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Abstract

We consider a single inventory location where multiple types of repairable spare parts are kept to

service several different fleets of assets. Demand for each part is modeled by a Markov modulated

Poisson process (MMPP). Each fleet has a target for the maximum expected mean number of assets

down for lack of a spare part. The inventory manager can meet this target by stocking repairables and

by expediting the repair of parts. Expedited repairs have a shorter lead time. There are multiple repair

shops (or departments) that handle the repair of parts and the mean number of expedited repairs that

can be requested per time unit is constrained per repair shop. A dual-index policy makes stocking

and expediting decisions that depend on demand fluctuations for each spare part type. We formulate

the above problem as a non-linear non-convex integer programming problem and provide an algorithm

based on column generation to compute feasible solutions and tight lower bounds. We show how to

use the MMPP to model demand fluctuations in this and other settings, including a moment fitting

algorithm. We quantify the value of lead time flexibility and show that effective use of this flexibility

can yield cost reductions of around 25%.

Keywords: repair, inventory, spare parts, column generation, maintenance, Markov modulated Poisson process

1. Introduction

Service and manufacturing operations rely heavily on the availability of equipment such as aircraft, MRI-

scanners, trains, and manufacturing equipment. The owners of such assets need to keep their equipment

up and running as efficiently as possible. This is usually done by replacing defective components with

ready for use components. The defective component is often expensive and therefore it is repaired so it

can be used again. Such components are called repairables. and the working method described above is

called repair-by-replacement. A sufficiently large number of spare repairables are needed to make such
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a system work, in particular to ensure a sufficiently high levels of availability of capital assets. Buying

sufficient repairables of all types needed to maintain a fleet of equipment is a major investment decision

for firms with capital assets, because repairables are expensive.

The amount of spare repairables to buy is not the only major decision that affects the availability of

capital assets. The repair of parts is usually done in house by several repair shops organized according to

technical disciplines. For example, large airlines have repair shops for, amongst others, mechanical parts,

avionics, and pneumatics. Our research has been inspired in particular by NedTrain, the maintenance

division for rolling stock for the Dutch railways. NedTrain also invests in repairable spare parts and has

repair shops for mechanical parts, compressors, pneumatics, low voltage electronics, and high voltage

electrical systems amongst others. The repair operations in these shops affect the availability of several

fleets of trains. At the operational level, the inventory and repair shop planners coordinate to make sure

repair priority is given to parts for which the inventory is most likely to run out in the near future.

The objective of this paper is to present a tractable optimization model that assists decision makers

in answering the following questions

1. How many spare parts should we buy of each repairable type?

2. When should we expedite the repair of a given repairable type?

We assume the decision maker has to make these decisions for several fleets of equipment (e.g. local

trains and long distance trains), and across parts that use different repair resources (e.g. pneumatics and

electronics). The objective of the decision maker is to minimize the costs involved with purchasing or

holding repairable spare parts while:

• meeting a service level in the form of a maximum average number of backorders for each fleet, and

• keeping the load imposed on each repair resource due to expedited orders below a set target level.

Note that this stocking problem cannot be resolved for each fleet separately because repairables that

belong to different fleets (may) use the same resources for repair. We consider a setting where repair

resources are flexible and model this through the possibility to request regular repair or expedited repair

when sending a defective part to the repair shop. Expedited repairs have a shorter lead time than regular

repairs. Since the flexibility of a repair resource is limited, there is a constraint on the amount of repair

work that can be expedited per time unit for each repair resource. We refer to the amount of work that

a repair resource handles per time unit as the load. Repairables from different fleets compete for the

opportunity to load a repair resource with expedited orders.

Demand for a single type of repairable spare part usually fluctuates over time. These demand fluctu-

ations arise for several reasons such as periodic inspections, usage patterns of equipment over time and

the season of year. Slay and Sherbrooke (1988) observe empirically that demand for aircraft parts is
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non-stationary, and our experience with NedTrain also shows demand for many parts is non-stationary.

When the reasons for demand fluctuations are understood, expediting decisions can be made to anticipate

these fluctuations and to make effective use of repair resources.

In this article, we provide a mathematical model for the decision problem described above. This model

has been conceived with an application at NedTrain in mind. We emphasize however that the applicability

of the model and results in this article extend to other companies that maintain their own equipment. We

will illustrate the need, as well as the application of the model, using an example that runs throughout

this entire article. This example is about a fictitious railway company. We finish this introduction by

starting this example. The rest of the article is organized as follows. §2 reviews related literature and

positions the contribution of this article with respect to existing literature. The mathematical model is

provided in §3. The analysis of the model is in §4. Computational results of the model are provided in

§5 and concluding remarks are offered in §6.

Example 1. The railway company Thomas&Co needs new trains to replace locomotives with pulled

carriages. They decide to buy 100 trains from Liam Engineering Inc., and plan to use those for the next

30-40 years on long distance train services. Along with this order of 100 trains, Liam Engineering Inc.

offers the possibility to buy (repairable) spare parts at a considerably discounted price. Thomas&Co would

like to buy repairable spare parts at this discounted price and is taking this opportunity to decide on the

stocking levels of repairables for the new fleet, as well as to reconsider the stocking levels for repairables

of other fleets. �

2. Literature review and contribution

Multi-item repairable inventory models are abundant in literature. We refer the reader to the books of

Sherbrooke (2004), Muckstadt (2005) and Van Houtum and Kranenburg (2015), and review papers by

GuideSrivastava1997, Kennedy et al. (2002) and Basten and Van Houtum (2014) for a broad overview. In

this section, we briefly discuss literature with similar modeling assumptions and literature that expounds

on or uses similar solution methods as those used in this article. On the modeling side, the main

contributions of this article are the fluctuating demand model and the use of a dynamic expediting policy

that depends on demand fluctuations. On the analysis side, we decompose the problem per item via a

column generation algorithm. Therefore, this section is organized around three main topics: fluctuating

demand (§2.1), repair expediting and scheduling policies (§2.2), and decomposition and column generation

algorithms (§2.3).

2.1 Fluctuating demand

Demand for repairables that fluctuates over time has been considered before in a series of models developed

by the RAND corporation under the name Dyna-metric (Hillestad, 1982; Carillo, 1989; Isaacson and



4 Arts: A Multi-Item Approach to Repairable Stocking and Expediting in a Fluctuating Demand Environment

Boren, 1993). Initially, these models were based on an extension of Palm’s theorem for non-stationary

Poisson processes, but these efforts eventually developed into simulation models that do not allow efficient

optimization. In the Dyna-metric approach, demand is a non-stationary Poisson proces, but the Poisson

demand rate is a deterministic function of time. Rather than performing steady-state analysis, the Dyna-

metric approach is to perform a transient analysis at some particular point in time that is chosen by

the modeler. The Dyna-metric model does not include the possibility to expedite repair. Demand

fluctuations are therefore only buffered by holding inventory.

A similar approach is followed by Lau and Song (2008) with two exceptions: They also model the finite

repair capacity using queueing approximations and they evaluate the transient behavior of the system at

several points of interest rather than only one. For their extensions to Dyna-metric, they take heuristic

and approximative approaches.

