
 

Multiscale modeling of colloidal dynamics in porous media :
capturing aggregation and deposition effects
Citation for published version (APA):
Krehel, O., Muntean, A., & Knabner, P. (2014). Multiscale modeling of colloidal dynamics in porous media :
capturing aggregation and deposition effects. (CASA-report; Vol. 1412). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/14f99e4e-7d5d-4adf-8991-a84cb636fcd9


                                        

 

 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 
Department of Mathematics and Computer Science 

 
 
 
 
 
 
 
 
 
 
 

CASA-Report 14-12 
April 2014 

 
 

Multiscale modeling of colloidal dynamics in porous media:  
Capturing aggregation and deposition effects 

 
by 
 

O. Krehel, A. Muntean, P. Knabner 
 

 

 

 

 

 

 

 
 

 

 

Centre for Analysis, Scientific computing and Applications 
Department of Mathematics and Computer Science 
Eindhoven University of Technology 
P.O. Box 513 
5600 MB Eindhoven, The Netherlands 
ISSN: 0926-4507 

 

 



 

 

 

 

 

 

 



Multiscale Modeling of Colloidal Dynamics in

Porous Media: Capturing Aggregation and

Deposition Effects

Oleh Krehel

Department of Mathematics and Computer Science
CASA - Center for Analysis, Scientific computing and Engineering

Eindhoven University of Technology
5600 MB, PO Box 513, Eindhoven, The Netherlands

Adrian Muntean

Department of Mathematics and Computer Science
CASA - Center for Analysis, Scientific computing and Engineering

ICMS - Institute for Complex Molecular Systems
Eindhoven University of Technology

5600 MB, PO Box 513, Eindhoven The Netherlands

Peter Knabner

Department of Mathematics
Friedrich-Alexander University of Erlangen-Nuremberg

Cauerstr. 11, Erlangen 91058, Germany

Abstract

We investigate the influence of multiscale aggregation and deposition
on the colloidal dynamics in a saturated porous medium. At the pore
scale, the aggregation of colloids is modeled by the Smoluchowski equa-
tion. Essentially, the colloidal mass is distributed between different size
clusters. We treat these clusters as different species involved in a diffusion-
advection-reaction mechanism. This modeling procedure allows for differ-
ent material properties to be varied between the different species, specifi-
cally the rates of diffusion, aggregation, deposition as well as the advection
velocities. We apply the periodic homogenization procedure to give insight
into the effective coefficients of the upscaled model equations. Benefiting
from direct access to microstructural information, we capture by means
of 2D numerical simulations the effect of aggregation on the deposition
rates recovering this way both the blocking and ripening regimes reported
in the literature.
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1 Introduction

Colloids are particles with size ranging approximately from 1 to 1000 nm in
at least one dimension. They play a significant functional role in a number of
technological and biological applications, such as waste water treatment, food
industry, printing, design of drug delivery; see e.g. Nordbotten and Celia, 2012;
Rosenholm, Sahlgren, and Lindén, 2010. The existing literature on colloids and
their dynamics is huge. Here we only mention that the self-assembly of collagen
structures (basic component of the mechanics of the human body) together
with secondary nucleation effects have recently been treated in Lith, Storm,
and Muntean, 2013, starting off from an interacting particle system for colloids.
A detailed discussion of the main principles of aggregation mechanisms can be
found in Peukert, Schwarzer, and Stenger, 2005, while a thorough analysis of
the aggregation in terms of ordinary differential equations can be found e.g. in
Camejo, Gröpler, and Warnecke, 2012.

The central topic of this paper is the treatment of the aggregation of col-
loids in porous media (particularly, soils) that has been recently shown to be a
dominant factor in estimating contaminant transport; see Totsche and Kögel-
Knabner, 2004. Essentially, one supposes that that the presence of colloidal
aggregation strongly affects the deposition rates on the pore (grain) bound-
ary. Similar aggregation (group formation, cooperation) patterns can emerge
also in pedestrian flows strongly affecting their viscosity Muntean et al., 2014.
Previous investigations on contaminant dynamics in soils, yet not accounting
explicitly for aggregation, can be found, for instance, in Knabner, Totsche, and
Kögel-Knabner, 1996 and Totsche, Knabner, and Kögel-Knabner, 1996.

