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CHAPTER 1

INTRODUCTION AND BRIEF SURVEY OF LITERATURE
1.1. Subject matter and contents of the thesis

Heat or mass transfer processes are important in many fields of
engineering. Extensive research on these subjects is strongly

demanded by the need to control large amounts of energy for industrial
and domestic use., For example, understanding of heat transfer processes
is of paramount importance in electricity-producing plants, where heat
is produced either by combustion of conventional fuels like coal, oil
or gas, or by nuclear processes. This heat is required to generate
steam for & turbine and either water under high pressure or liquid

metals are used as an intermediate heat transport medium.

A field of renewed interest, in which mass transfer plays an important
part, is in apparatus for the production of hydrogen and oxygen from
water by electrolysis. Aternative energy sources producing the
electricity required for electrolysis may be the sun or the wind.
However, it is also possible that nuclear energy will become a main
source of energy. Hydrogen is attractive as a fuel of the future
because it is ecologically clean, can be transported efficiently
through underground pipelines, and eventually can be mixed with natural
gas; cf. Mathis (1976).

In most practical cases,heat and mass transfer takes place at the
interface between a solid wall and a fluid; the transport character—
istics are strongly dependent on the geometry of the set—up. Another
important parameter is the strength of the acceleration field in
which the fluid is situated. In this thesis, restriction has been made
to horizontal walls upon which a fluid is imitially at rest in the
earth's gravitational field. The more complex case, where a fluid is
forced to flow parallel t§ the wall, will not be considered despite

its great practical importance in engineering.



One of the most characteristic features in such a configuration is
the occurrence of buoyancy effects in the fluid, Buoyancy forces
arise as a result of density variations in a fluid subject to
gravity. In heat transfer the so-called B€mard problem, where a
horizontal layer of fluid is heated from below, is well~known ;
cf. Bénard (1901). In that case, density differences are caused

by variations in temperature. It has been shown by Rayleigh (1906)
that the so-called Rayleigh number plays a dominant part in the
Bénard problem. When the Rayleigh number exceeds a critical value,
the flow pattern becomes unstable and heat transfer by natural
convection occurs. Similar behaviour can be observed when, instead
of differences in temperature, differences in concentration of a
solute are present in a liquid (e.g. salt in water). Here the
so-called salinity Rayleigh number has the same significance as
the ordinary Rayleigh number in heat transfer, A comparatively
recent development in the field of natural convection has been the
study of fluids in which there are gradients of two or more
properties with different diffusivities. This is the case in
binary mixtures and the stability properties of such a system

have been reviewed by Turner (1973).

Another well-known buoyancy problem, which has certain similarities
to the systems previously discussed, occurs when differences in
density are caused by liquid-gas or liquid-vapour transitioms.

This is the case during electrolysis and boiling respectively.

It is this problem to which this thesis will be devoted.

At the wall, transitions from liquid to vapour can occur when the
wall is superheated, i,e, when it has a temperature which is higher
than the saturation temperature at ambient pressure, Vapour bubbles
nucleate at the wall in tiny cavities which have dimensions of
approximately 10~ m and smaller. A review of the mechanism of

this so~called heterogeneous nucleation has been presented by Cole
(1974). It is noted that the nucleation properties of these
cavities are not readily reproducible ; also, the way in which the
cavities and their different sizes are distributed over the wall
can hardly be controlled in most engineering applications. These

facts represent a major cause of the difficulty of predicting



adequately heat transfer rates in boiling.

In a similar way, gas bubbles are formed when there is supersaturation
of gas dissolved in the liquid directly above the wall. In this thesis
no further attention will be paid to the physico-chemical aspects of

nucleation.

In practical engineering, heat and mass transfer processes with phase
transitions are often more advantageous than transfer processes in
which only natural convection plays a part ; in the former processes
the periodic growth and departure of bubbles causes forced liquid
convection on & small scale which contributes substantially more to

the transport rate than natural convection does.

Unfortunetely, there is an upper limit to the heat or mass flow
obtained in this way. For a sufficiently high driving temperature
difference, respectively concentration difference, the number of
bubbles at the wall becomes so large that these bubbles coalesce to
form a coherent vapour or gas film that separates the wall from the
bulk liquid. It has been shown experimentally by Yu and Mesler (1977)
that, in boiling near the peak heat flux (i.e. in transitional
boiling), a thin liquid layer remains at the wall between vapour and
wall, Yu and Mesler called this layer the macro-layer and the
properties of this layer are very important for an understanding of
the transition from nucleate boiling, or pool boiling, to film
boiling. One of the characteristic properties of this macro-layer

is the rate of growth of dry areas within it. When this dry-area
growth rate is large, a rapid transition to film boiling occurs,
often leading to damage of the wall., However, except for the aspect
of dry area growth in a liquid film at a horizontal solid wall, the
transition to film boiling or to film mass transfer will not be

considered in the present work.

In this thesis, only situations with sufficiently low superheating
or supersaturation will be considered, under conditions where the
so-called single~bubble approach may be used, This means that the
distance betweeu‘the individual bubbles is so large that one bubble

may be considered as infinitely far away from its neighbours.



To understand the physics of the transport process and consequently
ultimately to be able to find means of increasing the peak flux and
thus the efficiency of engineering set ups, knowledge of the time of
adherence at the wall and of the departure diameter of the bubble is
essential, This is also illustrated by the many (semi-empirical)
correlations for heat and mass transfer rates that are available in
literature, Almost all of these correlations require knowledge of the
frequency of bubble departure and of the bubble size.

The description of the mechanisms of bubble departure, for the
completely different cases of both rapidly-growing vapour bubbles and
glowly-growving gas bubbles, forms the subject of this thesis.

In Chapter 2 of this thesis both the departure phenomena and the
underlying growth processes will be {llustrated with the aid of
relatively simple models in which the bubble is represented as a
sphere or a spherical segment. On the basis of the insight in the
bubble behaviour and its mathematical description, obtained in this
way, an extension will be presented in Chapter 3 to eylindrically
symmetric vapour bubbles in water under subatmospheric pressures,
Numerical methods will be used to caleulate the bubble shape, and the
results are compared to experimental data obtained by high—speed
eitnematography. In Chapter 4 both the hydrodynamic mechanism of
microlayer formation and the mechanism of dry area growth under the
influence of capillavy forces will be investigated, The importance
of these processes for bubble departure has already been stressed in
Chapter 2,

1.2, Early theories on bubble departure

The earliest and even now perhaps best known expression for the
departure diameter was presented by Fritz (1935). Although Fritz
suggests that his equation can be appiied for growing vapour bubbles,
his model is only derived for static bubbles where the hydrostatic
force balances the normal component of the capillary force and where
the upward buoyancy force balances the downward force of adhesion at
the wall, Fritz himself already remarked that in case of rapid
evaporation a situation of exact dynamic equilibrium will hardly be

reached, but he adds that experiments show his equation to be



approximately valid, Indeed, it turns out that, for many liquids
boiling in the region of atmospheric pressures, Fritz's equation holds
when the contact angle, occurring in this equation, is considered as
an empirical parameter which has to be fitted to the experimental

data for departure radii, This has been shown experimentally by Han and
Griffith 21965), and by Cole and Rohsenow (1969) among others.

In Section 2.4.2, this fact, which accounts for the success of

Fritz's equation, will be explained theoretically. It is, however,
stressed there that the agreement with experiment is purely accidental
since, in reality, for rapidly growing vapour bubbles, surface tension
forces and the force of adhesion do not play an important part as

compared with inertia forces.

When adhering, slowly-growing gas bubbles are considered, the
surface tension and adhesion forces do play important parts, and
Fritz's equation agrees fairly well with experimental data, provided

that the apparent contact angle at the time of break-off is known.
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However, even for slowly-growing gas bubbles, dynamic equilibrium
does not hold everywhere, Apart from the fact that growth induces a
pressure field which diminishes the total upward force, deformations
from the static shape may be expected near the wall since the bubble
contact perimeter is growing. Since this growth has the character of
slip along the wall, with a growth rate often lagging behind the
bubble growth rate, shear stresses will occur locally. As a
consequence, an apparent contact angle, with a value varying in time,
is observed. This apparent contact angle is a result of the hydro~
dynamics of the process. It must not be confused with the dynamic-~
receding contact angle, which is independent of the hydrodynamics of
the process,and is purely determined by the local intermolecular
interactions at the bubble contact perimeter ; cf, Section 4.2.2,
and Fig., 1.1,

Consequently, in addition to Fritz's treatment, a description for the
apparent contact angle has to be developed. In Sectiom 4.3, the

latter problem will be considered in more detail.

1.3, Growth of a free bubble

It will be clear from the foregoing discussion that it is of
paramount importance to have an accurate knowledge of the mechanism
of bubble growth in order to be able to predict departure radii and
times., In addition, for gas bubbles, which always grow relatively
slowly, additional information is required for the growth rate of
the bubble contact radius in order to be able to calculate the
downward force of adhesion. For these reasons much attention will be
paid to the subjects of both bubble growth and growth of a dry area
caused by capillary effects.

The earliest expression for bubble growth follows from a treatment
given by Rayleigh (1917), who considered the collapse of a spherical
cavity in an infinitely extended, incompressible liquid, In the
bubble, a constant pressure was assumed to be present., Since the
expression for bubble growth based on Rayleigh's approach did, in
general, not agree with experimental growth rates of gas and vapour

bubbles, it was obvious that the problem had to be considered from



a different point of view. BoSnjacovif (1930) neglected the hydro-
dynamics of the problem by assuming that the excess pressure in the
bubble is negligible. In that case the bubble only grows by diffusion
of gas into the bubble, or by diffusion of heat to the bubble, the
sensible heat being converted into latent heat of vaporization at the

vapour-liquid interface.

Experiments performed by Jakob (1958) showed that BoSnjacovii's
approach was very fruitful. However, strictly speaking, Bosnjacovii's
result is not completely correct. For rapidly-growing vapour bubbles,
heat transport by radial convection must also be included ; for
slowly—-growing gas bubbles, a correction due to the curvature of the
spherical bubble boundary has to be taken into account. Birkhof,
Margulies and Horming (1958) and Scriven (1959) independently derived
the correct expressions, In Section 2.2.3 the points-of-view of
Rayleigh and Bosnjacovil are brought together. It will be shown that
initially, shortly after nucleation, a Rayleigh-type of growth
exists, whereas later, after a transitional period, the Bo%njacovié-
mode of growth is reached asymptotically. This growth behaviour will
be presented in one algebraic expression. Thus, a unified treatment
of bubble growth is obtained. Comparison will be made to the unified
treatment of Prosperetti and Plesset (1978), and it is shown that

the agreement with the models reviewed by them is good.

Experimental investigations show that, under many conditions, the
growth rate of a vapour bubble oscillates around an average value,

Not only oscillations in the bubble shape, but also oscillations in
the bubble volume have been observed ; cf. Van Stralen (1968), and
Schmidt (1977), who pointed out that oscillations in the bubble

shape may be caused by surface tension. However, volume oscillations
cannot be explained in this way. One explanation may be that periodic
evaporation and condensation occur around a mean rate of evaporation ;
cf, Zijl, Moalem and Van Stralen (1977). Another explanation is that
compressibility effects in the vapour become important, and that there
is a periodic expansion and compression. In Section 2.5, these two
possibilities will be comsidered theoretically ; it turns out

that the first process, which shows a strong damping, will indeed

occur for sufficiently small bubbles.



For relatively large bubbles the second mechanism, which has a much
lower damping, is the governing process. For gas bubbles similar
results can be obtained. However, in the latter case the oscillation
frequency will be very high. Consequently, oscillations canmnot be
observed with equipment having a response time which is only a few
orders of magnitude smaller than the bubble adherence time.

In the following Chapters it will be assumed that the amplitude of
the bubble oscillations is so small that they have negligible effect
on bubble departure and may consequently be ignored for the present

purpose.
1.4. Micro- and adsorption layers. Dry areas

In principle, the theory for bubble growth mentioned above only
applies to free bubbles in an infinitely-extended, initially uniformly
superheated or supersaturated liquid under zero gravity conditions.
Cooper and Lloyd (1969) and, independently, Van Ouwerkerk (1970, 1971)
extended the theory for heat transfer controlled vapour bubble growth
at a horizontal wall, again under zero gravity conditions in a
uniformly superheated liquid. Although, qualitatively speaking the
results do not differ greatly from Bo¥njacovi€'s result for the growth
rate of a free bubble, the hydrodynamic and heat transfer processes
in this case are much more complex because of the existence of a thin
liquid layer between the bubble and the wall ; cf. Fig. 1.2. The
generally accepted name for this layer in literature is the
(evaporating) micro-layer This name has for the first time been
proposed by Moore and Mesler (1961). Since the micro-layer ebaporateé
during adherence,/it contributes considerably to the bubble growth

rate.

The determination of the thickness of formation of this liquid layer
is presented in Section 4.1. Use will be made of Landau and Levich's
(1942) solution for the free coating‘problem, rather than of the
boundary layer approach suggested by the forementioned authors.

Van Ouwerkerk also considered the rate of growth of the dry area in
the micro-layer. During nucleate boiling this growth rate is almost
completely determined by evaporation from the micro-layer for common

materials like water on steel, Important conclusions from Van Ouwer-
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kerk's analysis are that the bubble growth rate is hardly affected
by the existence of a dry area and is almost independent of the

thermal properties of the wall as well,

In contrast to vapour bubbles, the almost quasistatic gas bubbles

do not have a similar liquid microlayer between bubble and wall.

For these bubbles the thickness of formation, as calculated with
Landau and Levich's expression, results in a value which is large with
respect to the bubble dimensioms ; i.e., the latter model does not
hold for that case, Gas bubbles have almost the shape of spherical
segments and the radius of the bubble base in contact with the wall
‘{the so~called bubble contact radius) is equal to the dry area radius.
Since vaporization does not play an important part for gas bubbles,

the growth of this dry area is governed by capillary effects.



In reality, this so—called "dry" area is not completely dry, for
complete drying would be a violation of the adherence or no-slip
condition for the liquid at the wall. In fact, a microscopically

thin liquid layer remains at the wall ; cf. Scheludko, Tschaljowska
and Fabrikant (1970). In this non-Newtonian layer, with a thickness
of 107"m and smaller, the adsorption force field near boundaries
plays an important part, resulting in the so-called disjoining
pressure ; cf. e.g. De Feijter and Vrij (1972). The earlier mentioned
microlayer, which has a thickness varying from approximately 10~®m to
10”"%*m, may, from this point of view, be considered as a bulk liquid,
that can be described by the theory of Newtonian fluids. It is
somewhat misleading that the name micro-layer is already in use for
this macroscopic layer. In this thesis, the name adsorption layer will
be used for the microscopic layer in which the disjoining pressure
plays a dominant part. Since an adsorption layer at a wall does not
evaporate completely ; cf. Wayner, Kao and Lacroix (1976), the wall
surface covered by this layer forms a thermal insulation for the

heat flux, in a similar way as a dry area does. For this reason,

the name dry area for the wall surface covered by the adsorption

layer is acceptable for the present purpose.

In literature hardly any attention has been paid to the process of
dry area formation caused by capillary forces. Experiments on this
subject have been reported by Scheludko,Tschaljowska and Pabrikant
(1970), and by Cooper and Merry (1972) ; however, a theoretical
treatment has not yet been given. For that reason a model has been
proposed in Section 4.2 and in Appendix C. In contrast to this, the
process of dry area formation by evaporation, i.e. the so-called
dry-out, will not be considered in this thesis, since this subject
has been treated extensively in the literature; cf. e.g. Cooper and
Merry(1972, 1974}, and Yu and Mesler (1977).

10



1.5, Bubble departure

Knowing the growth rate of the bubble, the acceleration of the centre
of mass of a free bubble with the same growth rate can be determined
by Green's momentum equation j; cf. Lamb (1974), When the latter
equation may be considered as an approximation for bubbles at a wall,
the following description holds : when the displacement of the bubble
centre from the wall has become equal to the bubble radius, the bubble
will depart, provided that the upward buoyancy force exceeds the
downward force of adhesion at the wall., For vapour bubbles this is the
case, and the departure radii obtained in this way agree quantitatively
with experimental results cobtained by Moalem, Zijl and Van Stralen
(1977), and by Cooper, Judd and Pike (1978) ; cf. Section 2.3.2,

It is stressed here that in the fore-mentioned case, liquid
acceleration is the governing mechanism for departure, and in general,
dﬁring adherence there is no balance between upward buoyancy force
and downward inertia and adhesion forces. Of course, the model of an
accelerating growing sphere is a simplification, since in reality the
growing bubble foot is decelerating ; cf. Chapter 3. However, in both
cases, liquid accelerated by gravity determines the departure radius
and adherence time. Models for prediction of the adherence time based
on a balance of forces in fact only present a lower limit for the
adherence time ; cf, e.g. Witze, Schrock and Chambré (1968), and
Kiper (1971).

Since gas bubbles grow very slowly with respect to vapour bubbles,
the above-mentioned explanation of departure does not apply, and a
balance of the upward buoyancy force and the downward force of
adhesion determines the adherence time and break-off radius. In
Section 4.2 this equilibrium of forces has been treated

in the way discussed by Kabanow and Frumkin ¢1933),

4n expression for the bubble growth rate has to be substituted in the
expressions for departure mentioned above. For vapour-bubbles,
growing in a realistic non~uniformly-superheated liquid at a wall,

it is relatively siﬁple to express the parameter describing bubble

growth in other physical parameters like ambient pressure and

il



surface tension in the following way. After bubble departure, cold
bulk liquid, with a temperature approximately equal to the saturation
temperature at ambient pressure, flows to the superheated wall,
Initially, this liquid is heated only by conduction and, after some
time, when the thermal penetration thickness has grown so large that
the Rayleigh number exceeds its critical value, it is also heated by
natural convection. Next, when the thermal boundary layer has become
sufficiently thick, nucleation takes place at a certain cavity.

Since the required superheating for nucleation at a cavity with
prescribed dimensions depends among others on surface tension, the
final thickness of the thermal boundary layer will also depend on the
value of the surface tension.

This process has been described by Han and Griffith (1965). Combination
of their model with the theories of vapour bubble growth and departure
developed in this thesis, results in an expression for the bubble
departure radius which is independent of both the superheating and

the dimensions of the cavity where the bubble has been nucleated;

cf. Section 2.4.2.

The derivation of a similar expression relating the departure radius
to the ambient pressure has not been attempted for gas bubbles

becaugse such an expression would depend greatly on the way in which
supersaturation is produced at the wall (e.g. by electrolysis, or by

leading a gas through the liquid etc.).

1.8, The equations describing the evolution of the coupled temperature
and flow fields

1.6.1. The basic equations of motion

Until now, relatively simple algebraic expressions have been

discussed in order to understand, at least approximately, the main
aspects of bubble departure and of the underlying growth processes,
However, from a fundamental point of view, the picturé obtained in
this way is not fully satisfactory, since, in the models mentioned
before, deviations from the spherical bubble shape have been neglected;

i.e. the hydrodynamic theory holding for free spherical bubbles has

12



been used. Another unsatisfactory approximation was the determination
‘of the contribution of the evaporating liquid microlayer to bubble
growth. The presentation given in Section 2,.4.1 only holds for the
rather unrealistic case of bubble growth im an initially uniformly

superheated liquid under zero gravity conditions.

For these reasons the growth and departure of cylindrically symmetric
vapour bubbles in water boiling at subatmospheric pressures has been
treated numerically and the results are compared to experimental data

in Chapter 3.

Theoretically speaking, the flow and temperature fields of the gas and
vapour in the bubble and of the liquid surrounding the bubble can
adequately be described by the basic continuum formulation for
Newtonian fluids, expressing conservation of mass, of momentum and of
energy, complemented with a diffusion equation for the gas dissolved
in the liquid and with expressions for the normal and tangential
stresses ; cf. e.g. Bird, Stewart and Lightfoot (1960). In order to
obtain a solution of these equations, appropriate boundary and initial

conditions have to be prescribed.
1,6.2, The boundary conditions for solid walls and free interfaces

In general, boundary conditions at the soclid wall are the condition

of impermeability and of no-slip or adherence.

At the gas-liquid interface there is a discontinuity in normal stress
cauded by surface tension. This effect is described mathematically by
the Laplace-Kelvin equation. There is also a discontinuity in the
tangential stress over the gas-liquid interface. This effect is
described by the Marangoni~Gibbs condition; cf. Traykov and Ivanov
(1977). However, in the flow field around the bubble, potential flow
may be assumed, cf. Section 3.1, and in that case, the Marangoni-

Gibbs condition must be disregarded.

For the thermal or energy equation it is usually assumed that there is
no jump in temperature across a vapour—-liquid interface. This has been
verified experimentally by Pruger (1944). Also for gas bubbles it may

be assumed that there is no jump in concentration across the interface.

13



The pressure at the gas-liquid or vapour-liquid interface may be
approximated by the thermodynamic equilibrium expressions of Henry

and Clapeyron respectively.

At the bubble boundary the displacement of this interface can be
related to the inflow of gas or vapour, thus resulting in a second
boundary condition for respectively the mass or heat diffusion

equation,

As a result of the solution for an initially prescribed gas-liquid
interface, the normal component of the liquid velocity is also known
at t = ). Equating the rate of displacement of the gas—liquid
interface to this normal velocity component results in a so-called
kinematic boundary condition from which the evolution in time of the

interfacial coordinates can be determined.

At the location of the dry area radius, where the adsorption layer
and the microlayer meet, both the thickness of the layer . and the
go~called contact angle between the adsorption layer and the micro~
layer have to be prescribed. From these two conditions the a priori
unknown position of the perimeter of the adsorption layer or dry area
can be determined as a function of time from a partial differential

equation of the parabolic type ; cf, Section 4.2,

1.6.3. The initial conditions

Initial conditions must be prescribed for the position and the
normal component of the velocity of the vapour-liquid, or gas-
liquid, interface. For growing bubbles, the choice of these
conditions is not of great consequence since their influence
dampes away rapidly. This is in contrast to imploding bubbles
where small variations in the initial conditions are amplified;

cf. Plesset (1954 a).

However, the choice of the initial temperature field in which the
bubble grows is shown to be of great influence on the rate of growth
and the adherence time. In Section 3.3.2, measurements of initial

temperature fields will be reported., The latter fields have been used
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as initial conditions for the temperature field and comparison of
‘shape and size of computed bubbles with experimental bubbles, growing

in similar temperature fields, will be reported.

1,.8.4. Well-posedness of the partial differential system

After having derived the partial differential equations and the
relevant boundary and initial conditions, the first question which
must be answered is whether the resulting system represents a well-
posed problem., This is a crucial question, especially for the
application of the collocation method, which will be used in this
thesis, since this method will also produce "solutions™ of ill-posed
problems. In this thesis, the well-posedness will not be proved
mathematically, but comparison with situations where well-posedness

is established in.the literature-has served as a guideline.
1.6.5. Methods of solution

The advent of fast digital computers with a large memory capacity
has made it possible to find solutions for problems by application
of numerical approximation methods where analytical methods are hard
to apply. In this thesis numerical methods are considered as methods
which map the space—time continuum in a finite number of discrete
space—time points.

This definition of a numerical method does not touch upon the
question whether it is convenienf or not to use a digital computer

to evaluate the values of the variables at the discrete points.

An example of an analytical solutiorn, inspired by a numerical methed,
will be presented in Appendix C. There the equation of motion of the
~gas—liquid interface of a liquid layer under the action of forces
normal to that interface has been derived from the equations of
steady Stokes or creeping flow and their boundary conditions,by use

of the local collocation approximation ; cf. Finlayson (1972).

Even when numerical approximation methods are adopted, finding the

solution of the problem is far from trivial both for theoretical and
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practical reasons. To know how good an approximation method is,

error bounds must be determined. An engineering approach rather than

a mathematical approach is adopted here; the error is considered to

be sufficiently small when an approximation with smaller discretization
interval did not result in an obvious change in the solution.
Furthermore, the convergence of the method is proved in Section

3.2.3. The theoretical results will receive support from comparisons

with experiments.

The treatment is complicated because many length— and time scales
are involved. (e.g. low bubble departure frequency, high volume
oscillation frequency ; large bulk region, thin boundary layers).
Consequently, it is impossible to obtain one general numerical
solution that covers the complete flow and temperature fields from

bulk liquid to liquid microlayer.

Another difficulty in bubble dynamics stems from the fact that, at
the gas—orvvapour—liquid interface, the pressure is prescribed as

a boundary condition., This is in contrast to the situation at a
solid wall, where the velocity is prescribed instead. In order to
solve for the flow field in the liquid, this pressure condition has
to be transformed into a velocity condition by integration of the
momentum equations. In gemeral, such an integration is not possible
beforehand.

There are, however, three important cases where this pressure problem
does not arise, i,e., where the momentum equations can easil& be
integrated without knowing the solution of the velocity field
beforehand. These cases are : (i) potential flow, (ii) boundary
layer type flow, (iii) Stokes flow. Consequently, only these three
kinds of flow have been considered in this thesis.

For reasons of computational efficiency the globél orthogonal
collocation method, cf. Finlayson (1973), has been chosen for the
solution of the potential flow field in the bulk liquid. As has
already been mentioned, the creeping flow field in thé liquid
microlayer has been treated by thé local collocation method,
Different methods have been used by Yeh (1967), Plesset and Chapman
(1971), and Hermans (1973) for describing the behaviour of a bubble
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in a potential flow field.,

In the way described above, the hydrodynamical theory for finding
the bubble shape results in 2 set of coupled, non-linear, ordinary
differential equations which can easily be solved numerically with

the aid of a computer.

Simultaneously with the hydrodynamic equations, the temperature or
diffusion equation has to be solved. However, a full description of
the temperature or concentration field is not required ; only
knowledge of the temperature or concentration at the vapour-liquid
interface is needed in order to determine the excess pressure in the
bubble. For that reason, finding the temperature or concentration at
the bubble boundary will supply the necessary condition for solving
the hydrodynamic equations. From this point of view plausible
simplifications will be introduced, resulting in one additional
ordinary differential equation, coupled with the hydrodynamic
equations mentioned before ; cf, Sec;ion 3.3. For the formulation
of the diffusion problem use has been made of the formulation with

fractional derivatives ; cf., Oldham and Spanier (1974).
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CHAPTER 2

INTRODUCTION TO BUBBLE DYNAMICS :
GROWTH AND DEPARTURE OF A SPHERICAL BUBBLE

2.1, Introduction to the basic equations

This Chapter provides an introduction to the physics of bubble growth
and departure, and presents the main results based on the assumption

that the bubble keeps its spherical shape.

