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Abstract – Experimental results of the effect of time-periodic and “chirped” (electro-magnetic)
forcing on vortex patterns in shallow-water-layer flows are presented. Analogously to vibrational
control, the use of a time-periodic forcing results in stabilisation of otherwise unstable vortex
patterns. Chirped frequency forcing yields self-organising patterns that are different from those
in stationary and periodically forced experiments. The results are shown to be consistent with
theoretical analysis of 2D Taylor-Green vortices, i.e. unstable analytical solutions of the 2D Navier-
Stokes equation. These results imply that, compared to the more often analysed stationary forced
flows, time-varying forcing can stabilise different vortex patterns in shallow-water-layer flows.

Copyright c© EPLA, 2013

Introduction. – Shallow fluid flows behave quite dif-
ferently from fully three-dimensional (3D) flows. Contrary
to the small length scales observed in 3D turbulence, these
quasi–two-dimensional (Q2D) flows typically self-organise
into large vortices [1–4]. Self-organisation is, for exam-
ple, seen in geophysical flows (both in the atmosphere and
in the oceans), in soap films, and in electromagnetically
forced shallow-water-layer experimental setups. If 3D ef-
fects are completely negligible, these flows can be modelled
by the two-dimensional (2D) Navier-Stokes equation.

The Q2D behaviour of cellular flows (square arrays
of vortices in a bounded domain) has been studied
extensively. These flows are experimentally realised in
conductive shallow fluid layers using electromagnetic forc-
ing [5–7]. Contrary to the self-organisation in decaying
Q2D flows, stationary forced flows attain a station-
ary state that is organised for moderate forcing ampli-
tudes [8]. However, if the forcing amplitude is increased,
the flow typically undergoes a bifurcation, consistent with

(a)E-mail: m.lauret@tue.nl

theoretical analysis [9], and becomes time-periodic and
eventually chaotic in time and spatially disorganised.
For certain cases, Q2D cellular flows can be described

analytically as 2D Taylor-Green vortices [10]. These
square vortex arrays are a family of exact solutions of
the 2D Navier-Stokes equation. Their stability depends
on several factors like boundary conditions, the value of
the Reynolds number and magnitude and type of the forc-
ing. Stability analysis for decaying and stationary forced
2D Taylor-Green vortices have revealed that the vortices
remain stable for small Reynolds numbers [11–14]. For
decaying Taylor-Green vortex arrays at a higher Reynolds
number, the self-organisation into a domain filling vortex
can be explained using variational techniques [15,16].

In the present paper, we report on an experimental
study of the influence of different types of forcing on the
stability and self-organisation of Q2D cellular flows. In
particular the effect of time-varying forcing is discussed.
We show that time-periodic forcing can stabilise a cellular
flow that is similar to a 2D Taylor-Green vortex pattern,
but different from the Taylor-Green vortex resulting from
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a stationary forcing with the same spatial length scale as
the time-periodic one.
The remainder of this paper is organised as follows.

After describing the experimental setup, experiments in
which the flow is forced constantly in time are presented.
Then, experimental results for time-periodic forcing are
discussed. To study the effect of aperiodic-in-time forc-
ing, the flow resulting from “chirp” forcing (i.e. with the
temporal frequency of the forcing changing during the
experiment) is studied. Next, the experimental results
are modelled with analytical solutions of the 2D vorticity
equation. In the discussion, the comparison between the
theoretical analysis and the experiments, and also the role
of the forcing in vortex stabilisation are discussed. Finally,
some conclusions will be drawn.

Experimental setup. – The experimental setup (de-
scribed in more detail in [8]) consists of a square tank
with length L0 = 0.52m, filled with a NaCl-water solu-
tion with depth H = 8.5mm. The water has a density ρ =
1142 kg/m3 and a kinematic viscosity ν = 1 · 10−6m2/s.
The surface flow is described in a Cartesian right-handed
coordinate system (x, y) and the z-axis is perpendicular
to the fluid surface.
Beneath the bottom, 100 permanent magnets of 1.1T

are arranged in a square 10× 10 configuration with alter-
nating polarity, resulting in a magnetic field B(x, y, z).
The distance between two neighbouring magnets is
l = 5 cm.
On opposite sides of the tank, two electrodes create

a voltage difference that drives an electric current I(t),
whose magnitude can be varied between ±1mA and ±7A.
The flow is forced by a Lorentz force FL, resulting from
the combination of the magnetic field B(x, y, z) and the
uniform electric current density J(t) = J(t)ex, where ex
is the unit vector in the x-direction. The magnetic field
is assumed to be predominantly perpendicular to the fluid
surface and z-independent, implying B(x, y) = B(x, y)ez
(where ez is the unit vector in the z-direction). The
Lorentz force is then given by