Our aim here is to study the influence of multiscale aggregation and de-
position on the colloidal dynamics in a saturated porous medium mimicking a
column experiment performed by Johnson, Sun and Elimelech and reported in
Johnson, Sun, and Elimelech, 1996. For more information on this experimental
context, we refer the reader also to Refs. Johnson and Elimelech, 1995; Liu,
Johnson, and Elimelech, 1995. To get more theoretical insight in this column
experiment, we proceed as follows: As departure point, we assume that at the
pore scale we can model the aggregation of colloids by the Smoluchowski equa-
tion. Consequently, the colloidal mass is distributed between different size clus-
ters. We treat these clusters as different species involved in a coupled diffusion-
advection-reaction system. This modeling procedure allows for different mate-
rial properties to be varied between the different species, specifically the rates
of diffusion, aggregation, deposition as well as the advection velocities. As next
step, we apply the periodic homogenization methodology to give insight into
the effective coefficients of the upscaled model equations. Finally, for a set of
reference parameters, we solve the upscaled equations for different choices of
microstructures and investigate the influence of aggregation on both transport
and deposition of the colloidal mass, validating in the same time our method-
ology and numerical platform by means of the results from Johnson, Sun, and
Elimelech, 1996.

The outline of the paper is as follows: In Section 2 we set up a microscopic
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pore-scale model for aggregation, diffusion and deposition of populations of col-
loidal particles. In Section 3 the microscopic model is nondimensionalized. One
of the small dimensionless numbers pointed out therein (denoted by ε) connects
a ratio of characteristic time scales of the process to the relevant microscopic
and macroscopic length scales arising in the system. In Section 4 we use the
concept of two-scale asymptotic expansions to obtain in the limit of small ε an
equivalent macroscopic model together with the corresponding effective coeffi-
cients. We conclude the paper with a few numerical multiscale experiments and
discussions on further work (cf. Section 5 and Section 6).

2 Microscopic model

The foundations of the modeling of colloids aggregation and fragmentation were
laid down in the classical work of Smoluchowski Smoluchowski, 1917. A nice
overview can be found, for instance, in Elimelech et al., 1995. The role of
this section is to introduce our modeling Ansatz on the second order kinetics
describing the colloidal cluster growth and decline, the functional structure of
the deposition rate, as well as the assumptions on the microscopic diffusion
coefficients for the clusters.

2.1 Aggregation and fragmentation of clusters

We assume that the colloidal population consists of identical particles, called
primary particles, some of which form aggregate particles that are characterized
by the number of primary particles that they contain – i.e. we have u1 particles
of size 1, u2 particles of size 2, etc. We refer to each particle of size i as a
member of the ith species (or of the i−cluster).

The fundamental assumption behind this modeling strategy is that aggrega-
tion can be perceived as a second-order rate process, i.e. the rate of collision is
proportional to concentrations of the colliding species. Thus Aij – the number
of aggregates of size i+ j formed from the collision of particles of sizes i and j
per unit time and volume, equals:

Aij := γijuiuj , with (1)

γij := αijβij . (2)

Here βij is the collision kernel – rate constant determined by the transport
mechanisms that bring the particles in close contact, while αij ∈ [0, 1] is the
collision efficiency – the fraction of collisions that finally form an aggregate. The
coefficients αij are determined by a combination of particle-particle interaction
forces, both DLVO (i.e. double-layer repulsion and van der Waals attraction)
and non-DLVO, e.g. steric interaction forces (see Derjaguin and Landau, 1941,
Hamaker, 1937).

A typical choice for αij and βij can be found in for instance in Krehel,
Muntean, and Knabner, 2012. The interaction rates (written in the spirit of
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balance of populations balances as reaction rates) should then satisfy

Ri(u) =
1

2

∑
i+j=k

αijβijuiuj − uk
∞∑
i=1

αkiβkiui, (3)

where u = (u1, . . . , uN , . . .) is the vector of the concentrations for each size class
i ∈ {1, . . . , N} for a fixed choice of N .