The starting point of all calculations will be the equations of
conservation of mass, momentum and energy, complemented by the
diffusion equation and by expressions for the comp. ents of the stress
tensor, Because of their frequent use in this thesis, the latter
equations will be presented here in rotationally symmetric spherical
coordinates for an incompressible liquid with constant viscosity n,
congtant thermal conductivity A, constant specific heat cg and
constant diffusion coefficient K in case of diffusion of a dissolved
gas. Furthermore, viscous dissipation will be neglected. Under these
restrictions the equations are ; cf. e.g., Bird, Stewart and Lightfoot
(1960), and cf. Fig. 2.1,

: i . )

1 3 -, ..
Vet = =n 57 (rzur) *ETE T (USSLUQ) =0, (continuity) (2.1.1)
Ju Ju u, du u?
T ho 6 " r 0y_ 9
P(W*’“r’ﬁ-*r ‘?)',"5%“981:*
. Zur 9 Bﬁe ,Zuecote
SLINAUTIEE S ™ " ] (r-momentum) . (2.1.2)
Ju ou u, dJu u_u ‘
0 g Y %M YY) 13
JESRAS A 3 r’)— T ¢ PBg *
2 g 9 Yo
+n v ue + ? -sé'— - m N (S—mmentum} (2.1.3)
3T oT . Yo ar :
pe (-5? *uas -r---%-)== AVET, (energy) (2.1.4)
3c ac . U8 8¢
R~ KV2C. (diffusion) (2.1.5)
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Fig. 2.1. Gas or vapour bubble in an infinitely extended liquid,
The plane z = 0 represents a vitual wall which does noﬁ

represent a boundary for the liquid; c¢f. also Section 2.3.2.

In equations (2.1.2, 3, 4, 5) the Laplace operator V2 is given by :

213 (283 Vo 1 3 f . .3 '

V ‘112"5;(1' F;)"’mw Slnew . (2.1.6)
Since the gas or vapour phase is compressible, the basic conservation
equations for that phase are more complex, However, the latter
equations will hardly be used, and will only be mentioned at the
appropriate places. For the same reasons, the components of the

stress tensor will not be presented explicitly in this Section.

As will be cleaxr from comparison of equation (2.1.4) with equation
(2,1.5), heat transport and mass diffusion are described by similar
equations.

This similarity has even been stressed by using Kk for the mass
diffusion coefficient in (2.1.5) instead of the usual symbol D.

In the following, the thermal diffusivity will be defined in the
usual way as K éAA/pc . It will be clear from the context whether K

represents the heat or mass diffusion coefficient. In this way a

unified treatment has been made possible.
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As is well-known in the theory of fluid dynamics, it is often
advantageous to introduce a stream function P in order to satisfy the

continuity equation (2,1.1), This stream function is defined as

follows 3
9
Y T T TZsind -}g’ (2.1.7)
I
Y9 = Teind 5%" (2.1.8)

In this way the continuity equation (2.1.1) has been replaced by
equations (2.1.7, 8), and only the momentum equations (2.1.2, 3)

remain.

By taking the 3/38 of (2.1.2) and the 3/3r of (2.1.3) the following
equation, in which the pressure is eliminated, replaces the two

equations (2.1.2, 3) :

DY
: W, )
2 r¥sin ca o unt
wT oY) + -——-—a-(;;-é-y——— sinb = VDY , (2.1.9)
where
p? =2, 5ing ? (2.1.10)

T % ‘—?-'§§ ETE§‘5§

and the Jacobian is defined by

%%:%gg”%%; . (2.1,11)

The vorticity @ = rot u has only one component, norxmal to the cross-

sectional plane under consideration :
= = ' 2.1.12
w = (0,0,w) 0 0,. mme) ( )

Consequently, equation (2,.1.9) describes the diffusion and convection

of vorticity in the flow field.
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Equation (2.1.9) shows that no.vorticity is produced in the flow
field, i.e. w = 0 is a possible solution of (2.1.9}. As can be
inferred from the boundary conditions for (2.1.9), vorticity is
produced at the boundaries of the flow field, and equation (2.1.9)
describes the diffusion and convection of vorticity into the flow
field., Sufficiently far away from the boundaries, or initially after
start of motion, the flow field may be assumed to be vortex—free,
hence D?Y = 0. The latter equation can be satisfied identically by
the introduction of a.velocity potential ¢. The velocity potential

is defined in such a way that:

(“r’ “e) = V¢ , (2.1,13)
where
v=(-§;,%%§) : | (2.1.14)

Substitution of (2.1.13) in the continuity equation (2.1.1)
results in the Laplace or potential equation for the velocity

potential :
e =0 . (2.1,15)

In this case of so-called potential flow, the momentum equations can
be integrated, resulting in an explicit expression for the pressure
in the flow field. Substitution of (2,1.13) in (2.1.2, 3) results

in the well~known Bernoulli equation 3
p + pgrecos® - p_ (t) = -p(-g%w i(v¢)2)+ nwp . (2.1.16)

In (2.1.16) p, is & function of t only ; it represents the pressure
far away from the bubbles under consideration. Substitution of
(2.1.15) in (2.1.16) shows that viscous effects vanish in the
formulation of incompressible potential flow. However, this does not

mean that there are no viscous stresses present in the flow field.

In Chapters 2 and 3 of this thesis, the flow in the bulk liquid

surfounding the bubbles has been described using potential flow
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theory. The solution of the diffusion equations (2.1.4, 5) enters in
the calculations since the boundary conditions for (2.1.13) depend on

the concentration or temperature at the bubble boundary.

In Section 2.2 an introduction to the phenomenon of bubble growth
will be presenteﬁ, starting from the assumption of radially symmetric
flow and temperature fields. The latter assumption is the starting
point of many approaches presented in the literature. The case of
radially symmetric flow and temperature fields has been considered
because in this way the basic steps, also required in more complex
calculations, can be shown in a relatively simple way.

The treatment given in this Section also shows the assumptions

on which various well-established theories are based. In this way, a

unified treatment of these theories is presented.

In Section 2.3 and Appendix A, the assumption of a spherically
symmetric flow field will be relaxed, and the combined process of
growth and translation of spherical bubbles will be considered.

In this way a preliminary discussion of various modes of bubble
departure will be presented. The latter results will be applied in
Section 2.4 for vapour bubbles in a non-homogeneous initial

temperature field.

In Section 2.5 the assumption of spherical symmetry is used again
when considering oscillations in the bubble volume, and the assumption

of negligible vapour compressibility.

In Chapter 3 the assumption of a spherical bubble shape will be
relaxed, and deviations from the spherical shape will be considered,
assuming a rotationally symmetric potential flow field. It will be
shown there, that an important mode of bubble departure is governed
by concentration of the bubble foot, caused by gravitational acce

acceleration.

Finally, it is noted that, in the thin liquid layer between bubble
and wall, the potential flow approximation no longer holds.

In that case, either boundary layer flow or Stokes flow will be
assumed. The appropriate equations will be presented in Chapter &

and Appendix C.

22



2,2, Bubble growth
2.2.1. The equations of radial motion

For a radially expanding bubble, growing in a superheated or
supersaturated liquid, the behaviour of the gas or vapour phase will
be considered first. In this tﬁesis, only the case p, << p, i.e. the
case where the gaseous phase has a density which is much smaller than
the liquid density, will be considered. For gases surrounded by a
liquid, e.g. H,~ or CO,~bubbles in water, this condition is always
satisfied. For boiling, it represents a restriction to situations

sufficiently far away from the critical point.

Since p, << p, and since the gaseous phase is kept within a
relatively small volume, disturbances in the pressure of the gaseous
phase are damped away much more rapidly than in the liquid.
Consequently, the pressure in the gaseous phase is assumed to be

homogeneous, i.e. 3p, (r,t)/3r = 0.

Further, when the process of evaporation at the vapour-liquid
interface is considered, it is assumed that the vapour is in
thermodynamic equilibrium with the liquid. Consequently, when no
other gases or vapours are present in the bubble, it follows from
‘Clapeyron's law that the temperature is homogeneous along the bubble

boundary.

For sufficiently small variations around the saturation temperature
Ts(pm), belonging to the pressure p_, the Clapeyron equation may be

linearized, resulting in:

P gt = p, + 9—% {r (&) - T} (2.2.1)

In (2.2.1) P g represents the vapour pressure at the bubble boundary
r = R(t), p, represents the pressure far away from the bubble where

the saturation temperature is equal to Ts(pm), and T1 represents the

R
vapour temperature at the bubble wall, In (2,2.1) it is also assumed
that the vapour density p, and the latent heat of vaporization %
vary so little that they may be considered as constant over the

temperature and pressure ranges involved.
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For a spherical vapour bubble, fed by evaporation at its boundary,
Cho and Seban (1969) derived the following expression for the radial

vapour velocity at the vapour-liquid interface r = R(t) :

e e T ¢ PrAR(E) |

u (R(t),r) =1 e v, (_a - e T | (2.2.2)
1T P - c 1\ or c; R

@ 1p r=R(t) P s
Here Cho and Seban's expression has been presented in a linearized
form, combined with the linearized Clapeyron equation (2,2.1).
The first term between brackets in the right~hand side of (2,2.2)
results from the influence of temperature on vapour density. The
second term represents the effect of pressure on the compressible

vapour.

Equation (2,2.2) must be coupled to the hydrodynamic and thermal
equations of the liquid. In order to show the basic steps, a free
bubble, far away from walls and under zero gravity conditions will

be considered in this Section.

In that case, conservation of total (liquid and vapour) mass at the

spherical interface r = R(t) results in ; cf. Hsieh (1965) :
o] (f{(t) - ur(R(t),t)> =0 (f{(t) - ulr(R(t),t) . (2.2.3)

In the case under consideration, where compressibility effectsin the
vapour are neglibigle, the vapour velocity is so small that

{pi/p )ulr < u. Since also p; << p, equation (2.2.3) becomes
equivalent to the well-known kinematic boundary condition that holds

at the interface of two immiscible fluids without phase transitions:

ur(R(t),t) - R(v). , | (2.2.4)

Equation (2.2.4) expresses that ¢n the hydrodynamics of the
determination of R(t), only the liquid motion needs to be considered.
Combining (2.2.4) with the continuity equation for the liquid (2.1.1)
results for spherical symmetry in

u_(r,t) = (ﬂEl)Z R(t). (2.2.5)

r
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In this case, the momentum equation for the liquid (2.1.2) in the
r~direction can be integrated, resulting in an explicit expression
for the pressure in the liquid:

2 52 wp2
2
plr,t} = p(£) + p( B°R ; RE™ §r§ ) . (2.2.6)

Application of equation (2.2.6) at r = R(t) results in the

so~called Rayleigh equation:

ppit) - p,

2.2.7
5 ( )

3R =
RR + 5R
For prescribed pR(t), equation (2.2.?}, expressing the balance
between inertia and pressure effects, constitutes the so-called

dynamic boundary condition.

The normal stress at the vapour-~liquid interface can be calculated

using (2,2.5), resulting in:

du

Tng(e) = = pp(t) + (T o = ~pp(t) - 4n % . (2.2.8)

=R
The Laplace-Kelvin equation for the discontinuity of normal stresses
over the curved gas~liquid interface, substituted into a momentum

balance at the gas-liquid interface, cf. Hsieh (1965), results in:
P, =-T +E . (2.2.9)

Combination of (2.2.7, 8, 9) results in the so-called extended
Rayleigh equation, cf. Van Stralen {1968), or Rayleigh-Plesset

equation, cf. Plesset and Prosperetti (1977):

32 _PIRE®) T Pe a5 4
RR + ZR = ) R ai'— . (2.2.]0)

When pure vapour bubbles are considered, the pressure term in (2.2.10)
is given by the Clapeyron equation (2.2.1). It follows from (2.2.10)
that, for a certain bubble radius R = Re’ a situation of (unstable)

dynamic equilibrium exists. The superheating T, - IS of the vapour

R
» 3 » £3 . » » » . * e
in this dynamic equilibrium situation is given by:
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20Ts(pm)

- = . (2.2.11)
TRe Ts(pm) 5 IR,

A thermal boundary condition at the vapour-liquid interface
' = r-R(t) = 0 , cf. Fig. 2.1, is given by the heat requirement for

vaporization or condensation at the bubble boundary :

M) . xl(-;-})r‘go . pl)%(f{(t) - u (v, t)) . (2.2.12)

T o=

In (2.2.12),terms accounting for compressibility of the vapour,
mechanical work, and viscous dissipation have heen neglected with
respect to the term containing the enthalpy of vaporization % ; ef.
Hsieh (1965).

Since Kl>>K, the temperature gradients in the vapour are smoothed
out more rapidly than in the liquid. Since also A1<<X, the term
A1(3T1/3r')rw=0 may be neglected with respect to the term
A(BT/Br')r,zo in the left-hand side of equation (2.2.12),
Substitution of (2.2,2) in (2.2.12) then results in :

aT . ‘31%,‘:‘1'Q .
M L= PLAR(E) + g5 5 R(£)T, (1) (2.2.13)
r'=0 lp gFeo

A second thermal boundary condition is that the temperature of the
liquid at the vapour-liquid interface TR(t) equals the vapour
temperature at the interface TlR(t)’ i.e. TR(t) = le(t). From this
latter condition, combined with equation (2.2.13),it is seen that,
for finding the temperature field in the liquid, the vapour phase
needs no further consideration.

When steady growth of vapour bubbles is considered with no
implosions or oscillations, the temperature T1R = TR at the bubble .

boundary decreases so slowly that the second term in the right-hand

side of (2.2,13) may be neglected, resulting in :

oT - o
A (W) oo p AR(E) . (2.2.14)
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In Section 2.5, however, the full equation (2,2,13) will be considered
© in the context of bubble oscillations, where compressibility of the

vapour may not be neglected,

The energy equation (2,1.4) for spherically symmetric flow and

temperature fields in the liquid reads :

3T fRrY?. BT 5%T 2 9T

FAY 25 - K(@:z'* ?7;'5) (2.2.15)
The transformation T' = r-R results in :

AT _ r'(r' + 2R) » 3T _ | 3°T 23T

T CO I YL T K[(ar")2 ¥ TR 57 (2.2.16)

As a mathematical simplification, the non-linear term in the left-
hand side of (2.2.16) will be neglected. This means that heat
transport by radial convection is approximated by assuming that all
liquid in the thermal boundary layer surrounding the bubble has
radial velocity R(t), independent of r'. This can also be seen from
equation (2.2,15), When taking r = R in the non-linear term, the
remaining expression 3T/dt + R(3T/dr) equals the time derivative in
a coordinate system moving with the velocity of the bubble boundary.

Later on, in Section 2.2.2, this latter assumption will be relaxed.

If initially, at t = 0, the temperature in the liquid is homogeneous,
i.e. T(r,0) = T, the solution of the simplified equation (2,2.16)
also satisfies the following equation; cf. Oldham (1973):

_ob ATty N i =4 T(e',t)-T
K OD\‘; _—3;:""" T(I.",t) T, * K th W . (2.2.17)

In (2.2.17), OD;* represents the so-called Riemann-Liouville integral

operator of order /2, In general, the Riemann-Liouville integral of

order -v > 0 is defined by; cf. Ross (1975), and Appendix B:

1 ; Eos")

I+v

cu: £(t) = dt', v < 0. (2.2.18)

t'=¢c (t~t')
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Substitution of (2.2.14) into (2.2.17) results in:

-} s } T Tp(t) | T TR(e) -
th R(t) = « Ja—-T[,:o—_T—— + KJath T:T_m N 2.2.19)
8 © g
where the dimensionless Jakob number is defined as:
pe (T ~T)
Ja = ——Bl (2.2.20)

012'

When pure gas bubbles are considered, equation (2.1.5) for the
concentration field C(r,t) in a spherically symmetric situation has
to be solved. In an analogous way, the equations equivalent to the
set (2.2.19,20) can be derived; cf. also Epstein and Plesset (1950):

- CmCy (1) e c (o
D } R(L) = Ki Ja R ti [ R 1

ot C ~C ¢ -C R(t) | (2.2.21)
[ T « g »

Here kK represents the diffusivity of the gas in the liquid, and the

dimensionless Jakob number becomes:

C,-C,
Ja = . (2.2.22)
Oy

In this case,the equation equivalent to Clapeyron's law (2.2.1) is

given by Henri's law:
piR= pu; + k(CR‘CS). (2.2.23)

2.2.2. Diffusion-controlled bubble growth

The diffusion equations (2.2.19) or (2.2.21) have to be solved
simultaneously with the extended Rayleigh equation (2.2.10). However,
as will be proved in Subsection &, in many practical situations
inertia, viscous and surface tension effects are negligible and
equations (2.2.1) and (2.2.23), combined with equation (2.2.10),
simplify to TR = Ts and CR = C8 respectively. In that case,equations
(2.2.19,20) simplify to:

oD;i R(t) = cya + kJa onzi iﬁ%ﬁ" (2.2.24)
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The solution of (2.2.24) can be determined with Euler's equation;
cf, Oldham and Spanier (1974):

LIS CLID I i SR (2.2.25)

Pt B T Tlgw D)

o

v
e €
From (2.2.25), it follows that the solution of (2.2,24), when R(0) =0

is prescribed as the initial condition, becomes:

§
R(t) = %—(1 s 0+ 3 )(zt)*. (2.2.26)
ki3

In the following two Subsections, the two limiting approximations
Ja << 27 and Ja >> 27 will first be discussed in connection with

their most obvious physical interpretationm.
al., Ja << 2n, Gas bubbles

When gas bubbles are considered, the approximation Ja << 2w usually
applies. In that case,equation (2.2.26) simplifies to:

R(t) = (2JaKt)%. (2.2.27)

The thickness & of the diffusion boundary layer around the gas-—
liquid interface is of the order of (kt)*; consequently, in this case
& >> R, Substitution of r' = § into the radial convection term of
(2.2.16) shows that this term is negligible with respect to the

last term between brackets in the right-hand side (the curvature

term).

If R(0) # 0, then deviations from equation (2.2.27) may initially be
expected; cf. Manley (1960). Equation (2.2.27) has also been verified

experimentally by the latter author for air bubbles in water.
Substitution of (2,2,27) into (2.2.7,23) shows that, if the time of

growth is sufficiently long, the assumption CR= Cs holds indeed, as

will be shown in the following example:
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Humerical example: hydrogen bubbles in water

Substitution of expression (2.2.27) into the inertia, surface tension
and viscous terms of the Rayleigh equation (2.2.10) results in:

R + 3 R® + 20/pR + 4nR/pR = Jak/4t + (ofp)(zlJaKt)i + 2n/pt. At
atmogpheric pressure (100 kPa) and room temperature (293 K),
k=3x10"" w’/s, v=n/p = 1x 106 un’/s and C_/p, = 1.5 x 107°.
As an example, the case C = llCS will be considered, i.e.

Ja = 1.5 x 107%; cf. equation (2.2.22). From the numerical values it
follows that inertia effects are nmegligible with respect to viscous
effects. Under the assumption that surface tension effects are
negligible, it follows from Henri's equation (2.2.23) that the
viscous term in the Rayleigh equation (2.2.10) may be neglected when
2v/t << kC_/p. Since, at atmospheric pressure and room temperature,

kp,/p = 6.7 x 107 m*/s2, the latter condition becomes: t >> 2 x 1079 s.

When surface tension is dominating over viscous effects, the following
condition must hold for the validity of (2.2.27): 6(2}JaKt)£ << kC_.
Since ¢ = 0,07 N/m and p = 10° kg/m®, the latter condition becomes:

t > 0.2 s,

‘When the hydrogen bubble does not immediately depart from the wall
after formation, cf. Section 2.3, the latter time is short with
respect to the adherence time; cf. Section 4.3. Consequently, for

gas bubbles adhering at a wall, only the diffusion controlled mode

of growth has a practical meaning.
b). da >> 2n. Vapour bubbles

When Ja >> 2w, expression (2.2.26) results in an equation, also

obtained by Bognjacovié (1930):
R(t) = —% Ja(xt)i. | (2.2.28)
m

The assumption Ja >> 27 is a common one when vapour bubbles are

considered,

In the latter case, it follows that the thermal boundary layer has

a thickness § which is small compared to R. Substitution of r' = §
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into the radial convection term of equation (2.2.16) shows that the
" latter term has the same order of magnitude as the second order
term x3%T/(3r')?., That is, the radial convection term must be taken

into account.

Equation (2.2.28) has in fact been derived by assuming that the
radial velocity of the liquid is equal to R for every r in the flow
field. The latter approach has been relaxed by Plesset and Zwick
(1952), who derived a more accurate equation than (2.2.19), taking

into account radial convection. However, their result is restricted to

bubble growth with Ja >> 1 only; cf. also Prosperetti and
Plesset (1978).

Plesset and Zwick's approximation has the following form:

T ~T (t*)
b ey g, T
oPer RGea) = k' Ja —p—— . (2.2.29)
8
In (2.2,29) the variable t* is related to t by:
t
£*(t) =of R*(e')Y dt' . {2.2.30)

Comparison of equations (2.2.29,30) with equation (2.2.19) shows
that, in Plesset and Zwick's result, the curvature term is missing.
Due to their improved description of radial convection, the left-
hand side of (Z.2.19) has been changed in the left-hand side of

(2.2.29) where the 'time' variable t has been introduced.

Substitution of the trial solution R = Y’ts into the left~hand side
of (2.2.29) and use of (2.2.30) results in:

3s
I'G=—
dR -
S Je—d S yreS7h, (2.2.31)
dt T'( 3s + b 2s+
b4g+1

(4s+1) 8]

o e

In (2.2.31) use has also been made of Euler's equation (2.2.25).

In the special case where s = }, equation (2.2.31) results in:
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-% 2 drR = —1-. E t
D B =5 @ | (2.2.32)
From (2.2.32) combined with (2.2.29) it follows that, when the
vapour temperature T, = Tp is independent of t, and equal to the
saturation temperature Ts’ the growth constant Y' equals 2(3/#)%Jani,

or equivalently; cf. also Plesset and Zwick (1954 b, 1955):

IR )
R(t) = 2(%-) Ja (xt)?2. {2.2.33)

In the limit Ja - « , both Birkhof, Margulies and Horning (1958) and,
independently, Scriven (1959) presented an exact proof of (2.2.33)
based on a similarity transform. However, their starting point was
the assumption TR(t) = Ts and, therefore, their method cannot be
extended to situations where TR(t) depends on time, as will be the

case in the following Sections.

In view of the important contribution of radial convection, the
frequently used expression 'diffusion-controlled mode of growth' is

somewhat misleading in the case Ja >> 2w.

Substitution of (2.2.33) into (2.2.1,10) shows that, for a
sufficiently long time of growth, the condition TR = Ts indeed
applies. However, especially in water boiling at subatmospheric
pressures and in boiling liquid metals, this condition is usually
not reached during adherence at the wall. For these cases,surface
tension and viscous effects may be neglected., However, inertia

effects must be included; cf, Section 2.2.3.
e). Intermediate values of Ja

In view of solution (2.2.33), expression (2,2.26) can be modified to

the following expression for intermediate values of the Jakob number:

: 4 i ‘
R(t) = y(ee)E = (%) Jall + (1 + :‘3"25;1) Yoy, (2.2.34)

Although this relation has no exact basis, it represents the correct

values reasonably weli, as has been shown in Table 2.1, where
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Table 2,1, Comparison of equation (2.2.34) with Scriven's numerical

. result for the bubble growth comnstant Yy when Ja # @

Ja Y
1.965 x 107% 2,002 x
1.697 x 1072 2.016 x
3.546 x 1072 3,032 x
5.881 x 1072 4,052 x
1.166 x 107 6,102 x
1.850 x 107 8.154 x
3,420 x 107 1.226
5.152 x 107} 1.637
6,977 x 107 2,046
1.175 3.064
1,668 4,078
2,671 6.096
3.683 8. 106
5.719 1,212
7.760 1.613
9,803 2.014 x
1,019 x 102 2,002 . x
8.182 x 102 1,601 x

comparison has been made

Yscriven
1972 - 2.000 x 1072
10! 2.000 x 107!
107} 3,000 x 107}
107} 4,000 x 107
107! 6,000 x 107}
1072 8,000 x 107}

1,200 ‘

1,600

2.000.

3,000

4.000

6.000

8.000

1,200. .

1.600.
10 . 2,000 x 10
102 2,000 x 102
10® 1,600 x 10%

Y- ¥ :
»Scrzvenéxleg

XScriven
0.1

0.8
1.1
1.3
1,7
1,9
2,2
2.3
2.3
2,1
2,0
1.6
1.3
1.0
Q,8
0,7

0.1
0.04

to Scriven's (1959) numerical values of the

bubble growth constant Y in the intermediate region as a function

of the Jakob number Ja.

2.2.3. Bubble growth affected by liquid inertia

When inertia may not be neglected, the Plesset and Zwick equations

(2.2.29;30) for Ty, = T,, substituted into Clapeyron's equation
iR R

(2.2.1), have to be solved simultaneously with the Rayleigh equation

(2.2.10).
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For the present purpose, Plesset and Zwick's formulation (2.2.29,30)
of the heat transport process will be replaced by the following

simpler equation:

T ~T,(t)
lm % R= KiJa R

e 2.2.35
35 ot T Tg ( )
Equation (2.2.35) is similar to expression (2.2.19) where the
curvature term has been neglected. However, a correction term l/3§
has been introduced in the left-hand side of {(2.2.19) to account for

radial convection.

First,it will be shown that this correction represents a good
approximation. Substitution of the trial solution R = Y'ts into
(2.2.35) results in:

i .8 _T(s) .. s} :
-1 OD = 3% m'}’ t . (2.2.38)

When s = } is substituted into (2.2.36), the right-hand side of this
equation becomes identical with the right-hand side of (2.2.32); i.e.
in that case, (2.2.35) gives the same result as the more correct

equations (2.2.29,30).

When s = 1, Plesset and Zwick's equations (2.2.29,30) result in:

, T

- 2dR 1,2
L y't?, (2.2.37)
52 T(H)

Py g =

as can be deduced from (2.2.31).

In the latter case, 8 = |, it follows from (2.2.36) that the left~-

hand side of approximation (2.2.35) equals:

L ocbe 2 b V
vt R=2 g (2.2.38)
iot on?

From (2.2.37,38) it follows that for s = 1:



1 i
D ?R :
;I 0
T—qx— = 0-931 (2.2.39)
oPex (R ge?)

Consequently, also for s = 1, (2.2.35) represents an acceptable

approximation of the more correct equatioms (2.2.29,30).

As will be shown in the following part of this Section, inclusion of
inertia effects will result in a gradual transition from growth with
s = 1 for small t, to growth with s = } for large times. In that case,
equation (2.2.35) may be used during this transition as a reasonable
approximation upon which the subsequent calculation can conveniently

be based.