Our work differs from these contributions because demand fluctuations are modeled by a Markov

modulated Poisson process. This resembles practice more closely as the intensity of demand over time

behaves as a stochastic process rather than a deterministic function. Additionally, our model deals with

these demand fluctuations not only by holding repairable inventory, but also by using the possibility to

expedite repair. Our modeling also allows us to evaluate our system exactly and compute tight lower

bounds on optimal system performance. The use of the Markov modulated Poisson process to model

demand for inventory systems has already been advocated by Song and Zipkin (1993). However, no

practical fitting algorithms have been provided for modeling demand. (There are, however, practical

fitting algorithms for the MMPP process in the context of communication networks; see e.g. Heffes

and Lucantoni (1986); Meier-Hellstern (1987); Yoshihara et al. (2001); Nelson and Gerhardt (2010)) We

provide two practical fitting procedures. The first is based on the maintenance and repair setting and

uses information from maintenance planning. The second procedure is a moment fitting procedure that

fits on demand over the lead-time.

2.2 Expediting and repair scheduling policies

The possibility to either expedite repair or prioritize the scheduling of repairs in the repair shop has been

considered many times, mostly under the assumption of fixed given turn-around stock levels (Hausman

and Scudder, 1982; Scudder, 1986; Scudder and Chua, 1987; Pyke, 1990; Tiemessen and Van Houtum,

2012; Liang et al., 2013). In these contributions, the repair shop is modeled by a finite server queue.

Given a limited capacity, the question becomes: How should limited repair capacity be allocated to repair

jobs of various types, i.e., which repair jobs deserve priority?

As observed by Tiemessen and Van Houtum (2012), even for fixed given turn-around stock levels,

computing optimal priority rules, or evaluating a given rule, requires computation times that grow ex-

ponentially in the number of different repairable types. Also the derivation of structural properties of

optimal policies or evaluation of heuristic policies is limited to cases with only two repairable types (e.g
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Zheng and Zipkin, 1990; Veatch and Wein, 1996; Ha, 1997). Accordingly, most contributions in this

area use simulation to study heuristic priority rules. All these authors report that system performance

increases substantially by using various priority rules. Hausman and Scudder (1982) and Tiemessen and

Van Houtum (2012) both point out that substantial stock reductions should be possible as a result of

using an effective priority rule. Under static priority rules, the priority of a spare part depends on its

type only. Under these relatively simple rules, Sleptchenko et al. (2005) and Adan et al. (2009) have

shown numerically that significant reductions in inventory investment are possible compared to simple

first come first serve scheduling of repair jobs. More sophisticated priority rules also consider the on-hand

inventory and expected future demand in deciding the priority of a part. These dynamic priority rules

are essentially mechanisms that change the repair lead time of an item based on current on-hand stock

and estimated future demand. In this regard, the possibility to schedule repairs can be interpreted as

providing lead time flexibility. The expediting policy in our model provides this lead time flexibility, but

does not suffer from the tractability issues that dynamic priority queueing models suffer from.

We retain tractability because we assume a rather simple priority rule and refrain from explicitly

modeling the queueing behavior that occurs in the repair shop. If the repair shop is external to the

company holding inventory, this is a natural modeling choice, but even when the repair shop is internal to

the company, this model has merit: In many organizations, the repair shop and inventories are managed

separately. Coordination of repair priorities often happens implicitly through lead time agreements

between the inventory manager and the repair shop manager. Our model is a first step in explicitly

considering the effect of smart priority rules when deciding on turn-around stocks. A simulation study

at NedTrain shows that our model is also a good approximation under more sophisticated priority rules

(Loeffen, 2012).

The possibility to expedite the repair of a part without considering queueing effects in the repair

shop has been considered previously by Verrijdt et al. (1998), but their policy only depends on the on-

hand inventory of a part and considers Poisson demand only. Moinzadeh and Schmidt (1991) study the

same policy that we use, but in the context of deterministic lead times and Poisson demand. Song and

Zipkin (2009) show that the model of Moinzadeh and Schmidt (1991) can be reinterpreted as a special

type of queueing network for which a product-form solution exists. This observation allows them to

significantly generalize the model of Moinzadeh and Schmidt (1991), but it does not allow expediting

policies that somehow depend on demand fluctuations. The expediting policy we propose in this article,

does depend on demand fluctuations, and is shown to be optimal under certain conditions described in

Arts et al. (2014). The merit of this rule is that it captures the essential trade-off involved in dynamically

scheduling repair of spare parts, while being sufficiently simple to make the problem of deciding inventory

levels tractable.
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2.3 Decomposition and column generation

Decomposition and column generation is a general technique to deal with optimization problems that

have a Lagrangian that can be decomposed. The most straightforward way of dealing with such problems

is by manipulating the Lagrange multipliers as suggested by Everett (1963) and later by Fisher (1981).

Brooks and Geoffrion (1966) show that one efficient way of finding the best Lagrange multipliers is via

setting up a linear program in which each variable corresponds to a solution for each of the parts that

compose the Lagrangian. The Lagrange multipliers then correspond to shadow prices (or dual variables)

of the linear program. The algorithm we present in this article is based on that idea.

In the context of spare parts inventory optimization, decomposition and column generation has been

used as early as in the seminal paper of Sherbrooke (1968) to solve the metric model, where the La-

grangian is decomposable per spare part type. Essentially, the technique reduces the original optimization

problem that encompasses many types of repairables, to repeatedly solving a single-item inventory prob-

lem for each repairable. Usage of this technique for spare part inventory optimization problems has found

much recent following, e.g. Kranenburg and Van Houtum (2007, 2008); Alvarez et al. (2013a,b). In all

these papers (including Sherbrooke (1968)), there is one or more service level constraints that need to be

achieved by all parts collectively (rather than individually). After moving these service level constraints

to the objective by taking the Lagrangian, the best Lagrange multipliers are found via dual variables in

a linear programming relaxation of the problem. (See also Dantzig and Wolfe (1960) and Lübbecke and

Desrosiers (2005) for a more general and thorough treatment of this technique.)

We use the same technique to find a lower bound and a feasible solution for our model. Different

from all the papers mentioned in the previous paragraph, different repairable items are not only linked

because of a collective service level, but also through the expediting load that they have on one or more

repair resources. This is a merit of how our model is set up: Our expediting rule mimics the dynamic

priorities given to repairs but allows for tractable analysis through the technique of decomposition and

column generation.

2.4 Statement of contributions

Our model captures the following features for the first time in multi-item inventory problems of industrial

size:

1. Demand intensity that fluctuates over time as a stochastic process as modeled by the Markov

modulated Poisson process

2. The repair of items can be expedited, and the expediting policy depends on what we know about

demand fluctuations.
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3. Decisions for stocking and expediting repairables affect decision for parts that belong to different

fleets of assets because they share the same resource for repair.