2.2 Diffusion coefficients for clusters

We take the diffusivity d1 of the monomers as a baseline. All the other diffusiv-
ities are here assumed to depend on d1 in agreement with the Einstein-Stokes
relation

di =
kT

6πηri
. (4)

The cluster diffusion coefficients di arising in (4) are designed for the diffusion
of spherical particles through liquids at low Reynolds number. In (4), T denotes
the absolute temperature, k is the Boltzmann factor, η is the dynamic viscosity,
while ri is the aggregate (i-mer, i-cluster) radius. Note the following dependence
of the aggregate radius ri on the number of monomers contained in the i-cluster:

ri = i
1

DF r1, (5)

with DF being a dimensionless parameter called the fractal dimension of the ag-
gregate Meakin, 1987. DF indicates how porous the aggregate is. For instance,
a completely non-porous aggregate in three dimensions, such as coalesced liquid
drops, would have DF = 3. Combining (4) and (5), we obtain:

di =
1

i
1

DF

d1. (6)

2.3 Deposition rate of colloids on grain surfaces

The colloidal species ui, defined in Ω (see Figure 1), can deposit on the grain
boundary of the solid matrix Γ ⊂ ∂Ω, transforming into an immobile species vi,
defined on Γ. This means that the colloids of different size can be present both
in the bulk and on the boundary. The boundary condition for Γ then looks like:

−di∇ui · n = Fi(ui, vi). (7)

At this stage, we assume the deposition rate Fi to be linear, namely we take

Fi(ui, vi) = aiui − bivi, (8)

this resembles the structure of Henry’s law acting in the context of gas exchange
at liquid interfaces Battino and Clever, 1966.
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2.4 Setting of the microscopic model equations

Collecting the modeling assumptions from Section 2.1, Section 2.2, and Section
2.3, we see that the microscopic system to be tackled in this context is as follows:

Find (u1, . . . , uN , v1, . . . , vN ) satisfying

∂tui +∇ · (−di∇ui) = Ri(u) in Ω, (9)

∂tvi = aiui − bivi on Γ, (10)

with the boundary conditions

− di∇ui · n = aiui − bivi on Γ, (11)

− di∇ui · n = 0 on ΓN , (12)

ui = uiD on ΓD, (13)

and the initial conditions

ui(0, x) = u0
i (x) for x ∈ Ω, (14)

vi(0, x) = v0
i (x) for x ∈ Γ. (15)

3 Nondimensionalization

Let τ , χ, d, u0, v0, and a0 be reference quantities. We choose the scaling
t := τ t̃, x := χx̃, di := dd̃i, ui := u0ũi, vi := v0ṽi, ai := a0ãi, and bi := a0u0

v0
b̃i.

As reference quantities, we select χ := L, d := d1, u0 := max{ui0, uiD : i ∈
{1, . . . , N}}, and v0 := max{vi0 : i ∈ {1, . . . , N}}.

Note that we need to distinguish between u0 and v0 since they have dif-
ferent dimensions, i.e. volume and surface concentration, respectively. After
substituting these scaling relations into (9)-(15) and dropping the tildes, we
obtain:

∂tui +
τd

L2
∇ · (−di∇ui) = τu0Ri(u) (16)

−di∇ui · n =
a0L

d
(aiui − bivi) (17)

∂tvi =
τa0

v0
u0(aiui − bivi). (18)

This nondimensionalization procedure involves three relevant dimensionless num-
bers. We denote by ε our first dimensionless number, viz.

ε :=
a0L

d
. (19)

For our particular scenario, the dimensionless number ε takes a small value
(here ε ≈ 7.61e − 7). We will relate it in Section 4 to a ratio of characteris-
tic micro-macro length scales. We refer to ε as the homogenization parameter.
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Furthermore, we choose to scale the time variable in the system by the charac-

teristic time scale of diffusion τ := L2

d of the fastest species (i.e. the monomers).
This particular choice of time scale leads to two further dimensionless numbers:

• the Thiele modulus

Λ :=
L2

d
u0 (20)

• the Biot number

Bi := a0
L2

d

u0

v0
. (21)

According to our reference parameters, we estimate that Λ = 3.8934e21 and
Bi = 7.6914e− 08. The order of magnitude of the Thiele modulus Λ indicates
that the characteristic reaction time is very small compared to the characteristic
time of monomers diffusion, the overall reaction-diffusion process being with this
scaling in its fast reaction regime. The order of magnitude of the Biot number
Bi points out the slow deposition regime. Essentially, since Lu0

v0
= O(1), we

have Bi = O(ε). To remove a proportionality constant in the scaled boundary
condition (24), we take L := v0

u0
.