Since the surface tension and viscous stress terms in (2.2.10) are
negligible with respect to inertia terms, substitution of (2.2,35)

in (2.2.10) results in:

3, . 3 D?R |
RE + ERQ - ?3(23 T - 1) =0, (2.2.40)
k) *Ja

where

Zpli(Tw—Ts) i
Y, = %——EET;—”—J . (2.2.41)
Initially, shortly after start of bubble growth, IOD;%ﬁ| << K%Ja

and,in that case,integration of (2.2.40) results in:

Ry s, -, R(O-R |
R(t) = [{.ﬁ(t—).} RO + YO —1;?'(:-'] . (2.2.42)

After an initial stage of growth where, during a relatively short
time, R > 0, R has grown to a value much larger than R and the

solution of (2.2.42) is given by:

R(t) = v t. ” (2.2.43)
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Initially, R is so small that |RR| << R%, In the mit for large time
the term RE is also unimportant, as has been shown in Section 2.2.2.
As an approximation, this term will be neglected‘for all t. Further-
more,it is assumed that R® can be linearized to Yoi. This
approximation is motivated by the fact that initially R = Y, and,
for advanced growth,the term R does not play a part. Under these
approximations,equation (2.2.40) simplifies to:

sty L o .
th/TR('T') Y, = 0. (2.2.44)

ﬁ(%) +

In (2.2.44) the characteristic time T is defined by:

2
T =338 k. (2.2.45)
YO

The solution of (2.2.44) equals; cf. Oldham and Spanier (1974}, and
Appendix B:

3
R(t) = v, exp &) erfe {({é) 3. (2.2.46)

Differentiation of (2.2.46) gives:

B(t) = rg exp (£) erfc {(£)%} - ——jél—{ . (2.2.47)
T T T PN

Integration of (2.2.46) results in:

2 .t }

L
R(E) o exp Q%) erfe {Qg) } -1+ @ (2.2.48)
™

3%Ja(kt)

From (2.2.46,47,48), it follows that,for t - 0, R~ 0, R > Yoo B>
and RR »~ 0, which is in agreement with the previous assumptions. For
t > T the diffusion controlled mode (2.2.33) is reached

asymptotically.
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In the previous discussion, a unified treatment of the coupled

- hydrodynamic and thermal processes occurring during bubble growth
has been presented, resulting in equation (2.2.48) for the bubble

radius as a function of time. However, in the literature both the

expressions of Cooper and Vijuk (1970) and of Mikic, Rohsenow and

Griffith (1970) are in frequent use.

The equation of Cooper and Vijuk is an ad hoc interpolation between
equations (2.2.43) and (2.2.33) which hold for t/T << 1 and t/T >> !

réspectively. Their expression reads:

R(t)

] T = . (2.2.49)
3%Ja(kT) 1

(a3
Alet L—

d/\
all
~r

Also on the basis of an interpolation, Mikic, Rohsenow and Griffith

solve the following equation instead of equation (2.2.44):

)
R, @'k - v, = 0. (2.2.50)

Yo o

In (2.2.50), the linearization of (2.2.40) with iz = Yoﬁ has not
been introduced. Instead, the semi-integral operator ODt;T has been
replaced by (ﬂt/T)i. The latter approximation is only valid for
asymptotic growth, i.e. for t/T >> 1; imitially, when R = Yoo this
approximation results in a value for the heat flux to the bubble
which is m/2 times larger. The expression for transitional growth,
following from (2.2.50) is:
3 3

R(E) _ ﬁ (_;5+ %)3 - (%)2 - (%)2 . (2.2.51)

34Ja(kt) 3

Fig. 2.2. compares the results of (2.2.48,49,51). It is observed

that the differences are marginal.

For growing sodium vapour bubbles, Dalle Donne and Ferranti (1975)

numerically solved the Rayleigh equation (2.2.10), coupled with the
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Fig.2.2. Comparison of the radius vs. time relationships

represented by equations (2.2.48,49,51)

heat diffusion equation (2.2.15) and boundary condition (2.2.14). In
this way, these authors did not make use of the thin boundary layer

assumption upon which the Plesset and Zwick equation (2.2.29) is based.

Similarly, Prosperettl and Plesset (1978) solved the Rayleigh
equation (2.2.10), coupled with the Plesset and Zwick equation
(2.2.29) for the same sodium bubbles as considered by Dalle Donne and
Ferranti. It is noted that both authors accounted for variations in

p, as a function of TR, and they used the equilibrium pressure-
temperature relationship instead of the linearized Clapeyrom equation
(2.2.1}. For Ja 2 10 the agreement between the two approaches was

good and, consequently, it was proved in this way that the Plesset

and Zwick approximation (2.2.29) may be used when vapour bubble growth

is considered.
Theofanous and Patel(1976) replaced the linearized Clapeyron equation

(2.2.1) by p,(Tp) = p, + [{pl(Tm) - pw}/(Tu;Ts)](TR-TS), This turns
out to be an improvement, especially when relatively high superheats

are considered, as is often the case for boiling liquid metals,
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Prosperetti and Plesset also compared Mikic, Rohsenow and Griffith's
" expression (2.2.51) (where Theofanus and Platel's suggestion was
included) to their own results, The agreement was good; in the
transitional stage, Mikic, Rohsenow and Griffith's equation results
in a value which is only a few percents too low, As a matter of
course, equations (2.2.48, 49,.51) do not represent the, usually
unimportant, short time of growth after nucleation, where bubble

growth is dominated by surface tension.

2.3. Bubble departure
2.3.1. Initial acceleration of a free bubble

First, a free bubble, i.e. a bubble far away from walls, will be
considered. However, in contrast to the situation described in
Section 2.2, the bubble is growing in a gravitational field with a

force per unit mass g.

Initially, after start of acceleration caused by the buoyancy force,
the hydrodynamic boundary layer around the bubble and the thin viscous
wake behind the bubble do not yet affect the rise velocity and,

consequently, potential flow theory may be applied.

In Appendix A, the following coupled equations are derived on the
basis of a cylindrically symmetric potential flow field around a

growing, and translating, spherical bubble:

Py ,~P 20 s 2
RR'!-%RZ ,g_::——i-pTo+ (%} , (2.3.1)
42 1or%) = & mor%e - & 6!
I (3 mpR%) 3 TPR°g - 3 7o' R. (2.3.2)

In (2.3.1,2), z is the coordinate parallel to the agis of rotational
‘symmetry, and Z is the upward translation velocity of the bubble
centre; cf. Fig, 2.1, In (2.3.1,2), viscous effects have been

neglected.
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Equation (2.3.1) is the extended Rayleigh equatiom (2.2.10), modified
by the addition of a term (2/4)*. However, in the following discussion,

this term may be neglected with respect to other terms.

When a bubble translates, heat or mass transfer to the bubble wall by
convection will become important with respect to diffusion, cf. e.g.
Yao and Schrock (1976); however, also this effect is assumed to be so
small that it may be neglected. Consequently, the solutions for bubble
growth presented in Section 2.2, also apply during the initial stage

of bubble acceleration.

Equation (2.3.2) expresses that the so-called impulse of the bubble

is equal to the relative velocity between bubble and liquid multiplied
by the so~called virtual mass of the bubble. The virtual mass is

given by half the mass of the displaced liquid. Equation (2.3.2) will
be referred to as the Green equationj cf, Lamb (1974).

In (2.3.1,2), the surface tension O is written as ¢ = Oo + o' cos Q,
which expresses a possible change of surface tension along the bubble

wall. The effect of this gradient is discussed in Section 2,3.3.

i
When surface tension gradients may be neglected, and when R(t) « t?,
cf. equation (2.2.34), the initial acceleration z follows from

(2.3.2), and is given by:
i-te (2.3.3)

Similarly, when R{(t) = t, c¢f, equation (2.2.43), the initial

acceleration of the bubble centre is given by:

3 =4 (2.3.4)
z=3g . 3.
2.3.2, Acceleration controlled bubble departure

Up till now, only free bubbles, far away from walls, have been
considered, However, in reality, the bubble originates, via a
nucleation process, in a tiny cavity at the wall, This bubble starts

growing, and between the solid wall and the bubble, a liquid layer

remains, which is very thin when bubble growth is sufficiently rapid;
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cf. Fig. 1.2. In Section 4.1, the formation of this so—-called liquid

microlayer will be considered in detail.

Due to the presence of this layer, it is as if the bubble starts
growing as a hemisphere with its base moving smoothly over the solid
wall, and because the microlayer evaporates, the growth rate, given
by expression (2.2.34), predicts too low a value; a correction for

this effect will be accounted for in Section 2.4.1.

In the following discussion, a model for bubble departure will be
given, based on a more detailed description that is presented in

Chapter 3.

The gravitational acceleration causes the bubble to depart from the
wall. When it is assumed that expression (2.3.2) for a free bubble

also holds approximately at a solid wall, it is found for the dis~
placement of the centre of the bubble that, in the diffusion-

controlled mode of growth; cf. also Fig., 2.1:

z =%gt2. (2.3.5)

After a certain time, the bubble has only one point of contact with
the wall, i.e. z = R. When it is assumed that, at that instance, the
bubble breaks away from the wall, then the following expressions are

found for the adherence time and departure radius:

LI
Cdep = (-%) 3, (2.3.6)
and
. 1
5 QKZ 3
Riep = o5 ) » (2.3.7)

where ¥ is the bubble growth constant, defined by R(t) = Y(Kt)i.

During the process of acceleration, the bubble contact radius .
R, = (Rz—zz)é is given by:
2

R () = vkt - 4gt t“)%, t < ¢

5% (2.3.8)
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wike

dep{z

and contraction of the bubble base takes place for t > tdep 123,

*

The growth rate of the bubble hase, Rc’ is positive for t < t

as can be observed from the following expression:

be - 23 g

———W——" . (2.3.9)

R =
(0
Finally it is noted that ﬁc 18 always negative. This turns out to be
of great importance for the determination of the thickness of
formation of the liquid microlayer; cf. Section 4.1. The expression

for Rc is given by:

. -{Y“Kz - %%ngths + 6g§gkt6
Rc(t) = . (2.3.10)
R2 (1)

Experimentally, Cooper, Judd and Pike (1978) found expressions
similar to (2.3.6,7), however, with the factbr 5/2 replaced by

4 in (2.3.6), and with the factor 5/2 replaced by 13.5 in (2.3.7).
Since these two factors have not the same value, it is concluded
that deviations from the growth law R = t§ occurred in their
experiment., This may be due to the fact that, in reality, the
bubble does not grow in a uniformly superheated liquid; cf. also

Section 2.4.2.

When the bubble growth rate is given by R(t) = Yots cf. equation
(2.2.43), the following expressions are obtained in a similar way

as discussed before:

g = %~gt2, : (2.3.11)
4Yo

tdep = —g— . (2.3.12)
4Yz

Riep = 5 ° : (2.3.13)

22 gt |

R(E) = (yot° = ) 5 £ <ty (2.3.14)

) Yt - g°t?/8

Rc(t) = "'""'ﬁ'(':"(—t')—'—*- N (2.3.15)

42



-5y§g2c'*f16 + g"t8/128
B (t) = . (2.3.16)
¢ RS (t)

From equation (2.3.15), it is observed that the bubble contact
radius grows when t < tdeplzi’ and contraction of the bubble foot

takes place when t > t, /2°. From equation (2.3.16) it is observed

dep
that also in the inertia-controlled mode of growth, Rc < 0.

Finally, it is noted that equations (2.3.12,13) have been verified
experimentally by Sabbotin, Sorokin, Orechkin and Rudryavtsev (1972)

for boiling liquid potassium. In this case, the relatiomship R = t was
verified as well.

2.3.3. The validity of acceleration controlled departure and other
modes of bubble departure

In the previous Section, a model of departure caused by bubble
acceleration was proposed. This model is based on a more detailed
study, presented in Chapter 3, where it is shown that gravitational
acceleration causes a deceleration of the growth rate of the bubble
contact radius R . Both in Section 2.3.2 and in Chapter 3, it is

assumed that departure takes place when Rc has become zero.

However, in reality, a small contact area with radius‘Rd can remain,
where Rd is the so-called dry area radius; cf. Fig. 1.2. At this
contact perimeter, a downward-directed force, with a maximum value
equal to the surface temsion force of adhesion is present. This
surface tension force equals F0 = 2W6Rdsin80; cf, e.g. Kabanow and
Frumkin (1933). Consequently, the upward buoyancy force, F_ =
=<4/3)ﬁpgR3, must be larger than the maximum downward forcg Fo to

cause bubble departure.
When the bubble is growing at a sufficiently high rate, an inertia

force, resisting departure, must alsc be included in the force

balance, as will be shown in the following discussion.
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In Appendix A, expressions are presented for the equations of motion
of a spherical bubble, a distance =z away from a solid wall. The
derivation of these equations is only valid when z >> R} however, in
this Section, these expressions will be used as an approximation to
show the behaviour of a spherical bubble attached to the wall at a
relatively small contact area. In that case, z = R, and, with
neglect of viscous effects and of surface tension gradients, the
following expression is obtained from (A 19):

(2.3.17)

4L rorR) = £ prPg -
P (6 TPRR) 3 TeR g Fd'

In (2.3.17), the downward force, F,, exerted by the wall on the

d
bubble, has been substracted from the upward buoyancy force. When
the left~hand side of (2.3.17) is positive, as is usually the case
during adherence, the latter term represents a downward force of

inertia Fi; cf. Fig. 2.3,

When diffusion-controlled growth is considered, where R(t) = Y(Kt)i,
the inertia force becomes Fi = mpy*k?/12. For this latter case, the

downward inertia force has been calculated exactly by Witze, Schrock
and Chambré (1968). The latter authors found a three times larger

force than is obtained from approximation (2.3.17).

liquid

bubble boundary

solid wall

o

Fig.2,3, Force balance of a spherical bubble with one point

of contact at a horizontal wall
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Consequently, the bubble adheres at the wall as long as the following

inequality is satisfied:

Fg = Fi + Fd < Fi + FO’ (2.3.18)

and in the mode of diffusion-controlled growth, the latter condition

results in:

py*c? < ?‘.;- oRy sin 0, (2.3.19)

where use has been made of expression (2.3.7) to calculate Fg.

For rapidly-growing steam bubbles, at atmospheric and subatmospheric
pressures, gondition (2.3.19) is usually satisfied, and consequently,
the adherénce time and deﬁarture radiug may be described by equations
(2.3.4,5); cf. also Section 2.4.2.

On the other hand, for slowly-growing gas bubbles, the inequality
(2.3.19) is usually not satisfied, and the bubble adheres until the

following condition holds:
Fg = Fi + Fc. , (2.3.20)

Since FG depends on the growing dry area radius, the departure of
gas bubbles is governed by the growth of the dry area radius which,
in this case, equals the bubble contact radius; cf. Fig. 1.1. The
growth of the bubble contact area has been considered in Section
4.3, where equations for the prediction of the break~off radius are

also discussed.

A third possible mode of departure exists, due to the occurrence of

surface tension gradients along the bubble boundary.

From equation (2,3.2) it is observed that a surface tension gradient

along the bubble boundary causes bubble acceleration in a direction

45



opposite to the direction of that gradient. Consequently, for
departure assisted by a gradient in surface temsion, the surface
tension gradient must be negative in the z-direction and, since
surface tension increases with decreasing temperature, there must
be a positive temperature gradient in the z-direction along the

bubble wall.
Such a gradient does not exist in usual boiling situations, where

the temperature gradient outside the thermal boundary layer around
the bubble is usually negative, and where hardly any temperature
gradient exists along the bubble boundary; cf., Kenning and Toral

(1977). Consequently, departure is not assisted by that force.

However, in boiling of binary mixtures, a positive gradient in
concentration of the solute can exist, and since surface temsion .
depends considerably on concentration, surface tension gradients
possibly play a part in these systems. However, in this thesis,

only one-component systems will be considered,

When hydrogen is formed electrolytically, a continuous jet of tiny
H,~bubbles is usually observed; cf. e.g. Trividi and Funk (1970).
Also, during nucleate boiling at relatively high heat fluxes, the
latter phenomenon can be observed. The buoyancy force at this stage
is still quite small, and it does not significantly affect bubble
dynamics. The mechanism by which this mode of departure is caused
has not yet been clarified exactly. Han and Griffith (1965) suggest
that the inertia force temds to lift the bubble off the surface if
growth of the bubble decelerates rapidly enough. From equation
(2.3.17), it is observed that, when R(t) « ts, where s < 1/4, the

inertia force is negative indeed, and Fi -+ - when t - 0.

Finally, it is remarked that in the literature, the departure of

rapidly-growing vapour bubbles is treated as a balance of forces,
rather than by an acceleration process, as is proposed here; cf.

e.g. Witze, Schrock and Chambré (1968), and Kiper (1971).

When the force balance (2.3.20) is applied, the surface tension force
of adhesion may be neglected when sufficiently high bubble growth
rates are considered. For diffusion~controiled growth, this force

balance then results in:
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1
_ o 3ytkA R
Rdep = ¢ T6g ) -

(2.3.21)

Comparison of (2,3.21) with (2.3.7), shows that both the acceleration
model and the force balance model yield a similar result, except for
a difference in the numerical factors. However, as is clear from
equations (2.3.8,9,10), the acéeleration model also describes the

contraction of the bubble foot during adherence.

2.4. Vapour bubbles at a wall
2.4.1. Enhancement of growth rate by miecrolayer evaporation

A detailed description of the hydrodynamic processes that occur in
the liquid microlayer will be found in Chapter 4. However, as a
preliminary to these more-detailed discussions, this Section provides
a semi-quantitative treatment of the heat transfer process in the
microlayer, and the treatment is extended for more realistic

situations in Chapter 3.

Por ease-of-presentation, consideration of bubble growth in this
Section is restricted to diffusion-controlled growth only, and is
further restricted to situations where the time of growth is short
compared with departure time. Under these conditions, the bubble is
hemispherical, and R(t) = Rc(t) = Y(Kt)%; cf. equation (2.3.8).

According to equation (2.2.34), the volume of vapour that has
entered into the bubble because of evaporation of liquid at the

vapour-liquid interface of the bubble cap is given by:
4 i s :
2.8 20 ;
VR = 3 ™ [('") Ja {1 + (] + gJ—a) }] (Kt} . (2.4.])

The total volume of vapour that has entered into the bubble by
evaporation of liquid, both at the bubble cap and at the vapour-

liquid interface in the microlayer, is given by:
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v =~% e ey, (2.4.2)

In the following treatment, the volume of vapour that has entered
into the bubble by evaporation of liquid at the vapour-liquid

interface in the microlayer, will be considered first.

At the location v = R, where the leading edge of the colder vapour
moves over the hotter liquid at the wall, cf. Fig. 1.2, the heat
flux is very high. This flux decreases with decreasing r. Moreover,
the surface of the liquid microlayer in the region Rc -Ar <r< Rc
is larger than a surface in a region R' - Ar < r < R' with R' < R..
Consequently, most of the vapour that enters the bubble by
evaporation of the liquid microlayer comes from the outer part of
this layer. Since the thermal penetration thickness at that location
ig smaller than the mierolayer thickness, the microlayer may be
assumed as half infinite; cf. alsc Van Ouwerkerk (1970, 1971).

Since there is negligible convection in the microlayer and heat
fluxes in the radial direction are negligible with respect to the
flux to the wall, the one-dimensional heat diffusion equation may be
used, In a similar way as for equation (2.2.17), this equation can
be written as:

{ . ~ior

D % z= = T(r,z,t) - T (2.4.3)

K
ty t Oz

where t, is determined by the implicit relatiomship

R (t) =T ‘ (2.4.4)

In the same way as in expression (2.2.12), the heat requirement for

vaporization at the vapour—liquid interface in the microlayer is

AL

given by:
T
ay(mt) = AGD = -p a2y (1,0, (2.4.5)

where h is the thickness of the microlayer and u, {r,h,t) is the

velocity of the vapour entering the bubble at z = h,
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Since the thin liquid microlayer rests on the impermeable solid
wall, the vapour-liquid interface of the microlayer cannot be 'blown
away' as the bubble cap. Consequently, [3h/dt| << |u,(r,h,t)|. Under
this approximation, substitution of (2.4.5) in (2.4.3) results in:
TM(t)-T°°
T~ = °

® 8

nj u, (r,h,t) = tza (2.4.6)

ty

But TM = Ts in the asymptotic diffusion—~controlled mode of growth,

and (2.4.6) results in:

I K%Ja
= = e L F > . 2.4.7
5.% u, {r,h,t) PEYR )}% ort >t ( )
T

The total volumetric flow of vapour from the evaporating microlayer
into the bubble can be found by integration of u,(r,h,t) over the
total wetted surface under the bubble. When the effect of a possible

dry area is neglected this results in:

. Re(t) t .
= ' fap?! =
VM 2i'£0 u, (r',h,t)r'dr 2: io ui(tr’h’t)Rc(tr)Rc(tr)dtr'
k4

(2.4.8)

For small adherence times, where Rc(t) = Y(Kt)£, equation (2.4.8)

can easily be integrated, resulting in:

: b2 . 34

VM = 2wy Jak?t?, (2.4.9)
or, after integration with respect to time:

v, =4 rhy?ga ). (2.4.10)

Since the saturated vapour may be considered as incompressible for
the relatively slow process of bubble growth, the requirement of
conservation of vapour mass results in:

V= VR + VM. . (2.4.11)
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Substitution of expressions (2.4,1,2,10) in (2.4.11) results in a
simple expression for Y in the limiting case of Ja >> 1 only. When
x is defined so that vy = 2x(3/n)iJa,;then (2.4.11) gives the

following equation for x:

%} -3 x2 -1 =0, (2.4.12)
37
The real solution of (2.4.12) gives x = }.234.

When there is no contribution to growth due to microlayer evaporation,
x = |. When there is only growth caused by microlayer evaporationm,

i
x = 1/3% = 0.5773. It follows therefore that the combined effect of

both modes of growth is smaller than the sum of the separate effects.

A dvy area with vadius Rd will be formed both by capillary effects
and by evaporation of the microlayer, Dry area formation caused by
capillary effects will be treated in detail in Section 4,2, Dry
area formation by evaporation, or 'dry-out' as it is called, has
been treated numerically by many authors; cf. e.g. Yu and Mesler
(1977}, and Cooper and Merry (1972, 1973).

In the analysis of dry-out, thermal properties of both the wall and
the liquid play an important part, and an analytical sclution for

Rd(t) cannot be found.

Van Ouwerkerk {1970, 1971) presented an analytical solutiom for
equal thermal properties of liquid and wall under the assumption
that the thickness of formation of the microlayer 8" is proportional
to t%. However, as will be shown in Section 4.1, a more complex
analysis results in 8 « t3, which makes an analytical solution for
Rd(t) even more difficult. Consequently, dry-out will not be

considered further in this thesis.
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2,4,2. The influence of non-homogeneous initial temperature fields
on growth and departure

In practical situarions, the liquid above the superheated wall with
temperature Tw is not superheated uniformly, but its temperature
decreases with increasing distance from the wall until the homo-
geneous temperature of the bulk liquid TB < Tw is reachéd. TB may

even be lower than the saturation temperature Ts'

During bubble growth, the bubble pushes the hot liquid upwards,
resulting in a convection process that will be described numerically
in Section 3.3.2. Comsequently, the temperature T_ at the edge of
the thermal boundary layer arcund the bubble cap is a function of

the azimuthal angle © and of time t.

In principle,expression (2.2.17) is only valid for time independent
T,(0) at all values of O. However, in the following treatment, it is
assumed that T _(O,t) changes sufficiently slowly, so that equation

(2,2.17) may be used as an approximation when T (0,t) varies,

The total heat flow to the vapour-liquid interface at the bubble cap
can be found by integrating qR(@,t) over the surface of the bubble

cap, resulting in:

m=0g(t)
8 () = 2R (e) S 4R (®,t) sin © 40, . (2.4.13)
8=0

where Ga(t) is the apparent contact angle, which is entirely

determined by the bubble dynamics; cf. also Fig. 2.1,

The surface area of the bubble cap A(t) equals:

=04 (t)
Aft) = 2mR3(e) S sin © 40 = 27R*(£){1 + cos Ga(t)}. (2.4.14)
6=0

The mean temperature T; at the edge of the thermal boundary layer is

defined as:
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-0, (t)
2TR% (t) r
A(t)
0=0

T (t) = T_(0,t) sin © dO. (2.4.15)

The factor 1 + cos Oa(t) in (2.4.14) is a slowly varying function of
t compared to R{t) and R(t). For that reason,this factor can be
brought under the Riemann~Liouville integral operator Onzé in

(2.2.19), resulting in an equation similar to (2.2.19):

v, (t) T_(t)-T,(t) T (£)-T, (t)
-y R b, =R -3 TR
0Dt IYeS) (3x)*Ja TW_TS + KJath Tw_TS 7|

(2.4,16)

where the dimensionless Jakob number is defined as
Ja = pc(Tw~Ts)/p12.

In (2.4.16), the correction factor 35, accounting for radial
convection has been introduced, as well as the global heat

requirement @Rf QIQVR.

If vaporization at the vapour~liquid interface in the liquid micro-
layer is negligible, then VR(t) = V(t). When it is further assumed

that the dependence on t of T, - T; =T = T;, as is the case in the

R ]
diffusion controlled mode of growth, is negligible, the solution of
(2.4.16) results in expression (2.2,34) where Ja has been replaced

by Ja(T&-TS)/(TW—TS) .

In the following discussion, this result will be used to calculate

the bubble departure radius as a function of ambient pressure.

After a bubble has departed from the wall, cold liquid with bulk
temperature TB flows to the wall. This liquid is heated through
contact with the wall which has a temperature Tw and, when a
sufficient part of the liquid above the heated wall becomes super-—
heated, nucleation will start again. This process repeats itself
continuously, and for that reason, the thermal boundary layer in

contact with the wall is sometimes called the relaxatiom layer; cf.
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Van Stralen, Cole, Sluijter and Sohal (1975).

According to a theory for a perfectly conducting wall, described by
Han and Griffith (1965), the time between bubble departure and
nucleation, the so-called waiting time, is given by:
164(T_~T_)*120? :
£, = v B s (2.4.17)
202 m g 4
nKpll (Tw Ts)

Further, according to Han and Griffith's theory, the required wall

superheating to nucleate a cavity with radius R0 is given by:

4°Té
T, - Ts TIR (2.4.18)

1 o
From expressions (2.4.17,18), the initial thickness H, defined as
H= (FKtw)i, of the thermal boundary layer in.which the bubble starts
growing equals:

TW-T B

H= 3WRQ. (2.4. 19)
w 8 :

As an approximation, it is assumed that the initial temperature
profile in the relaxation layer is linear; cf., Section 3.3.2 for

experimental evidence of this assumption. Consequently:

2
Tw + ﬁ(TB Tw) for z < H
T (2) = (2.4.20)
- T for z > H

B

During growth, the bubble pushes part of the hot liquid upward.
However, after a sufficient growing time, the upper edge of the
boundary layer surrounding the upper part of the bubble has a
temperature TB' Consequently, the temperature profile in the
relaxation boundary layer may again be approximated by expression
(2.4,20), corrected by replacing H by IH, where [ represents the

ratio in which the initial temperature profile has been stretched.

