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1
INTRODUCTION

If nature were not beautiful, it would not be worth studying it.
And life would not be worth living.

Henry Poincaré

1
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2 1. INTRODUCTION

Mixing of scalars in fluid systems occurs in a wide variety of natural systems and in-
dustrial applications. Examples of natural processes are transport of pollutants in the
atmosphere and warm streams in oceans (Samelson and Wiggins, 2006; Wiggins, 2005),
whereas water treatment in bioreactors (Alvarez et al., 2005) and micro-mixers (Nguyen
and Wu, 2005) are examples of man-made industrial systems. The present study will focus
on a particular class of mixing flows, namely inline mixing flows operating under laminar
flow conditions. This flow configuration is key to many laminar mixing and heat-transfer
processes in industry, including mixing and thermal processing of polymers (Aref, 2002;
Ottino, 1989; Wiggins and Ottino, 2004), compact mixers and heat exchangers for pharma-
ceutical applications (Becht et al., 2007; Jaluria, 2003; Sunden and Shah, 2007) and a broad
scope of micro-fluidic devices (Beebe et al., 2002; Bertsch et al., 2001; Meagher et al., 2008;
Mills et al., 2000; Nguyen and Wu, 2005; Stone et al., 2004; Weigl et al., 2008). Such systems,
notwithstanding their great practical relevance, are still primarily designed and optimized
by way of empirical studies and practical experience. This motivates the present study,
which seeks to deepen the fundamental understanding of scalar transport in inline mix-
ing flows.

1.1. SCALAR TRANSPORT AND MIXING IN LAMINAR FLOWS

Advection and diffusion are the two fundamental mechanisms that determine mixing of
non-reactive scalars. Diffusion is the molecular transport of a substance from a region of
high concentration to a region of low concentration. Diffusion achieves a uniform final
state – and thus good mixing – yet this takes a long time even in small-scale fluid systems.
Advection is the transport of a substance by the motion of the fluid and, depending on
the flow characteristics, can accelerate the mixing process significantly by rapidly increas-
ing the interface across which diffusion can occur. The stochastic and irregular nature of
turbulence invariably results in such rapid interface stretching and thus renders turbulent
flows natural good-mixing flows. However, many (industrial) fluid systems operate under
laminar flow conditions due to either high viscosity of the working fluid (e.g., food and
polymer industry) or relatively small length scales of the system (e.g., microfluidics). Lam-
inar flows are highly regular in that the wide range of vortical structures that characterizes
turbulence are absent and fluid particles move in a far more orderly manner. The impor-
tant consequence for scalar transport is that, contrary to turbulence, efficient mixing is
not automatic in laminar flows. This can be exemplified by the famous dye experiments in
a pipe flow of Reynolds (Reynolds, 1883). In the laminar regime, the injected dye remains
entrapped in parallel layers (laminae); in the turbulent regime, on the other hand, the dye
stream rapidly becomes mixed over the entire cross-section (Kundu and Cohen, 1990).

Scalar transport in laminar flows is typically characterized by the coexistence of re-
gions with efficient mixing and regions with poor mixing. This is illustrated in Fig. 1.1 by
the advection of a red and blue blob of a passive scalar in a simple laminar flow driven by
alternating upward motion of the side walls. The red blob undergoes repeated stretching
and folding, causing its interface to grow exponentially in time. This process is known as
“chaotic advection” and is the fastest way to increase fluid interfaces and, thereby, the most
efficient way to enhance mixing in a laminar flow. The blue blob, apart from some shear-
ing, basically retains its initial compact shape and, consequently, no appreciably mixing
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enhancement occurs here. This notion of chaotic versus non-chaotic advection has been
put forward in the seminal paper by Aref (Aref, 1984) and has been the catalyst for a vast
body of work on laminar mixing since the early 1980s.

Figure 1.1: Chaotic advection (red) versus non-chaotic advection (blue) visualized by the evolution of two initially
circular patches of dye in a 2D unsteady flow (left to right: progression in time).

1.2. LAGRANGIAN ANALYSIS OF ADVECTIVE TRANSPORT

Advection is determined by the motion of fluid particles induced by the flow itself and
thereby is an essentially Lagrangian process. Hence, enhancement of laminar mixing must
concentrate on the Lagrangian transport properties of a given flow. The Lagrangian frame-
work leans on the equations of motion for fluid particles that are passively advected by the
flow. For generic three-dimensional (3D) unsteady flows they are given by

d x

d t
= u(x , t ), (1.1)

where x = (x, y, z) and u = (u, v, w) are the momentary particle position and fluid veloc-
ity, respectively. For laminar flows this constitutes a non-autonomous deterministic dy-
namical system (Shivamoggi, 2014). Thus Lagrangian fluid trajectories of incompressible
flows become analogous to the phase-space trajectories of conservative dynamical sys-
tems. This analogy enables application of dynamical-systems theory to the analysis of
Lagrangian transport, which has proven instrumental to the investigation of laminar mix-
ing.

In two-dimensional (2D) incompressible flows, equations of motion (1.1) admit ex-
pression in the form

d x

d t
= u = dψ

d y
,

d y

d t
= v =−dψ

d x
(1.2)

with ψ=ψ(x, y, t ) the stream function. The 2D equations of motion (1.2) define a particu-
lar kind of dynamical system, namely a non-autonomous one-degree-of-freedom Hamil-
tonian system, with ψ the corresponding Hamiltonian. For steady flows, system (1.2) be-
comes autonomous, i.e. ψ = ψ(x, y), and the fluid trajectories coincide with the stream-
lines described by the level sets of stream function ψ. This constitutes a so-called inte-
grable state and admits only non-chaotic advection. Thus the Hamiltonian nature of (1.2)
has the fundamental consequence that time dependence is a necessary (but not sufficient)
condition for chaotic advection in 2D laminar flows (Aref, 1984; Ottino, 1989).
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Accomplishment of chaotic advection in 2D unsteady flows, though fulfilling the con-
dition of unsteadiness, is far from trivial, however. Typically a situation of coexisting
chaotic and regular advection as illustrated in Fig. 1.1 exists. Such poor-mixing and good-
mixing regions relate to coherent structures formed by the fluid trajectories and many
studies have been devoted to visualization of such structures and investigation of their
properties as a function of system parameters (Aref, 1984, 2002; Chaiken et al., 1986; Hwu
et al., 1997; Jana et al., 1994a; Lester et al., 2009; Meleshko and Peters, 1996; Ottino, 1989;
Stremler and Chen, 2007). This coherent-structure approach, arguably, is the most com-
mon within the context of Lagrangian mixing analyses yet other methods based on La-
grangian characteristics have been developed and successfully employed as well. This in-
cludes, among other approaches, techniques based on deformation and stretching char-
acteristics of material elements (Haller, 2015; Shadden et al., 2005; Voth et al., 2002) and
methods concerning purely topological properties, i.e. the concepts of ghost rods and
braiding (Finn et al., 2006; Gouillart et al., 2006; Stremler et al., 2011; Thiffeault and Finn,
2006).

Laminar mixing in 3D configurations is far less explored due to two main reasons: (1)
the much greater topological complexity of 3D fluid trajectories and coherent structures;
(2) the fact that the 3D Lagrangian equations of motion (1.1) lack a well-defined struc-
ture analogous to the Hamiltonian structure of their 2D counterpart (1.2) (Speetjens et al.,
2004). However, generalizations of Hamiltonian concepts to generic 3D flows exist (Bajer,
1994; Cartwright et al., 1996; Cheng and Sun, 1989; Mezić and Wiggins, 1994). A funda-
mental difference with 2D flows is that fluid particles in 3D flows admit complex dynam-
ics (including chaotic advection) already under steady conditions (Bajer, 1994; Bajer and
Moffatt, 1990; Dombre et al., 1986; Piro and Feingold, 1988). Hence, contrary to 2D flows,
here distinction must be made between steady and unsteady flows. The present study
is restricted to a particular class of 3D steady flows, viz. inline mixing flows, which will
be elaborated below in Sec. 1.4; reviews on 3D unsteady flows are in Aref et al. (2014);
Cartwright et al. (1996); Speetjens and Clercx (2013).

1.3. EULERIAN ANALYSIS OF ADVECTIVE-DIFFUSIVE TRANS-
PORT

The total mixing process involves an interplay of advection and diffusion (Sec. 1.1). The
seminal (computational) work of Pierrehumbert (1994) revealed that, comparable to for-
mation of coherent structures by fluid trajectories, advective-diffusive transport may also
exhibit coherence in that self-similarly decaying patterns were observed in a diffusive
scalar field stirred by a time-periodic flow. These repeating patterns were, due to their
complex spatial structure, denoted “strange eigenmodes”. Several numerical studies con-
firmed this observation by also exposing such strange eigenmodes that decayed exponen-
tially in time (Antonsen Jr et al., 1996; Sukhatme and Pierrehumbert, 2002). First experi-
mental evidence of this phenomenon was given by visualizations of transported fluores-
cent dye in an electromagnetically-driven 2D fluid layer Rothstein et al. (1999). They re-
ported the existence of structurally-invariant, slowly-decaying mixing patterns and their
quantitative analysis showed how advection and diffusion interplayed in the mixing of the
scalar field.
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The linearity of the transport equations governing advective-diffusive transport im-
plies that the evolving scalar field C (x , t ) possesses a generic eigenmode decomposition
of the form

C (x , t ) =
∞∑

k=0
γkϕk (x)eµk t , (1.3)

with ϕk the eigenfunctions, µk the corresponding eigenvalues and γk the expansion coef-
ficients (determined by the initial condition). Property Re(µk ) ≤ 0 for advective-diffusive
transport causes the terms in (1.3) to decay exponentially in time at a rate determined by
the time constant τk = −1/Re(µk ). The decay rates are typically different, meaning that
the evolution quickly becomes dominated by the slowest-decaying contribution and thus
to good approximation assumes the form

C (x , t ) ≈ γ0ϕ0(x)eµ0t +C∞(x), (1.4)

with k = 0 (by definition) the slowest-decaying contribution and C∞(x) the steady state.
The leading term γ0ϕ0(x)eµ0t in (1.4) is the so-called “dominant eigenmode” of the evo-
lution and results in a self-similarly decaying pattern (time constant τ0 =−1/Re(µ0)) with
spatial distribution γ0ϕ0(x). The before-mentioned strange eigenmode corresponds with
this dominant eigenmode; the term “strange” refers to the typically very complex spatial
structure of this eigenmode in case of advection-dominated transport. The eigenmode
decomposition (1.3) and the notion of dominant (or strange) eigenmodes following (1.4)
have proven to be a very powerful concept for gaining (fundamental) insight into the
advective-diffusive transport of scalars (Gorodetskyi et al., 2014; Gouillart et al., 2008;
Lester et al., 2009; Liu and Haller, 2004; Metcalfe et al., 2012; Popovych et al., 2007; Singh
et al., 2009). Dominant eigenmodes and their decay rates e.g. enable characterization of
the scalar transport without the need for full resolution of the scalar field (Lester et al.,
2009). Important to note is that recent developments in operator theory show that the
decomposition (1.3) – and thus the entire machinery of eigenmode analyses – generalizes
to nonlinear systems (Mezic, 2013).

1.4. SCALAR TRANSPORT IN INLINE MIXING FLOWS

The present study considers a particular class of 3D steady flows, viz. inline mixing flows,
which consist of a (pressure-driven) continuous throughflow in a duct that is “stirred” in
transverse direction via systematic reorientation of the cross-sectional flow by e.g. internal
elements or boundary forcing. This flow configuration underlies many laminar mixing
and heat-transfer processes in industry, ranging from the mixing and thermal processing
of polymers (Aref, 2002; Ottino, 1989; Wiggins and Ottino, 2004) via compact mixers and
heat exchangers for pharmaceutical applications (Becht et al., 2007; Jaluria, 2003; Sunden
and Shah, 2007) down to micro-fluidic devices (Beebe et al., 2002; Bertsch et al., 2001;
Meagher et al., 2008; Mills et al., 2000; Nguyen and Wu, 2005; Stone et al., 2004; Weigl et al.,
2008). However, despite their great practical relevance, these systems are still primarily
designed and optimized on the basis of empirical studies and practical experience. This
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motivates the present study, which aims at deepening the fundamental understanding of
scalar transport in inline mixing flows.

Scalar transport in inline mixing flows will be investigated by way of two representative
case studies: the Rotated Arc Mixer (RAM) and the Quatro static mixer. The RAM is shown
in Fig. 1.2 and consists of two concentric cylinders: a stationary inner cylinder (radius R)
with consecutive windows (length L and opening angle ∆) that are offset in angular direc-
tion by an angleΘ and an outer rotating cylinder that induces a transverse flow via viscous
drag at the windows (Metcalfe et al., 2006). This window offset accomplishes a systematic
reorientation of the transverse flow after each axial “cell” of length L. Employing offsets Θ
that are commensurate with 2π causes the window sequence to repeat itself after N cells
(e.g. Θ = 2π/5 yields N = 5). This results, upon omitting inlet and outlet effects, in an
axially-periodic flow:

u(x, y, z) = u(x, y, z +N L). (1.5)

Moreover, the flow in cell 1 ≤ k ≤ N , located in axial segment (k − 1)L ≤ z ≤ kL, is a
reorientation of the flow u1 in the first cell (k = 1) following u(r,θ, z) = u1(r,θ−(k−1)Θ, z).
Here, the velocity is given in cylindrical coordinates for the ease of representation.

Figure 1.2: A schematic of the Rotated Arc Mixer (RAM). The left panel shows the geometry of the RAM with the
rotating outer cylinder, stationary inner cylinder, and the axial throughflow. The right panel shows the definition
of the cylindrical coordinate system, the cylinder radius R, offset angleΘ, aperture arc angle ∆, and the aperture
length L. (Lester et al., 2009)

The Quatro mixer is shown in Fig. 1.3 and, similar to the RAM, consists of a cylinder
with radius R. However, instead of via boundary forcing, transverse flow is here induced
via internal mixing elements composed of chevron-shaped central plates of length L and
diagonal D = 2R with perpendicular elliptical segments extending to the inner wall of the
cylinder (Jilisen et al., 2013). A part made of a central plate and four attached elliptical
segments constitutes one mixing element and two consecutive elements relate via ax-
ial reflection about their connecting cross-section and subsequent rotation by 90◦. Two
consecutive elements, in turn, constitute one element pair (highlighted in gray-scale in
Fig. 1.3) that is repeated successively in axial direction. This yields, as the RAM, an axially-
periodic flow according to (1.5), with here N = 2.

The net axial throughflow results (besides exceptional cases) in streamlines that run
from inlet z = 0 to outlet z = N L, which enables association of the downstream motion
with an evolution in time (Speetjens et al., 2014). This becomes particularly simple in case
of a uniform axial flow U , for which the axial position straightforwardly relates to time via
z = U t . This readily translates the 3D axially-periodic flow (1.5) into a 2D time-periodic
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Figure 1.3: A schematic of the Quatro mixer. The left panel shows the geometry of the Quatro mixer with the
chevron-shaped central plates, perpendicular elliptical segments extending to the cylinder wall and the axial
throughflow. The right panel shows the r -axis and z-axis of the cylindrical coordinate system, the cylinder diam-
eter and the diagonal D and the element length L.

flow

u(x, y, t ) = u(x, y, t +T ), v(x, y, t ) = v(x, y, t +T ), (1.6)

in the cross-sectional coordinates (x, y), with period time T = N L/U . Moreover, the
cross-sectional equations of motion assume the Hamiltonian form (1.2), with ψ(x, y, t ) =
ψ(x, y, t +T ) the time-periodic stream function. Important for this study is that transla-
tion from 3D axially-periodic to 2D time-periodic flow, though technically more involved,
is also possible in case of non-uniform axial flow (Speetjens et al., 2006, 2014).

The fact that 3D steady inline mixing flows are analogous to 2D time-periodic flows has
a number of important consequences. First, it means that the Lagrangian transport is gov-
erned by essentially Hamiltonian mechanisms and can therefore be investigated using re-
sults, methods and concepts from Hamiltonian systems. Second, it enables investigation
of 3D scalar transport in terms of the evolution of the scalar distribution in consecutive ax-
ial cross-sections. Finally, it enables (at least) qualitative representation of 3D transport in
inline mixing flows by that in 2D time-periodic flows. (Direct quantitative correspondence
exists only in case of uniform axial flow.) These approaches have found widespread and
successful application for the modeling and analysis of inline mixers and heat exchangers
(Byrde and Sawley, 1999; Chagny et al., 2000; Gorodetskyi et al., 2014; Lester et al., 2009;
Meleshko et al., 1999; Metcalfe et al., 2006; Ottino, 1989; Singh et al., 2008; Speetjens et al.,
2006, 2014). However, transport analyses of inline mixing flows to date concern primarily
computational studies. In-depth experimental studies, on the other hand, remain scarce.
This motivates the strong focus of the present study on experimental analyses.

1.5. RESEARCH OBJECTIVES

Better understanding scalar transport in industrial inline mixing flows is crucial for further
technological advancement. To this end, deeper insight into the underlying fundamental
transport mechanisms is necessary. However, studies so far on scalar transport in laminar
flows are mainly computational. Experimental studies on inline-mixing flows, in contrast,
are relatively rare and so far restricted to simplified configurations and/or visualization of
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local mixing patterns or integral quantities as e.g. pressure drop and heat-transfer coeffi-
cients. This motivates the present study, which has as principal aims:

• development and realization of dedicated laboratory set-ups for experimental stud-
ies on scalar transport in 2D time-periodic flows and 3D steady inline flows;

• direct measurement of global 3D flow fields, Lagrangian transport and the evolution
of Eulerian concentration fields in a realistic mixer geometry (i.e. the Quatro mixer);

• experimental investigation of the interplay between (chaotic) advection and diffu-
sion in scalar transport in two representative case studies: the RAM and the Quatro
mixer;

• comparative analysis of the measured transport properties of the two representative
case studies with predictions by theoretical models and numerical simulations.

The experimental studies will employ state-of-the-art measurement techniques. Nu-
merical simulations will employ both in-house and commercial CFD packages. Post-
processing and analysis of experimental and computational data will employ dedicated
software. These methods are elaborated in the respective discussions of the analyses.

1.6. THESIS OUTLINE

This thesis is organized as follows. Chapter 2 gives an overview of the experimental facil-
ities and techniques developed and employed in the current research. In Chapter 3, the
entire Hamiltonian progression of the Lagrangian dynamics from integrable to chaotic
state are visualized and investigated experimentally in a 2D time-periodic representation
of the RAM and compared with numerical simulations. Chapter 4 expands on the analysis
in Chapter 3 by a comparative experimental-computational study on scalar transport in
the 2D time-periodic RAM. This is investigated for the purely advective limit and a typ-
ical advective-diffusive case. Chapter 5, in turn, expands on Chapter 4 by presenting a
parametric study on advective-diffusive scalar transport in the 2D time-periodic RAM as
a function of geometrical and temporal parameters. This again involves a comparative
experimental-computational analysis. Chapter 6 discusses an experimental analysis on
the 3D flow field and resulting scalar transport in the Quatro mixer. The scalar transport
is investigated via visualization and measurement of the 3D concentration distribution of
a tracer substance that results from typical industrial inlet conditions. This enables de-
tailed determination of the downstream evolution of cross-sectional scalar fields, which
are compared with numerical simulations. The study ends with conclusions and recom-
mendations in Chapter 7.

Important to note is that this thesis is written such that each of the following chapters
(except Chapter 2, where experimental facilities and techniques are reported) is largely in
a self-contained form. Hence, the specific mathematical models and numerical methods
as well as experimental details relevant to the topic in question will be treated separately
within each chapter. The above discussion serves as a general introduction to these topic-
wise expositions. This may in some instances give some repetition and overlap.
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2.1. INTRODUCTION

The first experimental studies on laminar mixing and chaotic advection were performed
for 2D time-periodic flows. This concerned highly-idealized geometries such as the
lid-driven cavity (Chien et al., 1986; Leong and Ottino, 1989), the journal-bearing flow
(Chaiken et al., 1986; Swanson and Ottino, 1990), the two-stirrer flow (modeling Aref’s
blinking vortex flow) (Jana et al., 1994a) and the baffled-cavity flow (Jana et al., 1994b). In
these studies the evolution and advection of a blob or a line of (fluorescent) dye was mon-
itored. This enabled visualization and qualitative validation of chaotic dynamics in 2D
time-periodic flows. Following studies also primarily relied on dye advection and investi-
gated important (quantitative) aspects as e.g. emergence of persistent patterns, stretching
fields, mixing rates and effect of no-slip walls (Gouillart et al., 2007, 2008; Rothstein et al.,
1999; Voth et al., 2002, 2003).

Experimental studies specifically on 3D steady inline mixing flows are scarce and
largely concern dye visualization and/or measurement of either integral or local quan-
tities as e.g. pressure drop, residence time distributions, mean heat-transfer coefficients
and wall shear stress Avalosse and Crochet (1997); Hirech et al. (2003); Jaffer and Wood
(1998); Kusch and Ottino (1992); Li and Fasol (1997); Metcalfe et al. (2006); Yang (2007).
The first quantitative global measurements are the experiments on 3D flow and stream-
line patterns in the Quatro mixer in Jilisen et al. (2013). Experimental studies on other
3D steady flows include visualization of coherent structures in planar cross-sections by
(fluorescent) dye (Arratia et al., 2005; Fountain et al., 1998, 2000; Shinbrot et al., 2001;
Sotiropoulos et al., 2002) and measurement of the corresponding planar velocity using
particle image velocimetry (PIV) (Fountain et al., 2000).

Experimental transport analyses under 3D unsteady conditions concern measurement
of flow, Lagrangian trajectories and coherent structures in a variety of 3D time-periodic
flows (Cheng and Diez, 2011; Miles et al., 1995; Otto et al., 2008; Speetjens et al., 2004; Wu
et al., 2014; Znaien et al., 2012). The common denominator in these studies is employment
of 3D particle tracking velocimetry (3D PTV), an advanced technique for measurement of
3D velocity fields and Lagrangian trajectories. This technique will also be utilized in the
current study.

The experimental analyses of the two case studies in the current investigation, viz.
the 2D time-periodic representation of the RAM and the 3D Quatro mixer, will employ
(advanced) versions of the measurement techniques utilized in the above-mentioned lit-
erature. The 2D time-periodic RAM is investigated using PIV for the velocity field and
tracer particles for the Lagrangian transport. Scalar transport is studied by dye visualiza-
tion (purely advective limit) and measurement of evolving temperature fields (advective-
diffusive transport) using infrared thermography (IRT). The 3D Quatro is investigated us-
ing 3D PTV for flow and streamline measurements and 3D Laser-Induced-Fluorescence
(3D LIF) for visualization and analysis of 3D fluorescent dye distributions. The corre-
sponding laboratory facilities and measurement techniques are discussed in detail below.
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2.2. TIME-PERIODIC 2D RAM FACILITY

Fig. 2.1 shows a schematic of the laboratory setup for the 2D time-periodic representa-
tion of the 3D RAM in Fig. 1.2. Basically, the 3D cylindrical geometry is reduced to a 2D
cross-sectional (circular) area, which simplifies experimental analysis considerably (easy
visual access for temperature measurements and relatively simple optical flow measure-
ments). The setup is composed of a test section which is a shallow circular tank (with an
effective depth of 0.01 m and a radius of 0.25 m) with systematically oriented apertures
on the circumference. Only two apertures are shown in the figure, yet there are two more
configurations with four and five apertures. Here, the test section represents the inner
cross-sectional area of the RAM, whereas the circumference with the apertures imitates
the stationary inner cylinder. A computer controlled, motor-driven belt system (Maxon
Motor-Gear-Sensor combination with a stability of 0.07 % at 675 rpm, which corresponds
to a belt velocity of 0.005 m/s) is positioned on the apertures and it reproduces the motion
of the rotating outer cylinder. The elastic belts are gently pressed against the apertures
from the outside so as to seal-off the flow domain. Note that the belts (the height of the
belts hb = 18 mm) are larger than the apertures (the height of the apertures ha = 10 mm)
so as to ensure that they follow the curvature of the circular boundary upon being pressed
against it from the outside.

FLIR ThermaCAM S65H 

infrared camera

Thermo Scientific

haake bath K41 Maxon motor-gear-sensor combination

PT100 temperature sensors

Figure 2.1: A schematic sketch of the 2D RAM facility: a circular test section (dark gray) enclosed by an external
annular reservoir (light gray) holding motor–belt systems (black) and PT100 temperature sensors. A Haake bath,
locations of the temperature sensors, two Maxon motor–gear–sensor combinations, and an infrared camera are
schematically indicated. For flow and scalar field experiments at isothermal conditions, the infrared camera is
replaced by a MegaPlus ES2020 CCD camera or type Pike F145B (Allied Vision Technology) CCD camera.

The test section is filled with layers of two immiscible fluids: a silicon oil layer with a
depth of 0.005 m at the top, and a glycerol–water solution with the same depth of 0.005 m
at the bottom. The particular silicon oil of interest is one with a kinematic viscosity of
ν = 0.01 m2/s and thermal diffusivity of α = 10−7 m2/s (AK10000, Wacker GmbH, Ger-
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many). The density of silicon oil (970 kg/m3) is smaller than the density of the glycerol–
water solution (1186 kg/m3) so that the silicon oil layer always remains at the top through-
out the experiment. The low viscosity of the glycerol–water solution (1.745 ×10−5m2/s)
reduces the viscous effects from the bottom surface of the tank on the motion of the top-
layer fluid.

In the actual RAM, there is only one aperture at an axial location and progressing along
the axis of the RAM the azimuthal location of the aperture changes by an offset angle Θ
(Fig.1.2). This results in a systematic reorientation of the flow and it is reflected in the
experimental facility via the sequential actuation of the motor–belt system. This generates
a time-periodic piece-wise steady flow field in the test section.

NON-ISOTHERMAL EXPERIMENTS

Non-isothermal (i.e., temperature field) experiments require the use of complimentary
equipment, viz. a hot water reservoir, a Haake bath, temperature sensors and an infrared
camera (Figure 2.1). The annular hot water reservoir enclosing the test section serves for
keeping the temperature of the circumference constant by circulating water between the
reservoir and the Haake bath (Thermo Scientific Haake Bath K41). The reservoir also ac-
commodates the motor-driven belt system and the temperature sensors (PT100 with a rel-
ative accuracy of 0.01 ◦C, calibrated in TempControl Company in The Hague, The Nether-
lands) controlling the temperature of the water. The circulating water that is preheated
to the desired temperature of 35 ◦C in the Haake bath is sent to the hot-water reservoir
just before the initialization of the experiment. The sensors immediately start to check the
temperature of the water in the reservoir. In general, once the equilibrium is reached in
the circulation system (the heat added to the circulating water by the Haake bath is equal
to the heat loss from the water during circulation), the temperature of the water in the
reservoir only changes within the accuracy of the Haake bath (0.05 ◦C). In the case that the
temperature drops below (or rises above) a predefined threshold (here 35±0.1 ◦C), a signal
is sent to the Haake bath to increase (or decrease) the temperature of the water inside. This
ensures a uniform and constant temperature throughout the circular wall of the test sec-
tion. The wall is made of aluminum with a thermal conductivity of 205 W/mK whereas the
belts are made of steel cords (ksteel = 43 W/mK) that run helically in the polyurethane belt
(kpolyurethane = 0.65 W/mK) and have a lower conductivity than aluminum. This situation
causes an average temperature difference of 0.65 ◦C between the belt and the wall, hence,
the total heat transfer from the wall to the fluid is reduced in the experiments compared
to numerical simulations which assumes a uniform temperature distribution at the wall.

