3.2.24) can be solved by computer, using a 

standard routine for the solution of a set of first-order ordinary 

differential equations. For every timestep, the matrix equations 

(3.2.15} and (3,2.17) must be solved; this can also be performed 

by standard routine, 

Fig. 3.1. Initial aeceleration of an air bubble in water 
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The advantage of the numerical metbod described above is that, even 

for a few collocation points, reasonable results can be obtained, 

When only one collocation point is used, and when the term gR cos e 
in (3.2.5) is omitted, the Rayleigh equation (2,2.10), without 

the term 4nR/PR, is obtained from (3.2.24). 

Finally 1 two results will be shown in this Section. 

Fig. 3.1 shows a gas bubble which is formed at t = O, with initial 

velocity zero. The circle represents the initially spherical bubble 

with radius R = I cm. The wavy line represents the bubble shape 

after 21 ms. From the displacement of the centre of the bubble, 

it follows that the initia! acceleration is 20 m/s2 = 2g. After a 

longer time, the calculations show that tongue formation occurs. The 

results agree with those of Walters and Davidson (1963), 

Fig. 3.2. Air bubbles in water adhering to a horizontal wall. 

One bubble is above and one bubble is beneath the wall 
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Fig. 3,2 shows the adherence of two gas bubbles at a smooth wall; one 

bubble is above, and one bubble is beneath the wall. At time t = 0, 

the bubbles are formed with a hemispherical shape, and a radius 

R • I cm. It is observed that the bubble foot of the upper bubble 

contracts; this effect ultimately leads to departure. The lower 

bubble is flattened somewhat and shows an extension along the wall. 

3.2.3. Convergenae of o~thogonaZ aoZZoaation. 

In this Section, the question will be investigated whether the 

collocation method, described in Section 3.2.2 , converges to the 

exact salution for N + oo, For this purpose, the equations (3.2.12) 

and (3.2.5) will be represented in short-hand notation in the 

following way: 

dR 
dt - G(R, (J) 0 (3.2.25) 

(3.2.26) 

In {3.2.25, 26), R and 4 repreaent the exact solutions. 

To find an approximate solution, the functions ~ and ~. obtained 

by cutting the series {3.2,3) and (3.2.1) respectively, are 

i'ntroduced in the following way: 

N-1 
~(IJ, t) = I: ~j {t) Pj (IJ) 

j=o 

~(r, IJ, t) 

where IJ = cos a. 

(3.2.27) 

(3.2.28) 

In (3.2,27, 28), ~j(t), ~j(t) may be considered as àpproximations of 

the exact expansion coefficients a.(t), a.(t). 
J J 
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When, instead of the exact solutions, the approximate solutions 

(3.2.27, 28) are substituted intheleft-hand sides of equations 

(3,2,25, 26), the right-hand sides of these equations will generally 

not be equal to zero, Let the right-hand sides of (3.2.25,26)be 

denoted byRG and~ respectively, defined in the following way: 

(3.2.29) 

(3.2.30.) 

In the following discussion, the functionals RG and ~ will be 

referred to as the residuals. If one wants to find a good approximation, 

these residuals must be "small" in some sense. The residuals E.G and 

~· or shortlyR, will be considered as a function of~. i.e. 

R •R(~), since the dependenee on ~j(t), ~j(t) is unimportant 

for the subsequent discussion, 

Following the procedure discussed when introducing the collocation 

metbod inSection 3.2.2 , N collocation cosines ~k' k = O,t, ••• N-1, 

will be chosen, The residuals R(~) can be expanded in a series of 

Lagrange polynomials, with expansion coefficients Àk = lR(~k), 

cf. e.g. Fox and Parker (1968): 

N-1 * 
R(l.l) = E ÀkLk (~) + lR (i!) , 

k=o 

In (3.2.31) , the Lagrange polynomial Lk(~) is defined as: 

and when lR(p) can be differentiated N times, lR.*(u) equals: 

(p~o)(ï!-1.11) ••• (1.1-l.IN-1) (dN lR.(u)) 

N! dpN p=u,' 
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where ~· is a ~-value in the interval -1 ~ ~ ~ 1. 

In the collocation approximation,t the equations (3,2,25, 26) are 

satisfied at the collocation points ~k' which is equivalent to 

taking m.G(~) •1\i(llk) • 0. From (3,2,32}, it follows that this 

means that Àk = 0 in (3.2,31 ), Consequently, the residual is given 

by equat ion ( 3. 2. 34) , i.e. IR(ll) = IR* (ll) • In this way, the linear 

relationships (3,2.15, 17) are found from (3.2.27 , 28), 

From interpolation theory (cf. e.g. Fox and Parker (l968)),it is 

well-known thatm.*(ll) tends to zero for N ~ oo, only when the 

values of ~k are chosen in a specific way. 

Here interpolation is performed by equating ~k to the zeros of a 

Legendre polynomial of degree N. In that case, the maximum absolute 

value of R*(l-1) for N ~ ® becomes: 

IIR*(l-1)1 < max (3.2.35) 
-I .::. ll' .::. 

From (2.3.25.), it is concluded that for N ~"" IR*(J.l) ~ Ö, provided 

that the Nth derivative ofiR(]J) is bounded. 

In this way, the approximated equations (3.2.29·, 30) converge to 

the exact equations (3. 2. 25, 26), and the approximations 'k and ~ . 
converge to the exact solutions R and ~ as well. 

The present metbod is called the orthogonal collocation method; 

cf. Finlayson (1972). 

3. 3. Depax>ture of OJat.er vapoUI' bubbles under lObJ pressure 

3. 3.1. Introduotion 

When the application of the collocation method, described in Section 

3.2 , is extended to the case of a growing vapour bubble adhering 

at a superheated conducting wall, the complication arises that the 

pressure of the vapour in the bubble is coupled to the temperature 

of the liquid at the bubble boundary. Consequently, the temperature 

field around the bubble must be solved simultaneously with the flow 

field. 
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An accurate local description of the evolution in time of the 

temperature field is difficult compared to the relative ease of 

obtaining a solution for the hydrodynamic ~quations. Also, as will 

be demonstrated in Section 3.3.2 • th~ solution of the temperature 

field is very sensitive to changes in the initial temperature field 

which exists just :;>rior to the start or.' bubble growth. This initial 

temperature field will be derived from experiment ~f. Section 3.3.3), 

and it is to be noted that the initial temperature field can only be 

determined in an approximste way. 

As a matter of course, calculations of the evolution of the temperature 

with an accuracy greater than that of the initial data will not make 

sense. For that reason. a relatively simple approach will be presented 

bere. giving a sufficiently accurate estimate of the pressure in 

the bubble. From this point-of-view, the description of the temperature 

field around the bubble will be treated as an auxiliary procedure, 

whilst finding the flow field remsins the main purpose of our 

investigation. 

3. 3. 2. The thermal equations 

First, evaporation of the liquid microlayer will be considered. 

Since the liquid in this layer is almost at rest,the following 

expression holds provided that temperature gradients i.n the radial 

direction may be neglected; cf. Section 2.4.1. 

t < t 
r 

(3.3.1) 

where t Dl represents the generalized Riemann-Liouville operator; 
r t 

cf. Appendix B. 

In (3.3.1), tr represents the time elapsed afterstart of bubble 

growth, at which the bubble contact radius is r: 

r • (3.3.2) 
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Like equation (2.4.3) , equation (3.3.1) only holds fora sufficiently 

thick microlayer. 

From expression (3.3.1) , the total heat flowing per unit time to the 

vapour-liquid interface can be calculated by integration of (3.3.1) 

over the microlayer, which is ~ssumed to extend from r=O to r=Rc: 

(3.3.3) 

When ~c > 0, i.e. when the microlayer is extending in the radial 

direction, equations (3.3.2) and {3.3.3) can be combined, resulting 

in: 

(3.3.4) 

As bas been discussed inSection 2.4.1 , the heat flux <I>M causes 

evaporation of the liquid microlayer. As a result, the bubble volume 

increases by a factor (p/p 1) ('I> M/t) per unit of time. 

Consequently, the following expression for the volumetrie flow rate 

of vapour at the interface is obtained from (3.3.4) : 

2 
t dR 

f --!:. 
t =o dtr 
r 

(3.3.5-) 

Rc(t) is known from the solution of the hydrodynamic equations. Let 

it also be a.ssumed that VM is prescribed, then the unknown tempersture 

TM(t) of the vapour at the vapour-liquid interface of the microlayer 

follows from equation (3.3.5). An approximate metbod for solving 

TM(t) will now be introduced. 

It was argued inSection 2.4.1 that the most important contribution 

to vapour production comes from the outer edge of the microlayer; 

i.e. during a.short time interval tr < t < tr + Atr. During this 

time interval, the vapour tempersture is assumed to be constant 

when the Riemann-Liouville operator in (3.3.5) is evaluated. 

With the aid of equations (2.2.18, 25), the following expression is 
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then derived from (3.3.5): 

V = -'!T.eE..... KJ D-i ~T (t) 
M p 1t o t ~ M 

2] dR 
-T}_;:_ • 

w dt 

2 
As a second approximation, it is assumed that the change of Re 

(3.3.6) 

with time is dominant as compared to the variation of TM(t) - Tw 

in time. It follows from the numerical results shown in Section 3.3.3 

tbat this assumption is acceptable. Therefore, equation (3.3.6) 

may be approximated by: 

(3.3. 7) 

With the aid of the rule of the exponents (B5), and with TM(O) - Tw = 0, 

equation (3.3.7) results in: 

(3.3.8) 

Making use of composition rule (B6), one obtains: 

p 19- 1 -i . 
T (t) - T = - -:-:-r - 2 0

Dt VM 
M w peK~ '!TR 

(3.3.9) 

c 

For reasons which will become clear later, equation (3.3.9) will 

be further evaluated for a special case. When is is assumed that, 

during adherence times where microlayer evaporation is important 

(i.e. at times before contraction of tbe bubble foot starts), 

VM ~ tm and R~ ~ tn, with m and n independent of time, then equation 

(3.3.9) results in: 

T (t) - T = -B' M w 
piN. -6 VM 
--r oD t ---'2" 
peK~ '!TR 

c 

In (3.3.10) , the coefficient a' is given by: 

a• = r(m+1)r(m-n+3/2) 
r(m+3/2)r(m-n+l) 

(3.3.10) 

(3.3.11) 

When n=O, i.e. when contraction of the bubble foot sets in, then 

6'=1. Initially, duringa short time after nucleation, inertia­

controlled growth dominates, resulting in m=2 and n=2; cf. Section 2.2.3. 
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In that case, S' = 8/15 ~ 1/2. When,at a later stage, diffusion­

controlled growth occurs, without contraction of the bubble foot, 

then m = 1/2 and n = I; cf. Section 2.2.2. In that case, S' = 1/2. 

Since initial time intervals, where contraction of the hubble foot 

does not yet take place, are most important for microlayer 

evaporation, S' = 1/2 will further be used as an approximation. 

We now turn our attention to evaporation at the bubble dome. Because 

in the liquid around the bubble dome both conduction and conveetien 

play a part, and since there is no spherical symmetry, the calculation 

of the temperature field is more difficult in this case than the 

calculation of the temperature field in the microlayer. For that 

reason, simplifications will be introduced, similar to those discussed 

in Chapter 2. 

In Section 2.2.3 , it bas been shown that equation (2.2.35) represents 

a good approximation when hubble growth is considered. Furthermore, 

it bas been shown in Section 2.5 that equation (2.2.35) can adequately 

descrihe the response to disturbances in the bubble growth rate. 
In the present situation, the bubble growth rate may he disturbed 

because, more-or-less suddenly, the bubble comes into contact with 

colder liquid, once it bas grown to a sufficient size. 

Application of equation (2.2.35) results in the following expression 

for the heat flux qR at the bubble dome: 

(3.3.12) 

where it is assumed tbat heat fluxes tangential to the hubble 

boundary are negligible. In principle, equation (3.3.12) only holds 

when Tw is independent of t; however, as an approximation, the 

use of equation (3,3.12) will he extended to cases where T~ = T~(t), 
as discussed previously in Section 2.4.2. 

From expression (3.3.12), the total heat flow to the vapour-liquid 

interface can be calculated by integration over the surface of the 

bubble dome: 
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1f/2 2 
~R(t) = -1Tpc(3K)j f R (S,t)sina 

0
D!{TR(t) - T

00
(6,t)}da • 

6=0 

From (3.3.13), the volumetrie flow rate at the bubble cap VR 
follows from the heat requirement ~R = P 1 ~VR. 

(3.3.13) 

As shown in Section 2.4.2 , the order of integration, and application 

of the 
0
D! operator, may be reversed when the decrease in the apparent 

contact angle is sufficiently slow. This results in: 

where the mean temperature T®(t) is given by: 

and A(t) represents the surface area of the bubble cap: 

1f/2 
A(t) = 21f f 

6=0 

2 
R (6,t)sin6 d6 

Inversion of expression (3.3.14) results in: 

(3.3.14) 

(3.3. IS) 

(3.3.16) 

(3.3.17} 

The two equations (3.3.10, 17} 

two expressions: 

must be combined with the following 

and 

From (3.3.10, 17, 18, 19), 

T
1 

is derived: 
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(3.3.19) 

the following simple expression for 

(3.3.20) 



wbere T is defined as: 
co 

(3.3.21) 

In (3.3.20), it bas been assumed that R!/A is independent of time, 

which is a reasonable assumption wben contraction does not yet take 

place. 

The set of equations {3. 2. 24), descrihing the flow field and the 

location of the vapour-liquid interface, bas to be solved simultaneously 

with equation (3.3.20). 

For that purpose, (3.3.20) will be transformed in such a way that 

it can be used in a standard routine for numerical integration of 

sets of coupled ordinary differential equations. To achieve this, 

the variables x and y are introduced in the following way: 

x(t) V 

31A + 2'11'R2 
(3.3.22) 

c 

T
1
(t)- T

00
(t) 2 

y(t) = ( T ) (3.3.23) 
w 

By squaring equation (3.3.20) and then differentiating with respect 

to time, the following differential equation for y is obtained: 

(3.3.24) 

The Riemann-Liouville operators in (3.3.24) will be approximated 

by the Grünwald series (B9), where Nis taken to be finite. 

