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Summary

Control systems can be divided into multiple layers: regulative control, supervisory
control and user interfacing. Regulative control assures that a system reaches the
desired position or the desired state in the desired way. These controllers are
typically designed in the continuous-time domain. This is the domain of classical
control theory. Supervisory control assures that a system correctly performs its
function by determining and executing allowed sequences of tasks on (in)dependent
resources. These controllers are typically designed in the discrete-event domain.
User interfacing is provided to interact with the users of the system. A user of the
system can be a human operator, but also another system. This thesis focuses on the
design of controllers for the supervisory control layer.

In the traditional approach to supervisory controller design, behavioral require-
ments are informally specified by domain experts, and software is coded by software
experts. This leads to long development cycles, and to code and requirements that
are difficult to develop, debug, maintain, and adapt. Observed erroneous behavior of
the system under test can be caused by, among others, ambiguous or inconsistent
control requirements, miscommunication between domain engineer and software
coder, and errors in the control code. This can be especially problematic when the
functionality of existing products evolves over time, such as in the case of Magnetic
Resonance Imaging (MRI) scanners, that can be maintained at the level of new, state
of the art, systems by periodic upgrades over a period of approximately ten years.

To address these issues, this thesis proposes the use of existing supervisory con-
trol theory for formal specification of the control requirements and the uncontrolled
plant, and generation of the control code by means of supervisory control synthe-
sis. By combining supervisory control synthesis with the well-known principles of
model-based engineering, ‘synthesis-based engineering’ is obtained.

Using supervisory control theory has the following advantages: The engineering
process changes from implementing and debugging the control code, to designing
and debugging the behavioral requirements. The models of the uncontrolled sys-
tem and the control requirements are unambiguous, leaving no room for different
interpretations. The synthesized supervisors are suitable for code generation, which
makes the design relatively independent of the implementation technology. Finally,
changes in the control requirements can be realized quickly without introducing
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viii Summary

errors. As a result, the development time of the supervisors decreases while the
quality increases.

Model-based analysis techniques can be used to get early feedback on the sy-
stem under development. The control requirements can be validated by means of
interactive simulation and visualization of the synthesized supervisor together with
the plant model. The use of supervisory control synthesis means that changes in
the requirements, resulting from these validation steps, can be incorporated in the
supervisor quickly.

The synthesis-based engineering design process is applied to two cases in the
Philips Healthcare MRI scanner patient environment, namely the patient support
table, and the patient communication system. Different kinds of supervisory control
theory are applied: event-based supervisory control, state-based supervisory control
using automata, and state-based supervisory control using automata with variables,
the so-called ‘extended automata’.

In event-based supervisory control, the plant and the control requirements are
both modeled by automata. The patient support table case has shown that the evolva-
bility of the control system can be improved by dividing the plant model and control
requirements into small, mostly independent, specifications. The plant models are
divided into models for the actuators, sensors, and for structural restrictions. The
control requirements are divided into requirements for the individual components
and for requirements defining their interaction. This division is facilitated by splitting
of events, such as stop events, into a number of independent sub-events, and by
introducing internal events to allow modeling of various modes of operation. In this
way, model errors can more easily be detected, and attributed to specific parts of
the specification. The improved evolvability is demonstrated by means of an actual
redesign of the control requirements to incorporate a user change request.

The generated real-time implementation was extensively tested on an actual
patient support system: several operating procedures, that are used in practice, were
carried out. In addition, attempts were made to generate erroneous behavior by
means of very rapid pressing of buttons and switches, and by intentionally giving
illegal commands. In all cases, the control system reacted as desired. The system
was also operated and tested by Philips employees, but no errors were found.

State-based supervisory control is introduced as an extension of event-based su-
pervisory control: in addition to automata, plants and control requirements can also
be specified using state exclusion predicates, and state-event exclusion predicates.
Experience at Philips Healthcare has shown that state-based control requirements
are intuitive for both domain experts and software experts, since they closely match
the view of the systems in terms of states, transitions between states, and restrictions
on allowable states and state-transitions. To allow a straightforward comparison
of event-based and state-based supervisory control specifications, the same patient
support table has been modeled in detail using event-based and state-based specifi-
cations. A comparison shows that the combination of state-based and event-based
requirements leads to far more intuitive specifications than are possible using event-
based specifications alone. In addition, where event-based supervisory control in
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general allows only a single initial state, the state-based supervisory control synthesis
algorithm of [44] allows an arbitrary number of initial states. This has proved to be
essential for actual real-time control of the patient support system, because it allows
activation of the controller in any initial state of the physical system. Finally, the
state-based control requirements that are defined in this thesis not only facilitate the
exclusion of unsafe behavior by means of state-event exclusion and state exclusion
(safety), but also the inclusion of required safe behavior by means of state-event
inclusion (liveness).

In existing ‘extended automata’-based supervisory control, automata are extended
with variables, guards and updates. The patient communication system application
illustrates how the use of variables is essential for intuitive modeling of various
modes of operation of the system. To support systematic, modular specification of
the patient communication system for supervisory control synthesis, observers that
record sequences of events in terms of states are shown to be essential. An advantage
of this approach is that it facilitates state-based output. That is, the definition of the
values of output variables as a function of the state of the control system.

The applications discussed in this thesis show that synthesis-based engineering
has major advantages compared to conventional supervisory control system design.
As a result, Philips Healthcare has started to investigate the use of supervisory control
synthesis for all major components of MRI scanners. Regarding the tool chain, also
considerable progress is made: a new supervisory control tool chain, based on the
tool chain that is proposed in this thesis, is currently implemented in the Systems
Engineering Group.
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Samenvatting

Besturingssystemen kunnen worden onderverdeeld in meerdere lagen: regelaars,
besturingen, en gebruikersinterface. Regelaars zorgen ervoor dat het systeem de
gewenste positie of toestand op een gewenste manier bereikt. Regelaars worden
typisch ontwikkeld in het continue-tijd domein. Dit is het domein van de klassieke
regeltechniek. Besturingen zorgen ervoor dat het systeem op een correcte manier
zijn functie uitvoert door het bepalen en uitvoeren van een reeks van taken op
(on)afhankelijke resources. De gebruikersinterface verzorgt de interactie met de
gebruiker met het systeem. De gebruiker kan een mens zijn, maar ook een ander
systeem. Dit proefschrift concentreerd zich op het ontwerp van besturingen.

In de traditionele aanpak van het ontwikkelen van besturingen worden gedrags-
eisen informeel gespecificeerd door domeinexperts en wordt software gecodeerd
door software-experts. Dit leidt tot lange ontwikkelcycli, en tot software en eisen
die moeilijk zijn te ontwikkelen, debuggen, onderhouden, en aan te passen. Foutief
gedrag in de testfase kan zijn oorzaak hebben in, onder andere, ambigue of incon-
sistente besturingseisen, miscommunicatie tussen domeinexpert en software-expert,
en fouten in de besturings-software. Dit kan extra problematisch zijn als de functi-
onaliteit van bestaande producten evolueert in de tijd, zoals in het geval van MRI
scanners, die op het niveau van nieuwe, state of the art, systemen worden gebracht
door periodieke upgrades over een periode van ongeveer tien jaren.

