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ABSTRACT
This study presents results from detailed experiments of the two-phase pressurized flow behavior

during the rapid filling of a large-scale pipeline. The physical scale of this experiment is close
to the practical situation in many industrial plants. Pressure transducers, water level meters,
thermometers, void fraction meters and flow meters were used to measure the two-phase unsteady
flow dynamics. The main focus is on the water-air interface evolution during filling and the overall
behavior of the lengthening water column. It is observed that the leading liquid front does not
entirely fill the pipe cross section; flow stratification and mixing occurs. Although flow regime
transition is a rather complex phenomenon, certain features of the observed transition pattern are
explained qualitatively and quantitatively. The water flow during the entire filling behaves as a
rigid column as the open empty pipe in front of the water column provides sufficient room for the
water column to occupy without invoking air compressibility effects. As a preliminary evaluation
of how these large-scale experiments can feed into improving mathematical modeling of rapid pipe
filling, a comparison with a typical one-dimensional rigid-column model is made.

Keywords: Experimentation; Large-scale pipeline; Two-phase flow; Air-water interface; Flow-
regime transition

INTRODUCTION
Rapid pipe filling occurs in various hydraulic applications, such as water-distribution networks,

storm-water and sewage systems, fire-fighting systems, oil transport, and pipeline cleaning and
priming. While the water column is driven by a high head, air is expelled by the advancing water
column. If the generated air flow is not blocked by obstacles, such as gates, valves or orifices,
the water column grows with little adverse pressure and may attain a high velocity. When the
advancing column is suddenly stopped (fully or partially), severe pressure changes will occur in the
system (see e.g. Guo and Song 1990, De Martino et al. 2008, Bergant et al. 2010, Bergant et al.
2011, Martin and Lee 2012).

Rapid filling processes in single pipes have been studied experimentally before. Nydal and
Andreussi (1991) investigated the air entrainment in a water column advancing over a liquid film
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in a nearly horizontal pipe that was 17 m long and 50 mm in diameter. It was found that air
entrainment only occurred when the relative velocity between the advancing front and the liquid
layer was greater than a threshold 2D/Wi (Wi interfacial width). When there was no initial liquid
film in the pipe, air entrainment did not occur. Liou and Hunt (1996) investigated the rapid filling
of a 7 m long pipe with a diameter of 23 mm. A high but short-lived peak velocity occurred after
which the velocity slowly decreased to its steady state value. To check the validity of the planar
front assumption in the rigid-column model of Liou and Hunt (1996), Vasconcelos et al. (2005)
studied the filling process of a 14 m long and 94 mm diameter pipe for three different driving
heads. It was observed that the advancing water column did not entirely fill the pipe cross section,
and a stratified flow was observed behind the leading front.

In the context of pipe filling, the usual focus was on physical factors affecting the peak transient
pressure, such as the location and size of entrapped air pocket(s), the water column length, the
driving pressure head and the size of the end orifice (Martin 1976, Ocasio 1976, Cabrera et al. 1992,
Cabrera et al. 1997, Izquierdo et al. 1999, Lee and Martin 1999, Zhou 2000, Liu and Suo 2004,
Lee 2005, De Martino et al. 2008, Zhou et al. 2011, Martin and Lee 2012, Zhou et al. 2013a, Zhou
et al. 2013b). Ocasio (1976) carried out experiments with entrapped air pockets at a dead end and
demonstrated that the presence of entrapped air could result in destructive pressure surges. This is
consistent with the conclusions drawn by Martin (1976). Lee and Martin (1999), Zhou (2000) and
Lee (2005) investigated the effect of relatively large entrapped air pockets (initial void fractions
between 6% and 45%) in horizontal pipelines with dead ends. They found that the maximum
peak pressure of the air pocket increased with the decrease of its initial size. As a complementary
work, Zhou et al. (2011) presented experimental measurements in an undulated pipeline with small
initial void fraction (from 0 to 10%). They found that the maximum peak pressure of the air pocket
first increased and then decreased with decreasing void fraction. For the filling of pipelines with
undulating profile, multiple air pockets and an open end, the rapid compression of the entrapped
air may cause huge pressures (Cabrera et al. 1997, Izquierdo et al. 1999, Zhou et al. 2013a). When
two air pockets are entrapped, the case with similar sizes was the most complicated and dangerous
one (Zhou et al. 2013a). To investigate the behavior of the air entrapped in a drainage system,
Yamamoto et al. (2000) presented an experimental study that involved the use of a horizontal pipe
with a length of 122 m and a diameter of 200 mm. The entrapped air increased both the pressure
rise time and the pressure peak. Zhou et al. (2002) investigated the rapid filling of a horizontal
pipe with an end orifice which was partially full with water. The pipe length was 9 m and the
diameter was 35 mm. The focus was on pressure surge influenced by the initial water depth, the
orifice size, and the driving head. It was demonstrated that air trapped in a rapidly filled pipe
can induce high-pressure surges, especially when air leakage occurred at the orifice. Three types
of pressure oscillation patterns were observed, depending on the size of the orifice. Recently, to
ascertain the effect of entrapped air and orifice size on pipeline transients, a similar experimental
test programme was reported by Martin and Lee (2012) with results similar to those in Yamamoto
et al. (2000).

To study the transition from free surface to pressurized flow in sewers during storm events, Tra-
jkovic et al. (1999) conducted experiments in a test rig consisting of a circular pipe with downward
slope and gates at the upstream and downstream ends. The overall pipe length was about 10 m
and the pipe diameter was 100 mm. It was found that the supercritical free-surface flow at the
upstream end (under proper ventilation) always induced a hydraulic jump. Recently, inspired by
the work of Trajkovic et al. (1999), a similar experimental investigation was conducted by Trindade
and Vasconcelos (2013) with modifications that limited the ventilation conditions. For the study
of flow regime transition and the interaction between air and water phases, Vasconcelos (2005) and
Vasconcelos and Wright (2005) conducted rapid filling experiments of a poorly ventilated stormwa-

2



ter tunnel. The pipe was initially empty or partially filled with water. It was found that the air
near the pipe crown could pressurize and influence the flow dynamics. The surge intensity was
maximized when a hydraulic bore propagated towards the surge riser (also observed by Nydal and
Andreussi 1991), and it increased with the pressure head behind the pressurization front. In this
respect, the current paper provides useful experimental information complementary to the previous
studies on pipeline filling.