In this way, (3.3.24) results in: 

dy 1 + -
- = ~ {x+s )(x-s ) 
dt 2J<Ja 

(3.3.25) 

where 

(3.3.26) 

and 
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s 
N-1 

I E 
.. ;;I j=I 

(3.3.27) 

For the numerical computation of the series (3.3. 26, 27) representing 

the memory effects, it is essential that the values of x are 

stored at equal time intervals àt. However, the integration of 

(3.3.25) from t to t+àt may be performed with any subdivision 

of this fixed interval that is required for the numerical integration 

procedure. 

The only unknown which has still to be determined is the temperature 

T®(e,t) at the edge of the thermal boundary layer surrounding the 

bubble dome. 

If the vapour produced at the v~pour-liquid interface of the micro­

layer is homogeneously distributed over the bubble cap, then the 

corresponding vapour velocity equals VM/A. In this way, the local 

heat requirement at r=R(e,t) is qR • p 1 t{(~·~r=R VM/A} • and the 

heat flux in the liquid is given by: 

T t 
q(r') • (L.}! ~ f 

1TK Ja t'•O 

(r')2 
exp{ 4K(t 1-t)} 

(t'-t)l 
q (t' )dt' 

R 

where r' = r -- R > 0; cf. Carslaw and Jaeger (1967). 

(3.3.28) 

VM/A can be determined by expression (3.3. 9) , and (~.~)r•R follows 

from the salution of the flow field. The thickness r'=ö(e.t), where 

q(r'YqR = 5%, can be determined numerically, and the bulk temperature 

at that location is taken as T®(6,t). 

Finally, the evblution in time of the bulk temperature will be 

discussed. Temperature gradients are small in the bulk liquid outside 

the thermal boundary layer, and heat transport is considered to take 

place by convection only. Thus equation (2.1.4) simplifies to: 

a d ue a (- + u - + - -)T ., 0 at r ar r ae (3 .3 .29) 

Equation (3.3.31) expresses that the temperature doesnotchange 

along a streamline. Consequently, when the initial temperature 

distribution is prescribed, the temperature field for t > 0 can 
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easily be determined.when the flow field in the liquid around the bubble 

is known. 

s. 3. 3. E:!Jample of g:l'OiVf;h and departuzoe of a bubble in a non-homogeneaus 

tempe~ture field. 

The experiments were carried out in a boiling vessel described by 

Van Stralen, Cole, Sluyter and Sohal (19(5). 

Initial tempersture fields were measured in the absense of a bubble, 

The tempersture in the thermal boundary layer was determined by a 

thin thermocouple which could be moved in a vertical 

direction , while the tempersture of the bulk liquid was determined 

by three fixed thermocouples, A result is plotted in Fig. 3.3 , and 

it is seen that the profile is almost linear. For that reason, the 

initial tempersture field in the calculations has been chosen as: 

z ~ H 

(3,3.30) 

z 2:. H 

) 
0 0 0 In (3.3. 30' , TB = T

8 
+ ll6 and Tw = Ts + a , where a is the wall 

superheating, and ~a0 is the bulk superheating. 

• Water 
3.0 

2.0 • 

• 

35 
AT,K 

40 

Fig. 3.3. Tempersture profile 

above heated wall in 

water without bubbles 
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Further initial conditions are that the liquid is at rest, i.e. 

f(r,6,0) = O,and the initial bubble radius bas been chosen as 

2Re; cf. equation (2.2.11). 

As an illustration of the application of the numerical procedure 

described above, the example of water boiling at a subatmospheric 

pressure of 10 kPa is considered. The numerical results are compared 

with experimental ones. 

Fig. 3.4 shows photographs taken from a high-speed film of a water 

vapour bubble at a pressure Pw of 10 kPa; the temperature of the 

superheated wall was 342K, and the corresponding saturation temperature 

T is 319 K. Hence, the initial wall superheating 6° is 23 K, The s 
Jakob number belonging to this situation is 580. The bulk superheating 

86° was small and could not be measured with the required accuracy 

because of pressure variations. For the calculations, the value 

86° • 0.1 K has been chosen. In view of the data presented in Fig. 3,3, 

H was taken as 0.8 mm. 

Fig. 3.5 shows the calculated bubble shapes; the solid lines at 

6, 15, 30 and 40 ms repreaent the values calculated by the procedure 

described in this Chapter. The dotted lines represent the correction 

for microlayer formation, cf. Section 4.1, where also a plot of the 

microlayer thickness will be shown. The qualitative agreement of the 

bubble shapes obtained by theory and experiment is good. 

Comparison of the theoretically and experimentally determined equivalent 

bubble radii, defined by R = (3V/4~)l/~ is presented in Fig. 3,6; the eq 
calculated values of R are about 15% lower than the experimental eq 
values. By chosing somewhat higher values of H and 86

0
, it is possible 

to obtain a better agreement. Fig. 3.7 compares the theoretica! and 

experimental values of the contact radius. It is observed that the 

contact radius, after an initial time interval of growth, decreasas 

and becomes zero after 110 ms; at that time, the bubble leaves the walL 

Tbs calculated temperature of the bubble boundary is presented in 

Fig. 3.8; experimental data for the vapour temperature were not determined. 

It is to be noted that the calculated vapour temperature can even 

decrease below the saturation temperature. 
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Fig. 3.4. Water boiling at 10 kPa; photographs from high-speed film 



The initial growth of the bubble is shown in Fig. 3.9, where also 

the corresponding displacement of isotherms in the bulk liquid is 

shown. Fig. 3.10 represents the accompanying equivalent bubble radius 

and vapour temperature. Here also, no comparison with experiment can 

be given because of the short times involved. 

Fig. 3.11 shows the hypotheti~al case where evaporation of the 

microlayer is nottaken into account.As a result, the bubble size 

is decreased considerably. Also, when the initial wall superheating 

is decreased to 7 K, the bubble size is decreased, as is shown in 

Fig. 3.12. 

t-6ms 

25mm ___.,.. 

water 

p -10kPa 
r,"" •3QK w 

Fig. 3.5. Water boiling at 10 kPa; 

numerically determined bubble shapes 

of bubble shown in Fig. 3.4, 

number of collocation points = 5, 

maximum number of terms in (3.3.26, 27) 30 
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tlmsl 

water 
P.., ·10kPa 
Tw·342K 

• 

Fig. 3.6. Water boiling at 10 kPa; 

ÊJO s 

equivalent bubble radius of bubble shown in Figs. 3.4, 5, 

( • • • •) experimental data 

( ) numerically calculated values 

20 40 60 
t <msl 

80 

water 

P.,.·10kPa 
Tw=J42K 

Fig. 3.7. Water boiling at 10 kPa; 

contact radius of bubble shown in Figs. 3.4, 5, 6, 

<• • • ') experimental data 

-------) numerically calculated values 
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20 

15 

20 40 

-5 

Fig. 3.8. Water boiling at 10 kPa; 

60 
tCms> 

80 

water 

P..,·lOkPa 
Tw·~2K 

100 

calculated vapour temperature of bubble shown in Figs. 3.4, 5, 6, 7 

t=0.05ms 

t=O.IOms 

Water 
p_-lOkPa 
Tw·~2K 

OJ t"' 0.1Sms 

Fig. 3.9. Water boiling at 10 kPa; 

calculated initial bubble shapes and isotherms 

of bubble shown in Figs. 3.4, 5, 6, 7, 8 
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Fig. 3.10. Water boiling at 10 kPa; 

20 

P .. ·10kPa 
Tw•3aK 

15 

250 

calculated initial equivalent bubble radius and vapour 

temperature of bubble shown in Figs. 3.4, 5, 6, 7, 8, 9 

Water 
without microlayer 

4 

t,ms 

Fig. 3.11. Water boiling at 10 kPa; 

p -10kPa 
T:•3t.2K 20 

-10 

g 
~ 

I 

.= 

bubble shown in previous Figures, however, the effect of 

micro-layer evaporation has been neglected in the calculation 
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Water 

P..,-10kPa 

2 1w•326K 

10 

g. S2 
... "' 0:: 

,_ 
I -

Tl- ls 0 

t,ms 

Fig. 3.12, Water boiling at JO kPa; 

bubble shown in previous Figures, 

however, the wall superheating is 70% lower 

From this example, the following conclusions can be drawn: 

i) The ~alculations presented in this Chapter agree qualitatively 

with the phenomena observed under experimental conditions; the 

calculations also represent a good explanation of the hydro­

dynamic mechanism of bubble departure. 

ii) The agreement between theory and experiment can be made 

quantitative by fitting of the parameters characterizing the 

initial temperature field in the calculations. 

iii) Better agreement can be obtained when more accurate local 

measurements of the temperature field are applied; in the latter 

case, also the calculation of the temperature field needs 

refinement. 
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CHAPTER 4 

THIN LIQUID LAYERS IN RELATION TO BUBBLES GROWING AT A WALL 

4.1. The thiakness of formation of the tiquid miarotayer 

4.1.1. Creeping fiow in the menisaus region 

When the gas-liquid interface is a single-valued function of r , 

the equation for the position of this moving surface in cylindrical 

coordinates (r,z) is written as, cf. Fig. 4.1 : 

F(r,z,t) = z - h(r,t) 0 (4.1.1) 

where again symmetry with respect to the z-axis is assumed. 

From the general expression for the normal unit vector at this 

interface,~= VF/IVFI, it is derived that the normal component of the 

rate of displacement of the interface is given by: 

potential flow 

liquid 

meniscus region 

Fig.4.l. Flow regionsof the liquid microlayer 
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(4.1.2) 

The normal component of the liquid velocity at the interface is given 

by: 

(4.1.3) 

By analogy with the boundary conditions (2.2.3, 12), it can be found 

from equations (4.1.2, 3) that, when pi <<pand heat conduction in the 

gaseaus phase is negligible, then: 

(4. 1.4) 

Here, (p 1/p)u 1h is not small with respect to ~· 

Equation (4.1.4) represents the kinematic boundary condition fora 

liquid layer. 

When the lubrication approximation is made (i.e. when quasi steady 

Stokes flow is assumed, with êp/az + pg = 0 and la(rau/or)/orl/r<<la 2u/az2 1), 
the momenturn equation in the r-direction simplifies to: 

2 a u_~ 
n --2 - ar 

az 
(4.1.5) 

Since, in the lubrication approximation, the normal viscous stress is 

negligible with respect to the pressure differences, the discontinuity 

of normal stress over the gas-liquid interface leads to: 

i/h a oh 
p = PI - pg(z-h) - o-2. - r ar (4 .1.6) 

3r 

In expression (4.1.6) it is assumed that (3h/êr)
2 

<< 1 so that the 

expressions for the principal radii of curvature simplify. 

The boundary condition for the tangential stress at the gas-liquid 

interface becomes: 
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n(au) "' (a<r ao) • _t ~ ~()"r • 
az h ar • az Q 

(4.1.7) 

Equation (4.1.7) represents the so-called Marangoni-Gibbs boundary 

conditon; cf. Traykov and lvanov (1977). 

Surface tension gradients are caused by gradients in temperature, by 

gradients in concentratien of surface impurities, or by gradients in 

electdeal charge densities along the gas-liquid interface. 

Use of the Marangoni-Gibbs boundary condition (4,1.7}, in combination 

with the no-slip or adherence boundary conditionu(r,O,t} =Qat the 

solid wall results, after integration of (4.1.5}, in the following 

expression: 

1 ~ z ao 
u = ÏÏ ar z(lz-h) + ÏÏ ar • (4. I ,8) 

The continuity equation reads: 

(4.1.9) 

From (4.1.8, 9), the following expression is derived: 

2 2 2 2 2 
w = - ~ (!. - h) (U + .!. 22.) + ~ 22. ~ - ~ (~ + ..!.. a o) 

2n 3 ar2 r ar 2n ar ar 2n ar2 r ar 
(4.1.10) 

Substitution of (4.1.8, JO) in the boundary condition (4.1.4) results 

in: 

3 2 q 
ah+..!..~ {r(- !!.....22. +!!...,. aa)} h 
at r ar 3n ar 2n ar = - p~ 

The volumetrie flow rate in the r-direction, Î', can be found by 

integration of (4.1.8) over the layer thickness, resulting in: 

(4.1.11) 

(4.1.12) 

From (4.1.12), it is observed that (4.1.11) may be interpreted as a 

global continuity equation; cf. Whitham (1974) and Section C5. 
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In the most important cases where surface tension gradients occur, 

these gradients are caused by variations of concentration of 

surfactants along the 

present in the liquid 

expression for ao/ar: 

interface. For quasi-steady diffusion of impurities 

layer, Traykov and rvanov (1977) derived the following 

(4.1.13) 

where r
5 

represents the surface concentration, C represents the bulk 

concentration and K represents the diffusion coefficient. 

Combination of (4.1.13) with (4.1.8) results in: 

ao -= 
ar 

(4.1.14) 

Substitution of (4.1.14) into (4.1.12) results in: 

. 
r (4.1.15) 

where 

-= (4. I .16) 

When there is no surface concentration, then 6 = 1; however, as has 
s 

been discussed by Groenveld (1970a), in many cases it is better to 

suppose that lao/aclr /nK >>I. In the latter case, 6 tends to 4 s s 
and this case is equivalent to the situation where uh = 0 at the 

interface. Impurities present in the gaseous phase do not influence 

the flow pattern in the liquid layer, as has been shown by Traykov 

and Ivanov (1977). 