At the time of departure, where R = Rdep’ the surface of the bubble
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in contact with the thermal relaxation boundary layer equals
2ﬁ§HRdep. In that case,the mean temperature defined by equation
(2.4,15) follows from (2.4,20), resulting in: ‘

2
32;R0 {TwaB)

T =1 + (T -T.) = T + 7o T (2.4.21)
=" BT ARy W B iRy (TT)

In the following discussion, restriction will be made to the case
TB = Ts and Ja >> 1. Under these conditions, the bubble radius vs.
time, near the time of departure, following from equations

(2.4.16,21) is given by} cf. also equation (2.2.33):

o
&Rde

3.4 )
R(t) = 2 ﬁ?) Ja(kt)?, (2.6.22)

P

From (2,4.22), an expression for the bubble growth constant

Y = RKKt)* near the departure time can easily be derived.

Substitution of the latter expression in equation (2.3.7) for the

departure radius results in:

%
1 3
6 3 (R Jag)’k
R, = (329 -2 ) : (2.4.23)
de
P 2542 §
g

From (2.4.23), it follows that the radius of departure depends only
slightly on the value of g. This effect has been found experimentally
by Siegel and Keshock (1964).

Introduction of expression (2.2.20) for the Jakob number {(where T,
is replaced by Tw) and eguation (2.4.18) for Rb’ results in the

following equation for Rdep:

& 2
2235 3 (PeT 0)7k7
Riep = ) T - (2.4.24)
£ (r,2)7g

The result (2.4.24) is independent of the initial superheating

Tw - TS and of the cavity radius Ror
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Equation (2.4.24) forms a theoretical proof of an empirical
expression obtained by Cole and Rohsenow (1969), as will be shown

in the following discussion.

Following the latter authors, equation (2.4.24) is non-dimensionalized

by writing:

]
2R (RE) 2.8 10,16033 T%
_dep O . 3. 34 ﬂlliii_é__&_ﬂl) = g, (2.4.25)
ocT £ pScloTle
: s) s

The dimensionless number ocTS/pll is approximately inversely
proportional to pressure, and the right—hand side of (2.4.25) hardly

depends on pressure.

Using experimental values of several authors for the departure

diameter ZRdep of steam bubbles, Cole and Rohsenow found:
o= 1.5 % 107", (2.4.26)

For organic liquids like acetome, carbon tetrachloride and methanol

they found:
a = 4.65 x 107", (2.4.27)

In the following discussion, Cole and Rohsenow's equation (2.4.25)
will be compared with Fritz's(1935) equation for the maximum radius

of static adhering bubbles. Fritz's equation reads:

R

4
= _J »
dep = 0-0107 8,0, (2.4.28)

where @o is the natural contact angle in degrees. For water boiling
at atmospheric pressure, (chs[pll)“ = 10, and comparison of
equations (2.4.25,27) with equation (2.4.28) shows that the latter
equation gives the same result as Cole and Rohsepow's equation for
o = 75° Probably this agreement, and the interpretation of @o as

o
a '"mean' contact angle, is the explanation of the frequent use of
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Fritz's equation in the literature for cases far beyond its range of

validity, which is restricted to static bubbles.

It is remarked that there must be a maximum pressure Py for which
Cole and Rohsenow's expression holds. For higher pressures, the

bubble growth rate given by equation (2.4.22) becomes so low that
departure is no longer governed by acceleration; cf. Section 2.3.2,
but by the rate of growth of the bubble contact radius; cf. Sections
2,.3.3 and 4.3. In the latter case,the departure diameter is virtually
independent of pressure, cf. e.g. equation (2.4,28), and consequently
the adherence time will increase with increasing pressure, instead

of the decrease predicted by equation (2.4.25).

The transitional pressure Pry? where the surface tension force of
adhesion at the bubble foot begins to play a part, can easily be
estimated when it is assumed that the maximum bubble radius of this
'sticking' mode of adherence is described by Fritz' s equation
(2.4.28). This type of adherence will become important when Rdep
calculated with Fritz's equation equals R calculated with Cole

dep
and Rohsenow's equation.

Since Cole and Rohsenow's expression predicts that Rdep = 1/p,, and

in Fritz's expression R « @ , it follows, as a rough estimation,
)

o dep
that p_ = (75 f@o) x 100 kPa.

From (2.4.28) it is observed that the pressure Pppo where transition
from the accelerating to the sticking mode of departure takes place,
strongly depends on the wetting properties of the system., When the
heating wall is fatty, or when the wall is coated with a non-wetting
agent {(e.g. teflon), @0 may be in the range of 90° to 110° and the

sticking mode will already be observed at atmospheric pressures.

On the other hand, the heat transfer process will be optimized

when the walls are well-wetted. For example, with clean steel or
copper walls OO < 50, and Py 2z 1500 kPa, In this way, small bubbles
with high departure frequency can be obtained at high pressures,

resulting in a high peak heat flux,
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A reduction of the peak heat flux has been observed experimentally
by Diesselhorst, Grigull and Hahne (1977), where the wall is coated
with the non-wetting material PTFE.

It is noted that there is also a2 lower limit for the pressures where
(2.4.25) holds. For low pressures, bubble growth becomes inertia-
controlled, and equations {2.2.33) and (2.3.7), upon which the

previous treatment is based, lose their validity,

2.5. Volume oseillations

In reality, an exact asymptotic, diffusion-controlled mode of growth
is unlikely to occur. Deviations in ambient pressure, e.g. caused by
the sudden start of growth of neighbouring bubbles, may cause
fluctuations in the bubble growth rate. In the following discussion,
deviations from the asymptotic diffusion-controlled mode of growth

will be considered as an example.

When, during bubble growth, the temperature at the vapour~liquid
interface is constant and equal to the saturation temperature, the
flow of heat to the bubble is just sufficient to supply the required
heat for vaporization to maintain this mode of bubble growth. If the
growth rate decreases for some reason, less heat of vaporization is
required, and the temperature of the liquid at the bubble boundary
will increase. Consequently, the vapour temperature will rise, and
an increase of vapour pressure will result. This pressure increase
will cause an acceleration of the bubble growth process which, after
some time, results in a higher bubble growth rate than the original
one, and requires more heat of vaporization. This heat requirement
causes the temperature of the liquid at the bubble boundary to

decrease, resulting in a lowering of the pressure, etc..

From this qualitative description,it is learned that the interaction
between inertia and thermal effects determines the character of the
bubble response. To describe this process quantitatively for the case
Ja >> 1,it will be shown in the following discussion that radial

convection does not play a part.
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As becomes clear from the discussion of Section 2.2.2, heat transport
takes place both by diffusion and by radial convection. Since the
thermal boundary layer around the vapour-liquid interface at the
bubble cap has a certain thickness, the radial velocity of the

liquid at the edge of this boundary layer is lower than the velocity
of the bubble boundary. Consequently, an additional convective
contribution of 3é = 1 =0.72 times the heat flux without this effect
is added to the heat transport rate and to the bubble growth rate;
cf. Section 2.2.2.

When, due to inertia effects, the bubble growth rate is smaller than
that given by the heat transfer controlled rate, the correction for
radial convection will be smaller. It becomes zero for a non-growing,
non-imploding bubble, and for an imploding bubble the radial

convection phenomenon has ‘to be accounted for by a negative correction..

Consequently, for a bubble growth rate oscillating around a mean
value, the contribution of the oscillations to radial convection may
be assumed to vanish in linear theory, This also follows from
equations (2.2.29,30), as has been discussed by Plesset and Zwick
(1952).

Under these conditions, the temperature oscillations of the vapour
may be described by equation (2.2.19) with neglect of the second

term in the right-hand side (the curvature term) since Ja >> 1,

Substitution of (2.2,19) in the Rayleigh equation (2.2,10), with
neglect of viscosity and surface tension, and cowbined with
Clapeyron's equation (2.2.1), then results in equation (2.2.40) with

a factor k* instead of the corrected factor (3K)§.

Let the perturbation in the bubble radius be represented by:

e{t) = R(t) - R _(£). | (2.5.1)
In (2.5.1), Rm(t) represents the diffusion-contrelled mode of growth
given by equation (2.2.33). In the following discussion, it will be

assumed that !S(t)] << Rw(t), in such a way that terms in powers of

€, €, and higher derivatives, greater than one, can be neglected,
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In this way, substitution of (2.5.1) in (2.2.40), without the
correction factor 3° for the disturbance €, results in; cf. Appendix
B:

5

27

¥
° plixw € = 0. (2.5.2)

2 5 nl
+ +
R Dre 3R DE

In (2.5.2),it has been assumed that the perturbation is initiated at
time t = t, after onset of bubble growth at t = 0 and, in the

derivation of (2.53.2), use has been made of the following rule for

plecewise defined functions; cf. Oldham and Spanier (1970):

0 . 0<t<t0
oDZe*(t) = , (2.5.3)
tthe(t) t>t

where £*(t) is defined by:

0 0<t< t0
£*(t) = . (2.5.4)
e(t) t>¢t

For sufficiently large times tos the second term in (2.5.2) may be
neglected since ﬁm « 1/t® and,similarly, the last term of (2.5.2)

is negligible.

Further, equation (2.5.2) will be simplified by assuming that R (t)
in the first term of (2.5.2) is only slowly depending on t with
respect to the fast response of €(t) to a sudden perturbation. In
that case, R_(t) may be replaced by Rm(to), and (2.5.2) .simplifies:

to:
§ i
D € + {~—;~———-} D 0, (2.5.5)
2T°R, (t )

where T is given by equation (2.2.45). In the derivation of (2.5.5),

composition rule (B5) for s(to) = 0 has been used.

Taking the Di = 3% of (2.5.5), and making use of the law of

exponentials (B2), results in:
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3
3Z

Y 3
ple + {Two }  p2e = 0. (2.5.6)
t 2T Rw(to) to t

-l
Taking the th of (2.5.5) and using compositiom rules (B5) and
o
{B6) for e(to} = 0, é(to) = 0 results in:

e + ¢ Yo } 0 (2.5.7)
€ + € = 0. L
o * 2wgnm(to)

Subﬁtitution of (2.5.6) in (2.5.7), while eliminating the term

e Die, results in a third order ordinary differential equation:
o

3

¢ {——;iﬁi-éz ( )

P e =0, 2.5.8
2T Rw(to)

The general solution of (2.5.8) is:

wit~t )
€= A sin (wt) + B cos (wt) exp (- ";¥”"9_J *

3
32m(t—to)
+ D exp () (2.5.9)
o
2
where
el AR EURE IS BTN 2.5.1
W= —3— R (£ =5 ﬁ;—) QET"Q -;——————Z . (2.5.10)
23 ° k¥R (t )3

Since Dé exp (t) = exp (t) and, for sufficiently large t,

toDi exp (t) + exp (t), cf. Oldham and Spanier (1974), the last
term in (2.5.9) cannot be a solution of the original equation
(2.5.5). Consequently, the response in bubble growth rate to a
perturbation in acceleration §(to), introduced at time t = ts is
given by:

E(t ) w{t~t )

sin{w(t-to)} exp {- *—;;Jl—}. (2.5.11)

£(t) =
w
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From (2.5.11),1it follows that the asymptotic,diffusion-controlled
mode of growth is stable with iespect to small perturbations in
growth rate. These perturbations and the corresponding inertia
effects are cancelled almost immediately in the manner of a rapidly-
damped oscillation.

In a similar way,it can be shown that the initial,inertia-controlled
mode of growth is stable as well. In the latter mode of growth, the

perturbations are damped out without oscillations,

From the extended Rayleigh-equation (2.2.10), combined with the
Clapeyron equation (2.2.1), it follows that the temperature
oscillates as T (t) = T_ = stRw(to)ECt)/pll. Consequently, the first
and second terms in the right-hand side of (2.2.13) have amplitudes
of E(to)}w and pRi(to)w%f(to)poo respectively. From this, it follows
that compressibility effects in the vapour may only be neglected

when the following condition is satisfied:
w? << wf(, (2.5.12)

where Wy is the so—called Minnaert frequency, cf. Minnaert (1933),
defined by:
3 4

€1 P

5 (—bt)
.wM (clvp )] R (2.5.13)
iIf condition (2.5.12) is not satisfied, the vapour behaves as a
compressible gas, as has also been shown numerically for imploding
vapour bubbles by Cho and Seban (1969). In the latter case,the bubble

has radial pulsations with frequency Wy and the damping is low.
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CHAPTER 3

DEVIATIONS FROM THE SPHERICAL SHAPE
3.1. Imtroduction

In Section 2.3.2, a model has been proposed to describe the departure
of sufficiently large spherical vapour bubbles, The basis of this
model has been Green's momentum equation for the initial acceleration
of free spherical bubbles. The departure times and radii, determined
in this way, were shown to be in good agreement with experimental
data. However, in view of the oversimplifying assumption of a free,
spherical bubble one must expect that equations (2.3.8, 9, 10) and
(2.3.14, 15, 16) for the bubble contact radius R (t) only represent

a gsemi-quantitative description of the evolution in time of R (t).
c

In this Chapter, the assumption of a spherical bubble will be relaxed
and the case where the flow field is bounded by a horizontal wall
will be considered. Initially, at t = 0, it is assumed that a

growing hemispherical bubble is formed. It will be further assumed
that there is cylindrical symmetry, but that the bubble will deviate
from the spherical shape due to gravity., As will be shown in this
Chapter, the main distortion will be a decrease in growth rate of

the bubble foot, leading to contraction and ultimately to departure.

An effect of less importance will be a flattening of the bubble dome,

When the bubble growth rate is sufficiently high, the viscous boundary
layers around the bubble cap and the solid wall will remain sufficiently
thin during adherence; consequently, the assumption of potential flow

is acceptable. The only region of importance for the bubble shape,
namely the meniscus region mnear r = R,, where viscous effects may

play an important part, will be treated seperately in Section 4.1.2.
Bubbles satisfying the above-mentioned conditions occur in water boiling

at pressures lower than, say, 50 kPa. Comparison of theoretical results

with experiments on such bubbles will be reported.
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A situation which has many similarities with the above-discussed

case has been considered by Walters and Davidson (1962, 1963), These
authors considered the initial motion of a gas bubble in an infinitely-
extended, inviscid liquid, Both for two-dimemsional bubbles (Walters
and Davidson (1962)) and for three-dimensional bubbles (Walters and
Davidson (1963)) it was found that, at a certain time after bubble
formation, a liquid tongue is formed at the rear of the ascending
bubble, Comparison between non-growing and growing bubbles showed that
for expanding bubbles the changes in shape occur more slowly; cf,
Walters and Davidson (1963).

As a matter of course, tongue formation at the rear of the bubble
cannot take place when the bubble is located at a solid wall, as is
the case under consideration in this Chapter. However, since the
bubble foot can move over the wall, cf. Section 2.3.2, it may be
expected that contraction of the bubble foot will occur instead of

tongue formation.

The departure of a non-growing bubble, initially formed as a hemisphere
at a wall, will be discussed in Section 3.2. This enables us to describe
the numerical method, the so—called global collocation method, which
will be used to solve this non-linear problem. On the basis of the
results obtained in Section 3.2, the departure of water vapour bubbles

under low pressure will be considered in Section 3.3.
3.8. Initial acceleration of non-growing bubbles
3.2.1, The equations of motion

The rotationally symmetric solution of potential equatioﬁ (2,1.15), with-
out singularities in 6 = 0 and r + =, has the following form when

only one bubble is considered; c¢f. also appendix A:
P.{cos 8)

A

b(r, 0, t) = B; (&) (3.2.1)

j=o

In (3.2.1 ), the expansion coefficient Bi is a function of time,

but not of the spatial coordinates r,0. Pj(cos 8) represents the
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Legendre polynomial of degree j with argument cos 9.

When the normal component of the velocity at the solid wall is zero,
i.e., when (aé!ae)egﬂlz

polynomials are zero, i.e. 82j+1 =0, 3 =0, 1, ...,

= 0, the coefficients for odd Legendre

In the latter case, a series expansion similar to (3.2.1.) may be

written as:

® 2.(cos a)
#(r, 8, £) = I D(t) —3-5-:1—- (3.2.2)
j=o ]

Following Yeh (1967) and Hermans (1973), the bubble radius is also

expanded in Legendre polynomials:

R(O, £) = & a,(t)P.(cos 8) , 3.2.3)
j=o ] J

or, when a solid wall is present at & = n/2:

8

R, t} = T a.(t}P . (cos 6). (3.2.4)
PR | 23
j=0
The series expansions (3.2.2, 4) may be applied only when the bubble
radius is single-valued, i.e. when for every angle 6 there is only one
value for R(8). The latter restriction is quite severe and is,for
instance,not satisfied when bubble implosion and fragmentation are
considered. However, when only bubble growth is treated, this

difficulty does not arise,

Instead of the Rayleigh-Plesset equation (2.2.10), the Bernoulli
equation (2.1.16), applied at the bubble boundary r = R(O,t), will
be used as the dynamic boundary condition. By neglecting the normal

viscous stresses, the latter condition vields:

ﬁu -..1. ﬁz e aé R _ pw_ )
ot 2{( ) (R 36) } - 5 gR cos 8 +
19RZ 1 3 . 1 3R
. 1+ Z(R 38 2 ;—5 1 R 36 cot 8
+ 9 .2,
PR 1 3R 2 3/2 } i/ ? & 3)
{1+ (R o {1+ (R BB)

at r = R(8, t) .
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The vapour pressure at the vapour-liquid interface, Pige follows

from Clapeyron's equation (2.2,1) . For the time being, it is assumed
that p; . is known. The term pgR cos 8 represents the hydrostatic
pressure. Equation (3.2.5) is the only equation where gravity occurs
and, provided that the initial conditions represent spherical symmetry,
deviations from the spherical bubble shape are due to this term only.
Equation (3.2.5) may be considered as an equation of motion
describing the evolution in time of the velocity potential at the
bubble boundary. To find the evolution in time of the bubble boundary
r = R(8, t), a kinematic boundary condition must be prescribed as well.
Similar to equation (2,2.4) , this will be the condition that the
normal component of the rate of displacement of the bubble boundary
equals the normal component of the liquid velocity at the bubble wall,

In general, the coordinates of the moving interface are given by the

following implicit relationship:
F(r, 6, t) =0 . {3.2.6)
The unit vector normal to the interface is given by:

3F 1 aF

G = w3
__VF_ _ ‘32’ r 39
& (nrs ne) = iVFl BFZ ) SF 2 1}*2 . (3n207)
G+ C5 !

Equation (3.2.6) generally has the form of a multivalued relation
between r and 8, but from physical considerations it is known that

at least one solution exists which is written as:
r = Rx(a, t) . (3.2.8)

In (3.2.8), the index A denotes the choice of the solution if
equation (3.2.6) is multivalued for r with respect to 6. Equation
(3.2.8) can be written as r - Rk(e, t}) = 0 and leads to the following
(1 Y
’ R?x 28
E;\ = (nr)‘, nBA) - aRA 1’2 . (3-2.9)
1 2
{1+ (ﬁ;‘gﬁ'ﬁ 1

expression for n:
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At a fixed angle 8, the time derivative of the coordinates of the

bubble boundary is given by:

3 QRA .
'g't—(r, e>interface = (’é’?" ¥ 0) * (3.2010)

From (3.2.9,10), it follows that, for a fixed angle ¢, the normal
component of the rate of displacement of the bubble boundary is
given by:

3 .
my + 5p(T, ©) 77 - (3.2.11)

=)

interface BR

R} 38

Equating the normal component (3353)r=Rﬁ of the liquid velocity at the

{1+(

vapour—liquid interface to the normal component of the rate of

displacement of the vapour-liquid interface, results in:

aRk a¢) E—I-{-A— (M (3.2.12)
R T 7 38 r'R 36 3r r“RA * ves

A

Equation (3.2.12) is a partial differential equation of the hyperbolic
type for Rz(ﬁ, t). By making use of the method of characteristics, '
cf. e.g.Whitham (1974), a multivalued solution can be found. Sluyter
(1978) performed such calculations for imploding gas bubbles. However,
in the following Sections, multivaluedness will not be considered.
Consequently, the index X of R, will be omitted, and R(8, t) may be
expanded in the series (3.2.3) or (3.2.4).

3.2.2. The global collocation method.

In this Section, a method will be presemted for the determination
of the expansion coefficients ai(t) and ai(t) or ai(t) and bi(t).
Analytical methods will not be attempted, but a numerical solution

method will be applied instead.

A finite number of N angles 6y, k = 0,1, ...N-1, is selected to
discretize the continuous flow field. The way in which these angles
are distributed over the interval of 9-values will be discussed

in Section 3.2.3.
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When the values of the N bubble radii Rk(t) = R(ek, t) have been
calculated, the values of R(6, t) between the angles ek can be
found by interpolation. For that purpose, the series (3.2.4) will
be cut after N terms, resulting in the following linear system for
the expansion coefficients aj(t):

N-1 :
R (t) = jzo [Blw; 2522 » (3.2.15)

where the matrix P has elements [g]kj which are:
[Blij = Ppj(cos 6y . (3.2.16)

Generally, the matrix demoted by (3.2.16) has a low condition number,
and is therefore well-suited for machine computations; cf. e.g. Hayes
(1970).

When the values of aj(t), j=0,1,.....,8-1, are obtained from the
known values of Rk(t), k = 0,1,....N-1, at a certain time t, by
solving numerically the linear set (3.2.15) , the value of 3R/36
can be determined by differentiation of series (3.2.4) which is

cut after N terms.

Provided that (3¢/36)Rk and (8#/3r)Rk are known, the value of
de{t)ldt follows from the kinematic boundary condition (3.2.12).

In this way, the kinematic boundary condition has only been satisfied
at the N discrete angles ek. A method were an equation is satisfied-
only at discrete points rather than over a complete continuous

range of Values is called a collocation method; cf. Finlayson (1972).
The method applied here is the global collocation method, since

only one interpolation function or so-called trial function has been

used for the complete interval of 8-values.

In the same way as with the series (3.2.4), the series (3.2.2)

for ¢ will also be cut after N terms, where each term is a solution
of the potential equation (2.1.15). Defining é{Rk(t), B t} = # (€5
the following set of linear equations for bj(t) is derived from
(3.2.2.):
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ol :
b () = T [o(e)], py(e) ‘ , (3.2.17)
j=o

where the matrix Q(t) has elements [g(t)]kj defined by:

Pz.(cos ek)
[ae)]y; = --JW ‘ (3.2.18)
Since R, dR/36 and BQRSEGZ are known, the value of (3¢f3t)r=Rk
can now be determined from (3.2.5), for prescribed values of
ék(t), by solving the lipear set (3.2.17) to find bj(t) and,
consequently, 3¢4/3r and 34/36. In order to find dékfdt, the following

expression must be used:

d d .3
ag'ék(t) = EE'¢ {Rk(t)’ ak’ t} = {5E-¢ (r, ek’ t)}r=Rk(t) +
3¢ (r, 6,, t) dr, (t)
k
He— ) T (3.2.19)

Since the matrix (3.2.18) is mostly ill-conditioned, the calcu~
lation of bj(t) will be performed with the aid of a scaled matrix
*

Q (t), with elements defined by:

) R(t)}HP( 8.) 3,2.20
[o )]y = Rk(ci g5(cos 8) . (3.2.20)

*
In (3.2,20) R (t) is the mean radius defined by:

. g N1
R()=g5 & RU(£). (3.2.21)
k=0

When the bubble has a hemispherical shape, then Rk(t) R ),

and the matrix Q (t) becomes independent of t and equal to P.
Consequently, this matrix is also well-suited for machine computatlons,
and even for deviations from the hemispherical shape, the condition

number will remain within reasonable limits.

Now the expansion coefficients bj(t) follow from ék(t) by performing
the following two calculations.
* : .
(i) The coefficients bj(t) are calculated with the matrix equation:
N~1

* E .
g, () = jio [@ @] b5¢e) s (3.2.22)
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*
(ii) From the calculated values of bj(t), bj(t) is determined as
 follows:

o1 x ,
23+ ey (3.2.23)

#
bj (t) = R (v)
Combination of the expressions for de(t)/dt and ddk(t)fdt, obtained
by the collocation method discussed above, results in a system of
non-linear, coupled, first—order ordinary differential equations.

In short~hand notation these equations can be written as:

d ' Ry N-1
it (¢k) =F{R,é) o1 (3.2.24)

n’m=o
The set of equations (3.2.24) can be solved by computer, using a
standard routine for the solution of a set of first—order ordinary
differential equations. For every timestep, the matrix equations
(3.2.15) and (3.2.17) must be solved; this can also be performed

by standard routine.

direction of graviéy asis of symmetry

L p

0 ms, initial vadius

N

Fig. 3.1. Initial acceleration of an air bubble in water
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The advantage of the numerical method described above is that, even
for a few collocation points, reasonable results can be obtained.
When only one collocation point is used, and when the term gR cos &
in (3.2.5) is omitted, the Rayleigh equation (2.2.10), without
the term 4nﬁ/pR, is obtained from (3.2.24),

Finally, two results will be shown in this Section.

Fig, 3.1 shows a gas bubble which is formed at t = 0, with initial
velocity zero. The circle represents the initially spherical bubble
with radius R = | cm. The wavy line represents the bubble shape
after 21 mg, From the displacement of the centre of the bubble,

it follows that the initial acceleration is 20 m/s2 = 2g. After a
longer time, the caleculations show that tongue formation ocecurs. The

results agree with those of Walters and Davidson (1963).

axis of symmeiry

smooth )vgg

2 &
direction of gravity ! \3
| axis of symmatry.

Fig. 3.2, Air bubbles in water adhering to a horizontal wall.

One bubble is above and one bubble is beneath the wall
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Fig. 3.2 shows the adherence of two gas bubbles at a smooth wall; one

- bubble is above, and one bubble is beneath the wall. At time t =

the bubbles are fermed with a hemispherical shape, and a radius

0,

R-=:1 em. It is observed that the bubble foot of the upper bubble

contracts; this effect ultimately leads to departure. The lower

bubble is flattened somewhat and shows an extension along the wall.

3.2,3. Convergence of orthogonal collocation.

In this Section, the question will be investigated whether the

collocation method, described in Section 3.2.2 , converges to the

exact solution for N + «, For this purpose, the equations (3.2.12)"

and (3.2.5) will be represented in short~hand notation in the

following way:

R
& oem =0,
“~am $Y =0 .

In (3.2.25, 26), R and d represent the exact solutions.

(3.2.25)

(3.2.26)

To find an approximate solution, the functions ¥ and 3, obtained

by cutting the series (3.2.3) and (3.2.1) respectively, are

introduced in the following way:

N-1
BQu, t) = I a O DI
J =0

N-1 P; ()
$x, u, ©) = : B -,
j= .

where § = cos 0.

(3.2.27)

(3.2.28)

In (3.2.27, 28), a (t), E (t) may be considered as approximations of

the exact expan51on coeff1c1ents aJ(t), BJ(t)
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Whén, instead of the exact solutions, the approximate solutions
(3.2.27, 28)  are substituted in the left-hand sides of equations
(3.2.25, 26), the right-hand sides of these equations will generally
not be equal to zero, Let the right-hand sides of (3.2.25,26) be
denoted by RG anleH respectively, defined in the following way:

%%— - 6, & =R {u, '&’j(t), ?fj(t)} ) (3.2.29)
@ H(ﬁ 3>} - Ry, ¥ (t) ? (£ (3.2.30.)
de » =R = RH s Gj H j 1. s Le U

In the following discussion, the functiomals ]RG and RH will be

referred to as the residuals. If one wants to find a good approximation,
these residuals must be "small" in some semnse., The residuals R, and

RH’ or shortly R, will be congidered as a function of u, i.e.