These previous studies show that for filling of a small-scale horizontal system with relatively
high driving head, the deformation of the water front has an insignificant effect on the overall
hydrodynamics of the lengthening water column (Hou et al. 2012b). Thus a planar water-air
interface is often assumed. However, it is not clear in advance whether this assumption is applicable
to large-scale pipelines. This issue is of high importance to understand the development of air
pockets and gravity currents during the filling process. The present experimental investigation
aims at a better understanding of the evolution of the moving interfaces, the pressure distribution
and the flow rates. To assist in interpreting the experimental results they are compared with
predictions from a one-dimensional model which has the conventional planar water-air interface
assumption. This paper complements the experimental work done in the same Deltares pipeline
apparatus on the emptying of it by different upstream compressed-air pressures and with different
outflow restriction conditions (Laanearu et al. 2012).

EXPERIMENTAL APPARATUS
The experimental apparatus consisted of a water tank, an air tank, steel supply pipelines (for

water and air), a PVC inlet pipe, a pipe bridge, a horizontal long PVC pipeline (the test section),
an outlet steel pipeline and a basement reservoir. Detailed information is given below, and part of
it can be found in Lubbers (2007), Laanearu et al. (2009, 2012), Laanearu and van ’t Westende
(2010) and Hou (2012). The downstream end of the PVC pipe bridge was defined as the origin of
the coordinate system. It is the starting point of the test section. The x -coordinate follows the
central axis of the pipeline, the y-coordinate is not used herein and the z-coordinate is the vertical
elevation. Coordinates of measuring instruments and other important components are shown in
Fig. 1.

A water tank with a constant 25 m head relative to the center line of the inlet (x = −34.6 m) was
used to supply water in the filling experiment reported here and an air tank with a 70 m3 volume
was used to supply air in the emptying experiment (Laanearu et al. 2012). The horizontal inlet steel
pipe from the tank to the vertical leg was 2.6 m long. The vertical leg of the Y-junction was 3.6
m long. The steel pipe, from the Y-junction (x = −27.2 m) to the upstream steel-PVC connection
(x = −14 m), was 13.2 m long. The air supply steel pipe, from the check valve (x = −43.1 m) to
the Y-junction, was 15.9 m long. The inner diameter of the steel pipes was 206 mm, with a wall
thickness of 5.9 mm. The PVC pipe was 275.2 m long and its outer diameter was 250 mm with
an average wall thickness of 7.3 mm. It consisted of two parts. The first part consisted of a 7.5 m
long PVC inlet pipe and a 6.5 m long pipe bridge. It led from the upstream steel-PVC connection
(x = −14 m) to the chosen starting point of the test section (x = 0). With the aid of a piezometer
tube, the bridge was used to set up the initial water column. The second part was the horizontal
PVC pipe of length 261.2 m (from x = 0 to the downstream PVC-steel connection). Most of the
measurements took place in this section. The outlet steel pipe led from the downstream end of the
PVC pipe to the basement reservoir. It contained two segments of different diameter connected
by a reducer. The reducer had a length of 0.3 m and was located 0.3 m upstream of the outlet
flow meter. The first segment was 8.8 m long and the inner diameter was 260.4 mm with a wall
thickness of 6.3 mm. The second segment was 2 m long and the inner diameter was 206 mm with
a wall thickness of 5.9 mm. The pipeline had downward turns at x = −27.2 m and x = 267.0 m,
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FIG. 1. System dimensions and coordinates of the measuring instruments adapted from Bergant
et al. (2011).
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and an upward turn at x = −31.6 m. The elevation information is given in Fig. 1. The downward
leg beyond x = 267.0 m formed a siphon after the water front arrived at the last elbow.

Pipe supports and connections

To suppress pipe motion and associated Fluid-Structure Interaction (FSI) effects (see e.g.
Bergant et al. 2010, Bergant et al. 2011, Keramat et al. 2012, Tijsseling 1996, Wiggert and Tijssel-
ing 2001), it was attempted to structurally restrain the pipe system as much as possible. The PVC
pipeline was fixed to the concrete floor by metal anchors and supported with wooden blocks to
reduce sagging. The pipe bridge – elevated 1.3 m above the main pipeline axis – was supported by
a tube-frame. As it appeared hard to fix the most downstream elbow (x = 267.0 m), a heavy mass
(about 1 tonne) was attached with a rope at this point so to reduce the elbow’s vertical movement.
The PVC pipeline segments were connected by sleeves. Wherever the PVC pipe needed to change
direction, a large-radius bend (R = 5DPV C) was used. There were four 90-degree bends in the test
section and a long bend at the 180 degree turning point (see Fig. 1).

There were nine valves in the system as indicated in Fig. 1. Several small air venting valves
are not shown; most of the venting valves were located upstream of the pipe bridge. All of them
were closed in the filling process, which is different from the upstream ventilation condition used
in the filling tests by Trajkovic et al. (1999) (full ventilation) and Trindade and Vasconcelos (2013)
(limited ventilation). The check valve (V7 at x = −43.1 m) was used to prevent entrance of water
into the air system. The water inlet valve (V8 at x = −34.6 m) connected to the water tank
remained open during all experiments. The other seven valves labeled V0 to V6 were actively
operated manually or automatically (see Fig. 1). Three of them (V0, V2 and V6) were used in the
filling tests. The upstream service valve V0 (DN200) was operated manually to supply water. The
automatic control valve V2 (DN150) was used for flow regulation. The small-size on/off valve V6
in the transparent stand tube mounted at the upstream leg of the pipe bridge (see Fig. 1) was open
when monitoring the initial position of the front of a nearly static water column. All the water
valves used in the system were butterfly valves and the check valve (V7) was a cage valve.

Instruments and data acquisition

Instruments. A maximum of 29 instruments were installed along the whole system as sketched
in Fig. 2. There were twelve pressure transducers, six water level meters, four thermometers,
three void fraction meters, three flow meters and one accelerometer. The coordinates of the pres-
sure transducers and flow meters are shown in Fig. 1. The coordinates of the other measuring
instruments can be found in Hou et al. (2012a), where the type, output range, position (within
pipe cross-section) and other relevant information is provided. The three transparent sections had
lengths of 0.7 meters with viewing windows 0.5 meters long. A SONY camera set-up at the first
and last sections (see Fig. 2) recorded the water-air interfaces and the air-water mixing process.
The nine measuring sections were numbered (indicated by the subscripts of variables in Figs. 1 and
2) in sequence from upstream to downstream.