In the following treatment, it will be assumed that the term cr(oh/or)/r 

in (4.1.6) is negligible with respect to the term cra~h/or2 ; cf. also 

Fig. 4.1. Also, since pgrz/cr << 1, the term pg(z-h) in (4.1.6) is 
0 

negligible with respect to the second order term. In this way, 
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equation (4.1,11) combined with (4.1.12, 15) simplifies to: 

(4.1.17) 

During the growth process, microlayer formatio~ only takes place in 

a region close to r = R ; consequently, r may be approximated by R 
c c 

in equation (4.1.17), In this way, (4.1,17) simplifies to the global 

continuity equation for a quasi one-dimensional layer: 

3 3 
ah+~(~ ah) 
at ar 36 n ~ 3 s ar 

(4.1.18) 

It is convenient to consider the process of microlayer formation in 

a coordinate system moving with the bubble contact radius Re' For 

that reason, a coordinate transfarm x = Re - r is introduced; 

cf, Fig. 4.1. The transformed equation (4.1.18) then becomes: 

(4.1.19) 

Integration of (4.1.19) over the lengthof the layer from x toa 

value x* outside the meniscus region, where a3h/ax3 
+ 0, results in: 

ê3h 3SsnRc h - h 3Ssn 
--=------+ --
ax3 ° h

3 oh3 

... .. 
where h = h at x = x , 

x 

.. 
x 

r 
q 

(ah + _!!_)dx' 
at pt (4.1.20) 

For most cases of importance, the second term in the right-hand side 

of (4,1.20) is negligible, and the following dimensionless equation 

is obtained: 

(4.1.21) 

where 

(4.1.22) 

92 



and 

313 nR. 
113 À x(~) = ïr (1 

(4 .1.23) 

* It is now assumed that À À js the location where the liquid 

microlayer becomes plane and parallel to the wall. Consequently, 

(4.1.21) must he solved with the following houndary conditions: 

* À .. À L+l 

'aL/'àÀ + 0 ' 

</t/êiÀ
2 

+ o (4.1.24) 

In the region where À + 0, the dimensionless thickness L of the 
1f 

microlayer will be large compared to the minimum thickness L 

* at À + À • Consequently, following Landau and Levich (1942), the 

radius of curvature of the liquid layer when tending to À + 0 may 

he approximated hy: 

r 
0 

(4. I. 25) 

Since, in addition, { is large compared to { = I, the houndary 
. * conditions (4.1.24) may be appl~ed at À= À + oo, 

Following Landau and Levich, a new variabie is introduced: 

(4. I. 26) 

Combination of (4.1.21) with (4.1.26) results in asecondorder 

equation for ~ as a function of L: 

(4.1.27) 

With the aid of equation (4.1.21), Landau and Levich (1942) investigated 

in more detail the character of the behaviour of the derivatives 

3L/3À and a2
L/3À 2 for À increasing to infinity. In this way, they 

derived the following boundary conditions for equation (4.1.27): 
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* À = À + oo i; + ( 1-L) 

~ + 2(L-l) aL (4.1.28) 

Todetermine (3
2

L/3À 2
) a ~(3~/3L)~·-' Landau and Levich obtained 
L- J..r7"" 

a solution for the dimensionless equation (4,1.27) with boundary 

conditions (4.1.28). Their final result, substituted in (4.1.25), is: 

(4. 1.29) 

where f'was found by numerical integration, 

In their original paper, Landau and Levich gave f' a 2.29 x /2. However, 

this was due to a typographical error; Levich (1962) quotes 

f' = 0.93 x 12 = 1,315. Groenveld (1970a) introduced f' = 4/3, which 

will be used subsequently, 

The importance of Landau and Levich's equation (4.1.29) is that it 

describes the thickness of microlayer formation when the minimum 

radius of curvature r
0 

in the meniscus region is known. 

4.1.2. Inertia effects in the menieaus region 

To calculate the pressure in the potential flow region, cf. Fig. 4.1, 

the bubble is approximated by a hemisphere with radius Rc(t) = R(t). 

Linearization of momentum equation (2.2.6 ) for 0 ~ x=Rc-r > -ö, with 

ö/R << I, then results in: c 

(4.1.30) 

According to the Rayleigh equation (2.2.10) where viscous effects 

have been neglected, the following expression relates the vapour 

pressure p1(t) to the pressure p= far away from the bubble: 
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In the following treatment, terms of the order of magnitude cr/R c 
will be neglected; cf. also Section 2.2.3. 

Thus, it is found, that: 
. 
R 

( ) ( ) {R 3(~) 2x2 } ptJ x,t "' p1 t; + P ex - R 0 > x > -ö • (4.1.31) 
c 

It is now assumed that expression (4.1.31) also holds in the meniscus 

region 0 'i x < l , wi th "* /R « 1. This means, inter alia, that at 

x= O,i.e. at r = Re• the va~ues of p, ap/ax and a2 p/ax2 are 

continuous. 

On the other hand, from the boundary layer approximation opm/az = O, 

it follows for the pressure p (x,t) in the microlayer that: m . 

I 1 
pm(x,t) = PJ (t) - cr(- + -) • 

RI Rz 

and R2 ~ Re' Consequently, when neglecting cr/Re' the following 

expression holds: 

2 a h 

p (x,t) 
m 

crax2 

P 1 < t) - --+-( a;.;h:;...)..".2 .....,} s.,.,/"'"2 , x :::: 0 • (4.1.32) 

{ 1 ax 

Equating (4.1.31) to (4.1.32) results 

a2
h P. 

{ 3 (_.=.) 2x2} P Rex - R 
craxz 

c 

in: 

* 0 ~ x < 0 (4. 1.33) 

After integration of (4.1.33) over x, between the boundaries 0 and 

* x < o , the following expression results: 

. 
- 2 R 2 3 * - !p{R x - 2(_.=.) x } , 0 ~ x < o 

c Re 
(4. I. 34) 
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In (4.1.34}, the integration constant bas been determined with the 

condition that, at x = 0, ah/ax ~ -oo, 

Following Landau and Levich (1942), ö* is chosen in such 

a way that lah/axl<<l at x= ö*. The expression between square brackets 

in (4.1.34) canthen be approximated by l, and ö* is found as 

a root of the following third order polynomial 

ax
3 

+ bx2 
- c = 0 (4.1.35) 

The real, positive salution which is continuous in a, b and c, can 

be expressed in the following way: 

{

f 1 (a,b,c} 

ö" = f(a,b,c) = 

f
2
(a,b,c) 

In (4.1.36), f 1 and f 2 are defined as: 

f -....!!.+ (,!;;)1/3{1 
1= 3a a ~ 

f = b b {! 2 - 3a + 3ä cos 3 arccos 
2 

(I _ 27a c)} + 

2b3 

2 
(I _ 27a c)} 

2b
3 

+ bl3 s1.'n {! 
3a 3 arccos 

(4.1.36) 

(4.1.37) 

(4.1.38) 

It is noted that, when 4b3/27a2c • I, ö* = (c/4a)1/ 3 = (3c/4b)
1

/ 2 = b/3a. 

,. 
The meniscus radius r

0 
at x= ö is found by substitution of (4.1.36) 

in (4.1.33), and is given by: 

(4.1.39) 
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4.1.3. Thiakness of mierolayer formation 

To elucidate the rather complex expression (4.1.39), some limiting 

cases will be considered first. 

q .. 3 4 
This is the case where -pR R << 54crRc , and it applies both during 

.. c c 
initial growth, where RcRc + 0 and Re + 0, and during asymptotic, 

diffusion-controlled growth for sufficiently small Ja. In these cases, 

equation (4.1.39) for the meniscus radius simplifies with f 1 = (c/a) 1
/

3 

to: 

(4.1.40) 

Following Landau and Levich (1942), the condition for matching 

solution (4.1.29) of the creeping flow region with solution (4.1.39) 

of the region where inertia effects play a part, is that the 

two values of r
0 

are the same. 
In this way, the following result for the thickness of formation of 

the microlayer is obtained: 

* h (4.1.41) 

•q 4 " 3 d • 1" d • This is the case where 54crRc <<-pR Re' an ~t app ~es ur~ng 

diffusion-controlled growth for sufficiently large Jakob number, and 

during contraction of the bubble foot when R + 0; cf. Section 3.3.3. 

In this case, equation (4.1.39) simplifies w~th f 2 = (c/b) 112 to: 

r = 
0 

(4.1.42) 

With the aid of Landau and Levich's equation (4.1.29), the following 
;r. 

expression for h is obtained using the matching procedure described 

in (i): 
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.,. 
h (4. 1.43) 

It should be noted that the theory presented bere was used by Landau 

and Levich (1942) to calculate the thickness of a liquid film, covering 

a solid plate which is withdrawn vertically from a liquid. In that 

case, -Re in equation (4.1.42) has to be replaced by the gravitational 

acceleration g. For that case, experimental verification of equation 

(4.1.43) has been presented by Spiers, Subbaraman and Wilkinson (1974), 

and White and Tallmadge (1965) for Bs = 1, and by Groenveld (1970 a,b,c) 

for Bs = 1 and Ss = 4. Levich (1962) also presents comparisons with 

experiment. 

For a vapour bubble in the diffusion-controlled mode of growth, during 

times whicb are small with respect to the departure time, the radius 

of tbe bubble base Re grows according to equations (2.2.34) and (2.3.8) 

like: 

(4.1.44) 

Substitution of (4.1.44) in (4.1.41} and (4.1.43) results, fora 

pure solvent where as= 1, in: 

(4.1.45) 

and 

(4.1.46) 

Tbe transitional case y
3 ~ (36~/2pK)(t/K) 112 follows from the general 

equations (4.1.29, 39), A plot of h* obtained in this way for the 

example treated in Chapter 3 is presented in Fig. 4.2. 
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Viater 
P.·IOkPa 
~~ 

Fig. 4.2. Theoretical thickness of microlayer formation for the 

bubble shown in Chapter 3, Figs. 3.4, 5, 6, 7, 8, 9, JO 

In the following discussion, more insight will be obtained from the 

limiting cases (4.1.45, 46). 

For the case of diffusion-controlled growth during short times after 

nucleation, Van Ouwerkerk (1970, 1971) theoretically determined the 

displacement thickness z
0

(t) of the hydrodynamic boundary layer at 

r = Rc(t). His result reads: 

z (t) 
z = 0 = 1.27 

oD (vt)l/2 
(4.1.47) 

* When h < z
0

, not all the liquid of the hydrodynamic boundary layer 

is incorporated in the microlàyer; consequently, an upward-directed 

flow along the bubble cap will be observed. Similarly, when ~ > z
0

, 

there is a downward-directed flow. Such flow patterns have been 

observed experimentally by Baranenko, Chichkan, Nikolaev and Smirnov 

(1974), using an interferometric technique. These authors, however, 

explained the flows on the basis of the existence of surface tension 
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gradients which, as hecomes clear from the foregoing discussion, are 

only partly responsihle for these effects. 

It bas heen suggested hy Cooper and Lloyd (1969) that the thickness 

of microlayer formation can be taken as the displacement thickness of 

the hydrodynamic boundary layer. Many authors have foliowed this line of 

thought. However, in the same paper, Cooper and Lloyd already express 

their doubts concerning this assumption by remarking that the dependenee 

on surface tension cannot he accounted for. Also, the effect of surface 

impurities, as expressed by the factor Ss• cannot he accounted for in 

this way. 

Katto and Shoji (1970) and Katto, Takahashi and Yokoya (1973) also 

ventured criticism. On the basis of measurements of liquid microlayers 

in the case of air buhbles growing between two rigid walls, the latter 

* authors proposed an empirica! expression for h (t) in pool boiling 

under low pressures. 

Before discussing these latter results, it will be elucidating to 

consider an interesting experimental study undertaken by Pike (1977); 

cf. also Cooper, Judd and Pike (1978). A test vessel was brought under 

free-fall conditions in a drop tower, thus introducing a zero gravity 

environment for the bubble. In the latter case, equation (4.1.45) holds 

during the complete adherence time. The metbod of measuring the 

microlayer thickness was similar to that described hy Cooper and Lloyd 

(1969). To campare Pike's data with the theory presented bere, a 

dimensionless time tD will be introduced in the following way: 

t = t 
D 212 4p 3 27312 2 

Y n: P o 
(4 .I .48) 

In this way, the dimensionless microlayer thickness ~ = tii(vt) 1
/
2, given 

by equation (4.1.45) reads: 

~-~ 
-1/6 

(4.1.49) 
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0.5 

.. experimental 

o.1,- 10 

Fig. 4.3. Comparison of equation (4.1.45) with experimental values 

of Pike ( 1977). 

A plot of equation (4.1.49) has been presented in Fig. 4.3, where 

camparisen has been made with experimental data of Pike (1977). 

The agreement shows that the experiments are better described by 
. . . * the theory presented here than by the or1g1nal suggest1on h z 

0 

The other extreme case, represented by equation (4.1.46), has been 

investigated by Katte, Takahashi and Yokoya (1973), who considered 

pool boiling under low pressure. Since, in the latter case, the 

growth of the bubble base is not exactly represented by equation 

(4.1.44), the authors interpreted their results with the aid of the 

following expression: 

(4.1.50) 

Intheir experiments, s varied from 0.721 to 0.561 for different 

bubbles. The equivalent of equation (4.1.46) in this case becomes: 

(4.1.51) 

When s y and equation (4.1.51) reduces to (4.1.46). 
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Katto. Takahashi and Yokaya showed that their experimental data could 

be represented by: 

(4.1.52) 

Equation (4.1.52) has been proposedon the basis of dimensional 

analysis, combined with the results of the study of flattened air 

bubbles between two parallel discs mentioned earlier. For s = 2/3 0.67 

the agreement with (4.1.51) is exact, and the agreement remains 

reasonable within the range of s-values considered. 

Finally, the radius of curvature of the vapour~liquid interface in the 

meniscus region will be discussed. 

Experimental observation of this radius is relatively easy, and it 

is therefore surprising that no attention has been paid to this 
I • l(-SUbject in literature. Since Cooper and Lloyd s assumpt1on h = z

0 

does not take into account the normal and tangential stress conditions 

in the meniscus region, their analysis cannot be applied to determine 

the radius of curvature in the meniscus region. 