With regards to the first item, we also provide two new fitting procedures to model demand with a

Markov modulated Poisson process. The first procedure is specific to the repair context and requires

information on the maintenance regime of assets. The second is a generic moment fitting procedure that

can also be used in different contexts.

With regards to the second and third item: We provide a formulation that yields a tight lower bound

on the optimal solution and near optimal feasible solutions. The formulation is tractable because it

relies on modeling repair shop flexibility through lead time differentiation. This approach allows us to

decompose the problem and use column generation algorithms. The approach has been applied to an

industrial case study at NedTrain, see Van Aspert (2014).

Finally, our numerical work shows that explicitly considering lead time flexibility as a tool to anticipate

demand fluctuations can decrease the investment required to meet a certain service level by as much as

25% on average across a large test bed.

3. Model

In this section, we model our problem and illustrate most modeling steps by continuing the example

started in the introduction. We start with some notation and preliminaries in §3.1. Then we discuss the

control policy we use for each repairable type in §3.2. Fluctuating demand models are discussed in §3.3.

We conclude this section by formally stating our optimization problem in §3.4.

3.1 Notation and preliminaries

We consider several fleets of assets for which we keep repairable spare parts on stock. We denote the set

of fleets by A and the set of repairable items by I. We refer to each element of I as a stock keeping unit

(SKU). The set of SKUs used to maintain fleet a ∈ A is denoted IAa . There is a set of repair resources,

C, that are used to repair defective parts. The items that load repair resource c ∈ C are contained in the

set ICc . We will assume that IAa and ICc partition the set of all SKUs, that is ∪c∈CICc = ∪a∈AIAa = I and

∩c∈CICc = ∩a∈AIAa = ∅. This assumption is not essential to the analysis, but it considerably simplifies

notation and presentation.

Each SKU i ∈ I faces Markov modulated Poisson demand. This means that demand for SKU i

is a Poisson process whose intensity varies with the state of an exogenous Markov process Y t
i . The

Markov process Y t
i is irreducible and has a finite state space Θi = {1, ..., |Θi|} with generator matrix Qi

whose elements we denote by qi(m,n). For notational convenience, we define qi(m) = −qi(m,m) and

qmax
i = maxm∈Θi qi(m). When Y t

i = y, the intensity of Poisson demand at time t is given by λi(y) ≥ 0;
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λi = (λi(1), ..., λi(|Θ|)), λi(y) > 0 for at least one y ∈ Θi and λmax
i = maxy∈Θi λi(y). We denote demand

for SKU i in the time interval (t1, t2] given Y t1
i = y as Dy

i (t1, t2). Note that Y t1
i provides information

about the distribution of demand in the interval (t1, t2], t2 > t1. We assume that Y t
i can be observed

directly for all i ∈ I and provides a form of aggregated advance demand information. Example 3, shows

an example of how demand might fluctuate over time. We address how to model such demand and

provide examples in §3.3.

There exists a regular and an expedited repair option for each SKU i ∈ I. The expedited repair lead

time for SKU i is deterministic and denoted by `i. The expedited repair lead time may represent things

such as the transport time and the repair time or a lead time agreed upon with an external company

that provides emergency repair service. We also refer to using the expedited repair mode as expediting

repair. The regular repair lead time of SKU i consists of the emergency repair lead time `i, and a

random component of length Li. The random variable Li has an exponential distribution with mean

1/µi. Li models such things as the time that a part waits for resources to become available in the repair

shop or the lead time difference between regular and emergency repair lead times as contracted with an

external repair shop. The assumption that Li has an exponential distribution, seems rather restrictive,

but numerical evidence in Arts et al. (2014) suggests that it is not a very strong assumption at all as

the performance of the system seems rather insensitive to the exact distribution of Li for a fixed mean.

The inventory manager knows for each repair order of SKU i when Li has lapsed, and the remaining lead

time of an order is `i.

Of each SKU i, we already own SLBi parts. The main decision variables are the total number of parts

to own for each SKU. This is denoted by Si for SKU i ∈ I and is also referred to as the turn-around

stock. For each SKU i ∈ I there is an acquisition price Cai for buying additional spare repairables.

Each repair of an SKU i ∈ ICc part, imposes a ‘load’ of ui on repair resource c ∈ C. We use the term

‘load’ for ui, but the interpretation of ui can vary broadly. To illustrate this, consider for example the

following two scenarios:

• Repair is performed by an external repair shop and the repair lead time may be shortened in

exchange for an increased price for the repair. However, there is a maximum target on the amount

of money that can be used for requesting expedited lead times from external parties. In this case, the

repair resource c might be this annual target for expedited repairs expenses and ui is the additional

cost of an expedited repair over a regular repair.

• Repairs are conducted by a repair shop within the company. This repair shop can expedite the

repair of certain parts upon request, as long as the load imposed on the repair shop by expedited

repairs is limited. Manpower is the bottleneck in the repair shop. The load imposed on the repair

shop ui could then be man hours required for the repair of a SKU i ∈ ICc part.

For each repair resource c ∈ C there is maximum Emax
c on the load this repair resource is allowed to
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Repair shop λi(Yi(t))

Xi(t)≥Ti(Yi(t))?

ℓi

No → do not expedite

Exp(µi)

Xi(t)

Yes → Expedite

Figure 1: A graphical representation of the model for a single item.

experience due to expedited repair orders.

Table 1 summarizes the notation we have introduced so far as well as notation we will introduce later.

Now we return to our example to put all this notation in some perspective

Example 2. Thomas&Co already has a fleet of 200 trains that are used for services with many stops.

This fleet is called Village, while the fleet of 100 trains they are about to buy is called City. Now A =

{City,Village}. All mechanical repairs are done in an internal repair shop, while the repair of climate

and airconditioning units is outsourced to an external company. Therefore, C = {Outsource,Mechanic}.
Manpower is the bottleneck in the internal repair shop so ui is measured in man hours if i ∈ ICMechanic.

If i ∈ ICOutsource, then ui is measured in EUROS. Thomas&Co has gathered all this data as shown in

Table 2. Note that from Table 2 we can also read that ICMechanic = {2, 3, 5, 6}, ICOutsource = {1, 4},
IAVillage = {1, 2, 3}, and IACity = {4, 5, 6}. The data not shown in Table 2 is that `i = 2 and E[Li] = 3 for

all i ∈ I. In the next example, we will consider demand data. �

3.2 Control policy

Let Xi(t) be the number of parts of SKU i that have been sent to regular repair and have not yet completed

the exponential phase of their repair at time t. As control policy for each SKU i, we propose to place

a replenishment order whenever demand occurs, i.e. we use a (Si − 1, Si) replenishment policy. For the

expediting policy, we propose to expedite whenever Xi(t) exceeds some threshold that depends on Yi(t),

i.e. replenishment orders are expedited at time t if Xi(t) ≥ Ti(y) when Yi(t) = y. Thus the control policy

for any SKU i can be described by the turn-around stock Si and a vector Ti = (Ti(1), Ti(2), · · · , Ti(|Θi|))
containing the expediting thresholds for each modulating state. The stochastic process Xi(t) depends on

Ti and so we will write this explicitly: XTi
i (t). Figure 1 gives a graphical representation of the control

policy for any SKU i. The combined policy is denoted by (Si,Ti) and can also be reinterpreted as a state

dependent dual-index policy as has also been noted in Arts et al. (2014).
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Table 1: Overview of notation

Sets

I : Set of all SKUs.

