

On characterization of the core of lane covering games via dual solutions

Citation for published version (APA):
Hezarkhani, B., Slikker, M., & Woensel, van, T. (2013). On characterization of the core of lane covering games via dual solutions. (BETA publicatie: working papers; Vol. 439). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/2013

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 08. Feb. 2024

On Characterization of the Core of Lane Covering Games via Dual Solutions

Behzad Hezarkhani, Marco Slikker, Tom van Woensel

Beta Working Paper series 439

[BETA publicatie	WP 439 (working	
		paper)	
	ISBN		
	ISSN		
	NUR		
	Eindhoven	November 2013	

On Characterization of the Core of Lane Covering Games via Dual Solutions

Behzad Hezarkhani, Marco Slikker, Tom van Woensel OPAC, School of Industrial Engineering, Eindhoven University of Technology, The Netherlands

November 28, 2013

Abstract

The lane covering game (LCG) is a cooperative game where players cooperate to reduce the cost of cycles that cover their required lanes on a network. We discuss the possibilities/impossibilities of a complete characterization of the core via dual solutions in LCGs played among a collection of shippers, each with a number of service requirements along some lanes, and show that such a complete characterization is possible if each shipper has at most one service requirement.

1 Introduction

In any cooperative situation, the division of joint costs is a critical issue. The *core* of a cooperative game contains allocations that provide players with sufficient incentives to remain in the grand coalition. In general, finding an allocation in the core as well as testing the core-membership of a given allocation are computationally difficult problems as they involve dealing with a number of inequalities which grow exponentially in the number of players. In linear production games (Owen, 1975), every solution to the corresponding dual linear program yields an allocation in the core thus core allocations can be found in polynomial time (Schrijver, 1998). Although testing the membership of a given allocation to the core for this class of games is generally co-NP-complete (Fang et al., 2002), in some cases, e.g. flow games on simple networks (Kalai and Zemel, 1982), dual solutions obtain *all* allocations in the core. This note addresses the possibilities/impossibilities of a complete characterization of the core via dual solutions in *lane covering games*.

The lane covering game (LCG), introduced by Özener and Ergun (2008), can be represented as an instance of linear production games where players cooperate to reduce the cost of cycles that cover their required lanes. Özener and Ergun (2008) show that if each required lane is considered to be a single player, the dual solutions completely characterize the core of corresponding game. We extend and complete this result by allowing *shippers* to be the actual players. Each shipper might have several service requirements (across one or multiple

lanes). We specify the situations in which the core can or cannot be completely characterized by dual solutions. The main contribution of this note is to prove that a complete characterization of the core via duals is possible if every shipper has at most one service requirement. We also provide examples of LCGs where such a complete characterization fails.

2 Lane Covering Games (LCG)

Consider a collection of locations and the network of roads in between. There are several shippers who provide truckload deliveries between pairs of locations. After fulfilling its planned deliveries, every shipper must return to its starting location (repositioning). By collaboration, shippers can reduce the total repositioning cost needed for fulfilling their consolidated deliveries.

Consider the complete directed graph G = (N, A) where N is a finite set of nodes and $A = \{ij|i, j \in N, i \neq j\}$ is the set of ordered lanes. The service cost vector $c = (c_{ij})_{ij\in A}$ gives the non-negative costs of servicing the lanes. Traversing lane ij without providing service would cost θc_{ij} with $0 \leq \theta \leq 1$. A finite set of shippers (players) P operate on G. A given player $k \in P$ has an individual requirement vector $r^k = (r^k_{ij})_{ij\in A}$ where $r^k_{ij} \in \mathbb{N} \cup \{0\}$ is the number of service requirements of k along the lane ij. A player k is called a simple shipper if $\sum_{ij\in A} r^k_{ij} = 1$. That is, a simple shipper has a single service requirement. We define a lane covering situation as the tuple $\Gamma = (G, c, \theta, P, (r^k)_{k\in P})$.

A cooperative cost game is a pair (P, z) with the set of players P and $z: 2^P \to \mathbb{R}$ being the characteristic function that assigns to every coalition $S \subseteq P$ the cost z(S). The lane covering game (LCG) associated with situation Γ is a cooperative cost game (P, z^{Γ}) where $z^{\Gamma}(S)$ is the minimum cost of covering the service requirements of $S \subseteq P$, i.e. $r^S = \sum_{k \in S} r^k$, via cycles. For any $S \subseteq P$, $z^{\Gamma}(S)$ can be obtained by the following integer linear program:

Model 1:
$$z^{\Gamma}(S) = \min \sum_{ij \in A} c_{ij} x_{ij} + \theta c_{ij} w_{ij}$$
 (1)

s.t.
$$\sum_{j \in N \setminus \{i\}} x_{ij} - x_{ji} + w_{ij} - w_{ji} = 0$$
 $\forall i \in N$ (2)

$$x_{ij} \ge r_{ij}^S \qquad \forall ij \in A \tag{3}$$

$$x_{ij}, w_{ij} \in \mathbb{N} \cup \{0\}$$
 $\forall ij \in A$ (4)

where x_{ij} and w_{ij} denote the number of times lane ij is traversed with and without service respectively. We denote an optimal solution for the above problem with $(x_{ij}^S; w_{ij}^S)_{ij \in A}$. Model 1 corresponds to a minimum-cost circulation problem with its constraints forming a totally unimodular matrix (Schrijver, 1998). Thus with integer requirement vectors, the linear relaxation of Model 1 does not affect the optimal solution.

The dual associated with the linear relaxation of Model 1 for P is

Model 2:
$$d^{\Gamma} = \max \sum_{ij \in L} r_{ij}^{P} I_{ij}$$
 (5)

s.t.
$$I_{ij} + y_i - y_j \le c_{ij}$$
 $\forall ij \in A$ (6)

$$y_i - y_j \le \theta c_{ij} \qquad \forall ij \in A \tag{7}$$

$$I_{ij} \ge 0$$
 $\forall ij \in A$ (8)

where $L = \{ij | r_{ij} > 0\}$ is the set of required lanes. Let $I^{\Gamma} = (I_{ij}^{\Gamma})_{ij \in A}$ be an optimal solution for d^{Γ} . For a required lane $ij \in L$, I_{ij}^{Γ} gives the shadow price that determines the amount of decrease in $z^{\Gamma}(P)$ resulting from reducing r_{ij}^{P} by one. We denote the set of all solutions to d^{Γ} with I^{Γ} .