Om het ontwerp van programmatuur voor machines aan te pakken, introduceert
dit proefschrift de formele specificatie van besturingseisen en de generatie van
besturingen aan de hand van de bestaande theorie van synthese van besturingen. De
combinatie van synthese van besturingen met de principes van modelgebaseerde
ontwikkeling leidt tot ‘synthese-gebaseerde ontwikkeling’.

Het gebruik van de theorie van synthese van besturingen heeft de volgende
voordelen: Het ontwikkelproces verandert van het implementeren en debuggen van
besturingen naar het ontwikkelen en debuggen van de besturingseisen. De modellen
van het onbestuurde systeem en de besturingseisen zijn ondubbelzinnig, en laten
geen ruimte voor verschillende interpretaties. De gesynthetiseerde besturingen zijn
geschikt voor het genereren van implementatiesoftware, wat het ontwerp relatief
onafhankelijk maakt van de implementatietechnologie. Tenslotte kunnen wijzigingen
in de besturingseisen relatief snel en zonder fouten worden gerealiseerd. Dit zal
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xii Samenvatting

leiden tot een afname van de ontwikkeltijd van besturingen, terwijl de kwaliteit zal
toenemen.

Modelgebaseerde analysetechnieken kunnen worden gebruikt om snel feedback
te krijgen op het in ontwikkeling zijnde systeem. De besturingseisen kunnen worden
gevalideerd door middel van interactieve simulatie en visualisatie van de gesyntheti-
seerde besturing samen met het model van het onbestuurde systeem. Het gebruik van
synthese van besturingen betekent dat wijzigingen in de besturingseisen, als gevolg
van de modelgebaseerde validatie, snel kunnen worden gerealiseerd.

Het synthese-gebaseerde ontwerpproces is toegepast op twee gevallen op het
gebied van de patiënt-ondersteuning voor MRI-scanners bij Philips Healthcare, na-
melijk de patiënt-tafel en het patiëntcommunicatie-systeem. Verschillende vormen
van de theorie van synthese van besturingen worden toegepast: event-gebaseerde
synthese, toestand-gebaseerde synthese met behulp van automaten en toestand-
gebaseerde synthese met behulp van automaten en variabelen, de zogenaamde ‘uit-
gebreide automaten’.

In event-gebaseerde synthese van besturingen worden zowel het onbestuurde
systeem als de besturingseisen gemodelleerd met automaten. De case van de patiënt-
tafel heeft laten zien dat de evolueerbaarheid van de besturing verbeterd kan worden
door het model van het onbestuurde systeem en de besturingseisen op te delen in
kleine, grotendeels onafhankelijke, specificaties. De modellen van het onbestuurde
systeem worden opgedeeld in modellen voor de actuatoren, voor de sensoren, en
voor de structurele beperkingen. De besturingseisen worden opgedeeld in de eisen
voor de individuele componenten en voor de eisen die hun interactie bepalen. Deze
opdeling wordt mogelijk gemaakt door de verdeling van events, zoals stop-events,
in een aantal onafhankelijke sub-events, en door de introductie van interne events
om het modelleren van verschillende werkingsmodi mogelijk te maken. Op deze
wijze kunnen modelleerfouten eenvoudiger worden gedetecteerd, en worden toe-
gewezen aan specifieke delen van de specificatie. De verbeterde evolueerbaarheid
wordt aangetoond met behulp van een herontwerp van de besturingseisen om een
daadwerkelijke wijziging van een gebruikerseis te realiseren.

De gegenereerde real-time implementatie is uitgebreid getest op een daadwer-
kelijke patiënt-tafel: diverse gebruiksprocedures uit de praktijk zijn uitgevoerd.
Daarnaast is er getracht foutief gedrag op te roepen door drukknoppen en schakelaars
zeer snel te activeren, en door opzettelijk foutieve opdrachten te geven. In alle
gevallen reageerde de besturing zoals gewenst. Het systeem is ook bediend en getest
door Philips personeel, waarbij evenmin fouten zijn gevonden.

Toestand-gebaseerde synthese van besturingen is geïntroduceerd als een extensie
van event-gebaseerde synthese van besturingen. Deze extensie maakt het mogelijk
om het onbestuurde systeem en de besturingseisen, behalve met automaten, ook met
behulp van toestand-uitsluitingspredicaten en toestand-event-uitsluitingspredicaten
te specificeren. Ervaring bij Philips Healthcare heeft aangetoond dat toestandsgeba-
seerde besturingseisen intuïtief zijn voor zowel domeinexperts als software-experts,
aangezien zij sterk overeenkomen met de wijze van beschouwen van systemen
in termen van toestanden, overgangen tussen toestanden, en beperkingen op toe-
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gestane toestanden en toestandsovergangen. Om een rechtstreekse vergelijking
tussen event-gebaseerde en toestand-gebaseerde specificaties mogelijk te maken,
is dezelfde patiënt-tafel in detail gemodelleerd met zowel event-gebaseerde als
toestand-gebaseerde specificaties. Een vergelijking toont aan dat de combinatie van
toestand-gebaseerde en event-gebaseerde specificaties tot aanzienlijk intuïtievere
specificaties leidt dan mogelijk zijn met uitsluitend event-gebaseerde specificaties.
Bovendien, waar event-gebaseerde specificaties in het algemeen slechts een en-
kele begintoestand toestaan, staat het toestand-gebaseerde synthese algoritme van
[44] een willekeurig aantal begintoestanden toe. Dit is essentieel gebleken voor de
daadwerkelijke real-time besturing van de patiënt-tafel, omdat het de activering van
de besturing mogelijk maakt in iedere willekeurige begintoestand van het fysieke
systeem. Tenslotte maken de toestand-gebaseerde specificaties die zijn gedefinieerd
in dit proefschrift het mogelijk om niet alleen het onveilige gedrag uit te sluiten
met behulp van toestand-event-uitsluiting en toestand-uitsluiting, maar ook om het
gewenste veilige gedrag te vereisen met behulp van toestand-event-inclusie.

In synthese van besturingen met behulp van ‘uitgebreide automaten’ worden de
automaten uitgebreid met variabelen, condities en updates. De patiëntcommunicatie-
toepassing laat zien hoe essentieel het gebruik van variabelen is voor het intuïtief
modelleren van de verschillende werkingsmodi van het systeem. Toestandwaar-
nemers worden geïntroduceerd om het systematisch en modulair ontwerpen van
besturings-specificaties te ondersteunen. Deze toestandwaarnamers leggen sequen-
ties van events vast in termen van toestanden. Een voordeel van deze aanpak is
dat het toestand-gebaseerde output mogelijk maakt. Hiermee kan de waarde van
outputvariabelen worden gedefinieerd als functie van de toestand van de besturing.