2.2.1. VALIDITY AS PHYSICAL MODEL

EFFECT OF TEMPERATURE-DEPENDENT MATERIAL PROPERTIES

For the sake of simplicity in the 2D numerical simulations (a finite element method (FEM)
is used in Comsol Multiphysics 4.3b for the simulations) it is assumed that the material
properties do not vary with temperature to preclude the coupling between the momen-
tum and energy equations (Eq.(4.5) and Eq.(6.2), respectively) so as to increase computa-
tional efficiency. This means that effects of temperature-dependent material properties
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are neglected, an assumption which should be tested. In practice, the viscosity of the sil-
icone oil used in the experiments in the temperature range of 20–35 ◦C changes by 17 %
(see Wacker (2002)). In order to estimate the effect of non-constant viscosity on the flow
field, a temperature-dependent function is defined for the viscosity. Subsequently, a sim-
ulation with a mesh of 40000 elements have been performed for 100 periods, which is
computationally expensive due to inherently coupled momentum and energy equations
(temperature-dependent material properties necessitate the re-calculation of Eq.(4.5) at
each time step, the flow field changes accordingly and, in turn, affects the temperature
field distribution). To stay in reasonable computational limits, a mesh with relatively low
resolution is used to check the effect of buoyancy. To evaluate the deviation from the
constant-viscosity case a deviation parameter is defined as

δ‖u∗‖ =

√√√√ 1
M

M∑
i=1

(‖u(xi , yi )‖−‖u∗(xi , yi )‖)2

〈‖u‖〉 (2.1)

where M is the total number of data points in the numerical domain, u(x, y) the reference
constant-viscosity flow field and u∗(x, y) the flow field with non-constant viscosity. 〈‖u‖〉
stands for the average velocity, which is calculated by the integration of velocity magnitude
on the surface normalized by the surface area. Figure 2.2 (left) shows that the deviation of
the normalized velocity difference δ‖u∗‖ has its largest values during the first periods after
starting the numerical experiment (a maximum is found in the 3rd period) and reduces
dramatically as the number of periods increases. The error is defined as ε = |‖u‖−‖u∗‖|
and represented per histogram for the 3rd period in Figure 2.2 (right), which shows that
the difference is mostly smaller than 0.1 %. We can therefore conclude that the effect of a
temperature dependent viscosity can safely be ignored in the current study.
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Figure 2.2: Deviation of velocity magnitude, δ‖u∗‖, velocity component in the x-direction, δu , and in the y-
direction, δv , for 100 periods (left). The histogram gives the distribution of the error, ε, in velocity magnitude for
the period where the deviation is maximum (right).

EFFECT OF THREE-DIMENSIONALITY

In order to check the assumption of two-dimensionality of the flow field of the top layer,
a 3D numerical simulation mimicking the experimental settings and flow characteristics
(see Figure 2.3) is performed with Comsol 4.3b Multiphysics software. The computational
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domain is divided into two layers as in the experiments. A tangentially moving wall condi-
tion is used at the location of the aperture and a zero-velocity condition is applied for the
remaining part of the circumference (both representing no-slip boundary conditions). To
avoid singularities at the corners of the aperture, the change between zero and constant
azimuthal velocity at the boundary is smoothed by replacing the step function by a contin-
uous function for the azimuthal velocity. The no-slip boundary condition is applied at the
bottom surface of the tank and a stress-free condition is applied at the top surface (assum-
ing that the surrounding air does not exert a force on the silicon oil in the top layer). At
the interface we apply a dynamic boundary condition which means that the shear and

normal stresses are continuous over the internal interface: ρtνt
∂uH,t
∂z = ρbνb

∂uH,b
∂z , with

uH = (u, v) the horizontal velocity components in top (t) and bottom (b) fluid layers, and

ρtνt
∂uV,t
∂z = ρbνb

∂uV,b
∂z with uV = w for the vertical velocity component. Deformation of

the interface and the free surface (implying baroclinic vorticity production) are weak as
in previous studies by Akkermans et al. (2008, 2010), where the dynamics of dipolar struc-
tures in single and two-layer fluids have been investigated, and are therefore ignored. The
3D computational domain is discretized with 915000 mesh elements. The Navier-Stokes
equation governing the simulations is given by Eq.(6.1) in Section 4.2.1. In order to obtain
a quantitative measure for the importance of the 3D effects in the flow field of the top-
layer fluid, the ratio of the kinetic energy contained in the vertical motion Ek,V to that in
the horizontal motion Ek,H is calculated at the mid-plane of the top layer (see Akkermans
et al. (2010)), where Ek,V has its maximum value. The ratio is defined as

Ek,V

Ek,H
= 2

∫ ∫
w2d xd y∫ ∫

(u2 + v2)d xd y
, (2.2)

This ratio turned out to have the value of 3.2×10−5 and with this value we can safely con-
clude that the flow in the top layer is sufficiently close to 2D (with possibly a weak vertical
variation of the horizontal velocity components) for our purpose.

Figure 2.3: Schematic top and side
views of the 3D computational do-
main used for the two-layer simu-
lations. The dashed line indicates
the (non-deformable) interface.
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EFFECT OF SURFACE HEAT LOSS

The fluid inside the test section has a free surface which causes heat loss that cannot be
eliminated by a different setup design, since two-dimensionality and optical accessibility
require a free and accessible top surface. However, we can reduce the heat loss from the
free surface by using a lid transparent for the infrared camera above the fluid–air interface
without touching the fluid. This will strongly decouple the two-layer fluid system from the
free atmosphere. The surface heat loss can be estimated by an approach described below.
The main conclusion is that we can control thermal heat losses at the free surface fairly
well during the early stages of the experiment, but heat losses at the free surface start to
become significant compared to the heat transfer from the side wall reservoir into the fluid
layers after a certain time.

The heat transfer Qsw from the heat reservoir to the fluid via the stationary wall by
conduction is

Qsw = kf Asw
∂T1(r, t )

∂r

∣∣∣
Γ

, (2.3)

where kf is the thermal conductivity of the fluid, Asw the contact surface area between
fluid and the stationary part of the circular side wall. The temperature gradient at the
boundary can be estimated by using the analytical solution of the axisymmetric 2D diffu-
sion equation T1(r, t ). Typical values for Qsw are shown in Figure 2.4. The estimation of
the heat transfer Qmw from the heat reservoir to the fluid via the moving side wall (thus
representing the effect of convection) is based on the time period Tf that a fluid particle
stays in contact with the moving side wall, i.e. Tf = R∆/U . Then, the heat transfer Qmw can
be written as

Qmw = kfhf

∫ Tf

0

∂T1(r, t )

∂r

∣∣∣
Γ

Ud t , (2.4)

where hf is the depth of the fluid (the constant value is also indicated in Figure 2.4). The
sum of Qsw and Qmw gives a reasonable estimate of the total heat transfer Qw from the
reservoir to the fluid.
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Figure 2.4: Typical values of Qsw
and Qmw for the first ten periods.

The heat transfer in the air gap between the lid covering the test section and the fluid
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can be approximated by considering it as a Rayleigh-Bénard cell. It turns out that the
associated Rayleigh number is smaller than the critical number so that the heat release to
the air (and subsequent transport through the top lid to the free atmosphere) is dominated
by diffusion (see Kundu and Cohen (1990)). Based on the total energy input Ein = ∫

Qwd t
an equivalent axisymmetric temperature profile is defined for the surface via T1(r, t ). By
using the analytical solution of the 1D diffusion equation in axial direction T2(r, z, t ) (in the
air gap, with T2(r, z = 0, t ) = T1(r, t )) with inhomogeneous boundary conditions in radial
direction at z = 0 the heat loss Qs can be estimated by

Qs = kair

∫ R

0

∂T2(r, z, t )

∂z

∣∣∣
z=0

2πr dr. (2.5)

The evaluation of the ratio Qs/Qw for the first ten periods gives a maximum of 25 %, i.e.
25 % of the heat transferred from the wall to the fluid is eventually released to the air. In
our view this explains why the comparison in Section 4.3.2 later on should be restricted
to a few periods only. Under this condition it can thus be concluded that the experimen-
tal analysis discussed in Section 4.3.2 can be based on thermal boundary conditions that
sufficiently correspond to the 2D configuration.

2.3. STEADY 3D QUATRO MIXER FACILITY

Two separate laboratory setups have been constructed for experimental analyses of the
Quatro mixer shown in Fig. 1.3: the first setup for measurement of flow, streamlines and
Lagrangian transport by way of 3D PTV; the second setup for visualization and measure-
ment of scalar transport by way of 3D LIF. The main structure and the working principle of
both facilities are the same. The main difference is that they are equipped with different
data acquisition systems.

The design of the first Quatro mixer facility is based on the implementation of 3D par-
ticle tracking velocimetry (3D PTV) (see Jilisen (2011)). The facility, which is shown in
Fig. 2.5 (left panel), is a closed-loop system that recirculates the working fluid. It com-
prises an optically-accessible test section: transparent replicas of the Quatro mixer ele-
ments (perspex; thickness 1.5 mm) that closely fit into a glass circular cylinder (inner di-
ameter D = 56 mm and thickness a = 2 mm), which is called the mixer model, and a glass
rectangular viewing box (200×200×200 mm) enclosing the model. Placement of the mixer
model inside the box, which is filled with the same material as the working fluid, reduces
internal refractions (see Budwig (1994) and Jilisen et al. (2013)). The test section is placed
vertically between two reservoirs so as to use the pressure gradient as the driving force for
a continuous throughflow. The top reservoir is connected to the test section via an en-
trance tube (Det = 56 mm) which accommodates a flow straightener at the inlet. The fluid
leaving the test section passes through a rotameter (which monitors the flow) and a valve
(which regulates the flow), then accumulates in the bottom reservoir. A pump connected
to the bottom reservoir continuously feeds the inner part of the top reservoir. The flow
rate of the pump is higher than the flow rate of the throughflow, so that the inner part over-
flows. This keeps the pressure head and, consequently, the flow rate constant and assures
a steady continuous flow inside the facility. Overflowing fluid returns back to the bottom
reservoir through an overflow tube. The work presented in Jilisen (2011) and Jilisen et al.
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(2013) uses water as the working fluid (with a flow rate Q̇ = 80 L/h and a mean axial velocity
Umean = 9 mm/s), which results in a Reynolds number Re = UmeanD/ν = 505 (kinematic
viscosity νwater = 10−6 m2/s). Afterwards, in the work by Rajaei (2013), water is replaced
with silicone oil (with a density ρ = 970 kg/m3 and a kinematic viscosity ν = 10−4 m2/s)
and the Reynolds number is lowered to 3.5 (Q̇ = 56 L/h and Umean = 6.3 mm/s).

Plain oil Fluorescent oil

PumpPump

ValveValve

Test section

Internal elements

Valve

Mixed oil

Pump

Test section

Internal elements

Valve

Overflow

pipe

Flow straightener

Entrance tube

Oil

Oil

Feeding

pipe Rotameter

Connector

Figure 2.5: A schematic sketch of the Quatro mixer facilities: the left and the right figures show the setups used
for 3D PTV and 3D LIF measurements, respectively. Both facilities accommodate a transparent test section with
a pressure-driven flow inside, reservoirs and connecting tubes.

The second Quatro mixer facility, which is shown in Fig. 2.5 (right), is designed for
3D LIF measurements. Unlike the first facility, it is an open-loop system that uses both
plain and fluorescent silicone oils (with a density ρ = 970 kg/m3 and a kinematic viscosity
ν = 10−4 m2/s) as the working fluid. It possesses two top reservoirs which hold plain oil
and fluorescent oil separately and a bottom reservoir which stores the mixed oil. As in the
former facility, the top reservoirs are divided into two parts to keep the flow rate constant
inside the facility. The test section of this facility is made of the same materials (the view-
ing box and the tube are glass and the mixing elements are perspex), however it is longer
(the length is 1 m) than the one of the former facility so as to accommodate more mixing
elements and narrower (the cross-sectional area of the viewing box is a square with a side
length of 100 mm). Having a narrower viewing box does not have any effect on the optical
quality but significantly decreases the amount of liquid that is needed to fill it.
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2.4. EXPERIMENTAL METHODS

The main purpose of the experiments in the simplified RAM facility and the Quatro
mixer facilities is the investigation of the flow and scalar patterns under the action of
time-periodic and spatially-periodic flow fields. Both facilities, through their optically-
accessible test sections, allow the use of non-intrusive measurement techniques. The flow
field, temperature field and passive scalar field in the simplified RAM mixer are investi-
gated via particle image velocimetry (PIV), infrared thermography (IRT), dye visualiza-
tion and particle position detection experiments. The Quatro mixer facilities, on the other
hand, are equipped with a 3D particle tracking and a 3D laser induced fluorescence sys-
tem. The details of the experimental procedures are presented in this section.

2.4.1. PARTICLE IMAGE VELOCIMETRY

For the PIV measurements polystyrene foam particles (with a density ρp = 500 kg/m3

and a diameter dp = 1.5 mm, respectively) floating on the free surface of the top layer
(silicone oil) were used as tracer particles. Typical response time of particles, which is
a measure of the difference between particle and local fluid velocity, was estimated as
Tp = dp

2ρp/(18ρfνf) = 6.4 µs, which is negligible compared to the typical flow time scale
Ta = R/U = 62.5 s (see Raffel et al. (1998)). In other words, the particle Stokes number
being St = Tp/Ta ¿ 1 and the tracer particles were passively advected by the flow. The
test section was illuminated by ambient light which suffices for visualization purposes
due to relatively low velocities of the tracer particles (typically umax = 9 pixels/s). During
the PIV measurements, 12-bit images were captured by a MegaPlus ES2020 CCD cam-
era placed above the test section with a resolution of 1600× 1200 pixels. A field of view
of 500 mm × 500 mm was captured with a magnification factor of approximately 0.02
at a digital resolution of 2.3 pixels/mm. PIVview 3C Version 2.4 software was used for
post-processing. Images of tracer particles were interrogated using windows of final size
24×24 pixels with an overlap factor of 50 % resulting in a vector spacing of about 5 mm in
each direction.

The main uncertainty source in the flow field measurements was the uncertainty in
the determination of the particle image displacement and was determined by the magni-
fication factor, non-uniformity in particle distribution, mis-matching error and sub-pixel
analysis (see Nishio and Murata (2003); Okamoto et al. (2000)). An estimation based on
these error sources gives an uncertainty of 9×10−5 m in displacement and corresponding
to an uncertainty of 1.8×10−4 m/s in velocity (the time between two consecutive images
was 0.5 s). When normalized with the maximum velocity in the flow field (which is the
velocity of the belt), the relative error is approximately 4 %.

2.4.2. INFRARED THERMOGRAPHY

The infrared thermography measurements were performed with a FLIR ThermaCAM
S65H imaging system, operating in 7.5–13 µm spectral range (see ThermaCAMTM (2006)).
The infrared camera was placed above the test section and measured the infrared radia-
tion from the top surface of silicon oil. In order to reduce heat losses from the surface of
the fluid to the surrounding ambient air, a lid made of polyethylene PE is placed on the top
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of the test section. The lid is assumed to be at room temperature (20 ◦C) for the calculation
of the corrected temperature distribution. Based on the transmission curve of PE (which
is almost constant within 7.5–13 µm spectral range), the graybody emittence of silicone
oil and the Planck’s law for blackbody emittance, the infrared camera signal is converted
to the surface temperature (see ThermaCAMTM (2006)). In the range of 20–35 ◦C the cor-
rected values are found to be linearly dependent on the uncorrected readings. Measure-
ment accuracy was specified as ±2 ◦C or ±2 % in the User’s Manual of the manufacturer
(see ThermaCAMTM (2006)), but comparison with a PT100 temperature probe showed an
even better accuracy for our application, namely ±0.5 ◦C.

2.4.3. DYE VISUALIZATION

Dye visualization is employed for experimental transport studies in the limit of infinite-
Pe by replacing the temperature field, which is the diffusive scalar field of the finite-Pe
experiments, by a non-diffusive scalar field. For creation of the initial conditions, the tank
is divided into two regions by placing a cylindrical tube concentrically in the circular tank.
The radius Rin of the tube is chosen such that the inner and outer regions of the tube have
the same area, thus Rin = p

2R/2. The inner region of the tube is filled with silicone oil
colored by white dye whereas the outer region is colored by black dye, which, after the
removal of the cylindrical tube, serves as the initial condition for infinite-Pe experiments.
The evolution of the scalar patterns in time is captured by an AVT Pike F145B CCD camera
placed above the test section. The 12-bit gray scale images have a resolution of 1388×
1038 pixels and can distinguish 212 = 4096 gray levels.

2.4.4. 3D PARTICLE TRACKING VELOCIMETRY

For 3D PTV experiments, two arrays of light-emitting diodes (LEDs, LUXEON Rebel Color,
Philips, The Netherlands) with an intensity peak at 530 nm wavelength are used for
the illumination of the flow with fluorescent seeding particles [polymethylmethacrylate
(PMMA) hollow sphere particles doped with rhodamine-B; dp = 50 µm, ρp = 1190 kg/m3;
Microparticles GmbH, Germany] (Jilisen et al., 2013). The particles have an absorption
and an emission peak at λab = 560 nm (green) and λem = 585 nm (red), respectively. This
enables the elimination of the reflections due to fluid–wall interfaces and small air bub-
bles, which deteriorates the image quality otherwise, by two-step optical filtering: cyan
dichroic filters are mounted on the collimator lenses of the LEDs to exclude the LED con-
tributions above λ = 570 nm that may interfere with the fluorescence and 590 nm high-
pass filters (type OG-590, Schott Glass, Germany) are mounted on camera lenses to re-
move the reflections (around the LED peak) from the test section. The slight mismatch
between the emission wavelength of the particles and the cut-off wavelength of the high-
pass filter does not cause significant reduction in light intensity due to broad emission
wavelength of the particles.

The typical response time of the particles to changes in velocity field is estimated as
Tp = d 2

pρp/(18ρfνf) = 1.7 µs, which is negligible compared to the typical flow time scale
Ta, where Ta = D/Umean = 56 s (Raffel et al., 1998). In other words, the particle Stokes
number is St = Tp/Ta ¿ 1, meaning that the tracer particles are passively advected by the
flow. The drift velocity due to buoyancy Up = |ρ−ρp|g d 2

p/(18ρfνf) = 3.1 µm/s is much less
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than the fluid velocity Umean = 1 mm/s and may cause a deviation in particle trajectory, i.e.
∆xp ≡UpTa ∼ 0.2 mm, during its residence within the test section. This is also considered
negligible in the present work.

Four synchronized 12 bit CCD cameras (with a resolution of 1600 × 1200 pixels;
MegaPlus ES2020, Kodak, United Kingdom) equipped with 50 mm lenses (type NMV-
50M1, Navitar, USA) are positioned and aligned in such a way that each camera views the
test section from a different perspective. This configuration provides an efficient matching
performance for the 3D PTV algorithm. Camera control, synchronization and data stor-
age are achieved by a data acquisition system (DVCR5000, Iris Vision, The Netherlands)
(Jilisen et al., 2013).

This study uses the non-commercial 3D PTV algorithm developed at ETH Zurich,
Switzerland (Lüthi et al., 2005; Willneff, 2003), which can handle the refractions due to
medium change at two interfaces (i.e. the interfaces between ambient/working fluid and
the viewing box wall) and is capable of performing particle matching and trajectory con-
struction based on four camera configuration. The calibration procedure is explained in
Section 2.4.4.

In the previous study by Jilisen et al. (2013) the error in measurements is found to be
around 10–15 %. In the present study, the error is reduced significantly by a new method
comprising a modification procedure in calibration and a correction procedure in post-
processing of data. Details are given below.

MODIFICATION IN CALIBRATION

The current study employs the ETH algorithm for the detection of the particle position and
the reconstruction of the particle trajectories, which assumes that there is a flat wall with
two different media at the both sides (i.e. cubic viewing box). However, in the present ex-
perimental facility the existence of the cylindrical wall of the model mixer and the mixing
elements introduces more complexities than a cubic viewing box does.

To calculate the particle positions more accurately, the calibration procedure is accom-
plished in two steps. In the first step, a calibration body is placed inside the test section
that is filled with the working fluid and the camera images are processed by the ETH al-
gorithm to compute the view angles and the positions of the four cameras. In the second
step, by taking into account the refraction effects due to the curved wall (which can not be
handled by the ETH algorithm), synthetic particle images (with 5000 particles) are gener-
ated by an in-house developed C code based on the configuration of the cameras (i.e. the
view angles and the positions of the cameras) and Snell’s law. Then, the positions of the
particles in the synthetic images are calculated by the ETH algorithm.

Figure 2.6 depicts the exact (generated by the C code) and calculated (by the ETH algo-
rithm) positions of the particles inside the tube. It shows that the maximum error occurs in
close proximity of the tubular walls. Hence, to compensate the error due to the existence
of the tubular wall the following coefficients are introduced:

ycor =
{

y
(
1− 1

R

)
, for y ≥ 0

y
(
1− 0.68

R

)
, for y < 0

(2.6)

where R is the radius of the tube and ycor is the y-component of the corrected particle
positions. This improves the calculation of the particle positions compared the previous
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work by Jilisen et al. (2013) and the effect of the correction on the processed data (i.e.
velocities) is discussed in Section 2.4.4.
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Figure 2.6: Deviations in particle positions due to the curved wall of the model mixer. The circles (◦) demonstrate
the (exact) positions of the particles synthetic images of which is generated by the C code, whereas the dots (·)
indicate the calculated positions of the particles from the synthetic images by the ETH algorithm.

LOW-PASS FILTERING FOR PARTICLE TRAJECTORIES

In order to eliminate the random error in the position data (which may result in very high
error in the velocity field otherwise, since the velocity field is determined through central
differencing), a moving cubic spline filter, see Lüthi et al. (2005), has been utilized. The
velocity is then defined as the first derivative of the cubic spline.

In this method, a cubic polynomial is fitted for each time step t using ten preceding
and subsequent time steps, from t − 10 ·4t to t + 10 ·4t . xi (t ) represents raw position
signal of a point at time t in i direction and it is expressed as;

xi (t ) = ci ,0 + ci ,1t + ci ,2t 2 + ci ,3t 3 +ε(t ) (2.7)

where ε(t ) is the noise. The constants ci are determined as

ci = (AT xi )(AT A)−1 (2.8)

where

A =


1 (t −10∆t ) (t −10∆t )2 (t −10∆t )3

1 (t −9∆t ) (t −9∆t )2 (t −9∆t )3

...
...

...
...

1 (t +10∆t ) (t +10∆t )2 (t +10∆t )3


and

ci =


ci ,0

ci ,1

ci ,2

ci ,3

 .
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Position and velocity after filtering are expressed as;

xi (t ) = ci ,0 + ci ,1t + ci ,2t 2 + ci ,3t 3, (2.9)

ui (t ) = ci ,1 +2ci ,2t +3ci ,3t 2. (2.10)

The reader is referred to the work by Lüthi et al. (2005) for detailed discussion on this
approach.

ERROR ANALYSIS

In order to quantify the error in 3D PTV experiments, a comparative analysis between
experimental and numerical velocity fields is performed for velocity components u, v and
w , and magnitude ‖u‖, for which more than 18,000 data points are taken into account.
The positions are taken from the experimental data set and to obtain the corresponding
numerical values a cubic interpolation fit is employed on the simulated data. The
deviations in the experimental data are quantified via ε(u) ≡ |un − ue|/|un,max| where u
can be u, v, w or ‖u‖ (n and e stand for numerical and experimental data, respectively).
The associated statistics are given in Table 2.1. The maximum error is calculated for
the velocity component in y-direction which corresponds to the depth direction of the
mixer according to the camera configuration. Overall, the error is found to be between
3–7 % which implies that the modification in the calibration and the low-pass filtering in
the particle tracks result in an improvement in post-processing, hence an overall good
agreement between the numerical and the experimental results.

Velocity σ µ M
components (standard (mean) (median)

and magnitude deviation)
u 3.34 0.18 0.16
v 6.76 1.21 0.24
w 3.69 0.13 0.17
‖u‖ 6.50 1.06 0.27

Table 2.1: Statistics of the error analysis for velocity components u, v , w and magnitude ‖u‖ calculated by com-
paring experimental and numerical velocity fields (the numbers are in percentage).

Figure 2.7 shows a sample experimental and numerical trajectory. Notwithstanding
the small deviations, the trajectories show a very good agreement. The main reason for
the deviation is that the position and the alignment of the mixing elements inside the tube
is not perfect.

2.4.5. 3D LASER-INDUCED FLUORESCENCE

The 3D laser induced fluorescence (3D LIF) measurements are performed in a cylindrical
volume with diameter D = 56 mm and a height of 800 mm, in which 14 mixing elements
(i.e. 7 mixing periods) are hold. The measurement volume is illuminated by use of a con-
tinuous argon–ion laser (Stabilite 2016, Spectra Physics, USA) at a wavelength of 488 nm
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Figure 2.7: Comparison of experimentally (blue) and numerically (red) acquired particle trajectories. From left
to right: side view (normal to xz-plane), top view (normal to x y-plane) and isometric view.

and a laser sheet scanner (LaVision, Germany) (see Fig. 2.8). The fluorescent oil (with a
dye concentration of 40 µg/L) is a mixture of an oil-soluble fluorescent dye (Sudan Orange
183 by BASF AG, Ludwigshafen, Germany) and silicone oil , which emits light at 580 nm.
This allows the visualization of the concentration field after filtering the laser wavelength
by use of a 570 nm high-pass optical filter (Thorlabs, Germany). The images of the con-
centration fields are recorded using a high speed 12 bit CMOS camera (with a resolution of
1024×1024 pixels; HighSpeedStar 5.1, LaVision, Germany) with its optical axis perpendic-
ular to the laser sheet. The camera is equipped with a lens (AF Nikkor 28–70 mm, Nikon,
Japan) at a focal length of 70 mm. In order to acquire in-focus images of the scalar pat-
terns at a relatively high signal-to-noise ratio (i.e., at f # = 5.6 to have reasonable amount
of light recorded during the image exposure), the measurements are repeated by focusing
the camera at two different planes along the diameter of the tube. The focal plane is posi-
tioned in the middle of the near half-diameter in the first run and then it is moved to the
middle of the far half-diameter for the second run. The field of view of the camera in the
center plane of the tube is approximately 65×65 mm and in order to acquire the concen-
tration field throughout the test section the image acquisition is repeated at 23 positions
in the axial direction. This is facilitated by placing the laser sheet scanner and the camera
on an L-beam carrying both devices on each side and moving upwards and downwards
systematically.

The synchronization between the illumination system and high-speed imaging system
is performed by a signal generator (Stanford, USA) and a high-speed controller (LaVision,
Germany). The signal generator produces a TTL signal at a frequency of 0.05 Hz that is in-
put to the laser sheet scanner, which results in a scanning period of 20 s. The high-speed
camera is configured to capture images at a recording frequency of 50 Hz. The image
acquisition is started by a trigger signal that is generated by the laser sheet scanner and
received by the high-speed controller. This configuration brings in a total of 1000 images
captured during one turn-around time of the laser scanner. Image acquisition and pre-
processing are performed in Davis 7.2 (LaVision, Germany).
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Figure 2.8: A schematic sketch of the 3D LIF data-acquisition system. The system is composed of a continuous
laser equipped with a laser sheet scanner device, a high-speed camera with a multifocal lens on which a high-
pass filter is mounted, a signal generator by which the laser sheet scanner is activated and a high speed controller
for the synchronization of these devices.

