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 

Abstract—Real-time control and operation are crucial to deal 

with increasing complexity of modern power systems. To 

effectively enable those functions, it is required a Dynamic State 

Estimation (DSE) function to provide accurate network state 

variables at the right moment and predict their trends ahead. 

This paper addresses the important role of DSE over the 

conventional static State Estimation in such new context of smart 

grids. DSE approaches normally based on Extended Kalman 

Filter (EKF) need to collect recursively time-historic data, to 

update covariance vectors, and to treat heavy computation 

matrices. Computation burden mitigates the state-of-the-art 

utilizations of DSE in real large-scale networks although DSE 

was introduced several decades ago. In this paper, an 

improvement of DSE by using Unscented Kalman Filter (UKF) to 

alleviate computation burden will be discussed. The UKF-based 

approach avoids using linearization procedure thus outperforms 

the EKF-based approach to cope with non-linear models. 

Performance of the method is investigated with a simulation on a 

18-bus test network. Preliminary results have been gained 

through a case study that motivate further research on this 

approach.   

 

Index Terms-- State Estimation, Dynamic State Estimation, 

Extended Kalman Filter, Unscented Kalman Filter, Renewable 

Energy Sources. 

I.  INTRODUCTION 

ONSIDERING massive integration of the variable and 

unpredictable Renewable Energy Source (RES) and new 

types of load consumptions, e.g. heat pumps, electric vehicles, 

the electric power grid is becoming much more complex  and 

dynamic. Real-time control and operation are playing an 

important role to reduce consequences of intermittency and 

uncertainty in such new context of smart grids. These 

functions require advanced techniques to not only estimate 

system state variables but also predict their trends steps ahead 

[1]. By improving the monitoring capability of the grid, 

control action will be trigger in real-time thus improve system 

reliability and stability.  

Static State Estimation (SSE) provides a snapshot of power 

system operating point reflected by state variables, e.g. bus 

voltage magnitudes and phase angles, based on a set of 

measurements, e.g. voltage magnitudes, power flows, and 
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power injections. SSE was first introduced by Schweppe and 

Wildes based on Weighted Least Square (WLS) in 1970 [2]. 

In an effort to reduce computation burden, several hierarchical 

estimation methods were then proposed and summarized in 

[3]. Distributed approaches for SSE have gained also 

significant interest to comply state variables from different 

network areas on different voltage levels [4]. According to the 

way of defining network areas, different distributed algorithms 

for SSE were proposed. In [5], Ebrahimian and Baldick 

introduced a robust algorithm based on linear augmented 

Lagrangians for overlapping bus boundaries. Conejo et. al. 

presented a straight forward and effective algorithm for 

overlapping tie-line boundaries in [6]. By using Multi-Agent 

System technology, Nordman and Lehtonen proposed a new 

approach for distributed SSE in [7]. In our previous research 

work, this idea was extended with completely decentralized 

SSE method in [8]. Further information about static state 

estimation can be referred from [9]. 

SSE has been utilized widely in the past due to its reliable 

capability and reasonable accuracy for quasi static situation. 

For online and real-time applications, SSE has to be repeated 

in a small enough ∆t time step (sampling time), which leads to 

undesirable property [10]. Actually, this kind of succession 

static estimators, so-called tracking estimator algorithms, can 

provide only information about static steady-state variables. 

Nowadays with highly dynamic nature of smart grids, this 

traditional approach might be an obstacle for advanced real-

time control functions desired for the complex and uncertain 

electric power system. 

Dynamic State Estimation (DSE) was also introduced early 

in 1970 by Debs and Larson with a relative simplified model 

for tracking state vectors in [10]. Leite da Silva et. al. 

extended the approach with a focus on forecasting and 

filtering the state vectors by using exponential smoothing and 

least-square estimation [11]. Since then, DSE has been known 

as an alternative state estimation approach that is able to 

predict state vectors one time step ahead based on the priori 

knowledge and be corrected with next measurement sets. 

Depending on the techniques, estimated variables of DSE can 

be either static state variable, e.g. bus voltage magnitudes and 

phase angles, or dynamic state variables, e.g. speed variables 

of generators. 