De behandelde toepassingen laten zien dat het synthese-gebaseerde ontwerppro-
ces essentiële voordelen biedt ten opzichte van het conventionele ontwerpproces van
besturingen. Als gevolg hiervan is Philips Healthcare begonnen met onderzoek naar
het toepassen van synthese van besturingen voor alle hoofdonderdelen van MRI scan-
ners. Ten aanzien van de ondersteunende gereedschappen wordt ook aanzienlijke
vooruitgang geboekt: een nieuwe ontwikkelomgeving voor de synthese van besturin-
gen, gebaseerd op de ontwikkelomgeving die is voorgesteld in dit proefschrift, is in
ontwikkeling in de Systems Engineering Groep van de TU/e.
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Chapter 1

Introduction

A current trend in embedded systems is that, due to market demands and increased
competition, the numbers of functions in a system is increasing. At the same time,
the time-to-market of new functions should be decreased. As a result, functions
are added to (new generations of) embedded systems at an accelerating rate. For
instance, around 1980 the first mobile phones could be used for making phone calls
only. Around 1993, the first data features such as sending of text messages were
added to the phone. Currently, mobile phones run advanced operating systems to
which new features can be added every day, by means of so called ’apps’.

Adding extra functions to an embedded system increases its complexity. Whilst
the quality of the systems should meet high quality constraints. To be able to release
a new generation of an embedded system in time, many systems are not designed
from scratch. Functions are added to previous generations of the system. The system
evolves during multiple generations of the system. The investments in a system are
accumulating over years, therefore, replacing it becomes more expensive every year.

As a result, developers must handle the increased complexity, and understand the
system thoroughly to add the new features. To assist the development, the system
should be designed such that new features and implementation technologies can be
incorporated easily. In other words, the system should not be designed as a one time
product; instead, the system should be designed for evolvability as well. One way
to accomplish this is to use development methods that support the evolvability of a
system.

In academia new methods are developed. Some of these methods could support
the evolvability. However, theoretical soundness of a method does not mean the
method is applicable in an industrial setting. For that, the method should scale for
industrial size problems, the method should be intuitive for the engineers, and there
must be industrial quality tools supporting the method, preferably with professional
support. Furthermore, the method should be embedded into the development process

1
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of the company, including its impact on service and maintenance of the embedded
systems. Furthermore, engineers must be trained to use the new methods.

One of the methods that is developed in academia is Supervisory Control Theory
(SCT) or Supervisory Control Synthesis (SCS). This method is used to synthesize
discrete event controllers, based on models of the uncontrolled system and models
of control requirements. In this thesis, it is investigated how Supervisory Control
Theory can contribute to improved evolvability of MRI scanner control systems.
This research is executed within the scope of the DARWIN project.

The following section introduces the DARWIN project. Section 1.2 introduces
the supervisory control domain; it explains what a supervisory controller is, and how
this controller relates to the other parts of the system. Section 1.3 further details the
goal of this PhD project. Section 1.4 list some related work. Finally, Section 1.5
gives the outline of this thesis.

1.1 The DARWIN project
The research described in this thesis is part of the research project called DARWIN.
The main objective of the DARWIN project was to investigate ‘specific methods,
techniques, and patterns to improve the evolvability of product families within
industrial constraints and while maintaining other qualities’. The evolvability of a
system is the ability of the system to respond effectively to change. Two main types
of changes are considered, first, changes in the required functionality of the system,
and second, changes in implementation technologies.

The DARWIN project was carried out using the Industry-as-Laboratory paradigm
[55], in which the researchers closely work together with the industrial practitioners.
Hence, the researchers experience not only the challenges that must be overcome to
achieve the industrial goals, but also the context in which the practitioners operate. In
addition, the researchers have easy access to industrial experts, their state-of-practice,
and large amounts of industrial data. The DARWIN project was a collaboration
between: The Embedded Systems Institute1 (ESI), Philips Healthcare MRI, Philips
Research and five dutch universities; University of Twente, Delft University of
Technology, Eindhoven University of Technology, VU University Amsterdam, and
University of Groningen.

These project members had different responsibilities in the DARWIN project.
The Embedded Systems Institute was responsible for the management of the project,
had the overall technical lead, and had to capture and consolidate the knowledge
generated in the project. Philips Healthcare MRI was the carrying industrial partner,
providing access to technical and business experts and to its repositories containing
large amounts of industrial data and software. Furthermore, Philips Healthcare MRI
provided feedback on the appropriateness of proposed methods. Philips Research and
the universities were the solution providers wanting to develop and prove methods
that solve industrial problems. For that, they cooperated with industry to search for

1Currently integrated into TNO as Embedded Systems Innovation by TNO



Supervisory control 3

Physical components

Control components

Basic system (Structure)

Actuators Sensors

Resource controller(s)

Supervisory controller(s)

User

Figure 1.1: System view.

relevant problems, to investigate their root causes and their contexts, and finally, to
develop, try out, and validate methods to solve them. For a complete overview of
project and its results, the reader is referred to [76].

The work in this thesis has been carried out at the Eindhoven University of
Technology with the Systems Engineering group. The main objective of this project
was to improve the evolvability of systems by applying supervisory control theory in
the development of supervisory controllers. Mainly by applying the theory with two
different cases within the MRI patient environment.

1.2 Supervisory control
Complex systems do not operate without some method of control. A (controlled)
system can be divided into two parts, namely physical components (hardware) and
control components, see Figure 1.1. The physical components provide the means of
the system, that is what the system can do. The control components employ those
means to fulfill the system’s functions, that is what the system should do. The users
of the system interacts with the control components to define which tasks must be
performed by the system.

The physical components typically consist of a basic system (i.e., structure),
sensors and actuators [33]. The basic system provides the basic structure of the
system. The structure can be, among others, mechanical, electrical, thermal and/or
hydraulic. The sensors measure a physical quantity of the basic system. For instance,
position, voltage, temperature or pressure. The measured quantity is converted
to a signal that is sent to the control components. The control components send
control signals to the actuators. The actuators act directly on the basic structure,



4 Introduction

having effects on the physical quantities of the basic system. The interactions
between the physical components result in the so-called uncontrolled behavior of the
machine. The combination of all physical components is the system under control,
the uncontrolled system or plant.

The control components interact with the physical components by reading the
signals from the sensors, and by sending signals to the actuators. Based on the
information read from the sensors and the user inputs, instructions are sent to the
actuators to fulfill the desired function of the system. This results in the controlled
behavior of the system. The combination of all physical components together with
all control components is the controlled system. The behavior of the controlled
system should be such that the system fulfills its functions, i.e., the system meets its
predefined requirements.

The control system can be divided into multiple levels [6, 8, 33]:

1. Resource control (also know as regulative or low-level control) assures that
a system reaches the desired position or the desired state in the desired way.
In other words, it provides predefined functions or resources that the higher
levels of control can use. Generally, regulative control acts on small parts
of the system with much detailed information about this part of the system.
Regulative control is typically the domain of the classical control theory, in
which continuous time driven systems are considered. PID controllers are
commonly used in this domain.