Uncertainties. According to nominal values provided by the manufactures, the estimated uncer-
tainty under steady-state conditions was ± 1.0% (percent of reading) in the flow-rate measurements,
± 0.1% (percent of reading) in the pressure measurements and ± 0.8 oC in the temperature mea-
surements. The ± 15 mm uncertainty in the water-level measurements was not known from the
instrumentation specification of the conductivity probe, but it was determined from comparisons
with camera images. All pressure transducers were of the strain-gauge type with a natural frequen-
cy of 10 kHz. They were all installed flush-mounted at the pipe sides, except for p3. Apart from
the uncertainties in the measuring devices, there were also uncertainties in the filling process itself.

• The response times of the measuring instruments were different. For example, for the pres-
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FIG. 2. Layout of measuring instruments in the pipeline apparatus.

sure transducer and the flow meter located at the same place, the response of the pressure
transducer was normally 1 second earlier than the response of the flow meter. The instant
of the first response of the flow meter at x = −14 m was taken as time t = 0.

• The PVC pipeline was intended to be entirely empty before each pipe filling run. However,
it was found that some water remained between the sections 3 (x = 46.4 m) and 8 (x = 206.8
m) after a filling and subsequent emptying run. The amount of uncleared water varied per
test. With valve V4 fully open and using high-pressure air (more than 1 bar) to drain the
pipe, the depth of remaining water was about 30 mm on average and up to 60 mm when air
at low-pressure (less than 1 bar) was used. The experimental results examined herein were
obtained after draining with high-pressure air. For the average depth of 30 mm (between
sections 3 and 8), the volume of the remaining water is 0.52 m3 which is equivalent to the
volume of 12 m of the PVC pipe.

• Before each pipe filling run, the air entrapped in the steel pipe between the Y-junction
(x = −27.2 m) and the check valve (x = −43.1 m) was not released. It is not clear what its
effect is on the filling process in general and air entrainment in particular.

Data acquisition. Deltares’ 32-channel data acquisition system was used for synchronized record-
ing of flow rate (inflow Qu, outflow Qdv, air flow Qa), pressure (p1, p3t, p3b, p5, p7, p8, p9, pu, puv,
pdv, pa, pt), temperature (T1, T3, T9, Ta), water level (WL1, WL3, WL5, WL7, WL8, WL9) and
void fraction (VF1, VF3, VF9); see Fig. 2. Video camera and accelerometer recordings were not
electronically synchronized with the data acquisition recordings. The camera images were highly
useful to get direct visual information on the two-phase flow structure developing in the pipe. A
sampling rate of 100 Hz was used to record discharge, gauge pressure, water level, void fraction
and temperature.
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Test procedure

All pipe filling experiments were carried out with the downstream valves V4 and V5 fully open
and a constant driving head of 25 m (at x = −34.6 m, z = −3.6). Air at atmospheric pressure and
some stagnant water is initially present in the system. First, the upstream valve V0 was opened
manually. Then the automatic valve V2 was opened from 0 to 15% until the height of the water in
the pipe bridge reached a vertical level of 0.4 meter (0.04 barg reading from pressure transducer pu
at x = −14 m as shown in Fig. 1). After closing valve V2, the water level at x = −6.5 m (which is
at the upstream leg of the bridge) was allowed to reach the level of 1.0 m (visually observed from
the piezometer tube) gradually due to a small leakage of valve V2. When this level was reached,
the upstream pipe was full and the top of the bridge was empty. Filling then started by closing
the small valve V6 on the piezometer tube and by fully opening valve V2 at the same time. The
filling was rapid, within one minute time. After that a steady state was reached, i.e. the inlet and
outlet flow discharges were equal and constant, the outlet control valve V4 was closed slowly by
hand from 0 to 75 degrees (labeled on a panel) to avoid any pressure surges. After the gradual
closure of valves V5 and V2 the filling process was completed.

EXPERIMENTAL RESULTS

Steady-state friction and resistance

Prior to the rapid pipe filling experiments, full-pipe steady-flow measurements were carried out
to determine the system’s head loss characteristics. At a steady-state flow velocity of 4 m/s the
hydraulic grade line for the PVC pipe is shown in Fig. 3. The straight hydraulic grade line for
x > 0 confirms that the pipe test section was long enough to neglect the minor losses due to the
bends (necessary to accommodate the pipe length within the laboratory). Laanearu et al. (2012)
have shown that the steady-state friction factor of the test pipe was f = 0.0136 and the 180o turn
loss coefficient was Klb = 0.06. The friction head loss over the L = 275.2 m PVC pipe was hf = 13
m, in comparison with which the local head loss hlb = 0.05 m due to the 180o turn was negligible.
The large head loss in the upstream part of the pipeline from x = −34.6 m to x = −27.7 m was
mainly due to the resistance of the valves V0, V2 and V8.
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Flow rates

The upstream and downstream flow rates measured during filling are shown in Fig. 4, where
good repeatability is exhibited by the three representative runs. The arrival time of the water
column at the downstream flow meter (x = 270.3 m) is 54± 0.8 s. The area covered by the inflow
rate curve and the time-axis between t = 0 and t = 54 s is the amount of water that has been
fed into the pipeline. The estimated value is 11,150 liters. It is less than the empty pipe volume
∀ = AL = πD2

PV C/4 × (270.3 + 6.5) × 103 = 12, 000 liters (water column front starts at x = −6.5
m), from which the volume of water present before filling (about 500 liters) must be subtracted.
The volume discrepancy of 350 liters is equivalent to the volume of 8 m length of PVC pipe. This
implies that when the water column arrives at the downstream flow meter, not all air is expelled
out of the system. This matter is further examined in the next section.

Now we focus on the measurements by the upstream flow meter (x = −14 m). As shown
in Fig. 4, the flow rate first rises to its maximum value of 270 ± 3 l/s in about 4 seconds time.
Then it decreases rapidly from 270 l/s to 250 l/s in 2 seconds time. After that, the flow gradually
decelerates until a steady state of fully-filled pipe flow is reached with short-living water-hammer
due to slug impact (see Fig. 11). The inflow velocity V – determined from the averaged flow rate
of 9 runs – is shown in Fig. 5 by the solid line. The trend of the curve is the same as that in the
small-scale experiment of Liou and Hunt (1996), although the filling time is over 11 times longer
here (about 57 seconds versus 5 seconds) mainly due to the longer pipe length. The measured
maximum velocities are higher (about 6.2 m/s versus 1.6 m/s) mainly due to the higher driving
head in the present experimental setup.