R = R(u), since the dependence on ga'j t), {é'j (t) is unimportant

for the subsequent discussion.

Following the procedure discussed when introducing the collocation
method in Section 3.2.2 , N collocation cosines ) k=0,1,...81,
will be chosen, The residuals R(u) can be expanded in a series of
Lagrange polynomials, with expansion coefficients A =]R(uk), ‘
cf. e.g. Fox and Parker (1968):

N-1 %
R = T 2L G +R ), (3.2.31)
k=0
)\k =R(uk) R (3.2.32)

In (3.2.31) , the Lagrange polynomial L, (u) is defined as:

(3-!"}!0)-.-(u“uk_l)(U'uk+1)-..(U“HN_I) . (3.2.33)

Lk(u) =
G Yo Gug =y ) (uk°uk“ Yeuu (Mg ey )

and when IR(u) can be differentiated N times, R*(u) equals:

CTR TR R (T T TR CTETHRD IS
® () = 2 ! Ll m%_)_) R (3.2.34)
N! dp”  p=p!
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where u' is a py=value in the interval -1 2 p 5 1.

In the collocation approximation, the equations (3.2.253, 26) are
satisfied at the collocatlon points Hys which is equivalent to
taking m.(uk) = BH(uk) = 0. From (3.2.32), it follows that this
means that Ak = 0 in (3.2.31 ), Consequently, the residual is given
by equation (3.2.34) , i.e. R(U) =R*(u). In this way, the linear
relationships (3.2.15, 17) are found from (3.2.27 , 28),

From interpolation theory (cf. e.g. Fox and Parker (1968)),it is
well-known that R*(u) tends £o zero for N » «, only when the

values of W, are choéen in a specific way.

Here interpolation is performed by equating n, to the zeros of a
Legendre polynomial of degree N, In that case, the maximum absolute

value of R*(y) for N » « becomes:

4
|wwls e O EEG)
=1<u" <1 2 N' du

. (3.2.3

From (2.3.25), it is concluded that for N+« R*(i) + 0, provided
that the Nth derivative of R(i) is bounded.

In this way, the approximated equatioms (3.2.29, 30) converge to
the exact equations (3.2.25, 26), and the approximations *k and %.
converge to the exact solutions R and ¢ as well.

The present method is called the orthogonal collocation method;

cf. Finlayson (1972),

3.8. Departure of water vapour bubbles wnder low pressure
3.3.1, Introduction

When the application of the collocation method, described in Section
3.2 , is extended to the case of a growing vapour bubble adhering

at a superheated conducting wall, the complication arises that the
pressure of the vapour in the bubble is coupled to the temperature
of the liquid at the bubble boundary. Consequently, the temperature
field around the bubble must be solved simultaneously with the flow
field.

5}
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An accurate local description of the evolution in time of the
temperature field is difficult compared to the relative ease of
obtainfng a solution for the hydrodynamic equatioms. Also, as will
be demonstrated in Section 3.3.2 , the sclution of the temperature
field is very sensitive to changes in the initial temperature field
which exists just prior to the start of bubble growth. This initial
temperature field will be derived from experiment £f. Section 3.3.3),
and it is to be noted that the initial temperature field can only be

determined in an approximate way.

As a matter of course, calculations of the evolution of the temperature
with an accuracy greater than that of the initial data will not make
sense., For that reason, a relatively simple approach will be presented
here, giving a sufficiently accurate estimate of the pressure in

“the bubble. From this point-of-view, the description of the temperature
field around the bubble will be treated as an auxiliary procedure,
whilst finding the flow field remains the main purpose of our

investigation.

3.3.2. The thermal equations

First, evaporation of the liquid microlayer will be considered.
Since the liquid in this layer is almost at rest,the following
expression holds provided that temperature gradients in the radial

direction may be neglected; cf. Section 2.4.1.

0 t <t
Gy = (3.3.1)
—pex} pt -
peK trDt{TM(t) Tw} >t
where trDE represents the generalized Riemann-Liouville operator;
cf. Appendix B.
In (3.3.1), t. represents the time elapsed after start of bubble

growth, at which the bubble contact radius is r:

Rc(tr) =r . (3.3.2)

74



Like equation (2.4.3) , equation (3.3.1) only holds for a sufficiently

thick microlayer.

From expression (3.3.1) , the total heat flowing per unit time to the
vapour—liquid interface can be calculated by integration of (3.3.1)

over the microlayer, which is assumed to extend from r=0 to =R, :

bR
{ r . D¢ {TM(t) - Tw}dr . (3.3.3)
=0 o

@M = =2MpCK

When Rc > 0, i.e. when the microlayer is extending in the radial
direction, equations (3.3.2) and (3.3.3) can be combined, resulting

in:

t
oy = -21'rpct<i . io Rc(tf)Rc(tr)trDti{TM(t) - Tw} e . (3.3.4)
r

As has been discussed in Section 2.4.1 , the heat flux oy causes
evaporation of the liquid microlayer. As a result, the bubble volume
increases by a factor (p/pi)(¢>M/2) per unit of time,

Consequently, the following expression for the volumetric flow rate

of vapour at the interface is obtained from (3.3.4) :

2
t dR :
Y =g RS} < pl - ,
Vy ng-l—gx I 35 el {T(e) - T He . (3.3.5)
tr—O T T

Rc(t) is known from the solution of the hydrodynamic equations. Let

it also be assumed that VM is prescribed, then the unknown temperature
TM(t) of the vapour at the vapour-liquid interface of the microlayer
follows from equation {3.3.5). An approximate method for solving

TM(t) will now be introduced.

It was argued in Section 2,4.1 that the most important contribution
to vapour production comes from the outer edge of the microlayer;
i.e. during a short time interval t < t < b+ At . During this
time interval, the vapour temperature is assumed to be constant

when the Riemann-Liouville operator im (3.3.5) is evaluated.

With the aid of equatioms (2.2.18, 25), the following expression is
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then derived from (3.3.5):

2
; I e (3.3.6)
V, = ~fewe k2 D {Tx(t) - TW} T | .3.

M p!z ot

As a second approximation, it is assumed that the change of Ri

with time is dominant as compared to the variation of TM(t} - Tw

in time. It follows from the numerical results shown in Sectiom 3.3.3
that this assumption is acceptable. Therefore, equation (3.3.6)

may be approximated by:

- _ __pc b -}d _ 2
VM = - 5‘]‘}: K GDt d_t [{Tn(t) TW}RC} . (3.3.7)

With the aid of the rule of the exponents (B5), and with TM(O) -T,= o,
equation (3.3.7) results in:

. 2 '
Uy =-m %fz-xi i [}TM(t) - TW}RC:] . (3.3.8)

Making use of composition rule (B6), one obtains:

T(t)-—‘l‘=—pl£—-1-— pty (3.3.9)
M W peKy 1TR2 ot M ° h
[ 1

For reasons which will become clear later, equatiom (3.3.9) will
be further evaluated for a special case. When is is assumed that,
during adherence times where microlayer evaporation is important
(i.e. at times before contraction of the bubble foot starts),

&M « ™ and Ri
(3.3.9) results in:

o tn, with m and n independent of time, then equation

[} plg ‘% VM
TH(t) - Tw = =B -—'—%-ODIZ — . (3.3.10?
peK ﬂRc

In (3.3.10) , the coefficient B' is given by:

_ T{m+1)T(mn+3/2)
T T(@+3/2)T (mn+1) °

When n=0, i.e., when contraction of the bubble foot sets in, then

g’ (3.3.11)

B'=1. Initially, during a short time after nucleation, inertia-

controlled growth dominates, resulting in m=2 and n=2; cf. Section 2.2.3.
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In that case, B' = 8[15 = 1/2. When,at a later stage, diffusion-
controlled growth occurs, without contraction of the bubble foot,
then m = 1/2 and n = 1; cf. Section 2.2.2. In that case, B' = 1/2.
Since initial time intervals, where contraction of the bubble foot
does not yet take place, are most important for microlayer

evaporation, 8' = 1/2 will further be used as an approximation.

We now turn our attention to evaporation at the bubble dome. Because
in the liquid around the bubble dome both conduction and convection
play a part, and since there is no spherical symmetry, the calculation
of the remperature field is more difficult in this case than the
calculation of the temperature field in the microlayer. For that
reason, simplifications will be introduced, similar to those discussed

in Chapter 2.

In Section 2,2.3 , it has been shown that equation (2.2.35) represents
a good approximation when bubble growth is considered. Furthermore,
it has been shown in Section 2.5 that equation (2.2.35) can adequately

describe the response to disturbances in the bubble growth rate.
In the present situation, the bubble growth rate may be disturbed

because, more~or-less suddenly, the bubble comes into comtact with

colder liquid, once it has grown to a sufficient size.

Application of equation (2.2.35) results in the following expression
for the heat flux a4 at the bubble dome:

ag(®) = -3hect Dl o -1, (3.3.12)

where it is assumed that heat fluxes tangential to the bubble
boundary are negligible. Im principle, equation (3.3.12) only holds
when T  is independent of t; however, as an approximation, the

use of equation (3.3.12) will be extended to cases where T = T (t),

as discussed previously in Section 2.4.2.
From expression (3.3.12), the total heat flow to the vapour-liquid

interface can be calculated by integration over the surface of the
bubble dome:
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: /2 >
e (t) = —mc(3t<}é /R (8,t)sind D%{T (t) -~ T (8,£)}d6 . (3.3.13)
R 6=0 ot "R w
From (3.3.13), the volumetric flow rate at the bubble cap QR
follows from the heat requirement @R =“p‘2§R.

As shown in Section 2.4.2 , the order of integration, and application

4
of the th

contact angle is sufficiently slow. This results in:

operator, may be reversed when the decrease in the apparent

v, (1)

R - - i pe i =

o YG) (3x) 5-17 oD {rp(t) T (t)} , (3.3.14)
where the mean temperature Tw(t) is given by:

- 2 m/2 2 )

Tm(t) = m e=£ R (e,t) sin® Tw(e,t)de . (3.3.15)
‘and A(t) represents the surface area of the bubble cap:

/2 2
Aty = 2n [ R (8,t)sind® 40 . (3.3.16)

Inversion of expression (3.3.14) results in:

— Pl a v
T, -1, = L5 b2 —i . (3.3.17)
3pcK °

The two equations (3.3.10, 17) must be combined with the following

two expressions:

Tp(t) = T () = T,(e) (3,}\3.18)
and
VeV, . (3.3.19)

From (3.3.10, 17, 18, 19), the following simple expression for

Tl is derived:

= P2 .
i - v
T,{(t) - T = T D {-;————————4 s (3.3.20)
! pek ot 3°A + Zﬂﬁi
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where %@ is defined as:

% - 2

. AT +2m T,

T = I 5 . (3.3.21)
3*A + Zch

oy 2, . . .
In (3.3.20), it has been assumed that RcfA is independent of time,
which is a reasonable assumption when contraction does not yet take

place.

The set of equations (3.2.24), describing the flow field and the
location of the vapour-liquid interface, has to be solved simultaneously
with equation (3.3.20).

For that purpose, (3.3.20) will be transformed in such a way that

it can be used in a standard routine for numerical integration of

sets of coupled ordinary differential equations. To achieve this,

the variables x and y are introduced in the following way:

-

v

x(t) = (3.3.22)
3a 2mzi ’

T, (6) - T (8) 2
y(t) = (————) . (3.3.23)
w

By squaring equation (3.3.20) and then differentiating with respect

to time, the following differential equation for y is obtained:

P RN
at -2-—;—]-;2- ODt xthx . (303-24)

The Riemann-Liouville operators in (3.3.24) will be approximated
by the Grunwald series (B9), where N is taken to be finite.

In this way, (3.3.24) results in:

§-§= o (x+sHx-s) (3.3.25)
2xJa

where
N-1

+_ 1 L(i*E) cpmit
- 1 jin rGeh =iy . (3.3.26)

and
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N-1 .
- 1 r(i~1) .t
s =—7 b x(t-j=) .
2n* §=1 ri+t N

(3.3.27)
For the mumerical computation of the series (3.3. 26, 27) representing
the memory effects, it is essential that the values of x are

stored at equal time intervals At. However, the integration of

(3.3.25) from t to t+At may be performed with any subdivision

of this fixed interval that is required for the numerical integration

procedure.

The only unknown which has still to be determined is the temperature
T _(6,t) at the edge of the thermal boundary layer surrounding the
bubble dome. .

If the vapour produced at the vapour-liquid interface of the micro-
layer is homogeneously distributed over the bubble cap, then the

corresponding vapour velocity equals ﬁM/A. In this way, the local

heat requirement at r=R(8,t) 1is I = pli{(gfg)rnﬁ ﬁM!A} , and the
heat flux in the liquid is given by:
132
3.3 e expl Ef:'-)-'t'j'}
") = P T S qp(thde’ (3.3.28)
t'=0 (t'-t)

where r' = r ~ R > 0; cf, Carslaw and Jaeger (1967)5

%M!A can be determined by expression (3,3, 9) , and (233}r=R follows
from the solution of the flow field, The thickness r'=§(0,t), where
q(r'XhR = 5%, can be determined numerically, and the bulk temperature

at that location is taken as Tm(e,t).

Finally, the evolution in time of the bulk temperature will be
discussed. Temperature gradients are small in the bulk liquid outside
the thermal boundary layer, and heat transport is considered to take

place by convection only. Thus equation (2.1.4) simplifies to:

di- + u

Y 3
at r + —r""')T = 0 - (3.3‘29)

30

arlar
n

Equation (3.3.31) expresses that the temperature does not change
along a streamline. Consequently, when the initial temperature

distribution is prescribed, the temperature field for t > 0 can
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easily be determined when the flow field in the liquid around the bubble

is known.

3.3.3. Example of growth and departure of a bubble in a non—homogeneous
temperature field.

The experiments were carried out in a boiling vessel described by
Van Stralen, Cole, Sluyter and Sohal (1975).

Initial temperature fields were measured in the absense of a bubble.
The temperature in the thermal boundary layer was determined by a
thin thermocouple which could be moved in a vertical

direction , while the temperature of the bulk liquid was determined
by three fixed thermocouples. A result is plotted in Fig. 3.3 , and
it is seen that the profile is almost linear. For that reason, the

initial temperature field in the calculations has been chosen as:

Z
T, +'§(TE - Tw) s 2SS H . ’
T (z,0) = (3.3.30)
TB zz2H ,

In (3.3.30), Ty = T  + #6° and T, = T_ + 6°, where 8° is the wall
superheating, and A69 is the bulk superheating.

35 T T T T 1 T

B , Water -
30 g ~

Fig., 3.3. Temperature profile

above heated wall in

water without bubbles

FAR ¢
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Further initial conditions are that the liquid is at rest, i.e.
#(r,8,0) = O,and the initial bubble radius has been chosen as
2Re; ef, equation (2.2.11).

As an illustration of the application of the mumerical procedure
described above, the example of water boiling at a subatmospheric
pressure of 10 kPa is considered. The numerical results are compared

with experimental ones.

Fig. 3.4 shows photographs taken from a high-speed film of a water
vapour bubble at a pressure p_ of 10 kPa; the temperature of the
superheated wall was 342K, and the corresponding saturation temyerature'
T, is 319 K. Hence, the initial wall superheating 6° is 23 K. The

Jakob number belonging to this situation is 580. The bulk superheating
48° was small and could mnot be measured with the required accuracy
because of pressure variations. For the calculations, the value

48° = 0.1 K has been chosen. In view of the data presented in Fig. 3.3,

H was taken as 0.8 mm,

Fig. 3.5 shows the calculated bubble shapes; the solid lines at

6, 15, 30 and 40 ms represent the values calculated by the procedure
deseribed in this Chapter. The dotted lines represent the correction
for microlayer formation, c¢f. Section 4.1, where also a plot of the
microlayer thickness will be shown. The qualitative agreement of the

bubble shapes obtained by theory and experiment is good.

Comparison of the theoretically and experimentally determined equivalent
bubble radii, defined by R, = (3v/61)' % is presented in Fig. 3.6; the
calculated values of Req are about 15Z lower than the experimental
values. By chosing somewhat higher values of H and Aeo, it is possible
to obtain a better agreement. Fig. 3.7 compares the theoretical and
experimental values of the contact radius. It is observed that the '
contact radius, after an initial time interval of growth, decreases

and becomes zero after 110 ms; at that time, the bubble leaves the wall.
The calculated temperature of the bubble boundary is presented in

Fig. 3.8; experimental data for the vapour temperature were not determined.
It is to be noted that the calculated vapour temperature can even

decrease below the saturation temperature,
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The initial growth of the bubble is shown in Fig. 3.9, where also
the corresponding displacement of isotherms in the bulk liquid is
shown. Fig. 3.10 represents the accompanying equivalent bubble radius
and vapour temperature. Here also, no comparison with experiment can

be given because of the short times involved.

Fig. 3.11 shows the hypothetical case where evaporation of the
microlayer is not taken into account, As a result, the bubble size
is decreased considerably. Alsc, when the initial wall superheating
is decreased to 7 K, the bubble size is decreased, as is shown in

Fig. 3.12.

t=50ms

water
pa-mkpa t-40ms
=342K
25mm Tw
-y
t-6ms
-
t | 10mm
i
i
i
1

t=15ms

Fig. 3.5, Water boiling at 10 kPa;
numerically determined bubble shapes
of bubble shown in Fig. 3.4,
number of collocation points = 3,

maximum number of terms in (3.3.26, 27) = 30
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Fig. 3.6. Water boiling at 10 kPa;
equivalent bubble radius of bubble shown in Figs. 3.4, 5,

(+——=2) experimental data

( )} numerically calculated values
water
O P, =10kPa
Ty =362K
4
t 0
£
a:u
20+ .
10
1 i i i | H 1 1 3 1
0 20 40 60 80 100

t {mg)

Fig. 3.7. Water boiling at 10 kPa;
contact radius of bubble shown in Figs. 3.4, 5, 6,
{(+—+——=) experimental data

(mw——} numerically calculated values



20
~ 15 water
x P, =10kPa
2 Ty =3462K
1 W
= 10
5 =

"0 ! | | [ L | |

, 20 40 60 80 100

sl . tims) )

Fig. 3.8. Water boiling at 10 kPa;
calculated vapour temperature oﬁ bubble shown in Figs. 3.4, 5, 6, 7

] 01| t=015
[-—.10'5 mm vg;‘:-‘ls{?a = Hms
Tw342K P
M| — ]
=0 ‘ .
3 RIO.t)
20
px}
LA
t=005ms 01 t=0.20ms
//“\
—C5 —=
t=2010ms ——jms"’s/————\

Fig. 3.9. Water boiling at 10 kPa;
calculated initial bubble shapes and isotherms
of bubble shown in Figs. 3.4, 5, 6, 7, 8

85



Raq.mm

Ti-Ts (K

L |

0 - 50 100 150 200 250
t,us

Fig. 3.10. Water boiling at 10 kPa;

calculated initial equivalent bubble radius and vapour

temperature of bubble shown in Figs. 3.4, 5, 6, 7, 8, 9

50 I T T T T U
Water
without microlayer
p°;10kPa
40 : Ty = 342K -1 20
£ 30l 110
E. —“T1 '15 g
4 iy
x 1]
&:‘ =
201 -0
10+ {10
! | 1 | ! -20
00 10 20 30 40 50
t,ms

Fig. 3.11. Water boiling at 10 kPa;
bubble shown in previous Figures, however, the effect of

micro-layer evaporation has been neglected in the calculation
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From this example, the following conclusions can be drawn:

Fig. 3.12, Water boiling at 10 kPa;

bubble shown in previous Figures,

however, the wall superheating is 70% lower

Ty ~Tg (K

i) The calculations presented in this Chapter agree qualitatively

ii)

iii)

with the phenomena observed under experimental conditions; the

calculations also represent a good explanation of the hydro—

dynamic mechanism of bubble departure,

The agreement between theory and experiment can be made

quantitative by fitting of the parameters characterizing the

initial temperature field in the calculations.

Better agreement can be obtained when more accurate local

measurements of the temperature field are applied; in the latter

case, also the calculation of the temperature field needs

refinement,
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CHAPTER &

" THIN LIQUID LAYERS IN RELATION TO BUBBLES GROWING AT A WALL

4,1, The thickness of formation eof the liquid microiager

4.1.1. Creeping flow in the meniscus region

When the gas-liquid interface is a single-valued functiom of r ,

the equation for the position of this moving surface in cylindrical
coordinates (r,z) is written as, cf. Fig. 4.1 :

F(r,z,t) = z - h(r,t) = 0 , 4g.1.1)
where again symmetry with respect to the z-axis is assumed.

From the general expression for the normal unit vector at this

interface, n = VF/|VF|, it is derived that the normal component of the

rate of displacement of the interface is given by:

potential flow

liquid

k2

boundary layer

axis of rotational

ﬁc—ml_a_y_er h*T

solid ‘walt

-

TN

Fig.4.1. Flow regions of the liquid microlayer
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3 ot
n = (¥,2), = —————71 . (4.1.2)
— 3t h {1+ (%)2}2

The normal component of the liquid velocity at the interface is given

by:
ah
-y, =— + W
(wm, = ﬂra—hﬁ . (4.1.3)
(e &Y

By analogy with the boundary conditions (2.2.3, 12), it can be found
from equations (4.1.2, 3) that, when Py <<p and heat conduction in the

gaseous phase is negligible, then:

3h oh R 3hy2,3 . _In
§t—+ uhg}' Wh- -(}T{l+(a—r)} 'p—l- . (4.1.4)

Here, (pllp)ulh is not small with respect to up .
Equation (4.1.4) represents the kinematic boundary condition for a

liquid layer.

When the lubrication approximation is made (i.e. when quasi steady
Stokes flow is assumed, with 3p/9z + pg = 0 and |B(r3u/3r)/3r!/r<<1Bgu/322[),

the momentum equation in the r—direction simplifies to:

—-—:.?..2.
na e (4.1.5)

BZU
2

z
Since, in the lubrication approximation, the normal viscous stress is
negligible with respect to the pressure differences, the discontinuity
of normal stress over the gas-liquid interface leads to:

3’n _ o 2h
p=op; - og(z=h) - g7y - T35 ¢ (4.1.86)

3r

. P 2

In expression (4.1.6) it is assumed that (3h/3r) << 1 so that the

expressions for the principal radii of curvature simplify.

The boundary condition for the tangential stress at the gas-liquid

interface becomes:
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duy (39 30, v S0
ﬂ(g;éh (Br » az) LB (4.1.7)
Equation (4.1.7) represents the so-called Marangouni~Gibbs boundary
conditon; cf. Traykov and Ivanov (1977).

Surface tension gradients are caused by gradients in temperature, by
gradients in concentration of surface impurities, or by gradients in

electrical charge densities along the gas-liquid interface.

Use of the Marangoni-~Gibbs boundary condition (4.1.7), in combination
with the no-slip or adherence boundary condition u(r,0,t) = 0at the

golid wall results, after integration of (4.1.5), in the following

expression:
=12 - z 30
u = z(}z~h) + =T (4.1.8)

The continuity equation reads:

%‘5—+%+-§—§=0 . (4.1.9)

From (4.1.8, 9), the following expression is derived:

2 2 2 .
=-z__.. _y_ 123p Zopon_ 22 9%c 130
v 2n )¢ r * T ar) Zn 3r ar  2n (8r2 + T ar) (4.1.10)

Substitution of (4.1.8, 10) in the boundary condition (4.1.4) results

3 2
$h 13 .k 2 b 30y, _7h . (4.1.11)
at * r ar {x( n ar * 2n Br)} o2

The volumetric flow rate in the r-direction, I', can be found by

integration of (4.1.8) over the layer thickness, resulting in:

3 2
= onp(- 2R, 0 39,

3n 3r  2n 3¢’ (4.1.12)

From (4.1.12), it is‘observed that (4.1.11) may be interpreted as a
global continuity equation; cf. Whitham (1974) and Section C5.
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In the most important cases where surface temsion gradients occur,

these gradients are caused by variations of concentration of

surfactants along the interface. For quasi-steady diffusion of impurities
present in the liquid layer, Traykov and Ivanov (1977) derived the following

expression for 3o/dr:

I'u .
§§-=§% zhh , (4.1.13)

where PS represents the surface concentration, C represents the bulk

concentration and k represents the diffusion coefficient.

Combination of (4.1.13) with (4.1.8) results in:

I
dg 8
3¢ _ _hop 3Cnmk (h.1.14)
ar 2 3r - EE.EE
3C nx

Substitution of (4.1.14) into (4.1.12) results in:

3
: _ _ 2rzh 3p
r 3Bsn ar ? (4.1.15)
where
p_130ls

1. __43¢¢n (4.1.16)
bs 1 - QQ‘Ei

3C nx

When there is no surface concentration, then BS = 1; however, as has
been discussed by Groenveld (1970a), in many cases it is better to
suppose that IBU/ECIFs/nK >> 1, In the latter case, Bg tends to 4
and this case is equivalent to the situation where u = 0 at the
interface. Impurities present in the gaseous phase do not influence
the flow pattern in the liquid layer, as has been shown by Traykov
and Ivanov (1977).

In the following treatment, it will be assumed that the term o(3h/3r)/r
in (4.1.6) is negligible with respect to the term 03°h/dr?; cf. also
Fig. 4.1. Also, since pgré/c << 1, the term pg(z-h) in (4.1.6) is

negligible with respect to the second order term. In this way,
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equation (4.1.11) combined with (4.1.12, 15) simplifies to:

3.3 q
ah 1 3 ,roh” 87h h
EEAR T O U (4.1.17)

During the growth process, microlayer formation only takes place in
a region close to r = Rc; consequently, r may be approximated by Rc
in equation (4.1.17). In this way, (4.1.17) simplifies to the global

continuity equation for a quasi one-dimensional layer:

3 43 q
3h . 5 ,oh° 33h, I
‘5‘{"‘5(333,‘;5' iy (4.1,18)

It is convenient to consider the process of microlayer formation in
a coordinate system moving with the bubble contact radius R,. For
that reason, a coordinate transform x = Rc - 1t is introduced;

cf. Fig. 4.1, The transformed equation (4.1.18) then becomes:

3h on® ah 9
v (Rh«t-ss x3 =z (6.1.19)

Integration of (4.1.19) over the length of the layer from X to a

#* . s . 3 3 :
value x outside the meniscus region, where 3 h/3x" = 0, results in:
*

3, 38R * _ 38n X q
Ppe—scebh th. = s @leBa (4.1.20)
3x h ch

X

* #*
where h = h at x =x .