2. Supervisory control (also known as logic control) assures that a system cor-
rectly performs its function by determining and executing allowed sequence
of tasks on (in)dependent resources. In other words, it uses the resources
provided by the resource controller to execute defined tasks in the correct
order. Supervisory control includes coordination of the individual components
of the system, and the sequencing and scheduling of tasks. Furthermore, it
must prevent the system from entering dangerous states, by that, it ensures that
the system stays safe. Finally, supervisory control can optimize the system,
for instance for optimal speed or minimal energy consumption. Generally,
supervisory control acts on the global system with abstract information about
the different parts in the system. Furthermore, supervisory control is in general
less time critical then resource control.

3. User interfacing is provided to interact with the users of the system. A user of
the system can be a human operator, but also another system. The user interface
provides information about the current state of the system. Furthermore, it
allows the user to request the execution or abortion of tasks. In this sense, the
user of the system can be regarded as yet another (more abstract) controller of
the system. This is especially true if the user of the system is another system.

At each level of control, the system is regarded at a different abstraction level. Higher
levels of control regard the system on a more abstraction level then the lower levels
do. In the higher levels many details about the lower level control are hidden. In
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general, the number of components on a higher level are less than the number of
components in the lower levels. For each level of control different methods are used
to develop the controllers. Typically, the resource controller is in a continuous and
time driven domain. The supervisory controller is in a discrete and event driven
domain.

This thesis focuses on the design of the supervisory control level. At this control
level, many systems can be regarded as Discrete Event Systems (DES) [13]. A
discrete event system is a system that has discrete states, and the system switches
between these states instantly by means of events. For instance, a motor can be in the
states ‘moving’ or ‘stopped’, the event ‘stop’ indicates that the motor switches from
the state ‘moving’ to ‘stopped’. A sensor can be in the states ‘on’ or ‘off’, the event
‘off’ indicates that the sensor switches from the state ‘on’ to the state ‘off’. Discrete
event systems can be modeled by means of automata, i.e., finite state machines.

1.3 Goal of the project
Although Supervisory Control Theory was initiated by Ramadge and Wonham long
ago [56, 80, 57], and many scientific advances have been made over the years (see
Section 7.1 for a short overview), there are still no signs of significant industrial
adoption of supervisory control synthesis in industry. The aim of this thesis is first,
to show the potential of supervisory control synthesis in industry, second, to clarify
some of the reasons for the lacking industrial adoption, and third, to provide solutions
for improved industrial adoption of supervisory control synthesis. To achieve this,
several flavours of supervisory control synthesis are applied to representative cases
in industrial supervisory controller design in High Tech Healthcare systems, where
safety is paramount. The complete supervisory controller design chain is taken
into account, from analysis, modeling and synthesis, to validation and real-time
implementation. Results are analysed, shortcomings of current methods, tools
and design techniques are identified, and improvements are proposed and partially
implemented.

1.4 Related work on SCS applications
Without claiming completeness, previous applications of SCS include: a rapid
thermal multiprocessor, see [5], mobile robots, see [41, 35], passenger land-transport
systems, see [60], a water bath boiler, see [49], under-load tap-changing transformers,
see [52], a cluster tool for wafer processing [64], automated manufacturing and
assembly systems: [9, 40, 10, 38, 26, 34, 17, 14, 53, 16, 58, 42, 54, 25, 61].

To the best of our knowledge, the application domain of MRI scanners is new.
In addition, none of the above cited papers consider the problem of evolvability. In
contrast, improving evolvability is one of the main tasks in the application considered
in this chapter.
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1.5 Outline
This thesis is organized as follows. Chapter 2 describes different engineering meth-
ods. Chapter 3 presents the supervisory control theory. Chapter 4 gives an overview
of the MRI scanner, and the patient environment. Chapters 5 to 7 describe ap-
plications of supervisory control theory to a patient support system and a patient
communication system. Finally, Chapter 8 presents some concluding remarks.



Chapter 2

Engineering of supervisors

Overview The aim of this chapter is to give on overview of the development
process for control system design in industry, and to indicate how supervisory
control synthesis can be incorporated into an industrial controller design process.

Contribution A contribution of the chapter is, that it clarifies how supervisory
control synthesis cannot be introduced in existing controller design processes in
isolation. During the four year DARWIN research project at Philips, described in
this thesis, feedback from industrial users and developers led to the insight that
introduction of supervisory control synthesis in industry should be embedded in
an integrated model-based development framework [11], which is referred to as
‘synthesis-based engineering’. Such an integrated, synthesis-based engineering pro-
cess has been shown to be feasible, by executing all steps, from control requirement
and plant model design, via synthesis, simulation-based validation and visualization,
to real-time implementation and testing. As a side effect, this research project has
also accelerated the development of the integrated CIF toolset. At the beginning
of the research project, only a number of isolated tools were available. During
the project, major steps have been taken by the CIF development team towards an
integrated CIF tool set for synthesis-based engineering . This took place in close
interaction with this research project, and has led, via many iterations, to various
improvements in the toolchain, and in the models for the three applications discussed
in the three Chapters 5 - 7.

Outline Section 2.1 explains the traditional engineering process, focusing on the
design of supervisory controllers and the challenges that are faced in evolving
systems. In Section 2.2 the model-based engineering process [11] is described. The
model-based engineering process extends the traditional engineering process by
adding (formal) models. This allows for many model-based analysis techniques to be
applied. Finally, Section 2.3 introduces the synthesis-based engineering process. In

7
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Figure 2.1: Traditional engineering process [11]

this engineering process, the supervisory controller can be synthesized (generated),
which results in reduced development effort.

2.1 Traditional engineering
The traditional engineering process is in use by developers for a long time to develop,
among others, supervisory controllers. This section describes this engineering pro-
cess, with a focus on supervisory control. Figure 2.1 shows a graphical representation
of the traditional engineering process. The arrows depict the different engineering
phases, where the boxes depict the different representations of the (sub)systems. The
wide arrow represents the interface I by which subsystems are integrated. The capital
S refers the system, and the capitals P and C refer to the subsystems plant and super-
visory controller, respectively. The subscripts R, D and Z refer to the representations
requirements, designs and implementations, respectively. The following paragraphs
will explain the process in some more detail.

In the initial phase, the requirements of the system are defined. System re-
quirements SR define the functionality that a system should provide. Typically, the
requirements also include constraints on for instance costs, performance and/or
safety that should be satisfied by the system as well.

In the next phase, a design of the system is made. System design SD specifies
how the system should be built to satisfy the requirements. The design specifies, for
example, the architecture, the decomposition of the system, the internal behavior,
and the technologies used. Furthermore, it specifies the interaction and interfaces
between the components of the system. For supervisory control design, the system
is decomposed into the components plant P and supervisory controller C. These
two components are connected via interface I which is also defined in the design.
Note that the plant consists of all physical components together with the resource
controllers.

The decomposition in the design defines the requirements for the components
PR and CR. The higher level requirements and design decisions are translated into
the corresponding requirements for the plant and supervisor. The corresponding
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design of the plant PD and design of the controller CD specify how the components
satisfy their requirements. The components are realized according to the design,
resulting in realizations of the components PZ and CZ. Realizations are the real
components, e.g., mechanics, electronics or software, of the system. They should
satisfy the requirements as defined for each component. Traditionally, supervisory
controllers are developed by coding them manually, based on the defined control
requirements. While the uncontrolled system is developed independently by another
group of engineers.