In an elucidating paper by Groenveld (1970a), it bas been shown 

that the mean radius of curvature in the meniscus region , r
0

, is 

three times the minimum radius of curvature r
0

, i.e.: 

r 
0 

(4.1.53) 

When restrietion is again made to the asymptotic, diffusion-controlled 

mode of growth, the following expressions for r follow from (4.1.40, 42): 
0 

(4.1.54) 

and 

r <t> 
0 (4,1.55) 
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Since Pr = v/K, it is observed from (4.1.54, 55) that ro(t) does 

not depend on viscosity. This is in agreement with experimental 

observations of Cooper, Judd, Malootsis and Pike (1975) and Cooper, 

Judd and Pike (1978) who state that viscosity bas little effect on the 

bubble shape. Agreement between r (t)-values calculated from 
0 

equation (4.1.39) with experimental results is reasonable; cf. Fig. 3.4 
compared to Fig. 3.5, cf. also Fig. 3.9. 

4. 2. The gi'ObJth rate of a dry area 

4. 2.1. Formation of an adsorption Zayer. Contact angZ.e bettveen the 

adsorption Zayer and the Tlricrol.ayer 

In the microlayer, a dry spot with radius Rd(t) may grow; cf. Fig. 

1.2. Growth of the microlayer is caused by two mecbanisms: 

(i) evaporation, resulting in so-called dry-out, and (ii) capillary 

effects. Since dry area growtb by evaporation bas been treated 

extensively in the literature, cf. e.g. Van Ouwerkerk (1970, 1971), 

bere only dry area growth by capillary effects will be treated. Dry 

area growth in liquid films under isotbermal conditions bas 

applications beyond tbe field of microlayer bebaviour, and the 

tbeory developed bere will be used to explain the growth of the 

contact perimeter of a gas bubble on a wall in Section 4.3. 

Under isothermal conditions, a completely dry area will not be formed, 

since it would be a vialation of the adherence or no-slip condition 

at the solid wall. Instead, a thin ~croscopic liquid film, the 

so-called adsorption layer, remains at the wall. Since such a 

liquid film hardly evaporates, tbe name dry area for the part of the 

solid wall covered by tbe adsorption layer is acceptable. Since tbe 

surface tension of tbe adsorption layer is smaller than tbe surface 

tension of the microlayer (or bulk layer), a contact angle e will 
0 

be formed between the adsorption layer witb thickness h and the 
s 

bulk layer; cf. De Feijter and Vrij (1972), and cf. Fig. 4.4. 
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Fig. 4.4. Thin liquid layer adhering to a horizontal solid wall 

In conclusion, it follows that: 

at h = h
8

, oh/or = tan e . 
0 

(4.2.1) 

For the rate of thinning of the bulk layer, the following equation 

can be obtained by combining equations (C53, 58, 62) from Appendix C: 

+ _o_~-~--- pg(h-h )] - _4_h_3_1lp-'s'-

r{l+(~~)2}~ "" 3n(R!-R~) 

(4.2.2) 

For the meaning of the symbols in equation (4,2.2) cf. also Fig. 4.4. 

When, fora sufficiently large value of Rd, gravity, suction and 

evaporation are neglected, the rate of thinning of the liquid layer 

under the influence of capillary farces is given by the following 

equation: 

(4.2.3) 

From (4.2.3), it is observed that for h = 0, oh/3t = 0; consequently, 

complete drying by capillary forces cannot occur in the present case. 
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However, as is discussed above, a 'dry' area is formed when a 

certain thickness, hs• is reached by thinning; consequently, the 

condition (4.2.1) must be applied at the dry area radius r = Rd(t). 

In this way, the evolution in time of Rd(t) can be determined with 

the aid of equation (4.2.3). Since it is customary to speak about 

'slip' over the wall by the contact perimeter Rd(t), the thickness 

h will further be referred to as the slip thickness. 
s 

It is a well-known phenomenon in surface chemistry that the contact 

angle is not a constant, but depends on the sign and magnitude of 

the velocity Rd; cf. Elliott and Riddiford (1967). Here, Rd > 0, and 

the so-called dynamic-receding contact angle must be used. In the 

following analysis this angle will be considered as constant. 

4. 2. 2. Dry area gr(Jb)th under the influenae of surfaae tension 

In this Section, the rate of expansion of a capillary-induced dry 

area will be investigated for liquid layers, which are sufficiently 

thin for gravity effects to be neglected. In that case, equation 

(4.2.3) must be solved with the boundary condition (4.2.1) applied 

at r Rd. 

It is convenient to consider the process of film thinning, and the 

resulting dry area growth or adsorption layer formation, in a 

coordinate system moving with the dry area radius Rd(t). For that 

reason, a new coordinate x = r - Rd is introduced and the transformed 

equation (4.2.3) becomes: 

(lh 
ät- (4.2.4) 

After some time, the influence of the initial conditions h(r,O) has 

disappeared, and the process of asymptotic dry area growth may be 

considered as quasi-steady; i.e. the term <lh/<lt in (4.2.4) may be 

neglected. Thus, integration of (4.2.4), with use of the boundary 

layer approximation x << Rd' results in: 
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• 1 1 
R (-- -) 

d h2 h2 
(4.2.5) 

00 

In (4.2.5), the integration constant has been determined so that for 

h = h
00

, <!h/<Jx "' 0. 

Substitution of condition (4.2.1) into (4.2.5) results in: 

40h 2 sin e 
s 0 (4.2.6) 

Integration of (4.2.6), under the assumption that h
5 

and 8
0 

are 

independent of time, results in: 

(4.2.7) 

where Rd is the dry area radius at t = t • 
0 0 

To check equation (4.2.7), the following simple experiment was 

performed. A horizontal glass plate was covered with a thin layer of 

water. The thickness of the layer was 1.5 mm, and the layer was 

coloured with blue ink, so that it was clearly visible. At time 

t = 0, a drop of 1-Pentanol (amyl-alcohol) was allowed to fall upon 

the layer of coloured water. Since the 1-Pentanol has a surface 

tension which is much lower than that of water, a contact angle is 

formed between the 1-Pentanol and the water. As a consequence, the 

situation as shown in Fig. 4.4 is obtained, however, with a thin 

layer of 1-Pentanol instead of the adsorption layer. In a similar 

way as described above, the surface tension of the water will drive 

the liquid aside, and the area where a thin layer of 1-Pentanol 

is present will grow. The growth of this thin layer with radius Rd(t) 

was observed by high-speed cinematography. The result of one such 

experiment is shown in Fig. 4.5. A linear relationship between R~ 

and t holds indeed during a certain time interval. 

Next, a numerical example of dry area growth by capillary effects in 

a microlayer of a water vapour bubble will be considered. 
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Fig. 4.5. Experimental data for the radius vs. time of a thin layer 

of 1-Pentanol driving aside a layer of water 

For water, at T = 373 K, cr = 0.06 N/m and n = 3 x 10-4 Pa.s. A value 

of e = ~/6 is chosen, whilst h = 0.1 ~m may be considered as an 
0 s 

acceptable value; cf. Ludviksson and Lightfoot (1968). Thus, 

4crh2 sine I n = 4 x 10-12 m3 /s. In this example, Rd is the radius 
s 0 0 

of the cavity where the bubble is nucleated, and its magnitude will 

he chosen as I ~m. Thus, it follows from equation (4.2.7) that, after 

5 ms, Rd has grown from 1 pm to 27 pm. 

It has been found by several authors, among which Van Ouwerkerk 

(1970, 1971), that, in that time interval, evaporation may cause the 

dry area radius to grow to a value of several millimeters; 

consequently, in water under ordinary boiling conditions, the effect 

of capillary on dry area formation is of the order of a few percents. 
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4.3. Gas bubble departure ae governed by the ~th of the bubble 

eontact perimeter 

In this Section, the theory for the description of dry area 

formation in a thin liquid film under the action of capillary forces, 

will be extended to the description of growth of the contact area 

between a gas bubble and the wall to which it adheres. 

When gas bubbles are considered, the process of bubble departure 

cannot be described by the theory presented in Chapter 3, upon which 

the simple model of Section 2.3.1 is based, because for gas bubbles 

Ja<< I, and the bubbles grow relatively slowly, i.e., y << 1. 

Furthermore, the Schmidt number Sc = K/V is also smal! with respect 

to one; cf. the numerical example in Section 2.2.2. It then follows 
from equations (4.1.44) and (4.1.45) that the thickness of ·formation 

of the microlayer is much larger than the bubble dimensions. 

Consequently, the theory of microlayer formation, presented in 

Section 4.1, does not apply in this case, and a microlayer is not 

formed. Instead, the bubble makes contact with the wall at the 

perimeter of the adsorption layer, or 'dry' area, i.e. Rd = Re; cf. 

Fig. I. I. The bubble adheres as long as the upward buoyancy force is 

smaller than the downward force of adhesion. 

After nucleation, cf. Figs.4,6a,b,the bubble radius is approximately 

equal to the radius R of the cavity where the bubble is formed. At 
0 

that time, the apparent contact angle is about Iu. As the bubble 

grows, the bubble contact radius also spreads beyoud the cavity, as 

will be explained subsequently. 

During growth, the apparent contact angle, 8 , cannot immediately be a 
equal to the natural contact angle 0

0
, cf. Fig. 4.6c. Consequently, 

a liquid 'layer' extending only over the short distance from Re to 

R
00

, may be supposed to exist near the bubble contact perimeter, cf. 

Fig. 4.6d. 

As has been illustrated in Fig. 4.6, initially, when the bubble 

contact radius starts growing beyond the cavity radius, 8 /8 >> I. 
a o 

For this latter case, it will be shown that the bubble contact 
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Fig. 4.6. Nucleation and growth of a gas bubble at a horizontal wall 

perimeter can grow indeed. First, the extreme case where the rate of 

growth of the actual contact radius, R , is lagging bebind the 
c 

component of the bubble growth rate parallel to the wall, R sin ea' 

will be considered, i.e. R << R sin e , or è < 0; cf. Fig. 4.6e. c a a 

Assume that, in that case, the curvature of the gas-liquid interface 

in the region Re < r < R
00 

may be neglected with respect to the 

curvature of the bubble boundary 1/R(t). Then surface tension forces 

are negligible with respect to the suction pressure in equation 

(4.2.2). 

Also, since the layer extends over a relatively short distance, it 

may be assumed that R
00 

~ Re Rd in equation (4.2.2). Consequently, the 

rate of thinning is governed by the following equation: 
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<lh = 
dt 

4oh 3 

----
3nR2R 

c 

where ~p = 2CJ/R. 
s 

(4.3.1) 

In the same way as in the discussion presented in Section 4.2.2, it 

is assumed that the process of film thinning is almost steady in a 

coordinate system moving with the velocity of the contact radius Rc(t), 

In this way, the following expression is derived from (4.3.1): 

3h 4CJh 3 

R. -=--c 3r 
(4.3.2} 

At r = Re' h = h , and 3h/<lr = tan 8 . Substitution of the latter s 0 

conditions in (4.3.2) results in: 

(4.3.3) 

Under the assumption that h and e are constant, it follows with 
s 0 

R = y(Kt)l that: 

R 
c 

(4. 3.4) 

In many cases, however, the growth rate R predicted by equation 
c 

(4.3.4) is not small with respect to R sine • In that case, the a 
assumption of negligible curvature in the liquid layer no longer 

holds. When the principal radii of curvature 1/R1 and 1/R
2 

in the 

region Re < r < R
00 

are no longer negligible, equation (4.2.2) reads: 

3h = 2oh 3 I I 2 
"t (-R + -R - -R), 
o 3nR2 1 z 

c 

(4.3.5) 

where again dp
8 

= 2o/R. 

In the limit R1 ~ R, R2 ~ R, 3h/3t ~ 0; i.e. the rate of thinning 

decreases when the gas-liquid interface in the region R < r < R is c 00 

curved. This explains why the growth rate of the bubble contact 
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. 
radius will not exceed the value R sin 8 , and consequently 8 < 0. a a-

During adherence, the apparent contact angle 8 may gradually 
a 

decrease and, at a certain time, 8 = B • When this situation is a o 
reached, again two possibilities arise: 

(i) the growth rate of the bubble contact radius lags behind 

R sine • i.e. the situation e << e will occur. In this case, 
o a o 

the curvature in the region R < r < R may be assumed to be c 00 

large with respect to 1/R(t); cf. Fig. 1.1. Consequently, the 

growth of Re must bedescribed by equation (4.2.7). 

(ii) As previously discussed, the second possibility is that the 

growth rate of the contact area follows the growth of the bubble 

radius, and B ~ 0 • In the literature, it is often assumed 
a o • • 

that 8 = 8 , i.e. that R = R sin 8 and, consequently, that 
a o c o 

the bubble foot moves smoothly over the wall when the bubble 

grows. For the latter case, Fritz's equation (2.4.28) for the 

departure diameter holds. 

i s 
~ 

003 

W» 

om 

tW 

Fig. 4.7. Experimentally determined radii vs. time 

of a C02-bubble in beer 

% 
E 
~ 

111 



In the previous discussion, an explanation is given of the hydro­

dynamica of the growth of the bubble foot. Now, as an illustration, 

results of a simple experiment will be reported. Fig. 4.7 shows R2 

and R~ vs. t for a C02-bubble growing in beer. The bubble adheres 

to a brass wall. It is observed that, during the first 31 s of bubble 

growth,the growth rate of the bubble foot doesnotlag bebind 

R sin 0. Hence equations (4.3.4) and (4.2.7) cannot be applied in 
a 

this time interval and they predict too high a value for R • c 

However, it is observed that, after t • 31 s, the bubble foot is 

lagging bebind the bubble radius and, at t 50 s, a constant value 

R 0.2 mm is reached. It was seen from the experimental results 
c 

that tbe maximum value of R is not reproducible very well and, 
c 

consequently, since the departure radius of gas bubbles strongly 

depends on Re' it is not possible to predict accurately tbe 

departure radius in this case. 

4. 4. ConeZusiona 

In this Chapter, the hydrodynamic aspects of the phenomena occurring 

between the bubble and tbe horizontal solid wall have been 

inves tigated. 