Water-air interfaces

Since the initial static water front (water-air interface) splits into two water fronts during the
filling process, the sketch in Fig. 6 is introduced for the sake of clarity. To determine the water
front velocities V1 (leading front) and V2 (secondary front) (Fig. 6c), the measuring method of Liou
and Hunt (1996) is used. Two different groups of instruments are used as the front timing sections.
The first group consists of the six water level meters (WL1, WL3, WL5, WL7, WL8 and WL9)
located at x = 1.7, 46.4, 111.7, 183.7, 206.8 and 252.9 m, respectively. The second group consists
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FIG. 6. Water front evolution in the filling process – the original water front splits into two
fronts: (a) initial state, (b) early stage of filling and (c) propagation of two water fronts.

of the six pressure transducers (p1, p3b, p5, p7, p8 and p9) located at x = 1.6, 46.6, 111.7, 183.7,
206.8 and 252.8 m. Except for pressure transducer p3b which is located at the pipe bottom, the
other five transducers are in a horizontal plane with the pipeline axis. The water level meters are
in a vertical plane with the pipeline axis. The arrival times of the advancing water fronts at the
timing sections are captured by the two groups of instruments. The average speeds of the fronts
are then computed as the distances between the timing sections divided by the travel times.

Together with the inflow velocity, the measured water front velocities are shown in Fig. 5: the
squares indicate V1 and the diamonds V2. The velocities V1 and V2 are average velocities over the
trajectory between two subsequent sections and the symbols are plotted at the arrival times of
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TABLE 1. Location x, arrival time t, average velocity V1 and inflow velocity V (at t1) of the
leading water front. The unit for x, t and V is m, s and m/s, respectively.

Section x t1 V1 V V1 − V

1 1.7 1.61± 0.07 5.09 2.61 2.48
3 46.4 9.12± 0.16 5.96 5.66 0.30
5 111.7 21.09± 0.36 5.46 5.05 0.41
7 183.7 35.28± 0.33 5.07 4.50 0.43
8 206.8 40.20± 0.35 4.70 4.36 0.24
9 252.9 50.34± 0.44 4.55 4.10 0.45

TABLE 2. Location x, arrival time t, average velocity V2 and inflow velocity V (at t2) of the
secondary water front. The unit for x, t and V is m, s and m/s, respectively.

Section x t2 V2 V V − V2

1 1.7 5.44± 0.18 1.38 5.84 4.46
3 46.4 14.51± 0.25 4.92 5.30 0.38
5 111.7 32.48± 0.40 3.63 4.56 0.96
7 183.7 56.17± 0.59 3.04 4.00 0.96
8 206.8 64.39± 0.36 2.81 4.06 1.25
9 252.9 80.42± 0.41 2.87 4.03 1.16

the water fronts at the timing sections. Only velocities determined from the water level meters
are presented in Fig. 5. The pressure transducers gave results close to those from the water level
measurements for the leading front (V1), whilst they could not accurately sense the arrival of the
secondary front (V2) due to the small pressure rise associated with it. The water front starts at
x = −6.5 m and has already split into two fronts when it arrives at section 1 (x = 1.7 m) so
that velocities V1 and V2 are clearly different and the difference is more than 1 m/s as seen from
Fig. 5. Both water front velocities follow the trend of the inflow rate. The front arrival times at
timing sections and corresponding velocities are listed in Tables 1 and 2. When the leading front
is traveling between section 3 (x = 46.4 m) and section 9 (x = 252.9 m), the velocity difference
between water column front (V1) and tail (V ) is roughly 0.4 m/s, except at section 8 (x = 206.8
m) where it decreases to 0.24 m/s. Similarly, before the secondary front arrives at section 9, the
velocity difference between front (V2) and tail (V ) is about 1 m/s except at section 8 (x = 206.8
m), where the difference increases to 1.25 m/s due to air pocket formation. The velocity variation
at section 8 is because of a hydraulic jump that occurred between sections 8 and 9, which is evident
from the water level measurements shown below. The area between the velocity curves V1 and
V2 (interpolated from Tables 1 and 2) is the amount of air intruded on top of the stratified flow.
This is further examined at the end of the next section. Two water fronts were also observed by
Vasconcelos et al. (2005) and presented by Guizani et al. (2006), however, without a quantitative
analysis as made herein.
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Water levels

The water level measurements for three repeated runs in Fig. 7 show a good repeatability. The
splitting of the water front is evident. The water levels at six locations in one typical run are shown
in Fig. 8. It is clear from Figs. 7 and 8 that the pipeline is not entirely empty at the beginning.
Water is mainly present between section 3 (x = 46.6 m) and section 8 (x = 206.8 m), and its
highest level is 35 mm at section 5 (x = 111.7 m). The fact that there is water accumulation in
the system prior to the filling is possibly due to the sagging of the pipeline. That is, the elevation
of the pipeline between sections 3 (x = 46.6 m) and 8 (x = 206.8 m) is not zero as desired, but a
small negative value. This condition differs from rapid filling tests with sloped pipelines as used by
Liou and Hunt (1996) and Vasconcelos et al. (2005). As indicated by Arai and Yamamoto (2003),
the pipeline slope could locally deviate from the targeted slope.

Figure 8 indicates that the shape of the leading water front does not change much before it
arrives at section 9 (x = 252.9 m). Its final wedge length is about 3 meters as estimated from the
observed rise time (0.5 – 0.75 s) and the measured velocity. The wedge-shaped front (see Figs. 8
and 6c) is initiated at the pipe bridge. As Fig. 7 shows, the water surface of the stratified flow
is fluctuating (small burrs in Figs. 7e and 7f and large spikes in Figs. 7a and 7d) caused by local
obstructions, such as bridge and bends. This is consistent with the observation of Hamam and
McCorquidale (1981) that even if there was no hydraulic jump in the sewer, the water surface
was very unstable at relative depths h/D > 0.8, showing that the stratified flow was affected by
geometric discontinuities.

