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Abstract

In this report we examine a model for human hearing. The unknown
parameters in the model are estimated using experimental data and
standard optimisation methods as described in the text. Additionally,
we suggest possible improvements to the model as well as proposing
a method to use the current model in locating which frequencies are
affected in a damaged ear.
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1 Introduction

INCAS3 posed the problem of modeling the human hearing system in the
Study Group of Mathematics with Industry held at TUDelft. More specifi-
cally, the company brought to our attention a model describing the part of the
ear called cochlea as a series of coupled oscillators. Each oscillator is modelled
by a second order linear ordinary differential equation with a delay term. The
questions that mainly concerned us were the following:

1. Is it possible to improve this model?

2. Is it possible to estimate the parameters of this model using experimen-
tal data?

In the course of four days, we attempted to answer these questions as accu-
rately as possible. In addition, the company was interested in a mathematical
description of how a damaged ear works in comparison to a healthy one. While
this proved to be an impossible task, we were able to suggest a method for
locating the frequencies that are affected in a damaged ear.

This article is organised as follows: in section 2, we present the model used
and the theoretical background it is based upon. In section 3, we analyse the
model and attempt a physical interpretation of it. Section 4 deals with the
mathematics of hearing loss diagnosis, while in section 5 we propose methods
to estimate the parameters of the model. Finally, we present conclusions of
our investigations as well as future directions of research.

2 Theoretical background

The model presented in this section is described in more detail in a paper of
Zweig (1991).

Before analyzing the model that describes how the human ear works, let
us first consider the anatomy of the human ear and, more specifically, the
cochlea. It has been known for quite some time that the cochlea is a nonlinear,
active system that converts sound into neural stimuli. In addition, the cochlea
not only responds to the sound it receives, but emits sound as well. These
OtoAcoustic Emissions (OAEs) can be accurately measured however, due to
the nonlinearity of the cochlea, their use in revealing how the cochlea responds
to certain (controlled or not) stimuli is non-trivial.

In his paper, Zweig considers a simplified model of the human ear by ‘un-
coiling’ the cochlea, a model already existent in the literature. He notes that
discrepancies appear between this theory and some experiments, which might
be caused by deficiencies of the model, namely the possibility of oversimplify-
ing what actually happens in the cochlea. However, relaxing the assumptions
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Figure 1: Simplified model of the inner ear with uncoiled cochlea. Reproduced
from wikimedia.com

the model uses does not lead to any improvements. One of the assumptions,
for instance, is that the geometry of the cochlear model is excessively sim-
plified by the uncoiling of the cochlea. In addition, the fluids in the scalae
are considered incompressible and inviscid. Relaxing these assumptions, i.e.
assuming the cochlea is coiled and allowing the fluid to be compressible and
viscous, only slightly changes the output of the model, which still does not
fit the experimental data. Furthermore, the author questions the assumption
that the scala media should be interpreted as an array of oscillators, coupled
only through the fluid inside the ear. However, adding additional coupling
between adjacent oscillators also fails to improve the output of the model.

Instead of relaxing the initial assumptions, the author uses a different
approach. He considers the initial model as correct in a number of cases but
acknowledges it is too simple to fully capture the correct behavior. Then, he
proceeds to replace the harmonic oscillators of the model with more complex
oscillators. Using the data available it is possible to approximate the form of
the refined transport function and use it to obtain the more complex oscillator
equation. We will now describe this approach in more detail, as there are
parts of this procedure that could be altered, possibly resulting in a further
improvement.