Finally, we obtain the following dimensionless system of governing equations:

∂tui +∇ · (−di∇ui) = ΛRi(u) in Ω, (22)

∂tvi = Bi(aiui − bivi) on Γ, (23)

with the boundary conditions

− di∇ui · n = ε(aiui − bivi) on Γ, (24)

− di∇ui · n = 0 on ΓN , (25)

ui(t, x) =
uD(t, x)

u0
on ΓD, (26)

and the initial conditions

ui(0, x) =
u0
i (x)

u0
for x ∈ Ω, (27)

vi(0, x) =
v0
i (x)

v0
for x ∈ Γ. (28)

4 Derivation of the macroscopic model

In this section, we suppose that our porous medium has an internal structure
that can be sufficiently well approximated by an array of periodically-distributed
microstructures. For this situation, starting off from a partly dissipative model
for the dynamics of large populations of interacting colloids at the pore level
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(i.e. within the microstructure), we derive upscaled equations governing the
approximate macroscopically observable behavior. To do this, we employ the
technique of periodic homogenization; see, for instance, Bensoussan, Lions, and
Papanicolaou, 1978; Chechkin, Piatnitki, and Shamaev, 2007; Marchenko and
Kruslov, 2006. In what follows, we apply the technique in an algorithmic way,
giving complete and explicit calculations.

4.1 Colloid dynamics in structured media. The periodic
homogenization procedure

The porous medium Ωε that we consider is modeled here as a composite periodic
structure with ε > 0 as a small scale parameter, which relates the the pore
length scale to the domain length scale. Ωε is depicted in Figure 1. We assume
in this context that this scale parameter is of the same order of magnitude as ε
introduced in (19). Note in Figure 1 the periodic array of cells approximating
the porous media under consideration. Each element is a rescaled (by ε) and
translated copy of the standard cell Y .

ε

ε

Yij

Γ

ε

ε

Yij

Γ

Figure 1: Microstructure of Ωε. Left: isotropic case; Right: anisotropic case.
Here Yij is the periodic cell.

As customary in periodic homogenization applications, we introduce the
fast variable y := x/ε and let all the unknowns be represented by the following
expansions: {

uε(x) := uε0(x, y) + εuε1(x, y) + ε2uε2(x, y) +O(ε3),

vε(x) := vε0(x, y) + εvε1(x, y) + ε2vε2(x, y) +O(ε3).
(29)

The asymptotic expansions (29) can be justified by means of the concept of
two-scale convergence by Nguetseng and Allaire; see Ref. Krehel, Muntean,
and Aiki, 2014 for the mathematical analysis of a more complex case including
also thermal effects, and Hornung and Jäger, 1991 for a closely related scenario.

Now, taking into account the chain rule ∇ := ∇x + 1
ε∇y, we get:
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(0, T ) = time interval of interest
Ω = bounded domain in Rn
∂Ω = ΓR ∪ ΓN piecewise smooth boundary of Ω, ΓR ∩ ΓN = ∅
~ei = ith unit vector in Rn (n = 2 or n = 3)
Y = {

∑n
i=1 λi~ei : 0 < λi < 1} unit cell in Rn

Y0 = open subset of Y that represents the solid grain
Y1 = Y \ Y 0

Γ = ∂Y0 piecewise smooth boundary of Y0

Xk = X +
∑n
i=1 ki~ei, where k ∈ Zn and X ⊂ Y

Table 1: ε-independent objects.

Ωε0 = ∪{εY k0 : Y k0 ⊂ Ωε, k ∈ Zn} array of pores

Ωε = Ω \ Ω
ε

0 matrix skeleton
Γε = ∂Ωε0 pore boundaries

Table 2: ε-dependent objects.

∇uεi = ε−1∇yuεi,0 + ε0(∇xuεi,0 +∇yuεi,1) + ε1(∇xuεi,1 +∇yuεi,2) +O(ε2).

∇vεi = ε−1∇yvεi,0 + ε0(∇xvεi,0 +∇yvεi,1) + ε1(∇xvεi,1 +∇yvεi,2) +O(ε2).

This gives us the following diffusion term:

∇ · (dεi (y)∇uεi ) = ε−2∇y · (dεi (y)∇yuεi,0)

+ ε−1(dεi (y)∇x · ∇yuεi,0 +∇y · (dεi (y)∇xuεi,0) +∇y · (dεi (y)∇yuεi,1))

+ ε0(dεi (y)∆uεi,0 + dεi (y)∇x · ∇yuεi,1
+∇y · (dεi (y)∇xuεi,1) +∇y · (dεi (y)∇yuεi,2)) +O(ε1).