CALIBRATION AND CORRECTIONS

Considering the fact that the aim of the experiments is the (qualitative) investigation of the
scalar patterns rather than a quantitative analysis, the camera readings are kept non-di-
mensional (not converted to any physical units) with the assumption that the camera has
a linear response to fluorescence intensity. Nonetheless, for a better image quality, several
corrections are applied. First, in order to improve the contrast in the concentration field,
dark image calibration is performed on the raw images. This is achieved by subtracting the
dark images taken in a dark room (when the camera lens is covered) from the raw images.
Second, the correction images captured at uniform concentration values (by running only
the fluorescent oil in the test section) are analyzed to check the effect of the attenuation of
the laser on the camera readings. The data analysis shows that the attenuation due to ab-
sorption of the dye, which has a concentration of 40 µg/L, is negligible. Finally, all images
are resized according to their distance to the sensor by taking into account the refraction
due to the existence of the flat wall, silicone oil and the circular wall. By use of the resized
2D images, 3D concentration field is constructed and the downstream cross-sectional evo-
lution of the scalar patterns is investigated.
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THE GLOBAL HAMILTONIAN

PROGRESSION OF 2D LAGRANGIAN

FLOW TOPOLOGIES FROM

INTEGRABLE TO CHAOTIC STATE

Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D)
unsteady flows lean on the assumption that Hamiltonian mechanisms govern the La-
grangian dynamics of passive tracers. However, experimental studies specifically investi-
gating said mechanisms are rare. Moreover, they typically concern local behavior in specific
states (usually far away from the integrable state) and generally expose this indirectly by dye
visualization. Laboratory experiments explicitly addressing the global Hamiltonian pro-
gression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e. the
fundamental route to efficient transport by chaotic advection, appear non-existent. This
motivates our study on experimental visualization of this progression by direct measure-
ment of Poincaré sections of passive tracer particles in a representative 2D time-periodic
flow. This admits (i) accurate replication of the experimental initial conditions, facilitat-
ing true one-to-one comparison of simulated and measured behavior, and (ii) direct ex-
perimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close
agreement between computations and observations and thus experimentally validates the
full global Hamiltonian progression at a great level of detail.

Parts of this chapter have been submitted to Chaos: An Interdisciplinary Journal of Nonlinear Science.
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3. THE GLOBAL HAMILTONIAN PROGRESSION OF 2D LAGRANGIAN FLOW TOPOLOGIES

FROM INTEGRABLE TO CHAOTIC STATE

3.1. INTRODUCTION

Advection of passive tracers in a two-dimensional (2D) incompressible steady flow defines
an autonomous Hamiltonian system with one degree of freedom, where the stream func-
tion acts as the Hamiltonian. Here passive tracers are restricted to individual streamlines
and, in consequence, always perform non-chaotic motion. Introducing unsteadiness to
the flow field causes breakdown of this situation and thus enables (yet not guarantees)
chaotic tracer dynamics. This has first been demonstrated for the blinking vortex flow in
the seminal paper by Aref (1984) and has since been investigated in numerous studies on
a great variety of 2D fluid systems (Aref, 2002; Aref and Balachandar, 1986; Boyland et al.,
2000; Chaiken et al., 1986; Chien et al., 1986; Hackborn et al., 1997; Krasnopolskaya et al.,
1999; Leong and Ottino, 1989; Meleshko and Peters, 1996; Ottino et al., 1994; Stremler and
Chen, 2007; Tel et al., 2000; Yi et al., 2002). Essentially similar dynamics occurs in the
continuum regime of 2D unsteady granular flows (Christov et al., 2010; Cisar et al., 2006;
Fiedor and Ottino, 2005; Khakhar et al., 1999; Meier et al., 2007) and cross-sections of cer-
tain 3D steady flows (Arratia et al., 2005; Fountain et al., 1998, 2000; Shinbrot et al., 2001;
Sotiropoulos et al., 2002).

Unsteadiness is (due to its simplicity) commonly introduced by time-periodic vari-
ation of the flow field with a certain period time T , where T = 0 corresponds with the
steady (and thus non-chaotic) state (Aref, 2002; Ott, 2002). Increasing T from zero generi-
cally causes the characteristic Hamiltonian disintegration of the global streamline pattern
at T = 0 (“integrable state”) into regular and chaotic regions in the Poincaré section of the
flow following the famous KAM and Poincaré-Birkhoff theorems (Ott, 2002). Here regular
regions comprise (arrangements of) island-like structures known as “Kolmogorov-Arnold-
Moser (KAM) tori”.

Investigations on this Hamiltonian progression in 2D incompressible flows to date al-
most exclusively concern numerical studies. A substantial body of work does exist on ex-
perimental analysis of 2D chaotic advection and its impact on transport processes. How-
ever, such studies focus predominantly on ramifications and signatures of chaotic advec-
tion as e.g. (exponential) stretching and folding of material elements (Ottino et al., 1988;
Solomon et al., 2003; Voth et al., 2002), transport enhancement and anomalous diffusion
(Fogleman et al., 2001; Solomon and Gollub, 1988; Solomon et al., 1993, 1994; Weeks et al.,
1996), crossing of transport barriers (Solomon et al., 1996) and the formation of persistent
patterns (Rothstein et al., 1999).

Laboratory experiments dedicated specifically to the Hamiltonian dynamics and kine-
matic mechanisms that underly the above phenomena (e.g. emergence of periodic points,
formation and breakdown of KAM tori, manifold dynamics) are rare, on the other hand.
Moreover, they typically concern local behavior in specific states (usually far away from
the integrable state) instead of the entire global progression from integrable to chaotic
state and generally expose this via dye visualizations (Arratia et al., 2005; Chaiken et al.,
1986; Chien et al., 1986; Hackborn et al., 1997; Leong and Ottino, 1989; Yi et al., 2002).

Particularly detailed dye visualizations of KAM tori are those in the 3D steady coun-
terparts to 2D time-periodic flow examined in various studies (Fountain et al., 1998, 2000;
Shinbrot et al., 2001; Sotiropoulos et al., 2002). Similar visualization experiments, i.e. on
correlations between KAM tori and segregation patterns, have been performed for 2D
time-periodic granular flows (Cisar et al., 2006; Fiedor and Ottino, 2005; Khakhar et al.,
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1999; Meier et al., 2007). However, direct experimental visualization of the global Hamil-
tonian progression of 2D Lagrangian flow topologies entirely from integrable to chaotic
state is, to the best of our knowledge, non-existent. This motivates our study on visualiza-
tion of this progression in a representative flow: the 2D time-periodic Rotated Arc Mixer
(RAM).

Laboratory experiments will be reconciled with theory through comparison of the
measured flow and Lagrangian dynamics with simulated predictions. To this end com-
putations will be performed using an analytical solution to the formal 2D RAM flow and a
data-fitted 2D approximation to the measured flow field (so as to account for experimental
and modeling imperfections). This enables detailed comparative investigations.

This study, besides to fluid mechanics, contributes to the broader field of experimen-
tal state-space visualization and analysis of dynamical systems in two ways. First, exist-
ing studies in this context generally concern visualization of (chaotic) attractors in non-
Hamiltonian non-fluid systems, e.g. magneto-elastic (Moon and Holmes, 1979, 1985;
Moon and Li, 1985) and micro-electromechanical (DeMartini et al., 2007) oscillators,
gravity-driven motion of objects (Gottwald et al., 1992), electrical circuits (Roy and Ba-
suray, 2003; Rulkov, 1996) and nonlinear pendulums (Siahmakoun et al., 1997). Our study
is dedicated to visualization of essentially Hamiltonian dynamics. Second, said non-fluid
systems are finite-dimensional, i.e. their state is described by a finite (and typically small)
set of variables (e.g. the tip position of an oscillator (Moon and Holmes, 1985)). Fluid
systems, on the other hand, unite characteristics of both finite-dimensional and infinite-
dimensional systems and thus also in this sense belong to a different class. Their state is
infinite-dimensional by consisting of an infinite union of fluid-parcel positions; these po-
sitions, in turn, are each governed by a finite-dimensional (Hamiltonian) system. Hence,
the evolution of a single initial state of fluid systems is analogous to the simultaneous evo-
lution of all initial states of said non-fluid systems. Moreover, the physical and state spaces
are the same for fluid systems. These properties facilitate direct and full visualization of
Hamiltonian dynamics with individual experiments in 2D fluid systems.

3.2. PROBLEM DEFINITION

The RAM is given schematically in Fig. 3.1(left) and consists of a circular domain of radius
R enclosed by a wall composed of stationary (black) and moving (gray) arcs (Metcalfe et al.,
2006). The four moving arcs, offset by an angle Θ=−π/2 (negative sign indicates that the
offset is in the direction opposite to the direction of moving arc) and each spanning an an-
gle∆=π/4, drive the internal flow by viscous drag as e.g. in various lid-driven cavity flows
investigated in literature (Chien et al., 1986; Krasnopolskaya et al., 1999; Meleshko and Pe-
ters, 1996; Stremler and Chen, 2007). Clockwise steady motion only of arc 1 at an angular
velocity Ω gives the dark streamline pattern in Fig. 3.1(right); individual activation of arcs
2–4 gives shown reorientations of this pattern. 2D time-periodic flow is accomplished by
successive activation of arcs 1–4 each for a duration τ, resulting in T = 4τ as total period
time. Dimensional analysis yields the Reynolds number Re =ΩR2/ν with ν the kinematic
viscosity, and dimensionless period time T =ΩT as system parameters. Our study is re-
stricted to Stokes flow (Re = 0), which can be done without loss of generality, leaving T as
sole parameter.
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FROM INTEGRABLE TO CHAOTIC STATE

Figure 3.1: 2D Rotated Arc Mixer: (left) circular flow domain bounded by stationary (black) and 4 moving (gray)
arcs (opening angle∆=π/4 and offset angleΘ=−π/2); (right) streamline patterns induced by individual motion
of arcs 1–4 in counterclockwise direction (black: arc 1; gray: arcs 2–4)

The dynamics of passive tracers, described by their current position x(t ) and released
at initial position x0, is governed by the Hamiltonian equations of motion

d x

d t
= ∂H

∂y
,

d y

d t
=−∂H

∂x
, (3.1)

with H(x, y, t ) = H(x, y, t +T ) the corresponding (time-periodic) Hamiltonian (Aref, 1984;
Ott, 2002). Here H can (using polar coordinates (r,θ)) be arc-wise constructed from the
stream function ψ(x, y) corresponding with arc 1, i.e. H(r,θ)|arc n =ψ(r,θ− (n −1)Θ) for
1 ≤ n ≤ 4 andΘ=−π/2, whereψ is available in closed form through Hwu et al. (1997). This
analytical solution will be employed in two ways: (i) description of the Stokes flow in the
2D RAM; (ii) determination of a Stokes-flow approximation to the experimental flow so as
to reconcile observed and predicted behavior (Section 3.4).

The tracer dynamics is examined by Poincaré sections X (x0) = {x0, x1, ...}, with x p =
x(pT ) the position after p periods, versus dimensionless period time T :

• Limit T → 0 yields an autonomous Hamiltonian consisting of the average of the
arc-wise stream functions: H(r,θ) = 1

4

∑4
n=1ψ(r,θ− (n −1)Θ) This corresponds with

simultaneous activation of all arcs and defines the integrable limit (Fig. 3.2(a)).

• Non-zero T > 0 introduces unsteadiness and breaks the integrable state. This man-
ifests itself in the characteristic Hamiltonian breakdown of the global island of the
integrable state into a progressively smaller central island surrounded by emerging
island chains and a chaotic sea (Figs. 3.2(b–d)).

The Poincaré sections in Figs. 3.2(b–d) are simulated by numerical integration of
Eq. 3.1 using the analytical stream function following Hwu et al. (1997) and 20 initial posi-
tions x0 consisting of two equidistant distributions of 10 tracers each on the x- and y-axis
(origin at domain center). The key objective of our study is to experimentally visualize
and validate this progression by direct measurement of the Poincaré sections via tracking
of tracer particles.

The tracking approach has key advantages over dye visualization for the present kind
of experiments. Particles namely mark individual fluid parcels and, inherently, visualize
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(a) T2D = 0 (b) T2D = 3.4 (c) T2D = 6.9 (d) T2D = 8.6

(e) Texp = 0 (f) Texp = 4 (g) Texp = 8 (h) Texp = 10

(i) Tfit = 0 (j) Tfit = 4 (k) Tfit = 8 (l) Tfit = 10

Figure 3.2: Hamiltonian progression of the Lagrangian flow topology of the 2D time-periodic RAM from inte-
grable to (nearly) chaotic state: simulated Poincaré sections using the analytical 2D Stokes flow (top) versus
experiments (center) and simulations using the Stokes-flow fit to the experimental surface flow (bottom). The
experimental analysis is discussed in Secs. 3.3–3.5; the Stokes-flow fit and adjustment in period times are dis-
cussed in Sec. 3.4.

Lagrangian entities in the Poincaré section from the first period on. Dye patterns, on the
other hand, converge on such entities strictly only in the limit of infinite time, meaning
that finite-time dye traces can basically only approximate Lagrangian entities. (Compare
e.g. with the evolution of concentration patterns in distributive mixing (Metcalfe et al.,
2012)). An alternative dye visualization method exists in time-averaging of successive
dye patterns (Sotiropoulos et al., 2002). However, this strictly also requires an infinite se-
quence. Moreover, employment of tracer particles enables accurate replication of the ex-
perimental initial conditions in numerical simulations, which facilitates true one-to-one
comparison and validation of features and behavior. A further argument in favor of tracer
particles here is that molecular diffusion is far less relevant than for dye. This is a crucial
practical factor for the long-term visualization experiments in our study (Sec. 3.3).
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3.3. EXPERIMENTAL PROCEDURE

The experimental apparatus is shown schematically in Fig. 3.3. Different from the setup
shown in Fig. 2.1, a modified version that consists of four apertures with an offset angle
Θ of −90◦ is used in the experiments presented in this chapter. The experiments are con-
ducted at isothermal conditions and the belt velocity is set to U = 5 mm/s. The reader
is referred to Section 2.2 for detailed information about the experimental setup and the
measurement system.

Figure 3.3: Schematic of the experimental facility: test section (dark gray) enclosed by external annular region
(light gray) holding 4 computer-controlled motor-belt systems (black) that create the moving arcs. Poincaré
sections are measured by tracking of tracer particles floating on the fluid interface (dots indicate initial positions)
by an overhead CCD camera.

Direct measurement of the Poincaré sections is achieved by combining the successive
positions of tracer particles in exactly the same way as the numerical Poincaré sections are
attained. To this end polystyrene foam particles (diameter dp = 1.5 mm and density ρp =
500 kg/m3) are released on the free surface of the top layer (ρp < ρsilicon oil = 970 kg/m3

ensures they remain floating throughout the experiment). The typical response time of
particles to changes in velocity is estimated at Tp = d 2

pρp/(18ρfνf) = 6.4 µs, which is neg-

ligible compared to the typical flow time scale Ta = R/U = Ω−1 = 50 s, meaning they are
indeed passively advected by the flow (Raffel et al., 1998). Tracer particles are released
at the same 20 positions as in the numerical simulations and their subsequent positions
after each period are recorded by a CCD camera synchronized with the motion control sys-
tem (type Pike F145B, Allied Vision Technology, Germany) placed above the fluid surface
(Fig. 3.3). The particle positions are determined from the imagery in sub-pixel accuracy
by a dedicated particle detection code implemented in the high-level programming lan-
guage MATLAB and combined into experimental Poincaré sections. Note that detection of
particles suffices to construct Poincaré sections; actual tracking of individual particles is
unnecessary. One pixel corresponds for given camera resolution of 1388×1038 pixels2 with
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approximately 0.5×0.5 mm2, meaning that an individual particle covers about 3×3 pixels2,
which ensures reliable detection of the particle location. Experiments are run for 250 pe-
riods in all cases. The actual period time is T = Ω−1T = 50T s, amounting for a typical
dimensionless period time T = 5 to T = 250 s and a total duration of about 17 hours. It is
important to note that dye visualization over such extensive time spans is extremely diffi-
cult if not impossible due to molecular diffusion. This basically leaves tracer particles as
the sole option for this kind of experiment. The results below demonstrate that this indeed
enables successful visualizations.

Furthermore, velocity measurements by way of Particle Image Velocimetry (PIV) are
performed in the current laboratory set-up using the approach following Baskan et al.
(2015) so as to support the analyses. This involves employment of the same optical set-
up and tracer particles as described above. Particle imagery has been processed with the
commercial PIV package PIVview 3C Version 2.4 using interrogation windows of size
24×24 pixels2 with an overlap factor of 50%. Consult Sec. 2.4.1 for further details.

3.4. EXPERIMENTAL FLOW FIELD

One premise of the current analysis is that the experimental surface flow adequately rep-
resents the analytic 2D Stokes flow introduced in Section 3.2. Examinations of the surface
flow in Section 4.4.1 revealed a close agreement with 2D Stokes flow. However, for the
current study, compliance with these conditions is far more critical, since (experimental)
visualization of the Lagrangian flow topology by passive tracers is a long-term process that
is very sensitive to minute deviations. This necessitates further analysis.

Said premise holds true wherever the experimental surface flow admits expression as
a 2D Stokes flow driven by azimuthal motion of the circular boundary. This is, expanding
on the flow field given in Section 4.4.1, investigated below for the base flow corresponding
with the first window. To this end the azimuthal boundary condition is expressed in the
generic form

uθ(1,θ) = f (θ) =
∞∑

n=1
αn fn(θ), (3.2)

with fk (θ) = δ(θ−θk ), 0 ≤ θk ≤ 2π a single angular position on the circular boundary and
δ(.) the Kronecker delta function ( fn(θ) = 1 for θ = θn and zero elsewhere). (Note ur (1,θ) =
0 for all θ.) This structure, by virtue of linearity of Stokes flows, carries over to the internal
flow, yielding

u(x) =
∞∑

n=1
αn un(x), (3.3)

with un the elementary flow field given by the analytical solution of Hwu et al. (1997) for
boundary condition ur (1,θ) = 0 and uθ(1,θ) = fn(θ). Discrete approximation of Eq. (3.2)
as

f (θ) ≈
N∑

n=1
αn f ∗

n (θ), (3.4)
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with f ∗
n (θ) the top-hat function ( f ∗

n (θ) = 1 for 2π(n − 1)/N ≤ θ ≤ 2πn/N and zero else-
where) enables determination of expansion coefficients αn from the experimental flow
field obtained through PIV via the least-squares method, which in matrix notation yields
the linear set of equations (Strang, 1976)

Aα= b, (3.5)

withα=[α1, ...,αn],

A =



u1,r (r 1) · · ·uN ,r (r 1)
...

...
u1,r (r M ) · · ·uN ,r (r M )
u1,θ(r 1) · · ·uN ,θ(r 1)

...
...

u1,θ(r M ) · · ·uN ,θ(r M )


and

bT = [ur,exp(r 1) · · ·ur,exp(r M ),uθ,exp(r 1) · · ·uθ,exp(r M )],

where r m are the data positions. The coefficients subsequently follow from

α= (AT A)−1 AT b, (3.6)

and accomplish an orthogonal projection of the experimental field on the 2D Stokes flow.
The order of approximation N of expansion (3.4) is determined via the resolution

of PIV. The employed settings according to Sec. 3.3 yield interrogation windows with
relative size (∆x/R,∆y/R) = (0.03,0.04), signifying a relative spatial resolution of ∆ =
max(∆x/R,∆y/R) = 0.04. One ∆×∆ cell within the spatial grid thus defined can hold a
circular boundary segment with maximum arc length of approximately ∆s = p

2∆. This
determines the corresponding relative spatial resolution on the circular boundary and
translates into a grid of 2π/∆s = p

2π/∆ ≈ 110 boundary segments. The latter sets the
upper bound for N , since it slightly overestimates the true boundary resolution. The arc
length of boundary segments is namely estimated by the diagonal of a ∆×∆ cell, while
the actual segments are curved and thus slightly longer. Hence, N must be set somewhat
below this upper bound for Eq. (3.3) to be consistent with the PIV resolution.

Important to note is that N cannot be determined through an unambiguous conver-
gence criterion. The quality of the Stokes fit is namely determined by the degree to which it
adequately captures that part of the experimental surface flow that behaves as a 2D Stokes
flow. However, strict separation between surface regions with Stokes and non-Stokes be-
havior – and thus definition of said criterion – is impossible. Instead, convergence and
quality of the Stokes fit has been examined by its sensitivity to variation of N in the range
80 ≤ N ≤ 110. This revealed appreciable variations only in the direct window proximity,
that is, the area identified as the non-Stokes-flow region in Sec. 3.4. Sensitivity to changes
in N outside these areas proved marginal, on the other hand, signifying (sufficient) con-
vergence of the Stokes fit to that part of the experimental surface flow that exhibits 2D
Stokes behavior. Thus N can basically be chosen arbitrarily in the examined range; here
N = 90 has been adopted.
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Figure 3.4 gives the boundary profile f (θ) according to Eq. (3.4) thus attained (black
solid) for N = 90 in comparison with that of the true 2D configuration (gray dashed). This
reveals an overall good correspondence, giving a first indication that the surface flow in-
deed (largely) behaves as a 2D Stokes flow. (Discrepancies with full 2D Stokes flow are
discussed below.) It must be stressed that f (θ) does not represent the true experimen-
tal boundary condition, but the boundary condition of the Stokes fit to the surface flow.
Hence, departures of f (θ) from the imposed boundary condition do not signify experi-
mental imperfections. Moreover, f (θ) must not be interpreted in terms of physical char-
acteristics of the flow. Its profile, instead of reflecting flow physics, most and for all is a
consequence of fitting a 2D Stokes flow to an experimental surface flow that not every-
where behaves as such.
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Figure 3.4: Boundary profile (3.2) of the azimuthal velocity: Stokes-flow fit to the experimental surface flow versus
full 2D Stokes flow.

The Stokes fit is shown in Fig. 3.5(top) and overall captures the experimental surface
flow to a high degree of accuracy; appreciable deviations ∆uexp-fit = uexp −ufit inside the
flow domain occur only very locally in the direct proximity of the driving window (Fig. 3.5,
center). Deviations in the radial component ur are concentrated in peaks at the window
edges (indicated by arrows) and in a small patch just above the lower window edge; devi-
ations in the azimuthal component uθ are confined to a thin layer directly at the window.
Hence, save these localized areas, the experimental surface flow to a high degree of ap-
proximation behaves as a 2D Stokes flow. This validates the before-mentioned premise of
the present study. However, important to note is that the Stokes fit differs essentially from
the full 2D Stokes flow for the physical boundary conditions (dashed profile in Fig. 3.4).
Comparison of the latter with the surface flow namely reveals, in contrast with the Stokes
fit, a significant departure in substantial parts of the domain (Fig. 3.5, bottom). This im-
plies that, despite indeed largely behaving as a 2D Stokes flow, the experimental surface
flow exhibits different flow characteristics in the direct proximity of the window.

Direct comparison of Stokes fit and full 2D Stokes flow in Fig. 3.6(top) exposes two im-
portant features that may offer an explanation for the above observations: (i) the Stokes-fit
velocity is relatively lower; (ii) the deviations closely correlate with the window edges (in-
dicated by arrows). The overall slowing down is in part the result of viscous friction with
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(a) ur,fit (b) uθ,fit

(c) ∆ur,exp−fit (d) ∆uθ,exp−fit

(e) ∆ur,exp−2D (f) ∆uθ,exp−2D

Figure 3.5: Experimental surface flow uexp versus 2D Stokes-flow representations: Stokes fit ufit following (3.3)
(top); departure Stokes fit from experimental flow ∆uexp-fit = uexp −ufit (center); departure full 2D Stokes flow
from experimental flow ∆uexp-2D = uexp −u2D (bottom). Arrows indicate window edges.

the bottom wall; this effect is significantly reduced by the two-fluid layer yet can never be
fully eliminated (Sec. 3.3). The impact of viscous friction increases near the window edges
due to the strong velocity gradients that occur here. This is likely to be aggravated by the
formation of an additional vertical boundary layer on the stationary part of the side wall
in this region. Fluid inertia is a probable secondary factor by suppressing the actual fluid
acceleration relative to its Stokes limit and thus tending to smooth the local velocity gra-
dients near the window edges. This may somewhat mitigate said viscous friction yet at the
same time reduce the viscous drag — and thus the effective driving velocity — at the win-
dow (which is proportional to the surfacial velocity gradients) that sets up the surface flow.
Moreover, such gradient smoothing — and resulting deviation in velocity — will be most
pronounced near the window edges, which may explain why the deviations “radiate away”
from these regions (Part of the smoothing is inherent in the working principle of PIV; veloc-
ities are namely determined on the basis of local average particle displacements. However,
this effect alone cannot explain the observations, implying physical causes). Conclusive
establishment of the exact causes for the discrepancies requires more detailed analysis.
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(a) ∆ur,2D−fit (b) ∆uθ,2D−fit

(c) Base flow (d) Integrable state

0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

x

 

 

2D Stokes
Stokes fit

(e) Orbit time T vs. x0

0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

x

(f) Ratio T2D/Tfit vs. x0

Figure 3.6: Comparison of full 2D Stokes flow u2D versus Stokes fit ufit to experimental surface flow: depar-
ture ∆u2D-fit = u2D −ufit (top); streamlines base flow/integrable state of u2D (red) versus ufit (blue) (center);
corresponding orbit times of streamlines base flow (bottom). Arrows indicate window edges.

This is beyond the present scope, however. Relevant here is mainly the demonstration of
the 2D Stokes nature of the experimental surface flow everywhere outside the direct vicin-
ity of the window.

Further examination reveals that the discrepancy of the experimental flow with the an-
alytic flow primarily concerns the magnitude of the flow yet not its direction, as evidenced
in Fig. 3.6 (center) by the close resemblance of the streamline patterns (emanating from
identical initial conditions on the x-axis) of both the base flow and integrable states of
Stokes fit (blue) and full 2D Stokes flow (red). This strongly suggests that the Lagrangian
dynamics will predominantly differ quantitatively in terms of distance traveled along a
trajectory for a given time and thus closely relate via an offset in time. Figure 3.6(e) gives
the time T to complete one loop on each closed streamline of the base flow for the full 2D
Stokes flow (black) versus the Stokes fit (gray) parameterized by the initial position on the
x-axis. (Note that only one side of the stagnation point need be considered.) This exposes
a structurally shorter orbit time for the full 2D Stokes flow, or equivalently, a delay of the
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Stokes-fit case, by an approximately constant factor T2D/Tfit ≈ 0.86 (Fig. 3.6(f)). Account-
ing for this shift will be important for proper interpretation and comparison of the results
on Lagrangian dynamics.