To get an oscillator equation from the transport equation, let us consider
the latter as an integral equation for λ and suppose that T can be obtained
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from experimental data:

T (s) ' C s

λ3/2(s)
exp

(
−
∫ s

s0

ds′

λ(s′)

)
(1)

We can now get the oscillator equation by Fourier transforming λ2V ∝ sP
using the form of λ from the simple harmonic oscillators model:

λ2 =
s2 + δs+ 1

(4N)
2 ,

where N is approximately equal to the number of wavelengths of the wave
on the membrane. This will give us an inhomogeneous oscillator equation for
the velocity v of a point on the basilar membrane, where v = F(V ) and F
denotes the Fourier transform, namely

v̈(θ) + δv̇(θ) + v(θ) =
ṗ(θ)

ωc0M0
,

where θ(x) = ωc(x)t and ( ˙ ) = ∂/∂θ(x). We can now differentiate the transfer
equation to solve for λ:

λ = −
(

1 +
3

2

dλ

ds

)(
d ln(T/s)

ds

)−1
. (2)

Because the derivative of λ is small, we can get an approximation for λ as

λ ' − ds

d ln(T/s)
. (3)

As λ is heavily influenced by the derivative of T , it is important to get an
approximation for T as smooth as possible. To this end, a data fitting is
performed by maximizing a modified likelihood function of the form χ2 + ξk2

where

k2 =

∫ ∣∣∣∣
T (s(Ω))

dΩ2

∣∣∣∣ dΩ

and ξ plays the role of a Lagrange multiplier. This form of likelihood function
is preferred over the usual χ2 as s depends on a number of variables and this
will cause T to be non uniformly distributed with respect to χ2.

Let us now assume that the linear equation for the shunt impedance Z is
correct but incomplete because it fails to capture all the mechanical properties
of the cochlea. To correct it, we add an extra term that will account for these
mechanical properties. The equation now is

Z =
ωc0M0

s

(
s2 + δs+ 1 +m(s)

)
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which can also be expressed as an equation for λ:

λ2 =

(
s2 + δs+ 1 +m(s)

)

(4N)2
.

To gain some insight into the form of the function m(s), we fix N and δ and
iteratively calculate λ from equations (2) and (3). We then plot the imaginary
versus the real part of m(s) for varying s. The author approximates the
resulting points by a circle of the form m(s) = ρe−2πµs, ρ and µ being real
constants. Substituting into the equation for the shunt impedance gives

0.3 I i i i , of the organ of Corti missing from the earlier description. 
The corresponding expression for X2(s) is 

X2(s) = [s 2 + tSs + 1 + m(s) ]/(4N) 2. (130) 
In order to obtain insight into the functional form of 

m(s), consider the frequency dependence of the real and 
imaginary parts of (4N•)2 as shown in Fig. 11, where N is 
set to 5, a value approximately equal to that previously ob- 
tained 23 (recall that N is a constant approximately equal to 
the total number of wavelengths on the basilar membrane of 
the wave created by sinusoidal stimulation). Note that the 
imaginary part of (4NX)2, which is equal to 6f/fc plus the 
imaginary part of m, is negative over almost the entire fre- 
quency region where X has been determined. If we take 
6• --0.1 and fc •7.4 kHz, then re(s) assumes a remark- 
ably simple form, as may be seen in Fig. 12, where 

Re(m (s)) = Re([4NX(s) ]2) _ s 2 _ 1 (131) 
is plotted versus 

Im(m(s)) = Im( [4NX (s) ]2) + i 6s (132) 
for different values of s. To a first approximation the result- 
ing curve (dashed line) is an elongated circle where equal 
steps in -- is = f/f• near f/f• = 1 result in approximately 
equal steps along the curve. Approximating the curve by a 
circle that is traced out uniformly as -- is changes uniformly 
means that m (s) has the form 

m(s) •pe- 2rc•s, (133) 
where p and p are real constants representing the radius of 
the circle and the rate at which it is traversed. It is convenient 
to define a constant fi by 

fi---- 2•rp. (134) 

3. Theoretical X and the corresponding Z 
It is now natural to make the theoretical assumption 

that 

X2(s) = (s 2 + 6s + 1 + pe- •s)/(4N)2 (135) 
and explore the consequences. The constants 6, p, p = •p/2rr, 
and N are adjusted to give a best fit to the empirically deter- 
mined X. The resulting m (s) is shown in Fig. 12 as a dotted 
line. The corresponding transfer function T(s) predicted 
from Eq. (77) is shown as a dotted line and compared with 
experiment in Fig. 10. The fit to the data yields 

(5 = -- 0.1217, p = 0.1416, p = 1.742, 
N = 5.24, and f• = 7.89 kHz. (136) 

The fit to the amplitude and phase of the transfer function is 
very good everywhere except at 2 kHz where the model pre- 
diction for the amplitude is somewhat higher than the mea- 
sured value. That discrepancy may be due to a breakdown of 
scaling symmetry at low frequency, the lack of low-frequen- 
cy data to constrain the fit, a small frequency variation of 
parameters that have been taken to be constant, or statistical 
fluctuation. 