For most cases of importance, the second term in the right-hand side
of (4.1.20) is negligible, and the following dimemsionless equation

is obtained:

3
3°L  1-L

& (4.1.21)
a L
where
L=B, (4.1.22)



and

38 né
=X (—§-—°)”3 . (4.1.23)

*
It is now assumed that A = X is the location where the liquid
microlayer becomes plane and parallel to the wall. Consequently,

(4.1.21) must be solved with the following boundary conditions:

*
A= X L1
3L/d% > 0
2 2
3 L/3x + 0O - . (4.1.24)

In the region where A - 6, the dimensionless thickness L of the
microlayer will be large compared to the minimum thickness If = 1
at A + ; . Consequently, following Landau and Levich (1942), the
radius of curvature of the liquid layer when tending to A + O may

be approximated by:

g1
éii Ay (4.1.25)

im . *, o z 2)21.-]
ro= 0T )3 (€ =
32 ax?

o L 388ch

* *
Since, in addition, A 1is large compared to L. = 1, the boundary

»
conditions (4.1.24) may be applied at A = X - =,
Following Landau and Levich, a new variable is introduced:

g= 2 . (4.1.26)

Combination of (4.1.21) with (4.1.26) results in a second order
equation for £ as a function of L:
3% 2(1-L)
— T T . (4.1.27)
3L £%L
With the aid of equation (4.1.21), Landau and Levich (1942) investigated
in more detail the character of the behaviour of the derivatives
2 . . c o exs .
3L/3\ and 23 L!akz for A increasing to infinity, In this way, they

derived the following boundary conditions for equation (4.1.27):
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*
A=A +e: £+ (I-L),

3E _
s > 2(@-1) . _ . (4.1.28)

To determine (82L/8A2)L*w = g(ag/aL)L+w, Landau and Levich obtained
a solution for the dimensionless equation (4.1.27) with boundary
conditions (4.1.28). Their final result, substituted in (4.1.25), is:

b= f*(f%:—R-‘iﬂ” r, . (4.1,29)
where f'was found by numerical integration.

In their original paper, Landau and Levich gave £' = 2,29 x /2. However,
this was due to a typographical error; Levich (1962) quotes

£' = 0.93 x ¥2 = 1,315. Groenveld (1970a) introduced f' = 4/3, which
will be used subsequently.

The importance of Landau and Levich's equation (4.1.29) is that it
describes the thickness of microlayer formation when the minimum

radius of curvature T, in the meniscus region is known.

4,1.2, Inertia effects in the meniscus region

To calculate the pressure in the potential flow region, cf. Fig. 4.1,
the bubble is approximated by a hemisphere with radius R (t) =,R(t)‘
Linearization of momentum equation (2.2.6 ) for 0 2 =R -r > -, with
6}Rc << 1, then results in:

R .
- . 3‘ - ~ —g 2 3
py(x,t) = p_ + o(RR + 3R + (R x D%+ 06} L (41.30)

According to the Rayleigh equation (2.2.10) where viscous effects
have been neglected, the following expression relates the vapour
pressure pl(t) to the pressure p  far away from the bubble:

w

w 3.2 25
P, =P (t) ~p(RR +ZR) - .

[
=

(2]
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In the following treatment, terms of the order of magnitude chc
will be neglected; cf. also Section 2.2.3.
Thus, it is found that:

. R
py(x,E) = py (&) + plR x - 3(R—°)2x2} , 0>x>-5. (4.1.31)

c

It is now assumed that expression (4.1.31) also holds in the meniscus
: * . L . . .

region 0 £ x < § , with § iRc << 1. This means, inter alia, that at

x = O,i.e.cat v = R, the values of p, 9p/ax and 32p/3x2 are

continuous.

On the other hand, from the boundary layer approximation apmfaz = 0,

it follows for the pressure pm(x,t) in the microlayer that:

p,(6,t) = py () - o(;l'q 5

2
where
2*h
1, 22
R

e
1o GBI

and R2 b Rc’ Consequently, when neglecting GERC, the following

expression holds:

pm(x,t) = pl(t) - —%ﬁ—m , X2 0. (4.1.32)
-+ ity

Equating (4.1.31) to (4.1.32) results in:

R cafg} *
ofR x - 3G9} a-————"’i—-j,— ,0<x<5 . (4.1.33)
[ Rc {1+ (ggoz}s 2
Ix

After integration of (4.1.33) over x, between the boundaries O and

*
x < § , the following expression results:

3h .
— - R
o 3x w1 == ol x® - 25, 0<x< 5 . (4.1.38)
sh.2.1/2 c R
{1+ (5;0 } c
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In (4.1.34), the integration constant has been determined with the

condition that, at x = 0, 3h/3x » -e,

Following Landau and Levich (1942), &* is chosen in such

a way that |dh/dx|<<l at x = 5*. The expression between square brackets
in (4.1.34) can then be approximated by !, and 6* is found as

a root of the following third order polynomial.:

ax’ +bx> ~c=0 , (4.1.35)

where a =_2(1'2c/Rc)2 20,b=~R 20, and c = 2a/p 2 0.

The real, positive solution which is continuous in a, b and ¢, can

be expressed in the following way:

£,(a,b,c) if w3/27a%c < 1,

*

§ = f(a,b,e) = (4.1.36)
£,(a,b,c) if 4p%/27a%¢

v
—

In (4.1.36), £, and f2 are defined as:

3 : 3
£, = -3_:-1- (ﬁ)lh{i __‘_"‘E_.,. (4 - b2 )1!2}1;'3 -
27a"¢ 27a ¢
1/3 b b 1/2.1/3
+ - - (4 - ———5—9 } s (4.1.37)
27a c 27a" ¢
f2 = - b 3a cos {— arccos (1 - 27a c)} +
2b
+ Egé sin {% arccos (1 - 275" S . (4.1.38)

2b

#*
It is noted that, whemn &bsz?azc = 1,8 = (c!&a)ll3 = (3c{4b)l/2 = b/3a,

- * * * » 3
The meniscus radius r, at x = § is found by substitution of (4.1.36)

in (4.1.33), and is given by:

. (azh)
T, 3r x‘é

= —(3af + 2b) . (4.1.39)
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4.1.3. Thickness of microlayer formation

To elucidate the rather complex expression (4.1.39), some limiting

cases will be considered first.
2
(i) 4b° << 27a°c
A 4 73 o B . . .
This is the case where -pRc Rc << Sthc , and it applies both during

initial growth, where RR, > 0 and R, * 0, and during asymptotic,

diffusion~controlled growth for sufficiently small Ja. In these cases,

equation (4.1.39) for the meniscus radius simplifies with fl = (c,ﬁ’a)lf3
to:
R
= L0y1/8 ey2/3
r, 3(p) (ﬁ )y . , (4.1.40)

c

Following Landau and Levich (1942), the condition for matching
solution (4.1.29) of the creeping flow region with solution (4.1.39)
of the region where inertia effects play a part, is that the

two values of r, are the same.

In this way, the following result for the thickness of formation of

the microlayer is obtained:

* 4 nv 1/3 2/3
h = 56—69 (BsRc) . (4.1.41)

(ii) 27a’c << 4b°

.l 43 . . .
This is the case where 540Rc <<=pR Rc’ and it applies during
diffusion-controlled growth for sufficiently large Jakob number, and
during contraction of the bubble foot when Rc + 03 e¢f. Section 3.3.3,

In this case, equation (4.1.39) simplifies with f2 = (c/b)llz to:

r, = =2 (4.1.42)
Zpr

With the aid of Landau and Levich's equation (4.1.29), the following
* . I3
expression for h is obtained using the matching procedure described

in (i):
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-vR
—5i2 (4.1.43)

2R
c

nk
* 4 B2/3 __c_)

1/6
3 s ¢ o

It should be noted that the theory presented here was used by Landau
and Levich (1942) to calculate the thickmess of a liquid film, covering
a solid plate which is withdrawn vertically from a liquid. In that

case, -R in equation (4.1.42) has to be replaced by the gravitational
accelerat1on g. For that case, experimental verification of equation
(4.1.43) has been presented by Spiers, Subbaraman and Wilkinsom (1974},
and White and Tallmadge (1965) for 8y = I, and by Groenveld (1970 a,b,c)
for By = I and By = 4, Levich (1962) also presents comparisons with

experiment.

For a vapour bubble in the diffusion-controlled mode of growth, during
times which are small with respect to the departure time, the radius

of the bubble base R, grows according to equations (2.2.34) and (2.3.8)
like:

R () = y&e) /2 (4.1.44)
Substitution of (4.1,44) in (4,.1.41) and (4.1.43) results, for a

pure solvent where Bs = 1, in:

_(:1:_)1(_% (2 2 2;3 1[6(%)11’3({.)1/6 , (4.1.45)
when y° << 3-— o:<< )Uf2

and

() 21/6 1/6, 0@t (4.1.46)
o7 3 ’

vhen ¥} > pK<K)”2

‘s 3 1/2 ’
The transitional case vy (BGGIZpK)(t/K) / follows from the general
equations (4.1.29, 39). A plot of H' obtained in this way for the

example treated in Chapter 3 is presented in Fig. 4.2.
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Fig. 4.2. Theoretical thickmess of microlayer formation for the
bubble shown in Chapter 3, Figs. 3.4, 5, 6, 7, 8, 9, 10

In the following discussion, more ingight will be obtained from the

limiting cases (4.1.45, 46).

For the case of diffusion-controlled growth during short times after
mucleation, Van Ouwerkerk (1970, 1971) theoretically determined the
displacement thickness zo(t} of the hydrodynamic boundary layer at

T = Rc(t). His result reads:

z (t)

z.. = = 1,27 . (4.1.47)
oD (vt)172

When h* <z, not all the liquid of the hydrodynamic boundary layer
is incorporated in the microlayer; consequently, an upward-directed
flow along the bubble cap will be observed. Similarly, when h* > Zg»
there is a downward-directed flow. Such flow patterns have been
observed experimentally by Baramemko, Chichkan, Nikolaev and Smirnov
(1974), using an interferometric technique. These authors, however,

explained the flows on the basis of the existence of surface tension
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gradients which, as hecomes clear from the foregoing discussion, are

only partly responsible for these effects.

It has been suggested by Cooper and Lloyd (1969) that the thickness

of microlayer formation can be taken as the displacement thickness of
the hydrodynamic boundary layer. Many authors have followed this line of
thought, However, in the same paper, Cooper and Lloyd already express
their doubts concerning this assumption by remarking that the dependence
on surface tension cannot be accounted for. Also, the effect of surface
impurities, as expressed by the factor BS, cannot be accounted for in

this way.

Katto and Shoji (1970) and Katto, Takahashi and Yokoya (1973) also
ventured criticism. On the basis of measurements of liquid microlayers
in the case of air bubbles growing between two rigid walls, the latter
authors proposed an empirical expression fot'tf(t) in pool boiling

under low pressures.

Before discussing these latter results, it will be elucidating to
consider an interesting experimental study undertaken by Pike (1977);
cf. also Cooper, Judd and Pike (1978). A test vessel was brought under
free-fall conditioms in a drop tower, thus introducing a zero gravity
environment for the bubble. In the latter case, equation (4.1.45) holds
during the complete adherence time. The method of measuring the
microlayer thickness was similar to that described by Cooper and Lloyd
(1969). To compare Pike's data with the theory presented here, a

dimensionless time ty will be introduced in the following way:

t
t, = . (4.1.48)
D zlzyu?rrspz/alzcz

. . . . * .
In this way, the dimensionless microlayer thickness hD = h{(vt)l/z, given
by equation (4.1.45) reads:

~1/6

by =t . A (4.1.49)
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Fig. 4.3. Comparison of equation (4.1.45) with experimental values
of Pike (1977).

A plot of equation (4.1.49) has been presented in Fig. 4.3, where
comparison has been made with experimental data of Pike (1977).
The agreement shows that the experiments are better described by

. . . *
the theory presented here than by the original suggestion h = z,e

The other extreme case, represented by equation (4.1.46), has been
investigated by Katto, Takahashi and Yokoya (1973), who considered
pool boiling under low pressure. Since, in the latter case, the
growth of the bubble base is not exactly represented by equation
(4.1.44), the authors interpreted their results with the aid of the

following expression:
_ 8
Rc(t) = Ys(Kt),' (4.1.50)

In their experiments, s varied from 0.721 to 0.561 for different
bubbles. The equivalent of equation (4.1.46) in this case becomes:
1/6 8

1 1/6 1/6 1/8
s YS/E’Pr ! (&) / == / (4.1.51)
(2-2s) t

b (t)
(wrt)l/2

-4
3

When s = 1/2, Yg =Y and equation (4.1.51) reduces to (4.1.46),
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Katto, Takahashi and Yokaya showed that their experimental data could
be represented by:

1/6 1/8
b () Pl

(we)1/?

4
=3 1/:.

8
ok 176, ° (1/6 :
({J ) C;T:ED . (4.1.52)
Equation (4.1.52) has been proposed on the basis of dimensional
analysis, combined with the results of the study of flattened air
bubbles between two parallel discs mentioned earlier. For s = 2/3 = 0,67
the agreement with (4,1.51) is exact, and the agreement remains

reasonable within the range of s-values considered.

Finally, the radius of curvature of the vapour~liquid interface in the
meniscus region will be discussed.

Experimental observation of this radius is relatively easy, and it

is therefore surprising that no attention has been paid to this
subject in literature. Since Cooper and Lloyd's assumption h* =2z,
does not take into account the normal and tangential stress conditions
in the meniscus region, their analysis cannot be applied to determine

the radius of curvature in the meniscus region.

In an elucidating paper by Groemveld (1970a), it has been shown
that the mean radius of curvature in the meniscus region , ?;,'is

three times the minimum radius of curvature L i.e.:

r =3r (4.1.53)

When restriction is again made to the asymptotic, diffusion~controlled

mode of growth, the following expressions for Eo follow from (4.1.40, 42):

r () RYE

o - o \1/3,¢t 1/6

RSy ey T (4.1.54)
when v’ g e &,

and

r (t) 1/%

<] 3.2 1/2 ¢ 1/!*

= R (4.1.55)

(vt)llé YI/ZPrli2 oK
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3
when vy >> 7 ox e

Since Pr = v/k, it is observed from (4.1.54, 55) that ;o(t) does

pot depend on viscosity. This is in agreement with experimental
observations of Cooper, Judd, Malcotsis and Pike (1975) and Cooper,
Judd and Pike (1978) who state that viscosity has little effect on the
bubble shape. Agreement between ?;(t)-values calculated from

equation (4.1.39) with experimental results is reasonable; cf. Fig. 3.4
compared to Fig. 3.5, cf, also Fig. 3.9.

4.2. The growth rate of a dry area

4.2.1. Formation of an adsorption layer. Contact angle between the
adsorption layer and the microlayer

In the microlayer, a dry spot with radius Rd(t) may grow; cf. Fig.
1.2. Growth of the microlayer is caused by two mechanisms:

(i) evaporation, resulting in so-called dry-out, and (ii) capillary
effects. Since dry area growth by evaporation has been treated
extensively in the literature, cf. e.g. Van Ouwerkerk (1970, 1971),
here only dry area growth by capillary effects will be treated. Dry
area growth in liquid films under isothermal comnditions has
applications beyond the field of microlayer behaviour, and the
theory developed here will be used to explain the growth of the

contact perimeter of a gas bubble on a wall im Section 4.3.

Under isothermal conditions, a completely dry area will not be formed,
since it would be a violation of the adherence or no-slip condition
at the solid wall. Instead, a thin ﬁicroscopic liquid film, the
so~called adsorption layer, remains at the wall. Since such a

ligquid film hardly evaporates, the name dry area for the part of the
solid wall covered by the adsorption layer is acceptable. Since the
surface tension of the adsorption layer is smaller than the surface
tension of the microlayer (or bulk layer), a contact angle @o will

be formed between the adsorption layer with thickness hS and the

bulk layer; cf. De Feijter and Vrij (1972), and cf. Fig. 4.4.

103



!
:g!g‘ adsorption layer
3E g5 pressure -p| ,
3" ! liquid
‘gl B /' pressure
z h butk ayer he P178F
"Ry, solid wall

Re

Fig. 4.4. Thin liquid layer adhering to a horizontal solid wall

In conclusion, it follows that:

at h = h_, 3h/3r = tan @0. 4.2.1)

For the rate of thinning of the bulk layer, the following equation

can be obtained by combining equations (C53, 58, 62) from Appendix C:

3%h oh
o G 3
3 _ 20t 3r? dr Ah7Apg Re Y
3% ;" T eehh) |t TR T
L@ ey NERSRY T
(4.2.2)

For the meaning of the symbols in equation (4,2.2) cf. also Fig. 4.4,

When, for a sufficiently large value of Rd’ gravity, suction and
evaporation are neglected, the rate of thinning of the liquid layer
under the influence of capillary forces is given by the following

equation:

3h _ 20h* 3%h

- 3h 4.2.3)
._.____._.__._;. (
It 3nr2{l+(§%)2} ar?

From (4.2.3), it is observed that for h = 0, 9h/dt = 0; consequently,

complete drying by capillary forces cannot occur in the present case.
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However, as is discussed above, a 'dry' area is formed when a
certain thickness, hs’ is reached by thinning; consequently, the
condition (4.2.1) must be applied at the dry area radius r = Rd(t).
In this way, the evolution in time of Rd(t) can be determined with
the aid of equatiom (4.2.3). Since it 1is customary to speak about
*slip' over the wall by the contact perimeter Rd(t), the thickness

hs will further be referred to as the slip thickness.

It is a well-known phenomenon in surface chemistry that the contact
angle is not a constant, but depends on the sign and magnitude of
the velocity Rd; cf. Elliott and Riddiford (1967). Here, R; > 0, and
the so-called dynamic-receding contact angle must be used. In the

following analysis this angle will be considered as constant.
4.2.2. Dry area growth under the influence of surface tension

In this Section, the rate of expansion of a capillary-induced dry
area will be investigated for liquid layers, which are sufficiently
thin for gravity effects to be neglected, In that case, equation
(4.2.3) must be solved with the boundary condition (4.2.1) applied
at r = Rd.
It is convenient to consider the process of film thimning, and the
resulting dry area growth or adsorptiom layer formatiom, in a
coordinate system moving with the dry area radius Rd(t). For that

reason, a new coordinate x = r — R, is introduced and the transformed

d
equation (4.2.3) becomes:
o
20h 2
gh . 3h 3
5t R 3% " 5 ' (4.2.4)

N oh.213
3n(x+R,)* {1+(-§;)2}

After some time, the influence of the initial conditions h(r,0) has
disappeared, and the process of asymptotic dry area growth may be
considered as quasi-steady; i.e. the term 3h/3t in (4.2.4) may be
neglected. Thus, integration of (4.2.4), with use of the boundary

layer approximation x << Rd’ results in:
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3n
R(“’l--‘*i—) - 4o Ix

. (4.2.5)
d", 2 2 2 oh. 243
LU SO UL IR S R €l

In (4.2.5), the integration constant has been determined so that for

h =h_, 3h/dx = 0.

Substitution of condition (4.2.1) into (4.2.5) results in:

. 40n? sin ©
RZR, = —= ° (4.2.6)
3n

Integration of (4.2.6), under the assumption that hs and 60 are
independent of time, results in:
, 4ch§ sin O 1
= ———rtt - 3
Ry(e) = {Ry + , (=t )13, (4.2.71

where Rdo is the dry area radius at t = t,.

To check equation (4.2,7), the following simple experiment was
performed. A horizontal glass plate was covered with a thin layer of
water. The thickness of the layer was 1.5 mm, and the layer was
coloured with blue ink, so that it was clearly visible. At time

t =0, a drop of 1-Pentanol (amyl-alcohol) was allowed to fall upon
the layer of coloured water. Since the l-Pentancl has a surface
tension which is much lower than that of water, a contact angle is
formed between the !-Pentanol and the water. As a consequence, the
situation as shown in Fig. 4.4 is obtained, however, with a thin
layer of 1-Pentanol instead of the adsorption layer. In a similar
way as described above, the surface tension of the water will drive
the liquid aside, and the area where a thin layer of I-Pentanol

is present will grow, The growth of this thin layer with radius Rd(t}
was observed by high-speed cinematography. The result of one such
experiment is shown in Fig. 4.5. A linear relationship between R;

and t holds indeed during a certain time interval.

Next, a numerical example of dry avea growth by capillary effects in

a microlayer of a water vapour bubble will be considered.
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Fig. 4.5. Experimental data for the radius vs. time of a thin layer

of l-Pentanol driving aside a layer of water

For water, at T = 373 K, 0 = 0.06 N/mand n = 3 x 10™* Pa.s. A value
of @0 = 7/6 is chosen, whilst hs = 0,! um may be considered as an
acceptable value; cf. Ludviksson and Lightfoot (1968). Thus,

4Gh§ sin GOI n= 4 x 107'% p¥/s. In this example, Rao is the radius
of the cavity where the bubble is nucleated, and its magnitude will
be chosen as 1 um, Thus, it follows from equatiom (4.2.7) that, after

5 ms, Rd has grown from 1 um to 27 um.

It has been found by several authors, among which Van Quwerkerk
(1970, 1971), that, in that time interval, evaporation may cause the
dry erea radius to grow to a value of several millimeters;
consequently, in water under ordinary boiling conditions, the effect

of capillary on dry area formation is of rhe order of a few percents.
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4.3. Gas bubble departure as governed by the growth of the bubble

contact perimeter

In this Section, the theory for the description of dry area
formation in a thin liquid film under the action of capillary forces,
will be extended to the description of growth of the contact area

between a gas bubble and the wall to which it adheres.

When gas bubbles are considered, the process of bubble departure
cannot be described by the theory presented in Chapter 3, upon which
the simple model of Section 2.3.1 is based, because for gas bubbles .
"Ja << 1, and the bubbles grow relatively slowly, i.e., ¥ << 1.
Furthermore, the Schmidt number Sc = k/v is also small with respect

to one} cf. the numerical example in Section 2.2.2. It then follows
from equations (4.1.44) and (4.1.45) that the thickness of formation

of the microlayer is much larger than the bubble dimensions.
Consequently, the theory of microlayer formation, presented in
Section 4.1, does not apply in this case, and a microlayer is not
formed. Instead, the bubble makes contact with the wall at the
perimeter of the adsorption layer, or 'dry' area, i.e. Rd = Rc; cf.
Fig. 1.1. The bubble adheres as long as the upward buoyancy force is

smaller than the downward force of adhesion.

After nucleation, cf. Figs.4,6a,b,the bubble radius is approximately
equal to the radius Ro of the cavity where the bubble is formed. At
that time, the apparent contact angle is about }7. As the bubble
grows, the bubble contact radius also spreads beyond the cavity, as

will be explained subsequently,

During growth, the appafent contact angle, Ga, cannot immediately be
equal to the natural contact angle 60, cf. Fig. 4.6c¢c. Consequently,
a liquid 'layer' extending only over the short distance from Rc to
R _, may be supposed to exist near the bubble contact perimeter, cf.
Fig. 4.6d.

As has been illustrated in Fig, 4.6, initially, when the bubble

contact radius starts growing beyond the cavity radius, 98180 >> 1,

For this latter case, it will be shown that the bubble contact
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Fig. 4.6. Nucleation and growth of a gas bubble at a horizontal wall

perimeter can grow indeed. First, the extreme case where the rate of
growth of the actual contact radius, ﬁc, is lagging behind the
component of the bubble growth rate parallel to the wall, R sin Oa,

will be considered, i.e. ﬁc << R sin @a’ or éa < 03 cf. Fig. 4.6e.

Assume that, in that case, the curvature of the gas-liquid interface
in the region R, < r < R may be neglected with respect to the
curvature of the bubble boundary 1/R(t). Then surface tension forces

are negligible with respect to the suction pressure in equation
(4.2.2).

Also, since the layer extends over a relatively short distance, it
may be assumed that R_ = Rc = Rd in equation (4.2.2). Consequently, the
rate of thinming is governmed by the following equation:
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3
§_2=-_ﬂ1._, (4.3.1)
~ 3nRiR

where Aps = 20/R.

In the same way as in the discussion presented in Section 4.2.2, it
is assumed that the process of film thimming is almost steady in a
coordinate system moving with the velocity of the contact radius Rc(t).

In this way, the following expression is derived from (4.3.1):

3
kc%=—f‘ﬂ‘— ) (4.3.2)
3nRzR

At r = Rc’ h = hs’ and 3h/3r = tan @0. Substitution of the latter

conditions in (4.3.2) results in:

de‘: 4csh§
W T TR OF (4.3.3)
Under the assumption that hS and @0 are constant, it follows with
R = Y(Kt)i that:

8oh? 1
R = [Rg + s (t%-té)]3 ) (4.3.4)
¢ o ! : o
nyKk* tan @o

In many cases, however, the growth rate Rc predicted by equation
(4.3.4) is not small with respect to R sin .. In that case, the
assumption of negligible curvature in the liquid layer no longer
holds. When the principal radii of curvature 1/R; and I/R2 in the

region R, < r < R are no longer negligible, equation (4.2.2) reads:

9h _ 20n® 1 12
Fw = e e b = 2 (4.3.5)
3t BnR"; R, R, R

where again aps = 20/R.
In the limit R, * R, R, » R, 3h/3t = 0; i.e. the rate of thinning

decreases when the gas-liquid interface in the region Rc <r <R, is

curved, This explains why the growth rate of the bubble contact
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radius will not exceed the value R sin Ga, and consequently @ati 0.

During adherence, the apparent contact angle ea may gradually

decrease and, at a certain time, @a = 80. When this situation is

reached, again two possibilities arise:

i)

(ii)

the growth rate of the bubble contact radius lags behind

R sin 0, i.e. the situation O, << 6, will occur. In this case,
the curvature in the region Rc < r < R may be assumed to be
large with respect to 1/R(t); cf. Fig. 1.1. Consequently, the
growth of Rc must be described by equation (4.2.7).

As previously discussed, the second possibility is that the
growth rate of the contact area follows the growth of the bubble
radius, and @a = 60. In the l%terature, it is often assumed
that @a = 60, i.e. that Rc = R sin @Q and, consequently, that
the bubble foot moves smoothly over the wall when the bubble
grows, For the latter case, Fritz's equation (2.4.28) for the

departure diameter holds.
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Fig. 4.7. Experimentally determined radii vs. time

of a COz—bubble in beer
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In the previous discussion, an explanation is given of the hydro-
dynamics of the growth of the bubble foot. Now, as an illustratiom,
results of a simple experiment will be reported.>Fig. 4.7 shows R*
and Ri vs. t for a CO,~bubble growing in beer. The bubble adheres

to a brass wall. It is observed that, during the first 31 s of bubble
growth, the growth rate of the bubble foot does not lag behind

R sin Oa. Hence equations (4.3.4) and (4.2.7) cannot be applied in

this time interval and they predict too high a value for éc‘

However, it is observed that, after t = 31 s, the bubble foot is
lagging behind the bubble radius and, at t = 50 s, a constant value
Rc = 0.2 mn is reached. It was seen from the experimental results
that the maximum value of Rc is not reproducible very well and,
consequently, since the departure radius of gas bubbles strongly
depends on Rc’ it is not possible to predict accurately the

departure radius in this case.