3.5. EXPERIMENTAL POINCARÉ SECTIONS

The above revealed that the Lagrangian dynamics of the base flows of the Stokes fit and
the full 2D Stokes case closely correspond up to a temporal scaling factor: t2D/tStokes fit ≈
T2D/TStokes fit ≈ 0.86. This implies, given the full periodic flow being a composition of re-
oriented base flows, that the progressions of the Poincaré sections versus period time for
the Stokes fit of the surface flow — and thus the experimental Poincaré sections — will
closely follow that of the full 2D Stokes flow upon tuning the period times as

Tfit

Texp
= 1,

T2D

Texp
= T2D

Tfit
= 0.86 (3.7)

so as to account for said scaling factor.
The experimental Poincaré sections are shown for increasing Texp in Fig. 3.2 (center)

versus their simulated counterparts using the Stokes fit at identical period time Tfit =Texp

(bottom) and the full 2D Stokes flow with T2D rescaled following Eq. 3.7 (top). Compar-
ison of the measured and predicted progressions reveals an excellent agreement. (Note
that time spans for the simulated Poincaré sections are chosen to ensure optimal visu-
alization of features; the number of periods may thus vary and differ from the fixed 250
periods employed in the experiments (Sec. 3.3).) The central island of the experimental
progression clearly undergoes the same Hamiltonian breakdown from its original inte-
grable state (Texp = 0) to its strongly diminished state just before the onset of global chaos
(Texp = 10). Moreover, both these states as well as the intermediate states at (Texp = 4) and
(Texp = 8) are in close agreement with their corresponding simulated states during this
progression. This is strong evidence of the fact that simulated and measured dynamics
result from the same fundamental (Hamiltonian) mechanisms. Furthermore, this sub-
stantiates the Stokes-flow nature of the experimental surface flow established in Sec. 3.4
as well as its translation to the full 2D Stokes flow via a scaling factor.

The behavior near the integrable limit can be further examined via the rotation num-
ber

R(x0) = lim
P→∞

1

P

∑P−1
p=0∆θp

2π
, (3.8)

with ∆θp = θp − θp+1 and p the step number, describing the average step-wise rotation
of a tracer about the origin. (The employed definition of ∆θp yields R > 0 and R < 0
in case of clockwise and counterclockwise rotation, respectively.) Tracer motion dimin-
ishes with decreasing period time T , implying limT →0 R(x0) = 0 for all x0. This asymp-
totic behavior is demonstrated in Fig. 3.7 for experiments at Texp as indicated (panel (a))
and simulations using the 2D Stokes field with corresponding T2D according to Eq. 3.7
(panel (b)) for tracers released at the indicated positions x0 on the x-axis. This reveals
the distribution of R over the concentric streamlines that occur near the integrable limit
(Fig. 3.2(a)). (Note that isolation of individual trajectories from experimental Poincaré sec-
tions for the evaluation of R is straightforward in this T -range.) Rotation numbers Rexp
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Figure 3.7: Tracer dynamics near the integrable limit T → 0 investigated by rotation number R versus step time
Tstep = T /4: experiments versus simulations by full 2D Stokes flow with rescaling (3.7). Symbols differentiate
Tstep: Tstep = 0.05 (¦); Tstep = 0.1 (C); Tstep = 0.15 (◦); Tstep = 0.2 (×); Tstep = 0.25 (∗); x0 indicates initial tracer
position on the x-axis.

and R2D both meet R > 0, signifying counter-clockwise tracer rotation along with the ro-
tor (Fig. 3.1(a)). Moreover, they closely agree with respect to magnitude and (in particular)
qualitative dependence on initial position x0 and approach the limit R = 0 with decreas-
ing T at a comparable rate. Minor quantitative differences exist in that the experiments
asymptote somewhat faster towards the integrable limit.

The particular distribution of R over the concentric streamlines reveals that the tracer
motion basically consists of two regimes separated by a “minimum-rotation” streamline at
r ≈ 0.5. (The streamline pattern can for the purpose of this discussion be treated as being
axisymmetric, allowing substitution of x0 by r .) Development of a plateau in R towards
the center signifies solid-body-like behavior (dθ/dt ∼ w ↔ R ∼ wTstep); linear growth to-
wards the boundary signifies shear-like behavior (dθ/dt ∼ wr ↔ R ∼ wTstepr ∝ r ). Thus
the departure from integrability sets in via emergence of these coexisting fluid motions.
Shear and solid-body flow are of comparable strength in the simulations for all Tstep (max-
imum of R ≈ 0.005 revolutions per step in both regimes). The experiments, on the other
hand, exhibit a relative intensification of shear versus solid-body flow with growing Tstep:
Rshear =Rsolid-body ≈ 1 at Tstep = 0.05 to Rshear =Rsolid-body ≈ 5/3 at Tstep =0.25. However,
overall the flow remains very weak; a tracer typically takes at least R−1 ≈ 0.005−1 =200
steps for one revolution. The close agreement between experiments and simulations near
the integrable limit, notwithstanding minor quantitative differences, further substantiates
the earlier finding that they are subject to the same (Hamiltonian) mechanisms.

The experiments also provide (circumstantial) evidence of island chains. The region
surrounding the central island at Tfit = 8 (T2D = 6.9) is e.g. dominated by the two period-
7 island chains highlighted in Figs. 3.8(a,c). The simulated outer island chain (blue in
Figs. 3.8(a,c)) coincides well with the “blank zones” in the corresponding experimental
Poincaré section at Texp = 8. This is demonstrated in Figs. 3.8(b) and (d) by inserting the
simulated period-7 island chains of Figs. 3.8(a) and (c), respectively, in the experimental
Poincaré section (black), revealing that both parts indeed fit like pieces of a puzzle. More-
over, an inner period-7 chain and accompanying chaotic band can be identified in the
experimental results that coincides with a period-7 island chain in the simulations (red
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(a) Tfit = 8 (b) Texp = 8

(c) T2D = 6.9 (d) Texp = 8

Figure 3.8: Circumstantial experimental evidence for island chains: coincidence of the simulated outer (blue)
and inner (red) period-7 chains using the Stokes fit to the surface flow (panel (a)) and the adjusted full 2D Stokes
flow (panel (c) with the “blank zones” of the experimental Poincaré section at Texp = 8 (right; simulated island
chains of panels a and c inserted in respectively panels b and d).

in Figs. 3.8(a,c)). This coincidence is demonstrated in Figs. 3.8(b) and (d) by overlaying
these entities with the numerical island chains of Figs. 3.8(a) and (c), respectively. The
mismatch in dynamical state (i.e. intact simulated islands versus partially disintegrated
experimental islands), rather than signifying a fundamental difference, must be attributed
to the high sensitivity—and intrinsic unpredictability—of such island chains (typically in-
creasing with smaller size) to parametric variations and weak (experimental) disturbances
(e.g. finite-size effects of tracer particles). They namely emanate from instability of res-
onant orbits of the original island and are therefore far less robust than the latter. The
experimental period-7 chain may thus already be in a relatively higher state of disinte-
gration, which is consistent with the fact that this chain is embedded in a chaotic band
that coincides well with the simulated inner period-7 island chain. Hence, despite lack of
one-to-one correspondence between all individual features, also for island chains a close
agreement between simulations and experiments is observed. Important to note is that
this element of unpredictability in the actual state of the island chains is inherent in the
nature of the system and not a consequence of experimental imperfections per se.

3.6. CONCLUSIONS

This study provides (to the best of our knowledge) the first experimental investigation of
the global Hamiltonian progression of the Lagrangian flow topology of 2D time-periodic
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flows entirely from integrable to chaotic state by direct measurements of Poincaré sec-
tions. To this end the 2D time-periodic Rotated Arc Mixer has been adopted as represen-
tative flow. The analysis reveals a close agreement between simulated and measured dy-
namics and thus experimentally validates the Hamiltonian mechanisms that are assumed
to govern the Lagrangian dynamics in the considered flow class. The first analyses by the
rotation number R lay the groundwork for quantitative experimental studies on the on-
set of chaos. Key to the latter are symmetry breaking and resonance of trajectories, which
are inextricably linked to symmetry and mode locking. These “locking phenomena” admit
quantification by (generalized definitions of) R and have thus been investigated theoret-
ically and numerically in parametric studies by Lester et al. (2014).





4
SCALAR MODES IN A PERIODIC

LAMINAR FLOW

Scalar fields can evolve complex coherent structures under the action of periodic laminar
flows. This comes about from the competition between chaotic advection working to create
structure at ever finer length scales and diffusion working to eliminate fine-scale structure.
Recently, analysis of this competition in terms of spectra of eigenfunctions of the advection–
diffusion equation has proven fruitful because these spectra contain both fundamental in-
formation about how mixing processes create emergent Lagrangian coherent structure and
also clues about how to optimize flows for heat and mass transfer processes in industry.
While theoretical and computational studies of ADE spectra exist for several flows, exper-
iments, to date, have focused either solely on the asymptotic state or on highly idealized
flows. Here a coupled experimental and computational study of the spectrum for the scalar
evolution of a model of an industrially relevant viscous flow is shown. The main results
are the methods employed in this study corroborate the eigenmode approach and the out-
comes of different methods agree well with each other. Furthermore, this study employs a
Lagrangian formalism for thermal analysis of convective heat transfer in the representative
geometry to determine the impact of the fluid motion in the thermal homogenization pro-
cess. The experimental/numerical methods and tools used in the current study are promis-
ing for further qualitative parameter studies of the mixing/heat transfer characteristics of
many inline mixers and heat exchangers.

Parts of this chapter have been published (online) in International Journal of Thermal Sciences 96, 102-118
(2015) (Baskan et al., 2015).
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4.1. INTRODUCTION

Classification of industrial heat transfer processes with respect to their ultimate goals ad-
mits the application of goal-oriented methods for the investigation of thermal phenom-
ena. In literature these processes are analyzed in two groups: rapid thermal homogeniza-
tion processes and heat transfer processes with high transfer rates in inhomogeneous di-
rections, see Speetjens and van Steenhoven (2010). Examples of thermal homogenization
processes are the production of foods, polymers, steel and glass whereas heat treatment
of certain polymers is an example for the latter class of processing.

Thermal homogenization is mainly the evolution of the temperature field from its non-
uniform initial state towards the final homogeneous state where the evolution to the fi-
nal state is governed by the balance between advection and diffusion. Advective-diffusive
transport of passive scalars in both time-periodic and spatially-periodic flow fields have
been studied extensively (Adrover et al., 2001; Lester et al., 2008, 2009; Liu and Haller, 2004;
Pikovsky and Popovych, 2003; Popovych et al., 2007; Rothstein et al., 1999; Voth et al., 2003)
since the pioneering work in Pierrehumbert (1994) on ’strange eigenmodes’ — periodic
modes with highly complex spatial structure in the limit of zero-diffusivity. These stud-
ies are mainly focused on the decomposition of an advecting-diffusing scalar field into
its spatial and temporal components: spatial patterns are persistent (and repeating in the
case of a time-periodic flow field), whereas temporal evolution is the exponential decay
of intensities from a non-uniform initial state with high variance toward a fully uniform
state (with zero variance). The most-persistent spatial patterns governing the asymptotic
scalar transport, so-called ’dominant eigenmodes’, which in the limit of arbitrarily small
diffusivity coincide with the ’strange eigenmodes’, are the slowest decaying eigenmodes
of the advection–diffusion operator and can be found by the decomposition of the lin-
ear operator into its eigenfunction–eigenvalue pairs without the necessity of solving the
full advection–diffusion equation (ADE). In the case of an experimental approach, how-
ever, the information at hand is the data sequence rather than a mathematical model.
Thus, a data processing method capable of capturing the dynamics is necessary to de-
termine dominant eigenmodes and corresponding decay rates of the experimentally ac-
quired time-resolved scalar fields. The dynamic mode decomposition (DMD) is a tech-
nique that extracts dynamic information by decomposing the data set into temporal and
spatial components such that each mode corresponds to a complex-valued eigenvalue
(Schmid, 2010, 2011). In the present work, the DMD method is employed to determine
the eigenmodes and decay rates of both experimentally and numerically acquired scalar
fields derived from time-periodic advection.

In contrast, heat transfer processes which necessitate high transfer rates in preferred
directions require a Lagrangian approach rather than the use of traditional heat trans-
fer analysis methods based on integrated quantities or empirical correlations. Such an
approach enables in-depth analysis of the thermal topology of the heat transfer process
and, in turn, optimization of thermal transport routes. The Lagrangian formalism intro-
duced in the work by Speetjens (2012) provides a generalized Lagrangian framework for
the analysis of heat transfer in which the impact of the fluid motion on the scalar distri-
bution is determined. In this study, the formalism is demonstrated for the temperature
field in a representative industrial mixer/heat exchanger, however, it can be applied to
any advective-diffusive scalar field. The formalism is also combined with the eigenmode
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analysis to show that two groups of processes (rapid thermal homogenization processes
and heat transfer processes with high transfer rates in inhomogeneous directions) can be
analyzed by the same spectral methods.

The main objective of the current study is to experimentally investigate and validate
the fundamental eigenmode structure of scalar fields. For this purpose, the Rotated Arc
Mixer (RAM) is adopted as the representative configuration for in-depth analysis of ad-
vective-diffusive transport of scalars in realistic inline mixers. An experimental setup
representing simplified 2D RAM geometry is developed and temperature/concentration
field measurements are conducted to observe the evolution of advective-diffusive or only-
advective scalar fields. The advection–diffusion equation (ADE) is spectrally decomposed
into its eigenmode–eigenvalue pairs and the most slowly decaying eigenmode, in other
words, the dominant eigenmode is set as the benchmark for a comparative study between
spectral, numerical and experimental analysis. The practicality of experimental, numeri-
cal and analytical tools for the in-depth analysis of mixing and heat transfer in the 2D RAM
is also discussed to expose the advantages or limitations of these tools.

4.2. MODELING FLOW AND HEAT TRANSFER

4.2.1. CONFIGURATION AND GOVERNING EQUATIONS

The configuration is a time-periodic, laminar, incompressible flow field and its associated
time-dependent advective-diffusive scalar field inside the 2D domain D representing the
circular cross sectional area of the RAM. The governing non-dimensional mass, momen-
tum and advection–diffusion equations are

∇·u = 0, Sr
∂u

∂t∗
+Re u ·∇u =−∇P +∇2u, (4.1)

∂C

∂t
+u ·∇C = 1

Pe
∇2C , C (x ,0) =C0(x), (4.2)

where u is the fluid velocity, P the pressure and C the scalar field. Here, Sr , Re and Pe are
the Strouhal, Reynolds and Péclet numbers, respectively, defined as

Sr = R2

νT ∗ , Re = U R

ν
, Pe = U R

α
, (4.3)

where U and R are the characteristic velocity of the flow field and the radius of the domain,
respectively. ν is the kinematic viscosity, α the material (or thermal) diffusivity and T ∗ the
reference time scale (i.e. the forcing period) for dimensionless variable t∗. The unsteady
term in Eq.(4.2) is non-dimensionalized by the advection time scale Ta = R/U , hence t∗
relates to t by t∗ = tT ∗U /R. For the experiments it turns out that Re ≈ 0.1 and Pe ≈ 10000
(see Section 4.3.2 for the values of ν, α, U and R). The scalar concentration (or tempera-
ture) is made dimensionless according to C = (C−minC0(x))/(maxC0(x)−minC0(x)), with
C the dimensionful scalar, minC0(x) and maxC0(x) the minimum and maximum value of
the initial scalar field C0(x), respectively.

The response of the stagnant fluid to the impulsive start of a steady forcing is taken into
account to assess the validity of piece-wise steady flow assumption for the case of interest.
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The Strouhal number is then defined as the ratio of the viscous to the forcing time scale
reading

Sr = Tν
Ts

(4.4)

with the viscous time scale Tν = R2/ν and the dimensionful forcing period per motion
step Ts = T ∗. For the current configuration with Ts = 625 s we obtain Sr ≈ 0.01, which is
sufficiently small to neglect the acceleration stage and to assume that the flow is piece-
wise steady. Hence, Eq.(4.1) reduces to

∇·u = 0, Re u ·∇u =−∇P +∇2u. (4.5)

These equations are also supplemented with no-slip velocity boundary conditions at the
boundary of the domain Γ= ∂D.

Thermal analysis concerns the configuration with heat transfer from a hot isother-
mal wall to an initially (homogeneous) cold fluid advected by a time-periodic piece-wise
steady flow. The configuration for the concentration field analysis is the same except for
the Péclet number. In the latter case, which corresponds to infinite-Pe limit (infinite-Pe
implies zero-diffusivity), there is no scalar transport across the boundary and the evolu-
tion initializes with a non-homogeneous scalar field. The current setup of the 2D RAM
holds two apertures facing each other (Θ= 180◦), with the aperture arc angle ∆= 45◦ (Fig-
ure 1.2 (right)). The time-periodic flow field is established by a sequential prescription of
the tangentially moving wall condition at the apertures (Figure 4.1) with τ = TsU /R the
non-dimensional period of switching from one aperture to the consecutive one fixed at
τ= 10 (τ relates to the period of motion by τ=T /p where T is the non-dimensional pe-
riod of motion and m and p are integers satisfying Θ/2π = m/p and in this study m = 1
and p = 2). At any instant there is only one aperture activated, while the remaining part of
the circular boundary is stationary.

Stationary wall Constant temperature

Tangentially 

moving wall

Tangentially 

moving wall

Stationary wall

Initially zero 

temperature

y

x

y

x x

y

Figure 4.1: Schematic views of the 2D computational domain used for temperature evolution simulations: Con-
figuration for the actuation of the left aperture in the first half of a period (left panel), the actuation of the right
aperture in the second half of a period (mid panel), and finally the temperature field initial and boundary condi-
tions (right panel).
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4.2.2. EIGENMODE STRUCTURE OF SCALAR FIELDS

In scalar transport slowly decaying persistent patterns, known as the eigenmodes, are the
fundamental solutions of the ADE. In time-periodic flow fields, these patterns are defined
as the Floquet modes of the advection-diffusion operator L2 =−u ·∇+Pe−1∇2 of Eq.(6.2).
The scalar field C (x ,nT ), where T = pτ is the non-dimensional period of motion and nT

the integer multiples of T , can be approximated as a finite sum of these modes, yielding

C (x ,nT ) =
K∑

k=0
γkϕk (x)λn

k , λk = eµk T (4.6)

where the γk are the expansion coefficients based on initial conditions, the Hk (x ,nT ) =
ϕk (x)λn

k Floquet modes, µk =σk +iωk with i =p−1 Floquet exponents and the set {ϕk ,µk }
represent the corresponding eigenfunction-eigenvalue pairs governed by the eigenvalue
problem

L2ϕk −µkϕk = 0. (4.7)

In the case of finite-Pe, the real part of any Floquet exponentσk < 0 or equivalently any
eigenvalue |λk | < 1 for non-uniform eigenmodes which means that these modes all decay
exponentially in time. The slowest one is the dominant mode, and represented by the set
{ϕ0,µ0}, causing the evolution to quickly become governed by the reduced expansion

C (x ,nT ) = γ0ϕ0(x)eµ0nT +C∞(x). (4.8)

For the current configuration with C |Γ = 1, C∞(x) = C |Γ is the trivial uniform eigenmode
that corresponds to µk = 0. Note that eigenmodes Hk , typically are non-zero everywhere
for finite-Pe (see Gorodetskyi et al. (2014); Metcalfe et al. (2012)).

In the limit of infinite-Pe, diffusion is negligible and therefore no scalar exchange with
the wall happens. Transport then becomes equal to passive advection of a scalar. A funda-
mental difference with the finite-Pe case is that now only purely imaginary exponents (i.e.
µk = iωk ) occur for all eigenmodes, meaning that none of the eigenmodes will decay. This
has the fundamental implication that asymptotic states become non-uniform and quasi-
periodic (C∞(x ,nT ) = ∑

k γkϕk (x)e iωk nT ). However, here eigenmodes become spatially
arranged according to islands and chaotic regions (Speetjens et al., 2013). For periodic
systems in the infinite-Pe limit, the eigenmodes become intimately related to the peri-
odicity and multiplicity of the coherent structures in the Poincaré section and periodic
eigenmodes (i.e. ωk = 2π j /T ) with "low" periodicity (i.e. j = 1,2) dominate the behav-
ior and in that sense act as the dominant eigenmodes. The reason for this dominance
of lower-order eigenmodes is that higher-order structures are always embedded in lower-
order structures. Lower-order structures therefore correspond with (global) larger-scale
features, while higher-order structures correspond with (local) smaller-scale features (see
Metcalfe et al. (2012)).

In this Chapter, the scalar field, C (x , t ) is decomposed into its eigenmodes via Fourier-
Bessel functions. The dominant eigenmode ϕ0(x , t ) and its decay rate (or Floquet expo-
nent) µ0 are determined for the aforementioned configuration in the 2D RAM. The reader
is referred to the study by Lester et al. (2008) for the details of the calculation.
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4.2.3. CONVECTIVE HEAT TRANSFER

Convective heat transfer in the simplified 2D RAM configuration is investigated by the
Lagrangian heat transfer formalism proposed by Speetjens (2012). The main advantage
of the formalism is its capability to isolate and to visualize the energy redistribution and
energy fluxes induced by the flow. This facilitates a more direct description and analysis
of convective heat transfer compared to conventional (integral) methods based on wall
heat-transfer coefficients. The integrated values from conventional methods measure the
gross amount of thermal energy that crosses the boundary, while the decomposition here
is aimed at revealing thermal coherent structures and thermal transport routes inside the
domain. This enables a heat transfer analysis at a greater level of detail.

The Lagrangian heat transfer formalism relies on the decomposition of the scalar field
C into its conductive (C̃ ) and convective (C ′) components following C = C̃ +C ′. The evo-
lution of the conductive and convective scalar fields are governed by

∂C̃

∂t
= 1

Pe
∇2C̃ ,

∂C ′

∂t
+∇· (uC ′−Pe−1∇C ′) =−u ·∇C̃ ,

(4.9)

with the boundary conditions C̃ |Γ = 1 and C ′|Γ = 0 and the initial conditions C̃ (x ,0) = 0
and C ′(x ,0) = 0. The conductive component C̃ is given by the analytical expression

C̃ (r, t ) = 1−2
∞∑

m=1

J0(αmr )

αm J1(αm)
e−α

2
m t , (4.10)

with Jn(x) the nth Bessel function of the first kind and m the mth positive root of Bessel
function J0(x). In this section, C represents the temperature field, yet the formalism can
be applied to any advective-diffusive scalar field. The physical interpretation of the con-
ductive and convective components is as follows:

• The conductive component C̃ represents the temperature field without flow (u = 0)
and serves as a reference state for convective heat transfer. The governing transport
equation for C̃ in Eq.(4.9) represents then heat transfer by conduction only.

• The convective component C ′ comprises the impact of the fluid motion on the
evolving temperature distribution. It meets the condition limu→0C ′ = 0 via the
boundary condition C ′|Γ = 0. The quantity C ′ actually corresponds to the energy
content of infinitesimal fluid parcels relative to the reference conductive state C̃ .
The regions with positive convective component (C ′ > 0) have relatively higher en-
ergy content compared to the conductive state. These regions determine the so-
called convective-heating zones. The regions with negative convective component
(C ′ < 0) have relatively lower energy content than the conductive state and thus re-
veal convective-cooling zones.

The governing equation of C ′ (Eq.(4.9)) describes the energy transfer relative to the
conductive state. Thus the proposed formalism specifically isolates the role of the fluid



4.2. MODELING FLOW AND HEAT TRANSFER

4

47

flow (advection) in the total energy content, which is the main objective in many thermal-
engineering problems (see Bejan (1995); Sunden and Shah (2007)). Essential in this con-
text is that the reference state C̃ , as opposed to (in principle) arbitrary reference states for
the total temperature C , is distinct and with a clear physical meaning. This renders C ′ (and
any derived quantities) also physically unique and meaningful in thermal analysis.

The proposed decomposition admits further differentiation and interpretation. We
can express the convective part in the generic transport form

∂C ′

∂t
+∇·Q ′ = F, Q ′ = q c +q ′, q c = uC ′,

q ′ =− 1

Pe
∇C ′, F =−u ·∇C̃ ,

(4.11)

describing (changes in) the relative energy content C ′ of infinitesimal control volumes
due to two fundamental thermal transport mechanisms: the internal energy genera-
tion/dissipation, denoted by F , and the energy exchange with the environment, denoted
by the flux vector Q ′. Further physical interpretation of the quantities F and Q ′ is provided
below.

The source F is the driving force for convective heat transfer, since a non-trivial C ′
can only be accomplished by non-zero F for given homogeneous initial/boundary condi-
tions for C ′ (see Eq.(4.9)). This role of F is not specific to this particular case and naturally
emerges from the decomposition for a whole range of practically relevant thermal bound-
ary conditions, see Speetjens (2012) for details. Closed boundaries as in the 2D RAM case
cause

∫
D F d xd y = 0. This implies zero net energy input by F , see Speetjens (2012). Net

changes in the energy content are here induced indirectly through conduction along non-
zero wall gradients: ∆qw all , f low = qw all − q̃w all = Pe−1∂C ′/∂r |Γ. The source F also relates
to the conductive state C̃ , as can be seen as follows. Flow with temperature gradients ∇C̃
implies fluid parcels entering regions with relatively higher C̃ , signifying a relatively lower
C ′ = C − C̃ and, in consequence, a relative decrease in the convective energy content C ′.
Hence, the regions with higher C̃ effectively act as heat sinks for the convective contribu-
tion C ′: F = −u · ∇C̃ < 0. Conversely, flow against ∇C̃ effectively acts as a heat source for
C ′: F = −u · ∇C̃ > 0. Former and latter effects intimately relate to the before-mentioned
convective cooling and heating processes, respectively.

The flux Q ′ represents the total redistribution of relative energy C ′ induced by the fluid
motion and can be considered as a net convective flux. It becomes zero for stagnant fluid
(u = 0).

The flux q ′ constitutes the conductive component to Q ′ and accounts for the part of
the total conductive heat flux q = −Pe−1∇C = −Pe−1(∇C̃ +∇C ′) due to gradients in the
convective component C ′. This involves the redistribution of energy C ′ over material re-
gions by molecular diffusion.

The flux q c constitutes the convective component to Q ′ and involves the redistribu-
tion of C ′ over flow regions by motion of fluid parcels (it thus represents a direct convec-
tive flux). Fluid parcels with C ′ > 0 increase the energy content at their momentary posi-
tion relative to the conductive state and thus effectuate an energy influx (direct convective
heating: u ·q c > 0). Conversely, fluid parcels with C ′ < 0 locally decrease the relative energy
content, resulting in an energy outflux (direct convective cooling: u ·q c < 0).
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4.3. METHODOLOGY

4.3.1. NUMERICAL SIMULATIONS

A finite element method (FEM) is used in Comsol Multiphysics 4.3b to solve 2D mass and
momentum equations (Eq.(6.1)) and the advection-diffusion equation (Eq.(6.2)). An un-
structured triangular grid is constructed with approximately 584000 nodes to maintain
the numerical stability. The numerical convergence and accuracy is inspected by stan-
dard grid refinement tests. Integrations were performed with a second-order backward-
difference scheme and implicit time-stepping. A relative tolerance of 10−3 is prescribed
for the velocity components in the solver for the steady flow field, whereas an absolute
tolerance of 10−3 (which corresponds to mK) is prescribed for the temperature field in the
solver for the advection-diffusion equation.