Note that the damping constant (5 of the oscillator is 
negative, indicating that the oscillator would be unstable 

0.2 

0.1 

0.0 

-0.1 

-0.2 

-0.3 

1 

).3 -0.2 -0.1 0.0 0.1 0.2 0.3 

Re Im($)l 

FIG. 12. The real versus imaginary part of rn(s) for varying s--_--if/f•. The 
dashed curve is obtained from the transfer function Twhile the dotted curve 
is a circular approximation corresponding to re(s) - pe - •,s, where param- 
eter values are given in the text. The solid circle corresponding tof/• - 1 is 
labeled by 1. The other points correspond to values off/• differing from 1 
by multiples of 0.05. Thus the dashed curve starts atf/• = 0.6 and ends at 
f/• = 1.15. fc has been set equal to 7.4 kHz. 

without the additional pe- •s term. Values ofp slightly less 
than 1.25 and 2.25 also lead to stable transfer functions that 

approximate T, but p • 1.75 provides the best fit. In all cases, 
a negative value of t5 is required. Otherwise the negative val- 
ues of Im([4NX(s)]2) shown in Fig. 11 cannot be repro- 
duced. The value found for Nindicates that a harmonic trav- 
eling wave contains approximately five spatial cycles, as 
drawn in Fig. 1. 

The shunt impedance corresponding to the theoretical 
wavelength given in Eq. (135) is 

Z -- icoM(x) + R(x) + K(x)/ico 

+ K(x)pe-ieø•/ø•(x)/ico, (137) 
where icoM(x), R(x), and K(x)/ico scale [Eq. (70)]. In 
terms of s, 

Z = lZ•oXs2/S = Co•oMo (s 2 + tSs + 1 + pe- eS)/s. 
(138) 

The agreement between theory and experiment for both 
the amplitude and phase of T, as shown in Fig. 10, indicates 
that the form ofZ(s) [Eq. (138) ] is essentially correct. 

4. Interpretation of the missing term m 
In order to interpret the expression pe- es that must be 

added to the old form of Z(s), recall Eq. (109) which im- 
plies 

F( (s 2 + 5s + 1 -I- pe- ,)s) V} oc F(sP}, 
or, performing the indicated Fourier transform F{ }, 

(139) 

1244 J. Acoust. Soc. Am., Vol. 89, No. 3, March 1991 George Zweig: Finding the impedance of the organ of Corti 1244 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  132.229.14.7 On: Mon, 27 Jan 2014 14:51:26

Figure 2: The dashed curve is the measured values of m(s) obtained from the
transfer function T whereas the doted line is a circular approximation. The
dots represent an equally spaced partition of the frequency domain.

Z =
ωc0M0

s

(
s2 + δs+ 1 + ρe−2πµs

)
.

Now using the Fourier transform as above yields the new oscillator equation
for the velocity v of a point:

v̈(θ) + δv̇(θ) + v(θ) =
ṗ(θ)

ωc0M0
− ρv(θ − ψ),

where ψ = 2πµ. Therefore, a section of the organ of Corti at position x
behaves like a harmonic oscillator with angular frequency 1 and damping
δ. It is also driven by two forces: one proportional to the derivative of the
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pressure difference and one proportional to that section’s velocity at the earlier
time θ− ψ. This delayed force is necessary to stabilize an otherwise unstable
oscillator (recall that the damping is negative) and can be considered the
active influence of the cochlea. An estimate of the time delay is given by

ψ

ωc(x)
= 220µs,

where an approximation for µ (and therefore ψ as well) was obtained by fitting
the model to experimental data. Zweig’s model undoubtedly has a number
of advantages. It describes the physical phenomenon much better than the
simple harmonic oscillator model while at the same time remaining relatively
simple for analysis and solution. However, an obvious point of improvement
lies in the approximation of the form of the unknown function m by a circle.
It is clear from the plot that an ellipsoid or a spiral would better fit the
experimental data and result in a more accurate oscillator equation, without
changing the assumptions of the original model or excessively complicating
the calculations involved. We strongly believe that this point needs to be
examined and reassessed in the future.