Collecting the terms with ε−2 gives:

∇y · (dεi (y)∇uεi,0) = 0.

Recalling that this PDE with periodic boundary conditions has a solution unique
up to a constant, we get uεi,0 = uεi,0(x). Consequently, we have ∇yuεi,0 = 0.

The terms with ε−1 can be arranged as

∇y · (dεi (y)∇yuεi,1) = −∇ydεi (y) · ∇xuεi,0. (30)

Let wj(y) solve the following cell problem endowed with periodic boundary
conditions:

∇y · (dεi (y)∇wj) = −(∇dεi (y))j j ∈ {1, . . . , d}, y ∈ Y (31)
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Using (31), we can express the first order term in (29) as:

uεi,1(x, y) = w(y) · ∇uεi,0(x) + uεi,1(x), (32)

where the function uεi,1(x) does not depend on the variable y. Note that

∇yuεi,1(x, y) = ∇w(y) · ∇uεi,0(x). (33)

The terms with ε0 give:

∂tu
ε
i,0 =dεi (y)∆uεi,0 + dεi (y)∇w(y) : ∇∇uεi,0

+∇y · (dεi (y)∇xuεi,1 + dεi (y)∇yuεi,2) + ΛRi(u
ε
0).

Integrating over Y and noting that |Y | = 1 yield:

∂tu
ε
i,0 = D̄i : ∇∇uεi,0 −

∫
∂Y

dεi (y)(∇xuεi,1 +∇yuεi,2) · ndσ(y) + ΛRi(u
ε
0). (34)

The upscaled diffusion tensors D̄i := [D̄ijk] reads:

D̄ijk =

∫
Y

di(y)(δjk +∇ywi(y))dy i ∈ {1, . . . , N}; j, k ∈ {1, . . . , d}. (35)

Because of the periodic boundary conditions, the active part of ∂Y is only Γ.
Here we have:

∂tu
ε
i,0 = D̄i : ∇∇uεi,0 −

∫
Γ

dεi (y)(∇xuεi,1 +∇yuεi,2) · ndσ(y) + ΛRi(u
ε
0). (36)

The boundary term in (36) can be expressed recalling the corresponding depo-
sition boundary condition:

−dεi∇uεi · n = ε(aεiu
ε
i − bεivεi ) (37)

Using the prescribed asymptotic expansions, (37) becomes:

−dεi (y)(ε−1∇yuεi,0 + ε0(∇xuεi,0 +∇yuεi,1) + ε1(∇xuεi,1 +∇yuεi,2)) · n
= aεi (y)(ε1uεi,0 + ε2uεi,1)− bεi (y)(ε1vε0 + ε2vε1) +O(ε2).

Consequently, we obtain

−dεi (y)(∇xuεi,1 +∇yuεi,2) · n = aεi (y)uεi,0 − bεi (y)vε0.

Finally, the upscaled equation for uεi reads:

∂tui −∇ · (D̄i∇ui) +Aiui −Bivi = ΛRi(u). (38)

Note that the microscopic surface exchange term turns as ε→ 0 into the macro-
scopic bulk term Aiui −Bivi. Furthermore, the upscaled equation for vεi is

∂tvi = Aiui −Bivi, (39)
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where the effective constants Ai and Bi are defined by

Ai := Bi

∫
Γ

ai(y) dσ(y) (40)

and

Bi := Bi

∫
Γ

bi(y) dσ(y). (41)

Summarizing, the upscaled system describing the macroscopic dynamics of
the colloids is:

∂tui −∇ · (D̄i∇ui) +Aiui −Bivi = ΛRi(u) in Ω, i ∈ {1, . . . , N} (42)

∂tvi = Aiui −Bivi in Ω, i ∈ {1, . . . , N} (43)

di∇ui = fi on ΓR, i ∈ {1, . . . , N} (44)

ui = uiD on ΓD, i ∈ {1, . . . , N} (45)

ui(·, 0) = u0
i in Ω, i ∈ {1, . . . , N} (46)

vi(·, 0) = v0
i in Ω, i ∈ {1, . . . , N}. (47)

4.2 Computation of the effective diffusion tensors D̄i =
D̄ijk

We rely on equation (35) to approximate the main effective transport coefficients
– the effective diffusion tensors D̄ijk responsible in this scenario for the transport
of the N species of colloids. See Table 3 for a calculation example (notice the
symmetry of the tensors corresponding to the isotropic case).