Material curves in the limit of infinite Péclet number are determined by the tracking
algorithms discussed by Malyuga et al. (2002). In the limit of infinite-Pe, the scalar trans-
port is equivalent to passive advection so that the evolution of scalar fields can then be
done by tracking only the iso-levels of scalar concentrations.

4.3.2. EXPERIMENTAL SETUP

A detailed description of the simplified RAM facility is given in Section 2.2. The current
study utilizes both isothermal (for flow field measurements and dye experiments) and
non-isothermal (for temperature field measurements) settings. The motor-driven belt sys-
tems are positioned oppositely on two apertures (offset angle Θ = 180◦) and aperture arc
angle∆ is set to 45◦. A time-periodic piecewise steady flow field is generated by sequential
actuation of the two motor-belt systems (the belt velocity is fixed to 0.004 m/s) and τ is set
to 10.

4.3.3. MEASUREMENT TECHNIQUES

The main motivation of the experiments in this chapter is the investigation of the evolu-
tion of the flow field and scalar fields in time. This necessitates the implementation of
three well-known optical visualization methods to the system: particle image velocimetry
(PIV), infrared thermography (IRT) and dye visualization for the acquisition of the flow
and scalar fields. The reader is referred to Section 2.4 for the implementation details of
these methods.

4.3.4. DYNAMIC-MODE DECOMPOSITION ANALYSIS

Data processing and analysis is based on the dynamic mode decomposition (DMD). It
is a mathematical method which aims to recover the actual eigenmode decomposition
(Eq.(6.4)) from data at discrete time levels. It assumes that the subsequent time levels
relate via a mapping:

c n+1 =A c n (4.12)

where c n denotes the scalar field in discrete partitions in the domain at time level tn = n∆t
and A is a linear operator that maps a scalar field c n to the consecutive one c n+1. The
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eigenfunction-eigenvalue pairs of the mapping matrix A are the approximations for the
eigenfunction-eigenvalue pairs {ϕk ,µk } of the advection-diffusion operator L2. Moreover,
DMD determines the approximate expansion coefficients γk . The details of the algorithm
can be found in the studies by Schmid (2010, 2011).

4.4. COMPARATIVE ANALYSIS

In this section, results derived from the spectral analysis, experiments and numerical sim-
ulations are compared for a given set of parameters. The analysis concerns two funda-
mental cases of the configuration that is introduced in Section 4.2.1: a typical case at finite
Péclet number (advective-diffusive transport) and the corresponding limit case at infinite
Péclet number (advective transport). First, a qualitative comparison of the experimen-
tally and numerically obtained flow fields is performed for the case of steady flow in the
2D RAM. Then, in the framework of the advective-diffusive transport case, the dominant
eigenmode of the system is acquired by directly determining the eigenvalue-eigenfunction
pairs of the advection-diffusion operator L2 using the method by Lester et al. (2008) which
defines the benchmark solution for the analysis hereafter. Subsequently, DMD is applied
on the experimental and numerical data to determine the dominant eigenmodes of the
time-resolved data sets. For the infinite-Pe limit, in which diffusion is negligible, the ex-
periments are done at isothermal conditions, i.e. the temperature field is replaced by a
non-diffusive scalar field, and scalar transport is investigated in terms of the advection of
material curves. Finally, convective heat transfer analysis is applied to the numerical data.

4.4.1. FLOW FIELD

This section contains a comparative analysis of numerical and experimental results from
PIV measurements for the flow field of an isothermal fluid. This comparison gives insight
in how well the flow field from numerical simulations agrees with experimentally obtained
flow fields at the free surface of the shallow fluid layer. Additionally, it may shed light on
possible inertial effects in the experiments and their relative importance. This analysis is
performed for the steady flow driven by only one aperture. Before proceeding with the
further analysis, it should be noted that the flow field from the numerical simulations is
also compared with the analytic solution of the flow given in Hwu et al. (1997), which
yields negligibly small differences between the two cases. Using Eq.2.1 the deviation in the
u-component, v-component and the magnitude of the flow field are found to be 0.0318,
0.0381 and 0.0242, respectively. The effect of the analytical versus numerical flow field
on the temperature field is also analyzed and the results shows a good agreement (the
deviation parameter given by Eq. 2.1 is 1.66×10−4). Based on the insignificant differences
between the numerical and analytical solutions, the temperature fields acquired from the
analytical flow field are not shown in this chapter in order to avoid repetition of figures
and for the sake of simplicity.

The velocity fields and streamlines obtained experimentally via PIV measurements
and computed numerically for the 2D flow problem are compared in Figure 4.2 and Fig-
ure 4.3. Figure 4.2 compares the contours of the velocity magnitude. Notwithstanding the
small differences observed in velocity field contours, similar flow structures are captured
both experimentally and numerically. The differences can be attributed to the presence
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of weak inertia in the shallow fluid layer experiments and eventually weak 3D effects (al-
though shown to be negligible in Section 2.2.1). The differences are particularly evident
in the comparison of the streamlines (see Figure 4.3). However, the same structure com-
posed of a stagnation point with concentric circular streamlines is observed in both cases.
Hence, the streamline patterns are topologically equivalent.

0.50.1 0.9

Figure 4.2: Dimensionless flow field generated by the right aperture is acquired experimentally (left panel) and
numerically (right panel). The contours indicate the magnitude of the velocity.

Figure 4.3: Streamlines obtained by the integration of the velocity field generated by the right aperture motion in
experiments (left panel) and numerical simulations (right panel).

Figure 4.4: Poincaré section of two-window 2D RAM with period time T = 20 including period-1 hyperbolic
points (x) on the (black) symmetry axis (left) and unstable manifolds (red and blue curves are the unsteady man-
ifolds of the upper and lower crosses, respectively) (right).
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The advection properties of the simulated flow field for the configuration described in
Section 4.2.1 is demonstrated by a Poincaré section in Figure 4.4 (left), which reveals global
chaotic advection, except for a tiny island on the (black) symmetry axis. The crosses (x) on
the symmetry axis are the hyperbolic period-1 points that return to their initial position
after each period. The scalar transport is dominated by the unstable manifolds of these
two hyperbolic period-1 points (red and blue curves in Figure 4.4 (right)). These manifolds
delineate the asymptotic advection pattern of scalar fields in the infinite-Pe limit.

4.4.2. ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT AT FINITE-PE

The advective-diffusive transport at finite Péclet number is analyzed by experimental ob-
servations and numerical simulations for the configuration explained in Section 4.2.1. The
ADE is numerically solved with Comsol for 100 periods to reach a fully homogeneous state.
On the other hand, the experiment is performed for 50 periods beyond which the evolu-
tion of the temperature field is inherently terminated due to the heat balance in the tank.
In the experiments, the evolution of the temperature field in the test section starts from
an initially uniform distribution, and the data acquisition commences as heat is supplied
at the lateral circular boundary. Within a few periods, the initially homogeneous temper-
ature field transforms into a periodically persistent pattern and evolves self-similarly with
increasing scalar intensities (Figure 4.5). The evolution of the temperature field in the nu-
merical case is in close agreement with the evolution in experiments (see Figure 4.6). Sig-
nificant differences occur only in the longer term in that the numerical field evolves into
a homogeneous state, while the experimental field evolves into a non-uniform state due
to the surface heat losses. The wall heat flux is strongest in the beginning and gradually
diminishes over time due to the decaying temperature gradients at the wall. For T̃ & 10
the wall heat flux then becomes too small to effectively compete against the adverse effect
of the heat loss at the free surface (discussed in Section 2.2.1).

Figure 4.7 and Figure 4.8 illustrate the first few eigenmodes extracted via DMD from ex-
perimental and numerical time-resolved data sets, respectively. In the experimental case
there are only two eigenmodes that can be extracted. The pattern in Figure 4.7 (left) is
the dominant eigenmode of the experimental temperature field, which is consistent with
the numerical dominant eigenmode (Figure 4.8 (top left)). The second dominant eigen-
mode of the experimental temperature field shows a great resemblance with the second
dominant eigenmode of the numerical temperature field. However, when the magnitudes
of the second dominant eigenmodes are compared to the magnitudes of the dominant
eigenmodes, the second dominant eigenmode of the experimental temperature field is
very weak to say that it is the experimental counterpart of the second dominant eigen-
mode of the numerical temperature field. This is due to the imperfections compared to
2D case (i.e. heat losses from the free surface) and the error in the infrared camera images.

For a comparative eigenmode analysis, the dominant eigenmode of the advection-
diffusion operator L2 for Pe = 10000, τ = 10, Θ = π is set as the benchmark solution
and compared with the experimental and numerical eigenmodes. The application of the
eigenmode analysis on the ADE allows us to obtain the long persistent pattern of the ther-
mal evolution. Determination of the eigenvalue-eigenfunction pairs for L2 as explained
in Section 6.2.2 reveals the persistent pattern in Figure 4.9 (left) as being the ’dominant
eigenmode’ with a non-dimensional exponential decay rate µ0 of −0.00126±0.00001 for
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Figure 4.5: Snapshots of experimentally obtained temperature distributions at the free surface of the silicon oil.
The color range from 0 to 1 (dimensionless temperature) is indicated from blue to red. The persistent thermal
patterns are plotted for the dimensionless periods T̃ from 0 to 5. One period represents 1250 s in the experi-
ments, Re = 0.1, Pe = 10000, and τ= 10.

Figure 4.6: Snapshots of numerical temperature distributions. The color range from 0 to 1 (dimensionless tem-
perature) is indicated from blue to red. The persistent thermal patterns are plotted for the dimensionless periods
T̃ from 0 to 5. Re = 0, Pe = 10000, and τ= 10.

the case of interest. In all three results shown in Figure 4.9 similar spatial structures are ob-
served where the spectral method unavoidably gives the highest degree of detail. Despite
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Figure 4.7: Leading eigenmodes of the experimental data set for Pe = 10000, τ= 10 and Re = 0.1.

Figure 4.8: Leading eigenmodes of the numerical data set for Pe = 10000, τ= 10 and Re = 0.

the good agreement in the dominant eigenmodes, the exponential decay rates µ0 of the
different methods shows incongruity. Comparison of the decay rates found via simulation
and spectral method shows that this is somewhat higher for the former. This is due to the
fact that discretization introduces numerical diffusion and thus artificially increases the
homogenization rate in the simulations. This numerical diffusion also smears out the fine
structures in the scalar field, explaining why it reveals less detail compared to the spec-
tral method. The decay rate of the experimental analysis is µ0 = −1.43×10−6 and differs
substantially from those of the simulation and the spectral method. This is due to the fact
that the steady-state eigenmode (corresponding to vanishing eigenvalue µk = 0) of the ex-
perimental system is different from that for the ideal system described by the simulations
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and the spectral method. The steady state of the ideal system corresponds to a trivial uni-
form eigenmode, meaning that eigenmode ϕ0 is in fact the first non-decaying eigenmode
(hence µ0 < 0). For the experimental system, on the other hand, weak surface heat losses
cause eigenmode ϕ0 to become the non-uniform steady state (hence µ0 ≈ 0).

Figure 4.9: The theoretical dominant eigenmode acquired by the spectral analysis of the ADE (left), the dominant
eigenmodes of the numerical simulations (middle) and the experiments (right) for the case with Pe = 10000,
τ = 10 and Re = 0 (in experiments Re = 0.1). The values on top of the figures are the decay rates µ0. DMD is
applied on numerical and experimental data sets to obtain the dominant eigenmodes.

The variance of the temperature distribution decreases exponentially in time as shown
in Figure 4.10 (left) for the numerical experiment as the system works to reach a homoge-
neous temperature distribution eventually. However, the decay is different in the experi-
mental case as depicted in Figure 4.10 (right) due to the fact that the heat loss in the system
results in a different exponential decay rate (as explained above). The error bars are calcu-
lated based on the accuracy of the infrared camera.
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Figure 4.10: The change of the variance of the numerical temperature field with time: linearity in the logarithmic
plot shows the exponential decay of the variance (left). An enlargement of the top-left part is shown in the right
panel, together with the change of the variance of the experimental temperature distribution with time (blue
dots). The error bars are calculated based on the accuracy of the infrared camera.

As discussed above, the dominant eigenmode is a period-1 eigenmode of a finite-Pe
case (period-1 eigenmode implies that ω0 = 0 and finite-Pe causes µ0 = σ0 < 0), where
the spatial pattern namely decays self-similarly: C (x , (n +1)T )/C (x ,nT ) = eµ0T . In the
case of infinite-Pe limit, however, the period-1 eigenmode does not decay anymore, i.e.
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C (x , (n +1)T )/C (x ,nT )
= 1, since µ0 =σ0 = 0. The details of infinite-Pe case is discussed in the next section.

4.4.3. ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT IN THE LIMIT OF

INFINITE-PE

The evolution of the initially inhomogeneous scalar field toward an asymptotically mixed
state is examined in the limit of infinite-Pe for τ= 10 andΘ=π case, both numerically and
experimentally. Initially, the domain is composed of two equally-sized regions colored in
black and white. After a few stretching-folding cycles the scalar field evolves into a com-
plex structure. The pattern as a whole remains fixed (as expected for period-1 structures)
yet contains more detail.

This case is an example of global chaotic advection where the unstable manifolds of the
hyperbolic period-1 points (Figure 4.4) determine the asymptotic mixing pattern corre-
sponding with an eigenmode of period-1 which is non-decaying, i.e. µ0 = 0 (see Gorodet-
skyi et al. (2014)). The scalar field exponentially converges on this pattern independently
of the initial distribution. Chaos causes a very complicated mixing pattern and thereby
a very complicated spatial structure of the eigenmode. In other words, this pattern is a
’strange’ eigenmode.

The numerical and experimental visualizations of advection of this scalar field (Figure
4.11 and Figure 4.12) show how the initial scalar concentration quickly approaches the
asymptotic mixing pattern - and thereby the period-1 strange eigenmode. This reveals the
quick emergence of a mixing pattern that closely correlates with the manifold structure
in Figure 4.4. It is important to note that after only 2 periods, detailed features of the dye
distributions and manifolds are in close agreement.

T = 0 T = 1 T = 2
~ ~ ~

Figure 4.11: Simulated advection of initial disk of passive scalar for τ= 10.

Numerical tracking of the dye for more than 2 periods is computationally extremely
expensive. However, this is not a problem in the experiments, which indicates that there
is a clear advantage of the experimental studies over numerical simulations for these par-
ticular aspects.

The experiments at some point always suffer from diffusion, no matter how weak, due
to the extreme concentration gradients that develop over time. This causes gradual blur-
ring and in the end vanishing of the details of the small-scale features, which is partic-
ularly visible at T̃ = 20 in Figure 4.12. Yet, the overall shape of the internal region (the
black-white region made of stretched-folded material lines and enclosed by the black re-
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Figure 4.12: The evolution of scalar patterns in the limit of infinite-Pe. Parameter settings: Re = 0.1 and τ= 10.

gion near to the stationary walls of the domain) remains intact and continues to correlate
well with the distinction between red and blue regions in the finite-Pe dominant mode
(Figure 4.6 and Figure 4.12). The longer-term dye patterns thus still have a physical mean-
ing by in fact visualizing the finite-Pe dominant eigenmode for very high (yet finite) Pe. A
similar case is studied by Gorodetskyi et al. (2014), where numerical diffusion is exploited
to emulate diffusion at extreme Pe. The dominant mode of the finite-Pe case at more
moderate Pe can therefore be seen as a smeared-out version of the infinite-Pe case. The
lower the Péclet number is, the more blurred the features in the mixing pattern become.

The fact that the location and shape of the black regions in the dye patterns in all cases
correlate well with the red regions in the finite-Pe mode has a clear physical message. It
namely implies that transport in the black (red in finite-Pe case) region is basically in-
dependent of Pe, meaning that here advection is irrelevant, or conversely, that diffusion
dominates. The primary effect of growing Pe on the dominant eigenmode is the greater
spatial complexity that develops in the internal region enclosed by the diffusive (black)
region near to the wall. The infinite-Pe limit of that internal structure is then the asymp-
totic mixing pattern due to the unstable manifolds. Conversely, the internal structure at
finite-Pe is basically a smeared-out version of the asymptotic mixing pattern.

4.4.4. THERMAL ANALYSIS

For the analysis of the effect of fluid motion on the thermal process in the 2D RAM, the
temperature field is decomposed into the conductive and convective contributions. The
total temperature C is simulated using Comsol Multiphysics 4.3b (Section 4.3.1); the con-
ductive component C̃ is the axisymmetric analytical solution of 1D diffusion equation for
a cylindrical domain given by Eq. 4.10. The difference between the total temperature field
and the conductive component is the convective component C ′ that represents the effect
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of fluid motion on the thermal energy content.

Figure 4.13: Temperature decomposition after the first three activations of the windows: left-right-left. Color
code C and C̃ : blue (0) - red (1); color code C ′: blue (min C ′ < 0) - gray (C ′ = 0) - red (max C ′ > 0).

The instantaneous temperature decomposition after the first three activations of the
windows is shown in Figure 4.13. The sequence of window activation is left-right-left. The
comparison of the total temperature field C (left) and the conductive component C̃ (mid-
dle) shows the influence of the advection on the temperature distribution. Warm fluid
patterns (red in Figure 4.13 (right)) separate from the upper edge of the left window (t = τ)
and lower edge of the right window (t = 2τ) during the subsequent activations of the aper-
tures and enter the cold interior region (blue). Consecutive window activations arouse this
window-wise plume formation in a manner analogous to a periodically kicked pendulum.
The cold regions localized at the windows in the convective component C ′ (right) display
the cold fluid parcels entering warm region. Thus C ′ exposes that the fluid motion in-
deed causes two simultaneous processes: the transport of relatively warmer fluid from the
wall into the interior (convective heating) and the transport of relatively colder fluid from
the interior toward the wall (convective cooling). Both processes contribute to the heat-
transfer enhancement: the former increases the interior energy content far more rapidly
than by conduction alone; the latter amplifies the heat influx from the wall by steepening
the temperature gradient at the windows. The additional local influx (compared to the
conductive state) is q ′|Γ =−Pe−1∂C /∂r < 0 due to C ′|Γ = 0 and C ′ < 0 in the adjacent cold
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region. The warm fluid parcel partially prevents the additional window influx by locally
reducing the wall temperature gradient upstream of the windows. The flow nonetheless
accomplishes a net energy increase and thus heat-transfer enhancement. The rapid heat
take-up from the wall to the interior continues for a prolonged period of time until the
interior has undergone a substantial temperature/energy increase. When the fluid drawn
into the window regions becomes insufficiently sub-cooled for appreciable wall temper-
ature gradients, the heat take-up from the wall decelerates. This causes gradual decay of
the convective cooling zones, as demonstrated in Figure 4.14, and, in consequence, break-
down of heat-transfer enhancement.

C C´C�

(a) t = 9τ

(b) t = 41τ

(c) t = 121τ

C C´C�

C C´C�

Figure 4.14: Temperature decomposition for typical time instances during the transient towards the homoge-
neous state. Color code C and C̃ : blue (0) - red (1); color code C ′: blue (min C ′ < 0) - gray (C ′ = 0) - red (max
C ′ > 0).

In addition to the decomposition of the temperature field into its conductive and con-
vective components, the convective component C ′ is decomposed into its eigenmodes
to compare the spectrum of the scalar field C to the spectrum of the convective compo-
nent C ′. Figure 4.15 shows the eigenmode decomposition of the convective component
C ′, where the top left pattern is the dominant eigenmode of C ′ and is consistent with
the evolving pattern in Figure 4.13 and Figure 4.14 (right column). The dominant eigen-
mode of C (Figure 4.8 (top left)) also appears in the spectrum of C ′ as a decaying mode
with the same decay rate. The reason is that the advection mode is the driving mode
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Figure 4.15: Leading eigenmodes of convective component C ′ for Pe = 10000, τ= 10 and Re = 0.

for the displacement of the heat and the mode decays as the temperature field becomes
homogeneous. The second, third and fourth dominant eigenmodes of C can be seen in
the spectrum of C ′ with the same decay rates. The remaining axis-symmetric modes of
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C ′ correspond with the modes of C̃ due to the fact that C ′ = ∑
m γ′mϕ′

meµ
′
mT = C − C̃ =∑

k γkϕk eµk T −∑
n γ̃nϕ̃neµ̃nT , i.e. the spectrum of C ′ comprise both modes from C and

C̃ due to the superposition in C ′ = C − C̃ . Component C ′ namely after all represents the
effect of fluid motion on the heat transfer and its modal structure may offer further insight
into the fundamentals of convective heat transfer.

4.5. CONCLUSION

This study concerns a comparative analysis on the evolution of advective-diffusive scalar
transport by experimental and numerical analysis in a simplified model of the RAM. Cross-
sectional evolution of flow and temperature fields of the RAM was modeled in an exper-
imental setup that consists of a circular test section with an annular hot water reservoir
and alternatingly actuated belts at apertures positioned on the circumference of the test
section (a configuration which is denoted as the 2D RAM). PIV was implemented to ac-
quire time-resolved velocity fields and IRT was used to assess evolution of temperature
fields in time. To visualize the evolution of a concentration field in the limit of infinite-Pe
dye visualization experiments were conducted. Commercial multiphysics solver Comsol
4.2a was used to compute the velocity and temperature fields in a two-dimensional circu-
lar domain with appropriate initial and boundary conditions. A comparative analysis was
performed on the velocity/scalar fields derived from experiments and numerical simula-
tions. 3D inertial effects in experiments are mild so that similar flow/scalar field structures
are observed.

The importance of the eigenmode analysis is its capability to reveal the persistent
structures dominating the scalar field evolution. For a comparative eigenmode analysis,
the ADE is spectrally decomposed into its eigenvalue-eigenfunction pairs and the dom-
inant eigenmode with the slowest decay rate is set as the benchmark pattern. DMD is
applied on the experimentally and numerically obtained temperature fields to obtain the
dominant eigenmodes of the evolution. In general, a good agreement is observed between
the dominant eigenmodes of the ADE and the DMD analysis on the experimental and nu-
merical data sets. A quantitative analysis of the scalar field confirms that when diffusion is
effective, self-similarly decaying patterns dominate the scalar field evolution and the evo-
lution can be simplified to a spatial structure and a decay rate pair which has the slowest
decay rate. The onset of the permanent pattern is due to the convergence of the scalar
field to the dominant eigenmode of the advection-diffusion operator in closed flows. In
the limit of zero-diffusivity the self-similarly decaying structure turns into a complex spa-
tial structure with non-decaying gradients and increasing complexity. The methods and
tools employed in this study validate the eigenmode approach and the results of differ-
ent methods support each other. Nonetheless, each method has its own advantage(s) and
restriction(s) which are summarized in Table 4.1.

The thermal analysis presented in the current study investigates convective heat trans-
fer from an alternative perspective. The advantage of the analysis is its capability to ex-
plicitly isolate and visualize the energy redistribution and energy fluxes induced by the
flow. This facilitates a more direct description and analysis compared to conventional
methods based on integrated values and wall heat-transfer coefficients. The convective
component C ′ directly exposes a key element of convective heat transfer: the formation of
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Advantages Restrictions

Eigenmode analysis Gives the highest degree of detail.
Computationally cheaper than
the numerical simulations at
Pe=10000

In the limit of infinite-Pe it
becomes computationally expen-
sive.

Numerical simulations
and contour line tracking

Easy setup of the model
configuration
Allows to study both ideal and
physical configurations to assess
the effects of non-ideal conditions
(temperature-dependence of
material properties, inertial flow
effects, etc.)

The discretization smears out the
fine structures and increases the
homogenization rate.

Experimental observa-
tions

Reliable long-term experiments in
the limit of infinite-Pe

Unavoidable heat losses
Mild 3D effects

Table 4.1: The summary of the advantages and the restrictions of the methods used in the current study

so-called convective-cooling/heating zones inside the domain due to the transfer of rel-
atively colder/warmer fluid into certain flow regions. These zones enhance heat transfer
in two ways: heating zones increase the interior energy content far more rapidly than by
conduction alone; cooling zones augment the heat influx from the wall by steepening the
temperature gradient. This reveals that enhanced heat transfer is accomplished by a cyclic
fluid exchange between convective-cooling zones (which form at specific segments of the
hot wall) and the interior. The alternative approach employed here is in fact part of a larger
framework, see Speetjens (2012).

The experimental methods and tools used in the current study are promising for fur-
ther investigation of the mixing characteristics of the RAM for different configurations.
Despite the heat losses in the temperature field experiments, the results of the concentra-
tion (dye) and temperature field experiments show similar characteristics: the evolution
is dominated by a persistent pattern overall structure of which is the same in both cases.
However, the dye (infinite-Pe limit) experiments give more detailed information on the
complex spatial structure of the repeating pattern. Relying on the results obtained in the
current study, in the next chapter, an experimental analysis on the mixing characteristics
of the actual RAM is conducted via exploring the response of the simplified 2D RAM to
changing parameters, i.e. a parameter-regime study of the 2D RAM that deepen insight
into the mixing characteristics of the actual RAM, qualitatively.





5
PARAMETRIC ANALYSIS OF A

REORIENTED DUCT FLOW

This study concerns a coupled experimental-numerical analysis of scalar transport in re-
oriented duct flows found in industrial mixing processes. To this end the study adopts the
Rotated Arc Mixer (RAM) as the representative configuration. The focus is on the effects of
geometrical (i.e. reorientation angle Θ) and temporal (i.e. reorientation frequency τ) pa-
rameters of generic inline mixing devices on the Lagrangian particle dynamics and scalar
field evolution. Lagrangian dynamics are investigated by constructing Poincaré sections
from analytic flow solutions and stroboscopic measurements of particle positions in 2D
RAM laboratory setup. In order to obtain the optimal mixing and homogenization of scalar
fields, dye visualizations are performed for an extensive set of parameters. The mixing qual-
ity in parameter space is quantitatively evaluated by means of the intensity of segregation.
These results are used to determine the optimum forcing protocol. The outcome of this study
validates the qualitative agreement in mixing characteristics of 2D time-periodic and 3D
spatially-periodic flows and confirms the good mixing performance found before for cer-
tain RAM configurations. Moreover, we demonstrate that even more efficient protocols can
be devised by suitably tuning the sequence of the reorientation angle. This knowledge might
eventually lead to optimized 3D reoriented duct flow mixers.

Parts of this chapter have been submitted to EJMB/Fluids: O. Baskan, M.F.M. Speetjens, G. Metcalfe and H.J.H.
Clercx, Experimental and Numerical Parametric Analysis of a Reoriented Duct Flow.
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5.1. INTRODUCTION

Scalar advection in reoriented duct flows is an active area of research due to their par-
ticular relevance to continuous industrial mixers such as the Kenics mixer (Galaktionov
et al., 2003; Thakur et al., 2003), SMX mixer (Thakur et al., 2003) and the Rotated Arc Mixer
(Metcalfe et al., 2006), to microfluidic lab-on-a-chip diagnostic devices, and to the bulk
manufacturing of fine chemicals. The flow in these configurations can be characterized
by three common features: (i) a continuous throughflow; (ii) a transverse flow generated
by internal elements or moving boundaries; (iii) systematic reorientation of the flow along
the duct axis (Speetjens et al., 2006). The interplay between the axial and transverse flow,
which is controlled by a set of parameters, determines the state of the mixing. In this re-
spect, it is of importance to deepen insight into the effects of these control parameters on
the mixing efficiency.