3 Physical interpretation

The processes involved in the perception of sound from a pressure wave are
numerous. The most important process occurs in the cochlea, which makes
the crucial transformation of a pressure wave into an electric signal, which can
then be interpreted by the brain as sound. This transformation is a two-step
process. First a small membrane inside the cochlea is made to oscillate by
a propagating pressure wave. Then, the oscillation is registered by hair cells
that activate the firing of an electric signal.

This oscillatory behavior of the cochlea was modeled by considering the
cochlea as a tubular resonance cavity which encloses a membrane of oscillators
that lies on the central horizontal plane. This plane divides the resonance
cavity in two cavities, which are only connected at the far end of the cochlea.
Research has shown that the oscillators responding to a pressure wave of
a certain frequency have a position on the membrane which increases with
decreasing frequency. In other words, higher frequencies are processed near
the outer part of the cochlea and lower frequencies near the inner part. As
we saw above, this frequency dependency of position was modeled with a
delay differential equation. The model assumed a one-dimensional position
x with domain [0, 1], a total transversal pressure p(x, t) and a transversal
displacement ξ(x, t) of the oscillators. The pressure p is actually the difference
in pressure between the two cavities in the cochlea. The delay differential
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equation in the paper is written in a slightly more general form as

p = mψ̈ + dψ̇ + sψ + s′ψt−τ , (4)

where ψt−τ = ψ(t − τ) for some specific time τ > 0. The differential equa-
tion without delay is that of a driven harmonic oscillator. There is extensive
theory about this type of differential equation that leads us to expect certain
parameter dependencies. INCAS3 provided the following parameter depen-
dencies

d = c0
√
sm, s′ = c1s, τ = c2

√
m

s
, (5)

where c0, c1 and c2 are dimensionless constants.
Using these parameter dependencies we can transform equation (4) into a

dimensional differential delay equation

P(x, t) = ξ̈(x, t) +
c0c2
τ
ξ̇(x, t) +

(c2
τ

)2
ξ(x, t) + c1

(c2
τ

)2
ξ(x, t− τ) (6)

where a dot denotes partial differentiation with respect to time and P is
defined as p/m, which has the same dimensions as acceleration.

Equation (6) fails to fully describe the ongoing process. All the oscillators
are behaving independently and the pressure is known only at x = 0, since
we only know the sound that enters the ear canal. The missing link are the
cavities, which allow the existence of standing waves. However the Navier-
Stokes equation for an incompressible, inviscid cochlear fluid with pressure
differences only implies that an oscillator can influence these standing pressure
waves. Therefore the Laplacian equation of standing waves becomes a Poisson
equation

∂2P(x, t)

∂x2
= γ ξ̈(x, t) with γ =

ρ bBM
A/2

(7)

and with constants ρ denoting the density of the cochlear fluid, bBM the width
of the membrane and A the diameter of the cochlea. The initial and boundary
conditions for these differential equations are





ξ(x, 0) = 0 , ξ̇(x, 0) = 0

∂P
∂x

(0, t) = P (t) , P(1, t) = 0

(8)

for a known bounded function P (t) with P (t) = 0 for t < 0. Together, equa-
tions (6) and (7) form a system of coupled ODEs describing how the cochlea
responds to sound input. A comparison between the simulations generated
using the model and the actual OAEs can be seen in figure 3.
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Figure 3: Comparison of OAEs of normal hearing, damaged cochlea and esti-
mated damage.