3 Core and Dual Allocations

Given P, an allocation $\beta = (\beta^k)_{k \in P}$ is a vector containing a real number for every player in P. The allocation β is in the core of the game (P, z) if and only if it is efficient, i.e. $\sum_{k \in P} \beta^k = z(P)$, and stable, i.e. $\sum_{k \in S} \beta^k \leq z(S)$ for all $S \subset P$.

Owen (1975) introduces the class of linear production games and shows that an allocation in the core of these games can be obtained from a solution to the dual problem. As discussed in Özener and Ergun (2008), the game (P, z^{Γ}) with $z^{\Gamma}(S)$ defined by the LP-relaxation of Model 1 for every $S \subseteq P$ is an instance of the class of linear production games. Thus, an allocation in the core of (P, z^{Γ}) can be obtained from a dual solution in the following manner:

$$\beta^k = \sum_{ij \in L} r_{ij}^k I_{ij}^{\Gamma}, \qquad \forall k \in P.$$
(9)

Thus, in LCGs every dual solution obtains an allocation in the core. The question concerning a complete characterization of core via dual solutions addresses the reverse of the latter, i.e. does every core allocation correspond to a dual solution?

4 LCGs with General Shippers

In this section we show that a complete characterization of the core via duals is not possible if some players have multiple service requirements (general shippers). The following example shows that this is the case even if every lane requires service at most once.

Example 1. Consider the lane covering situation associated with the graph in Figure 1. The service costs across lanes with opposite directions are symmetric and are given in the figure. We let $\theta = 1$. Consider two players $P = \{A, B\}$ with player A requiring service on lanes 12 and 13, and player B requiring service along the lane 41. We have $z^{\Gamma}(\{A\}) = z^{\Gamma}(\{B\}) = 8$, and $z^{\Gamma}(P) = 13$. Observe that the core of (P, z^{Γ}) is completely characterized by the allocations $\beta = (\beta^A, \beta^B) = (8 - \epsilon, 5 + \epsilon)$ with $0 \le \epsilon \le 3$. In every dual solution for this situation it holds that $I_{12}^{\Gamma} = 4$, $I_{13}^{\Gamma} = 4$, $I_{41}^{\Gamma} = 5$. Thus, the allocation obtained from the dual solutions is unique and equivalent to $\beta^A = 8$ and $\beta^B = 5$. Δ

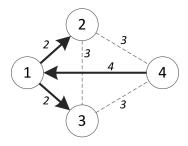


Figure 1: The network in Example 1

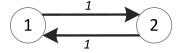


Figure 2: The network in Example 2

The next example illustrates that with general shippers a complete characterisation of the core via duals also fails even if the requirements of all shippers are separated on lanes such that no shipper requires service along more than one lane.

Example 2. Consider the lane covering situation associated with the graph in Figure 2 and three players $P = \{A, B, C\}$ where both players A and B require a single service along the lane 12 and player C requires service along the lane 21 twice. Let $c_{12} = c_{21} = \theta = 1$. We have $z^{\Gamma}(S) = 2$ if $S \in \{\{A\}, \{B\}\}\}$ and $z^{\Gamma}(S) = 4$ for all other $S \subseteq N$, $S \neq \emptyset$. It is straightforward to check that the allocation $\beta = (\beta^A, \beta^B, \beta^C) = (1.5, 0.5, 2)$ belongs to the core. However, in every allocation obtained via duals from (9) it holds that $\beta^A = \beta^B = I_{12}^{\Gamma}$. \triangle

The above example demonstrates that in LCGs, core allocations might give unequal costs to shippers who require service on the same lane. These allocations are unobtainable via dual solutions.

5 LCGs with Simple Shippers

In the rest of this section we assume that Γ is a lane covering situation where all players are simple shippers. We show that in these situations dual solutions completely characterize the core. For this purpose, we introduce additional notation.

Given a situation Γ , an optimal solution $(x_{ij}^S; w_{ij}^S)_{ij\in A}$ to Model 1 for $S \subseteq P$ induces a directed multigraph $\mathcal{G}(S) = (N, \mathcal{A}(S))$ where for any $ij \in A$, the $\mathcal{A}(S)$ contains x_{ij}^S number of lanes with cost c_{ij} , i.e. type x (service) lanes, and w_{ij}^S number of lanes with cost θc_{ij} , i.e. type w (repositioning) lanes, from i to j. Without loss of generality, hereafter we consider optimal solutions where $x_{ij}^S = r_{ij}^S$ for all $ij \in A$. A simple cycle on $\mathcal{G}(S)$ is defined as a sequence of nodes $n_0, ..., n_t$ and lanes, such that all nodes are non-identical except for $n_0 = n_t$ and there exists exactly one lane (of either type x or w) between any consecutive pair of nodes. Constraint (2) in Model 1 ensures that for every node $i \in N$ the number of lanes in $\mathcal{A}(S)$

whose end nodes are i is equal to the number of lanes whose start nodes are i. Therefore, by Veblen's theorem (Bondy and Murty, 2008), the $\mathcal{A}(S)$ can be decomposed into a set of simple cycles. Let \mathscr{C}^S be such a decomposition. We refer to \mathscr{C}^S as a decomposition of an optimal service plan for coalition S into simple cycles. We denote a simple cycle in \mathscr{C}^S by $C = (C^x; C^w)$ where $C^x = (C^x_{ij})_{ij\in A}$ and $C^w = (C^w_{ij})_{ij\in A}$ are vectors containing type x and type w lanes of C respectively. Note that by definition of simple cycles we have $C^x_{ij}, C^w_{ij} \in \{0, 1\}$ for all $ij \in A$. The cost of a simple cycle $C \in \mathscr{C}^S$ is $\lambda_C = \sum_{ij\in A} c_{ij} C^x_{ij} + \theta c_{ij} C^w_{ij}$. Accordingly, we have $z^{\Gamma}(S) = \sum_{C \in \mathscr{C}^S} \lambda_C$.