A : Set of all fleets.

C : Set of all types of repair shop resources.

IAa : Set of SKUs used to maintain fleet a ∈ A.

ICc : Set of SKUs that load repair resource c ∈ C.

Θi : Set of modulating states of the Markov modulating chain of demand for SKU i ∈ I

Input Parameters

λi(y) : Demand intensity for SKU i ∈ I when Yi(t) = y ∈ Θi

λi : The vector (λi(1), λi(2), · · · , λi(|Θi|))
λmax
i : maxy∈Θi λi(y) for SKU i ∈ I

Qi : Generator matrix of the modulating process Yi(t) of SKU i ∈ I
qi(m,n) : The element of row m column n of Qi, i ∈ I
qi(m) : −qi(m,m)

qmax
i : maxm∈Θi qi(m)

`i : The (deterministic) expedited repair lead time of SKU i ∈ I
µ−1
i : Mean of the additional regular repair lead time, E[Li];

(the mean regular repair lead time is `i + µ−1
i )

SLB
i : Lower bound on the size of the turn-around-stock for SKU i ∈ I
Ca

i : Acquisition costs for SKU i ∈ I
ui : Resource load associated with the repair of SKU i ∈ I
Bmax

a : The maximally allowed mean number of backorders over all SKUs i ∈ IAa for a ∈ A.

Emax
c : The maximally allowed mean resource loading resulting from repair

expediting over all items i ∈ ICc for expediting resource c ∈ C.

Decision variables

Si : Size of the turn-around-stock for SKU i ∈ I
Ti(y) : Expediting threshold for SKU i ∈ I when Yi(t) = y ∈ Θi

Ti : The vector (Ti(1), Ti(2), · · · , Ti(|Θi|))

Output of model

XTi
i (t) : The number of parts of SKU i ∈ I in regular repair at time t and not arriving to

inventory before time t+ `i under an expediting policy with thresholds Ti.

B
(Si,Ti)
i (t) : Random variable that denotes the number of backorders of SKU i

at time t under policy (Si,Ti);

Dy
i (t1, t2) : Demand for SKU i ∈ I in the interval (t1, t2] given Y t1

i = y ∈ Θi

Li : Additional regular repair lead time; has exponential distribution with mean µ−1
i

B(Si,Ti)
i : Expected number of backorders of SKU i ∈ I, limt→∞ E[B

(Si,Ti)
i (t)]

ETi
i : Expected number of repairs of SKU i ∈ I that are expedited per unit time∑

y∈Θi
λi(y)P(XTi

i ≥ Ti(y)|Yi = y)P(Yi = y)
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Table 2: Input data for Thomas&Co

SKU# Description Ca
i (kEURO) Fleet Repair Resource ui SLB

i

1 Climate unit 30 Village Outsource 500 2

2 Electro motor 45 Village Mechanic 16 1

3 Break set 5 Village Mechanic 4 5

4 Airconditioning unit 10 City Outsource 500 0

5 Electro motor 30 City Mechanic 16 0

6 Break set 2 City Mechanic 4 0

The state dependent dual-index policy we propose is actually optimal under a linear backordering and

expediting cost structure as shown in Theorem 1 of Arts et al. (2014). Furthermore, their numerical study

shows that the performance of a state dependent dual-index policy is rather insensitive to the assumption

that Li has an exponential distribution, i.e. both the performance evaluation error and optimality gap

for similar systems where Li has a different distribution with the same mean are small (within 2.76% and

0.70% respectively over a large test bed).

Under a (Si,Ti) policy, (XTi
i (t), Yi(t)) is a Markov process on

Si =

{
(x, y)

∣∣∣∣x ∈ {0, . . . ,max
k∈Θi

Ti(k)

}
, y ∈ Θi

}
.

The Markov process (XTi
i (t), Yi(t)) has three types of transitions:

1. Transitions from (x, y) to (x+ 1, y) which occur with intensity λi(y) if x < Ti(y)

2. Transitions from (x, y) to (x− 1, y) which occur with intensity xµi if x > 0

3. Transitions from (x, y) to (x, y′) which occur with intensity qi(y, y
′) if y, y′ ∈ Θi and y 6= y′.

The joint steady state distribution of (XTi
i (t), Yi(t)) can be determined from these transition intensities.

When we drop the time superscript t, we refer to the steady state random variables. With the distribution

of (XTi
i , Yi), we can determine the performance of a SKU i ∈ I in terms of the expected backorders and

the expected number of repairs of that are expedited per time unit under policy (Si,Ti).

Let B
(Si,Ti)
i (t) denote the number of backorders of SKU i ∈ I at time t under policy (Si,Ti). It

satisfies

B
(Si,Ti)
i (t+ `i) =

(
D
Yi(t)
i (t, t+ `i)−

(
Si −XTi

i (t)
))+

, (1)

and so the expected number of backorders of SKU i ∈ I in steady state, B(Si,Ti)
i , satisfies:

B(Si,Ti)
i = lim

t→∞
E
[
B

(Si,Ti)
i (t+ `i)

]
= EYiEXTi

i

[(
DYi
i (t, t+ `i)− Si +XTi

i

)+
| Yi
]
. (2)
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Equation (2) can be evaluated after noting that the probability mass function of Dy
i (t, t + `i) can be

computed by numerical inversion of a generating function. Details of this are provided in Appendix A.

Next consider the expected number of repairs that are expedited per time unit of SKU i ∈ I, and

denote it by ETi
i . (Note that ETi

i depends on Ti only, not on Si.) We have:

ETi
i =

∑
y∈Θi

λi(y)P(Xi(Ti) ≥ Ti(y)|Yi = y)P(Yi = y). (3)

B(Si,Ti)
i and ETi

i can be evaluated in many ways. In §5, we use value iteration to compute B(Si,Ti)
i

and ETi
i .

3.3 Markov Modulated demand models and fitting

Fitting a MMPP demand model to data has not received much attention in the literature. Fitting proce-

dures do exist, but these are geared primarily to applications of queueing models in telecommunication

systems (e.g. Heffes and Lucantoni, 1986; Meier-Hellstern, 1987; Yoshihara et al., 2001; Nelson and Ger-

hardt, 2010). Using Markov modulated demand in the context of inventory problems has been advocated

by Song and Zipkin (1993) and Zipkin (2000). However, practical algorithms to fit MMPP demand mod-

els to data have not been provided in the literature. In this section, we provide two fitting techniques.

The first fitting procedure in §3.3.1 is specific for the maintenance context of this thesis. The second

fitting procedure in §3.3.2 is a moment fitting procedure, that we believe can also be useful outside of

the setting considered in this article.

3.3.1 Fitting based on maintenance strategy and installed base

The fitting procedure we describe is best understood by first considering an example.