After the realizations of the plant and the supervisor are completed, the realiza-
tions are first tested separately to ensure that the subsystems meet their requirements
and design. Thereafter, the two subsystems are integrated by means of interface I to
build the complete system. The interface can consist of, for example, signal cables,
in electronics, or communication networks, in software. The interface connects the
individual components, thereby it establishes the component interaction, according
to the design SD. When the subsystems are integrated, the integrated system can
be tested to ensure that it conforms to intended system design SD and satisfies the
systems requirements SR. Finally, in the acceptance test it is validated whether or
not the engineered system meets customer demands.

So far, the engineering process is described as a ‘sequential’ process. There are
no feedback loops from certain phases to earlier phases, and a phase only starts when
the previous phase has been finished. The real system engineering process has a more
incremental and iterative nature, involving multiple versions of the requirements,
designs, and realizations, and having feedback loops between the phases. These
feedback loops occur for instance when design and/or implementation errors must
be fixed, or when the system requirements change as a result of evolution. In the
latter case, there is a feedback loop from the realization phase back to the system
definition phase.

Furthermore, in practice, the different phases are executed in parallel. For
instance the design phase stared before all requirements are defined and completely
understood. This is often necessary due to the time-to-market pressure to deliver
a system in time. Moreover, often the requirements only become clear after a
(prototype) system has been built.

2.1.1 Verification and validation
An important part of the engineering process is checking quality of the system. It
must be justified to the customer that the system includes the expected functions and
that these functions are performed correctly. To this end, verification and validation
activities are performed during the development of the system. Verification is the
process of checking whether a component or the system corresponds to the design
XD and requirements XR, i.e., the component or system is built right. Validation is
the process of checking whether a component or system fulfills its intended purpose,
i.e., the right component or system is built. Multiple activities can be preformed to
check the quality of the system under development in different phases.
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Requirement and design analysis

Requirement and design analysis is applied to check the consistency between re-
quirements and designs on the component level and those on the system level. It
is analyzed whether the requirements and designs of the components together im-
plement the system design and requirements. To analyze these relations in the
traditional engineering process, engineers should create a ‘mental’ model of the
integrated components. The behavior of this mental model is checked against the
intended behavior of the system for consistency. This requires significant knowledge
of the components as well as clear system overview. This activity is depicted by the
dashed arrows in Figure 2.2, in which the representations not involved in this activity
are grayed out.

An example of requirement analysis is requirement traceability [30]. Require-
ment traceability is about understanding how system level requirements are related
to component level requirements, and vice versa. It should be possible to trace back
the origin of each requirement and every change which was made to this requirement.
This is especially important in evolving systems, in which the main effort of the
engineering process is to adjust the system and components to satisfy new or changed
requirements.

Component and system testing

A common way of assessing the quality of components or systems is testing. By
testing the component or system failures can be detected, so that errors in the
requirements, the design and the implementation of the component or system can be
uncovered and corrected. If no failures are found, the confidence that the component
or system is correct increases. Although, testing cannot guarantee the absence of
errors. The component and system test activities are depicted in Figure 2.3. Note
that testing both verification and validation of the system, for instance, component
testing is often a instance of verification, where acceptance testing is often a form of
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Figure 2.3: Component and system testing [11]

validation.
In order to test something, a test method needs to be defined. This method defines

what aspects of a component or system is tested, how this aspect is tested and against
which reference this aspect is tested. The outcome of a test (pass or fail) is obtained
by executing the test method on the realization. Mostly, the aspects defined in the
requirements and design are the base for test definitions. Moreover, the requirements
and design are used as the reference in the test method. Defining test methods is a
separate activity within the engineering process.

2.1.2 Discussion
In the traditional engineering process, the requirements and designs are mostly made
in (informal) documents only, i.e., the traditional engineering process is mostly
based on documents. This has several disadvantages. First, documents may contain
ambiguous or inconsistent information. Moreover, practical experience shows that
documents may be incomplete, or outdated. As a result, it is difficult to obtain a
good system overview, and to detect inconsistencies and potential problems based
on these documents. Second, due to the informal structure of documents, it is hard
to process them automatically. This complicates automated processing analysis
techniques such as inconsistency detection. This currently leaves manual document
reviewing as the main technique used for document analysis. Third, documentation
is a static piece of information, which makes it difficult to express and analyze the
dynamic system behavior. Fourth, determining the integrated system behavior based
on component documentation only, is a difficult task. It requires a considerable
amount of component design knowledge, as well as good system overview.

In other words, documentation is not well suited to check the correctness of the
system to be built. In traditionally development, this leaves the realizations of the
(sub)systems as the only representations that can be tested, verified and validated.
As a result, the correctness of the (sub)system can only be validated late in the
engineering process, after the (sub)system has been realized.
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Furthermore, often the final requirements become clear after a (prototype) imple-
mentation has been created. Validation of this implementation gives the insights into
the behavior of the system needed to define the final requirements. An implementa-
tion can only be realized after a relative detailed design of the system is completed.
As a result, iterations in the traditional engineering process take much time and are
resource intensive.

These disadvantages are especially true for evolving systems, in which require-
ments change frequently. Making new (or updated) designs and implementations is
time consuming, cost intensive, and short-time goals may cause degradation of the
overall quality of the system over time.

2.2 Model-based engineering
To overcome some drawbacks of the traditional document-based engineering process,
models representing the (sub)system can be included into the engineering process.
This results in the model-based engineering process [11]. Models are an abstract
representation of a real (sub)system, designed to show the main object or workings
of the (sub)system. Making models enables the use of a range of model-based
techniques and tools to support the engineering process. Models can, for instance, be
used in experiments to gain knowledge about the real (sub)system. Different types of
models can be used, such as scale models of cars to analyze aerodynamics. However,
this thesis particularly focuses on models describing the discrete-event behavior of
(sub)systems.

The main difference between models and documents is that the constructs used in
models have semantics which define precisely what each construct means; documents
do not have such semantics. This makes models more consistent and less ambiguous
than documents. Furthermore, the well-defined model semantics enables automatic
processing by tools. This enables the use of various sophisticated and automated
techniques.

Figure 2.4 shows a graphical representation of the model-based engineering
process. The initial definition of the requirements SR and system designs SD remains
the same as in the traditional engineering process. After the design of subsystems
PD or CD is completed, the key properties of the designs are modeled, resulting the
models PM and CM, respectively. If multiple (independent) properties are of interest,
multiple models can be used, modeling each a different aspect. The original designs
PD and CD extended with the models PM and CM are the input for the implementation
phases.

In case of supervisory controllers, the model of the supervisory controller can
be used directly to generate the implementation of the supervisor. In this case, the
model is not used as input to code the supervisor manually. Instead, the model is
transformed into the implementation code by code-generators, comparable to how
compilers produce machine code from source code.
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Figure 2.4: Model-based engineering process [11]

2.2.1 Verification and validation
Formal models can be processed by tools. This enables the use of many (automated)
verification and validation methods. These methods extend or replace the methods
used in the traditional engineering process.