This study adopts a 2D simplified Rotated Arc Mixer (RAM) as a representative con-
figuration. The simplification relies on the fact that the downstream progression of reori-
ented duct flows in axial direction is dynamically similar to evolution in time, implying
3D spatially-periodic flows can be well represented by 2D time-periodic flows. This ap-
proach is common in the analyses of reoriented duct flows (Gorodetskyi et al., 2014; Speet-
jens et al., 2006; Stroock and McGraw, 2004). Likewise, the 3D steady scalar transport in
spatially-periodic systems can be transformed into 2D time-dependent systems assuming
that the axial diffusion is negligible (Lester et al., 2014). In a practical context, the simpli-
fied cases retain the fundamental kinematic properties and deviate from the real 3D cases
quantitatively, which validates the suitability of the simplified approaches for qualitative
mixing analyses (Speetjens et al., 2014) (including parameter studies).

In this context, this chapter aims to investigate the influence of geometrical (i.e., reori-
entation angle) and temporal (i.e., reorientation frequency) parameters of the RAM on the
evolution of advective-diffusive scalar transport and the flow topology. To achieve this,
three different approaches are followed: (i) the Lagrangian flow topology is investigated
by means of an analytical solution of the 2D RAM flow; (ii) experiments are performed to
analyze the Lagrangian flow topology via direct measurements of Poincaré sections; (iii)
transport of scalars is investigated experimentally via dye visualizations. The analytical
solutions are used to assess the characteristics of the flow topology in a general manner in
a wide parameter space and thus enables construction of a regime diagram. Two comple-
mentary methods, Poincaré sections and dye visualizations, are employed experimentally
to deepen insight into the Lagrangian transport. The advantage of the experiments over
the numerical simulations is that long-term evolution of the scalar fields can be investi-
gated; numerically this is very challenging, if not impossible, due to the complex structure
of the scalar field patterns. As 2D RAM has characteristics which are generic to all 3D
reoriented duct flows, this parametric study provides valuable information regarding the
optimization of the reorientation angle and frequency to enhance the mixing quality in
actual systems.
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5.2. PROBLEM DEFINITION

The geometrical control parameter of the 3D RAM is the offset angle Θ, whereas the tem-
poral parameter is the ratio of axial to transversal time scales β = ΩL/Umean, where Ω is
the angular velocity of the rotating outer cylinder, L is the axial length of cells and Umean

the mean axial velocity. In the 2D case, β simplifies to τ =ΩT = T /T f , where T is the di-
mensionful time of one aperture activation and T f = R/U the typical flow time scale with
U the velocity of arcs and R the radius of the domain. In the current study, the experi-
ments are performed for a total of eight Θ values and five τ values for each Θ case. 2D
time-periodic flow is accomplished by successive activation of p arcs, resulting in T = pτ
as total period time, where offset Θ is chosen such that pΘ= m2π with m an integer. The
full parameter set consist of parameters Θ, τ, Pe = ΩR2/D and Re = ΩR2/ν, where Pe is
the Peclét number with D the material diffusivity and Re is the Reynolds number with ν

the kinematic viscosity. However, investigation of the effects of Re and Pe are beyond the
scope of this study which is limited to the flow regime at the Stokes limit (Re = 0) and the
scalar transport in the advective limit (Pe−1 ≈ 0). Theoretical studies of non-zero Re and
finite Pe on the RAM flow are given in the works by Speetjens et al. (2014) and Lester et al.
(2007), respectively.

5.3. EXPERIMENTAL PROCEDURE

A detailed description of the simplified RAM facility is given in Section 2.2. The current
study utilizes the isothermal (for flow field measurements and dye experiments) settings.
The experiments are performed with two different numbers of apertures but with all aper-
tures having the same opening angle ∆ = π/4 (Fig. 5.1a and b). In the first setup, there
are 4 apertures which allows the investigation of four different Θ cases (Table 5.1). This
is achieved by changing the activation sequence of the apertures. For instance, activation
A1-A2-A3-A4 results inΘ=π/2, whereas A1-A3 givesΘ=π. The second setup consists of
five apertures that are also activated in different orders to generate another four Θ cases
(Table 5.1). In all cases the aperture belts rotate in the positive θ (counterclockwise) direc-
tion, and so positive Θmeans activating apertures (belts) in a counterclockwise sequence
and negative Θ means activating apertures in a clockwise sequence. The measurements
for eachΘ case are performed for τ= 0.1, 1, 2, 5 and 10.

Activation order Offset angleΘ (rad)
A1 2π

A1-A3 π

A1-A2-A3-A4 π/2
A1-A4-A3-A2 −π/2

B1-B2-B3-B4-B5 2π/5
B1-B5-B4-B3-B2 −2π/5
B1-B3-B5-B2-B4 4π/5
B1-B4-B2-B5-B3 −4π/5

Table 5.1: Activation orders and corresponding angular offset valuesΘ for the two experimental RAM configura-
tions. A stands for the configuration with 4 apertures, whereas B stands for the configuration with 5 apertures.
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A1

A2

A3

A4

B1

B2

B3

B4

B5

∆ ∆

(a) (b) (c)

Figure 5.1: 2D RAM configurations: (a) the case with 4 apertures (gray), (b) the case with 5 apertures (gray);
(c) initial condition for the scalar field (dye in black and white colors) and particle positions. Particle initial
conditions are the centers of the red circles. Note that the actual tracer particles are much smaller than the
circles.

For the scalar field experiments, the Peclét number is assumed to be in the limit of in-
finity. In a short term, the assumption of infinite-Pe holds, whereas in a long term, there
may appear gray regions implying a finite-Pe albeit still having large values. This is due
to the fact that as the scalar field evolves the order of striation thickness reduces expo-
nentially at the rate of the Lyapunov number λ. Therefore, for any scale size a, the scale
size starts to blur at a time tblur(a) that depends on a. Because the initial striation size is
the same order as the tank size, we could express tblur(a) ∼λ−1 ln[Pe/Peb(a)], where Pe is
the usual Peclét number and Peb(a) is a local Peclét number that uses the scale size a as
the length. If Pe is really infinite, then tblur is also infinite and no length scale no matter
how small is ever blurred by diffusion. But if Pe is finite, no matter how large, then some
maximum scale a will become blurred during the duration of the experiment. Over the
duration of the experiments, diffusion exists yet it only affects smaller length scales justi-
fying the assumption of infinite-Pe (for an illustration from the present experiments, see
Fig. 5.11).

Scalar field and particle position measurements are performed concurrently to allow
the assessment of the correlation between the Poincaré maps and scalar fields. For the
analysis of scalar transport in the limit of infinite-Pe, dye visualization is utilized. For
creation of the initial conditions (Fig. 5.1c), the tank is divided into two regions by placing
a cylindrical tube concentrically in the circular tank. The radius Rin of the tube is chosen

such that the inner and outer regions of the tube have the same area, thus Rin =
p

2
2 R. The

inner region of the tube is filled with silicone oil colored by white dye whereas the outer
region is colored by black dye, which, after the removal of the cylindrical tube, serves as
the initial condition for infinite-Pe experiments. The use of white dye together with black
dye in the experiments improves the contrast of the images and allows having a proper
calibration.

The evolution of the scalar patterns is captured by an AVT Pike F145B CCD cam-
era placed above the test section. The 12-bit gray scale images have a resolution of
1388×1038 pixels and can distinguish 212 = 4096 gray levels. In order to obtain the relation
between the camera intensity values and dye concentrations, a calibration is performed
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before the measurements. To this end, six silicon oil samples are prepared by using vari-
ous amount of white and black dye mixtures. Images of these samples are then recorded
by the CCD camera (Fig. 5.2, top). A total of 100 images for each case are recorded and
averaged to eliminate the effects of random noise on the resultant intensity values. Then,
the mean of the averaged images is calculated to find the mean intensity value for each
mixture. This is performed for three different shutter times of the CCD camera, viz., 2.5, 3
and 3.5 ms.
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Figure 5.2: Camera images of mixtures with different white and black paint concentrations (top), images with
corrected intensity values that vary linearly with the white paint concentration.

The mean intensity values for different concentrations of the dye mixture are plotted
in Fig. 5.3. The intensity varies quadratically with increasing white dye percentage. More-
over, increasing camera exposure time results in the increase of intensity values for a given
white dye percentage as expected. For the longest exposure time, the image is completely
saturated for the case of 100 % white dye composition. For this reason, the images are
recorded at a camera exposure time of 3 ms in the experiments. Subsequently, the inten-
sity values of the images are corrected based on the calibration curve data to attain a linear
relation between the dye composition and intensity values. In this way, the regions with
low white dye concentration are better resolved and visualized (see Fig. 5.2, bottom).

The dye transport can be considered as non-diffusive, in the limit of infinite-Pe, how-
ever, due to stretching-folding and shear mechanisms, very fine-scale filaments and ex-
treme concentration gradients may form in the course of time which promotes molecular
diffusion. This causes gradual blurring and in the end vanishing of the small-scale fea-
tures.

Direct measurement of the Poincaré sections is achieved by combining the succes-
sive positions of tracer particles in exactly the same way as numerical Poincaré sections
are attained. To this end polystyrene foam particles (diameter dp = 1.5 mm and density
ρp = 500 kg/m3) are released on the free surface of the top layer at the beginning of the ex-
periment as shown in Fig. 5.1(c) (ρp < ρsilicon oil = 970 kg/m3 ensures they remain floating
throughout the experiment). The typical response time of particles to changes in velocity
is estimated at τp = d 2

pρp /18ρν= 6.4 µs, which is negligible compared to the typical flow

time scale T f = R/U =Ω−1 = 50 s, meaning they are indeed passively advected by the flow.
In total 21 particles are positioned equidistantly along the diameter aligned with the mid-
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Figure 5.3: Variation of mean camera intensity values with respect to white paint concentration of the mixture
for different camera exposure times and the resultant corrected variation that changes linearly with the white
paint percentage (black line).

point of the aperture A1 or B1 (this is done right after the preparation of the initial con-
dition for scalar field experiments) and their subsequent positions (together with scalar
patterns) after each period are recorded by the CCD camera. The particle positions are de-
termined from the imagery to sub-pixel accuracy by a dedicated particle-detection code
implemented in the high-level programming language MATLAB and combined into exper-
imental Poincaré sections. Note that detection of particles suffices to construct Poincaré
sections; actual tracking of individual particles is unnecessary. One pixel corresponds to
approximately 0.5×0.5 mm2, meaning that an individual particle covers about 3×3 pixels2,
which ensures reliable detection of the particle location. Experiments are run for 250 pe-
riods in all cases.

5.4. POINCARÉ SECTIONS: RESULTS OF NUMERICAL SIMULA-
TIONS

This section discusses the Lagrangian topology of the 2D RAM for a set of control parame-
ters Θ and τ via Poincaré sections. The general 2D kinematic equation is simulated using
the 2D flow field by Hwu et al. (1997). Similar to the experiments explained above, 21 parti-
cles in total are positioned equidistantly along the diameter aligned with the mid-point of
the moving wall. The particles are tracked for 1000 periods. The flow topology visualized
via numerical Poincaré sections gives the total picture of the phase diagram and serves as
a benchmark for the discussions on the experimental results given in Sec. 5.5.

First, the analytical solution is used to assess the compatibility between the Lagrangian
topologies of the 2D time-dependent RAM flow and the 3D spatially periodic RAM flow.
Poincaré sections of the 3D RAM flow are adapted from the theoretical-numerical study by
Speetjens et al. (2014), in which the calculations are performed for the cases of Θ = 2π/3
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and β= τ= 0.1, 1, 5 and 11. Accordingly, numerical Poincaré sections of the 2D RAM flow
are obtained for the same set of parameters, yet the experimental counterparts are not in
the scope of the current study. The Poincaré sections depicted in Fig. 5.4 show a good
agreement for β= τ= 0.1 and 1, however this accordance deteriorates with stronger trans-
verse forcing, i.e., stronger β, mainly because the axial flow in 3D case is a Poiseuille flow
while for a one-to-one comparison one need a uniform axial flow. Both flows nonethe-
less are topologically equivalent (see Ref. (Speetjens et al., 2014)). Another reason is the
formation of transition zones occurring between consecutive mixing cells, which expand
with increasing β (Speetjens et al., 2014). Furthermore, 3D effects may even cause devel-
opment of axial back-flow (local upstream flow) beyond a certain transverse forcing level
β. Consequently, the discrepancy between the Poincaré sections of the 2D and 3D case in-
creases with increasing β. Although the maps do not display one-to-one correspondence,
the topology is the same in terms of mixing and non-mixing zones, which is consistent
with the generic link between 3D steady RAM and 2D time-periodic RAM (Speetjens et al.,
2014). This verifies the use of simplified 2D approach for qualitative analysis of mixing
quality in 3D reoriented duct flows.

Figure 5.4: Numerical Poincaré sections for the offset angleΘ= 2π/3 and for the temporal parametersβ= τ= 0.1,
1, 5 and 11 for the 3D steady RAM flow (top row) adapted from the study by Speetjens et al. (2014) and 2D time-
periodic RAM flow (bottom row).

Figure 5.5 and Figure 5.6 show the numerical Poincaré sections computed for different
values of Θ and τ. When τ is in the limit of zero, all cases are topological circles and the
piecewise steady time-periodic nature of the flow coincides with the time-averaged steady
flow case, i.e., it becomes identical to the case of all apertures running simultaneously
(Speetjens et al., 2014). This is the reason why all particles are trapped in the trajectories
defined by the flow streamlines. All cases with τ= 0.1 correspond to a near integrable state
of the Hamiltonian system (Speetjens et al., 2014). Regular particle trajectories result in an
integral island and no fluid exchange occurs through the isolines of the island. Moreover,
for non-zeroΘ the main islands show p-fold symmetry where p is the number of steps per
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period (see Sec. 3.2). For the cases with 2, 4 and 5 apertures in one period of motion, p is
equal to 2 and 4 and 5, respectively.

Figure 5.5: Numerical Poincaré sections for the offset angles ofΘ=−4π/5,−π/2,−2π/5,0 and aperture activation
time values of τ= 0.1, 1, 2, 5 and 10.

For all cases except those withΘ= 0 andπ, as τ increases the regions of chaos form first
near the apertures, then in the center region. In the case ofΘ=π, however, the chaos form
first in the center region then in the outer region, which is similar to the flow topology ob-
served in the blinking vortex flow (Aref, 1984). When τ is large enough, the chaotic region
occupies the entire region (Fig. 5.5). Yet, the critical value of τ at which the globally chaotic
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Figure 5.6: Numerical Poincaré sections for the offset angles of Θ = 2π/5,π/2,4π/5,π and aperture activation
time values of τ= 0.1, 1, 2, 5 and 10.

state is achieved is highly dependent on Θ. The case with Θ= 0 corresponds to the steady
case with one aperture, where the particle trajectories coincides with the streamlines of
the flow field. Evidently, integrable particle motion results in inefficient mixing.

At moderate τ values, chaotic regions coexist with regular islands. If the tracers are
initially within a regular (elliptic) island, they remain inside forever, whereas the tracers
initially inside the chaotic region travel the whole chaotic region. The boundaries of these
islands, formed by Kolmogorov-Arnold-Moser (KAM) tori, act as barriers between chaotic
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and regular regions. Near the boundary between these regions, there may exist a chain
of islands of regular flow (see Fig. 5.5 and Fig. 5.6), where each island contains an elliptic
periodic point and there exists a hyperbolic point between each island. This can be ex-
plained by the Poincaré-Hopf theorem, which states that for any vector field on a surface
with finitely many critical points, the sum of indices of critical points is equal to the Euler
characteristic of the surface (Ueno et al., 2005). For our particular case, where the surface
is a disk and the vector field is the flow field, the Euler characteristic which is equal to the
Poincaré index of the center elliptic point of the flow field is +1. In order to keep the Euler
characteristic fixed, initial break up of a KAM line has to occur as pairs of hyperbolic and
elliptic points, which have Poincaré indices -1 and +1, respectively.

The elliptic point, in systems with a time-periodic Hamiltonian, is a periodic point
which returns to its initial position after certain (integer) number of periods and its pres-
ence in the flow topology is an indication of poor mixing. Increasing τ may shrink the size
of the elliptic islands (Fig. 5.5), yet it does not guarantee the breakdown of the elliptic point
even for large τ (see Fig. 5.6). The sign of the geometrical parameterΘ, on the other hand,
determines if the flow can achieve global chaos (Speetjens et al., 2006). For instance, when
Θ=−2π/5 the flow becomes fully chaotic beyond a certain value of τ whereas for the case
of Θ = 2π/5, the elliptical island remains intact, independently of the change in τ. This
is due to the fact that for Θ > 0 the elliptic point of the main island does not undergo a
bifurcation for any τ due to symmetry, whereas for Θ < 0 there exists a critical τ beyond
which the elliptic point becomes unstable through a period-doubling bifurcation (Speet-
jens et al., 2006). Period-doubling bifurcation is clearly visible in Fig. 5.5 forΘ=−4π/5 and
τ= 2 by the break-up of the core of the central island into 2 smaller islands. The case with
Θ=π, on the other hand, shows different characteristics since the τ= 0 limit is composed
of a hyperbolic point at the center of the domain and two elliptic islands (Fig. 5.6). As τ
increases the chaos onset in the region of the hyperbolic point and the size of the elliptic
islands shrink similar to the transition to chaos in the van der Pol flow, which is the pro-
totypical example of transition to chaos around a homoclinic connection (Morozov and
Kostromina, 2014).

5.5. EXPERIMENTAL RESULTS

In this section, the results of the experiments are presented. First, in order to explore the
state of the Lagrangian tracer dynamics, we construct Poincaré sections. The discussion
largely proceeds by comparison between experimental and numerical Poincaré sections.
Subsequently, characteristics of scalar patterns for varying experimental parameters are
analyzed by means of dye pattern visualizations. These scalar patterns can also be ob-
tained by the eigenfunctions of the advection diffusion equation, yet it is computationally
expensive (especially for high-Pe cases). The variation of intensity is then used to quantify
the mixing efficiency.

5.5.1. POINCARÉ SECTIONS

This section investigates the Lagrangian topology of the 2D RAM flow for varying control
parameters Θ and τ by experiments. In Chapter 3 global Hamiltonian progression of the
Lagrangian flow topology is already discussed for parameter set Θ = −π/2 and τ = 0, 1, 2
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and 2.5. In this section, this analysis is extended in order to investigate the effect of the
sign ofΘ.

The experimental and numerical Poincaré sections for increasing τ at Θ = −2π/5 are
shown in Fig. 5.7. As discussed in detail in Sec. 3.4, for comparison with the computational
results, the experimental τ needs to be adjusted to account for a slow-down of the flow due
to friction with the lower fluid layer. The two cases compares well once τanalytic/τexperiment

is taken as 0.86, see Sec. 3.4.

Figure 5.7: Poincaré sections for the cases of τ = 0.1, 1, 2 and 5 for Θ = −2π/5: experiments (top row) and com-
putations (bottom row).

It is clear that the central island of the progression undergoes Hamiltonian breakdown
from the integrable state (the leftmost) to a globally chaotic state (the rightmost). For the
lowest τ, as mentioned above, the particles follow nested trajectories that act like impene-
trable barriers and form the central island. The integrity of the central island deteriorates
starting from the outer radial regions, yielding an intact island in a chaotic sea. The elliptic
island disintegrates and becomes smaller as τ increases; also, constellations of smaller is-
lands form due to break-up of resonant orbits that appear in the experiments as relatively
less dense regions in the vicinity of the walls. Eventually, the system reaches fully chaotic
state at τ = 5. A much slower progression in terms of disintegration of the elliptic island
occurs for Θ = 2π/5, see also Fig. 5.8, so that fully chaotic state is not yet reached at the
highest τ value. The initial central island always survives yet it changes in size and in shape
with changing τ. This results in a poor mixing of the scalar which is also evidenced in Fig.
5.10. The results presented in this chapter bear similarities with those of the topological
mixing studies in 3D reoriented duct flows in the literature (Speetjens et al., 2006, 2014) in
the sense that a fully chaotic state is attained for negative Θ, whereas the cases of positive
Θ contains non-mixed regions. This strict separation in behavior for negative and posi-
tive Θ holds true for the non-inertial case (Re = 0). Speetjens et al. (2014) demonstrated
that the 3D non-inertial case has the same time-reversal symmetry and therefore displays
the same bifurcation behavior as the 2D case. However, for 3D inertial flow (Re > 0) the
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Figure 5.8: Poincaré sections for the cases of τ= 0.1, 2, 5 and 10 forΘ= 2π/5: experiments (top row) and compu-
tations (bottom row).

strict separation between negative and positive Θ is lost. Nonetheless, for Re > 0 period-
doubling remains the only route to chaos.

The Poincaré sections computed from the analytical velocity field and those acquired
in the experiments display excellent agreement for differentΘ and τ values. This confirms
the validity of the experiment for the study of Lagrangian transport under parametric vari-
ation and the applicability of the KAM and Poincaré-Birkhoff theorems to real fluid flows.

5.5.2. SCALAR PATTERNS IN THE LIMIT OF INFINITE-PE

Figure 5.9 shows scalar dye patterns after 20 periods for the offset angles of Θ = −4π/5,
−π/2, −2π/5 and 0 for increasing switching times (0.1 ≤ τ ≤ 10). The scalar patterns for
positive Θ are shown in Fig. 5.10. The Θ = 0 case is a steady flow case with only one
aperture activated and running continuously. Therefore, patterns for increasing τ values
are simply the snapshots of the steady evolution. In this case, one continuously rotating
single aperture generates a circulation region with a radial shear flow, that stretches the
white-colored oil linearly forming a spiral shape. This case shows that shear flow is a very
inefficient way to achieve mixing and the resultant field does not reach a globally mixed
state.

It is clear that for the shortest switching time (τ= 0.1), the scalar fields consist of a large
intact island for all Θ values. In this regard, the patterns for non-zero Θ shown in the first
row demonstrate a near-integrable state. The islands are p-fold rotationally symmetric,
i.e. Θ = ±2π/5 and Θ = ±4π/5 gives 5-fold symmetry (the same also holds for the 4-fold
symmetric islands ofΘ=±π/2), which shows a very good agreement with the correspond-
ing numerical Poincaré sections shown in Fig. 5.5 and Fig. 5.6. This can be attributed to
relatively short switching time value for the smallest τ so that the scalar transport only
’feels’ the average flow for small τ. In an actual steady 3D RAM case, this is equivalent to
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Figure 5.9: Experimental scalar patterns for the offset angles ofΘ=−4π/5,−π/2,−2π/5,0 and aperture activation
time values of τ= 0.1, 1, 2, 5 and 10 visualized after 20τ.

the limit of very slow rotation of the outer cylinder (see Speetjens et al. (2006)).

For increasing τ, except for Θ = π, the patterns become more complex particularly at
the outer radial regions and thus especially for the cases of τ= 1 and 2. This is due to the
chaotic behavior in that region, which increases the stretching rate in the vicinity of the
apertures, bringing about formation of filament-like extensions. Despite the generation
of these filaments, the core of the pattern still stays undisturbed. The intact patterns in
the scalar fields correspond to the central islands in the numerical Poincaré sections in
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Figure 5.10: Experimental scalar patterns for the offset angles of Θ= 2π/5,π/2,4π/5,2π and aperture activation
time values of τ= 0.1, 1, 2, 5 and 10 visualized after 20τ.

Sec. 5.4, whereas the filament-like structures correspond to the chaotic regions. The dye
patterns shown in Fig. 5.9 and Fig. 5.10 are in a good agreement with the Poincaré sec-
tions shown in Sec. 5.4. Yet, the experimental dye patterns reveal far more detail than the
simulated patterns. This is a major advantage of the experiments over the computations.

The snapshots at later periods withΘ=−2π/5 and τ= 2 are shown in Fig. 5.11. In time,
the shape of the dye pattern converges to a slightly distorted four-point star, however the
surrounding filaments lose their sharpness due to mixing with the black-colored fluid. The
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t=20τ t=50τ t=100τ t=300τ 

Figure 5.11: Scalar patterns at the non-dimensional time instants of t = 20τ, 50τ, 100τ and 300τ for the case of
Θ=−2π/5 and τ= 2.

mixing occurs by stretching and folding, which results in very fine filament structures. Due
to the presence of diffusion, even though it is very weak, the image intensity values in the
region surrounding the main island appear as gray in the snapshots.

t=300τ t=301τ t=302τ 

t=303τ t=304τ t=305τ 

58.5˚

Figure 5.12: Scalar patterns at the non-dimensional time instants of t = 300τ, 301τ, 302τ, 303τ, 304τ and 305τ
for the case ofΘ=−2π/5 and τ= 2.

The behavior of the core of the dye pattern within one period is illustrated in Fig.
5.12. The core of the dye pattern behaves roughly like a solid body and rotates and com-
pletes one full rotation during the period. The scalar field is symmetric about the axis at
θ = (∆−Θ)/2 relative to the starting angle of the first window (Speetjens et al., 2006, 2014).
This is shown in Fig. 5.12 (bottom right) for the case Θ=−2π/5, where the symmetry line
is at θ = 58.5◦ with respect to the starting angle of the first aperture. Speetjens et al. (2006,
2014) showed that symmetry imparted by the periodic reorientation and transverse forc-
ing is the key factor in the attainment of unrestricted chaos and hence good mixing. The
experimental results of the current study substantiate this decisive role of symmetry.

As mentioned previously, scalar field and particle position measurements are per-
formed concurrently to allow the assessment of the correlation between the Poincaré
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maps and scalar fields. As an example, the scalar field at t = 200τ is overlaid with the cor-
responding Poincaré sections for the case of Θ = −4π/5 with varying τ values and shown
in Fig. 5.13. The correlation between the dye pattern and Poincaré maps in terms of for-
mation of coherent structures is verified by means of these experiments. The islands are
formed where the particle trajectories are regular. On the other hand, the dye patterns
become mixed when the particle behavior is chaotic. It is also clear that the resolution
of the Poincaré sections is good enough to capture larger coherent structures. However,
small-scale structures, e.g., the period-2 islands shown in the rightmost map in Fig. 5.13,
are difficult resolve by experimental Poincaré sections, because this depends strongly on
initial placement of particles inside the structure.

τ = 2

τ = 0.1 τ = 1

τ = 5

Figure 5.13: Experimental Poincaré sections overlaid on the scalar fields, which are visualized at t = 200τ for the
cases ofΘ=−4π/5 and τ= 0.1, 1, 2, 5.

5.5.3. QUANTIFICATION OF MIXING EFFICIENCY

The intensity of segregation Is (Danckwerts, 1952) is one of the statistical tools that enables
quantifying the homogeneity of an initially segregated mixture and it has already been
employed to quantify mixing in a theoretical study of the RAM parametric variation by
Singh et al. Singh et al. (2008) The intensity of segregation is defined by:
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Is = 〈(I −〈I 〉)2〉
〈I 〉 (1−〈I 〉) (5.1)

where I is the normalized corrected intensity of the scalar field (0 ≤ I ≤ 1) and 〈〉 the linear
averaging operator. The intensity of segregation refers to the variation of the intensities in
the mixture and it tends to zero for perfect mixing.
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Figure 5.14: Contour plots of intensity of segregation Is for varying offset angleΘ and switching period τ param-
eters over full domain after (a) t = 20τ and (b) t = 80τ.