In general, the DSE model is based on the Extended 

Kalman Filtering (EKF) theory including three main steps of 

parameter identification, state forecasting/prediction, and state 

filtering/correction. However, EKF needs to collect 

recursively time-historic data, to update covariance vectors 
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and to treat heavy computation matrices. These steps mitigate 

the application of EKF in real large-scale power systems. 

Recent applications of Unscented Transformation 

techniques improve significantly the performance of Kalman 

Filter based estimation for DSE. Valverde and Terzija have 

shown the advantage of the Unscented Kalman filter (UKF) 

over EKF and WLS methods [12]. In [13], the capability of 

UKF for addressing dynamic variables, e.g. speed variables, 

internal voltage value, etc. was presented a simplified 

simulation including a small number of generators. Another 

research focusing on the generator variables was introduced in 

[14]. In all research works, UKF showed its advantage in 

terms of robustness, speed of converge, and bad data 

identification compared with the classical EKF-based method. 

In this paper, a detailed model for DSE will be presented 

including three main steps of parameter identification, state 

prediction, and state correction. The paper will focus on 

advanced utilization of UKF and adapt this advanced 

technique in three mentioned steps. Combination of UKF with 

neural network models will be discussed to improve the 

performance of DSE in estimating and predicting system state.  

II.  DYNAMIC STATE ESTIMATION  

A dynamic model that provides a more compete way of 

monitoring system operating conditions than the static one, 

can be represented by a process equation (1) and a 

measurement equation (2) as follows: 

 1 ,k k kk  x f x q           (1) 

( , )k k kk z h x r           (2) 

where k is the time sample; xk is the state vector; qk represents 

modeling uncertainties, corresponding to a white Gaussian 

noise with zero mean and covariance matrix Qk; zk is the 

measurement vector; h is a set of nonlinear load-flow 

functions for the current network configuration; rk is a 

Gaussian error vector, with zero mean and diagonal 

covariance matrix Rk. 

In this state-space model, equation (1) can be interpreted as 

the memory of the system state time evolution and equation 

(2) is considered as its refreshment. Such memory will be 

responsible for the forecasting capability of the model. 

Depending on availability of measurements, the model can be 

adequacy or parsimony. 

The basic idea of state estimation function is to determine 

the most likely system state vector x, including either static 

steady-state variables or dynamic state variables:  

, , , ,
T

i i inject i i    x θ V P ,  

based on the quantities, that are measured and acquired by 

remote terminal units (RTU), are presented as: 

, , , ,
T

flow flow inject inject
   z V P Q P Q .   

While SSE based on WLS provides only a snapshot of  the 

current state vector, i.e. xk at a certain time k, DSE aims to 

provide not only time-varying solutions but also predict the 

future operating points of the system. The idea of one step 

ahead prediction recently mentioned by Venayagamoorthy et. 

al in [1] is crucial to enable real-time operation and control 

functions. It is an overview about several previous works 

using neural network models for dynamic state estimation of 

generators, with a special focus on wind turbine. This paper 

adopts and extends the idea to get early predictions for having 

time to allocate optimally distributed resources.  

A.  EKF-based DSE 

As the most popular approach to handle complexity of the 

above model, the EKF-based method is to simplify equation 

(1), with the assumption of the quasi steady-state behavior of 

the system, as follows: 

1k k k k k   x F x g q          (3) 

where matrix Fk represents how fast the transition between 

states are; vector gk is associated with the trend behavior of the 

state trajectory.  

DSE depends heavily on the forecasting technique adopted 

[15]. Different forecasting techniques can be applied for the 

estimation of Fk, gk, and Qk. Kalman filter in [16], exponential 

smoothing in [11], and artificial neural networks (ANN) in 

[17]–[18], have been successfully utilized under this context. 

In general, DSE is achieved by implementing three steps, i.e. 

parameter identification, state prediction (forecasting), and 

state correction (filtering). The DSE process can be illustrated 

in Fig. 1.  

 

State prediction

Parameter 
Identification

State correction
qk

k → k + 1
rk+

+
-

+

1k 
x

1
ˆ

k 
x

 1k
x


h

 
Fig. 1. Dynamic state estimation process. 