Example 3. For the SKUs in Table 2, Maintenance engineers at Thomas&Co are asked to assess what

the demand will behave like over the next 30-40 years. From past experience, they know that break sets

need to be replaced on each train approximately every year and so they expect a relatively steady demand

of 200/50 = 4 for SKU 3 and 100/50 = 2 parts per week for SKU 6. (We work with a year of 50 weeks.)

An airconditioning unit (SKU 4) is estimated to fail due to random causes about once every 5 years.

Over the entire fleet, this means that demand due to failure maintenance will be about 1
5100/50 = 0.4

parts per week. Additionally, the maintenance engineers expect that the airconditioning units of the entire

City fleet will need to be overhauled roughly every 4 years. They warn that this will lead to peaks in

demand during overhaul periods. How high this peak will be, depends on the length of the overhaul period.

Currently, revision periods are planned to last a year. For SKU 5, the City electro motor, random

failures occur around once every 10 years so they expect a relatively steady demand of 1
10100/50 = 0.2 per

week. Electro motors require overhaul every 7 or so years, so here too, maintenance engineers insist that
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inventory will be needed to deal with peak demand during overhaul periods. Similar estimates are also

available for SKUs 1 and 2: SKU 1 and 2 fail due to random causes once every 4 and 8 years respectively

and need to be replaced and overhauled every 4 and 6 years respectively. �

Example 3 illustrates how an understanding of maintenance can improve the understanding of how

demand for certain repairables fluctuates. This understanding can then be modeled as the modulating

chain for demand. Suppose that demand for repairables behaves as described in Example 3: Demand is

relatively steady over some period, until demand peaks because of a revision period in which parts are

overhauled preventively. Then a simple MMPP that models demand is the following. Let Na denote the

number of equipment in fleet a ∈ A and consider an SKU i ∈ IAa . Let λran
i denote the intensity with

which any piece of equipment in the fleet fails randomly (i.e. not due to wear out). Wear out failures do

not occur because all repairables in the fleet are overhauled during revision periods. The time between

revision periods is a random variable Mi for SKU i. (Mi is not deterministic because the time between

revision periods is decided upon based on the condition of the fleet.) Once the revision period starts, it

lasts Ri time units and all repairables in the fleet are expected to be replaced and revised during this

period. Ri is also a random variable. If we approximate Mi and Ri by exponential random variables a

MMPP demand model is given by:

Qi =

(
−E[Mi]

−1 E[Mi]
−1

E[Ri]
−1 −E[Ri]

−1

)
, λT

i =

(
λran
i Na

λran
i Na +Na/E[Ri]

)
. (4)

Rather than using the exponential distribution for Ri and Mi, it is possible to use any phase type distri-

bution if appropriate. The restriction of modeling Ri and Mi by phase type distributions is rather weak

because phase type distributions are dense in the class of all non-negative distributions (Schassberger,

1973). If we choose to model Mi by an Erlang-2 distribution, we obtain:

Qi =


−(1

2E[Mi])
−1 (1

2E[Mi])
−1 0

0 −(1
2E[Mi])

−1 (1
2E[Mi])

−1

E[Ri]
−1 0 −E[Ri]

−1

 , λT
i =


λran
i Na

λran
i Na

λran
i Na + Na

E[Ri]

 . (5)

Example 4. Thomas&Co decide to use (4) to model their demand. This yields (time units are weeks):

Q1 =

(
− 1

200
1

200
1
50 − 1

50

)
, Q3 = 0, Q5 =

(
− 1

350
1

350
1
50 − 1

50

)
,

Q2 =

(
− 1

400
1

400
1
50 − 1

50

)
, Q4 = Q1, Q6 = 0,

and

λT
1 =

(
1

5

)
,λT

2 =

(
1
2
9
2

)
,λT

3 = 4,λT
4 =

(
2
5
12
5

)
,λT

4 =

(
1
5
11
5

)
,λT

6 = 2.

�
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3.3.2 Fitting based on moments of demand over expected lead time

One of the drawbacks of the stationary Poisson demand model is that it has only one parameter and so

fixing the mean demand per period, also fixes the variance of demand per period. The MMPP allows

for fitting arbitrary moments of demand for any finite time span provided that the variation coefficient

(variance of demand in that time span divided by the mean demand in that time span) is greater than 1.

Suppose we are given the mean E[D] and variance Var[D] of demand over some finite time span.

Without loss of generality, we scale time such that this time span is exactly one time unit. The following

proposition provides a two-state MMPP that fits these moments.

Proposition 1. Let X be a random variable with mean µ and standard deviation σ that satisfy σ2/µ > 1.

The number of counts during one time unit of a MMPP in steady state with parameters

Q =

(
−β β

αβ −αβ

)
, λ = (0, λ), (6)

matches the first two moments of X if α is fixed to verify

α ≥ κσ
2 − µ
µ2

, (7)

for some κ ≥ 2, λ is fixed as

λ = (1 + α)µ, (8)

and β is fixed as the unique and attractive solution to the fixed point equation

β =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
. (9)

Appendix B provides the proof of Proposition 1 as well as several figures of the fit that this procedure

provides.

3.4 Optimization problem

The objective of the manager is to minimize the investment he is about to make in buying repairable

spare parts. The constraints are to keep the total expected backorders for each fleet a ∈ A below Bmax
a

and to keep the total expected resource loading due to expedited repair orders below Emax
c for each repair

resource c ∈ C. A backorder for a part renders some equipment down. If an expedited repair mode

is available for SKU i ∈ I, it is unacceptable that any particular backorder for SKU i ∈ I lasts longer

than `i. To ensure this never happens, it suffices to ensure that Ti(y) ≤ Si for each i ∈ I and y ∈ Θi.
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Combining all this leads to the following formal statement of our optimization problem which we call P :

(P ) min
{Si,Ti|i∈I}

∑
i∈I

Cai
(
Si − SLBi

)
(10)

subject to
∑
i∈IAa

B(Si,Ti)
i ≤ Bmax

a ∀a ∈ A (11)

∑
i∈ICc

uiETi
i ≤ E

max
c ∀c ∈ C (12)

SLBi ≤ Si ∀i ∈ I (13)

Ti(y) ≤ Si ∀i ∈ I, ∀y ∈ Θi (14)

Si, Ti(y) ∈ N0 ∀i ∈ I, ∀y ∈ Θi. (15)

We denote the optimal costs to problem (P ) by CP . In the next section, we construct a feasible solution

with cost CUBP for problem (P ) as well as a lower bound, CLBP , on the optimal cost of problem (P ).

Example 5. Thomas&Co would like to adhere to the goals of having Bmax
Village = 1 and Bmax

Village = 0.5.

For expediting the repair of climate and airconditioning units (Outsource repair resource) there is a

weekly budget of 200 EUROS, Emax
Outsource = 200. (Note that the ‘loads’ for each SKU i ∈ I are provided

in Table 2 as discussed in Example 2.) For expediting the repair for the internal repair shop that handles

mechanical repairs, the agreement with the repair shop manager is to keep requests for expedited repair

orders below the nominal load of 20 man hours per week on average, Emax
Mechanic = 20. �

4. Analysis

The analysis will proceed by giving an algorithm to construct a lower bound for problem (P ) in §4.1. In

4.2, we show how to find a good feasible solution for problem (P ) based on the lower bound constructed

in §4.1.