3.1 The Fourier transform of the ODE

The incoming pressure wave is a representation of sound. It is therefore
natural to use the frequency domain by means of the Fourier transformation
in space. Let us use G̃(x, ω) to denote the Fourier transform of a function
G(x, t) with angular frequency ω. Then equations (6) and (7) are transformed
into the system





P̃(x, ω) =
[
−ω2 + iω c0c2τ +

(
c2
τ

)2 (
1 + c1e

−iωτ)] ξ̃(x, ω)

∂2P̃(x, ω)

∂x2
= −ω2γ ξ̃(x, ω).

(9)

This system can be restated as





γP̃(x, ω) =
[
1− i c0c2ωτ −

(
c2
ωτ

)2 (
1 + c1e

−iωτ)] ∂2P̃(x, ω)

∂x2

∂2P̃(x, ω)

∂x2
= −ω2γ ξ̃(x, ω).

(10)

The first identity of this system has sufficient boundary conditions from the
Fourier transformed boundary conditions of P in (8). The second identity
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is satisfied by the first without imposing the boundary conditions of ξ in
(8). Hence the unused boundary conditions must be satisfied automatically
from the differential equation for P̃. We can investigate this by solving the
characteristic equation of the differential equation, which is

γ =

[
1− i c0c2

ωτ
−
( c2
ωτ

)2 (
1 + c1e

−iωτ)
]
λ(ω)2. (11)

The solution for P̃(x, ω) and the boundary conditions ξ(x, 0) and ξ̇(x, 0) are
then equal to

P̃(x, ω) = − P̃ (ω)

λ(ω)

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
(12)

ξ(x, t) =
1

γ
√

2π

∫ ∞

−∞
λ(ω)

P̃ (ω)

ω2

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
eiωtdω (13)

ξ̇(x, t) =
i

γ
√

2π

∫ ∞

−∞
λ(ω)

P̃ (ω)

ω

sinh[(1− x)λ(ω)]

cosh[λ(ω)]
eiωtdω (14)

These identities imply that the cochlea has no spontaneous excitation modes
without a forcing pressure P̃ (ω) 6= 0. Hence the condition P (t) = 0 for t < 0
guarantees the remaining boundary conditions due to causality, which is the
property used in the Zweig paper to justify the delay term in equation (4)
from data.

An advantage of the introduction of λ(ω) in equation (11) is the possibility
to extend it to the form λ(x, ω) in a more general model where the constants
c0, c1 or c2 become functions of x. The function ξ is then still given by
equation (13) by substituting λ(x, ω) instead of λ(ω). A second advantage of
equation (11) is the existence of real and imaginary parts of λ, which allow not
only oscillations, but decay as well. This decay will depend on the frequency,
which reflects the frequency-position relationship of the oscillator response in
the cochlea.

4 Input Functions

The physical model given in the introduction, derived in the theoretical back-
ground and explained in the physical interpretation is that of a resonance
cavity, which resembles the cochlea and resonates due to an input pressure
function. This input pressure is a representation of a sound wave. The rea-
son INCAS3 is interested in this model is to improve the current methods of
diagnosing hearing loss. In these methods, a certain sound pulse is created
and used with a certain procedure to determine the hearing loss. The quality
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of the diagnosis is therefore highly dependent on the input sound pulse, mea-
surement accuracy and measurement precision. Therefore, we tried to tackle
the following problem. Is it possible to improve the input pulse to obtain a
result faster without decreasing the accuracy or precision of the diagnosis?

Due to finite time measurements, the input function must be a pulse, which
implies that it must be a function with compact support. Furthermore the
Fourier transform of the input pulse may not have any zeros. This condition
is necessary since hearing loss could occur at any frequency. Furthermore,
hearing loss is determined as a spectral response loss, which implies that
accuracy requirements need non-zero spectrum. Finally, we can observe only
an interval of the frequency domain. It is therefore desirable that the Fourier
transform of the input pulse is rapidly decaying in a known way outside the
measurable interval of the frequency domain. A second desirable property
would be the ability to modify the pulse such that a certain interval in the
frequency domain can be examined. Hence, an input pulse must satisfy the
following:

1. Compact support in the time domain.

2. Fourier transform without zeros.

3. Rapidly decaying Fourier transform.

4. Adjustable for having values above a given threshold for a given fre-
quency interval.

A simple family of functions G(t) which satisfy the requirements above
are sums of a finite, symmetric interval part of the sech(t). Is is obvious that
these functions have compact support. Additionally, their Fourier transform
does not have zeroes due to the invariance of the sech under Fourier trans-
form, which smoothes out all the zeroes due to the window. It is easy to see
that they are rapidly decaying due to the properties of the sech by using the
Riemann-Lebesgue lemma. Finally, we can adjust them at will since the sech
is symmetric in the frequency domain and therefore sums of a symmetric finite
interval part can cut away small frequency intervals for a given threshold.