FL(x, y, t) =
1

ρ
J×B = −1

ρ
J(t)B(x, y)ey, (1)

where ey is the unit vector in the y-direction. It should be
noticed that this Lorentz force is strongly localised around
the magnets.
To visualize the flow, small tracer particles (diameter

250μm) float on the free fluid surface. These moving par-
ticles are recorded by a camera mounted above the setup.
This camera has a sample rate of 15 frames/s and the cam-
era records the flow in a L × L square area in the mid-
dle of the tank, with L = 17.5 cm. The flow can then
be visualised with streak-line figures. By applying par-
ticle image velocimetry (PIV) [17], the 2D velocity fields
v(x, y, t) = [u, v]T can be determined. From these velocity
fields the vorticity ω = (∇ × v) · ez = ∂v/∂x − ∂u/∂y,
the kinetic energy E(t) = 1

2

∫
D |v|2dA, and the enstrophy
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Fig. 1: Experimentally obtained flow field (vectors denote the
instantaneous velocity) with 100 magnets and a direct current
I = 20mA. The array of alternating, permanent magnets is
indicated by the black circles (magnetic field pointing upwards)
and squares (magnetic field pointing downwards). For a direct
current this gives rise to an alternating Lorentz force resulting
in a square array of vortices each having alternating vorticity.

Ω(t) = 1
2

∫
D ω

2dA can be determined, with D denoting
the L× L area at the fluid surface.

Experimental observations. – To study the influ-
ence of the forcing on the phenomenology of emerging vor-
tex patterns, experiments with different types of Lorentz
forcing have been carried out. The first experiment stud-
ies the effect of a direct current (DC) of 20mA. This
forcing results in a square array of vortices each having
a size of l = 5 cm, as shown in fig. 1. This is similar to
observations by Cieślik et al. [8]. The vortex pattern, with
approximately 3× 4 vortices in the viewing area, remains
stable for currents up to I = 40mA.
A distinctly different vortex pattern is observed when

the flow is forced with a time-periodic Lorentz force.
Applying an alternating current (AC) given by I(t) =
I0 sin(2πft) (with amplitude I0[A] and frequency f [Hz])
results in the vortex pattern shown in fig. 2. In this figure,
snapshots of the velocity field for f = 1Hz and I0 = 5A
are shown at three different time instances. Vortex ar-
rays emerge that have not been observed using a station-
ary forcing. It has been experimentally verified that for
0.5 < f < 5Hz and 1 < I0 < 7A, the observed vortex
array is always similar to the ones shown in fig. 2. From
fig. 2 we conclude that most of the time the flow field
is represented by a spatially periodic pattern of vortices,
each having a size that is half the size of the vortices
produced with a direct current, i.e. 2.5 cm, as depicted
in fig. 2(b) and fig. 3. Moreover, this vortex array re-
mains intact for amplitudes of the alternating current up
to I0 = 7A, which is far above the maximum direct cur-
rent (together with a suitable array of magnets) that can
be used to produce such a vortex pattern that is stable.
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Fig. 2: Velocity fields of an experiment with an alternating
current according to I = 5 sin(2πt)A. During one period (1 s)
the velocity field evolves between the shown vortex patterns,
i.e. according to the sequence a-b-c-b-a.

To also investigate vortex pattern formation for more
general forcing protocols, an aperiodic electric current has
been applied. More specifically, experiments have been
carried out in which the current is given by Ichirp(t) =

Fig. 3: Snapshot of the streak-line pattern corresponding to
fig. 2(b).

I0(t) sin(2π ·10−5t3), where I0(t) = 9 ·10−5t2 and an addi-
tional saturation bound |I0(t)| ≤ 7A holds. This so-called
“chirp” current has a slowly varying amplitude and fre-
quency. The current specified above is used for a 500 s long
experiment and after 279 s the amplitude sometimes satu-
rates at ±7A. The resulting maximum chirp frequency is
approximately 7.5Hz. Two experiments witch such chirp
forcings have been carried out: one with a chirp current
with increasing frequency, and another one where the in-
stantaneous frequency decreases in time (inverse chirp cur-
rent given by Ichirp(t − 500)). Both experiments show
comparable phenomena.
In both the chirp experiments and the inverse chirp ex-