Figure 2 and Figure 3 show the solutions to the cell problems (31) for the
isotropic and anisotropic geometry case, respectively. The 2D solver for elliptic
PDE with periodic boundary conditions needed for these periodic cell problems
was implemented in C++ using deal.II Numerics library; see Bangerth et al.,
2013 for details on this platform.

Figure 2: Solutions to the cell problems that correspond to isotropic periodic
geometry (Figure 1, left). See Table 3 for the resulting effective diffusion tensor.
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Figure 3: Solutions to the cell problems that correspond to anisotropic periodic
geometry (Figure 1, right). See Table 3 for the resulting effective diffusion
tensor.

Isotropic Anisotropic

D̄1 =

[
0.75 0.171476

0.171476 0.75

]
D̄1 =

[
0.817467 0.0786338
0.214942 0.817467

]
Table 3: Examples of effective diffusion tensors corresponding to the first species
(i.e. to the monomer population) for the two choices of microstructures shown
in Figure 1.

Controlling the cell functions allows us also to approximate the tortuosity
tensor in a direct manner, avoiding complex analytical calculations hard to
justify theoretically or experimentally; compare e.g. with Ref. Guo, 2012. An
example in this sense is shown in Figure 4. To obtain it, we use the relation

D̄1 = d1φT̄∗

(see Bear, 1988, e.g.) and the fact that for the microstructures shown in Figure
1 we know that the porosity for the isotropic case is 0.75, while the porosity
for the anisotropic case amounts to 0.85. We refer the reader to Ijioma, 2014
for more numerical examples of multiscale investigations of anisotropy effects
on transport in periodically perforated media.

Isotropic Anisotropic

T̄∗ =

[
1.0000 0.2286
0.2286 1.0000

]
T̄∗ =

[
0.9617 0.0925
0.2529 0.9617

]
Table 4: Examples of effective tortuosity tensors corresponding to the first
species (i.e. the monomer population) for the two choices of microstructures
shown in Figure 1.

As soon as the covering with microstructures lacks ergodicity and/or station-
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arity, such evaluations are often replaced by efforts to calculate accurate upper
bounds on the prominent effective coefficients; see Ref. Mei and Vernescu, 2012,
for instance, for details in this direction.

4.3 Extensions to non-periodic microstructures

One can relax the periodicity assumption on the distribution of the microstruc-
tures. Instead of promoting the stochastic homogenization approach (cf. Ref.
Zhikov, 2000, e.g.) which is prohibitory expensive from the computational point
of view, we indicate two computationally tractable cases: (1) the locally peri-
odic arrays of microstructures (see Boyaval, 2008; Fatima et al., 2011; Muntean
and van Noorden, 2013) and (2) the weakly stochastic case (see Le Bris, Legoll,
and Thomines, 2014 and references cited therein). We will show elsewhere not
only how our model formulation and asymptotics as ε → 0 translate into the
frameworks of these two non-periodic settings, but also the way the new effective
transport coefficients can be approximated numerically.

5 Simulation studies

In this section, we study how aggregation affects deposition during the trans-
port of colloids in porous media. Within this frame we work with a reference
parameter regime pointing out to the fast aggregation – slow deposition regime,
that is high Λ and low Bi.

We take the model from Johnson, Sun, and Elimelech, 1996 as the starting
point of this discussion and aim at recovering their results. We interpret all
coefficients from Johnson, Sun, and Elimelech, 1996 in terms of our effective
coefficients obtained by the asymptotic homogenization performed in Section
4. As main task, we search for new effects coming into play due to colloids
aggregation.

The model for the evolution of the single mobile colloid species n(x, t) and
the surface coverage of the porous matrix by the immobile colloids θ(x, t) (that
corresponds to the amount of mass deposited) is as follows: Find the pair (n, θ)
satisfying the balance equations

∂tn = −vp · ∇n+Dh∆n− f

πa2
p

∂tθ, (48)

∂tθ = πa2
pknB(θ), (49)

with the switch boundary conditions

n(t, 0) =

{
n0 t ∈ [0, t0]

0 t > t0
, (50)

∂n

∂ν
(t, L) = 0, (51)
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and initial conditions

n(0, x) = 0, (52)

θ(0, x) = 0, x ∈ [0, L]. (53)

Here vp is the interstitial particle velocity of the suspended colloids, Dh is the
hydrodynamic particle dispersion, ap is the particle radius, while f is the specific
surface area. t0 is the switching off time in the boundary condition.