Let us define by rect(a)(t) the unit function on the interval [−a, a] and
zero elsewhere. Then the function G and its Fourier transform G̃ are given
by

G(a)(t) =

√
π

2
sech(t)rect(a)(t),

G̃(a)(ω) = arctan
(
ea/(2π)−ω

)
− arctan

(
e−a/(2π)−ω

)
.

Using the function G as a building block one obtains a new function S which
has the property of selecting an interval in the frequency for which S̃ is a
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threshold.

S(a, b)(t) = G(a)(t)− 1

|b|G(a)(t/b),

S̃(a, b)(ω) = G̃(a)(ω)− G̃(a)(b ω).

If the threshold is equal to ε, then the interval endpoints are the positive

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

Figure 4: Red line: plot of sech(t) multiplied with rect(1)(t). Notice the com-
pact support, the discontinuity at ±1 and the absense of roots inside the win-
dow. Blue line: Fourier transform of the function above. This function also
does not have any zeroes and is rapidly decaying.

zeros of

tan(ε) =
sinh(a/π) cosh(ω)− sinh(a/π) cosh(b ω)

sinh2(a/π) + cosh(ω) cosh(b ω)
.

We can always find two positive zeroes for small enough ε. Hence S satisfies
the properties of a desirable input pulse.

The existence of such a simple function that satisfies the properties needed
is very important, as it will allow a relatively simple design and execution of
experiments to locate where the damage lies in the frequency spectrum of
the ear. Further research would help in refining the definition and use of the
input function, thus drastically improving the way hearing damage diagnosis
is performed.
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5 Parameter estimation

5.1 Toy problem

Determining the value of a set of parameters using some experimental data
about the solution of a problem is usually called the inverse problem. When
experimental data are not available, numerical simulations may also be used.
We will describe two different methods that are commonly used to attack in-
verse problems, namely the finite differences method and the adjoint method.
Both share a common foundation, as in both cases we try to minimize an
objective function that usually calculates the difference between the current
set of parameters and the ‘perfect’ one. To illustrate these methods let us
consider a simple example:

D(x)
d2T (x)

dx2
= 1, x ∈ [0, 1] (15)

with boundary conditions T (0) = 1, T (1) = 0.
Suppose we have a given T̃ which satisfies (15), for some unknown D(x).

The inverse problem is to calculate the function D(x) that corresponds to T̃ .
We define an objective function, F , which measures the difference between the
exact solution T̃ and our approximation T ; minimizing this function is now
our goal, and the value of the parameter D corresponding to the minimum
of the error function will be the best estimation, at least locally. The inverse
problem is therefore tackled using an optimization procedure.

We will make use of gradient-based optimization algorithms, a subset of
the class of line search methods, an optimization strategy based on two steps:

1. Find a direction along which F decreases rapidly.

2. Compute a step size which determines how far we should move along
that direction.

It is obvious that successful use of a line search method requires the determi-
nation of both the direction and the step length.

Both strategies illustrated here, the finite differences method and the ad-
joint method, assume the gradient direction as the decreasing line, namely

D(k+1) = D(k) − γ︸︷︷︸
step

dDF (T,D)︸ ︷︷ ︸
direction

,

with dD denoting the derivative with respect to D. However, these methods
differ in the way they calculate the gradient. A first approach is to approxi-
mate it by finite differences over D. However, this includes the integration of
n differential equations at each step, where n is the dimension of D. A more
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sophisticated approach is to calculate the gradient using the adjoint method,
which is significantly cheaper computationally, since at most two differential
equations have to be integrated.