 

    1)  Step 1 – Parameter identification 

 

Parameter identification aims to estimate values of Fk, gk, 

and Qk that are used for the state prediction step. Considering 

an application of Holt’s linear exponential smoothing 

technique, values of Fk and gk can be obtained as follows: 

 1k k k  F I
        

  (4) 

    1 11 1 1k k k k k k k kx   

      g a b  (5) 

where I is the identity matrix, and all associated parameters 

can be calculated based on priori knowledge, see more details 

in [11]. This technique can give a prediction at a very short-

term (few minutes ahead) step although the implementation is 

rather simple. However, this linearization step that aims for 

the quasi steady-state model might not be suitable for 

significant dynamic situations. 

 

    2)  Step 2 - State prediction (forecasting) 

 

At this stage, state vector 1kx  is predicted with its 

covariance matrix 
1kx

P  by following equations: 
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1
ˆ

k k k k  x F x g             (6) 

1 ˆ .
k k

T

k k k
 

x x
P F P F Q

          
(7) 

while ˆ kx
P  is the covariance matrix to estimate ˆ

kx  at time k. 

State prediction is an interesting area that the computational 

intelligence (CI) can be exploited. ANN as a typical 

application of CI has been extensively studied in [17]-[18]. 

The prediction model can be improved by integrating load 

forecasting, that has been proposed as a concept of 

forecasting-aided state estimation (FASE) in [15]. 

 

    3)  Step 3 - State correction (filtering) 

 

By updating a new set of measurements 
1kz , the predicted 

state vector 
1kx  can be corrected (filtered) leading to a new 

state vector 
1

ˆ
kx  with its error covariance 

1ˆ kx
P . An objective 

function for correcting process, at time k + 1, is presented as 

follows: 

         1 1T T

xx z x z x x x x x            J h R h P
  

(8) 

where the time index k+1 has been omitted for simplification; 

and R is  variance vector of the measurement errors. 

Similar to WLS estimation for SSE, minimization of  xJ  

leads to an iterative solution, i.e. iterated extended Kalman 

filter, as follows: 

      1 1 1 1 1
ˆ .k k k k kx        x x K z h      (9) 

The gain matrix 
1kK  is computed by following equation: 

1
1 1 1

1

T T

k x


  


   K H R H P H R      (10) 

where,    
 

1k

x

x







h
H  : Jacobian matrix. 

Respectively  to 
1

ˆ
kx , its error covariance matrix 

1ˆ kx
P is 

computed as follows:  

    
1

1
1 1

ˆ .
k

T

x


    x

P H R H P
        

(11) 

B.  UKF-based DSE 

Basically, EKF is an extension of Kalman filtering through 

a linearization procedure to solve nonlinear models. Though 

this approach has been considered feasibly, it provides only an 

approximation to optimal nonlinear estimation. It causes to 

biased estimates and erroneous covariance [1]. Furthermore, 

calculation of the Jacobian matrix Hk+1 for each time step 

could also slow down the process of DSE. 

UKF-based DSE is an improvement to cope with non-linear 

nature of DSE. Based on the unscented transformation (UT) 

theory, the approach propagates statistical distribution of the 

state via non-linear equations to provide better results. Above 

three main steps of DSEs will be adjusted according to UT 

technique as follows: 

 

    1)  Step 1 – Parameter identification (including sigma 

points calculation) 

 

Besides identifying Fk and gk, this stage includes also sigma 

point calculation. From the current state vector ˆ
kx

 
and its 

covariance ˆ kx
P , UT propagate statistical distribution to form a 

matrix Xk of 2N + 1 sigma vectors as follows: 

   ˆ ˆ
ˆ ˆ

k kk k k kN N     
 x x

X x x P x P   (12) 

where  2 N n      is a scaling parameter with the 

spreading constant  ( 410 1   ) and the secondary scaling 

 (usually, 3 n   ). 

 

    2)  Step 2 - State prediction (forecasting) 

 

From the sets of sigma points in (11), the prediction step in 

(5) is adjusted as follows: 

1

i i

k k k k  X F X g
          (13)

2

1

0

N
m i

k i k

i

W



x X
           (14) 

  
1

2

1 1

0

.
k

N
T

c i i

i k k i k k i k

i

W
    



   x
P X x X x Q

  (15) 

with weighting factors given by 

0 ;mW
N






  

2

0 1 ;cW
N


 


   

   

 

1
.