System analysis

The models used in the MBE approach model the actual behavior of the components.
That is, they model the behavior of the component as it is designed and implemented
in the traditional engineering process. The integration of these models yield a system
model that is an early representation of the actual system behavior. Therefore, this
system behavior includes the design errors that are made in the traditional process.
As a result, the emerging behavior of the system may be incorrect, for instance, due
to an unforeseen conflict between component designs. By analyzing the integrated
model, these design errors can be discovered before the actual implementation of the
component is ready. Furthermore, the confidence that the design is correct increases
if no errors are found.

To discover the errors, the behavior of the models must be checked whether it
corresponds to intended design SD and it satisfies system requirements SR. There are
multiple techniques to analyze the modeled behavior of the system. A widely used
technique is simulation. In simulation one possible model behavior is determined. In
cases where the behavior is stochastic or nondeterministic, multiple simulation runs
can be used to explore multiple behaviors.

In most cases, simulation is not exhaustive, it does not explore every possible
behavior of the system. This means that simulation can only show that the model
might have correct behavior. It cannot guarantee correctness of the model. If
guaranteed correctness of a model is important, formal verification techniques can
be used to prove the correctness of the model. In formal verification all possible
behaviors of a model are checked against specified properties. These model-based
system analysis techniques are shown in Figure 2.5. Both simulation and verification
can be performed on component as well as system level. If components are tested in
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Figure 2.5: Model-based system analysis [11]
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Figure 2.6: Model-based system testing [11]

isolation, the results cannot guarantee system level correctness.

Integration and system testing

Often, not all component realizations are completed at the same time. In traditional
engineering, the system can only be tested when all component realizations are
completed. However, in model-based engineering the not yet completed realizations
can be substituted by the models that represent the respective component. As a result,
some component realizations can be integrated with models of the other components.
By integrating models with the available component realizations, a model-based
integrated system is obtained. In this way, the completed components can be tested
earlier on a system level. Furthermore, by using models, some parts of the system
can be tested for extreme conditions or under insertion of faults, without running
into real dangerous situations.

In the supervisory control case, see Figure 2.6, if a model of the supervisor CM is
integrated with the real uncontrolled system, it is called controller prototyping. If
the supervisor realization CZ is integrated with a model of the uncontrolled system
PM, it is called hardware-in-the-loop simulation.
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2.2.2 Discussion
The use of models enables the use of model based techniques to evaluate the system.
The use of models helps to find errors in the designs and requirements earlier in
the process. This increases overall confidence in the correctness of the system.
Furthermore, it decreases the development time and effort. Moreover, making
models enforces that developers examine the requirements and designs earlier in
more detail. This helps in making requirements more clear and complete early in the
engineering process. Model-based engineering can be used to check the correctness
of a system based on models. This analysis can be used as a supplement to the
traditional engineering process. Therefore the impact of using model-based analysis
on the traditional way of working is limited.

The model-based engineering process improves the traditional engineering pro-
cess. However, model-based engineering helps in discovering errors only. It does
not prevent from introducing errors while engineering the system. Although, errors
can be discovered early on in the engineering process, they still must be corrected
by hand. Furthermore, the components have multiple representations. The relations
between these representation is unclear, while they are mostly made by hand. As
a result, the correctness of a model XM does not guarantee the correctness of the
implementation XZ. The correctness of this relation can only be determined by
checking the implementation against the model. If the implementation is not checked
against the model, only the design of the implementation is improved.

In addition, in evolving systems the requirements change over time. Each
requirement change must result in a change in the implementation. Model-based
engineering can reduce the time to market of such a change. However, each changed
system requirement results in changed requirements and designs for the components.
These changes must be traversed thought the different engineering phases by hand.
Assessing the impact and making the changes can be complex and error prone.

2.3 Synthesis-based engineering
The model-based engineering process adds models to the traditional engineering
process. These models can be used to verify that the system has certain properties.
The goal of synthesis-based engineering is to synthesize (automatically derive)
models such that it is guaranteed that the system has certain properties. As a result,
both the design and the verification of the synthesized component are eliminated.
Since the design rules and the properties of the component are included in the
algorithms that synthesize the component model.

Figure 2.7 shows a graphical representation of the synthesis-based engineering
process. In case of supervisory controller synthesis, the uncontrolled system is
develop by using the same process as model-based engineering. For the supervisor
the engineering process changes, the manually created design of the supervisor CD
is eliminated. It is replaced by model of the supervisor requirements CR. Together
with model of the uncontrolled system PM, a model of the supervisor design CM is
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Figure 2.7: Synthesis-based engineering process

synthesized. The synthesized model CM can be used to automatically generate the
implementation CZ.

2.3.1 Verification and validation
Although synthesis-based engineering changes the engineering process, all model-
based verification and validation techniques remain applicable. For the synthesized
components, testing and verification of the component implementation can be elim-
inated. The components are correct by construction, given that the models used
as input are correct. For the components that are not synthesized and the system,
validation and verification do not change with respect to the model-based engineering
process.

2.3.2 Discussion
For supervisory control, the correct supervisor is generated from models of the
uncontrolled system and the control requirements. This eliminates the manual
design of the supervisor and verification of the supervisor implementation. As
a result, the engineering process changes from implementing and debugging the
design and the implementation, to designing and debugging the requirements. In
other words, the system verification can be eliminated, only the system needs to be
validated. This allows for a faster incorporation of requirement modifications into
the implementation. In turn, this leads to a reduction in the number of design-test-
redesign loops.

The advantages of model-based engineering remain applicable. The models of
the uncontrolled system and of the control requirements are unambiguous. Leaving
no room for different interpretations. Furthermore, making the models enforces
that the requirements are scrutinized earlier in the development process. As a result
possible inconsistencies and missing parts are discovered earlier. Simulation of the
system allows for dynamical feedback of the system. Together with visualizations,
this is a tool to validate the system behavior with the customer in an early stage.
This can help to get the set of requirements consistent and meeting the customers
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expectations, early in the development process, before prototypes have been built.
Finally, the synthesized supervisors are suitable for code generation. Therefore it is
relatively independent of the implementation technology.

With respect to evolvability, the engineering loops are shorter, allowing faster
implementation of new changes. Changes in the plant or in the control requirements
can be realized quickly, without introducing errors. Furthermore, the tracking of
changes in the requirements is easier, only the references to the requirement models
need to be followed.
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Chapter 3

Supervisory control synthesis (SCS) theory

This chapter presents a short overview of the original theory for supervisory control
of discrete event systems. Supervisory Control Theory (SCT) was initiated by
Ramadge and Wonham in 1989 [80]. Since then, the theory has been extended and
algorithms have been improved in numerous ways. For an overview of supervisory
control theory and some of its extensions, the reader is referred to [13, 79].

The control of discrete event systems is different from the classical control of
continuous time systems. The differences in the nature of the system under control
are such that other mathematical frameworks are used to describe the behavior of the
system. For instance, for the modeling of the behavior of a discrete event system,
explicit modeling of time is irrelevant. Only the order in which the events take place
are of interest, not the particular point in time when the events occur. While in
continuous dynamics, the progress of the values of the variables as a function of time
is a key factor. In the following paragraphs, the basic properties of discrete event
systems and controllers for discrete events systems are given.