Using the procedure discovered above, starting from an initial guess D0,
we obtain a sequence F (Dn) that satisfies

F (D0) ≥ F (D1) ≥ · · · ≥ F (Dk) ≥ F (Dk+1) ≥ . . .

and converges to a minimum. A significant disadvantage of this method, as
in every hill-climbing method, is the risk of getting stuck in a local minimum.
Every minimum found is guaranteed to be a global minimum only if F is
convex, which is usually either not true or difficult to prove.

5.2 Finite differences

The idea underlying this approach is the discretization of the problem with
respect to the spatial variable. A second order approximation of the derivative
of the objective function is calculated and used in the gradient descent method
in order to find a local minimum. A discrete objective function is defined,

F (D) =

n∑

j=1

(T (xj ;D)− T̃ (xj))
2

where T is a vector containing the evaluation of the approximate solution
(corresponding to the approximated parameter D) in each node of the dis-
cretisation and T̃ is a vector containing the evaluation of the exact solution
in the same points.
At each step we compute the gradient using the formula

dDF
(k) =

F (D(k) + ε)− F (D(k) − ε)
2ε

and we then update our parameter value according to

D(k+1) = D(k) − γ · dDF (k).

Since the convergence speed of this method can be very slow for a constant
step, it is possible to add an iterative method to better adapt the step length
γ. One such possibility is through the backtracking line search, which is a
good compromise between the two opposite goals of obtaining a step size γ
which substantially reduces F and decreasing computational cost. A sample
algorithm which geometrically reduces γ is the following:
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choose γ0 > 0 (generally = 1); ρ, c ∈ (0, 1);
set γ = γ0;

while F (D(k+1)) ≥ F (D(k)) + c · γ · dDF (k) do
set γ = ργ;

end

5.3 Adjoint method

The adjoint method is a way of significantly decreasing the computational
cost of calculating the gradient. An introduction to it will be presented here,
more details can be found in the book of Vogel (2002).

Let T =

(
T1
T2

)
=

(
T1
Ṫ1

)
. Equation (15) can then be written as Ṫ =

(
T2
1
D

)

and the inverse problem can be stated as follows:

minimize
D

F (T ;D) =

∫ 1

0

f(t,D, x)dx, where f(T,D, x) =

∫ 1

0

(T̃ (x)− T (x))2dx

subject to h(T, Ṫ ,D, x) = Ṫ −
(
T2
1
D

)
= 0,

g1(T (0), D) = T (0)−
(

1
T2(0)

)
= 0,

g2(T (1), D) = T (1)−
(

0
T2(1)

)
= 0.

HereD is a vector of unknown parameters, T is a function of x, h(T, Ṫ ,D, x) =
0 is an ODE in implicit form and g1(T (0), D) = 0, g2(T (1), D) = 0 are the
boundary conditions, which are functions of some of the unknown parameters.
Being a gradient-based optimization algorithm, the gradient

dDF (T,D) =

∫ 1

0

[∂T fdDT + ∂Df ]dx

has to be calculated. Unfortunately, it is often expensive to compute dDT .
The first step in solving this problem is to introduce the Lagrangian corre-
sponding to the optimization problem defined above,

L =

∫ 1

0

[f(T,D, x) + λTh(T, Ṫ ,D, x)]dx+ µT1 g1(T (0), D) + µT2 g2(T (1), D).

Here λ is a vector of Lagrange multipliers depending on x, and µ1 and µ2

are vectors of multipliers corresponding to the boundary conditions. Since
h, g1, and g2 are zero everywhere by definition, λ, µ1 and µ2 can be chosen
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freely and we have dDL = dDF. The main idea is to choose the values of the
multipliers in such a way that the total derivative dDL is easy to compute.
Thus, the derivative of the Lagrangian is

dDL =

∫ 1

0

[∂T fdDT + ∂Df + λT (∂ThdDT + ∂ThdDṪ + ∂Dh]dx

+µT1 (∂T (0)g1dDT (0) + ∂Dg1) + µT2 (∂T (1)g2dDT (1) + ∂Dg2).