Contour plots of Is are plotted for varying Θ and τ parameters of the RAM flow after
non-dimensional time of t = 20τ and t = 80τ in Fig. 5.14. In these contour plots, blue
indicates good mixing, whereas red indicates poor mixing. In the red regions, the scalar
field is not mixed well and there are generally intact islands of non-mixed colored fluid
present in the scalar field as discussed in the previous section.

For time span t = 20τ (Fig. 5.14a), roughly for τ. 2, all positive and negative Θ cases
have a poor mixing performance. The evidence for this is the large elliptic islands and
intact dye patterns shown in Sec. 5.4 and Sec. 5.5.2. In general, increase of τ improves the
mixing efficiency yet the region bounded by 0 <Θ < π/2 displays rather poor mixing due
to the existence of persistent islands in the scalar patterns. NegativeΘ cases achieve better
mixing (blue in Fig. 5.14), which is in agreement with the dye visualizations and numerical
Poincaré sections. In time, the mixing efficiency increases (Fig. 5.14b). The blue regions
(good mixing) expand for both positive and negative values of Θ. However, the region
between Θ = 0 and Θ = π/2 still has poor mixing performance, which is in accordance
with the persistence of the large dye patterns and lack of global mixing for these cases as
demonstrated in Figs. 5.9 and 5.10.

The implications of this parametric study can also be interpreted in the context of 3D
reoriented duct flows. The parameter τ in the 2D configuration formally corresponds to
the transversal forcing parameter β in the 3D flow case, as explained in Sec. 3.2. In the
experiments, τ increases with increasing activation time of one window for a fixed angular
velocity Ω, which is analogous to decreasing axial flow velocity Umean or increasing aper-
ture length L in 3D RAM flow. Therefore, in order to enhance the mixing quality in the
actual 3D RAM for a given Θ and Ω, it is required to increase the relative strength of the
transversal forcing by either slowing down the axial flow or increasing the axial extent L of
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one cell in the 3D RAM based on the fact that the mixing quality increases with increasing
τ. However, in many industrial applications, it is desired to attain a good mixing quality
over a short length of a mixer, which implies that it is more favorable to reach a fully mixed
state at the smallest possible τ. On the other hand, regarding the reorientation angle Θ, it
is clear that negative values (i.e., counter rotation of the outer cylinder with respect to the
reorientation direction of the apertures in 3D RAM) works better in terms of attainment
of globally chaotic regime (see Fig. 5.5 in comparison to 5.6) and good mixing (see Fig.
5.9 in comparison to Fig. 5.10). Therefore, the best strategy for practical applications is
searching for the negative offset angle which can achieve a fully chaotic state at the least
possible value of β.

Among the parameters of this study, the Θ=−2π/5 configuration shows the best mix-
ing performance for τ≥ 5, as evidenced by the Poincaré sections (Fig. 5.5), the dye patterns
(Fig. 5.9) and the intensity of segregation (Fig. 5.14). The outcome of this parametric study
in terms of the relation between the flow topologies and the control parameters can also
be utilized to define varying-Θ protocols by which a high-quality mixing even at smaller τ
can be achieved. For instance, it is shown in the Poincaré maps (Fig. 5.6) and also in the
dye visualizations (Fig. 5.10) that for Θ = π the onset of chaos occurs in the center of the
circular domain. On the other hand, in all other non-zero Θ cases, the chaos emerges in
the proximity of the circular wall of the domain. Based on these observations, protocols
with different Θ can be combined to enhance the mixing quality. A period of a varying-Θ
protocol is composed of two main stages: (1) a period of Θ1 = π protocol for which A1
and A3 are activated sequentially; (2) a period of other non-zero Θ2 protocols. For in-
stance, when Θ2 = −π/2, the activation sequence of the apertures in a period of motion
is A1− A3− A1− A4− A3− A2. This approach leans on some earlier reported ideas. For
example, varying mixing protocols to break symmetry and enhance mixing has already
been studied by Franjione and coworkers theoretically (Franjione and Ottino, 1992; Fran-
jione et al., 1989), yet the protocols they studied cannot be implemented in experiments.
Moreover, in the work by Metcalfe et al. (2006) theΘ sequence is manipulated to break up
islands earlier in τ.

The simulated Poincaré sections for the varying-Θ protocols are shown in Fig. 5.15 and
5.16 forΘ2 protocols formed by five-window and four-window activations, respectively. In
general, the varying-Θ protocols a reach fully chaotic state at smaller τ than non-varying
Θ cases discussed above. Even for the combinations that employ positive Θ2 protocols, a
fully chaotic state is achievable in contrast to non-varying positive Θ cases. This is due to
the fact that the varying angles result in symmetry breaking. One consequence of this is
that the central elliptic island of the integrable state must not necessarily persist for posi-
tive offset. Instead, it may now completely break down for positive offset. Moreover, the al-
ready good superior performance of the non-varying negativeΘ cases is further improved
as a result of the combination with Θ1 = π such that a globally chaotic state is attained
at even smaller τ. The comparison between the Poincaré sections for different Θ2 cases
reveals that the combination case withΘ2 =−2π/5 shows the best performance.
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Figure 5.15: Numerical Poincaré sections for the varying-Θ protocols of Θ1 = π/2 combined with Θ2 = −4π/5,
−2π/5, 2π/5 and 4π/5 for aperture activation time values of τ= 0.1, 1, 2, 5 and 10.

5.6. CONCLUSION

The results of this chapter show that the comparison of the numerical Poincaré sections
for 2D time-periodic RAM and 3D spatially-periodic RAM flows reveals a good qualita-
tive agreement in terms of the features indicative of mixed and non-mixed regions, which
substantiates the suitability of 2D time-dependent RAM flows for the qualitative analysis
of mixing in 3D reoriented duct flows. Furthermore, the experimental Poincaré sections
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Figure 5.16: Numerical Poincaré sections for the varying-Θ protocols of Θ1 =π/2 combined with Θ2 =−π/2 and
π/2 for aperture activation time values of τ= 0.1, 1, 2, 5 and 10.

validates their numerical counterparts by confirming the effect of the sign of Θ on reach-
ing a globally chaotic state: positiveΘ cases need much longer τ to achieve a fully chaotic
state. Moreover, the overall agreement between the experimental and numerical results
confirms the validity of the experimental facility for realizing 2D time-dependent RAM
flow and performing reliable mixing studies.

The dye visualizations performed for the parametric analysis of the scalar fields, which
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is very challenging for such a low diffusivity if analyzed numerically, allow for a compar-
ative analysis between the Lagrangian dynamics presented by the Poincaré maps and the
scalar patterns. Moreover, the quantification of the mixing efficiency further validates that
the cases with negative offset and relatively long switching time (τ> 5) achieve good mix-
ing, whereas the performance is poor for τ< 2, regardless of the Θ value. There is a region
in the parameter space bounded by 0 <Θ< π/2, which displays poor mixing characteris-
tics even after a long time (t = 80τ).

Varying-Θ protocols, when defined systematically, enhances the mixing efficiency. We
combined the Θ= π case, where chaos emerges in the center of the circular domain, with
other non-zero Θ cases, for which the chaotic state is initially reached in the vicinity of
the walls. This combination strategy increases the mixing efficiency by lowering τ needed
for a globally chaotic state for a given Θ. Even for the positive Θ cases, combination with
the Θ = π protocol dramatically reduces τ that accomplishes a fully chaotic state. The
success of the combined forcing strategy implies that flow topologies and scalar field evo-
lutions acquired for systematically varying control parameters can be utilized to design
an efficient mixing flow. As a future work, varying-Θ protocols different than the ones
discussed in this chapter can be investigated to find the optimum forcing protocol that
achieves global mixing with the least possible effort.

The results presented in this chapter is qualitatively relevant to generic 3D reoriented
duct flows. The Kenics mixers, for instance, also have temporal and geometrical parame-
ters that affect the mixing efficiency of the mixer in a way similar to the parameters of the
RAM. Therefore, the outcomes of the current work is useful in determining the optimal
control parameters of a reoriented duct flow that can accomplish an efficient mixing.





6
ADVECTIVE-DIFFUSIVE SCALAR

TRANSPORT IN 3D
SPATIALLY-PERIODIC SYSTEMS

Spatially persisting patterns form during the downstream evolution of passive scalars in
three-dimensional (3D) spatially-periodic flows due to the coupled effect of stretching-
folding and mechanisms of the flow field. This has been investigated in many computa-
tional and theoretical studies in 2D time-periodic and 3D spatially-periodic flow fields;
however, experimental studies, to date, have mainly focused on flow visualizations with
streaks of dye rather than fully 3D scalar field measurements. Our study employs state-
of-the-art experimental methods to analyze the evolution of 3D scalar fields and the cor-
relation between the coherent flow/scalar field structures in a representative inline mixer,
the Quatro static mixer. The experimental setup consists of an optically accessible test sec-
tion with transparent internal elements, accommodating a pressure-driven pipe flow. The
3D flow and scalar fields are measured by 3D particle tracking velocimetry and 3D laser-
induced fluorescence, respectively. The results show a good agreement with those reported
in the literature. The experimental analysis performed in this study has been proven to be
suitable for exploratory mixing studies of a variety of mixing devices.

Parts of this chapter is in preparation for submission to AIChE Journal: O. Baskan, H. Rajaei, M.F.M. Speetjens
and H.J.H. Clercx, Experimental and Numerical Investigation of Scalar Transport in an Inline Mixer.
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6.1. INTRODUCTION

Advective-diffusive scalar transport in periodic laminar flows is of practical relevance to
various industrial thermo-fluid processes that employ the inline mixing principle. Two im-
portant practical categories are the blending of highly-viscous fluids (e.g., polymers, food,
etc.) and micro-fluidics (e.g. lab-on-a-chip technologies, bio-medical devices, etc.). To-
day’s technology in inline mixing systems is based on empirical knowledge. However, fur-
ther advancement is feasible if fundamental transport mechanisms are well-understood.
In the past few decades the fundamentals and applications of mass/scalar transport in
spatially-periodic laminar flows have been studied in numerous theoretical and numer-
ical investigations (Galaktionov et al., 2002; Gorodetskyi et al., 2014; Kumar et al., 2008;
Meleshko et al., 1999; Ottino, 1990; Speetjens et al., 2006, 2014; Thakur et al., 2003). Never-
theless, a complete understanding is not achieved yet. Particularly, experimental studies
are scarce and usually restricted to highly-idealized flow geometries or allowing only par-
tial access to the flow domain with (optical) diagnostic tools (Castelain et al., 2001; Kusch
and Ottino, 1992; Metcalfe et al., 2006; Ottino, 1990; Pust et al., 2006). The work presented
here aims to fill this gap via laboratory experiments in a real mixer geometry.

The current study adopts the Quatro mixer (Primix BV, Mijdrecht, The Netherlands),
which is shown in Fig. 6.1, as representative inline mixer for in-depth analysis of advective-
diffusive transport of scalars in industrial processes. The main objective is to experimen-
tally investigate and validate downstream evolution of a scalar field under the action of
spatially-periodic laminar flow field. For this purpose, an experimental setup mimick-
ing the realistic (industrial) flow conditions and holding a transparent replica of the Qua-
tro mixer geometry is realized. The flow and concentration field measurements are per-
formed to investigate the downstream evolution of advective-diffusive or only-advective
scalar fields.

Figure 6.1: A schematic of the Quatro mixer. The left panel shows the geometry of the Quatro mixer with the
chevron-shaped central plates, perpendicular elliptical segments extending to the cylinder wall and the axial
throughflow. The right panel shows the r -axis and z-axis of the cylindrical coordinate system, the cylinder diam-
eter and the diagonal D and the element length L.



6.2. MODELING FLOW AND SCALAR TRANSPORT

6

87

6.2. MODELING FLOW AND SCALAR TRANSPORT

6.2.1. CONFIGURATION AND GOVERNING EQUATIONS

The configuration is a steady, laminar, incompressible flow field and its related steady
advective-diffusive scalar field inside the 3D domain D representing the mixer geometry.
The governing non-dimensional mass, momentum and advection-diffusion equations are

∇·u = 0, Re u ·∇u =−∇P +∇2u, (6.1)

u ·∇C = 1

Pe
∇2C , C |z=0 =

{
1, if y ≥ 0

0, if y < 0
(6.2)

where u is the fluid velocity, P the pressure and C the scalar field. These equations are also
supplemented with no-slip conditions at the walls. Poiseuille flow is prescribed at the in-
let, whereas a constant pressure boundary condition is set at the oulet. The 3D coordinate
system is defined in such a way that (x, y)-plane corresponds to the transverse direction,
whereas z-direction corresponds to the axial direction, see Fig. 1.3. In Eq.(6.1) and (6.2),
Re and Pe are the Reynolds and Péclet numbers, respectively, defined as

Re = U R

ν
, Pe = U R

α
, (6.3)

where U and R are the characteristic velocity of the flow field (i.e. mean velocity Umean)
and the radius of the mixer, respectively, ν is the kinematic viscosity and α the material
diffusivity. The geometrical parameter Λ= L/D (see Fig. 1.3) is set to 1 in the current con-
figuration. For the experiments it turns out that Re ≈ 3.5 in the flow field measurements,
whereas Re ≈ 0.5 and Pe is in the limit of infinity (assuming α ≈ 0) in the concentration
field measurements (see Section 6.3.2 for the values of ν, Umean and R). The difference in
Re is due to the restrictions imposed by practical issues. The concentration field is made
dimensionless according to C ′ = (C−minC0(x))/(maxC0(x)−minC0(x)), with C being the
dimensionful scalar, minC0(x) and maxC0(x) the minimum and maximum value of the
initial scalar field C0(x), respectively. The prime indicating the non-dimensional concen-
tration is dropped hereafter.

Scalar field analysis concerns purely advective transport (i.e. infinite Pe) in the Qua-
tro mixer, which is an industrially-relevant case that is representative of more generic
cases. This can be achieved in the experiments by use of a dyed fluid with a low diffu-
sivity (α ≈ 0). However, in the simulations, accurate computations are possible only up
to about Pe = 1000 due to the restriction imposed by the numerical resolution. This is a
disadvantage of the simulations compared to the experiments and implies the importance
of the experimental studies on this type of problems, which is a strong motivation for the
current study. Therefore, the study focuses on the features that agree in both cases (e.g.
larger-scale structures and general correlation with the flow field) rather than one-to-one
comparison between experiments and simulations.

In both cases, an inflow boundary condition is prescribed for the scalar field such that
at the inlet of the mixer (z=0) the scalar distribution (pattern) is segregated i.e. half of
cross-sectional area is covered with soluted fluid (C =1) while the remaining part is filled
with plain fluid (C =0).
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6.2.2. EIGENMODE STRUCTURE OF SCALAR FIELDS

In 3D spatially-periodic flow fields, assuming that the axial flow component is unidirec-
tional, the downstream evolution of the scalar field is dynamically similar to an evolution
in time in an equivalent 2D time-periodic flow field. In both cases, the scalar transport is
governed by the linear advection–diffusion equations and can be mathematically analyzed
in terms of the fundamental solutions, i.e. the eigenmodes, of the advection–diffusion op-
erator. The scalar field C (x, y,nZ ), where Z is the non-dimensional period length and nZ
the integer multiples of Z , can be approximated as a finite sum of these modes, yielding

C (x, y,nZ ) =
K∑

k=0
γkϕk (x, y)λn

k , λk = eµk Z , (6.4)

where the γk are the expansion coefficients based on initial conditions, the Hk (x, y,nZ ) =
ϕk (x, y)λn

k Floquet modes, µk = σk + iωk with i = p−1 Floquet exponents and the set
{ϕk ,µk } represent the corresponding eigenfunction-eigenvalue pairs governed by the
eigenvalue problem

Lϕk −µkϕk = 0, (6.5)

where L is the advection–diffusion operator.
In the case of finite-Pe, the real part of any Floquet exponentσk < 0 or equivalently any

eigenvalue |λk | < 1 for non-uniform eigenmodes, which means that these modes all decay
exponentially in time. The slowest one is the dominant mode, and represented by the set
{ϕ1,µ1}, causing the evolution to quickly become governed by the reduced expansion

C (x, y,nZ ) = γ1ϕ1(x, y)eµ1nZ +C∞, (6.6)

where C∞ is the trivial homogeneous eigenmode ϕ0 that corresponds to µ0 = 0.
In the limit of infinite-Pe, the transport is equal to the passive advection of a scalar

since the diffusion is negligible. The fundamental difference with the finite-Pe case is that
now only purely imaginary exponents (i.e. µk = iωk ) occur for all eigenmodes, meaning
that none of the eigenmodes will decay. This has the fundamental implication that the
evolution becomes of the form

C (x, y,nZ ) =∑
k
γkϕk (x, y)e iωk nZ +C∞ (6.7)

where eigenmodes become spatially arranged according to islands and chaotic regions
(Speetjens et al., 2013). For periodic systems in the infinite-Pe limit, the eigenmodes be-
come intimately related to the periodicity and multiplicity of the coherent structures in
the Poincaré section and periodic eigenmodes (i.e. ωk = 2π j /Z ) with "low" periodicity
(i.e. j = 1,2) dominating the behavior and in that sense act as the dominant eigenmodes.
The reason for this dominance of lower-order eigenmodes is that higher-order structures
are always embedded in lower-order structures. Lower-order structures therefore corre-
spond to (global) larger-scale features, while higher-order structures correspond to (local)
smaller-scale features (Singh et al., 2009).

In this chapter, the eigenmode analysis is restricted to the finite-Pe case due to com-
plex nature of the scalar patterns in infinite-Pe case. The experimental scalar fields given
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in Sec. 6.5 reveal the growing complexity of the cross-sectional scalar fields in the flow di-
rection and imply that the scalar patterns will continue to grow more complex as the num-
ber of mixing elements increase. Yet, the experimental setup has only 7 periodic mixing el-
ements (Sec. 2.4.5), meaning that the information at hand is only a part of a full evolution.
Hence, more periodic elements are needed to fully capture the evolution from initial to fi-
nal state. The numerical simulations, on the other hand, already cover basically the entire
evolution from initial to final state with the same number of periodic elements, meaning
that here all relevant info for a reliable spectral analysis is available. A further complicat-
ing factor regarding spectral analysis of the experimental data is that the transport shows
all signs of being chaotic, which implies a far richer spectrum for the experimental high-
Pe case compared to the numerical moderate-Pe case. Well-defined larger-scale periodic
structures with a low periodicity (e.g. isolated islands or island chains) are completely
absent here, meaning that even upon convergence, clear dominance by a discrete set of
lower-order modes is not to be expected. Instead, a full and noisy spectrum throughout
the entire wavenumber range is to be expected.

6.3. METHODOLOGY

6.3.1. NUMERICAL SIMULATIONS

A finite element method (FEM) is used in Comsol Multiphysics 4.3b to solve 3D mass and
momentum equations (Eq.(6.1)) and the advection-diffusion equation (Eq.(6.2)). A mixer
model with 10 periods (20 mixing elements) is built in Comsol and an unstructured tetra-
hedral grid is constructed with approximately 30 million elements to maintain the nu-
merical stability. The numerical convergence and accuracy are inspected by standard grid
refinement tests. Integrations were performed with a second-order backward-difference
scheme. A relative tolerance of 10−3 is prescribed for the velocity components of the steady
flow field and the steady scalar field in the solver.

6.3.2. EXPERIMENTAL FACILITIES AND MEASUREMENT TECHNIQUES

Detailed descriptions of the Quatro mixer facilities are given in Section 2.3. Two state-of-
the-art optical measurement methods will be employed: 3D particle tracking velocimetry
(3D PTV) and 3D laser induced fluorescence (3D LIF). The reader is referred to Section 2.4
for the details of these methods.

6.3.3. DATA PROCESSING AND ANALYSIS

Data processing and analysis of scalar transport is based on the dynamic mode decompo-
sition (DMD). The mathematical background of the method is closely following the eigen-
value algorithms (i.e. Arnoldi algorithm) in numerical linear algebra and the method aims
to recover the actual eigenmode decomposition (Eq.(6.4)) from data at discrete tempo-
ral/spatial levels. It assumes that the subsequent levels relate via a mapping:

c n+1 =A c n (6.8)
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where c n denotes the scalar field in discrete partitions in the domain at level zn = n∆z
and A is a linear operator that maps a scalar field c n to the consecutive one c n+1. The
eigenfunction–eigenvalue pairs of the mapping matrix A are the approximations for the
eigenfunction-eigenvalue pairs {ϕk ,µk } of the advection–diffusion operator L . The de-
tails of the algorithm can be found in Schmid (2010, 2011).

6.4. VELOCITY FIELD ANALYSIS

In this section, a comparative analysis between experimental and numerical flow fields
is performed. Compared to analysis given in the work by Jilisen et al. (2013), this study
presents more accurate flow/streamline measurements by an enhanced calibration and
a post-processing algorithm and explicitly analyzes the effect of the inlet conditions on
the periodicity of the flow. Refer to Section 2.4.4 for the details of the modification in the
calibration and the post-processing. An error analysis is also presented there.

6.4.1. PERIODICITY OF THE FLOW FIELD

In fluid processing industries, inline mixers constitute a part of a piping system and can be
placed at any location regardless of local flow conditions. This alters the inlet conditions
of the flow field inside the mixer (i.e. inlet condition deviates from Poiseuille flow profile).
However, the flow quickly settles on a periodic state, regardless of inlet conditions, which
is demonstrated below.

In order to investigate the effect of altered inlet conditions on the periodicity of the
flow inside the mixer and to check if the periodic flow assumption holds true, two dif-
ferent blockage conditions are prescribed at the inlet (z = 0) of the mixer in simulations.
However, in the experiments, only one blockage condition is implemented. The numerical
flow field of the 2nd periodic element without inlet blockage is set as the benchmark case.
The comparative analysis is performed on more than 18,000 data points, the positions of
which are taken from the experimental data set and the corresponding data points in nu-
merical simulations are calculated by a cubic interpolation, and the deviation is quantified
via ε(u) ≡ |ub −uc |/|ub,max| where u can be the velocity components u, v, w and magnitude
‖u‖. Here, b and c stand for the benchmark case and any other case, respectively.

Figure 6.2 shows the experimental and numerical deviations from the benchmark case
when the inlet is blocked by two different shapes (i.e. by a tightly-fitting square and a quar-
ter circle blocking one-fourth of the cross-sectional area). The deviations in the numerical
cases is below 3 %, which can be attributed to the interpolation errors. The experimental
statistics are consistent with the error estimated in Section 2.4.4. Any disturbance, gener-
ally speaking, at the inlet vanishes within the first element and all cases converge to the
same benchmark case. Therefore, it is plausible to conclude that the flow field at Re = 3.5
is basically independent of inlet conditions — an important fundamental characteristic
of the flow — and quickly settles for one and the same periodic state. Here, this happens
already after one mixing element, meaning that periodic flow can be assumed from the
second element onwards.



6.4. VELOCITY FIELD ANALYSIS

6

91

0

1

2

3

4

5

6

7

8
Standard Deviation

blocked with quarter circle (num)
blocked with square (num)
blocked with square (exp)
non-blocked (num)
non-blocked (exp)

u v w ||u||

non-blocked
blocked with

     square

blocked with

quarter circle

Figure 6.2: Standard deviation of the differences between experimental and periodic numerical data (open sym-
bols: numerical data, filled symbols: experimental data). The values are in percentage. The experiments are only
conducted with one (tightly-fitting square) blockage condition.

6.4.2. VELOCITY FIELD

The computed velocity fields at five axial positions along a periodic segment of the mixer
(where z ′ is the axial position within a periodic segment) are shown in Fig. 6.3. The
columns from left to right show the plots of non-dimensional velocity magnitude ‖u‖, az-
imuthal velocity component uazi = (u, v) and axial velocity component w . As mentioned
earlier, the second element of a periodic segment is the reflected and rotated version of
the first one. The effect of this configuration is clearly visible in the flow fields for all ve-
locity components. The flow field pattern at z ′ = L is essentially a mirrored version of that
at z ′ = 0, while the pattern at z ′ = 3L/2 is a rotated form of the flow field at z ′ = L/2. As
expected, the velocity pattern repeats itself at z ′ = 2L in accordance with the periodic con-
figuration of the geometry. In general, the axial flow component is dominant, whereas the
azimuthal flow component is marginal particularly at the inlet/outlet regions. Stronger
azimuthal velocity component at the mid-plane (compared to the inlet/outlet planes) in-
dicates that the flow has a higher circulation in this region.

Figure 6.4 shows the contour plots of the velocity magnitude at the inlet and the mid-
plane of the first element obtained via 3D PTV experiments and computed numerically.
Despite the differences observed, similar flow structures emerge in both cases. There are
two main reasons for the poorer data quality in experimental plots: the optical obstruction
by the edges of the mixing elements and the tendency of the tracer particles to stay distant
from the walls. The effect of the former is well visible in the top left plot of Fig. 6.4. As the
cameras are positioned in the region where y > 0 (less optical obstruction in this region),
the top half of the plot (y > 0) shows a better agreement compared to the bottom half
(y < 0) of the plot. The effect of the latter can also be clearly seen in the experimental
results. In the close proximity of the walls and mixing elements, the particles trajectories
do not exist. Hence, the determination of the velocity field in these regions is possible
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Figure 6.3: Cross-sectional evolution of velocity field inside Quatro mixer at Re=3.5 within a periodic segment
(which is composed of two mixing elements). The contour plots from left to right show velocity magnitude ‖u‖,
azimuthal velocity component uazi = (u, v) and axial velocity component w . All values are non-dimensionalized
with Umean. 1st, 3rd and 5th rows indicate the inlet-outlet planes of the elements, whereas 2nd and 4th rows refer
to the mid-planes of the elements.

only by interpolation of the neighboring data points. This explains why the zero-velocity
regions do not appear in the results even though they physically exist in the experiments.
However, overall, the comparison reveals a good agreement between the experiments and
the simulations.

6.4.3. STREAMLINES

This section includes a comparative analysis of transport properties on the basis of large-
scale coherent flow structures of the experimental and numerical flow fields. The rea-
son for analyzing the flow field in terms of the coherent structures rather than individ-
ual streamlines is the chaotic nature of the mixing flows. In chaotic flows the individual
streamlines have very sensitive dependence on initial conditions and a small shift in the
initial position of a fluid particle may cause a completely different fluid path (Ott, 2002;
Ottino, 1989). Owing to the fact that the uncertainty in flow measurements (via 3D PTV)
leads to (small) deviations in particle positions, a comparative (experimental and numer-
ical) analysis on the basis of individual streamlines is ineffective for the current study
(Jilisen et al., 2013). However, coherent structures formed by streamlines are robust and
therefore insensitive to such deviation.

Figure 6.5 shows the 3D experimental (blue) and numerical (red) streamlines in a pe-
riodic segment of the Quatro mixer at Re =3.5 and exposes a large scale coherence in the
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Figure 6.5: Measured (blue) and simulated (red) 3-D streamlines in a periodic segment of the Quatro mixer for
Re=3.5.

streamline pattern. At the inlet of the geometry the throughflow is divided into two adja-
cent streams by the elliptical upstream parts. Within the first element, each stream is sub-
jected to a lateral deflection due to the enforcement of the geometric boundaries. Then,
parts of these adjacent streams confluence in the close proximity of the elliptical segments
of the upstream element. The division and the confluence of streams proceed till the out-
let of the mixing geometry. This reveals larger-scale coherence in the streamline pattern,



6

94 6. ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT IN 3D SPATIALLY-PERIODIC SYSTEMS

yet does not resolve small-scale coherent structures (e.g. stream tubes). Overall, the ex-
perimental and numerical coherent structures exhibit a good qualitative agreement.