In Sectien 4.1, a tbeory has been developed for the description of 

the tbickness of formation of the liquid micro-layer between a 

rapidly-growing vapour bubble and a wall. The theory bas been 

compared with experimental results of Pike (1977) and Katto, 

Takabashi and Yokoya (1973). The agreement shows that the experiments 

are better described by the theory presented bere than by previous 

tbeories found in the literature, 

In Sec ti on 4. 2, the growth of a dry area in the microlayer is 

considered. Since in tbe literature dry area formation caused by 

evaporation bas been treated extensively, bere dry area formation by 

capillary effects is treated only. The pbysical model is described 
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in Appendix C, and an approximate equation for tbe rate of dry area 

growth has been derived. It is shown that, for water vapour bubbles 

under ordinary boiling conditions, capillary effects only contribute 

a few percents to dry area growth; this constitutes a theoretica! 

verification of the assumption made in the literature, that 

capillary effects may be neglected with respect to evaporation. 

In Section 4.3, the theory developed in Section 4.2 is used to show 

that the base of a slowly-growing gas bubble can grow beyond the 

cavity where it was nucleated. It is explained that, during a 

certain time interval, the apparent contact angle of the bubble may 

be constant, On this latter assumption, the well-known Fritz equation 

(2.4.28) for bubble departure is based. However, after a sufficiently 

long time of bubble growth, the apparent contact angle decreases and, 

consequently,Fritz'sequation cannot be used. These theoretica! results 

are also illustrated by an experimental example. 
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APPENDIX A 

Equatiorw of motion fo!' potential flOIJJ a.I'Ound sphe!'iaal bubbles 

When the flow field is not spherically symmetrie, the Rayleigh 

equation (2.2.10) does not held. However, wben rotational symmetry 

is assumed around a spherical bubble, the equations of motion can 

be derived easily by using potential flow theory. In order to show 

the validity of certain equations for single bubbles, and for the 

purpose of an order of magnitude estimation (cf. Sectien 2.3.3), the 

equations of motion of two neighbouring bubbles will be considered 

bere; cf. Fig. Al. 

The general salution of the potential equation (2.1.15) for flow 

around two bubbles is given by: 

q,(!,t) 
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00 ai(t) oo at(t) 
E P.{cos 8(t)}+ E P {cos 9*(t)}. (Al) 
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marked with ll 

Fig. Al. Configuration of two spherical bubbles 



The spherical coordinate systems {r(t),0(t)} and {r*(t),0*(t)} are 

fixed with respect to the two moving bubbles. The quantities for one 

of the bubbles are distinguised from those of the other bubble by 

the superscript *. In (Al) 0 represents the azimuthal angle. 

For our purpose, it is sufficient to consider the influence of 

growth of one spherical bubble on the growth and translation of 

another spherical bubble. In that case, the result must be correct 

up to order (R/z) 2 and (R*/z) 2 , and only the monopole and dipole 

terms of expression (Al) play a part; cf. e.g. Isenberg and Sideman 

(1971). Consequently, expression (Al) simplifies to: 

a a a* a* 
0 1 0 1 

<I>(.E.,t) =-+-cos 0 +*+---cos 0*. 
r r2 r (r*)2 

(AZ) 

The coordinate r* can be determined from r, z and cos 0 with the aid 

of the eosine rule: 

(A3) 

By making use of the Poisson formula, cf. e.g. Butkov (1973), one 

obtains: 

i r i 
L (-!) (-

2 
) P. (cos 0). 

i=O z ~ 

00 

2z 
-;*= (A4) 

In the following treatment, the flow field in the neighbourhood of 

the upper bubble will be considered; i.e. the point P in the flow 

field is chosen near r = R; cf. Fig. Al. Consequently, expression(A4) 

simplifies to: 

r cos 0 

4z 2 
(AS) 

From the eosine rule r = {(r*) 2 + 4r*z cos 0 + 4z2}!, combined with 

(AS), one obtains: 

cos 0* (A6) 
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Substitution of (A5,6) into (A2) results in: 

a a* a* a a*r 
<J>(,r,t) = ....2. + ....2.- - 1

- + (....!.- ....2.-) cos El. 
r 2z 4z2 r2 4z2 

(A7) 

For a translating spherical bubble,the equivalent of the kinematic 

boundary condition (2.2.4) becomes: 

<u > ~ i + u cos e. 
r r=R 

(AS) 

Making use of equation (2.1.15), i.e. of~= V<j>, it is easily seen 

from (A7,8) that the following expressions hold: 

(A9) 

(AIO) 

In a similar way, it can also be derived that: 

(All) 

(AI2) 

Substitution of (All) into (AIO) results in: 

I a I RR* 2 
• a = -R U + -(-) RR*. 

1 2 8 z (A13) 

Similarly, it is found that: 

(Al4) 

It is remarked bere, that substitution of (A9,11,13,14) into (A2) 

gives the same result as obtained from an exact expression for <P 

derived by Isenberg and Sideman (1971), when termsof order (R/z) 3 

and higher orders are neglected. 
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With the aid of expressions (A9,11,13,14), the expression (V~) 2 in 

the Bernoulli equation (2.1.16) at r = R can be expressed in R, R, 

U, R*, R* and U*. In the latter expression, terms in U2 cos 28 also 

occur due to its non-linear character. The occurrence of terms in 

cos 29 indicate that a translating sperical bubble cannot exactly 

satisfy the dynamic boundary condition equivalent to (2.2.7); i.e. a 

deviation from the spherical shape will occur. However, in the 

following treatment, cases where U << R will be condisered only, so 

that terms in cos 29 are sufficiently small. 

Also the term (3~/3t) R' occurring in the Bernoulli equation, can r= 
be expressed in R, R, u, R*, R*, and U*. When evaluating this term, 

expressions for r, r*, ê and ê* are needed. For spherical bubbles 

the following expressions are easily obtained: 

r =-u cos 0, r* • - u* cos 9*, (AIS) 

A U • n ' U* · El* t1 = - s 1n o, 9* = -;;; s 1n - • 
r r 

Further, it will be assumed that the surface tension along the 

vapour-liquid interfaces changes with e in the following way: 

cr = cr + cr' cos e, cr* cr* + (cr')* cos 0*. 
0 0 

(AI6) 

(AI7) 

With the expression for the normal viscous stress T = 2n3u /3r, the n r 
following two expressions are found by application of the Bernoulli 

equation (2.1.16) at the vapour-liquid interface r = R: 

Ril + 1 R.2 - (.!!) 
2 

+ R* (R*R.* + (R*)~ - .!. <R*> 
2 

(R*Û* + SR*U* - R*U) 
2 4 z \:"2 ) 8 z 4 

(AIS) 

• 3R* 2 3RR*·z RÛ + 3RU - - (-) (Ril* + RR*) (R*) = 4 z -2-.zz 

2gR _ 4cr' _ t2nU + 3n <R*) 
2

R*. 
pR pR p z R 

(A19) 
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As has been discussed above, in (Al8,19) termsof order (R*/z) 3 and 

higher orders have been neglected, and it is observed from (AI9) 

that, in this approximation, only the growth of the lower bubble 

influences the translation of the upper bubble, In (AlS) the term 

(U/4) 2 has formally been included; however, it is stressed again 

that, when U is not small with respect to R, the bubble deviates from 

the spherical shape and is somewhat flattened. 

The coupled set of equations (AI8,19) also describes one bubble at 

a distance z away from a solid wall where the normal component of 

the velocity vanishes. The latter boundary condition can be 

satisfied by considering the lower bubble as a 'mirror' bubble with 

U*= U and R* = R. In this way,equation (2.3.17) has been obtained 

with z = U. 

Fora free bubble. equations (2.3.1,2) are obtained by taking the 

limit z -+ ""· 

Finally, it is stressed that equations (A18,19), basedon the 

assumption of potential flow, are valid only when the vorticity 

produced by the tangential stress boundary condition at the vapour­

liquid interface bas not yet been transported far away from the 

bubble. 

APPENDIX B 

Produat PUZea fov the genevaZized Riemann-LiouviZZe opevatov 

This Appendix provides on introduetion to the matbematics used in 

Sections 2.2, 2.5 and inSection 3.3.2. Proofs of the equations 

stated here will not be given since these can be found in the book 

by Oldham.and Spanier (1974). 

According to a classical formula due to Dirichlet. cf. Ross (1973), 

the Riemann-Liouville integral defined by equation (2.2.18) is 

equivalent to an n-fold integral when -v =nis an integer~ 1: 
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1 
t f(t') cD~nf(t) = r(n) f 

(t-t') J-n 
dt' 

c 

t t n-1 t:t tl 
f dt n-1 f dt 2 ••• n- f dtt f f(t )dt • (BI) 

0 0 
c c c c 

In the following discussion, the meaning of Dnf(t), n is integer 
c t 

~ 0, will be investigated. As can be seen when differentiating 

equation (2.2.18) of Chapter 2, the following expression holds: 

(B2) 

Expression (B2) can be used to extend the definition of the 

Riemann-Liouville operator to values v > 0 in the following way: 

(B3) 

As a consequence of (B3), composition rule or product rule (B2) is 

valid for every real v. From definition (B3) it also follows that: 

dnf(t) =---
dtn 

(B4) 

independent of c, which has been omitted in the notation in this 

case. 

From equations (BI) and (B3), it is seen that the generalized 

Riemann-Liouville operator en;, -oo < v < oo• has the character of a 

fractional 'v-fold' integration or 'v-fold' differentiation. Euler's 

rule (2.2.25) for fractional differentiation of powers of t has also 

the same form as the ordinary rule for differentiation. For these 

reasons, the notation dvf(t)/d(t-c)v is frequently used to stress 

the similarity between fractional and ordinary differentiation. 

Equation (B2) represents one of the product rules for fractional 

differentiation. namely o: cD: cD~+v, n integer~ 0, -oo < v < ro. 

In the following presentation, the other product rules will he 
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mentioned without proof. These rules represent the main advantage of 

using fractional derivatives rather than the original integrals. The 

inverse of equation (B2) is given by: 

n-1 j-n-v djf Dv Dn f(t) Dn+vf(t) - E t 
c t t c t j=O f(j-n-v+l) (]\=c· 

dt 
(B5) 

Another very important rule is: 

m 
D-v cD: f(t) = f(t) + E C.tv-j. 

c t ... j=l J 
(B6) 

In (B6), m=O for v < 0. For v ~I, C1 = 0 when f(c) = 0. For V> 0, 

v ~ m < v+l; the determination of the coefficients C. has been 
J 

treated by Oldham and Spanier (1974). 

Finally, the general 'law of exponents' is given as: 

(B7) 

and holds for all u when v bas such a value that the series in the 

right-hand side of (B6) vanishes. 

The composition rules (B2, B5, B6) have been used in Sectien 2.5. 

Oldham and Spanier (1974) have tabulated useful rules and fractional 

derivat:ives of many functions, especially for v = ~ t· One of these 

standard results, used in the derivation of equation (2.2.46) from 

equation (2.2.44) reads: 

D-~ exp(t) erfc(tt) I (t) f (t!) 
0 

t = - exp er c • 

Also, the so-called Grünwald rule, used in Sectien 3.3.2, is 

recalled here: 

t-e 
(t- j T>· 

The latter series expansion is often used as a definition of 

fractional derivatives. 
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APPENDIX C 

The equations of motion of the gas-~iquid interfaae of a thin 

~iquid layer at a horizontal ~all under the influenae of foraes 

normal to that interfaae 

Cl. Division of the flo~ fieZ.d in finite elements 

To obtain a solution of the flow field in the thin liquid layer shown 

in Fig. 4.4, the following equation of the biharmonic type must be 

satisfied: 

0 (C I) 

Equation (Cl) is presented in cylindrically symmetrie cylinder 

coordinates; this equation bas been derived in a way which is 

similar to the derivation of equation (2.1.9) in cylindrically 

symmetrie spherical coordinates. Only quasi steady, low Reynolds 

number flow will be considered, so that the inertia terms of the 

left-hand side of (2,1.9) vanish. 

Equation (Cl) must be complemented by two boundary conditions at a 

boundary enclosing the flow field. At the solid wall, these conditions 

are that the normal and tangential components of the velocity vanish. 

At the gas-liquid interface, a condition for the normal and tangential 

stress must be satisfied. When, in addition, conditions at the beginning 

and end of the layer are prescribed, the flow field can be determined 

in principle. From this solution of the flow field, an expression for 

the normal velocity component at the gas-liquid interface follows. 

From this expression, the evolution in time of the gas-liquid 

interface can be determined. Since it is not possible to match 

analytically the boundary conditions to the general salution of (Cl), 

because the gas-liquid interface bas an irregular shape and is not 

known beforehand, the flow field is divided into N+l finite elements 

with vertical boundaries; cf. Fig. Cl. Each boundary between the 

elementsis characterized by an integer i, i= 0,1, ••• N. An 

element bounded by boundaries i and i+ 1, or i- 1 and i, is denoted 
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gas or vapour 
eterrent N· 

n;l \ ! 
~ 1

1 

element i- element i+ ~ 
'" element Q+or1-~ -ë1 \ ,, '1 i 
ol Uld , 

VI I I ' I ~ I -- I : I I . --+---;-
-L--:--r-:-.r-- ri-d rt rij ~+ lri+l --- j . 1 

interface 1 1 
. interface N ·1 a1- ai+ 

interfaceN 

solid wall 
interface i ·1. .interface i +1 I 

1nterface 1 ~ 

Fig. Cl. Division of the flow field in finite elements 

by element i+ j, or i- !, respectively. In short-hand notation, 

these elements will be denoted by i+ and i-. The distance between 

interfaces i and i+ I, or i- I and i, is denoted by ~i+' or ~i-' 

respectively. Consequently, the equation: 

r. 
1. 

i+ I 
I: 

j=l 

gives the position of interface i. 

(C2) 

The radius (ri + ri+l)/2, situated in the middle of the interval 

for which ri ~ r ~ ri+l' will be denoted by ri+l/Z' or shortly by ri+' · 

In this way, the distance between to neighbouring radii ri- and 

r.+ equals ~. • (~. + ~.+)/2. 
1. 1. ].- 1 

In each element i+, the following salution satisfies equation (Cl): 

(C3) 
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In (C3), the coefficients ai+' bi+' ei+ and di+ are independent of 

r and z; bowever, they are functions of time. 