Given a column of cross-section surface S and height Z randomly packed
with spherical collector beads of radius ac and porosity (void volume fraction)
φ typically of order of 0.4, f can be calculated (cf. Privman et al., 1991) as
the ratio of the total surface area of all beads in the column to the void volume
φZS. For spherical beads of uniform radius, the specific surface area f is

f(φ) :=
3(1− φ)

φac
. (54)

The dynamic blocking function B(θ) arising in (49) accounts for the transient
rate of particle deposition. As the colloids accumulate on the surface of the
porous matrix, they exclude a part of the surface, limiting the amount of sites
for further particle attachment.

Interstitial particle velocity vp = U
φ (2− (1− ap

r0
)2)

Hydrodynamic dispersion coefficient Dh = D∞
τ + αLvp

Particle radius ap = 0.15 [µm]

Specific surface area f = 3(1−φ)
φac

Collector grain radius ac = 0.16 [mm]
Pore radius r0 = (1.1969ε− 0.1557)ac
Darcy velocity U = 1.02× 10−4 [m/s]
Porosity φ = 0.392 [−]
Dispersivity parameter αL = 0.692 [mm]
Kinetic rate constant k = 0.25ηU = 5× 10−7 [m/s]
Characteristic length L = 0.101 [m]
Characteristic time t0 = 5445 [s]
Initial concentration n0 = 5.58× 108 [cm−3]

Table 5: Reference parameters for simulation studies. The numerical values are
taken from Johnson, Sun, and Elimelech, 1996.

We used the Finite Element Numerics toolbox DUNE Bastian et al., 2008
to implement a solver for the model. We employed the Newton method to deal
with the nonlinearities in the aggregation term (counterpart of R(·) cf. Section
2.1) and in the blocking function term (here denoted by B(·)). An implicit Euler
iteration is used for time-stepping.
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The first results of our simulation with the reference parameters indicated
in Table 5 are shown in Figure 4. Essentially, a single-species system (48)-(53)
is compared to a two-species system with a square pulse going from one side of
the domain for a fixed amount of time in the first species only. The resulting
breakthrough curves are plotted. It is of interest to compare the breakthrough
curves for the total amount of mass going through, no matter if it’s in the form
of small or large particles. As we can observe, there is a perceptible difference
between the two curves, being the mass for the two-species case coming in slower.
This is due to larger particles having higher affinity for deposition.
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Figure 4: Simulation comparison for a single species system versus an aggregat-
ing system. The straight line is the breakthrough curve for the colloidal mass for
the problem without aggregation. The dashed line is the breakthrough curve for
the colloidal mass for the problem with aggregation. It is obtained by summing
mass-wise the breakthrough curves for the monomers u1 and dimers u2.

Let us focus now our attention on a specific aspect of the deposition process,
namely on the effect of the dynamic blocking functions. The context is as
follows: The rate of colloidal deposition is known to go down as more particles
attach themselves the the favorable deposition sites of the porous matrix; see,
for instance, Liu, Johnson, and Elimelech, 1995 and references cited therein.

One of the choices for the blocking function in (49) corresponds to Lang-
muir’s molecular adsorption model Langmuir, 1918. It is an affine function in
terms of θ, reaching the maximum of 1 when the fraction of the surface covered
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is zero. In other words, B(·) is defined as

B(θ) := 1− βθ. (55)

For the simulations, we used the value β = 2.9. This corresponds to the
hard sphere jamming limit θ∞ = 0.345, which is specific to spherical collector
geometry and the experimental conditions described in Johnson and Elimelech,
1995.

A simulation example of our balance equations (48)-(53) with the Lang-
muirian blocking function is shown in Figure 5.

Another choice is the RSA dynamic blocking function as developed in Schaaf
and Talbot, 1989. RSA stands for ”random sequential adsorption”. The RSA
blocking choice is based on a third order expansion of excluded area effects and
can be used for low and moderate surface coverage. Here B(θ) is defined as:

B(θ) := 1− 4θ∞βθ + 3.308(θ∞βθ)
2 + 1.4069(θ∞βθ)

3. (56)

Here, θ∞ is the hard sphere jamming limit. A simulation example of the balance
equations (48)-(53) including the RSA blocking function is shown in Figure 6.
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Figure 5: The effect of the Langmuirian dynamic blocking function on the depo-
sition (right) versus no blocking function (left). u1 and u2 are the breakthrough
curves, while v1 and v2 are the concentrations of the deposited species.