6.5. ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT ANALYSIS

This section presents a comparative analysis between experimental observations and nu-
merical simulations on the cross-sectional evolution of the 3D scalar field in the Quatro
mixer. The experiments concerns the scalar transport in the limit of infinite-Pe, yet in the
numerical simulations accurate computations are possible only up to Pe = 1000 due to the
restriction imposed by the numerical resolution. An extensive eigenmode analysis is con-
ducted on the downstream evolution of the numerical scalar field via DMD algorithm and
the isosurfaces of the period-wise evolution are used to visualize the stretching-folding
mechanisms of the scalar transport. The results are given below.

The advective-diffusive scalar transport is investigated for the configuration given in
Section 6.2.1. The model of the mixer consists of 10 periodic segments (7 periodic seg-
ments in the experiments) each of which is composed of two mixing elements. In ex-
perimental data processing, the 2D cross-sectional scalar distributions representing the
downstream evolution are extracted from the 3D data set at the mid-plane of every sec-
ond mixer element rather than the inlet/outlet planes of the periodic elements. This is
due to the fact that in the experiments the edges of the mixer elements deteriorate the
image quality and the selected cross-sections are the ones which suffer the least from the
disturbance by the edges of the elements. The same procedure is also applied to the nu-
merical scalar fields to be consistent.

Figure 6.6 shows the numerical (top, color) and experimental (bottom, gray scale)
downstream evolution of an initially non-uniform scalar field in the Quatro mixer. The in-
flow is composed of two scalar concentration levels (i.e. C |inlet = 1 for y > 0 and C |inlet = 0
for y < 0). As the flow passes through the mixing elements, initially segregated concen-
tration field breaks into smaller-scale structures by the effect of stretching-cutting pro-
cesses and, the diffusion, in the case of finite-Pe, smooths the high-gradient regions. Here,
the downstream evolution is dynamically similar to the temporal evolution in 2D time-
periodic systems: the concentration field at the inlet transforms into persistent patterns
and evolves self-similarly with decreasing variance, as shown in Fig. 6.6. Comparison be-
tween experimental and numerical scalar fields reveals that the overall patterns (especially
for the earlier periods) agree well. The primary difference is that the experimental evolu-
tion continues to develop into ever finer structures while the simulated evolution fairly
quickly becomes (nearly) homogeneous. This is due to the substantial difference in Pe
and thus the far greater dominance of advection in the experimental case. Moreover, the
experimental pattern clearly reveals a continuous process of stretching and cutting of ma-
terial, which is an experimental evidence of chaotic advection. Finer structures emerging
in the experiments show that the experiments in fact outperform the simulations by re-
vealing far greater detail.

On the basis of symmetry in the geometry and the flow field, there exist a clear
anti-symmetry in cross-sectional scalar patterns, which is shown in Fig. 6.7. This anti-
symmetry property is very accurately present in the numerical results, yet it is less pro-
nounced in the experiments due to imperfections in the facility. The anti-symmetry anal-
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Figure 6.6: Cross-sectional contour plots of numerical (colored) and experimental (gray scale) scalar distribu-
tions. The color range from 0 to 1 (dimensionless scalar field) is indicated from blue to red in the numerical
results and black to white in the experimental results. The patterns are plotted for the dimensionless periods
from 0 to 5. Re = 3.5 and Pe = 1000. Red dashed line on the leftmost figure indicates the cross-sectional plane
that the data is extracted.

ysis is only shown for the first two patterns of the evolution, since for higher n values the
comparisons are not very clear anymore due to the very fine structures in the experimental
scalar fields.

The normalized numerical scalar fields in Fig. 6.8 reveal a period-2 behavior, implying
that the evolution is dominated by period-2 eigenmodes ϕ1(x, y) and ϕ2(x, y). The corre-
sponding eigenvalues are in the form of λ j = |λ|e2πi j /p where j = 0,1 and the periodicity p
is 2. Here, the magnitude of the exponential decay rate |λ| = eσ with σ=σ1 =σ2 < 0. This
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Figure 6.7: Anti-symmetry in the scalar field for the first two patterns of the evolution, where n = 1,2. Top two
row: experiments, bottom two raw: numerics.

leads to period-2 eigenvalues which can be written as µ1 =σ and µ2 =σ+ iπ and implies
that both eigenmodes ϕ1(x, y) and ϕ2(x, y) decay with the same rate eσ. The imaginary
component of µ2, that is ω2 = π, acts as an identity operator for ϕ2(x, y) for time spans of
2 periods (i.e. eπi n = (−1)n). Hence, the evolution of the concentration can be defined by
the reduced expansion

C (x, y,nZ ) =
2∑

k=1
γkϕk (x, y)eµk nZ +C∞. (6.9)

where C∞ is the homogeneous state where C∞ = 0.5.
Eigenmode decomposition (Eq. 6.9) is verified by performance of DMD on simulated

data. This gives the decomposition as shown in Fig. 6.9. The eigenvalues calculated by
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Figure 6.9: The first three dominant eigenmodes of the numerical simulation for the case Pe=1000, Re=3.5 and
Λ=1. DMD is applied on the numerical data set to obtain the dominant eigenmodes.

DMD is in accordance with the theory, such that the real part of the eigenvalues is the
same (i.e., σ1 =σ2 =σ≈−0.55) and the imaginary parts are w1 = 0 and w2 =π as given by
the theory (Singh et al., 2009).

As mentioned above, the evolution is dominated by the eigenmodes, which are shown
in Fig. 6.9, such that the linear combination of these two eigenmodes gives the repeating
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Figure 6.10: Linear combination of the dominant eigenmodes: ϕ0 +ϕ1 (left), ϕ0 −ϕ1 (right)

patterns of the evolution (Fig. 6.8): for even values of n, the repeating pattern is given by
ϕ1+ϕ2 (Fig 6.10, left) and for odd values of n, the pattern is calculated asϕ1−ϕ2 (Fig 6.10,
right).

In addition to the eigenmode analysis, 3D isosurfaces of the normalized scalar field is
visualized and supported by 2D cross-sectional scalar fields to investigate the behavior of
the 3D scalar field under the effect of stretching and folding mechanisms. Since the scalar
fields in Figure 6.11 are normalized (it is the only way to visualize continuous patterns
from the inlet to the outlet of the mixing geometry), the structures should not be inter-
preted as the non-mixing tubes. The discussion becomes clearer when the isosurfaces
given in Fig. 6.11(a) and (b) are analyzed together with the 2D normalized scalar patterns
shown in Fig. 6.11(c). Owing to the fact that the scalar fields are anti-symmetric, only the
regions shown by red will be discussed hereafter. At z ′ = 0 the scalar field has 4 red regions,
which are tagged by the numbers (only the regions tagged by 1 and 2 are shown in isosur-
face plots). When z ′ = L/2 the region 1 and 2 are split into two (stretching and cutting)
by the leading edge of the next element (1-1, 1-2 and 2-1, 2-2) and region 4 confluence
with region 2-1 (folding). Till z ′ = 3L/2 the isosurfaces follow the mixing geometry and at
z ′ = 3L/2 the regions 2-1 and 1-2 are divided into two again, which increases the interface
between red and blue regions. Just after z ′ = 3L/2, two regions 1-1 and 2-1-1 merge, creat-
ing a new region 5, which can clearly be seen in Fig. 6.11(a). Stretching, cutting and folding
continues till the end of the geometry. The last pattern of the evolution is the same as the
first pattern, yet the compositions of the patterns occupying the same region (i.e. region 1
at z ′ = 0 and region 5-2-2 at z ′ = 4L) are not the same after several stretching, cutting and
folding cycles, which implies that the mixing in the Quatro mixing is efficient.

The intensity of segregation is also calculated at the cross-sections used for the eigen-
mode analysis. Figure 6.12 shows that the intensity of segregation decays exponentially
similar to the decay of eigenmodes. The oscillatory behavior of the decay in the intensity
of segregation also confirms the alternating behavior of the system between two repeating
patterns.

6.6. CONCLUSION

This chapter has shown that the application of an advanced calibration procedure (see
Chapter 2) together with a moving-average low-pass filter improved the accuracy of the
3D PTV measurements by decreasing the uncertainty in the measurement of particle posi-
tions from 10-15 % (Jilisen et al., 2013) to the range of 3-7 %. Moreover, this study has con-
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Figure 6.11: Isosurfaces and cross-sectional patterns of the normalized scalar field for two periodic elements: (a)
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downstream elements.

firmed that the periodic flow assumption holds true for the flows inside spatially-periodic
inline mixers at low-Re.
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Figure 6.12: Logarithmic decay of intensity of segregation for the case Pe=1000, Re=3.5 andΛ=1.

The results of this chapter show that CFD modeling of 3D mixing is not yet powerful
enough to reveal fine scale structures in high-Pe transport. To do this properly, one re-
quires careful experimentation as we demonstrate with the Quatro mixer study. On the
other hand, even with its limitations CFD can still be used to obtain the dominant eigen-
modes of the scalar field evolution.

Overall, this study verifies the fidelity of both experimental setups for further studies
in different complex mixing geometries.
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7.1. CONCLUSIONS

The work presented in this thesis deepens insight into the fundamentals of advective-
diffusive scalar transport in inline mixing systems via laboratory experiments and numer-
ical simulations. The study concerns the scalar transport in both 2D time-periodic and
3D steady spatially-periodic flows, and adopts the Rotated Arc Mixer (RAM) and the Qua-
tro static mixer as the representative configurations. In Chapter 1, a brief introduction
to scalar transport in laminar flows from both Lagrangian and Eulerian point of view is
given. The scalar transport in inline mixing flows is summarized and the representative
case studies are introduced. The research objectives of the present investigation are also
given in this chapter. Chapter 2 gives an overview of the experimental facilities and tech-
niques developed and employed in the current study. In Chapter 3, the entire Hamiltonian
progression of the Lagrangian dynamics from integrable to chaotic state is investigated
experimentally in the 2D time-periodic RAM via Poincaré sections and the experimental
results are compared with the numerical counterparts. Chapter 4 broadens the analysis
in Chapter 3 by a coupled experimental and computational study on the eigenmodes of
the scalar transport in the simplified RAM. This is investigated for both only-advective
and advective-diffusive cases. Chapter 5 expands on the analysis in Chapter 4 by pre-
senting a parametric study on advective-diffusive scalar transport in the 2D time-periodic
RAM and discusses the influence of geometrical (i.e. reorientation angle) and temporal
(i.e. reorientation frequency) parameters on the mixing quality. This is also a compara-
tive experimental-computational analysis. Chapter 6 reveals a coupled experimental and
numerical analysis on the downstream evolution of 3D flow and scalar fields in the Qua-
tro mixer. As a general conclusion, the experimental results agree well with the numerical
counterparts and especially in the advective limit (i.e. in the limit of infinite-Pe) the exper-
iments reveal far more details in the scalar fields compared to the numerical simulations,
which promotes that the experimental methods and tools used in the current study are
promising for further investigation of the mixing characteristics of inline mixing systems
at different flow conditions. More specific conclusions are presented as follows:

THE GLOBAL HAMILTONIAN PROGRESSION OF LAGRANGIAN DYNAMICS FROM INTEGRABLE

TO CHAOTIC STATE IN 2D TIME-PERIODIC FLOWS

The experimental investigation of the Lagrangian dynamics of passive tracers in 2D time-
periodic RAM flow validates the assumption that Hamiltonian mechanisms rule over the
Lagrangian dynamics of passive tracers in the considered flow class. The experimental
investigation in Chapter 3 corroborates, via direct measurement of Poincaré sections, the
hypothesis that a 2D time-periodic flow system is identical to time-dependent one degree-
of-freedom Hamiltonian system: the Lagrangian flow topologies in the limit of steady flow
comprise isolated flow regions and an increase in the flow period causes the disintegration
of the Hamiltonian into regular (non-mixed) and chaotic (mixed) regions. Further increase
in the flow period shrinks the size of the non-mixed regions. The experimental Poincaré
section technique gives good results and can be used in any other similar flow.
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THE EIGENMODES OF THE ADVECTIVE-DIFFUSIVE SCALAR TRANSPORT IN 2D TIME-
PERIODIC FLOWS

The results of this chapter show that there is a good agreement between the dominant
eigenmodes of the ADE and the DMD analysis on the experimental and numerical data
sets. A quantitative analysis of the scalar field confirms that when diffusion is effective,
self-similarly decaying patterns dominate the scalar field evolution and the evolution can
be simplified to a spatial structure and a decay rate pair which has the slowest decay rate,
which is consistent with the literature. In the limit of zero-diffusivity, however, the self-
similarly decaying structure turns into a complex spatial structure with non-decaying gra-
dients and increasing complexity. The methods and tools employed in this study validate
the eigenmode approach and the results of different methods support each other.

Despite the imperfections in the experimental facility, such as heat losses in the tem-
perature field experiments, the results of the concentration (dye) and temperature field
experiments show similar characteristics: the evolution is dominated by a persistent pat-
tern, the overall structure of which is the same in both cases. The dye experiments give
more detailed information on the complex spatial structure of the repeating pattern.

THE EFFECT OF GEOMETRICAL AND TEMPORAL PARAMETERS ON THE EVOLUTION OF SCALAR

PATTERNS IN 2D TIME-PERIODIC FLOWS

The comparison of the numerical Poincaré sections for 2D time-periodic RAM and 3D
spatially-periodic RAM flows validates that despite the differences in the size and orienta-
tion of topological structures, the two case share similar features indicative of mixed and
non-mixed regions, which substantiates the suitability of 2D time-dependent RAM flow
for the qualitative analysis of mixing in 3D duct flows.

The numerical Poincaré sections are used to obtain the regime diagram in the param-
eter space of −4π/5 ≤Θ≤ π and 0.1 ≤ τ≤ 10. In general, negative Θ cases reach a globally
chaotic state with increasing τ. On the other hand, the non-mixed regions persist in the
scalar fields for positive Θ. These observations are in accordance with the findings in the
literature. The overall agreement in numerical and experimental outcomes concludes that
the setup can be further used to determine the most efficient protocols.

The dye visualizations provide greater level of details for changingΘ and τ parameters
in relation to Lagrangian dynamics presented by the Poincaré maps. Quantitative analysis
of the mixing quality based on the intensity of segregation reveals the effects of control
parameters on the mixing efficiency. It is clearly shown that negativeΘ and relatively high
switching period (τ > 5) achieve a good mixing, whereas the mixing efficiency is low for
τ< 2, independent ofΘ. There is a region in the parameter space bounded by 0 <Θ<π/2,
which indicates poor mixing performance even after a long time (t∗ = 80τ).

Varying-Θ protocols combine the Θ = π case, where the chaos emerges in the center
of the circular domain, with other non-zero Θ cases, for which the chaotic state is initially
reached in the vicinity of the walls and, as a result, enhances the mixing efficiency. This
varying-Θ strategy lowers the value of τ at which globally chaotic state is attained for a
given non-varyingΘ. Disintegrating effect ofΘ=π protocol paves the way for achieving a
fully chaotic state even for positiveΘ2 cases, which otherwise accommodates an elliptical
island in the flow topology. The success of the combined forcing strategy implies that flow



7

104 7. CONCLUSIONS AND RECOMMENDATIONS

topologies and scalar field evolutions acquired for systematically varying control param-
eters can be used to define an optimum set of parameters to achieve an improved mixing
quality in generic 3D reoriented duct flows.

SCALAR TRANSPORT IN 3D SPATIALLY-PERIODIC SYSTEMS

The results of this chapter show that the scalar field evolution in the Quatro mixer is domi-
nated by a pair of exponentially decaying period-2 eigenmodes. In the limit of infinite-Pe,
the evolution is governed by the non-decaying eigenmodes. However, this case can not
be verified by the experimental results due to (1) highly complex structure of the scalar
patterns; (2) insufficient number of cross-sectional scalar fields.

The results of the concentration field measurements show that the 3D LIF measure-
ments are capable of revealing greater level of details in scalar patterns compared to the
numerical simulations which suffer from the fact that accurate computations are possible
only up to Pe ≈ 1000 due to the restriction imposed by the numerical resolution. Fine de-
tails in the numerical results are smeared out by diffusion. Moreover, experimental data
displays the effects of stretching and cutting mechanisms on the scalar fields.

7.2. RECOMMENDATIONS

The work presented in this thesis is limited to the cases where the mixing occurs be-
tween rheologically-equivalent (e.g. the density and viscosity of the mixing fluids are the
same) and Newtonian fluids. However, based on the fact that mixing of rheologically-
equivalent flows is only a part of the industrial mixing processes, studying the effects of
non-equivalent fluid properties on the mixing qualities might expand the knowledge in
fluid mixing processes. Implementation of non-equivalent fluid properties in current the-
oretical/numerical research tools may increase the complexity, yet it can easily be handled
in the current experimental facilities/tools and can be studied comprehensively. The only
thing that needs to be done, by keeping in mind the optical properties of the system such
as refractive index, is the replacement of the working fluid (i.e. silicone oil) with the new
one that meets the requirements. This may lead to further modifications in the experi-
mental facility, such as replacement of the pumps, yet it should not be a problem. Here, it
should be highlighted that the present study opens the ways to investigate more complex
mixing problems from an experimental point of view and it opens a whole application
area.

In addition to the effect of non-equivalent fluid properties on the mixing quality, the
effect of inertia (Re>0) on the mixing qualities has not been considered in this thesis. There
are numerical studies focusing on the flow and mixing behavior in inertial flows, yet the
experimental work in this topic is scarce. The next step might be the investigation of the
response of scalar fields to varying Re values. For this purpose, both the simplified RAM
and the Quatro mixer facilities can be employed with slight changes in the settings. One
may consider the use of silicone oils with different viscosities.

The last but not the least, the effect of different mixing protocols with varying-Θ (dif-
ferent than the ones discussed in this thesis) can be studied to find the optimum mixing
protocol that achieves global mixing with the smallest possible τ. The experimental work
presented in thesis only considers the non-varying Θ cases, yet with the simplified RAM
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facility it is possible to study the effects of varying Θ on the mixing efficiency experimen-
tally. Therefore, as a future work an experimental parametric analysis on varyingΘ can be
performed in the simplified RAM facility.
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SUMMARY

Advective-Diffusive Scalar Transport in Laminar Periodic Flows:
An Experimental Investigation

Heat and mass transfer in laminar periodic flows is of practical relevance to various
industrial thermo-fluid processes that employ the inline mixing principle. Today’s tech-
nology in inline mixing systems is based on empirical knowledge; yet, further advance-
ment is feasible if fundamental transport mechanisms are well-understood. In the past
few decades the fundamentals and applications of mass/scalar transport in laminar peri-
odic flows have been studied in numerous theoretical and numerical investigations. Nev-
ertheless, a complete understanding is not achieved yet. Particularly, the experimental ob-
servations are limited, i.e., restricted to highly-idealized flow geometries or allowing only
partial access to the flow domain with (optical) diagnostic tools (Kusch and Ottino, 1992;
Metcalfe et al., 2006). The work presented here aims to fill this gap via laboratory experi-
ments in real mixer geometries.

The main focus is the experimental investigation of advective-diffusive scalar trans-
port in time-periodic and spatially-periodic laminar flows and the strategy leans on the
application of both Lagrangian and Eulerian methods. There are two distinct experimen-
tal facilities which employ state-of-the-art measurement techniques: the simplified Ro-
tated Arc Mixer (RAM) facility for fundamental research in two-dimensional (2D) time-
periodic flows and the Quatro Mixer facility for three-dimensional (3D) spatially-periodic
flows (with industrial relevance).

The design of the RAM facility is based on a 2D time-periodic simplification of the 3D
spatially-periodic RAM, where the cross-sectional progression is represented by the tem-
poral evolution. Particle image velocimetry (PIV), infrared thermography (IRT) and dye
visualization experiments are conducted to acquire the piece-wise steady velocity field,
the evolution of the temperature field and the evolution of the concentration field in time,
respectively. Dynamic mode decomposition (DMD) is applied to the time-resolved tem-
perature field data to determine the dominant eigenmodes of the evolution. The com-
parative analysis of the theoretical, numerical and experimental dominant eigenmodes
shows that the outcomes of the different methods agree well with each other.

Moreover, the Hamiltonian progression of the Lagrangian dynamics from an integrable
to a chaotic state in 2D time-periodic RAM flow is visualized via direct measurement of
Poincaré sections. The close agreement between simulated and measured dynamics val-
idates this Hamiltonian progression, which is the fundamental route to chaotic dynam-
ics in the considered class of flows. Furthermore, a parametric study on the advective-
diffusive scalar transport in the limit of infinite Péclet number by measuring concentra-
tion fields and acquiring Poincaré sections is conducted. This set of experiments reveals
how the global transport relies on the kinematic/geometric parameters governing the ad-
vection. Moreover, the results show that the scalar fields under the effect of the 2D time-
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periodic flow retain the fundamental properties of the scalar fields in the 3D spatially-
periodic flow.

The experiments conducted in the optically-accessible test section of the Quatro Mixer
facility are two-fold: 3D Particle Tracking Velocimetry (3D PTV) for the acquisition of 3D
flow field and 3D Laser-Induced Fluorescence (3D LIF) for the concentration field mea-
surements. In the former, the velocity field and particle trajectories are reconstructed from
instantaneous particle positions via 3D PTV algorithm and the experimental outcomes
are compared to the numerical counterparts. Downstream evolution of the concentra-
tion field is investigated in the latter class of experiments via reconstruction of 3D fields
from 2D intensity images and compared to the simulated concentration field. Despite the
imperfections in the experiments, there is a good agreement between experimental and
numerical results, which opens the way to detailed experimental measurement of mixing
efficiency (and its optimization) in devices with a variety of geometries.

In conclusion, the experimental analyses presented in this thesis deepen the insight
into the fundamentals of advective-diffusive scalar transport (in generic mixing devices).
Moreover, the results validate the findings of theoretical and numerical research. The
methodology followed within this framework is promising for future studies in order to
understand and optimize mixing in industrial mixing devices.



SAMENVATTING

Advectief-Diffusief Scalair Transport in Laminaire Periodieke Stromingen:
Een Experimentele Studie

Warmte- en massaoverdracht in laminaire periodieke stromingen is van praktisch be-
lang voor een scala aan industriële thermo-fluidische processes die gebruik maken van
het zogenaamde “inline” mengprincipe. De hedendaagse mengtechnologie is grotendeels
gebaseerd op empirische kennis; verdere ontwikkeling is echter mogelijk als fundamen-
tele transport mechanismes beter worden begrepen. In de afgelopen decennia zijn de
fundamentele fysica en toepassing van massa/scalair transport in laminaire periodieke
stromingen onderzocht in een reeks theoretische en numerieke studies. Desalniettemin
is een volledig begrip nog steeds niet bereikt. Met name experimentele observaties zijn
beperkt en betreffen doorgaans sterk geïdealiseerde stromingsgeometrien of systemen die
slechts deels toegankelijk zijn voor optisch meettechnieken (Kusch en Ottino, 1992; Met-
calfe et al., 2006). Het hier gepresenteerde werk poogt deze leegte op te vullen middels
laboratorium experimenten in realistische mengergeometrien.

De nadruk ligt op experimenteel onderzoek van advectief-diffusief scalair transport
in (temporeel en spatieel) periodieke laminaire stromingen, waarbij zowel Euleriaanse
als Lagrangiaanse methodieken worden toegepast. Hiertie zijn twee experimentele op-
stellingen gerealiseerd die gebruik maken van geavanceerde meettechnieken: de vereen-
voudigde “Rotated Arc Mixer” (RAM) opstelling voor fundamenteel onderzoek aan twee-
dimensionale (2D) temporeel periodieke stromingen en de “Quatro menger” opstelling
voor drie-dimensionaal (3D) spatieel periodieke stromingen (met industriële relevantie).
Het ontwerp van de RAM opstelling is gebaseerd op een 2D temporeel periodieke vereen-
voudiging van de 3D spatieel periodieke RAM, waarbij de progressie in opeenvolgende
dwarsdoorsnedes van de 3D RAM wordt gerepresenteerd door de temporele evolutie in de
2D RAM. Experimenten zijn uitgevoerd in de 2D RAM met behulp van “Particle image ve-
locimetry” (PIV), infrared thermografie (IRT) en kleurstofvisualisatie ter verkrijging van
respectievelijk het stuksgewijs stationaire snelheidsveld, de temporele evolutie van het
temperatuurveld en de temporele evolutie van concentratievelden. Data analyse middels
“Dynamic mode decomposition” (DMD) is toegepast op de data van het temperatuurveld
ter bepaling van de dominante eigenmodes van de evolutie. De vergelijkende analyse van
de theoretische, numerieke en experimentele dominante eigenmodes toont dat de uit-
komsten van de verschillende methodes goed in overeenstemming zijn met elkaar.

Daarnaast is de Hamiltoniaanse progressie van de Lagrangiaanse dynamica van een
integreerbare naar een chaotische toestand in de 2D temporeel periodieke RAM gevi-
sualiseerd door middel van directe metingen van Poincaré secties. De nauwe overeen-
komst tussen gesimuleerde en gemeten dynamica valideert deze Hamiltoniaanse progres-
sie, welke de fundamentele route naar chaotische dynamica is in de beschouwde klasse
van stromingen. Verder is een parametrische studie uitgevoerd aan het advectief-diffusief
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scalair transport in de limiet van een oneindig Péclet getal door meting van concentratie-
velden en bepaling van Poincaré secties. Deze serie van experimenten laat zien hoe het
globale transport afhangt van de kinematische en geometrische parameters die de advec-
tie bepalen. Bovendien laten deze resultaten zien dat de scalaire velden voor de 2D tem-
poreel periodieke stroming de fundamentele eigenschappen van de scalaire velden van de
3D spatieel periodieke stroming behouden.

De experimenten uitgevoerd in de optisch toegankelijke test sectie van de Quatro men-
ger zijn tweeledig: “3D Particle Tracking Velocimetry” (3D PTV) voor het verkrijgen van het
3D snelheidsveld en “3D Laser-Induced Fluorescence” (3D LIF) ‘voor de metingen van het
concentratieveld. Bij 3D PTV worden snelheidsveld en deeltjesbanen gereconstrueerd uit
instantane deeltjesposities via een dataverwerkingsalgoritme en de uitkomsten daarvan
worden vergeleken met numerieke tegenhangers. De stroomafwaartse evolutie van het
concentratieveld is onderzocht middels 3D LIF via de reconstructie van 3D velden uit 2D
intensiteitsbeelden en vergeleken met het gesimuleerde concentratieveld. Ondanks de
imperfecties in de experimenten is er een goede overeenkomst tussen experimentele en
numerieke resultaten, wat het pad effent naar gedetaileerde experimentele metingen van
de mengefficientie (en de optimalisitie daarvan) in apparaten met verschillende geome-
trien.

Ter conclusie, de experimentele analyses gepresenteerd in deze dissertatie verdiepen
het inzicht in de fundamentele mechanismen van advectief-diffusief scalair transport (in
generieke mengapparatuur). Bovendien valideren de resultaten de bevindingen van theo-
retisch en numeriek onderzoek. De aanpakken zoals gevolgd in dit kader zijn veelbelovend
voor toekomstige studies voor het begrijpen en optimaliseren van menging in industriële
mengers.
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