Given $C \in \mathscr{C}^P$, we define $S_C = \{S \subseteq P | \sum_{k \in S} r^k = C^x\}$ as a set of serviced shippers in C. Note that S_C is not necessarily unique. The following lemma states that the cost of a simple cycle $C \in \mathscr{C}^P$ equals the cost of the coalition of a set of serviced shippers in C.

Lemma 1. Let \mathscr{C}^P be a decomposition of an optimal service plan for coalition P into simple cycles. For all $C \in \mathscr{C}^P$ and any S_C we have $\lambda_C = z^{\Gamma}(S_C)$.

Proof. Clearly $\lambda_C \geq z^{\Gamma}(S_C)$ since any set of serviced shippers in C, i.e. S_C , can together use C for covering their required lanes. On the other hand, $\lambda_C > z^{\Gamma}(S_C)$ implies that $\mathscr{C}^P \ni C$ does not correspond to an optimal solution as in this case replacing C with \mathscr{C}^{S_C} would result in a lower total cost. Therefore $\lambda_C = z^{\Gamma}(S_C)$.

Next, we show that any allocation in the core divides the entire cost of a simple cycle $C \in \mathcal{C}^P$ among a set of serviced shippers in C.

Lemma 2. Let $(\beta^k)_{k\in P}$ be an allocation in the core of (P, z^{Γ}) and \mathscr{C}^P be a decomposition of an optimal service plan for coalition P into simple cycles. For all $C \in \mathscr{C}^P$ and any S_C we have $\sum_{k\in S_C} \beta^k = z^{\Gamma}(S_C)$.

Proof. By Lemma 1, it suffices to show that $\sum_{k \in S_C} \beta^k = \lambda_C$. Since $(\beta^k)_{k \in P}$ is a core allocation, it holds that $\sum_{k \in S_C} \beta^k \leq \lambda_C$. Fix a S_C and consider the rest of the players, $P \setminus S_C$. A core allocation satisfies $\sum_{k \in P \setminus S_C} \beta^k \leq \sum_{C' \in \mathscr{C}^P \setminus C} \lambda_{C'}$. We have

$$\sum_{k \in S_C} \beta^k = \sum_{k \in P} \beta^k - \sum_{k \in P \smallsetminus S_C} \beta^k \geq \sum_{C' \in \mathcal{C}^P} \lambda_{C'} - \sum_{C' \in \mathcal{C}^P \smallsetminus C} \lambda_{C'} = \lambda_C$$

Therefore, it must be the case that $\sum_{k \in S_C} \beta^k = \lambda_C$.

We are now ready to show that any allocation in core gives equal costs to players requiring the same lane.

Theorem 1. Let $l, l' \in P$ be such that $r^l = r^{l'}$. Let $(\beta^k)_{k \in P}$ be an allocation in the core of (P, z^{Γ}) . We have $\beta^l = \beta^{l'}$.

Proof. Let \mathscr{C}^P be a decomposition of an optimal service plan for coalition P into simple cycles. Consider $C \in \mathscr{C}^P$ and S_C such that $l \in S_C$. Since $r^l = r^{l'}$, by definition of S_C it holds that $\sum_{k \in S_C} r^k - r^l + r^{l'} = C^x$. Thus, $S'_C = S_C \setminus \{l\} \cup \{l'\}$ also corresponds to a set of serviced shippers in C. By Lemma 2, we have $\sum_{k \in S_C} \beta^k = \sum_{k \in S'_C} \beta^k = \lambda_C$ which obtains $\beta^l = \beta^{l'}$. \square

Before presenting the main result of this section, we highlight the following property of LCGs.

Lemma 3. Let $\beta = (\beta^k)_{k \in P}$ be an allocation in the core of a LCG with simple shippers only. We have $\beta^k \geq 0$ for all $k \in P$.

Proof. Suppose β is an allocation in the core such that for player $l \in P$ it holds that $\beta^l < 0$. By efficiency it must be that $\sum_{k \in P \setminus \{l\}} \beta^k > z^{\Gamma}(P)$. Since β is in the core, we have $\sum_{k \in P \setminus \{l\}} \beta^k \le z^{\Gamma}(P \setminus \{l\})$. Therefore it must hold that $z^{\Gamma}(P) < z^{\Gamma}(P \setminus \{l\})$. As every optimal solution to $z^{\Gamma}(P)$ is a feasible solution to $z^{\Gamma}(P \setminus \{l\})$, the latter inequality is impossible for any LCG. Therefore, we must have $\beta^l \geq 0$ and consequently $\beta^k \geq 0$ for all $k \in P$.

We are now ready to provide the main result of this section.

Theorem 2. Let Γ be a lane covering situation. If all players in Γ are simple, then the core of (P, z^{Γ}) is completely characterized by the set of corresponding dual solutions.

Proof. Let $I = (I_{ij})_{ij \in A}$ be a vector of variables defined over the lanes in A. It directly follows from Theorem 1 and Lemma 3 that with simple shippers only, all allocations in the core are of the form $\beta = (\sum_{ij \in A} r_{ij}^k I_{ij})_{k \in P}$ for some $I = (I_{ij})_{ij \in A}$ with $I_{ij} \geq 0$ for all $ij \in A$. Hence, it suffices to show that if β is in the core, then $I \in I^{\Gamma}$. We first show that if β is in the core, then the following program is feasible:

Model 3:
$$\min \sum_{ij \in A} (c_{ij} - I_{ij}) x_{ij} + \theta c_{ij} w_{ij}$$
 (10)

$$\min \sum_{ij \in A} (c_{ij} - I_{ij}) x_{ij} + \theta c_{ij} w_{ij}$$

$$\text{s.t.} \sum_{j \in N \setminus \{i\}} x_{ij} - x_{ji} + w_{ij} - w_{ji} = 0 \qquad \forall i \in N$$

$$(10)$$

$$x_{ij}, w_{ij} \ge 0 \forall ij \in A (12)$$

Since $(x_{ij}^P; w_{ij}^P)_{ij \in A}$ is a feasible solution to Model 3, we need to show that the latter program is not unbounded. Note that Model 3 corresponds to a minimum-cost circulation problem on a network with reduced service costs wherein all type x lanes from i to j have the cost c_{ij} – I_{ij} and all type w lanes from i to j have the cost θc_{ij} . The cost of a simple cycle C on this network is $\lambda_C = \sum_{ij \in A} (c_{ij} - I_{ij}) C_{ij}^x + \theta c_{ij} C_{ij}^w$. Suppose that the program is unbounded. If this is the case, then a cycle could be constructed on this network such that $\tilde{\lambda}_C < 0$. The latter implies that $\lambda_C < \sum_{ij \in A} I_{ij} C_{ij}^x$. Since $z^{\Gamma}(S_C) \leq \lambda_C$ it must be that $z^{\Gamma}(S_C) < \sum_{ij \in A} I_{ij} C_{ij}^x = \sum_{k \in S_C} \sum_{ij \in A} r_{ij}^k I_{ij} = \sum_{k \in S_C} \beta^k$ which is possible only if β is not stable, a contradiction. We conclude that if β is in the core, then the program in Model 3 is feasible. Next, observe that the dual solution to Model 3 is characterized by the following constraints:

$$y_i - y_j \le c_{ij} - I_{ij} \qquad \forall ij \in A \tag{13}$$

$$y_i - y_j \le \theta c_{ij} \qquad \forall ij \in A \tag{14}$$

From the first step it follows that if β is a stable allocation, then the program in Model 3 is feasible which indicates that a vector $y = (y_i)_{i \in N}$ can be found such that constraints in (13) and (14) are satisfied. This in conjunction with the fact that $I_{ij} \geq 0$ for all $ij \in A$ and considering that $\sum_{k \in P} \sum_{ij \in A} r_{ij}^k I_{ij} = \sum_{ij \in A} r^P I_{ij} = z^{\Gamma}(P)$ yield that $I \in \mathbf{I}^{\Gamma}$.

	Every lane is required	Some lanes are required
	by at most one shipper	by multiple shippers
Every shipper requires	Possible (Theorem 2)	Possible (Theorem 2)
at most one lane		
Some shippers require	Impossible (Example 1)	Impossible (Example 2)
$multiple\ lanes$		

Table 1: Possibility of a complete characterization of the core via duals in LCG

6 Concluding Remarks

In this note we extended the analysis of LCGs with respect to the possibilities of a complete characterization of the core via dual solutions. Instead of considering lanes as surrogate players, which is the case in Özener and Ergun (2008), we allowed shippers to be the players. Accordingly, we delineated the situations wherein a complete characterization of the core via duals are possible. An overview of the results are given in Table 1. As we proved, such a characterization is possible if each shipper has at most one service requirement. In this case, the dual solutions could completely characterize the core even if multiple shippers require service along the same lane. However, multiplicity of shippers' service requirement hinder such a complete characterization, even if multiple service requirements of each shipper is along a single lane. In conclusion, our analysis shows that focusing solely on the allocations obtained via dual solutions could significantly limit the number of options for choosing "fair" allocations in LCGs.

References

- A. Bondy and U.S.R. Murty. *Graph Theory*. Springer, 2008.
- Q. Fang, S. Zhu, M. Cai, and X. Deng. On computational complexity of membership test in flow games and linear production games. *International Journal of Game Theory*, 31(1): 39–45, 2002.
- E. Kalai and E. Zemel. Generalized network problems yielding totally balanced games. *Operations Research*, 30(5):998–1008, 1982.
- G. Owen. On the core of linear production games. *Mathematical programming*, 9(1):358–370, 1975.
- O.Ö. Özener and Ö. Ergun. Allocating costs in a collaborative transportation procurement network. *Transportation Science*, 42(2):146–165, 2008.
- A. Schrijver. Theory of linear and integer programming. Wiley, 1998.

nr. Year	Title	Author(s)
439 2013	On Characterization of the Core of Lane Covering Games via Dual Solutions	Behzad Hezarkhani, Marco Slikker, Tom van Woensel
438 2013	Destocking, the Bullwhip Effect, and the Credit Crisis: Empirical Modeling of Supply Chain Dynamics	Maximiliano Udenio, Jan C. Fransoo, Robert Peels
437 2013	Methodological support for business process Redesign in healthcare: a systematic literature review	Rob J.B. Vanwersch, Khurram Shahzad, Irene Vanderfeesten, Kris Vanhaecht, Paul Grefen, Liliane Pintelon, Jan Mendling, Geofridus G. Van Merode, Hajo A. Reijers
436 2013	Dynamics and equilibria under incremental Horizontal differentiation on the Salop circle	B. Vermeulen, J.A. La Poutré, A.G. de Kok
435 2013	Analyzing Conformance to Clinical Protocols Involving Advanced Synchronizations	Hui Yan, Pieter Van Gorp, Uzay Kaymak, Xudong Lu, Richard Vdovjak, Hendriks H.M. Korsten, Huilong Duan
434 2013	Models for Ambulance Planning on the Strategic and the Tactical Level	J. Theresia van Essen, Johann L. Hurink, Stefan Nickel, Melanie Reuter
433 2013	Mode Allocation and Scheduling of Inland Container Transportation: A Case-Study in the Netherlands	Stefano Fazi, Tom Van Woensel, Jan C. Fransoo
432 2013	Socially responsible transportation and lot sizing: Insights from multiobjective optimization	Yann Bouchery, Asma Ghaffari, Zied Jemai, Jan Fransoo
431 2013	Inventory routing for dynamic waste collection	Martijn Mes, Marco Schutten, Arturo Pérez Rivera
430 2013	Simulation and Logistics Optimization of an Integrated Emergency Post	N.J. Borgman, M.R.K. Mes, I.M.H. Vliegen, E.W. Hans
429 2013	Last Time Buy and Repair Decisions for Spare Parts	S. Behfard, M.C. van der Heijden, A. Al Hanbali, W.H.M. Zijm