4.1 Constructing lower bounds with column generation

To obtain a lower bound for problem (P ), we first reformulate it to an integer linear program and

then relax the integrality constraints. We refer to this problem as the master problem (MP ). To this

end, we introduce the set Ki of all dual-index policies k for item i that respect constraints (13)-(15) of

problem (P ). Policy k ∈ Ki has base-stock level and expediting thresholds (Ski ,T
k
i ). We also introduce

the decision variable xki ∈ {0, 1} that indicates whether policy k is chosen for item i. If we relax the
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integrality constraint on xki , we obtain the master problem:

(MP ) min
{xki |i∈I,k∈Ki}

∑
i∈I

Cai

(
Ski − SLBi

)
xki (16)

subject to
∑
i∈IAa

∑
k∈Ki

B(Sk
i ,T

k
i )

i xki ≤ Bmax
a ∀a ∈ A (17)

∑
i∈ICc

∑
k∈Ki

uiE
Tk

i
i xki ≤ Emax

c ∀c ∈ C (18)

∑
k∈Ki

xki = 1 ∀i ∈ I (19)

xki ≥ 0 ∀i ∈ I, ∀k ∈ Ki.

Since Ki is an infinite set, (MP ) is an infinite dimensional linear program. The way to solve (MP ), is

to introduce a restricted master problem (RMP ) in which we replace Ki with a finite subset Kres
i and

solve (RMP ) to optimality. Then we consider whether we can improve the solution to (RMP ) by adding

policies k ∈ Ki \Kres
i to Kres

i . To see if such policies exist for SKU i, we need to solve a sub-problem.

(This sub-problem is also called the column generation problem or pricing problem.) We let pa denote the

dual variable of (RMP ) corresponding with fleet a ∈ A for constraint (17), ρc denote the dual variable

of (RMP ) corresponding with repair resource c ∈ C for constraint (18) and vi denote the dual variable

of (RMP ) corresponding with SKU i for constraint (19). If i ∈ IAa ∩ ICc , then the sub-problem for SKU

i is given by:

(SUB(i)) min
{(Si,Ti)}

Cai
(
Si − SLBi

)
− paB(Si,Ti)

i − ρcuiETi
i − vi

subject to SLBi ≤ Si

Ti(y) ≤ Si ∀y ∈ Θi (20)

Si, Ti(y) ∈ N0 ∀y ∈ Θi. (21)

If a feasible solution to (SUB(i)) exists with a negative objective value, then the objective of (RMP ) can

be improved by adding this solution to Kres
i and solving (RMP ) with this larger set Kres

i . An optimal

solution to (RMP ) is also an optimal solution for (MP ) if the optimal objective of (SUB(i)) is non-

negative for each i ∈ I. Since (MP ) is a relaxation of (P ), we have also found a lower bound for problem

(P ) that we denote by CLBP .

Note that all policies that yield a negative objective for (SUB(i)) can improve the solution of (RMP ),

so we do not need to solve (SUB(i)) to optimality each time we obtain new dual variables from the

restricted master problem. We do need to solve (SUB(i)) to optimality to verify that an optimal solution

to (RMP ) is also optimal for (MP ). The next section treats heuristic and exact methods to solve

(SUB(i)).
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4.1.1 Solving the sub-problem

The optimization problem (SUB(i)) is almost identical to the single-item problem discussed in Arts et al.

(2014). The main differences are that:

• (SUB(i)) assumes a state dependent dual-index form for the control policy for each item

• The expediting thresholds in (SUB(i)) are restricted to be below Si rather than any number in

N0 ∩ {∞}.

However, the methods from Arts et al. (2014) can be applied almost immediately by observing that the

form of the policy we assume is actually optimal as shown in Theorem 1 of Arts et al. (2014) and that

constraint (20) can be accommodated by setting the constant M in Arts et al. (2014) equal to Si. The

exact and heuristic methods Arts et al. (2014) can easily be adapted to solve (SUB(i)) by restricting the

search over Si to be above SLBi .

4.2 Constructing a good feasible solution

Several methods have been suggested to find a good feasible solution based on a lower bound of the

type constructed in the previous section. Kranenburg and Van Houtum (2007) and Kranenburg and

Van Houtum (2008) suggest rounding the fractional solution obtained from solving (MP ) and then

performing a local search to find a good feasible solution. More recently, Alvarez et al. (2013a) and

Alvarez et al. (2013b) suggest solving the final version of (RMP ) after all columns have been generated

as an integer linear program. Because they found very good results compared to local search algorithms,

we also take that approach. To speed up the solution process we use the feasibility pump heuristic

(Fischetti et al., 2005) and stop the solution of the integer linear program as soon as a feasible solution

with optimality gap1 of less than 0.5% is found or 1 minute has elapsed (whichever occurs first). This

results in a feasible solution to (P ) that is also an upper bound. We denote the cost of this solution by

CUBP .

Alvarez et al. (2013a) and Alvarez et al. (2013b) report that this approach is computationally feasible

with a commercial solver such as CPLEX. Our approach works well with the GLPK open source solver,

even though the performance of this solver is consistently lagging in benchmarks2.

Example 6. For the instance of Thomas&Co, we find a lower bound on the optimal cost of CLBP = 851.58

kEURO. (Note that since all prices of parts are integer multiples of 1000 EURO, 852 kEURO is also a

lower bound on the optimal costs of acquiring new repairable parts.) We also found a feasible solution

with cost CUBP = 892 kEURO. This solution is shown in Table 3. The solution in Table 3 is further

1Observe that this optimality gap is with respect to the integer linear programming formulation with a finite number of

columns, not with respect to the original optimization problem.
2See for example the MIPLIB2010 (Koch et al., 2011) benchmark accessible via the benchmark site of Hans Mittelmann:

http://plato.asu.edu/bench.html

http://plato.asu.edu/bench.html
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Table 3: Feasible solution for the Thomas&Co problem (P )

SKU# Si Ti(1) Ti(2)

1 19 19 11

2 4 2 0

3 12 4 -

4 12 12 12

5 2 1 0

6 16 9 -

characterized by
∑

i∈IAVillage
B(Si,Ti)
i = 0.940,

∑
i∈IACity

B(Si,Ti)
i = 0.485,

∑
i∈ICOutsource

ETi
i = 176.231, and∑

i∈ICMechanic
ETi
i = 19.996. The optimality gap (CUBP − CLBP )/CLBP · 100% = 4.7%.

5. Computational results

We discuss the questions we would like to answer, and the test bed we use in §5.1. We present and discuss

the numerical results in §5.2.