periment, a vortex pattern appeared, as shown in fig. 4,
with a different symmetry from that in the former exper-
iments. It is observed that the large l = 5 cm vortices are
now aligning diagonally and, contrary to the pattern in
fig. 1, only half of the domain is filled by these counter-
clockwise rotating large vortices. Between the large vor-
tices, small and weak clock-wise rotating vortices emerge.
This new vortex pattern remains clearly visible for more
than 10 s, during which time the large vortices keep rotat-
ing in the same direction.
The flow regime of the experiments can be characterised

by two dimensionless parameters. The Reynolds number
Re = Ul/ν, characterising the ratio between advective and
viscose forces, is typically of order Re = 100 for all experi-
ments, as the mean velocity U is typically U ≈ 2·10−3m/s.
This means that the nonlinear effect of advection cannot
be neglected, but also that the flow is not turbulent. The
relative importance of the forcing can be characterised by
the Chandrasekhar number [18] Ch = IBH/ρν2, which
varies for the different experiments. The experiment with
I = 20mA has Ch = 1.5 · 105. But in both the periodic
experiment, with |I| = 5A, and the chirping experiment,
with max(I) = 7A the forcing is significantly more domi-
nant, as the Chandrasekhar number is higher, respectively
Ch = 3.0 · 107 and Ch = 5.2 · 107.
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Fig. 4: Velocity field (a) and streak-lines (b) of an experiment
with an inverse chirp forcing. The vortex pattern contains both
large (counterclockwise rotating) and small vortices.

Discussion. – Flows in shallow fluid layers are often
assumed to be quasi–two-dimensional and therefore gov-
erned by the 2D Navier Stokes equations. Recent work,
however, has shown that 3D effects can play a significant
role in this type of flows [19]. Nevertheless, in the present
study we assume vertical velocities inside the fluid layer
as well as free surface deformations to be negligible and
therefore consider the observed surface flow to be governed
by the 2D Navier-Stokes equation for an incompressible
fluid. Alternatively, we consider the vorticity-stream func-
tion formulation of the Navier-Stokes equation, which is
given by

∂ω

∂t
+ (v · ∇)ω = ν∇2ω − κω + Fω , (2a)

−∇2ψ = ω, (2b)

where ν is the kinematic viscosity and Fω denotes the
z–component of the curl of the body force acting upon
the fluid. ψ is the stream function that is defined through
v = ∇ψ×∇z. Viscous dissipation due to bottom friction,
which is the dominant dissipation mechanism for shallow

flows above a no-slip bottom, can be modelled assuming a
Poiseuille-like vertical profile for the horizontal flow field,
resulting in the Rayleigh bottom friction term κω, where
κ = νπ2/4H2 = 0.038 s−1.
The recorded surface flows, depicted in figs. 1, 2 and 3,

are now modelled as 2D Taylor-Green vortices [10,20],
which are solutions of the eigenvalue problem −∇2ψm,n =
ωm,n = λm,nψm,n and ψm,n (and consequently ωm,n too)
is assumed to vanish at the boundary of L×L domain. Due
to the linear relationship between ω and ψ, the nonlinear
advection term in eq. (2a) cancels, thus rendering this
equation linear and exactly solvable for an unforced flow
with initial condition ω(x, y, t = 0) = cωm,n(x, y) by

ω(x, y, t) = cωm,n(x, y)e
−(νλm,n+κ)t, (3)

where ωm,n is given by

ωm,n = sin(mπx/L) sin(nπy/L) (4)

and c is a constant. For sufficiently small initial ampli-
tudes c of these Taylor-Green vortices (i.e. for a small
Reynolds number) this exponentially decaying solution (4)
is stable for finite disturbances [12]. For larger initial am-
plitudes, the vorticity tends to evolve towards a big do-
main filling vortex, described by the first Taylor-Green
vortex ω1,1 [15,16].
In order to compare the experimentally observed vor-

tex patterns with the Taylor-Green vortices, we consider
the ratio between enstrophy and energy Ω/E, which plays
an important role in the subsequent analysis. This ratio
is minimised by the smallest eigenvalue of the eigenvalue
problem mentioned before, i.e. λ1,1 ≤ Ω/E, and this min-
imum is achieved when ω = ω1,1 [15,16]. Moreover, by us-
ing Green’s first identity one can prove that Ω/E = λm,n

for every Taylor-Green vortex ωm,n [15]. According to (4)
this implies that patterns with smaller vortices dissipate
faster.
In order to evaluate the adequacy of the Taylor-Green