6 Discussion

This paper sheds light on transport, aggregation/flocculation, and deposition
of colloidal particles in heterogeneous media. We succeeded to recover basic
results obtained with standard models for (single class, single species) colloidal
transport. Furthermore, our model includes information about the multiscale
structure of the porous medium and demonstrates new effects attributed to
flocculation, such as the occurrence of an overall decrease in the species mobility
due to a higher affinity for deposition of the large size classes of colloidal species;
see Figure 7 for this effect.

Extensions of this work can go in multiple directions:
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Figure 6: The effect of the RSA dynamic blocking function on the deposition
(right) versus no blocking function (left). u1 and u2 are the breakthrough
curves, while v1 and v2 are the concentrations of the deposited species.
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Figure 7: The effect of aggregation rates on the breakthrough curves. On the
left, the default rate of aggregation is used, on the right - it’s doubled. A change
of aggregation rate can be achieved by varying the concentration of salt in the
suspension, according to DLVO theory. Note the strong effect of aggregation on
deposition.

(i) Cf. Liu, Johnson, and Elimelech, 1995, the extent of colloidal transport
in groundwater is largely determined by the rate at which colloids de-
posit on stationary grain surfaces. The assumption of stationarity can
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be potentially relaxed, thus aiming to incorporate the interplay between
biofilms growth and deposition, hence obtaining a better understanding
of the clogging/blocking of the pores; see e.g. Noorden et al., 2010; Ray
et al., 2013.

(ii) If repulsive forces between colloids are absent due to suitable chemical con-
ditions, then the deposition rate tends to increase as colloids accumulate
on the grain surface (see Figure 1). Based on Liu, Johnson, and Elimelech,
1995, this enhancement of deposition kinetics is attributed to the retained
particles and is generally referred to as ripening. Active repulsive forces
seem to lead to a decline in the deposition kinetics. These effects could be
investigated by our model, provided suitable modifications of the fluxes
responsible for the transport of colloidal species are taken into account
Hertz and Knabner, 2013.

(iii) The role of the electrolyte concentration (typically a salt, e.g. KCl) and
the effect of the interplay between the electrostatic and van der Waals
interactions on deposition kinetics can be studied by further developing
the model. A few basic ideas on how to proceed in this case are collected,
for instance, in Ray, Muntean, and Knabner, 2012.

(iv) Non-periodic distributions of microstructures are relevant for practical ap-
plications. We leave as further work the extension of our solver towards
the MsFEM approach, where cell problems are solved for each grid ele-
ment, parametrized by the localized properties of the medium. We refer
the reader to Section 4.3 for comments in this direction.

Acknowledgments

The authors would like to thank Prof. Dr. Kai Uwe Totsche (Jena) and his
group for very helpful discussions on the complexity of the interactions and
transport of colloids in soils.

AM and OK gratefully acknowledge financial support by the European Union
through the Initial Training Network Fronts and Interfaces in Science and
Technology of the Seventh Framework Programme (grant agreement number
238702).

References

Bangerth, W. et al. (2013). “The deal.II Library, Version 8.1”. In: arXiv
preprint http://arxiv.org/abs/1312.2266v4.

Bastian, P. et al. (2008). “A generic grid interface for parallel and adaptive
scientific computing. Part II: implementation and tests in DUNE”. En. In:
issn: 1436-5057. url: http://dx.doi.org/10.1007/s00607-008-0004-9.

Battino, R. and H. L. Clever (1966). “The solubility of gases in liquids”. In:
Chemical Reviews 66.4, pp. 395–463.

17



Bear, J. (1988). Dynamics of Fluids in Porous Media. Dover.
Bensoussan, A., J. L. Lions, and G. Papanicolaou (1978). Asymptotic Analysis

for Periodic Structures. Vol. 5. Studies in Mathematics and Its Applications.
North-Holland.

Boyaval, S. (2008). “Reduced-basis approach for homogenization beyond the
periodic setting”. In: SIAM Multiscale Modeling and Simulation 7.1, pp. 466–
494.
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