For the mathematical framework to describe event systems two basic concepts
are of interest, namely discrete states and events. The behavior of the system is
described by the sequence of states and/or events that the system visits.

For control, the controlled system consists of two components, the plant (system
under control) and the supervisor (controller). Both the plant and the controller are
discrete event systems that communicate with each other via discrete signals. The
plant informs the supervisor about the current state and/or the events that occurred.
Based on the received information, the supervisor decides which events are allowed
to happen next in the plant1. Figure 3.1 shows the basic control loop of a discrete
event system.

1Note that from a theoretical perspective, it is irrelevant whether the plant or the supervisor decides
which event will happen next. However, from an implementation point of view, it is relevant whether
the plant or the supervisor decides which event happens next.
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Plant

Supervisor

state and/or events allowed events

Figure 3.1: Basic control loop for discrete-event systems.

3.1 Control problem
The general control problem for discrete event systems is to find a controller (su-
pervisor) that influences the behavior of the plant in such a way that it meets the
control objectives. The control objectives of interest are safety, liveness and minimal
restrictiveness.

• Safety: guarantee that the controlled system is not able to perform forbidden
behavior.

• Liveness: guarantee that the controlled system is able to perform a minimum
level of functionality.

• Minimal restrictiveness: the supervisor should not restrict the plant more than
necessary. This leaves the behavior as large as possible after control is applied.

The control problem is complicated by the fact that the supervisor cannot prevent
arbitrary events from occurring. For instance, a supervisor cannot prevent a sensor
from switching. This leads to the notion of controllable and uncontrollable events:

• Uncontrollable events. These events cannot be prevented from occurring by
the supervisor. These are typically events generated by sensors, for instance
‘sensor turned on’.

• Controllable events. These events can be prevented from occurring, or can be
disabled, by the supervisor. These are typically events related to actuators, for
instance ‘release clutch’.

3.2 Uncontrolled systems
The original theory of supervisory control synthesis is based on the mathematical
framework of languages. In this framework, the behavior of the uncontrolled system
(i.e., plant) and the specification for the controlled system (i.e., control requirements)
are both given as languages. A language is a set of strings, i.e., a set of sequences of
events.

The behavior of a plant P is modeled by a pair of languages (L,Lm). The language
L consists of the set of all possible strings that the uncontrolled system can generate,
and the marked language consists of all possible strings that the uncontrolled system
can generate whose execution implies the completion of a certain task, hence Lm ⊆ L.
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Formally, let Σ denote set of events that can occur in plant P, called the alphabet
of P. A sequence of events, for example w = σ1σ2 . . .σn where σi ∈ Σ, is called a
string over the alphabet Σ. Let Σ∗ denote the set of all possible finite strings that can
be constructed from the elements of the set Σ, including the empty string ε . The set
of all admissible, (i.e., physically possible) strings that the plant can generate is the
language L⊆ Σ∗. The prefix closure of L, denoted by L, consists of all prefixes of
the strings in language L. Intuitively, for a sequence of events to occur in a DES, all
of its prefixes must occur first, hence L = L.

3.3 Controlled systems
Before specifying the behavior of a controller and the behavior of the controlled
system, the set of all possible control patterns is introduced. A control pattern is a set
of events that are enabled. Clearly, all uncontrollable events must always be enabled.
Partition the alphabet into two disjoint subsets Σ = Σu∪Σc, where Σu is the set of
uncontrollable events, and Σc is the set of controllable events. Then, the set of all
possible control patterns is defined as:

Γ = {γ ∈ 2Σ | γ ⊇ Σu} (3.1)

An event σ ∈ Σ is enabled (permitted to occur) if σ ∈ γ , otherwise it is disabled
(prohibited from occurring).

A controller (supervisor) restricts the behavior of the plant by dynamically
disabling some of the events that the plant can generate. A supervisor is defined as a
map:

fc : L→ Γ (3.2)

specifying for each possible generated string w the control input fc(w) to be applied
at that point. When plant P is controlled by a supervisor C, it operates as before,
except that it obeys the additional constraint that, following the generation of a string
w, the next event must also be an element of fc(w), formally let w∈ L then σ ∈ fc(w)
and wσ ∈ L. Observe that such control is ‘permissive’: while disabled events are
certainly prevented from occurring, enabled events are not necessarily forced to
occur.

The closed-looped language of the plant P controlled by supervisor C is the
smallest language Lc such that:

1. ε ∈ Lc

2. wσ ∈ Lc if w ∈ Lc,σ ∈ fc(w), and wσ ∈ L

The part of the original marked language that survives under supervision is:

Lc
m = Lc∩Lm (3.3)

If Lm represents completed tasks, then this language indicates those tasks that can be
completed under supervision.
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3.4 Existence of supervisors
The goal of the supervisor is to switch the control pattern such that the closed-loop
behavior of the supervised plant meets the control requirements. Clearly, it is not
possible to meet arbitrary control requirements. This results in the following problem:
Given a plant P with behavior L, what closed-loop behaviors K ⊆ L can be achieved
by supervision. This leads to the two main properties in supervisory control theory,
namely controllability and nonblocking.

A supervisor cannot disable uncontrollable events; therefore it is intuitively clear
that a specification K can describe only feasible closed-loop behavior, if it allows
uncontrollable events to occur whenever such event is enabled in the plant. This is
described by the controllability property.

Definition 1 (Controllability) Let K ⊆ L be a specification language, where K 6= /0,
and Σu ⊆ Σ. K is said to be controllable with respect to L and Σu if:

KΣu∩L⊆ K 2

That is, if any prefix of a string in K, i.e., w ∈ K, is followed by an uncontrolled
event σ ∈ Σu in L, i.e., wσ ∈ L, then it must also be a prefix of a string in K, i.e.,
wσ ∈ K.

A controlled system should at least be able to complete one of its tasks, Lc
m 6= /0.

The marked language expresses these completed tasks. Therefore, the system must
always be able to complete a string to a marked string. This liveness requirement is
expressed by the nonblocking property.

Definition 2 (Nonblocking) A DES is nonblocking if:

Lc = Lc
m

Otherwise the system is blocking. 2

That is, every prefix of a string in Lc
m is in the language Lc, therefore, every string

in Lc can always be extended to a marked string. Note that from definition 3.3 it is
clear that Lc

m ⊆ Lc, however, the reverse containment may not hold in general.
The existence of a correct supervisor for a given controllable non-blocking

specification is given by the controllability theorem:

Theorem 1 (Nonblocking Controllability Theorem) Let K ⊆ Lm, where K 6= /0.
There exists a nonblocking supervisory controller fc for L such that:

Lc
m = K and Lc = K

if and only if the following two conditions hold:

1. K is controllable with respect to L and Σu

2. K is Lm-closed: K = K∩Lm 2

If a supervisory controller exists, it is given by:

fc(w) = Σu∪{σ ∈ Σc | wσ ∈ K} (3.4)
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3.5 Controller synthesis
The admissible behavior of a system La defines the allowed behavior of the system,
La⊆ L. In general, the admissible language La does not meet the properties defined in
the previous section. Therefore, in general, there exists no supervisor to accomplish
this behavior. The goal of supervisor synthesis is to find a specification K ⊆ La, such
that it meets specified properties, and is ‘the largest it can be’. This specification K
can be implemented as a supervisor.