However, for the long-time behavior, the average height of the leading water front is more or
less constant (192±8 mm) until it arrives at section 9 (x = 252.9 m) where it increases to 230 mm.
The secondary front reaches section 1 (x = 1.7 m) at about t = 5.4 s. Its shape slightly changes
with time. The average height of the secondary front is 43 ± 8 mm until it arrives at section 8
(x = 206.8 m). It decreases to 6 mm at section 9 (x = 252.9 m). The abrupt change of the height
of the two water fronts at section 9 indicates that a large flow regime transition (hydraulic jump)
must have occurred between sections 8 (x = 206.8 m) and 9 (x = 252.9 m). The occurrence of a
hydraulic jump is attributed to the 90-degree elbow and the stagnant layer of water ahead of the
leading water front. The distance between the two water fronts ∆L = (V1 − V2)∆t increases with
time. It is about 20 m when the secondary water front arrives at x = 1.7 m (t = 5.4 s), and it
increases to 75 m when the leading water front arrives at x = 206.8 m at t = 40.2 s. According to
these observations, a quantitative analysis of the water-air interface evolution is sketched in Fig. 9.

Due to insufficient draining between two subsequent filling tests, most part of the pipeline has
an initial water depth (mainly from x = 46.4 m to x = 206.8 m and depth varying with the x
coordinate). Generally, a sudden inflow in such a system will generate a bore (planar) front and
not a feather-tip (wedge) front like the one indicated in Fig. 6. However, the images captured by
the camera (see Fig. 10) did not indicate a clear bore front. This is attributed to the pipe bridge,
which produces a wedge-shaped front straight away, and to the relatively small water depth (less
than 5% of the pipe diameter as shown in Fig. 7f) at the measuring site (x = 249.5 m, close to
section 9). The images captured at the transparent location (x = 3.8 m) are similar to those shown
in Fig. 10 but with a higher evolution speed. A recording at the transparent location (x = 68.5
m in Fig. 1) would have provided useful insights in this respect, but unfortunately this has not
been done due to a lack of time. However, when zooming in on Fig. 7, the measured water level
rise caused by the leading water front at positions with relatively large initial water depth (e.g.
x = 111.7 m and x = 183.7 m) is still a sort of linear wedge. The sampling rate of 100 Hz used in
the experiments was sufficiently high to capture a planar bore front if it were there.

The evolution of the leading water front involves the intrusion of air. When the leading water
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FIG. 7. Water levels at six different locations in three repeated filling runs: (a) WL1, (b) WL3,
(c) WL5, (d) WL7, (e) WL8 and (f) WL9. See Table 1 and Fig. 2 for locations.
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FIG. 8. Water level changes at six different locations in one typical filling run.

FIG. 9. Illustration of air intrusion in the filling experiments (unit: m). The layer of intruded
air lengthens while its thickness does not change in stages (b), (c), (d) and (e). A hydraulic
jump occurred between stages (e) and (f), after which entrapped air is gradually expelled from
the system.
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FIG. 10. Water front evolution at x = 249.5 m in the filling process – snapshots by video
camera with a 0.04 s time interval starting at t = 50 s.
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front has reached section 9 (x = 252.9 m) at t = 50.3 s, the pipe at section 7 (x = 183.7 m) is still not
full (see Fig. 8). The thickness of the air layer between the two water fronts is more or less constant
before the occurrence of the hydraulic jump. The length of the air layer increases with time at rate
V1 − V2, the average value of which is 1.45 m/s in the time interval between t = 5.4 s and t = 40.2
s (see Tables 1 and 2). A theoretical prediction of V1 − V2 is given in Appendix II. Consequently,
the increased length of the air layer within that time interval is 1.45× (40.2− 5.4) = 50.5 m, which
is consistent with the estimate made above (75 m− 20 m = 55 m).

Based on the heights of the water fronts shown in Figs. 7 and 8 and together with Fig. 5 and
Tables 1 and 2, the conservation of volume at the moment that the leading water front arrives
at section 5 (x = 111.7 m, t = 21 s) is checked. The measured inflow rate is Qin = V A =
5.05 × 0.0435 = 0.22 m3/s. The volume change at the water fronts is Qout = V1A1 + V2A2 =
5.46 × 0.0381 + 4.5 × 0.0054 = 0.23 m3/s. The areas A1 and A2 correspond to a measured water
level of 192 mm. Velocity V1 is taken from Table 1 and velocity V2 is interpolated from Table 2.
Approximately Qin equals Qout. Thus the conservation of volume and corresponding measurements
are verified.

The volume of the layer of intruded air is also checked. When the leading front arrives at WL8
(x = 206.8 m, t = 40.2 s), the volume of the water (area under the inflow rate curve between
t = 0 and t = 40.2 s plus the volume of initially present water) is ∀1 = 8, 790 liters. The initial
voided pipe volume is ∀2 = LA = (206.8 + 6.5) × 0.0435 × 103 = 9, 280 liters. Hence the volume
of the intruded air ∀air = ∀2 − ∀1 = 490 liters. On the other hand, using the measured water
level (192 mm) to calculate ∀air, one finds for the air on top of the horizontal water surface that
∀air = A2∆L = 0.0054 × 103 × 75 = 410 liters. The air volume on top of the wedge-shaped water
front is about 60 liters as estimated from the 3 meters long front. Consequently, the intruded air
volumes calculated from the two approaches are about the same. The small discrepancy is because
of measuring error and the waviness of the free surface (spikes in WL8, Fig. 7e). This verification
confirms the water level measurements.

Pressures

Pressure histories at different locations along the PVC pipeline are shown in Fig. 11. When the
leading water front arrives at the downstream bend (x = 267 m) at t = 54 s, the recorded pressures
show severe oscillations, because of slug impact at the elbow and consequently at the outlet. The
amplitude of the oscillation at section 9 (x = 252.9 m) is about 0.1 barg, which is approximately
equal to 0.5ρV 2

1 ≈ 0.5 × 1000 × 4.52/105 ≈ 0.1 barg. As seen in Fig. 11, the magnitude and
damping time of the pressure oscillation is amplified in the readings at transducers p5 (x = 111.7
m) and p3b (x = 46.6 m, pipe bottom). This response is physically impossible unless, for example,
the compression of an entrapped air pocket gives rise to it. One possibility is that some air was
entrapped between the 180o turn and the transducer p5. This is consistent with the measurement
of the WL meter 7, as the secondary front has not yet arrived at section 7 (x = 183.7 m) at time
t = 54 s (see Fig. 7d).