428 201	3 A Review of Recent Research on Green Road Freight Transportation	Emrah Demir, Tolga Bektas, Gilbert Laporte
427 201	3 Typology of Repair Shops for Maintenance Spare Parts	M.A. Driessen, V.C.S. Wiers, G.J. van Houtum, W.D. Rustenburg
426 201	3 A value network development model and Implications for innovation and production network management	B. Vermeulen, A.G. de Kok
425 201	3 Single Vehicle Routing with Stochastic Demands: Approximate Dynamic Programming	C. Zhang, N.P. Dellaert, L. Zhao, T. Van Woensel, D. Sever
424 201	3 Influence of Spillback Effect on Dynamic Shortest Path Problems with Travel-Time-Dependent Network Disruptions	Derya Sever, Nico Dellaert, Tom Van Woensel, Ton de Kok
423 201	Dynamic Shortest Path Problem with Travel-Time- Dependent Stochastic Disruptions: Hybrid Approximate Dynamic Programming Algorithms with a Clustering Approach	Derya Sever, Lei Zhao, Nico Dellaert, Tom Van Woensel, Ton de Kok
422 201	3 System-oriented inventory models for spare parts	R.J.I. Basten, G.J. van Houtum
421 201	Lost Sales Inventory Models with Batch Ordering 3 And Handling Costs	T. Van Woensel, N. Erkip, A. Curseu, J.C. Fransoo
420 201	3 Response speed and the bullwhip	Maximiliano Udenio, Jan C. Fransoo, Eleni Vatamidou, Nico Dellaert
419 201	3 Anticipatory Routing of Police Helicopters	Rick van Urk, Martijn R.K. Mes, Erwin W. Hans
418 201	3 Supply Chain Finance. A conceptual framework to advance research	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
417 201	3 Improving the Performance of Sorter Systems By Scheduling Inbound Containers	S.W.A. Haneyah, J.M.J. Schutten, K. Fikse
416 201	3 Regional logistics land allocation policies: Stimulating spatial concentration of logistics firms	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo

415 2013	The development of measures of process harmonization	Heidi L. Romero, Remco M. Dijkman, Paul W.P.J. Grefen, Arjan van Weele
414 2013	B BASE/X. Business Agility through Cross- Organizational Service Engineering	Paul Grefen, Egon Lüftenegger, Eric van der Linden, Caren Weisleder
413 2013	The Time-Dependent Vehicle Routing Problem with Soft Time Windows and Stochastic Travel Times	Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok
412 2013	Clearing the Sky - Understanding SLA Elements in Cloud Computing	Marco Comuzzi, Guus Jacobs, Paul Grefen
411 2013	Approximations for the waiting time distribution In an M/G/c priority queue	A. Al Hanbali, E.M. Alvarez, M.C. van der van der Heijden
410 2013	To co-locate or not? Location decisions and logistics concentration areas	Frank P. van den Heuvel, Karel H. van Donselaar, Rob A.C.M. Broekmeulen, Jan C. Fransoo, Peter W. de Langen
409 2013	The Time-Dependent Pollution-Routing Problem	Anna Franceschetti, Dorothée Honhon,Tom van Woensel, Tolga Bektas, GilbertLaporte.
408 2013	Scheduling the scheduling task: A time Management perspective on scheduling	J.A. Larco, V. Wiers, J. Fransoo
407 2013	Clustering Clinical Departments for Wards to Achieve a Prespecified Blocking Probability	J. Theresia van Essen, Mark van Houdenhoven, Johann L. Hurink
406 2013	MyPHRMachines: Personal Health Desktops in the Cloud	Pieter Van Gorp, Marco Comuzzi
405 2013	Maximising the Value of Supply Chain Finance	Kasper van der Vliet, Matthew J. Reindorp, Jan C. Fransoo
404 2013	Reaching 50 million nanostores: retail distribution in emerging megacities	Edgar E. Blanco, Jan C. Fransoo
403 2013	A Vehicle Routing Problem with Flexible Time Windows	Duygu Tas, Ola Jabali, Tom van Woensel

402 2012	The Service Dominant Business Model: A Service Focused Conceptualization	Egon Lüftenegger, Marco Comuzzi, Paul Grefen, Caren Weisleder
401 2012	Relationship between freight accessibility and Logistics employment in US counties	Frank P. van den Heuvel, Liliana Rivera,Karel H. van Donselaar, Ad de Jong,Yossi Sheffi, Peter W. de Langen, Jan C.Fransoo
400 2012	A Condition-Based Maintenance Policy for Multi- Component Systems with a High Maintenance Setup Cost	Qiushi Zhu, Hao Peng, Geert-Jan van Houtum
399 2012	A flexible iterative improvement heuristic to Support creation of feasible shift rosters in Self-rostering	E. van der Veen, J.L. Hurink, J.M.J. Schutten, S.T. Uijland
398 2012	Scheduled Service Network Design with Synchronization and Transshipment Constraints For Intermodal Container Transportation Networks	K. Sharypova, T.G. Crainic, T. van Woensel, J.C. Fransoo
397 2012	Destocking, the bullwhip effect, and the credit Crisis: empirical modeling of supply chain Dynamics	Maximiliano Udenio, Jan C. Fransoo, Robert Peels
396 2012	Vehicle routing with restricted loading capacities	J. Gromicho, J.J. van Hoorn, A.L. Kok J.M.J. Schutten
395 2012	Service differentiation through selective lateral transshipments	E.M. Alvarez, M.C. van der Heijden, I.M.H. Vliegen, W.H.M. Zijm
394 2012	A Generalized Simulation Model of an Integrated Emergency Post	Martijn Mes, Manon Bruens
393 2012	Business Process Technology and the Cloud: Defining a Business Process Cloud Platform	Vasil Stoitsev, Paul Grefen
392 2012	Vehicle Routing with Soft Time Windows and Stochastic Travel Times: A Column Generation	D. Tas, M. Gendreau, N. Dellaert, T. van Woensel, A.G. de Kok