With expressions for the velocity components, which are similar 

to expressions (2.1.7, 8), namely: 

t a a 
(u,w) = r (- äZ• ar)ljl 

tbe following expressions follow from (C3): 

z2 2 
u1.+(r,z,t) = -2a. ~- 3b. --- 2c. rz- 3d1.+rz 1+ r 1+ r 1+ 

(C4) 

(CS) 

(C6) 

From (CS) and (C6) it is noted that, at the solid wall z = 0, the 

conditions of impermeability w = 0 and the adberence or no-slip 

condition u= 0 have already been satisfied. 

The solution defined by equation (C3) is not a general solution, 

since it cannot be matebed to the boundary conditions everywhere. 

Furthermore, also continuity conditions are required to conneet one 

element to another. The expansion coefficients a. (t), ••• d. (t) 
1+ 1+ 

will be determined in such a way that the boundary and continuity 

conditions are approximately satisfied. The four coefficients can be 

determined wben, in addition to tbe two boundary conditions, two 

continuity conditions are prescribed. 

From a physical point of view, the most obvious continuity conditions 

to be satisfied are: (i) continuity of volumetrie flow rate r ~ -2~~h 

from one element to another, and (ii) continuity of velocity in the 

z-direction wh • (aw/ar)h/r at the gas-liquid interface. 

By way of approximation, only these two continuity conditions will be 

satisfied. Consequently, step-functions, o-functions, and derivatives 

of ö-functions occur in D4$ at the boundaries between two adjacent 

elements. Therefore, in the limit of zero discretization interval, 

it is no longer guaranteed that equation (Cl) is satisfied. However, 

in Section C6 it will be shown that the error introduced in this way 

is sufficiently small. 
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Another approximation will be that the normal and tangential stress 

boundary conditions at the gas-liquid interface are satisfied at 

r • ri+ only, i.e. in the middle of each fluid element. The latter 

points are the so-called collocation points, and the approximation 

metbod proposed in this way is the so-called l·ocal collocation 

method; cf. Finlayson (1972). 

In the next part of this Section, expressions will be derived for the 

normal and tangential stresses at the gas-liquid interface, and 

for the volumetrie flow rate. 

From the general expression for the stress tensor Ji• the following 

expressions can be derived for the tangential and normal stresses at 

the gas-liquid interface z h: 

(C7) 

<lh 

'~'n = -p + Zn(aw) _ Zn(au + aw _ ~"- är + Zn(au _ :!!.) 
dZ h dZ i1r r'~+((lh)2 <lr r h 

ar 

(CS) 

In the following treatment, it will be assumed that loh/arl is 

sufficiently small to neglect the secoud term in the right-band 

side of (C7) and the second and third terms in the right-hand side 

of (C8). 

Under these assumptions, (C7) simplifies to: 

(C9) 

In the following treatment, restrietion will always be made to the 

case z ~ h << r. This assumption will lead to considerable 

simplification and there will be no explicit indication where it 
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bas been used in the following discussion. In this way, the interesting 

case r = 0 has been excluded from the discussion; cf. also Section C6. 

Thus equation (C9) further simplifies to: 

(ClO) 

Since a simple algebraic expression (C3) bas been proposed for the 

solution, the pressure in the layer can easily be expressed as a 

function of the expansion coefficients by integration of the two 

momentum equations for Stokes flow: 

an n a 2 
,-Ji,..=---Dl/1 
ar r az 

Substitution of (C3) into (CJJ,l2) results in: 

Since aptar turns out to be a function of r only, and similarly 

apjaz is a function of z only, expressions (CI3, 14) can easily 

be integrated, resulting in: 

where p0 • is an integration constant which will be specified 
1+ 

subsequently. 

In the following discussion, the relatively slowly varying 

(Cl!) 

(CI2) 

(Cl3) 

(C14) 

(C15) 

logarithmic term in (CIS) will be neglected with respect to variations 

of the term in r
2

• Intbis way, equation (CIS) simplifies to: 

p. (r,z,t) - p1 = n(4c. z - 3d.r2) - pg(z-h)- Ap 
1+ 1+ 1+ "" 8 

(C16) 
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In (CI6) the choice of the integration constant Poi+ pghoo - ~Ps 

needs some clarification. When there is no liquid motion, all 

expansion coefficients in (C3) are zero and, at thickness h = h
00

, 

the pressure difference over the horizontal gas-liquid interface 

equals P
00 

- p1 = -~p6 , where öp
6 

represents an applied suction 

pressure; cf. Fig. 4.4. 

Provided that loh/orl is sufficiently small, the following expression 

for the normal stress at the gas-liquid interface results from sub­

stitution of (CI6) into (CB): 

Finally, from equation (C4) the following expression is derived 

for the volumetrie flow rate r parallel to the wall: 

h 
ri+(r,t)- 21fr J ui+(r,z,t)dz 

0 

= -21r(a h2 + b h3 + c r 2h2 + di+r2h3) i+ i+ i+ 

C2. NomaZ stress a:nd no'I'm(J.Z velocity aonditions 

(CI7) 

(C 18) 

According to the well-known Laplace-Kelvin equation, the difference 

in normal stress over the gas-liquid interface is related to its 

curvature by: 
2 a h 

cr ai 
(CI9) 

Substitution of ~19) into (CI7) at the collocation point (r.+, h. ) 
]. l.+ 

results in the following expression for d. : 
l.+ 
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(C20) 

In (C20), f is defined by: 

f = f - pg{h-h ) - ~p = f - f - ~p cr ® s cr . g s 
(C21) 

Substitution of expression (C20) into equation (C6) results in the 

following expression for wi+: 

2 2 fi+ 3 
wi+(r,z,t) • 2ci+z + 3n -

2
- z 

ri+ 

In the same way, a similar expression can be derived for wi_: 

2 2 fi- 3 
2ci- z + 3n -2- z 

r. 
1-

(C22) 

(C23) 

The requirement of continuity of velocity in the z-direction at the 

gas-liquid interface, at the place where fluid element i- borders on 

fluid element i+, is given by: 

w. {r., h(r.,t),t} = w.+{r., h(r.,t),t} (C24) 
1- 1 1 1 1 1 

Substitution of (C22, 23) into (C24) results in: 

I f. f '+ 
c~+ - c. =- h. (2.:.- - 1

-) (C25) 
L 1- 3n 1 2 2 

ri- ri+ 

By means of the following Taylor series expansions: 

I I -----2 2 (C26) 
ri± ri 

+ 1 (af) 2 fH_ • f. -2 ~•+-;;- . + 0(~.+) , 
L 1 - 1_ ar 1 1-

(C27) 

the following expression results from (C25): 

c. 1 - c. 1 2h. r. "f 
_.;;;.1+_....:; -:-....;;.1_-.:.2 = __ 1_ {f. - ~~).} + 0(~~) 

~. 3 2 1 2 ar 1 L 

1 nri 
(C28) 
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In the lûnit ~i + 0, equation (C28) becomes: 

~ = ..!!!_(f _ !. af) 
ar 

3 
3 2 ar nr 

In (C29) c is a function of r, which is in contrast to what was 

stated inSection (Cl) where the expansion coefficients were 

introduced as functions of time only, Consequently, when (C29) 

(C29) 

is used, it is no longer guaranteed that equation (Cl) is satisfied, 
However, in Section C6 it will be shown that the error involved 

in satisfying (Cl) is sufficiently smal!. 

CJ. Tari(Jential str-ess and volumetrie flux aonditions 

In addition to the normal component of the surface tension force at the 

gas-liquid interface, a tangential component may also be the cause 

of liquid motion. A gradient in the surface tension results in a 

tangential stress in the liquid adjacent to the gas-liquid interface, 

expressed by the Marangoni-Gibbs equation: 

z = h. (C30) 

Combining (C30) with expression (C9) for the tangential stress at the 

collocation point ri+ results in the following expression for bi+: 

(C31) 

In (C31) s is defined by: 

(C32) 
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Substitution of equation (C20) for di+ into (C31) results in: 

2 
a. 1 e. r. 1 1 r

1
.+s

1
.+ 

- ..2:!. -- - ..2.:!. _....!::!. - - f 
3 hi+ 3 hi+ 3n i+ - 6n -ç (C33) 

Substitution of expressions (C20) and (C33) for di+ and bi+ 

respectively into equation (CIS) for the volumetrie flow rate r 
results in: 

(C34) 

A similar expression ean be obtained in element i-: 

3 
f. h 2 

- __!:__ (1 - !.._) 
3n 2 r. 

].-

r. s. h
3 

].- ]_-

6nh. 
1-

(C35) 

The requirement of eontinuity of volumetrie flow rate aeross the boundaries 

of the fluid elements is g~ven by: 

r.+(r.,t) • r. (r.,t) (C36) 
]. 1 ]_- 1 

Substitution of expressions (C34, 35) into (C36) results in: 

h. a.+ a. 
(a

1
.+ - a. ) - ~-1- -

1
-) 

]_- 3 h.+ h. 
2 

- (e~+ - e. )r. + 
- ].- l. 1 ]_-

2 2 
h

1
• e.+r'+ c. r. f. -f. 

+ -(-1.-_J._- 1- 1.-) + 1.+ 1- h 
3 h h 3 .-

'+ . n J. 1 1.-

h. r.+s'+ r. s. 
+ ,!:.{ l. l. - J.- J.-} 

6n hi+ hi-
(C37) 
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In the same way as in Section C2, the quantities at i+ and i- are 

expressed as quantities at i with the aid of Taylor series expansions. 

Thus equation (C37) becomes: 

r. 
+ ~~). + O(ài) • (C38) 

4n ar 1. 

Substitution of equation (C28) into equation (C38) results in: 

ai+~ - ai-! .. hi {f (Cif) } + s' + O( ) (C39) 
ll. 3nr. i - ri ar i 4n lli • 

l. l. 

or in the limit ll. ~ 0: 
l. 

aa h ( af) s' - = - f - r-:;-r + -r-n ' Clr 3nr o •m 
(C40) 

In (C39, 40) s' represents the effect of surface tension gradients, 

and is defined by: 

= .L rs ah 
s' ar (rs) - h är (C41) 

C4. Conditiona at the triple inte:r>facial Une and at the place of 

outflow 

Expressions (C20, 29, 33, 40) make it possible to determine the 

complete flow field in the layer when one value for a. and one 
l.+ 

value for ci+are prescribed. For that reason, it is assumed that at 

the place r = R
0 

the tangential stress vanishes. From equation (CIO) 

it follows that this condition~results in: 

a + c R
2 

• 0 
0 0 0 

At r = R
00 

it follows that: 

3r 
co 

- 41l'b2 
00 
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The coefficients aN' ~ can be expressed in a
0

, c
0 

with the aid of 

expressions (C29, 40), which respectively yield for a(r) and c(r): 

r r 
a(r) = a

0 
+ .!_ J 

3n R 
(hf - iJ!)dr + .!- J s'dr 

r ar '*n R 
(C44) 

0 0 

r 
c(r) = c + !__ J 

o 3n R 
(C45) 

0 

Substitution of (C44, 45) at r = R.., into (C43) and combination of 

(C42) with (C43), results in the following expression for c
0

: 

2 2 Jr R 8 1 R~ R hf af 
c (R - R) =--;. + ~ - -4 J s'dr- Jn J ""<-- ~)dr 
o "" o 4~h 4n n R R r ar 

"" 0 0 

2R
2 

R 
oo "" (hf __ 1 _ 2.f.)dr 

- ~ R J 3 
2 

2 ar (C46) 

0 
r r 

A similar expression can also be found for a 
0 

Application of equations (CS, 18) at r = R results, in a similar 
0 

way as equation (C43) in: 

a u s 3r s 
_2_+c R =-...2..+...2..=--0--+...2.. 

R
0 

o o h
0 

2n 4~R h2 4n 
(C47) 

0 0 

When it is assumed that s
0 

= 0 at r = R
0

, it follows from (C42, 47) 

that also u -
0 

C5. Kinematic boundaPy condition and gZobal continuity 

The kinematic boundary condition at the gas-liquid interface reads, 

cf. equation (4.1.4): 

ah <lh qh 
-+u -=w --at · har h pP. (C48) 
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As bas been described inSection 4.1.1, integration of (C48) should 

result in the following global equation, expressing conservation of 

mass: 

(ah + qh) ot pJI. r dr. (C49) 

When r is known, the velocity in :the r-direction at the interface, ~· 

can be determined from the following equation derived from (CS) and 

(CIS): 

. 
( h ) _ Jr + hs 

~ r, ,t - 411rh 4n 

From equations (C6, 20) it follows that the following expression 

holds for the velocity in the z-direction at the interface: 

2 
wh = 2ch 

2fh
3 

+ --2 • 
3nr 

From equations (C45, 46) an expression for c(r) can be found; 

substitution of that expression into (C51) results in: 

2 2 
3n(R." - R ) 

0 

JR.., (hf- ~)dr + 
r ar 

x 

(CSO) 

(C51) 

(C52) 

Equation (C52) expressas the rate of thinning -ah/at of the layer as 

a function of the preàsures acting normally at the gas-liquid . 
interface, and as a function of the volumetrie flux r." flowing out 

of the layer at r • ~· Of course. there is a relationship between these 

normal forces and the rate of outflow, and the relationship can be 

determined with the aid of the global continuity equation {C49). 
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First, equation (C52) will be simplified by considering only the cases 

where the fifth term in the right-hand side, i.e. the surface tension 

gradient term, vanishes. 

With the above approximation, the rate of thinning -3h/3t and the . 
accompanying rate of outflow r~ is composed of three parts,cf. also (C21): 

(i) The rate of thinning -ah1/3t caused by evaporation; the 

accompanying outflow equals zero, and f
1 

= 0. 

(ii) The rate of thinning -ah2/a; caused by suction; the accompanying 

outflow will be denoted by r ~z, and f
2 

= -lip s. 