The pressure histories of transducers pu (x = −14 m) and puv (x = −27.7 m) are shown in
Fig. 12 together with p1 (x = 1.6 m), p3b (x = 46.6 m, pipe bottom) and p3t (x = 46.6 m, pipe
top). The small pressure difference between p3b and p3t is due to the elevation difference DPV C .
The nearly the same pressure at bottom and top confirms a uniform pressure distribution in a
cross-section. The difference between the pressure rise times of p3b and p3t is about 0.8 s, which is
much smaller than the time difference between the arrival of the two water fronts (about 5.4 s as
shown in Fig. 7b). This suggests the pressurization of the intruded air as detailed below. At the
beginning of the filling process, pu and puv experience a rapid rise and fall (short lived peak for 3
seconds) and then gradually increase as p1 and p3 do. The peak in pu and puv may be attributed
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FIG. 12. Pressure history at x = −27.7 m (puv), −14 m (pu), 1.6 m (p1) and 46.6 m (p3) in a
typical filling run.

to compressing and decompressing of the air entrapped between the Y-junction (x = −27.2 m) and
the check valve (x = −43.1 m). This peak in driving pressure can be (part of) the reason for the
short-lived flow-rate peak between t = 4 s and t = 6 s (see Fig. 5).

When comparing Fig. 11 with the water level measurements in Figs. 7 and 8, it is clear that
the air layer on top of the water column (see Fig. 9) is not under atmospheric pressure. This is
evident from the following three aspects. First, the air pressure rise has been clearly detected by
the pressure sensor p3t. Before the secondary front arrived at section 3 (x = 46.6 m) at t = 14.5
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FIG. 13. Pressure history at two locations along the PVC test section in three repeated filling
runs: (a) section 5 (x = 111.7 m) and (b) section 8 (x = 206.8 m).

s (Fig. 7b), the head increase at the pipe crown was about 2 m (0.2 barg as shown in Fig. 12),
which is ten times the water level (hydrostatic head at bottom) and certainly not atmospheric.
Second, it is demonstrated by the combined water level and pressure measurements. From Fig. 7d
it is observed that there was air on top of the stratified flow at WL7 between 35 s and 55 s. The
pressure rise recorded by the downstream sensors 8 (x = 206.8 m) and 9 (x = 252.9 m) started
from 40.5 s (see Fig. 11 and more clearly Fig. 13b) and 51 s (Fig. 11), respectively. When station
WL7 (x = 183.7 m) became full at time 55 s, the pressure head at section 8 (x = 206.8 m) was
already 2.5 m (ten times D). Third, as seen in Fig. 7e, the water level at section 8 (x = 206.8
m) was about 192 mm in the time interval between 40 s and 65 s. For the air on top to be at
atmospheric pressure, the hydrostatic pressure head measured at section 8 should be about 192
mm −DPV C/2 ≈ 74 mm during that time interval. This clearly differs from the measurement of
p8 (x = 206.8 m) as shown in Fig. 13b and demonstrates that the intruded air is under pressure
higher than atmospheric. The rapid acceleration is associated with axial pressure gradients that
are much larger than any vertical (hydrostatic) pressure gradients. In spite of this, the air ahead of
the leading water front is still under atmospheric conditions because of the open outlet and its low
density. For example, before the leading water front arrived at section 7 (x = 183.7 m) at t = 32
s, the pressure at section 7 and ahead was zero (Fig. 11).

The pressure distributions (hydraulic grade lines) at three instants are shown in Fig. 14. The
chosen times are the instants when the leading water front arrives at the transducers p5 (x = 111.7
m), p7 (x = 183.7 m) and p9 (x = 252.8 m). The linear pressure distribution along the water
column means a uniform pressure gradient which decreases in time. It implies that the advancing
water column behaves like a rigid column, despite the air intrusion that takes place. It also confirms
the above observation of non-atmospheric air intrusion, because if the intruded air would be under
atmospheric pressure, the pressure distribution would not be linear up to the leading front (but
up to the secondary front). This can be further clarified as follows. When the leading water front
arrives at section 9 (x = 252.8 m), the secondary water front has not yet arrived at section 7
(x = 183.7 m) (see Fig. 8). If the intruded air would be under atmospheric pressure, the pressure
gradient between sections 7 and 9 would be close to zero. This is apparently not the case as shown
in Fig. 14. The pressure-head increases with time until the steady state is achieved. This agrees
with the results shown in Fig. 11.
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NUMERICAL SIMULATION
To model rapid filling of pipelines with initially entrapped air, end orifice or ventilation condi-

tions, many researchers have applied rigid-column theory (Cabrera et al. 1992, Liou and Hunt 1996,
Cabrera et al. 1997, Izquierdo et al. 1999, Trajkovic et al. 1999, Lee and Martin 1999, Zhou 2000,
Liu and Suo 2004, Martin and Lee 2012) and developed other sophisticated mathematical models
and corresponding numerical techniques (Vasconcelos et al. 2005, Lee 2005, Zhou et al. 2011, Hou
et al. 2012b, Zhou et al. 2013a, Zhou et al. 2013b, Trindade and Vasconcelos 2013). While the
primary objective of this paper is to present the experimental results, the potential significance of
these can be illustrated by comparison with the existing state of the art in the modelling of rapid
pipe filling. Herein we focus on rapid filling of an initially empty pipeline with an open end as
experimentally examined above, for which rigid-column theory governed by a set of ODEs is com-
monly used. The rigid-column model for filling pipes in series was formulated by Liou and Hunt
(1996). The model describes the motion of a lengthening water column advancing in an undulating
pipeline. As shown by Axworthy and Karney (1997), the filling process can be calculated more
efficiently by eliminating the pressure head at the pipe segment junctions from the momentum
equation. This technique was recently extended to represent branched systems (Razak and Karney
2008). The rigid-column model gives good results as long as the flow remains axially uniform.
When the water column is abruptly disturbed somewhere in the system, pressure oscillations along
its length or even column separation may result and then the rigid-column model fails. The elastic
model governed by a set of PDEs (water-hammer equations with moving boundaries) is needed to
simulate extremely rapid filling processes (Malekpour and Karney 2008). The numerical difficulty
is in the moving boundary. An attempt to tackle it within the fully implicit box (or Preismann)
finite-difference scheme was made by Malekpour and Karney (2008). Since a fixed spatial grid
and an adaptive temporal grid are used in this scheme, the Courant number is time dependent.
An uncontrollable large Courant number caused serious convergence problems. To overcome it,
the method of characteristics (MOC) was applied (Malekpour and Karney 2011). Since both the
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FIG. 15. Flow rate history for experiment (solid line) and numerical simulation (dashed line).

spatial and temporal grid are fixed in the conventional MOC, the Courant number is constant and
an interpolation had to be used to deal with the increasing length of the water column. Recently,
the Lagrangian particle SPH method was applied to solve the elastic model (Hou et al. 2012b),
which is particularly suitable for problems with moving boundaries. For the case of large-scale
pipeline emptying with compressed air supplied from the upstream end, the influence of the driving
air pressure and downstream valve resistance on the outflow rates was studied by Laanearu et al.
(2012). Non-inertial reference frame control-volume models were used to explain the phenomena
observed. However, the coefficients in the model were calibrated from the specific experimental
results by means of curve fitting, to neglect the water-hammer oscillations.