vortex patterns for describing the experimentally observed
vortex patterns, we consider the 2D parameter space
spanned by energy and enstrophy. In this parameter space
a Taylor-Green vortex pattern given by ωm,n is repre-
sented by a straight line with slope λm,n through the ori-
gin (see fig. 5). The vortex pattern shown in fig. 1 and
resulting from stationary (DC) forcing strongly resem-
bles the Taylor-Green vortex pattern described by ω3,4,
which also is a stationary solution to eq. (2b) provided
Fω = F 3,4 := c sin(3πx/L) sin(4πy/L) with an appro-
priate value of the constant c. This solution is stable
for small forcing amplitude c and small Reynolds num-
ber [11], whereas bottom friction tends to increase the
stability range [14]. The temporal evolution of the ex-
perimentally obtained ratio Ω/E has also been plotted in
fig. 5 at discrete time instances. Obviously, for this exper-
iment Ω/E is approximately constant in time and close
to the theoretical value, which is given by λ3,4 ≈ 0.81.
Therefore, it can be concluded that the applied stationary
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Fig. 5: (Colour on-line) The experimental E,Ω evolution. The
slope of the three dash-dotted lines equals the eigenvalues
λ3,4 = 0.81, λ4,4 = 1.03 and λ7,7 = 3.15, in increasing or-
der. The dashed line has a slope of 0.85 and the inverse chirp
experiment (which starts at the plus symbol) evolves on this
diagonal. The point cloud, around E = 140, Ω = 120, cor-
responds to the stationary 20mA experiment. The solid line
at E = 150, Ω = 250 corresponds to several periods of the
periodically forced experiment. The zoom box indicates that,
for a time-periodic forcing, E and Ω are not monotonously
decreasing but oscillating between (E,Ω) ≈ (160, 280) and
(E,Ω) ≈ (55, 165). All experimental data is plotted as blue.

forcing stabilises the stationary Taylor-Green vortex ω3,4.
Note, however, that the forcing used in the experiments, as
defined in eq. (1), is strongly localised around the magnets
and is really different from the type of forcing that is com-
monly used or assumed in studies [13,21] and also different
from the theoretical forcing F 3,4 mentioned before. Con-
sequently, the formation of the vortex pattern is a more
complex process [5,8,21] in which the advection term does
play an essential role and for which no analytical solution
is known. However, in a steady state the vorticity advec-
tion term appears to be negligible, in view of the strong
resemblance between the Taylor-Green solution ω3,4 and
the experimentally observed vortex pattern.

The experiments with a periodic (AC) forcing resulted
in vortex patterns that most of the time are akin to an-
other Taylor-Green vortex ω7,7, see fig. 2 and fig. 3. Rea-
soning as in the previous paragraph suggests the periodic
forcing Fω = F 7,7 := c sin(2πft) sin(7πx/L) sin(7πy/L),
with f = 1 as a candidate forcing protocol for creating
this pattern. However, there is one caveat: the periodic
forcing F 7,7 leads to a solution of eq. (2a) that has the
form c2 sin(2πft − φ)ω7,7, with constants c2 and φ. In
this solution individual vortices periodically change their
rotation direction, as opposed to the experimentally ob-
served vortices in fig. 2 and fig. 3. Therefore, the observed
vortex pattern is essentially different from the one created
by F 7,7 and there appears to be no obvious analytical
solution similar to the observed vortex pattern. This is
due to the strong localisation of the Lorentz force around

the magnets, as this forcing does not resemble a pure
Taylor-Green mode. Nevertheless, the relevance of ω7,7 for
mimicking the experimentally observed vortex pattern for
the AC forcing case becomes even more convincing when
considering the temporal evolution of the experimentally
obtained enstrophy and energy. As time progresses, the
ratio of these two quantities commutes between two points
in the parameter space shown in fig. 5 and in more detail
in the zoom box. The states represented by figs. 2(a)
and (c) both correspond to a point in the parameter
space that is approximately given by (E,Ω) = (160, 280)
whereas the vortex pattern shown in fig. 2(b) corresponds
approximately to (E,Ω) = (55, 165), which is close to
the theoretical eigenvalue λ7,7 ≈ 3.15 associated with the
Taylor-Green vortex pattern ω7,7. Since the time-averaged

vortex pattern as defined by ω̄ = 1/T
∫ T

0 ωdt, where ω
is the experimentally obtained vorticity, is approximately
equal to ω7,7, see also fig. 2, we conclude that periodic
(AC) forcing of the flow stabilises a Taylor-Green vortex
pattern represented by ω7,7. This is a remarkable result
in view of the fact that experimental realisation of such a
pattern using stationary forcing (and adequate spacing of
the magnets inside the domain D) will only result in sta-
ble configurations for relatively weak forcing amplitudes,
whereas in the periodic forcing case the pattern remains
stable for much stronger forcing amplitudes.