5.1 Objectives and test bed

The objectives of this numerical study are to:

1. Determine whether the algorithm to find a feasible solution to (P ) is effective, i.e., determine

whether it finds solutions that are close to optimal;

2. Determine whether the algorithm to find a feasible solution to (P ) is efficient, i.e., determine whether

it finds a feasible solution within reasonable time;

3. Determine by how much stock investment can be reduced because of the possibility to expedite

repair of parts.

To answer these question, we set up a large test bed of instances. The order of magnitude of problem

parameters for our test instances are based on observations made at NedTrain. We introduce the notation

U(a, b) for a uniform random variable on the interval (a, b). An overview of how instances in the test bed

are generated is shown in Table 4. The total number of instances in the test bed is 3523 = 1944. For each

combination of parameters 1,2,3,4,5,9, and 10 in Table 4, we generate two instances randomly as follows:

• For each SKU i ∈ I, we generate a Markov modulated Poisson demand process with Q generated

as shown under 7 in Table 4, and λ generated by one of the two option shown under 8 in Table 4.

(This is why two instances are generated.);
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• Each SKU i ∈ I is assigned uniformly at random to a repair resource set ICc for c = 1, . . . , |C|;

• For each SKU i ∈ I, we generate an acquisition price from U(100, 1000);

• For each SKU i ∈ I, set ui = 1;

• The values Bmax
a and Emax

c are set as fractions ν and ξ of the the total expected demand per time

unit for the fleet and repair resource respectively as shown under 9 and 10 in Table 4.

Table 4: Parameters for test bed instances

Parameter Values

1 Number of fleets |A| 1,2,4

2 Number of repair resources |C| 1,2,4

3 Number of SKUs per fleet |IAa | 20,50,100

4 Mean of additional regular
2,4

repair lead time, E[Li]

5 Expedited repair lead time, `i 1,2

6 Acquistion cost for SKU i ∈ I, Ca
i U(100, 1000)

7 Modulating chain generator

(
−q1 q1

q2 −q2

)
for SKU i ∈ I, Qi with q1 = [U(200, 400)]−1, q2 = [U(5, 50)]−1

8 Demand intensity vector
(

U(0.01, 0.1)

U(0.5, 1.5)

)
,

(
U(0.01, 0.5)

U(1, 2)

)
,

for SKU i ∈ I, λi

9 Upper bound on backorders ν
∑

i∈IAa

∑
y∈Θi

P(Yi = y)λi(y)

for fleet a ∈ A, Bmax
a for ν = 0.05, 0.02, 0.01

10 Upper bound on expediting load ξ
∑

i∈ICc

∑
y∈Θi

P(Yi = y)λi(y)

for resource c ∈ C, Emax
c for ξ = 0.2, 0.1, 0.05

To assess the value of expediting, we create a ‘benchmarking’ instance for each ‘orginal’ instance of

(P ) that we generate. This benchmarking instance is created to be identical to the original instance

except that the mean repair lead time of the benchmark instance is less than or equal to te mean repair

lead time of the original instance, but such that it is not possible to differentiate repair lead times through

expediting. This is achieved as follows. We raise Emax
c for each c ∈ C of the original instance such that

it is feasible (and optimal) to expedite all repairs. We change the expedited lead time to the shortest

possible mean repair lead time possible in the original instance which is ξ`i + (1− ξ)(`i + E[Li]). (Note

that this procedure works because ui = 1 for all i ∈ I.)

Now for each generated original instance we compute a feasible solution with cost CUBP as described

in §4.2 and compare it to the lower bound CLBP that is obtained via the method described in §4.1:

%GAP =
CUBP − CLBP

CLBP
· 100%. (22)
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Next we investigate the relative difference with the benchmark instance. We denote a lower bound on

the optimal objective of the benchmark instance by CLBBENCH . We compare CUBP with CLBBENCH :

%V AL =
CLBBENCH − CUBP

CLBBENCH
· 100%. (23)

The algorithms described in §§4.1-4.2 were programmed as a single threaded application in C with

GLPK as the solver of both linear and integer linear programs. All computations were carried out on a

PC running Windows (32 bit) with Intel Core Duo 2.33 GHz CPU and 4 GB of RAM.

5.2 Results

Table 5 shows the results of the computational experiment. For each of the parameters in Table 4 that

has several settings, we computed the mean and maximum %GAP and %V AL as well as the mean and

maximum computation time in seconds for each of the settings. We will now discuss objective 1-3 as

stated in the previous subsection.

The average optimality gap of our feasible solution is very small at 0.67% but optimality gaps of up

to 6.76% do occur. The optimality gap seems to increase with the number of fleets and repair resources.

This is not surprising, because (MP ) has |I|+|A|+|C| constraints and the same number of basic variables

in an optimal solution. Because of constraint (19), there is a basic variable for each i ∈ I. Therefore,

there will be at most |A|+ |C| SKUs for which the optimal solution to (MP ) is fractional. This explains

why the optimality gap increases with both |A| and |C|. Somewhat surprisingly, the optimality gap does

not seem to decrease significantly with |IAa |. This is different form other multi-item spare parts problem

where the optimality gap typically does decrease with the number of SKUs considered, (e.g Kranenburg

and Van Houtum, 2007, 2008; Alvarez et al., 2013a,b). This can be explained by the fact that we put a

time limit of 1 minute on the integer linear programming solver.

The computation times of finding a feasible solution are 86 seconds on average and at most 522 seconds,

which is quite acceptable given the size of the problems. It is also convenient that the computation time

seems to scale linearly in the number of SKUs. Over 95% of the computation time for solving (MP )

to optimality is spent in solving (SUB(i)). This task could also be parallelized on modern multi-core

processors so that the computation time can be further reduced by a factor equal to the number of cores

on a processor.

The value of using expediting to influence repair lead times of repairables is quite valuable with an

average benefit of 24.9% and even benefits of up to 49.1%. As was to be expected, the benefits increase

with the fraction of total demand that can be expedited and with the expedited lead time. But even the

opportunity to expedite 5% of demand leads to average savings of as much as 18.3% compared to static

lead times.
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Table 5: Summary of computational results

%GAP %VAL CPU time (s)

Parameter Values avg max avg max avg max

Number of fleets, |A| 1 0.39 3.00 25.0 48.1 31 154

2 0.56 6.76 25.0 49.1 76 313

4 1.05 5.49 24.8 48.2 152 522

Number of 1 0.40 4.54 25.1 49.1 76 473

repair resources, |C| 2 0.55 3.57 25.1 48.2 85 511

4 1.04 6.76 24.7 48.1 98 522

Number of SKUs 20 0.64 5.49 24.7 49.1 38 157

per fleet, |IAa | 50 0.68 4.71 25.0 47.9 80 282

100 0.68 6.76 25.1 47.6 141 522

Fraction of total demand 0.05 0.72 6.76 24.9 48.2 78 462

per time unit that may be 0.02 0.68 5.49 24.8 48.0 88 502

backordered, ν 0.01 0.61 5.26 25.1 49.1 93 522

Fraction of total demand 0.2 0.88 6.76 32.2 49.1 86 452

per time unit that may be 0.1 0.62 4.71 24.3 38.8 88 502

expedited, ξ 0.05 0.50 3.72 18.3 31.4 85 522

Expedited repair 1 0.70 6.76 28.5 49.1 59 305

lead time, `i 2 0.63 5.26 21.4 42.7 113 522

Random demand

(
U(0.01, 0.5)

U(1, 2)

)
0.72 5.26 28.2 49.1 111 522

intensity vector

(
U(0.01, 0.1)

U(0.5, 1.5)

)
0.61 6.76 21.7 41.4 62 281

Additional regular repair 2 0.69 4.74 20.9 39.4 82 502

lead time, E[Li] 4 0.64 6.76 29.0 49.1 91 522

Total 0.67 6.76 24.9 49.1 86 522
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6. Conclusion

This article presented an efficient and effective algorithm to determine near optimal turn-around stock

levels for a large group of repairable items that are used in the maintenance of several fleets of equipment.