The rigid-column model developed by Liou and Hunt (1996) with the efficient computation of
Axworthy and Karney (1997) is applied herein to simulate the experimental results; see Appendix
III. The location of the pressure transducer pu (x = −14 m) is taken as the upstream boundary of
the water column and the measured pressure there (see Fig. 12) is applied as the driving pressure.
The elevation profile (pipe bridge and siphon) is included in the calculation. The initial water
column length is L0 = 14 − 6.5 = 7.5 m. The friction factor is f = 0.0136. The pipe is assumed
initially empty and air intrusion is disregarded. The simulation is terminated after the water front
arrives at the end of the pipeline (x = −272.1 m).

The 1D rigid-column solution is compared with the laboratory test in Fig. 15. The predicted
flow rate history has the same trend as the experiment. The recorded short-lived peak at t = 4
s is because of the initial peak in the driving pressure pu (x = −14 m) as shown in Fig. 12. The
deviation of the flow maximum is attributed to the 3D effect of the pipe bridge (free overflow) and
the air intrusion. It was found that the peak of the numerical flow rate is rather sensitive to the
length of the upstream leg of the bridge. In addition, as mentioned before, the response time of
the pressure transducer is approximately 1 second quicker than the flow meter. This gives some
flexibility in choosing the starting time of the driving pressure pu (x = −14 m) in Fig. 12.

The global agreement between the rigid-column solution and the pipeline fast-filling experimen-
tal result implies that air intrusion is of less importance for the overall filling process. An important
reason is that the friction mechanism in stratified flow is more or less equivalent to that in the as-
sumed rigid-column filling the entire pipe cross-section. The observed fact that the intruded air is
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under pressure resulting in a linear pressure distribution along the entire (stratified and full) water
column may play a role too.

CONCLUSIONS
A 300 m long mainly horizontal pipeline of 250 mm diameter was filled with water within one

minute time. The filling process was repeated more than 70 times and fully recorded by flow meters,
pressure transducers, water level meters and void fraction meters. The experiments resulted in a
detailed data set for the investigation of unsteady pipe flows with water-air interface propagation.
From the examination of the measurements it is concluded that:

• The filling process was characterized by two stages. After the sudden opening of the upstream
valve and under driving reservoir pressure, the flow quickly accelerated and reached its
maximum discharge. The filling process then followed a period of slowly decreasing discharge
due to increasing pipe friction and increasing water mass until a steady state was reached.

• The initial static water front (water-air interface) split into two fronts because of the pipe
bridge (free overfall), the velocities of which followed the inflow velocity. The stratified flow
between the two water fronts had a nearly constant thickness before the occurrence of a
hydraulic jump.

• Water hammer due to the rapid opening of the upstream valve did not affect the overall
filling process because the initial water-column was short compared to the pipeline length.
The pressure at each location increased smoothly as a concave-down curve until a steady
state was reached. The pressure distribution along the water column was linear and its
slope decreased with time due to its increasing length and its deceleration. This implies that
the water flow during filling behaved as a rigid column, although a flow regime transition
occurred.

• Flow stratification and non-planar water-fronts have been observed. These are of key im-
portance for the dynamic forces on bends and the authors are fully aware of that, because
they had serious problems with fixing the most downstream bend.

• The pressure of the air on top of the water column was under a pressure higher than atmo-
spheric. This implies that a single local pressure transducer is not sufficient to measure the
water level in stratified internal flow.

• A basic 1D rigid-column simulation showed acceptable agreement with the measured inflow
rate. Consequently, it also gave a reasonable estimate of the velocity of the leading water
front. The velocity of the secondary water front agreed with a prediction by standard wave
theory.
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APPENDIX II. SPEED OF PROPAGATION OF DISTURBANCES IN CIRCULAR CHANNEL
FLOW

The filling process is characterised by a leading water front propagating at speed V1 and a
secondary front propagating at speed V2, as sketched in Fig. 6c. Alternatively, one can regard the
secondary front as a disturbance propagating on top of the leading water column. The disturbance
travels at speed V1 − V2 in upstream direction. The theoretical speed of propagation is (Wiggert
1972):

c =

√

g
Wt

A
(1)

where A and Wt are the area and top width of the prismatic flow section, respectively, and g = 9.81
m/s2 is the gravitational acceleration. For a circular channel

A(ξ) =
1

8
πD2

[

1 +
2

π
arcsin (2ξ − 1) +

4

π
(2ξ − 1)

√

ξ − ξ2
]

(2)

and
Wt(ξ) = 2D

√

ξ − ξ2 (3)

where ξ = h/D is the ratio of water depth and pipe diameter. The dependence of propagation
speed c on dimensionless water-depth ξ for a pipe with an inner diameter of 0.235 m is shown in
Fig. 16a. For a water depth h = 0.192 m, the speed is c = 1.43 m/s, which compares very well with
V1 − V2 = 1.45 m/s estimated from Tables 1 and 2. It is approximately the speed of propagation
in a rectangular channel: cr =

√

g/h = 1.37 m/s. The dimensionless speed c/cr is displayed in
Fig. 16b, which gives the deviation of speed in a circular channel from that in a rectangular channel.
For h/D < 0.769 the speed in a circular channel is lower, otherwise it is higher.
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FIG. 16. Speed of propagation c as function of water depth h: (a) dimensional for D = 0.235
m; (b) dimensionless (independent of D).