2

m c

k kW W
N 

 
  

 

    3)  Step 3 - State correction (filtering) 

 

From predicted state vector 
1kx  and its covariance 

1kM , a 

new set of sigma points is generated as:  

   
1 11 1 1 1

ˆ
k kk k k kN N 
    

    
 x x

X x x P x P  (16) 

to be propagated through the measurement-update equations: 

 1 1
ˆ ˆi i

k k Y h X
           (17) 

      
2

1 1

0

ˆˆ
N

m i

k i k

i

W 



y Y
          (18) 

  
1

2

ˆ 1 1

0

ˆ ˆˆ ˆ
k

N T
c i i

i k k i k k i k

i

W
    



   y
P Y y Y y R

  
(19) 

  
1 1

2

ˆ 1 1

0

ˆ ˆ
k k

N T
c i i

i k k i k k i

i

W
     



  x y
P X x Y y

  
(20) 

Then, the gain matrix 
1kK

 
is calculated as: 

1 1 1

1

ˆ ˆ1 k k kk   



 
x y y

K P P
         

(21) 

Correction of the state vector and its covariance are  calculated 

by following equations: 

     1 1 1 1
ˆˆ ˆi

k k k k k i      x x K Y y       (22) 

1 1 1ˆ 1 1.k k k

T

k k    
x x y

P P K P K
       

(23) 

III.  A CASE STUDY 

In this section, performance of UKF is investigated with a 

simulation on a 18-bus distribution grid, as shown in Fig. 2. 
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This test network is modified from the IEEE 34-bus test 

network [19] with some simplifications as follows [20]: 

 Distributed loads will be approximately placed one-

third at the end of the line and two-thirds at one-

fourth of the way from the source end; 

 Only the main three phase sections are included, the 

unbalance phase loads are summed up at the root;  

 Constant PQ loads are represented by dynamic load 

models. Constant Z loads are represented by passive 

resistors and inductors. Constant I loads are 

neglected. 

 
 

Fig. 2. Single-line diagram of the 18-bus test network modified from the 

IEEE 34-bus network by representing shading areas as equivalent buses. Note 

that placements of distributed loads will create additional buses in some line 

sessions.    

 

Network model is built in a real-time simulation on the 

Real-Time Digital Simulation (RTDS) platform. To perform 

the slow dynamics of the system, 50 time-sample intervals 

with the time resolution of 0.08 sec. were obtained from the 

RTDS platform. During the simulation time, there is a voltage 

drop occurring at bus 800. To have realistic measurement data, 

values of bus voltages, power flows, and power injections 

from the simulation are interfered with random additive 

Gaussian noise:  0;0.1%N . 

 Fig. 3 shows the true value of voltage magnitude at bus 800 

and its predicted and corrected values by using UKF. After 

some first time samples, the state vector is predicted quite 

close to the true value during steady-state operating points. 

Even with a significant event occurring, prediction performs 

relative good result and it is able to track new operating 

points. Fig. 3 shows also outperformance of the corrected state 

vector compared with the predicted state vector especially in 

transient periods of the system.  

 

 
 

Fig. 3. Comparison of the true value with predicted and corrected values - 

voltage magnitude at bus 800.    

 

To evaluate the accuracy of estimator, an overall 

performance index is calculated as follows: 
,

1 1

,

1 1

ˆ i i true

k k

k i i true

k k

J
 

 










y y

y y
        (23) 

where 
,

1

i true

ky  is the true vector of measurements; 1

i

ky is the 

noisy measurement vector. Fig.4 presents the performance 

index of the method over 50 time samples. 

 

 
 

Fig. 4. Performance index over time simulation.    

IV.  CONCLUSION AND DISCUSSIONS  

This paper addresses the important role of DSE in 

estimating accurate state variables at the right moment and 

predicting their trends steps ahead for real-time control and 

operation. A UKF-based DSE has been introduced to 

overcome difficulties when using the EKF-based approach. 

The proposed approach requires less computing effort while 

outperforms the former one in non-linear models such as DSE. 

Performance of the method has been verified by a simulation 

with a 18-bus test network. Preliminary results have shown 

feasibility of UKF in estimating and predicting dynamic state 

of the power grid.  

In future work, a combination of UKF with Recurrent 

Neural Network (RNN) might be considered for improving 

DSE function. More specifically, UKF can be used to support 

on-line training process of RNN mentioned in [21]. 
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