(iii) The rate of thinning -ah3/at caused both by capillary effects 

and differences in hydrastatic pressure; the corresponding . 
outflow will be denoted by r~3 , and f 3 = fcr - fg. 

When it may be assumed that lah/atl >> lub ah/orl, equation (C53) 

can be decomposed into three parts, each part repreaenting one of the 

causes of motion of the gas-liquid interface: 

2 
2h llp

8 + ---:2::--_;;;,"1'2-
3n(R - R ) 

"' 0 

f 
R 

0 

r hf3 h af3 (----)dr 
3 .

2
. 2 'èlr 

r r 
2 2 

3n(R - R ) 
"' 0 

(C53) 

(C54) 

x 

(C55) 
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Equation (C54) will be applied to the case where h2 = h is 

independent of r. In that case, equation (C54) simplifies to: 

(C56) 

For a horizontal interface, the flux flowing out of the layer can 

easily be determined from equation (C49). It equals: 

dh2 2 
r .. -- 1r(R 

""2 dt 00 

Substitution of (C57) 

3n(R + R )R 
00 0 0 

In the limit R + R 
00 0 

3 

into (C56) 
R 

1~ 
0 

-R--
oo 

Re, (C58) 

dh2 _ 2h2Aps 
R ... R R dt .. .. 

3 R 2 0 "" c 
n c: 

(C57) 

results in: 

(C58) 

results in: 

(C59) 

It is stressed here that the derivation of (C58) has been made under 

the assumption h << r, consequently, expression (C58) loses its 

validity for the case R
0 

+ 0, h2 ~ O. 

Next, equation (C55) will be considered, First it is assumed that: 

(C60) 

In the following discussion, it will be shown that this choice is, 

under some limiting assumptions, in agreement with the global 

continuity equation (C49). 

Substitution of (C60) into (CSS) for the case h
3 

= h results, for 

sufficiently large value of R00 , in: 
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R 
"' hf 3 h af, 

f (----)dr. (C61) 
ah3 2h3

f3 --·----
r 3 ar 3n r 

Oniy over a relatively smallinterval R < r < R', where R' << R, 
0- 0 0 "' 

deviations from the horizontal shape are appreciable; cf. also Fig. 

4.4 where R
0 

is replaced by Rd. Consequently, the second term in the 

right-hand side of (C6l) represents a substantial contribution only 

in the region R < r < R' and its maximal absolute value is obtained o- o' 
when r R • 

0 

Thus, the first term in the integrand results in a contribution to 

ah 3/at which is an order !R'-R !IR smaller than the first term in 
0 0 0 

the right-hand side of (C61), and may, consequently, be neglected. 

Partial integration shows that the second term of the integrand has 

a negligible contribution when !ah/orl << h/(R'-R ). 
0 0 

In this way, equations (C60,61) have been simplified to: 

3 oh
3 

2h3 -= -- {f ot 
3 

2 a - pg(h - h )} 
3 "' ' 

(C62) 
nr 

R .. h3 R 
eo 

r 
""3 

4'lr f _l {f - pg(h3 - h )}dr f • (C63) 
R r cr "' 

0 
R 

0 

From (C63) it can be seen that equation (C62) is in agreement with 

global continuity condition (C49). 

C6. Discussion 

From equation (C58) it follows that the rate of thinning of a 

horizontal layer under the action of suction is given by: 

Bbp 9-n(R /R ) 
..!.__..!_= s 00 0 

3n(R -R ) 2 
00 0 

(t - t ) 
0 

(C64) 

An approximation for the rate of thinning of a thin layer between 

two solid walls with R
0 

= 0 has been derived by Reynolds (1886) with 
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the aid of the lubrication approximation equation. That approximation 

makes it impossible to satisfy the normal stress condition locally 

and, for that reason, the normal stress condition was only satisfied 

in an integral sense. An extension of Reynolds' result to the case 

where gradients in surface tension, characterized by B , play a part 
s 

is given by: 

(C65) 

An extension of Reynolds' expression to cases where 'R ~ 0 is, 
0 

however, impossible when the lubrication approximation is used. 

Scheludko (1957) experimentally verified equation (C65), and he also 

investigated the case R ~ 0. The relationship l/h2 - l/h2 « t - t was 
0 0 0 

found indeed. 

After all this lengthy analysis, the hydrodynamic interpretation of 

the final equations of motion (C58) and (C62) is quite simple. 

Equations (C58, 62) express that the interface is set in motion, 

under the influence of a force normal to that interface, in the 

direction of that force. The factor of proportionality 2h 3 /3nr2 in 

{C62)) represents the viscous resistance against motion of the liquid 

adhering at the solid wall. In tbe layer, the normal motion is 

transformed into tangential motion. For the case of a horizontal 

interface, with R • 0, this tangential motion can reasonably well 
0 

be described by the lubrication approximation, as bas been done by 

Reynolds (1886). However, tbe explanation of this motion, and the 

extension to situations where R ~ 0 and where the interface is 
0 

curved, can only be given when both normal and tangential gradients 

in pressure are accounted for, ,as in this Appendix. 

Finally, it is investigated whether equation (Cl) is satisfied. 

First, the case described by equations (C62, 63) will be considered. 

From equation (C49) it follows that ~h = -r/(2~) is given by: 

r h 3 f 
~h(r,t) • ~ ! --3 

dr. 
3n R r 

0 
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On the basis of (C66), it will now be assumed that: 

(C67) 

In the region r > R', this is a reasonable assumption since there 
0 

the interface is almost horizóntal. With the aid of equation (Cl2), 

it follows from (C67) that: 

nn"ljl = - 4(* + pg) (C68) 

For r > R~, the last two terms in the right-hand side of (C68) are 

small since the interface is almost horizontal. Also lop/oz + Psl 

« I op/orl, and the error in satisfying (Cl) can be compared with 

the error introduced when the lubrication approximation (where 

op/oz + pg = 0) is applied. 

For the case described by equation (C58), the expansion coefficients 

can easily be determined from equations (C20, 33, 42, 44, 45, 46). 

Substitution of the values obtained in this way into equation (C2), 

and making use of (Cl2), shows that equation (C68) is found again, 

however, with of
3
/or = 0, a2 f 3 /ar2 = 0. Consequently, it is shown 

that the error in satisfying equation (Cl) is sufficiently small in 

this case too. 
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LIST OF SYMBOLS 

a 

b 

c 

= 2(R /R )2 , cf. eq. (4. 1. 35) c c 
expansion coefficient, cf. App. A 

expansion coefficient, cf. 

expansion coefficient, cf. 

surface area of bubble cap 

amplitude, cf. eq. (2.5.9) 

= - R , cf. eq. (4. 1.35) 
c 

App. c 
Ch. 3 

expansion coefficient, cf. App. C 

expansion coefficient, cf. Ch. 3 

amplitude, cf. eq. (2.5.9) 

= 20/p, cf. eq. (4.1.35), 

liquid specific heat 

expansion coefficient, cf. App. C 

vapour specific heat at constant pressure 

vapour specific heat at constant volume 

concentratien of gas dissolved in liquid 

concentratien at gas-liquid interface 

saturation concentratien 

concentratien at edge of diffusion boundary 

layer 

expansion coefficient, cf. App. C 

amplitude, cf, eq. (2.S.9) 

differential operator 

differential operator 

Riemann-Liouville operator 

normal force per unit area at gas-liquid 

interface, cf. App. C 

fg hydrastatic pressure at gas-liquid interface, 

138 

cf. App. C 

cf. eq. (4.1.37), 

cf. Sect. CS 

cf. eq. { 4 • t • 38) , 

~Ps• cf. Sect. CS 

= f0 - fg, cf. Sect. CS 

numerical constant in eq. {4.1.29) 

normal force per unit area at gas-liquid 

interface, cf. App. C 

[s-2] 

[mi+3] 

[ms-1] 

[m] 

[m2] 

[m] 

[ms-2] 

[s-1] 

[~+3] 

[m] 
[m3s-2] 

[J kg-1] 

[m-ls-1] 

[J kg-1] 

(J kg-1] 

[kg m- 3 ] 

[kg m- 3 ] 

[kg m- 3] 

[kg m- 3 ] 

[m-2s-l] 

[m] 
[m-2] 

[m-"] 

[s -v] 

[Pa] 

[Pa] 

[m] 
[Pa] 

[m] 

[Pa] 

[Pa] 

[Pa] 



F vector function, cf. eq. (3.2.24) 

Fd total downward force exerted by wall on 

bubble 

upward buoyancy force acting on bubble 

downward inertia force acting on bubble 

upward reaction for~e exerted by wall on 

bubble 

F0 downward surface tension force of adhesion 

acting on bubble 

[N] 

(N] 

(N) 

[N] 

(N] 

g absolute value of gravitational accelaration [m 

gr component of gravitational acceleration in 

r-direction 

~ component of gravitational acceleration in 

8-direction 

cf. eq. (3.2.25) 

thickness of thin liquid layer 

slip thickness of liquid layer 

thickness at end of liquid layer 

thickness of formation of microlayer 

hD dimensionless thickness of formation of 

microlayer 

H cf. eq. (3.2.26), 

initial thickness of thermal boundary layer 

above wall 

Ja Jakob number 

k 

t 

L 

N 

p 

Pm 

PR 

Ptr 

Pq, 
pl 

P1R 

Poo 

constant in Henri's law 

latent heat of evaporation 

dimensionless thickness of microlayer 

number of collocation points, 

number of terms in Grünwald series 

liquid pressure 

liquid pressure in microlayer 

liquid pressure at bubble cap 

transitional pressure, cf. Sect. 2.4.2. 

pressure in potential flow region 

gas or vapour pressure 

gas or vapour pressure at bubble cap 

liquid pressure at wall far away from bubble 

[m s-2 ] 

[m s-1 ] 

[m] 

[m] 

[m] 
[m] 

[m] 

[Pa m3kg- 1 ] 

[J kg-1] 

[Pa] 

[Pa] 

[Pa) 

[Pa] 

[Pa] 

[Pa] 

[Pa] 

[Pa] 
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suction pressure [Pa] 

Legendre polynomial of degree k 

Pr Prandtl number 

matrix element, cf. eq. (3.2.15) 

heat flow density [W m- 2
] 

heat flow density at vapour-liquid interface 

of liquid layer, cf. App. C [W m- 2
] 

heat flow density at vapour-liquid interface 

in microlayer [W m- 2
] 

heat flow density at vapour-liquid interface 

of bubble cap [W m- 2
] 

. ( 8) [m-(2j+l)] matr~x element, cf. eq. 3.2.1 

dimensionless matrix element g 
radial coordinate in spherical and cylindrical 

coordinate system [m] 

r. location of interface between two fluid 
~ 

elements, cf. App. C 

midpoint of fluid element, cf. App. C 

minimum radius of curvature in meniscus 

region 

[m] 

[m] 

[m] 

r' distance from bubble cap [m] 

r mean radius of curvature in meniscus region [m] 
0 

~r region in liquid microlayer where evaporation 

R 

is maximal 

bubble radius 

Re bubble contact radius, location of microlayer 

formation 

Rd 
R dep 
R 

e 

Req 
R. 
~ 

R 
0 

dry area radius 

bubble departure radius 

equilibrium bubble radius 

equivalent bubble radius 

bubble radius at collocation angle ei 

radius of cavity where bubble is formed, 

location in liquid layer where tangential 

velocity vanishes, cf. App. C 

undisturbed bubble radius, cf. Sect. 2.5, 

location in liquid layer where suction 

[m] 
[m] 

[m] 

[m] 

[m] 

[m] 

[m] 
[m] 

[m] 

[m] 

(m] 

pressure is applied, cf. App. C [m] 
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principal radii of curvature [m] 
R' location of transition between regions of 

0 

appreciable and negligible curvature of gas-

liquid interface, cf. App. C [m] 

~G residual, cf. eq. (3.2.29) [m s- 1
] 

s 

+ -s ,s 

residual, cf, eq, (3..2.31) 

residual, cf. eq. (3.2.30) 

residual, cf. eq. (3.2.31) 

exponent in bubble growth law, 

function repreaenting surface tension 

gradient, cf. App. C 

functions descrihing memory effects, cf. 

eqs. (3, 3.28,29) 

Sc Schmidt number 

t 

t 

time elapsed after start of bubble growth 

unit vector tangential to interface 

tD dimensionless time, cf. eq. (4.1.48) 

bubble departure or adherence time 

time when Re = r 
waiting time 

cf, eq. (2.2. 30) 

liquid temperature 

temperature of bulk liquid 

TM temperature of vapour-liquid interface in 

microlayer 

u 

liquid temperature at bubble cap 

saturation temperature at pressure p
00 

wall temperature 

vapeur temperature 

vapour temperature at bubble cap 

temperature at edge of thermal boundary 

layer surrounding bubble cap 

mean value of T
00

, cf. eq. (2.4.15) 

mean temperature, cf. eq. (3.3.23) 

liquid temperature 

velocity in r-direction in cylindrical 

coordinates 
velocity in r-direction at gas-liquid 

interface 

[m s- 1 ] 

[mzs-z] 

[mzs-2] 

[Pa] 

[s] 

[m] 

[s] 

[s] 

[s] 

[m4 s] 

[K] 

(K) 

(K) 

[K) 
[K] 

[K] 

(K] 
[K) 
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u velocity in r-direction in spherical 
r 

coordinates 

u0 velocity in 0-direction in spherical 

coordinates 

u 
V 

w 

liquid velocity vector 

gas velocity vector 

translation velocity of spherical bubble 

bubble volume 

volume of vapour originated from bubble cap 

volume of vapour originated from microlayer 

velocity in z-direction in cylindrical 

coordinates 

wh velocity in z-direction at gas-liquid 

x 

interface 

coordinate parallel to wall in microlayer, 

unknown in third order equation (2 •. 4.12), 

function defined by eq. (3.3.24) 

x* place where vapour-liquid interface in 

y 

z 

microlayer becomes horizontal 

function defined by eq. (3.3.25) 

coordinate normal to solid wall, 

half of distance between eentres of two 

spherical bubbles 

z
0 

displacement thickness at Re of hydrodynamic 

boundary layer 

z00 dimensionless thickness of hydrodynamic 

boundary layer 

Greek symbols 

a numerical constant in eq. (2.4.25) 

B' 
y 

expansion coefficient, cf, Ch. 3 

expansion coefficient, cf. Ch. 3 

factor characterizing influence of 

concentration gradient at gas-liquid interface 

coefficient, cf. eq. (3.3.11) 

bubble growth constant for diffusion­

controlled growth 

Y
0 

bubble growth constant for inertia-

controlled growth 
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[m s- 1 ] 

[m s- 1 ] 

[m s- 1 ] 

[m 
[ma] 

[m3] 

[ms] 

{m] 

[m] 

[m] 

[m] 



ys 
Y' 
r 
t 
too 
ó 

ó* 

b.. 
1 

A. 