4.4, Conclusions

In this Chapter, the hydrodynamic aspects of the phenomena occurring
between the bubble and the horizontal solid wall have been

investigated.

In Section 4.1, a theory has been developed for the description of
the thickness of formation of the liquid micro~layer between a
rapidly-growing vapour bubble and a wall. The theory has been
compared with experimental results of Pike (1977) and Katto,
Takahashi and Yokoya (1973). The agreement shows that the experiments
are better described by the theory presented here than by previous

theories found in the literature,

In Section 4.2, the growth of a dry area in the microlayex is
considered. Since in the literature dry area formation caused by
evaporation has been treated extensively, here dry area formation by

capillary effects is treated only. The physical model is described
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in Appendix C, and an approximate equation for the rate of dry area
growth has been derived. It is shown that, for water vapour bubbles
under ordinary boiling conditions, capillary effects only contribute
a few percents to dry area growth; this constitutes a theoretical
verification of the assumption made in the literature, that

capillary effects may be neglected with respect to evaporation.

In Section 4.3, the theory developed in Sectiom 4.2 is used to show
that the base of a slowly-growing gas bubble can grow beyond the
cavity where it was nucleated, It is explained that, during a

certain time interval, the apparent contact angle of the bubble may
be constant, On this latter assumption, the well-known Fritz equation
(2.4.28) for bubble departure is based. However, after a sufficiently
long time of bubble growth, the apparent contact angle decreases and,
consequently,Fritz'sequation cannot be used. These theoretical results

are also illustrated by an experimental example.
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APPENDIX A
Equations of motion for potential flow around spherical bubbles

When the flow field is not spherically symmetric, the Rayleigh
equation (2.2.10) does not hold. However, when rotational symmetry
ig assumed around a spherical bubble, the equations of motion can
be derived easily by using potential flow theory. In order to show
the validity of certain equations for single bubbles, and for the
purpose of an order of magnitude estimation (cf. Section 2.3.3), the
equations of motion of two neighbouring bubbles will be considered

here; cf. Fig. Al,

The general solution of the potential equation (2.1.15) for flow

around two bubbles is given by:

= A (CI }
¢(r,t) = I =——=—P.{cos O(t)}+ I — P, {cos ©*(t}}. (A1)
U jmr)it 1 i=0 pr ()1 1
=2
558
eBE
"ew

moving bubble

B ron moving point

= [r(t), 8t
(% [, 8%

mioving bubble,
marked with”™

Fig. Al. Configuration of two spherical bubbles
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The spherical coordinate systems {r(t),0(t)} and {r*(t),0*(t)} are
fixed with respect to the two moving bubbles. The quantities for one
of the bubbles are distinguised from those of the other bubble by

the superscript *, In (Al) O represents the azimuthal angle.

For our purpose, it is sufficignt to consider the influence of
growth of one spherical bubble on the growth and translation of
another spherical bubble. In that case, the result must be correct
up to order (R/z)? and (R*/z)2, and only the monopole and dipole °
terms of expression (Al) play a part; cf. e.g. Isenberg and Sideman
(1971). Consequently, expression (Al) simplifies to:

a a a* a*
$(x,t) =24+ L cos 0+ ==+

r r
rZ (r*‘) 2

cos O, (A2)

The coordinate r* can be determined from r, z and cos O with the aid

of the cosine rule:
r* = (r2+ 4rz cos O + 422)4. (A3)

By making use of the Poisson formula, cf. e.g. Butkov (1973), one

obtains?
2z _ 1 - ® _yir i
== izo -1 (2z) Pi(cos 0). (A4)

2
{1+-§-cose+§;—z) }i

In the following treatment, the flow field in the neighbourhood of
the upper bubble will be considered; i.e. the point P in the flow
field is chosen near r = R; cf. Fig. Al. Consequently, expression (A4)

simplifies to:

e (45)

From the cosine rule r = {(x*)? + 4r*z cos O + 422}%, combined with

(A5), one obtains:

1 ¢
cos O* = - 1 + §'(;)2- (A6)
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Substitution of (A5,6) into (A2) results in:

. a a* a; a a;r
O(x,t) = =+ 5> = ——+ (— = —=) cos O, (A7)
¥ Z 42 r? bz

For a translating spherical bubble,the equivalent of the kinematic

boundary condition (2.2.4) becomes:

(u) =R+ U cos O. 3 (48)
r r=R

Making use of equation (2.1.15), i.e. of u = ¥$, it is easily seen

from (A7,8) that the following expressions hold:

a_ = -R’R, : (49)
0
a*Rr®
a, =~ -%—RgU -, (A10)
822

In a similar way, it can also be derived that:

a¥ = -(R*)*R*, a1
) a (rR%)?
a* = -=(R*)3g* - -, (A12)
1 2 2
8z

Substitution of (All) into (AI0) results in:

S Y ] BRR* 2 .
a, = -'fR U + -8'("—2:—) RR*. (Al3)

Similarly, it is found that:

o Lepeysy* » LEREZ |
at = ~5®*)*0" + o) R*R. (A14)

It is remarked here, that substitution of (A9,11,13,14) into (A2)
gives the same result as obtained from an exact expression for ¢
derived by Isenberg and Sideman (1971), when terms of order (R/z)3

and higher orders are neglected.
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With the aid of expressions (A9,11,13,14), the expression (V$)* in
the Bernoulli equation (2.1.16) at r = R can be expressed in R, ﬁ,
U, R*, R* and U*, In the latter expression, terms in U? cos 20 also
occur due to its non-linear character. The occurrence of terms in
cos 20 indicate that a translating sperical bubble cannot exactly
satisfy the dynamic boundary condition equivalent to (2.2.7); i.e. a
deviation from the spherical shape will occur, However, in the
following treatment, cases where U << R will be condisered only, so

that terms in cos 20 are sufficiently small.

Also the term (3¢/8£) , occurring in the Bernoulli equation, can

r=R
be expressed in R, R, U, R*, R*, and U*, When evaluating this term,
expressions for t, I*, ® and 0* are needed. For spherical bubbles

the following expressions are easily obtained:

= - U cos 9, t* = - U* cos 0%, (A15)
. * -

8= -I-;- sin 9, O* = -:-‘I-; sin O*, (A16)

Further, it will be assumed that the surface tension along the

vapour-liquid interfaces changes with O in the following way:

o=0_ + o! cos O, O* = 6; + (0")* cos O%, (A17)

With the expression for the normal viscous stress L 2n8ur/3r, the
following two expressions are found by application of the Bernoullil

equation (2.1.16) at the vapour-liquid interface r = R:

3 42 u,? R* (R*R¥ 2xy2) o L 5:.2 x{T* '**..,_.__ﬁ*u =
RE + 7 R z) A (R*) 5 (z ) (R*U* + 5R*U A )
D - 26 .
PP To _ ank . (A18)
) R pR ’

. * 2 L] * L
RU + 3RU - % (-%—) (RR* + RR*) - -g--g%- (R*)2=

Gt

- pep o 4ot _ 12U 3n R*ZR* Al
= 2gR R R o G ) 7 (A19)
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As has been discussed above, in (A18,19) terms of order (R*/z)? and
higher orders have been neglected, and it is observed from (A19)
that, in this approximatioﬁ, only the growth of the lower bubble
influences the translation of the upper bubble., In (A18) the term
(U/4)* has formally been included; however, it is stressed again
that, when U is not small with respect to R, the bubble deviates from

the spherical shape and is somewhat flattened.

The coupled set of equations (A18,19) also describes one bubble at
a distance z away from a solid wall where the normal component of
the velocity vanishes. The latter boundary condition can be
satisfied by considering the lower bubble as a 'mirror' bubble with
U* = U and R* = R. In this way;equation {2.3.17) has been obtained

with z = U,

For a free bubble, equationms (2.3.1,2) are obtained by taking the

limit z = o,

Finally, it is stressed that equations (Al18,19), based on the
assumption of potential flow, are valid only when the vorticity
produced by the tangential stress boundary condition at the vapour-
liquid interface has not yet been transported far away from the
bubble.

APPENDIX B
Product rules for the gemeralised Riemann—Liouville operator

This Appendix provides on intreduction to the mathematics used in
Sections 2.2, 2.5 and in Section 3.3.2. Proofs of the equations
stated here will not be given since rhese can be found in the book

by Oldham and Spanier (1974).
According to a classical formula due to Dirichlet, cf. Ross (1973),

the Riemann-Liouville integral defined by equation (2.2.18) is

equivalent to an n—fold integral when -v = n is an integer > 1:
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e (t't')] ?
t tn—l t2 t1 -
= Joa T a ... Jodey [ f(e )de . (31)
[ < c C

In the following discussion, the meaning of cnzf(t)’ n is integer
> 0, will be investigated. As can be seen when differentiating

equation (2,2.18) of Chapter 2, the following expression holds:

n

d v _ aDFV
ZE thf(c) = th £f(t), n+v < Q. (82)

Expression (B2) can be used to extend the definition of the
Riemann-Liouville operator to values v > 0 in the following way:

n
d -n+v

v
thf(t) wa P f£(t), -n+v < 0, v > 0. (33)

As a consequence of (B3), composition rule or product rule (B2) is

valid for every real v. From definition (B3) it also follows that:

n
er) = LEE) (B4)
t dtn

independent of ¢, which has been omitted in the notation in this

case,.

From equations (B1) and (B3), it is seen that the generalized

Riemann-Liouville operator CDZ, -0 < y < =, has the character of a

fractional 'v-fold' integration or 'v-fold' differentiation. Euler's

rule (2.2.25) for fractional differentiation of powers of t has also

the same form as the ordinary rule for differentiation. For these
reasons, the notation dvf(t)/d(t*c)v is frequently used to stress

the similarity between fractional and ordinary differentiation.

Equation {(B2) represents one of the product rules for fractional
. s + R
differentiation, namely D: cD: = CD: v, n integer > 0, —© < v < @,

In the following presentation, the other product rules will be
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mentioned without proof. These rules represent the main advantage of
using fractional derivatives rather than the original integrals. The

inverse of equation (B2) is given by:

n~1 I g

v .1 n+v

D D f(t) = D £(t) -~ I sppe——— () (B5)
et t et j=0VF(J n-vt1) agd t=e
Another very important rule is:

-y v a vj
CDt th f(t) = £(£) + I Cjt . (86}

i=1

In (B6), m=0 for v < 0, For v < 1, €, = 0 when f(c) = 0. For v > 0,
v < m < v+l; the determination of the coefficients Cj has been

treated by Oldham and Spanier (1974).

Finally, the general 'law of exponents' is given as:

u v . putv
P P £(r) = P f(t), (B7)

and holds for all u when v has such a value that the series in the

right~hand side of (B6) vanishes.

The composition rules (B2, B5, B6) have been used in Sectiom 2.5.
Oldham and Spanier (1974) have tabulated useful rules and fractional
derivatives of many functions, especially for v = + i. One of these
standard results, used in the derivation of equation (2.2,46) from

equation (2.2.44) reads:

P |
0Dt5 exp(t) erfc(t%) = 1 - exp(t) erfc(t%). (88)

Also, the so-called Grunwald rule, used in Section 3.3.2, is

recalled here:

t~c

SR G — B L)
v s N I'{i-v) . t-c
thf(t) = 1im 'I',-(T ji:a f_(-%:']_)" £ (t | T)- (Bg)

W

The latter series expansion is often used as a definition of

fractional derivatives.
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APPENDIX C

The equations of motion of the gas—liquid interface of a thin
1iquid layer at a horizontal wall under the influence of forces

normal to that interface

C1. Division of the flow field in finite elements

To obtain a solution of the flow field in the thin liquid layer shown

in Fig. 4.4, the following equation of the biharmonic type must be

satisfied:
2 2
[ 2 3 139 ] 2
Dy = p?(D ¥) = Q——; T -—59 v=0 . ()]
dz

ar

Equation (C1) is presented in cylindrically symmetric cylinder
coordinates; this equation has been derived in a way which is
similar to the derivation of equation (2.1.9) in cylindrically
symmetric spherical coordinates. Only quasi steady, low Reynolds
number flow will be considered, so that the inertia terms of the
left~hand side of (2.1.9) vanish.

Equation (Cl) must be complemented by two boundary conditions at a
boundary enclosing the flow field. At the solid wall, these conditions
are that the normal and tangential components of the velocity vanish.
At the gas-liquid interface, a condition for the normal and tangential
stress must be satisfied. When, in addition, conditions at the beginning
and end of the layer are prescribed, the flow field can be determined
in principle. From this solution éf the flow field, an expression for
the normal velocity component at the gas~liquid interface follows.
From this expression, the evolution in time of the gas-liquid
interface can be determined. Since it is not possible to match
analytically the boundary conditions to the general solution of (Cl);
because the gas-liquid interface has an irregular shape and is not
known beforehand, the flow field is divided into N+! finite elements
with vertical boundaries; c¢f. Fig. Cl. Each boundary between the
elements is characterized by an integer i, i = 0,1, ... N. An

element bounded by boundaries i and i + 1, or i = 1 and i, is denoted
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gas or vapour
elerment N-‘

element i~ element i+
element Otorl- -

\ .

axis of mtational symmetry

liquid | .
I L
Ro ) B S A O o
. i interface N-1
F interface 1 4 interface N
! interface i-1 interface 1+1
\ .
solid wall interface 1

Ry

Fig. Cl. Division of the flow field in finite elements

by element i + §, or i - }, respectively. In short-hand notationm,
these elements will be denoted by i+ and i~. The distance between
interfaces i and i + I, or 1 - | and i, is denoted by Ai+’ or Ai—’

respectively. Consequently, the equation:

i i+l
r. = I A, = L A._ , (c2)
Pooge I gmr M

gives the position of interface i.

The radius (ri + v, .)/2, situated in the middle of the interval

i+l

i < <
for which r; 2r s LEPY
In this way, the digtance between to neighbouring radii T._ and

ri+ equals Ai = (Ai_ f Ai+)/20

In each element i+, the following solution satisfies equation (CI):

2 3 2 2 2.3
b, (r,2,t) = a;, 2" + b 27 + e 172+ rT2 {c3)
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In (C3), the coefficients ai,o bi+' Ciy and di+ are independent of

r and'z; however, they are functions of time.

With expressions for the velocity components, which are similar

to expressions (2.1.7, 8), namely:

1 3 ]
(u,w) = T - FYLd 5;)“’ » (c4)

the following expressions follow from (C3):

2

b4 Z 2
ui+(r,z,t) 2ai+ T 3bi+ ;—- 2ci+rz 3di+rz R (c5)

2 3 : )
wi+(r,z,t)k= 2ci+z + Zdi*s . (Cb)

From (C5) and (C6) it is noted that, at the solid wall z = 0, the
conditions of impermeability w = 0 and the adherence or no-slip

condition u = 0 have already been satisfied.

The solution defined by equation (C3) is not a general solution,
since it cannot be matched to the boundary conditions everywhere.
Furthermore, also continuity conditions are required to connect one
element to another., The expansion coefficients ai+(t), e di+(t)
will be determined in such a way that the boundary and continuity
conditions are approximately satisfied. The four coefficients can be
determined when, in addition to the two boundary conditions, two

continuity conditions are prescribed.

From a physical point of view, the most obvious continuity conditions
to be satisfied are: (i) continuity of volumetric flow rate T = —Zth
from one element to another, and (ii) continuity of velocity in the
z*directioﬁ Y = (3¢/ar)h/r at the gas-liquid interface.

By way of approximation, only these two continuity conditions will be
satisfied. Consequently, step-functions, S~functions, and derivatives
of §-functions occur in D" at the boundaries between two adjacent
elements. Therefore, in the limit of zero discretization interval,

it is no longer guaranteed that equation (Cl) is satisfied. However,
in Section C6 it will be shown that the error introduced in this way

is sufficiently small.
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Another approximation will be that the normal and tangential stress
boundary conditions at the gas-liquid interface are satisfied at
T=r., only, i.e. in the middle of each fluid element. The latter
points are the so-called collocation points, and the approximation
method proposed in this way is the so~called local collocation
method; cf. Finlayson (1972).

In the next part of this Section, expressions will be derived for the
normal and tangential stresses at the gas~liquid interface, and

for the volumetric flow rate.

From the general expression for the stress tensor 1, the following
expressions can be derived for the tangential and normal stresses at

the gas—-liquid interface z = h:

_ 3y 2h
du W W ar Ju _u ow ar
T T e O S ()
t 3z ar 1+(§§)2 Br' 4 3z’h 1+(ah 2
ah ohy2
oW Ju oW r 3r
T TP NGy - G ey r)ﬁ Shyo © 2( Ph 7
G e’
r
(<8)

In the following treatment, it will be assumed that |3h/dr| is
sufficiently small to neglect the second term in the right-hand
side of (C7) and the second and third terms in the right~hand side
of (C8).

Under these assumptions, (C7) simplifies to:

i+ %'+ ci+(r-+ %i).+

1
Ttii(r,h,t) = ~2n{a;, —+ 3b
W 1-E? |
+ di+(3rh + }—)} m . : (09)
l+(5;9 '

In the following treatment, restriction will always be made to the
case z < h << r. This assumption will lead to considerable

simplification and there will be no explicit indication where it
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has been used in the following discussion. In this way, the interesting
" case r = 0 has been excluded from the discussion; cf. also Section (6.

Thus equation (C9) further simplifies to:

oh,2
1 h T
Tti+(r,h,t) = -2n(ai+ '}-:- * 3bi+ ; + Ci+r + Bdi*’l’h)m . (C]O)
sr

Since a simple algebraic expression (C3) has been proposed for the
solution, the pressure in the layer can easily be expressed as a
function of the expansion coefficients by integration of the two

momentum equations for Stokes flow:

5 ns .2 /

§§-=--r-é—zw , (11)
3p _n3d 2.

'5'5—;?{;9‘11 g . c12)

Substitution of (C3) into (C11,12) results in:

3 _ 1
(5%)14. = -én(b,, T* .1, (C13)
3 - -

(§§)i+ = 4n(ci+ + Bdi+z) pg . {C14)

Since 3p/dr turns out to be a functiom of r only, and similarly
3p/dz is a function of z only, expressions (C13, 14) can easily

be integrated, resulting in:

s

r ) 2 2
pi+(r,z,t) = n{-ébi* in —r1—+ + 4ci+z + 3di+(22 -r )} - Pgz + poi+ s

(C15)
where po; is an integration constant which will be specified

subsequentiy.

In the following discussion, the relatively slowly varying
logarithmic term in (C15) will be neglected with respect to variatioms

2 . . P
of the term in r . In this way, equation (C15) simplifies to:

2
pi+(r,z,t) -p = n(4ci+z - 3di§ y - pg(Z‘%Q - 4pg {C16)
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In (C16) the choice of the integration constant Pois = P8hy, - Aps
needs some clarification. When there is no liquid motion, all

expansion coefficients in (C3) are zero and, at thickness h = h_,
the pressure difference over the horizontal gas-liquid interface

equals p_ - p, = —Aps, where Aps represents an applied suction

1
pressure; cf. Fig. 4.4,

Provided that |oh/or| is sufficiently small, the following expression
for the normal stress at the gas-liquid interface results from sub-
stitution of (Cl6) into (C8):

2
Tni+(r’h’t) tp = n(4ci+h + 3di+r ) + pg(h=~h ) + Aps . i

Finally, from equation (C4) the following expression is derived

for the volumetric flow rate [ parallel to the wall:

h
Ti+(r,t) = 27t f ui+(r,z,t)dz = -2wwi+(r,h,t) =

- 2 3 2.2 2.3
2w(ai+h * bi+h + gLt h° + di+r ') . (c18)

2, Normal stress and normal velocity conditions

According to the well-kmown Laplace-Kelvin equation, the difference
in normal stress over the gas-liquid interface is related to its

curvature by: 5

, 2% , 2
3r2 or
T, Py s T + 7 =f . (c19)
{1+GD} r{1+GD7)

Substitution of €19) into (C!7) at the collocation point (ri+, hi+)

results in the following expression for di+:
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h. f.
- .5 it 1 Ti+
di+ =3¢, % + T C (€20
Ti+ Ti+

In (C20), £ is defined by:

£= £, - pg(b-h) - ap = £ - £, - bp . (c21)
Substitution of expression (C20) into equation (C6) results in the

following expression for LA

+
w

2 2 71

wi+(r,z,t) 2Ci+2 + TR Z . (C22)
i
In the same way, a similar expression can be derived for Wyt

wi_(r,z,t) = 2ci~ z" + —_— z . (c23)

The requirement of continuity of velocity in the z-direction at the
gas-liquid interface, at the place where fluid element i~ borders on
fluid element i+, is given by:

wi_{ri, h(ri,t).t} = wi+{ri, h(ri,t),t} . (C24)

Substitution of (C22, 23) into (C24) results in:

_ - 1 n (fi_ _ f]‘_-l-) ‘ (025)
Cive T8~ TNV T2
T, T,
i- i+

By means of the following Taylor series expansions:

A, .
1 1 - it 2
"3 ;=3 + O(Ait} . {C26)
rii. ri . ri
1 of 2
= +o iy
Bia = £ Do 053Gy * 0040 (c27)

the following expression results from (C25):

C.,1 — C; 2h, r.,

i+ o I i _ i.3f
Y 7 B — 5GP+ 04 . (c28)
i 3nr.”

1
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In the limit 4; + 0, equation (C28) becomes:

3¢ 2h .
-3 E T - (€29)
3nr

In (C29) ¢ is a function of ¥, which is in contrast to what was
stated in Section (C1) where the expansion coefficients were
introduced as functions of time only. Consequently, when (C29)

is used, it is no longer guaranteed that equation (Cl) is satisfied,
However, in Section C6 it will be shown that the error involved

in satisfying (CI) is sufficiently small.

(3. Tangential stress and volumetrie flux conditions

In addition to the normal component of the surface tension force at the
gas—liquid interface, a tangential component may also be the cause

of liquid motion. A gradient in the surface tension results in a
tangential stress in the liquid adjacent to the gas~liquid interface,

expressed by the Marangoni-Gibbs equation:

30 8h
= 32 31’.‘ z = h, (CBO)

{1+ %}2}

Combining (C30) with expression (C9) for the tangential stress at the

collocation point T, results in the following expression for bi+

2
. e,, T, r.. s,
b, =-2r 1 _ it i+ .0 2 1 CidTi+. (c31)
i+ 3 hi+ 3 hi+ 1T i+  6n hi+
In (C31) s is defined by:
39 , 20 3h
3r  dz 3r g
g = Lo (C32)
3h 27172 or

I+ 27 O C—-D }
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Substitution of equation (C20) for di+ into (C31) results in:

b mocir 1S Tie 1 oo 1 Tielie (©33)
i+ 3 hi+ 3 hi+ 3n Ti+  6n hi+

Substitution of expressions (C20) and (C33) for d and b
respectively into equation (C18) for the vnlumetrlc flow rate T
results in:

2

T, (r,t) r. h
- — =, (1-3h)+c.rh<1-1‘; ) +
3r h,
i+
3 3
) fi+h . £ _ T, +sl+h
w - T em,, (€34)

1+

A similar expression can be obtained in element i-:

T, (r,t) 2 r.zh
i= h 2,2 i-
——5 a, h (1 3h._) ter ho(t ) +
i 3r hi—
3
fi_h r2 r_ 1_h
- O - 7 ~ "o ¢ (€35)
{oe

The requirement of continuity of volumetric flow rate across the boundaries

of the fluid elements is given by:
I'i"‘(ri’t) = Fi"(ri’t) . (036}

Substitution of expressions (C34, 35) into (C36) results in:

hi a, a;_
(8, - 30 - §‘~<hi+ T C LR
2 2 2
P T T T N s A T fi- Til
3 h, h._ 3n i .2 27 3n
i+ i-
h, r,.s 8,
+ 14 .
+_€;;{ lhl - 1h1 } . (C37)
i+ i-
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In the same way as in Section C2, the gquantities at i+ and i- are
expressed as quantities at i with the aid of Taylor series expansions,

Thus equation (C37) becomes:

R T T D I R T
= | + + 'a""')‘ h ( )
Al . A i nry 4ndr’i 4n
T
* Gyt 0 (c38)

Substitution of equation (C28) into equation (C38) results in:

Ltr, - 5D e s 00, (c39)
1

_ _ of
da b2 el (c40)

In (C39, 40) s' represents the effect of surface tension gradients,

and is defined by:

ts 3

3
1 ER v -
s (rs) T 5e

AT . (c41)

C4. Conditions at'the triple interfacial line and at the place of
outflow

Expressions (020, 29, 33, 40) make it possible to determine the
complete flow field in the layer when one value for a;, and one
value for ¢, Lare prescribed. For that reason, it is assumed that at
the place r = Ro the tangential stress vanishes. From equation (C10)
it follows that this condition results in:

\ )
a, + coRb 0o . ‘ ‘ (c42)

At r = R_ it follows that:

2 3?» Roosoo
ol = Tz Y . (€43)
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The coefficients ays ¢y can be expressed in a , ¢, with the aid of
expressions (C29, 40), which respectively yield for a(r) and c(r):

r r
- 1 hf _ . of i .
a(r) = a + §E'R ;o hg;%dr * I . I s'dar , (C44)
o o
2 T nf 1 af
clr) = e + Y s (—§~~ "—E'E?Ddr . (C45)
Ro r 2r

Substitution of (C44, 45) at r = R_ into (C43) and combination of
(C42) with (C43), results in the following expression for €yt

3ar R s R R
2- 2 - = = w0 o _I_- © __}—_. oo:[lg" af
cO(R°° Ro) —7 + 7 e ;I s'dr 3 ¢ = hs;adr
4rh R R
o [ 0
2
2R R
- oL 7 yar . (C46)
Ro r 2r

A similar expression can also be found for a .

Application of equations (C5, 18) at r = Rb results, in a similar

way as equation (C43) in:

a_o uo So 3I‘° So
L 4+ e R =--24+.2=2-_2 _+.2 (C47)
R o o ho 2n 47R h 4n ,

When it is assumed that 8, = Oatr = Ro’ it follows from (C42, 47)

that also u_ = f =0 at xr =R ,
(] o [

C5. Kinematic boundary condition and global continuity

The kinematic boundary condition at the gas-liquid interface reads,

cf. equation (4.1.4) :

3h dh _ 9
R T ey (C48)
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As has been described in Section 4.1.1, integration of (C48) should
result in the fellowing global equation, expressing conservation of

mass:

¥ q
3h . T
F(r,t) 2% R,{ Gy + EE) r dr. (C49)

O
When T is known, the velocity in 'the r~direction at the interface, w,
can be determined from the following equation derived from (C5) and
(c18):
37
uh(r,h,t} Ty + %1}8]_ . (C50)

From equations (C6, 20) it follows that the following expression

holds for the velocity in the z-direction at the intexface:

3
v, = 2ch2 + thz . (Gc51)
nr
From equations (C45, 46) an expression for c(r) can be found;
substitution of that expression into (C5!) results in:
2.2
gp.*uhgg_zhsf,rt»hz ;O BE B dE R
T T 3w R e A
ot o M or P T IR, - R)
R 2 R
P S N T U S I VI
R ( 3 2 ar)dr 2 2 ! r h5;adr +
(o) ;o 2r 3W(R - R ) R
o ° o
2 R, 3r_p? q
+ -——zh——2 (SQRm - s °°3'dr) - "—E—’—;—'—i— - -51% . (C52)
2n(R, - R) R, 2™, (R, ~ R))

Equation (C52) expresses the rate of thinning -3h/3t of the layer as

a function of the pressures acting normally at the gas-liquid

interface, and as a function of the volumetric flux Eé flowing out

of the layer at r = R_. Of course, there is a relationship between these
normal forces and the rate of outflow, and the relationship can be
determined with the aid of the global continuity equation (C49).
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First, equation (C52) will be simplified by considering only the cases
‘where the fifth term in the right~hand side, i.e. the surface tension
gradient term, vanishes.