	And Branch-and-Price Solution Approach	
391 2012	P. Improve OR-Schedule to Reduce Number of Required Beds	J.T. v. Essen, J.M. Bosch, E.W. Hans, M. v. Houdenhoven, J.L. Hurink
390 2012	How does development lead time affect performance over the ramp-up lifecycle?	Andres Pufall, Jan C. Fransoo, Ad de Jong
389 2012	Evidence from the consumer electronics industry	Andreas Pufall, Jan C. Fransoo, Ad de Jong, Ton de Kok
388 2012	The Impact of Product Complexity on Ramp- Up Performance	Frank P.v.d. Heuvel, Peter W.de Langen, Karel H. v. Donselaar, Jan C. Fransoo
387 2012	Co-location synergies: specialized versus diverse logistics concentration areas	Frank P.v.d. Heuvel, Peter W.de Langen, Karel H. v.Donselaar, Jan C. Fransoo
386 2012	Proximity matters: Synergies through co-location of logistics establishments	Frank P. v.d.Heuvel, Peter W.de Langen, Karel H.v. Donselaar, Jan C. Fransoo
385 2012	Spatial concentration and location dynamics in logistics:the case of a Dutch province	Zhiqiang Yan, Remco Dijkman, Paul Grefen
384 2012	FNet: An Index for Advanced Business Process Querying	W.R. Dalinghaus, P.M.E. Van Gorp
383 2012	Defining Various Pathway Terms	Egon Lüftenegger, Paul Grefen, Caren Weisleder
382 2012	The Service Dominant Strategy Canvas: Defining and Visualizing a Service Dominant Strategy through the Traditional Strategic Lens	Stefano Fazi, Tom van Woensel, Jan C. Fransoo
381 2012	A Stochastic Variable Size Bin Packing Problem With Time Constraints	K. Sharypova, T. van Woensel, J.C. Fransoo

380 2012	Coordination and Analysis of Barge Container Hinterland Networks	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
379 2012	Proximity matters: Synergies through co-location of logistics establishments	Heidi Romero, Remco Dijkman, Paul Grefen, Arjan van Weele
378 2012	A literature review in process harmonization: a conceptual framework	S.W.A. Haneya, J.M.J. Schutten, P.C. Schuur, W.H.M. Zijm
377 2012	A Generic Material Flow Control Model for Two Different Industries	H.G.H. Tiemessen, M. Fleischmann, G.J. van Houtum, J.A.E.E. van Nunen, E. Pratsini
375 2012	Improving the performance of sorter systems by scheduling inbound containers	Albert Douma, Martijn Mes
374 2012	Strategies for dynamic appointment making by container terminals	Pieter van Gorp, Marco Comuzzi
373 2012	MyPHRMachines: Lifelong Personal Health Records in the Cloud	E.M. Alvarez, M.C. van der Heijden, W.H.M. Zijm
372 2012	Service differentiation in spare parts supply through dedicated stocks	Frank Karsten, Rob Basten
371 2012	Spare parts inventory pooling: how to share the benefits	X.Lin, R.J.I. Basten, A.A. Kranenburg, G.J. van Houtum
370 2012	Condition based spare parts supply	Martijn Mes
369 2011	Using Simulation to Assess the Opportunities of Dynamic Waste Collection	J. Arts, S.D. Flapper, K. Vernooij
368 2011	Aggregate overhaul and supply chain planning for rotables	J.T. van Essen, J.L. Hurink, W. Hartholt, B.J. van den Akker
367 2011	Operating Room Rescheduling	Kristel M.R. Hoen, Tarkan Tan, Jan C. Fransoo, Geert-Jan van Houtum
366 2011	Switching Transport Modes to Meet Voluntary Carbon Emission Targets	Elisa Alvarez, Matthieu van der Heijden

365 2011	On two-echelon inventory systems with Poisson demand and lost sales	J.T. van Essen, E.W. Hans, J.L. Hurink, A. Oversberg
364 2011	Minimizing the Waiting Time for Emergency Surgery	Duygu Tas, Nico Dellaert, Tom van Woensel, Ton de Kok
363 2011	Vehicle Routing Problem with Stochastic Travel Times Including Soft Time Windows and Service Costs	Erhun Özkan, Geert-Jan van Houtum, Yasemin Serin
362 2011	A New Approximate Evaluation Method for Two- Echelon Inventory Systems with Emergency Shipments	Said Dabia, El-Ghazali Talbi, Tom Van Woensel, Ton de Kok
361 2011	Approximating Multi-Objective Time-Dependent Optimization Problems	Said Dabia, Stefan Röpke, Tom Van Woensel, Ton de Kok
360 2011	Branch and Cut and Price for the Time Dependent Vehicle Routing Problem with Time Window	A.G. Karaarslan, G.P. Kiesmüller, A.G. de Kok
359 2011	Analysis of an Assemble-to-Order System with Different Review Periods	Ahmad Al Hanbali, Matthieu van der Heijden
358 2011	Interval Availability Analysis of a Two-Echelon, Multi-Item System	Felipe Caro, Charles J. Corbett, Tarkan Tan, Rob Zuidwijk
357 2011	Carbon-Optimal and Carbon-Neutral Supply Chains	Sameh Haneyah, Henk Zijm, Marco Schutten, Peter Schuur
356 2011	Generic Planning and Control of Automated Material Handling Systems: Practical Requirements Versus Existing Theory	M. van der Heijden, B. Iskandar
355 2011	Last time buy decisions for products sold under warranty	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
354 2011	Spatial concentration and location dynamics in	Fronk D. von den Heuwel Deter W. de
2011	logistics: the case of a Dutch provence	Frank P. van den Heuvel, Peter W. de Langen, Karel H. van Donselaar, Jan C. Fransoo
353	Identification of Employment Concentration Areas	Pieter van Gorp, Remco Dijkman
352 2011	BOMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules: extended version	Frank Karsten, Marco Slikker, Geert- Jan van Houtum
351	Resource pooling and cost allocation among	E. Lüftenegger, S. Angelov, P. Grefen