Formula (1) has been derived for stationary flow with hydrostatic pressures. Both conditions
are violated in the experiments described herein.
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APPENDIX III. RIGID-COLUMN MODEL
Based on the developments by Liou and Hunt (1996) and Axworthy and Karney (1997), a 1D

mathematical model has been established and implemented. Four assumptions state that the pipe
cross-section remains full during filling, that the pressure at the front is atmospheric, that the
water-pipe system is incompressible (i.e. rigid water column) and that the friction is quasi-steady.
Define Hi as the head at the downstream end of pipe i. Suppose that the water front is travelling
in the (i+ 1)-th pipe as shown in Fig. 17.

FIG. 17. Sketch of the filling of a pipeline with undulating elevation profile.

Applying Newton’s law of motion to the advancing water column in the (i+ 1)-th pipe yields

l(t)

gAi+1

dQ

dt
= Hi −

fi+1l(t)

Di+1

Q2

2gA2
i+1

+ l(t) sin θi+1, (4)

where l(t) is the length of the water column in the partially filled pipe, θ is the angle downward
from the horizontal, f is the Darcy-Weisbach friction factor, A = πD2/4 is the pipe cross-sectional
area and Q = V A is the uniform flow rate. Similarly, for the fully-filled upstream pipes, we have

Lj

gAj

dQ

dt
= Hj−1 −Hj −

fjLj

Dj

Q2

2gA2
j

+ Lj sin θj , j = 2, · · · , i. (5)

Note that i depends on t. Due to entrance head loss and velocity head at the inlet, the equation
for the first pipe is slightly different and reads

L1

gA1

dQ

dt
= HR −H1 −

(

K + 1 +
f1L1

D1

)

Q2

2gA2
1

+ L1 sin θ1, (6)

where HR is the reservoir head and K the entrance loss coefficient. By adding the Eqs. (4), (5) and
(6), all interior heads Hj (j = 1, · · · , i) are cancelled, and one equation is obtained for the filling
discharge Q:

1

g





i
∑

j=1

Lj

Aj

+
l(t)

Ai+1





dQ

dt
= HR −





i
∑

j=1

fjLj

DjA2
j

+
fi+1l(t)

Di+1A2
i+1

+
K + 1

A2
1





Q2

2g

+

i
∑

j=1

Lj sin θj + l(t) sin θi+1. (7)
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Substituting the total length of the water column L(t),

L(t) =
i

∑

j=1

Lj + l(t), (8)

into (7) gives

1

g
(C1L(t) + C2)

dQ

dt
= HR − (C3L(t) + C4 + C7)

Q2

2g
+ C5L(t) + C6, (9)

where the time dependent (because of i) coefficients Ck (k = 1, · · · , 7) are defined as

C1 =
1

Ai+1

, C2 =

i
∑

j=1

Lj

Aj

− C1

i
∑

j=1

Lj , C3 =
fi+1

Di+1A
2
i+1

, C4 =

i
∑

j=1

fjLj

DjA
2
j

− C3

i
∑

j=1

Lj,

C5 = sin θi+1, C6 =

i
∑

j=1

Lj sin θj − C5

i
∑

j=1

Lj , C7 =
K + 1

A2
1

.

The total water column length is related to flow rate Q by

L = L0 +

∫ t

0

Q

Ai+1

dt, (10)

where L0 (< L1) is the initial column length at t = 0 in pipe 1. In Eqs. (9) and (10), i is the index
of the latest pipe that has been fully filled. It starts from 0, indicating that pipe one is partially
filled. When L(t) becomes larger than L1, i becomes 1. When L(t) becomes larger than L1 + L2,
i becomes to 2, and so on.

Now we have two coupled equations, (9) and (10), for the two unknowns Q and L. Equation
(9) is an ODE with the initial condition

Q(0) = 0. (11)

Equation (10) is an integral equation in which Ai+1 depends on time. ODE (9) is integrated with
the fourth-order Runge-Kutta method and Eq. (10) with Simpson’s rule.

26



APPENDIX IV. NOTATION
The following symbols and abbreviations are used in this paper:

A = cross-sectional area [m2]
c = wave propagation speed [m/s]

Ci = i -th coefficient in Eq. (9)
D = pipe inner diameter [m]
e = pipe wall thickness [m]
f = Darcy-Weisbach friction factor [-]
g = gravitational acceleration [m/s2]
h = water depth [m]
hf = friction head loss [m]
hlb = local head loss due to long bend [m]
H = head [m]

HR = reservoir head [m]
i, j = index
K = head loss coefficient [-]

l, L = length [m]
p = pressure [barg]
R = elbow radius of curvature [m]
V = velocity [m/s]
W = width [m]

x, y, z = coordinate [m]
ρ = mass density [kg/m3]
θ = angle [o]
ξ = dimensionless depth [-]
∀ = volume [m3]

FSI = fluid-structure interaction
MOC = method of characteristics
ODE = ordinary differential equation
PDE = partial differential equation
PVC = polyvinyl chloride
SPH = smoothed particle hydrodynamics

T = temperature
VF = void fraction
Vi = i-th valve

WL = water level

27



PREVIOUS PUBLICATIONS IN THIS SERIES: 
 

 

 

Number Author(s) Title Month 

13-31 
 
 
 
 
13-32 
 
 
 
 
 
13-33 
 
 
 
 
 
13-34 
 
 
 
13-35 
 
 
 

R. Pulch 
E.J.W. ter Maten 
 
 
 
K. Kumar 
M. Neuss-Radu 
I.S. Pop 
 
 
 
Q. Hou 
A.C.H. Kruisbrink 
F.R. Pearce 
A.S. Tijsseling 
T. Yue 
 
Q. Hou 
A.S. Tijsseling 
Z. Bozkus 
 
Q. Hou 
A.S. Tijsseling 
J. Laanearu 
I. Annus 
T. Koppel 
A. Bergant 
S. Vučkovič 
A. Anderson 
J.M.C. van ‘t Westende 

Stochastic Galerkin 
methods and model order 
reduction for linear 
dynamical systems 
 
Homogenization of a pore 
scale model for 
precipitation and 
dissolution in porous 
media 
 
Smoothed particle 
hydrodynamics 
simulations of flow 
separation at bends 
 
 
Dynamic force on an elbow 
caused by a traveling liquid 
slug 
 
Experimental investigation 
on rapid filling of a large-
scale pipeline 

Nov. ‘13 
 
 
 
 
Dec. ‘13 
 
 
 
 
 
Dec. ‘13 
 
 
 
 
 
Dec. ‘13 
 
 
 
Dec. ‘13 

    

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Ontwerp: de Tantes, 

Tobias Baanders, CWI 
                                          