Tl 

e 
e 
e 

1+ 

a 

0 
eo 
A6° 
K 

a 
0 

a', 

bubble growth constant, cf. eq. (4. 1.50) 

bubble growth constant, cf. eqs. (2.2.31,36) 

gamma function 

volumetrie flow ra te 

volumetrie flow rate at R , cf. App. C 

thickness of thermal or diffusion boundary 

layer around bubble cap, 

small distance in potential flow region 

outside microlayer 

small distance in meniscus region of 

microlayer 

distance between midpoints, cf. App. C 

distance between interfaces, cf. App. C 

disturbance in bubhle radius 

ratio of final to initial thickness of thermal 

boundary layer above wall 

liquid dynamic viseosity 

azimuthal angle in spherical eoordinates 

apparent contact angle 

natural contact angle 

wall superheating 

bulk superheating 

liquid thermal diffusivity, 

[ml-2s] 

[m s-5 ] 

[m3s-1] 

(m3s-l] 

[m] 

[m] 

[m] 

[m] 

[m] 

[Pa s] 

diffusion coefficient of solute in liquid [m2 

thermal diffusivity of gaseous phase 

liquid coefficient of heat eonduction, 

dimensionless eoordinate in microlayer 

coefficient of heat conduction in gaseous 

phase 

• cos e. cf. eqs. (3.2.27,28) 

liquid kinematic viscosity 

cf. eq. (4.1,26) 

liquid density 

density of gaseous phase 

surface tension 

mean surface tension, cf. App. A 

variation of surface tension, cf. App. A 

characteristic time for bubble growth 

[m2s-l] 

[W k-1m-1 ] 

[kg m- 3 ] 

[kg m- 3 ] 

[N m-1 ] 

[N m1 ] 

[N m-1 ] 

[s] 
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w 
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normal stress at gas-liquid interface 

tangential stress at gas-liquid interface 

stress tensor 

velocity potential 

heat flux 

stream function 

component of vorticity vector normal to 

cross-sectional plane, 

circular frequency of bubble oscillations 

Minnaert frequency 

vorticity vector 

grad, differential operator 

divgrad, differential operator 

[Pa] 

[Pa] 

[Pa] 

[mzs-1] 

[W] 
[m3s-1] 

[s-1] 

[s-1] 

[s-1] 

[s-1] 

[m-1] 

[m-2] 
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SUMMARY 

In this thesis, the departure of a bubble growing at a horizontá!. 

wall has been investigated both theoretically and experimentally. 

Two kinds of bubbles can be distinguished: 

(i) Vapour bubbles. At a superheated wall, these bubbles grow 

relatively rapidly by means of evaporation. A thin liquid 

layer, the so-called microlayer, remeins between bubble and 

wall. Evaporation takes place ooth at tl:o:: eul:fsce ;;:he mict'o-

layer and at the bubble cap. 

(ii) Gas bubbles. These bubbles grow by accr:cdon vi dis,..:n.veu ga..o 

which diffuses from the liquid to the bubble, These bubbles are 

quasi-static and a microlayer is not formed. However, a v.ery 

thin adsorption layer is present between the bubble and the 

wall. 

The process of departure is strongly dependent on the bubble growth 

rate. For quasi-static gas bubbles, the rate of growth of the 

adsorption layer, or so-called 'dry' area, also turns out to be of 

importance. In Chapter 2 of this thesis, both departure and the 

underlying growth processes are treated with the aid of simple models 

in which the bubble is considered as a segment of a sphere. 

Section 2.2 describes the coupled thermal and hydrodynamic processes 

during growth of a free bubble in a uniformly superheated liquid. Two 

modes of growth are distinguisbed, and a general expression for the 

transition between these two modes is derived. 

In Section 2.3, a simple model descrihing bubble departure under the 

influence of buoyancy is introduced. 

In Section 2.4, the model developed in Section 2.3 is applied to 

bubbles in a non-homogeneous temperature field. In this way, the 

empirica! relation of Cole and Rohsenow (1969) for the departure 

radius is explained theoretically. 
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In Section 2.5, oscillations of spherically symmetrie vapour bubbles 

are considered. It is shown that, at a sufficiently high frequency, 

the compressibility of the vapour may no longer be neglected. 

In Chapter 3, the departure of rotationally symmetrie vapour bubbles 

in water boiling at subatmosph~ric pressures is investigated 

theoretically. Departure occurs under the influence of gravity. 

Deviations from the hemispherical shape are described with the glob~l 

orthogonal collocation method, and the heat transport process is 

described with a finite number of terms of the GrÜnwald series for 

the Riemann-Liouville operator. In this way, the treatment has been 

reduced to the numerical solution of a coupled set of non-linear 

ordinary differential equations. 

Experiments have been performed on water boiling at subatmospheric 

pressures. For a pressure of 10 kPa, the theoretically determined 

bubble shapes and.departure time are compared with experimental data. 

Finally, in Chapter 4,the hydrodynamic mechanism of microlayer 

formation and growth of a dry area under the influence of capillary 

forces is considered. 

The mechanism of microlayer formation is described inSection 4.1. 

The theoretica! results are in good agreement with experimental data 

of Pike (1977). 

In Section 4.2, the growth of a dry area under the influence of 

surface tension is treated. For vapour bubbles it is shown that the 

contribution of capillary effects is small with respect to dry area 

formation by evaporation. For gas bubbles, however, the growth of 

the bubble foot is determined by capillary effects; this growth 

process is described in Section 4.3. It is shown experimentally that 

the well-known equation of Fritz (1935) for the departure radius is 

not applicable for quasi-statically growing gas bubbles. 
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SAMENVATTING 

In dit proefschrift wordt het loslaten van een groeiende bel op een 

horizontale wand theoretisch, alsmede experimenteel onderzocht. Twee 

soorten bellen kunnen worden onderscheiden: 

Ie. Dampbellen. Aan een oververhitte wand groeien deze relatief snel 

als gevolg van verdamping. Tussen bel en wand blijft een dun 

vloeistoflaagje achter, de zogenaamde microlaag. Verdamping vindt 

zowel aan het oppervlak van de microlaag plaats als aan de belkap. 

2e. Gasbellen, Deze groeien door diffusie van in de vloeistof opge­

lost gas' naar de bel. Hun groei is quasi-stationnàir en een micro­

laag wordt niet gevormd; tussen bel en wand bevindt zich echter 

een dunne adsorptielaag. 

Het loslaten is sterk afhankelijk van de snelheid waarmee de bel 

groeit. Bij de quasi-stationnaire gasbellen blijkt ook het groeitempo 

van de adsorptielaag, meestal de "droge" plek genoemd, van belang te 

zijn. 

In hoofdstuk 2 van het proefschrift worden zowel het loslaten, als­

mede de daaraan ten grondslag liggende groeiprocessen behandeld 

m.b.v. eenvoudige modellen, waarin de bel als een bolsegment wordt 

voorgesteld. 

Paragraaf 2.2 beschrijft de samenhang tussen hydrodynamische en 

thermische effecten tijdens de groei van een vrije bel in een uniform 

oververhitte vloeistof. Twee groeistadia worden onderscheiden en een 

algemene uitdrukking die de·overgang tussen beide groeistadia 

beschrijft wordt afgeleid. 

In paragraaf 2.3 wordt een eenvoudig model voorgesteld voor het los.,. 

laten van dampbellen onder invloed van de zwaartekracht. 

In paragraaf 2.4 wordt het in paragraaf 2.3 ontwikkelde model toege­

past op bellen in een niet-uniform.temperatuurveld. Het aldus ver­

kregen resultaat verklaart goed de empirische formule van Cole en 

Rohsenow (1969) voor de loslaatstraal. 
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In paragraaf 2.5 worden oscillaties van bolsymmetrische dampbellen 

beschouwd. Het blijkt dat bij een voldoend hoge oscillatie-frequentie 

de compressibiliteit van de damp niet meer verwaarloosd mag worden. 

Op grond van de in hoofdstuk 2 verkregen inzichten in het gedrag van 

de bel en van de mogelijke wiskundige methoden ter beschrijving 

ervan, wordt in hoofdstuk 3 het loslaten onder invloed van de 

zwaartekracht van omwentelingasymmetrische dampbellen in water onder 

subatmosferische drukken theoretisch (numeriek) behandeld. 

Afwijkingen van de bolvorm worden besèhreven met de globale ortho­

gonale collocatie methode en het warmtetransport wordt beschreven 

met een eindig aantal termen van GrÜnwald's reeksontwikkeling voor 

de Riemann-Liouville operator. Op deze manier is het probleem 

teruggebracht tot het numeriek oplossen van een gekoppeld stelsel 

niet-lineaire gewone differentiaal-vergelijkingen. 

Er zijn experimenten verricht aan water, kokend onder subatmosferische 

druk. Bij een druk van 10 kPa worden de theoretisch berekende belvorm 

en de loslaattijd van een bel vergeleken met experimentele waarden. 

In hoofdstuk 4 worden ten slotte het hydrodynamische mechanisme van 

de vorming van een microlaag en dat van de groei van een droge plek 

onder invloed van capillaire krachten beschouwd. 

Het mechanisme van microlaagvorming wordt beschreven in paragraaf 

4.1. De theoretische resultaten zijn in goede overeenstemming met 

door Pike (1977) gevonden experimentele waarden. 

In paragraaf 4.2 wordt de groei van een droge plek onder invloed van 

de oppervlak~espanning beschreven. Voor dampbellen blijkt dat de 

bijdrage van capillaire effecten verwaarloosbaar is ten opzichte van 

droge-plek vorming door verdamping. Bij gasbellen echter wordt de 

groei van de belvoet bepaald door capillaire effecten; dit groei­

proces is beschreven in paragraaf 4.3. Experimenteel wordt aangetoond 

dat de welbekende formule van Fritz (1935) voor de berekening van de 

loslaatstraal in het algemeen niet mag worden gebruikt voor quasi­

stationnair groeiende gasbellen. 
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STELLINGEN 

1. Omdat de zogenaamde "regel der exponenten" al een suggestie voor 

de oplosmethode inhoudt, verdient de notatie met behulp van 

fractionele afgeleiden de voorkeur boven de schrijfwijze met 

integralen. 

K.B. Oldham and J. Spanier, The fractional calculus, Academie 

Press, New York '(1974). 

Dit proefschrift, paragraaf 2.5. 

2. Voor het numeriek oplossen van de Navier-Stokes vergelijkingen in 

een stroming begrensd door een vrij oppervlak, verdient het aan­

beveling een zodanige eindige elementenmethode te ontwikkelen dat, 

goor eenvoudige integratie van de impuls-vergelijkingen, een 

expliciete uitdrukking voor de druk wordt verkregen als functie 

van de nog te bepalen ontwikkelings-coëfficiënten in de proef­

functies. 

Dit proefschrift, Appendix C. 

3. Scheludko's uitbreiding van de formule van Reynolds voor het 

dunner worden van een horizontale vloeistoffiim onder invloed van 

verticale krachten is onjuist. 

0. Reynolds, Phil. Trans. Royal Soc., 177, 157 (1886). 

A. Scheludko, Koll. Zeitschr., 155, 39 (1957). 

4. Bij de groei van een droge plek in een vloeistoffilm op een wand 

zal een eventuele concentratie-gradient aan het scheidingsvlak 

tussel vloeistof en gas een verwaarloosbare rol spelen. 



5. De correctie van Culick op de formule van Dupré vo?r de expansie­

snelheid van een zwarte plek in een vrij opgespannen zeepvlies is 

onjuist. De discussie van Frankel en Mysels ter verklaring van de 

door deze correctie ontstane dissipatie in de energie-balans is 

daarom evenzeer onjuist. 

A. Dupré, Ann. Chim. Phys., 11 (4), 194 (1867). 

F.E.C. Culick, J. Appl. Phys., ~' 1128 (1960). 

S. Frankeland K. Mysels, J. Phys. Chem., 73, 3028 '(1969). 

6. Het gebruik van een relatie voor de stroom-spannings karakteristiek 

bij electrolyse, verkregen naar analogie met een betrekking tussen 

de warmteflux en het temperatuurverschil bij kokende vloeistoffen, 

zal niet tot juiste resultaten leiden. 

7. Het verschijnsel dat in kokende binaire mengsels de bellen 

minder snel coalesceren dan in kokende zuivere vloeistoffen, moet 

worden toegeschreven aan de stabiliserende eigenschappen van de 

opgeloste stof op de dunne vloeistoflagen tussen bellen. Het 

Marangoni effect is hierbij slechts van ondergeschikt belang. 

8, Het overbekende ervaringsfeit dat water nat is valt niet af te 

leiden uit de standaard-werken over hydrodynamica. 

H. Lamb, Hydrodynamics, Cambr. Univ. Press (1974). 

L.M. Milne-Thomson, Theoretica! Bydrodynamics, Macmillan and Co, 

London ( 1955). 

L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press, 

Oxford ( 1959). 

9. Het verdient aanbeveling om in het Engels één uitdrukking te 

introduceren voor de Nederlandse taal, ter vervanging van de nu 

naast elkaar voorkomende uitdrukkingen "Dutch" en Flemish". 

W. ZIJL 
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