(16)

The integrand contains the terms dDT and dDṪ , which are both hard to
calculate. For the second term, we apply integration by parts

∫ 1

0

λT∂ṪhdDṪ dx = λT∂ṪhdDT
∣∣1
0
−
∫ 1

0

[
λ̇T∂Ṫh+ λT dx (∂Ṫh)

]
dDTdx.

Substituting this in (16) we obtain the expression

dDL =

∫ 1

0

[
∂T f + λT

(
∂Th− dx∂Ṫh− λ̇T∂Ṫh

)]
dDT

+∂Df + λT∂Dhdx

+µT1
(
[∂T (0)g1 + λT∂Ṫh]0dDT (0) + ∂Dg1

)

+µT2
(
[∂T (1)g2 + λT∂Ṫh]1dDT (1) + ∂Dg2

)
.

Since we are free to choose the multipliers λ, µ1 and µ2, let us take

µT1 = λT∂Ṫh|0(∂T (0)g1)−1

µT2 = λT∂Ṫh|1(∂T (1)g2)−1.

This ensures that the first parts of the last two terms vanish. Furthermore,
we choose λ such that

∂T f + λT (∂Th− dx∂Ṫh)− λ̇T∂Ṫh = 0, (17)

which saves us from having to calculate dDT . With this choice of values for
the multipliers we obtain

dDL =

∫ 1

0

[∂Df + λT∂Dh]dx+ µT1 ∂Dg1 + µT2 ∂Dg2. (18)

The first order linear ODE h from the optimisation problem stated above can
be rewritten as

h(T, Ṫ ,D, x) = Ṫ −A(D)T − b(D),
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where A(D) =

(
0 1
0 0

)
and b(D) =

(
0

D−1

)
. It follows easily that ∂Th =

A(D) and ∂Ṫh = I, and ∂Dh =

(
0

D−2

)
. Furthermore, ∂Df , ∂Dg1 and ∂Dg2

are zero. Substituting these information into (18) leads to

dDL =

∫ 1

0

λT∂Dhdx =

∫ 1

0

λ2(x)D(x)−2dx.

and the adjoint equation becomes ∂T f − λTA(D)− λ̇T = 0.

6 Conclusion

6.1 Summary of results

We have investigated several different ways to attack the problem of modelling
hearing damage. They all show promise for further investigation.

Regarding the analysis of the given model, it is obvious that Fourier trans-
forming the differential equations has several advantages. For instance, anal-
ysis in the frequency domain is often more natural when working with sound.
Furthermore, solving the system is now easier, which can be very helpful for
implementing a parameter estimation scheme. It is also worth noticing that
parameter estimation may not be needed at all. This is because the motiva-
tion behind trying to estimate where the cochlea is damaged is to allow us to
alter the sound entering the ear in a controlled way, by means of a hearing
aid, so that the ear processes an input that is as close to normal as possible.
Therefore, instead of trying to locate where the damage lies, it might be more
fruitful to be able to calculate this corrected input signal directly. This may
be a significantly hard problem in the time domain, perhaps harder than the
parameter estimation itself, but using the frequency domain we showed there
are ways to attack it.

The gradient descent method discussed in section 5 is one of the simplest
ways of solving an inverse problem. Regardless whether the gradient itself
is obtained through finite differences or the adjoint method, the choice of al-
gorithm itself is also very important. Simple methods like gradient descent
can have problems such as slow convergence or getting stuck at a local min-
imum. There exist however more sophisticated methods that may be used
to remedy these problems. For example, the conjugate gradient method that
keeps track of previous step directions could be tried. Additionally, atten-
tion should be paid to quasi-newton methods like BFGS that determine the
objective function’s Hessian.
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6.2 Recommendations for future work

• Investigate whether choosing another function m to fit the experimental
data leads to a better model of a damaged cochlea.

• Add the calculation of the OAE to the Fourier-based approach.

• Check whether the input function proposed in section 4 works as ex-
pected for real OAE measurements.

• Perform parameter estimation with the current cochlear model using
the framework laid out in this paper.
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