The observed time-averaged stabilisation as a conse-
quence of periodic forcing appears similar to results in
the field of vibrational control. This field is based on
the observation that unstable nonlinear equilibria can, un-
der certain conditions, be approximately stabilised (time-
averaged) by using a high-frequency oscillatory forcing,
with a small amplitude. A well-known example is the in-
verted pendulum, which can be stabilised in upwards po-
sition by vertically exciting the bearing of the pendulum
at a high frequency [22]. Vibrational control can also sta-
bilise flows, e.g. Rayleigh-Taylor and Bénard instabilities,
see [23] and references therein. However, in our exper-
iments stabilisation occurred for a certain moderate fre-
quency range of the forcing and it is unlikely to work for
high frequencies with small amplitudes. Therefore, it is
not clear yet whether the observed stabilisation is caused
by the same mechanism seen in vibrational control.

In the last set of experiments, a chirp forcing was ap-
plied. Figure 4 shows that this results temporally in
a flow with the same length scale as in the stationary
forced experiment. There is, however, an important differ-
ence: the counterclockwise rotating vortices are larger and
stronger than the clockwise rotating ones. An explanation
for this phenomenon is not available yet, but this experi-
ment shows that time-varying forcing can cause particular
self-organisation in shallow-water-layer flows. In fig. 5 we
have plotted the temporal evolution of the enstrophy and
energy for the (inverse) chirp experiment. As time pro-
gresses we observe that these two quantities evolve along
a straight line. The slope of this line is 0.85, which is close
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to the slope of the line corresponding to the Taylor-Green
vortex pattern ω3,4.

Conclusions and recommendations. – Forced Q2D
free-surface flows in a shallow fluid layer have been studied
experimentally for three different forcing protocols. These
forcing protocols are all spatially periodic but each of them
has a different time dependence. The temporal evolu-
tion of the energy and enstrophy of the free-surface flows
has been evaluated in order to compare the resulting flow
topology with the so-called Taylor-Green vortex patterns,
which constitute a family of unstable exact solutions of
the 2D Navier-Stokes equation.
For stationary forcing we observe a regular and

stationary vortex pattern that is very similar to a 2D
Taylor-Green vortex pattern. Time-periodic forcing re-
sults in stable but oscillating vortex patterns with vortices
having a smaller size than the length scale of the forcing.
Averaged in time, these patterns are also similar to a
Taylor-Green vortex, yet different from the one observed
for stationary forcing. This vortex pattern is remarkably
stable, even for relatively strong forcing amplitudes, sug-
gesting that this intrinsically unstable vortex pattern is
stabilised when using time-periodic forcing. Finally, forc-
ing the flow in an aperiodic way (chirp forcing) also shows
the emergence of regular vortex patterns with length
scales comparable to the ones observed for stationary
forcing. However, contrary to the time-periodically forced
case, this pattern appeared to be quasi-stationary instead
of periodic. Moreover, as the symmetry of this pattern
is different from the other patterns and different from the
forcing, the chirp forcing appears to induce temporary
self-organisation of the vortices. All experimentally
observed flow patterns were analysed in the enstrophy-
energy parameter space. It was found that the framework
of Taylor-Green vortices is very well suited for analysing
these forced vortex patterns at relatively low Reynolds
numbers.
Forcing of Q2D flows with spatially periodic but

time-dependent body forces seems not to have been stud-
ied before, neither analytically nor experimentally. The
observations presented here show for the first time that
time-varying (spatially periodic) forcing can produce ap-
proximately stable (time-averaged) vortex patterns that
are intrinsically unstable when unforced, analogously to
vibrational control [22].
It should be noted that the experiments reported are

exploratory and suggest further studies. Although the
stabilisation of otherwise unstable vortex patters by
time-dependent forcing and their relation to Taylor-Green
vortices has been demonstrated in principle, the mecha-
nisms at work here are far from being understood. As a
first step towards understanding, their relation to Taylor-
Green vortices has been shown here. Any future work,
therefore, needs to address in more detail the relationship
between the stability of such vortex patterns and their en-
ergy and enstrophy evolution to the time-varying forcing.

An up-to-date framework for studying this relationship is
currently missing.
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