With the above approximation,.the rate of thimming -3h/3t and the

accompanying rate of outflow I'  is composed of three parts,cf. also (C21):

(i) The rate of thinning —Bhliat caused by evaporation; the
accompanying outflow equals zero, and fl = 0,
(ii) The rate of thinning -ahzfaf caused by suction; the accompanying
outflow will be denoted by T oy and £, = -Aps.
(1ii) The rate of thinqing -8h3/8t caused both by capillary effects
and differences in hydrosta?ic pressure; the corresponding

= fU - £ .

outflow will be denoted by Tw3, and £ g

3
When it may be assumed that |3h/5t| >> ]uh 3h/sr|, equation (C53)
can be decomposed into three parts, each part representing one of the

causes of motion of the gas—liquid interface:

sh
L._h
3t pt (€53)
3 2 2,2
3h o 2h Aps ) 4h Aps Tod . 4h RmAps th hdr .
3t 2 3n ;73 2 2 3
Inx R.0 r 3n(ROa Ro) Rb
2 * 2
A R
. 2h Py [ ndr _ Sszh , (C54)
2 _ T 2 _ n2
3n(R, - R) R, 2mh_(R_ - R')
3 2,2
hf of 4h“R
3.h_3=2hf3+it.‘.2_ fr (—2——h———3-)dr- 5 x
ot 3nr? 3n R o~ 2r2 o 3n(R, - R )
R
w  hf of 2 R, hf, Of
R d ("% - "§§'3§§°dr - ....%3__75. ! —52" hﬁ?zadr +
o r 2r 3R, - Rb> R
s L2
I _ (c55)
2rh2(R% - ®2)
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Equation (C54) will be applied to the case where h, = h is

independent of r. In that case, equation (C54) simplifies to:

3 .
dh2 2h2ApS R 3P@2
w5 1nE_-..._...é_._._2_. . (C56)
3n(Rm - Ro) o 211(Rba - Ro)

For a horizontal interface, the flux flowing out of the layer can
easily be determined from equation (C49). It equals:

dh )

2 2
S - . c57
02 T n (R Ro) (C57)

] -

Substitution of (C57) inte (C56) results in:

R
3 ln’R_w
jhz T3 (R%hfézs)k R 5 : (c58)
t (R, + R )R

o0
==
[}

In the limit R_ > R = R_, (C58) results inm:
o0 o [

3
dh, Zh,Ap,
'&'E"”-——T,RO‘ngac . (059)
3ch

It is stressed here that the derivation of (C58) has been made under
the assumption h << r, consequently, expression (C58) loses its

validity for the case R -~ 0, hzr% 0.

Next, equation (C55) will be considered, First it is assumed that:

hif
. L4 33
w3 =7 3 Rf —— dr. (C60)
3 ,

In the following discussion, it will be shown that this choice is,
under some limiting assumptions, in agreement with the global

continuity equation (C49).

Substitution of (C60) into {(C55) for the case h, = h results, for

sufficiently large value of R, in:
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ah nef 4h? w hf df
B Sy A NN St I (c61)
3t 3nr? no ¥} 2r? or

Oniy over a relatively small interval R Sr< Ré, where Ré << R,
deviations from the horizontal shape are appreciable; cf, also Fig.
4.4 where Rb is replaced by R&. Consequently, the second term in the
right-hand side of (C61) represents a substantial contributicn only
in the region Rs-i r < R;, and its maximal absolute value is obtained

when ¥ = R,
[

Thus, the first term in the integrand results in a contribution to

dh,/3t which is an order fRé—ROI/Rb smaller than the first term in

the right-hand side of (C61), and may, conseguently, be neglected.

Partial integration shows that the second term of the integrand has
a negligible contribution when |3h/3r| << h/(R-R ).

In this way, equatioms (C60,61) have been simplified to:

3
3 M (C62)
Yyl 5 {fo, - 98(113 = hm)} 3
3nr
b 4y Rwhg Fo 8h3
w3- -5 . ! ;f-{fg = pglhy - h )}dr = -27 . S (C63)
[e] [¢]

From (C63) it can be seen that equation (C62) is in agreement with

global continuity condition (C49).

08, Discussion

From equation (C58) it follows that the rate of thinning of a

horizontal layer under the action of suction is given by:

) | 8Ap ln(R /R )
-—---—-=——-———(t-t) (€64)
n® hz IR, -R )2

An approximation for the rate of thinning of a thin layer between

two solid walls with Ro = 0 has been derived by Reynolds (1886) with
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the aid of the lubrication approximation equation. That approximation
makes it impossible to satisfy the normal stress condition locally
and, for that reason, the normal stress condition was only satisfied
in an integral sense. An extension of Reynolds' result to the case
where gradients in surface tension, characterized by Bs’ play a part

is given by:

1 164p
T*T*'—%(t‘ to). (C65)
h h 383an

An extension of Reynolds' espression to cases where R # 0 is,
yn %p o

however, impossible when the lubrication approximation is used.

Scheludko (1957) experimentally verified equ&tidn (C65), and he also
investigated the case R # 0. The relationship 1/n®- l/hi «t -t was

found indeed.

After all this lengthy analysis, the hydrodynamic interpretation of
the final equations of motion (C58) and (C62) is quite simple.
Equations (C58, 62) express that the interface is set in motion,
under the influence of a force normal to that interface, in the
direction of that force. The factor of proportionmality 2h%/3nr? in
(C62)) represents the viscous resistance against motion of the liquid
adhering at the solid wall. In the layer, the normal motion is
transformed into tangential motion. For the case of a horizontal
interface, with Ro = (, this tangential motion can reasonabiy well
be described by the lubrication approximation, as has been done by
Reynolds (1886). However, the explanation of this motion, and the

extension to situations where R0 # 0 and where the interface is
curved, can only be given when both normal and tangential gradients

in pressure are accounted for, as in this Appendix.

Finally, it is investigated whether equation (Cl) is satisfied.

First, the case described by equations (C62, 63) will be considered.

From equation (C49) it follows that &h = -F7(21) is given by:
3
rh f3

- dr. (C66)

2
P (r,t) = — [
h 3n RQ
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On the basis of {C6é6), it will now be assumed that:

T fadr

3
2. g

Y(r,z,t) = - . (c67)
RO

T

In the region r > Ré, this is a reasonable assumption since there
the interface is almost horizontal. With the aid of equation (C12),
it follows from {C67) that:

3f 2 9%F

wp = - 43R b+, 28 7 ¢
nnry 4(32+og)+ rgr—‘*‘ T 8rz. {C68)

For r > Ré, the last two terms in the right—hand side of (C68) are
small since the interface is almost horizontal. Alsoc |3p/dz + pgl

<< iniBrI, and the error in satisfying (Cl) can be compared with

the error introduced when the lubrication approximation (where

p/dz + pg = 0) is applied.

For the case described by equation (C58), the expansion coefficients
can easily be determined from equations (C20, 33, 42, 44, 45, 46).
Substitution of the values obtained in this way into equation (C2),
and making use of (Cl12), shows that equation (C68) is found again,
however, with stiar = 0, azfafar2 = 0, Consequently, it is shown
that the error in satisfying equation (Cl1) is sufficiently small in

this case too.
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2R /R)?, cf. eq. (4.1.35)

expansion coefficient, cf.
expansion coefficient, cf.
expansion coefficient, cf.
surface area of bubble cap
amplitude, cf. eq. (2.5.9)
= - ﬁc’ cf. eq. (4.1.35)
expansion coefficient, cf.
expansion coefficient, cf.
amplitude, cf. eq. (2.5.9)
= 20/p, cf. eq. (4.1.35),
1liquid gpecific heat

expansion coefficient, cf.

vapour specific heat at constant pressure
vapour specific heat at constant volume
concentration of gas dissolved in liquid

concentration at gas-liquid interface

saturation concentration

concentration at edge of diffusion boundary

layer
expansion coefficient, cf,
amplitude, cf. eq. {(2.5.9)

differential operator

: differential operator

.
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N

Riemann-Liouville operator

normal force per unit area at gas-liquid

interface, cf. App. C

hydrostatic pressure at gas—-liquid interface,

cf. App. C

cf. eq. (4.1.37),

cf. Sect. C5

cf. eq. (4.1.38),

= - Aps, cf. Sect. C5
= f0 - fg’ cf., Sect, C5

numerical constant in eq. (4.1.29)

normal force per unit area at gas-liquid

interface, cf, App. C

App. A
App. C
Ch. 3

App. C

App. C

App. C

[s~2]
mi*3)
[ms™1]
fm]

[m?]

[um]
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[m]
[w®s=2]
[J kg™']
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[J kg™]
[J xg™]
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vector function, cf. eq. (3.2.24)

total downward force exerted by wall on
bubble

upward buoyancy force acting on bubble
downward inertia force acting on bubble
upward reaction force exerted by wall on
bubble

downward surface tension force of adhesion
acting on bubble

absolute value of gravitational accelaration
component of gravitational acceleration in
r-direction

component of gravitational acceleration in
O-direction

cf. eq. (3.2.25)

thickness of thin 1liquid layer

siip thickness of liquid layer

thickness at end of liquid layer

thickness of formation of microlayer
dimensionless thickness of formation of
microlayer

cf. eq. (3.2.26),

initial thickness of thermal boundary layer
above wall

Jakob number

constant in Henri's law

latent heat of evaporation

dimensionless thickness of microlayer
number of collocation points,

number of terms in Grunwald series

: liquid pressure

¢ liquid pressure in microlayer

.

-

liquid pressure at bubble cap

transitional pressure, cf. Sect. 2.4.2.

pressure in potential flow region

: gas or vapour pressure

i gas or vapour pressure at bubble cap

e

liquid pressure at wall far away from bubble

[m,m®s™!]

(N]
(§]
(v]

[N]

[¥]

[m s™?]
[m s™*]

[m s%]
fms™]
[m]
[m]
[m]
[m]

(w*s™%]

{m]

[Pa m’kg~!]
[J kg™]

[Pa]
[Pa]
[pa]
[pa]
{Pa]
[Pa]
[Pa]
[Pa]
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bp, t suction pressure [Pa]
Pk : Legendre polynomial of degree k
Pr : Prandtl number
{g]kj : matrix element, cf. eq. (3.2.15)
q : heat flow density W m2)
4y : heat flow density at vapour-liquid interface

of liquid layer, cf. App. C W m?)
dy t heat flow density at vapour-liquid interface

in microlayer [W m™?]
a9 : heat flow density at vapour-liquid interface

of bubble cap [W m?]

[g]kj : matrix element, cf. eq. (3.2.18) [m-(23+1)]

[g*]kj : dimensionless matrix element Q

r : radial coordinate in spherical and cylindrical
coordinate system [m]
.5 : location of interface between two fluid
elements, cf. App. C [m]
i+ : midpoint of fluid element, cf. App. C [m]
o ¢ minimum radius of curvature in meniscus
region [m]
r' : distance from bubble cap [m]
'i:-o : mean radius of curvature in meniscus region  [m]
Ar ¢ region in liquid microlayer where evaporation
is maximal {m]
R : bubble radius [m}
Rc ¢ bubble contact radius, location of microlayer ‘
formation [m]
Rd : dvy area radius [m]
Rdep : bubble departure radius [m}
R, ¢ equilibrium bubble radius {m}
Req : equivalent bubble radius {m]
Ri : bubble radius at collocation angle (—)i [m]
R0 : radius of cavity where bubble is formed, [m]}
location in liquid layer where tangential
velocity vanishes, c¢f. App. C [m]
R, : undisturbed bubble radius, cf. Seet. 2.5, [m]

location in liquid layer where suction

pressure is applied, cf. App., C [m]
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principal radii of curvature

location of transition between regions of

appreciable and negligible curvature of gas~

liquid interface, cf., App. C

: residual, cf. eq. (3.2.29)
: residual, cf, eq. (3.2.31}
: residual, cf. eq. (3.2.30)
: residual, cf. eq. (3.2.31)

e

.

v

'

exponent in bubble growth law,

function representing surface tension
gradient; cf. App. C

functions describing memory effects, cf.
eqs. (3.3.28,29)

Schmidt number

time elapsed after start of bubble growth
unit vector tangential to interface
dimensionless time, cf. eq. (4.1.48)
bubble departure or adherence time

time when Rc = 7

waiting time

cf, eq. (2.2.30)

liquid temperature

temperature of bulk liquid

temperature of vapour-liquid interface in

microlayer

: liquid temperature at bubble cap

saturation temperature at pressure p,

wall temperature

! vapour temperature

vapour temperature at bubble cap
temperature at edge of thermal boundary
layer surrounding bubble cap

mean value of T, cf. eq. (2.4.15)

mean temperature, cf. eq. (3.3.23)

: liquid temperature

e

velocity in r-direction in cylindrical
coordinates
velocity in r-direction at gas-liquid

interface

[m]

[m]

[ms™]
[ms™']
[w®s™?]

[ns™2]

[s]
(]

[s]
[s]
[s]
[m*s]
[X]
[K]

[k}
[x]
(]
{x]
[x]
[x]

[K]
(K]
[k}
%

ms™']

ms™
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velocity in r-direction in spherical
coordinates

velocity in O-direction in spherical
coordinates

liquid velocity vector

gas velocity vector

translation velocity of spherical bubble
bubble volume

volume of vapour originated from bubble cap
volume of vapour originated from microlayer
velocity in z—direction in cylindrical
coordinates

velocity in z-direction at gas-liquid
interface

coordinate parallel to wall in microlayer,
unknown in third order equarion (2.54.12),
function defined by eq. (3.3.24)

place where vapour-liquid interface in
microlayer becomes horizontal

function defined by eq. (3.3.25)

: coordinate normal to solid wall,

e

half of distance between centres of two

spherical bubbles

displacement thickness at Rc of hydrodynamic

boundary layer
dimensionless thickness of hydrodynamic

boundary layer

Greek symbols

o

w W R
" e U
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numerical constant in eq. (2.4.25)
expansion coefficient, cf., Ch. 3
expansion coefficient, cf. Ch. 3

factor characterizing influence of

concentration gradient at gas-liquid interface

coefficient, cf. eq. (3.3.11)

bubble growth constant for diffusion -
controlled growth

bubble growth constant for inertia -

controlled growth

[ms™']

[m 5]
[ms™!]
[m s™!]
[m s}]
[m’]
[w®]
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bubble growth constant, cf. eq. (4.1.50)
bubble growth constant, cf. eqs. (2.2.31,36)
gamma function

volumetric flow rate

volumetric flow rate at R , cf. App. C
thickness of thermal or diffusion boundary
layer around bubble cap,

small distance in potential flow region
outside microlayer

small distance in meniscus region of
microlayer

distance between midpoints, cf. App. C
distance between interfaces, cf, Aﬁp. C

disturbance in bubble radius

ratio of final to initial thickness of thermal

boundary layer above wall

liquid dynamic viscosity

azimuthal angle in spherical coordinates
apparent contact angie

natural contact angle

wall superheating

bulk superheating

liquid thermal diffusivity,

diffusion coefficient of solute in liquid
thermal diffusivity of gaseous phase
liquid coefficient of heat conduction,
dimensionless coordinate in microlayer
coefficient of heat conduction in gaseous
phase

= cos O, cf, eqs. (3.2.27,28)

liquid kinematic viscosity

cf. eq. (56.1.26)

liquid density

density of gaseous phase

surface tension
mean surface tension, cf. App. A
variation of surface tension, cf. App. A

characteristic time for bubble growth

[m]
{m]
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normal stress at gas-liquid interface
tangential stress at gas-liquid interface
stress tensor

velocity potential

heat flux

stream function

component of vorticity vector normal to
cross-sectional plane,

circular frequency of bubble oscillations
Minnaert frequency

vorticity vector

grad, differential operator

divgrad, differential operator
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SUMMARY

In this thesis, the departure of a bubble growing at a horizontal
wall has been investigated both theoretically and experimentally.

Two kinds of bubbles can be distinguished:

(1) Vapour bubbles. At a superheated wall, these bubbles grow
relatively rapidly by means of evaporation. A thin liquid
layer, the so-called microlayer, remains between bubble and
wall. Evaporation takes place both at the gurface of the micro-
layer and at the bubble cap.

(ii) Gas bubbles. These bubbles grow by accretion vi disscivea gas
which diffuses from the liquid to the bubble. These bubbles are
quasi-static and a microlayer is not formed. However, a very
thin adsorption layer is present between the bubble and the
wall.,

The process of departure is strongly dependent on the bubble growth
rate, For quasi-static gas bubbles, the rate of growth of the
adsorption layer, or so-called 'dry' area, also turns out to be of
importance. In Chapter 2 of this thesis, both departure and the
underlying growth processes are treated with the aid of simple models

in which the bubble is considered as a segment of a sphere.

Section 2.2 describes the coupled thermal and hydrodynamic processes
during growth of a free bubble in a uniformly superheated liquid. Two
modes of growth are distinguished, and a general expression for the

transition between these two modes is derived.

In Section 2.3, a simple model describing bubble departure under the

influence of buoyancy is introduced.

In Section 2.4, the model developed in Section 2.3 is applied to
bubbles in a non—homogeneous temperature field. In this way, the
empirical relation of Cole and Rohsenow (1969) for the departure

radius is explained theoretically.
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In Section 2.5, oscillations of spherically symmetric vapour bubbles
are considered. It is shown that, at a sufficiently high frequency,

the compressibility of the vapour may no longer be neglected.

In Chapter 3, the departure of rotationally symmetric vapour bubbles
in water boiling at subatmospheric pressures is investigated
theoretically, Departure occurs under the influence of gravity.
Deviations from the hemispherical shape are described with the globdl
orthogonal collocation method, and the heat transport process is
described with a finite number of terms of the Griinwald series for
the Riemann-Liouville operator. In this way, the treatment has been
reduced to the numerical solution of a coupled set of non-linear

ordinary differential equations.

Experiments have been performed on water boiling at subatmospheric
pressures., For a pressure of 10 kPa, the theoretically determined

bubble shapes and departure time are compared with experimental data.

Finally, in Chapter 4,the hydrodynamic mechanism of microlayer
formation and growth of a dry area under the influence of capillary

forces is considered,

The mechanism of microlayer formation is described in Section 4.1.
The theoretical results are in good agreement with experimental data
of Pike (1977).

In Section 4.2, the growth of a dry area under the influence of
surface tension is treated. For vapour bubbles it is shown that the
contribution of capillary effects is small with respect to dry area
formation by evaporation. For gas bubbles, however, the growth of
the bubble foot is determined by capillary effects; this growth
process is described in Section 4.3. It is shown experimentally that
the well~known equation of Fritz (1935) for the departure radius is

not applicable for quasi-statically growing gas bubbles.
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SAMENVATTING

In dit proefschrift wordt het loslaten van een groeiende bel op een
horizontale wand theoretisch, alsmede experimenteel ondgrzocht. Twee

soorten bellen kunnen worden onderscheiden:

1%, Dampbellen. Aan een oververhitte wand groeien deze relatief snel
als gevolg van verdamping. Tussen bel en wand blijft een dun
viceistoflaagje achter, de zogenaamde microlaag., Verdamping vindt
zowel aan het oppervlak van de microlaag plaats als aan de belkap.

27, Gasbellen. Deze groeien door diffusie van in de vloeistof opge-
lost gas naar de bel, Hun groei is quasi-stationnair en een micro-
laag wordt niet gevormd; tussen bel en wand bevindt zich echter

een dunne adsorptielaag.

Het loslaten is sterk afhankelijk van de snelheid waarmee de bel
groeit. Bij de quasi-stationnaire gasbellen blijkt ook het groeitempo
van de adsorptielaag, meestal de "droge" plek genoemd, van belang te

zijn,

In hoofdstuk 2 van het proefschrift worden zowel het loslaten, als-
mede de daaraan ten grondslag liggende groeiprocessen behandeld
m.b.v. eenvoudige modellen, waarin de bel als een bolsegment wordt

voorgesteld.

Paragraaf 2.2 beschrijft de samenhang tussen hydrodynamische en
thermische effecten tijdens de groei van een vrije bel in een uniform
oververhitte vloeistof. Twee groeistadia worden onderscheiden en een
algemene uitdrukking die de overgang tussen beide groeistadia

beschrijft wordt afgeleid.

In paragraaf 2.3 wordt een eenvoudig model voorgesteld voor het los~

laten van dampbellen onder invloed van de zwaartekracht.

In paragraaf 2.4 wordt het in paragraaf 2.3 ontwikkelde model toege-
past op bellen in een niet-uniform temperatuurveld. Het aldus ver-
kregen resultaat verklaart goed de empirische formule van Cole en

Rohsenow (1969) voor de loslaatstraal.
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In paragraaf 2.5 worden oscillaties van bolsymmetrische dampbellen
‘beschouwd., Het blijkt dat bij een voldoend hoge oscillatie~frequentie

de compressibiliteit van de damp niet meer verwaarloosd mag worden.

Op grond van de in hoofdstuk 2 verkregen inzichten in het gedrag van
de bel en van de mogelijke wiskundige methoden ter beschrijving
érvaﬁ, wordt in hoofdstuk 3 het loslaten onder invioced van de
zwaartekracht van omwentelingssymmetrische dampbellen in water onder
subatmosferische drukken theoretisch (numeriek) behandeld.
Afwijkingen van de bolvorm worden beschreven met de globale ortho-
gonale collocatie methode en het warmtetransport wordt beschreven
met een eindig aantal termen van Grunwald's reeksontwikkeling voor
de Riemann-Liouville operator, Op deze manier is het probleem
teruggebracht tot het numeriek oplossen van een gekoppeld stelsel

niet-lineaire gewone differentiaal~vergelijkingen.

Er zijn experimenten verricht aan water, kokend onder subatmosferische
druk. Bij een druk van 10 kPa worden de theoretisch berekende belvorm

en de loslaattijd van een bel vergeleken met experimentele waarden.

In hoofdstuk 4 worden ten slotte het hydrodynamische mechanisme van
de vorming van een microlaag en dat van de groei van een droge plek

onder invloed van capillaire krachten beschouwd.

Het mechanisme van wmicrolaagvorming wordt beschreven in paragraaf
4.1, De theoretische resultaten zijn in goede overeenstemming met

door Pike (1977) gevonden experimentele waarden.

In paragraaf 4.2 wordt de groei van een droge plek onder inviced van
de oppervlaktespanning beschreven. Voor dampbellen blijkt dat de
bijdrage van capillaire effecten verwaarloosbaar is ten opzichte van
droge-plek vorming door verdamping. Bij gasbellen echter wordt de
groei van de belvoet bepaald door capillaire effecten; dit groei-
proces is beschreven in paragraaf 4,3, Experimenteel wordt aangetoond
dat de welbekende formule van Fritz (1935) voor de berekenihg van de
loslaatstraal in het algemeen niet mag worden gebruikt voor quasi-

stationnair groeiende gasbellen.
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STELLINGEN

1.

2'

Omdat de zogenaamde "regel der exponenten" al een suggestie voor
de oplosmethode inhoudt, verdient de notatie met behulp van
fractionele afgeleiden de voorkeur boven de schrijfwijze met

integralen.

K.B, Oldham and J. Spanier, The fractional calculus, Academic
Press, New York (1974).

Dit proefschrift, paragraaf 2.5.

Voor het numeriek oplossen van de Navier-Stokes vergelijkingen in
een‘stroming begrensd door een vrij oppérvlak, verdient het aan-
beveling een zodanige eindige elementenmethode te ontwikkelen dat,
400rVeenvoudige'integfatie_vén de impuls-vergelijkingen, een
expliciete vitdrukking voor de druk wordt verkregen als functie
van de nog te bepalen ontwikkelings—-coéfficiénten in de proef-

functies.

Dit proefschrift, Appendix C.

Scheludko's uitbreiding van de formule van Reynolds voor het
dunner worden van een horizontale vloeistoffilm onder invloed van.
verticale krachten is onjuist.

0. Reynolds, Phil, Trans. Royal Soec., 177, 157 (1886).

A. Scheludko, Koll. Zeitschr., 155, 39 (1957).

Bij de groei van een droge plek in een vlceistoffilm op een wand

zal een eventuele concentratie-gradient aan het scheidingsvlak

tussel vloeistof en gas een verwaarloosbare rol spelen.



5. De correctie van Culick op de formule van Dupré voor de expansie-
snelheid van een zwarte plek in een vrij opgespannen zeepvlies is
onjuist. De discussie van Frankel en Mysels ter verklaring van de
door deze correctie ontstane dissipatie in de energie~balans is

daarom evenzeer onjuist.

A. Dupré, Ann. Chim. Phys., 11 (4), 194 (i867).

F.E.C. Culick, J. Appl. Phys., 31, 1128 (1960).

S. Frankel and K. Mysels, J. Phys. Chem., 73, 3028 (1969).

6. Het gebruik van een relatie voor de stroom-spamnings karakteristiek.
bij electrolyse, verkregen naar analogie met een betrekking tussen
de warmteflux en het temperatuurverschil bij kokende vloeistoffen,

zal niet tot juiste resultaten leiden.

7. Het verschijnsel dat in kokende binaire mengsels de bellen
minder snel coalesceren dan in kokende zuivere vloeistoffen, moet
worden toegeschreven aan de stabiliserende eigenschappen van de
opgeloste stof op de dunne vlceistoflégen tussen bellen. Het

Marangoni effect is hierbij slechts van ondergeschikt belang.

8, Het overbekende ervaringsfeit dat water nat is valt niet af te

leiden uit de standaard-werkem over hydrodynamica.
H. Lamb, Hydrodynamics, Cambr. Univ, Press (1974),.

L.M, Milne-Thomson, Theoretical Hydrodynamics, Macmillan and Co,
London (1955).

L.D. Landau and E.M, Lifshitz, Fluid Mechanics, Pergamon Press,
Oxford (1959).

9. Het verdient aanbeveling om in het Engels &én uitdrukking te
introduceren voor de Nederlandse taal, ter vervanging van de nu

naast elkaar voorkomende uitdrukkingen "Dutch" en Flemish".
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