		to to one to other the control of the	
	2011	independent service providers	
350	2011	A Framework for Business Innovation Directions	Remco Dijkman, Irene Vanderfeesten, Hajo A. Reijers
349	2011	The Road to a Business Process Architecture: An Overview of Approaches and their Use	K.M.R. Hoen, T. Tan, J.C. Fransoo G.J. van Houtum
348	2011	Effect of carbon emission regulations on transport mode selection under stochastic demand	Murat Firat, Cor Hurkens
347	2011	An improved MIP-based combinatorial approach for a multi-skill workforce scheduling problem	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
346	2011	An approximate approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
345	2011	Joint optimization of level of repair analysis and spare parts stocks	Ton G. de Kok
344	2011	Inventory control with manufacturing lead time flexibility	Frank Karsten, Marco Slikker, Geert- Jan van Houtum
343	2011	Analysis of resource pooling games via a new extenstion of the Erlang loss function	Murat Firat, C.A.J. Hurkens, Gerhard J. Woeginger
342	2010	Vehicle refueling with limited resources	Bilge Atasoy, Refik Güllü, TarkanTan
341	2010	Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information	Kurtulus Baris Öner, Alan Scheller-Wolf Geert-Jan van Houtum
339	2010	Redundancy Optimization for Critical Components in High-Availability Capital Goods	Joachim Arts, Gudrun Kiesmüller
338	2010	Analysis of a two-echelon inventory system with two supply modes	Murat Firat, Gerhard J. Woeginger
335	2010	Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh	Murat Firat, Cor Hurkens
334	2010	Attaining stability in multi-skill workforce scheduling	A.J.M.M. Weijters, J.T.S. Ribeiro

333 2010	Flexible Heuristics Miner (FHM)	P.T. Vanberkel, R.J. Boucherie, E.W. Hans, J.L. Hurink, W.A.M. van Lent, W.H. van Harten
332 2010	An exact approach for relating recovering surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Nelly Litvak
331 2010	Efficiency evaluation for pooling resources in health care	M.M. Jansen, A.G. de Kok, I.J.B.F. Adan
330 2010	The Effect of Workload Constraints in Mathematical Programming Models for Production Planning	Christian Howard, Ingrid Reijnen, Johan Marklund, Tarkan Tan
329 2010	<u>Using pipeline information in a multi-echelon spare</u> parts inventory system	H.G.H. Tiemessen, G.J. van Houtum
328 2010	Reducing costs of repairable spare parts supply systems via dynamic scheduling	F.P. van den Heuvel, P.W. de Langen, K.H. van Donselaar, J.C. Fransoo
327 2010	Identification of Employment Concentration and Specialization Areas: Theory and Application	Murat Firat, Cor Hurkens
326 2010	A combinatorial approach to multi-skill workforce scheduling	Murat Firat, Cor Hurkens, Alexandre Laugier
325 2010	Stability in multi-skill workforce scheduling	M.A. Driessen, J.J. Arts, G.J. v. Houtum, W.D. Rustenburg, B. Huisman
324 2010	Maintenance spare parts planning and control: A framework for control and agenda for future research	R.J.I. Basten, G.J. van Houtum
323	Near-optimal heuristics to set base stock levels in a two-echelon distribution network	M.C. van der Heijden, E.M. Alvarez,
2010		J.M.J. Schutten
322 2010	Inventory reduction in spare part networks by selective throughput time reduction	E.M. Alvarez, M.C. van der Heijden, W.H. Zijm
321 2010	The selective use of emergency shipments for service-contract differentiation	B. Walrave, K. v. Oorschot, A.G.L. Romme

320 2010	Heuristics for Multi-Item Two-Echelon Spare Parts Inventory Control Problem with Batch Ordering in the Central Warehouse	Nico Dellaert, Jully Jeunet.
319 2010	mechanism. Intervention conditions	R. Seguel, R. Eshuis, P. Grefen.
318 2010	Hospital admission planning to optimize major resources utilization under uncertainty Minimal Protocol Adaptors for Interacting Services	Tom Van Woensel, Marshall L. Fisher, Jan C. Fransoo.
317 2010	-	can en rancee.
	Teaching Retail Operations in Business and Engineering Schools	Lydie P.M. Smets, Geert-Jan van Houtum, Fred Langerak.
316 2010	Design for Availability: Creating Value for Manufacturers and Customers	Pieter van Gorp, Rik Eshuis.
315 2010	Transforming Process Models: executable rewrite rules versus a formalized Java program	Bob Walrave, Kim E. van Oorschot, A. Georges L. Romme
314 2010	Getting trapped in the suppression of exploration: A simulation model	S. Dabia, T. van Woensel, A.G. de Kok
313	A Dynamic Programming Approach to Multi- Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows	
	Objective Time-Dependent Capacitated Single	Osman Alp, Tarkan Tan
312 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and	Osman Alp, Tarkan Tan R.A.C.M. Broekmeulen, C.H.M. Bakx
312 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints	
312 2010 311 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints The state of the art of innovation-driven business models in the financial services industry	R.A.C.M. Broekmeulen, C.H.M. Bakx E. Lüftenegger, S. Angelov, E. van der
312 2010 311 2010 310 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints The state of the art of innovation-driven business models in the financial services industry Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case	R.A.C.M. Broekmeulen, C.H.M. Bakx E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen
312 2010 311 2010 310 2010 309 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints The state of the art of innovation-driven business models in the financial services industry Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case Effect of carbon emission regulations on transport mode selection in supply chains	R.A.C.M. Broekmeulen, C.H.M. Bakx E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen R. Seguel, P. Grefen, R. Eshuis K.M.R. Hoen, T. Tan, J.C. Fransoo,
312 2010 311 2010 310 2010 309 2010 308 2010 307 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints The state of the art of innovation-driven business models in the financial services industry Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case Effect of carbon emission regulations on transport mode selection in supply chains Interaction between intelligent agent strategies for	R.A.C.M. Broekmeulen, C.H.M. Bakx E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen R. Seguel, P. Grefen, R. Eshuis K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum Martijn Mes, Matthieu van der Heijden,
312 2010 311 2010 310 2010 309 2010 308 2010 307 2010	Objective Time-Dependent Capacitated Single Vehicle Routing Problems with Time Windows Tales of a So(u)rcerer: Optimal Sourcing Decisions Under Alternative Capacitated Suppliers and General Cost Structures In-store replenishment procedures for perishable inventory in a retail environment with handling costs and storage constraints The state of the art of innovation-driven business models in the financial services industry Design of Complex Architectures Using a Three Dimension Approach: the CrossWork Case Effect of carbon emission regulations on transport mode selection in supply chains Interaction between intelligent agent strategies for real-time transportation planning Internal Slackening Scoring Methods	R.A.C.M. Broekmeulen, C.H.M. Bakx E. Lüftenegger, S. Angelov, E. van der Linden, P. Grefen R. Seguel, P. Grefen, R. Eshuis K.M.R. Hoen, T. Tan, J.C. Fransoo, G.J. van Houtum Martijn Mes, Matthieu van der Heijden, Peter Schuur Marco Slikker, Peter Borm, René van

