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On the Riemannian Rationale for Diffusion Tensor Imaging
Andrea Fuster, Tom Dela Haije, and Luc Florack

Imaging Science & Technology Eindhoven (IST/e), Eindhoven University of Technology, The Netherlands

Abstract—One of the approaches in the analysis of brain diffusion
MRI data is to consider white matter as a Riemannian manifold, with a
metric given by the inverse of the diffusion tensor. Such a metric is used
for white matter tractography and connectivity analysis. Although this
choice of metric is heuristically justified it has not been derived from first
principles. We propose a modification of the metric tensor motivated by
the underlying mathematics of diffusion.

I. INTRODUCTION

A possible approach to study white matter from diffusion MRI is
to consider a geometric framework in which quantities of interest,
such as connectivity measures, are derived from a Riemannian
metric. In this way white matter is represented as a Riemannian
manifold, and candidate neural fibres are postulated to coincide with
geodesic curves. The common choice in the literature is to consider
a Riemannian metric given by the inverse of the diffusion tensor
D [1], [2]. The intuitive idea behind this choice is to transform
anisotropic diffusion in Euclidean space to (free) Brownian diffusion
in a curved Riemannian space. Brownian motion is characterized
by an infinitesimal diffusion generator L which can be written
as L = ∆ LB, with ∆ LB the Laplace-Beltrami operator for the
appropriate metric tensor g [3]. Such a generator is called an intrinsic
Laplacian. However, the usual choice of metric from an anisotropic
diffusion generator, g = D−1, does not lead to Brownian motion
in the corresponding curved space. We propose a slight modification
of the Riemannian metric in order to accomplish this. The question
of how to choose an appropriate metric has already been addressed
in [4], [5].

II. DISCREPANCY

Inhomogeneous anisotropic diffusion is commonly described by
the generator

L = ∂i(D
ij∂j) = Dij∂i∂j + (∂jD

ij)∂i (1)

where i, j = 1, 2, 3, Dij is the diffusion tensor, ∂i = ∂/∂xi, and in
which we use Einstein’s summation convention. A Riemannian metric
gij = Dij can be introduced, where Dij is the inverse diffusion
tensor.

The generator (1) can then be expressed as

L = 4g −
√
d

(
∂j

1√
d

)
Dij∂i (2)

where d is the determinant of the diffusion tensor Dij and 4g is the
Laplace-Beltrami operator

4g =
1√
g
∂j(
√
ggij∂i) (3)

Here, g = det gij . In our case, gij = Dij , we have

4g = Dij∂i∂j +
√
d ∂j

(
1√
d
Dij

)
∂i (4)

From Eq. (2) we see that the usual identification g = D−1 does not
lead to Brownian motion on the manifold (M, g) since the diffusion
generator L is not an intrinsic Laplacian. This is only the case when
the second term on the right-hand side of Eq. (2) vanishes, which
occurs for d = detDij constant. Clearly, this cannot be assumed in
general.

III. PROPOSAL

Consider now the diffusion generator given by

L̃ = d−1L = d−1Dij∂i∂j + d−1(∂jD
ij)∂i (5)

where we use the same notation as in section II. Again a Riemannian
metric can be introduced, namely, g̃ij = dDij . It can be shown that

L̃ = 4g̃ (6)

The generator (5) is therefore an intrinsic Laplacian, and the proposed
choice of metric results in Brownian motion on the manifold (M, g̃).

IV. DISCUSSION

We propose a new Riemannian metric in the context of diffu-
sion tensor imaging, motivated by first principles. In future work
experiments will be performed to assess whether our modified metric
leads to improved results for tractography and connectivity analysis
in comparison to the usual choice of metric. It would also be
very interesting to clarify the relation to other modified Riemannian
metrics, such as the one in [4].
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