The use of expediting to influence the repair lead time of repairables was shown to be quite effective in

reducing the stock investment needed to meet service levels for several fleets of equipment.
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A. Determining P{Dy
i (t, t+ `i) = k}

This section has been adapted from Arts et al. (2014). In this section, we show how P {Dy
i (t, t+ `i) = k}

can be determined numerically. To this end, let py,y′(k, `e) = P {Dy
i (t, t+ `i) = k|Yi(t+ `e) = y′} be the

(y, y′)-entry of the matrix P(k, `e). Then the matrix generating function P̃(z, `e) =
∑∞

k=0 P(k, `e)z
k

satisfies (e.g. Fischer and Meier-Hellstern, 1992):

P̃(z, `e) = exp ([Q− (1− z) diag(λ)]`e) .

A plethora of numerical methods to compute the matrix exponential are discussed in Moler and Van Loan

(2003). For the numerical work in this paper, we use the scaling and squaring algorithm with a Padé

approximation. The probabilities P {Dy
i (t, t+ `i) = k|Yi(t+ `e) = y′} can be obtained from P̃(z, `e) by

numerical inversion using the LATTICE-POISSON algorithm of Abate and Whitt (1992) which uses the

approximation

P
{
Dy
i (t, t+ `i) = k|Yi(t+ `e) = y′

}
≈ 1

2krk

{
P̃(r, `e) + (−1)kP̃(−r, `e) + 2

k−1∑
n=1

(−1)n Re(P̃(r exp(nπi/k), `e))

}
,

where i =
√
−1, 0 < r < 1 and Re(x) denotes the real part of the complex number x. The absolute error

in this approximation is bounded by r2k

1−r2k and so by choosing r = 10−γ/(2k), we obtain an accuracy of

approximately 10−γ . Then the needed probability, P {Dy
i (t, t+ `i) = k}, can be found by un-conditioning:

P {Dy
i (t, t+ `i) = k} =

∑
y′∈Θi

P
{
Dy
i (t, t+ `i) = k|Yi(t+ `e) = y′

}
P{Yi(t+ `e) = y′|Yi(t) = y}

The probabilities P{Yi(t+`e) = y′|Yi(t) = y} are found from the transient analysis of Yi(t). In particular,

if we let ry,y′ = P{Yi(t+ `e) = y′|Yi(t) = y} be the (y, y′)-th element of the matrix R(`e), then R(`e) =

exp(`eQ).

B. Proof of Proposition 1 and examples

We start with some preliminaries. Consider a two state MMPP with generator R and intensity vector ν

given by

R =

(
−r1 r1

r2 −r2

)
, ν = (ν1, ν2).

We let Nt denote the number of arrivals this MMPP generates in an interval of length t when it is in

steady state. From Heffes and Lucantoni (1986), we have that

E[Nt] =
ν1r2 + ν2r1

r1 + r2
(24)
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and

Var[Nt] = E[Nt] + 2At− 2A

r1 + r2

(
1− e−(r1+r2)t

)
(25)

with

A =
r1r2(ν1 − ν2)2

(r1 + r2)3
.

Now we start the proof of Proposition 1.

Proof. Let N denote the number of arrivals during one time unit in steady state in the MMPP in the

proposition. Using (24), we find that

E[N ] =
λ

α+ 1
, (26)

and equating this with µ and solving for λ yields

λ = (α+ 1)µ. (27)

Substituting (27) with E[N ] = µ into (25) yields

Var[N ] = µ+
2αµ2

(α+ 1)β
− 2αµ2

(α+ 1)2β2

(
1− e−(α+1)β

)
. (28)

Equating (28) with σ2, and rearranging we obtain

(σ2 − µ)(α+ 1)β2 − 2αµ2(α+ 1)β + 2αµ2 = 2αµ2e−(α+1)β. (29)

Applying the quadratic root formula to (29) and simplifying, we find that if there is a β > 0 that satisfies

β =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
, (30)

we have a fit. Now we show that such a unique β∗ > 0 does exist provided

α ≥ κσ
2 − µ
µ2

, and
σ2

µ
> 1, (31)

for some κ ≥ 2.

For convenience define f : R+ → R as

f(β) =
µ
√

2αe−(α+1)β(σ2 − µ) + 2α(µ− σ2) + α2µ2 + αµ2

(α+ 1) (σ2 − µ)
(32)

where R+ = [0,∞) and let α, σ2 and µ satisfy (31). To show that there is a unique β∗ > 0 that solves

(30), it suffices to show that f(0) > 0 and that f ′(β) < 0 for all β ∈ R+. That f(0) > 0 can be verified

directly and for f ′(β) we have

f ′(β) = − αµe−(α+1)β√
α2µ2 − 2α

(
1− e−(α+1)β

)
(σ2 − µ)

< 0. (33)
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The strict inequality holds because (31) holds. Next we observe that f ′(β) > −1 for all β > 0 and in

particular for β∗, because f ′′(β) > 0 for all β > 0:

f ′′(β) =
αµe−

3
2

(α+1)β
{

2α(α+ 1)e(α+1)β(µ− σ2) + (α+ 1)α2µ2e(α+1)β
}

2
{
α2µ2e(α+1)β + 2αe(α+1)β(µ− σ2) + 2α(σ2 − µ)

} 3
2

+
(α+ 1)αµe(α+1)β√

α2µ2e(α+1)β + 2αe(α+1)β(µ− σ2) + 2α(σ2 − µ)
> 0. (34)

The strict inequality again holds because (31) holds. Since f ′(0) = −1, and f ′(β) < 0 and f ′′(β) > 0 for

all β > 0, we conclude that |f ′(β)| < 1 for all β > 0 and in particular for β∗. This implies that β∗ is an

attractive fixed point of f .

The fit provided in Proposition 1 is parameterized by κ ≥ 2. To gain some intuition on the fit provided

and the role of the parameter κ, we provide some examples of the distribution of N1 that this fit generates

in Figures 2 and 3.
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Figure 2: Fitted distributions generated by the procedure in Proposition 1. Standard deviation and the fitting parameter κ are

varied as shown in the plots.
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Figure 3: Fitted distributions generated by the procedure in Proposition 1. Standard deviation and the fitting parameter κ are

varied as shown in the plots.
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