303 2010	Ocean Container Transport: An Underestimated and Critical Link in Global Supply Chain Performance	Jan C. Fransoo, Chung-Yee Lee
302 2010	Capacity reservation and utilization for a manufacturer with uncertain capacity and demand	Y. Boulaksil; J.C. Fransoo; T. Tan
300 2009	Spare parts inventory pooling games	F.J.P. Karsten; M. Slikker; G.J. van Houtum
299 2009	Capacity flexibility allocation in an outsourced supply chain with reservation	Y. Boulaksil, M. Grunow, J.C. Fransoo
298 2010	An optimal approach for the joint problem of level of repair analysis and spare parts stocking	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
297 2009	Responding to the Lehman Wave: Sales Forecasting and Supply Management during the Credit Crisis	Robert Peels, Maximiliano Udenio, Jan C. Fransoo, Marcel Wolfs, Tom Hendrikx
296 2009	An exact approach for relating recovering surgical patient workload to the master surgical schedule	Peter T. Vanberkel, Richard J. Boucherie, Erwin W. Hans, Johann L. Hurink, Wineke A.M. van Lent, Wim H. van Harten
295 2009	An iterative method for the simultaneous optimization of repair decisions and spare parts stocks	R.J.I. Basten, M.C. van der Heijden, J.M.J. Schutten
294 2009	Fujaba hits the Wall(-e)	Pieter van Gorp, Ruben Jubeh, Bernhard Grusie, Anne Keller
293 2009	Implementation of a Healthcare Process in Four Different Workflow Systems	R.S. Mans, W.M.P. van der Aalst, N.C. Russell, P.J.M. Bakker
292 2009	Business Process Model Repositories - Framework and Survey	Zhiqiang Yan, Remco Dijkman, Paul Grefen
291 2009	Efficient Optimization of the Dual-Index Policy Using Markov Chains	Joachim Arts, Marcel van Vuuren, Gudrun Kiesmuller
290 2009	Hierarchical Knowledge-Gradient for Sequential Sampling	Martijn R.K. Mes; Warren B. Powell; Peter I. Frazier
289 2009	Analyzing combined vehicle routing and break scheduling from a distributed decision making perspective	C.M. Meyer; A.L. Kok; H. Kopfer; J.M.J. Schutten
288 2009	Anticipation of lead time performance in Supply Chain Operations Planning	Michiel Jansen; Ton G. de Kok; Jan C. Fransoo
287 2009	Inventory Models with Lateral Transshipments: A Review	Colin Paterson; Gudrun Kiesmuller; Ruud Teunter; Kevin Glazebrook
286 2009	Efficiency evaluation for pooling resources in health care	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
285 2009	A Survey of Health Care Models that Encompass Multiple Departments	P.T. Vanberkel; R.J. Boucherie; E.W. Hans; J.L. Hurink; N. Litvak
284 2009	Supporting Process Control in Business Collaborations	S. Angelov; K. Vidyasankar; J. Vonk; P. Grefen
283 2009	Inventory Control with Partial Batch Ordering	O. Alp; W.T. Huh; T. Tan

282 2009 Translating Safe Petri Nets to Statecharts in a Structure-Preserving Way	R. Eshuis
281 2009 $\frac{\text{The link between product data model and process}}{\text{model}}$	J.J.C.L. Vogelaar; H.A. Reijers
280 2009 Inventory planning for spare parts networks with delivery time requirements	I.C. Reijnen; T. Tan; G.J. van Houtum
279 2009 Co-Evolution of Demand and Supply under Competition	B. Vermeulen; A.G. de Kok
Toward Meso-level Product-Market Network 278 2010 Indices for Strategic Product Selection and (Re)Design Guidelines over the Product Life-Cycle	B. Vermeulen, A.G. de Kok
An Efficient Method to Construct Minimal Protocol 277 2009 Adaptors	R. Seguel, R. Eshuis, P. Grefen
276 2009 Coordinating Supply Chains: a Bilevel Programming Approach	Ton G. de Kok, Gabriella Muratore
275 2009 Inventory redistribution for fashion products under demand parameter update	G.P. Kiesmuller, S. Minner
274 2009 Comparing Markov chains: Combining aggregation and precedence relations applied to sets of states	A. Busic, I.M.H. Vliegen, A. Scheller-Wolf
273 2009 Separate tools or tool kits: an exploratory study of engineers' preferences	I.M.H. Vliegen, P.A.M. Kleingeld, G.J. van Houtum
An Exact Solution Procedure for Multi-Item Two- 272 2009 Echelon Spare Parts Inventory Control Problem with Batch Ordering	Engin Topan, Z. Pelin Bayindir, Tarkan Tan
271 2009 Distributed Decision Making in Combined Vehicle Routing and Break Scheduling	C.M. Meyer, H. Kopfer, A.L. Kok, M. Schutten
270 2009 Routing Problem with Time Windows and EC Social Legislation	A.L. Kok, C.M. Meyer, H. Kopfer, J.M.J. Schutten
269 2009 Similarity of Business Process Models: Metics and Evaluation	Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Kaarik, Jan Mendling
267 2009 Vehicle routing under time-dependent travel times: the impact of congestion avoidance	A.L. Kok, E.W. Hans, J.M.J. Schutten
266 2009 Restricted dynamic programming: a flexible framework for solving realistic VRPs	J. Gromicho; J.J. van Hoorn; A.L. Kok; J.M.J. Schutten;