Clearly, not every specification is nonblocking and controllable. The basic non-
blocking supervisory control problem to construct a correct supervisor that ensures
that the controlled system behaves within the specification, and is maximally permis-
sive. A maximally permissive supervisor allows the ‘largest possible’ sublanguage
of the specification that is nonblocking and controllable.

The largest possible controllable sublanguage of a given language E is called
the supremal controllable sublanguage, denoted by E↑C. This language can be
constructed as follows. The class of all controllable sublanguages of a language
E ⊆ Σ∗ is defined as:

C(E) := {K ⊆ E | KΣu∩L⊆ K} (3.5)

This class is not empty since /0 ∈ C(E). Furthermore, this class is closed under
arbitrary language union; therefore, E↑C does exist. The supremal element is derived
by taking the union of all the elements of the class C(E).

E↑C =
⋃

M∈C(E)

M

Controllability is preserved under arbitrary unions, consequentially:

E↑C ∈C(E)

When the specification is Em ⊆ Lm, that is Lm-closed, then the maximally permissive
nonblocking controllable sublanguage is given by:

Lc = E↑Cm , and Lc
m = E↑Cm

3.6 Representation
In the event-based SCS approach, both the language of the plant and the language of
the specification are represented by automata. An automaton or state-machine is a
5-tuple:

G = (Q,Σ,δ ,Q0,Qm)

where:

• Q is the set of discrete locations q

• Σ a finite set of event labels called the alphabet

• δ : Q×Σ→ Q is the (partial) transition function

• Q0 ⊆ Q is the set of initial locations
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Figure 3.2: Automaton of a simple machine.

• Qm ⊆ Q is the set of marked locations

An automaton starts in one of its initial locations q0 ∈ Q0 and changes its locations
and generates a sequence of events, according to its transition function δ . The
occurrence of an event is signaled by the corresponding event label σ ∈ Σ. A
sequence of events, called a string, belongs to the generated language of an automate
if it is executable from the initial location; it belongs to the marked language if the
location reached upon execution is a marked location qn ∈ Qm. A marked string
indicates the completion of a certain task. The set of all possible strings that an
automaton G can generate from the initial locations Q0 is the language L(G). To
define the language generated by G, extend the transition function δ of G to a (partial)
function on Σ∗×Q by defining:

δ (q,ε) = q
δ (q,sσ) = δ (δ (q,s),σ)

The language generated by automaton G is:

L(G) = {w : w ∈ Σ
∗,q0 ∈ Q0 and δ (q0,w) is defined}

Similarly, the marked language Lm(G) is the subset of L(G) consisting of all
strings that can be generated starting from a location in Q0 that end in a location in
Qm. It is defined as:

Lm(G) = {w : w ∈ L(G),q0 ∈ Q0 and δ (q0,w) ∈ Qm}
An automaton is graphically depicted by vertices and edges. The vertices rep-

resent the locations, and the edges represent the transitions. Labels at each edge
indicate the event that is generated if the transition is executed. The initial location
is indicated by an unconnected incoming arrow. Marked locations are indicated
by filled vertices. Controllable and uncontrollable events are drawn with solid and
dashed edges, respectively.

Figure 3.2 shows an example of an automaton model of a simple machine.
In this example, Q = {Idle,Working,Down}, Σ = {start,finished, failure,fix},
δ (start,Idle) = Working, δ (finished,Working) = Idle, δ (failure,Working) =
Down, δ (fix,Down) = Idle, Q0 = {Idle}, and Qm = {Idle}.
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3.7 Composition of automata
Automata can be modeled in a modular way, i.e. they can be represented as parallel
composition of several automata. In order to compose automata, two kinds of parallel
composition are used:

• synchronizing parallel composition, see [79], which requires synchronous
execution of shared events (events with common labels) and interleaved (inde-
pendent) execution otherwise.

• interleaving parallel composition, see [74], which defines interleaved execu-
tion for all events.

In this thesis, synchronous parallel composition is denoted by ‖, and interleaving
parallel composition is denoted by 9.

Given G1 := (Q1,Σ1,δ1,Q0,1,Qm,1) and G2 := (Q2,Σ2,δ2,Q0,2,Qm,2), the syn-
chronous parallel composition of G1 and G2, denoted by G1 ‖G2 :=(Q,Σ,δ ,Q0,Qm),
is defined as:

• Q := Q1×Q2,

• Σ := Σ1∪Σ2,

• Q0 := Q0,1×Q0,2,

• Qm := Qm,1×Qm,2,

• for each q = (q1,q2) ∈ Q, σ ∈ Σ:

δ (q,σ) :=


(δ1(q1,σ),δ2(q2,σ)) if σ ∈ Σ1∩Σ2,δ1(q1,σ) and δ2(q2,σ) defined
(δ1(q1,σ),q2) if σ ∈ Σ1−Σ2 and δ1(q1,σ) defined
(q1,δ2(q2,σ)) if σ ∈ Σ2−Σ1 and δ2(q2,σ) defined
undefined otherwise

For the interleaving parallel composition, the transition function is redefined to
return a set of locations:

• δ : Q×Σ→P(Q)

The interleaving parallel composition of G1 and G2, denoted by G1 9 G2 :=
(Q,Σ,δ ,Q0,Qm), is then defined as:

• Q := Q1×Q2,

• Σ := Σ1∪Σ2,

• Q0 := Q0,1×Q0,2,

• Qm := Qm,1×Qm,2,

• for each q = (q1,q2) ∈ Q, σ ∈ Σ:
δ (q,σ) := {(q′1,q2) | q′1 ∈ δ1(q1,σ)}∪{(q1,q′2) | q′2 ∈ δ2(q2,σ)}

Figure 3.3 shows an example for each of the two parallel composition operators.
Note that interleaving parallel composition can result in nondeterministic models.
Since the classical Ramadge-Wonham framework used in this thesis cannot handle
nondeterministic systems, this could in principle lead to problems. However, in
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Figure 3.3: synchronous and interleaving parallel composition

the cases in this thesis, interleaving does not result in a nondeterministic model.
The individual automata themselves are nondeterministic, and the events which are
shared by the automata that are composed by interleaving parallel composition, only
occur in self-loops.

3.8 Supervisor realization
It is possible to realize a supervisor simply as another automaton S that is composed
by means of synchronous parallel composition with the plant G. In this case the
control actions of S on G are implicit in the transition structure of S. In detail, if
w ∈ L(S ‖ G) then it is required that w ∈ L(S), and wσ ∈ L(S) only if σ ∈ fs(w). In
addition, if w ∈ L(S ‖ G), wσ ∈ (L(G), and σ ∈ fs(w), then wσ ∈ L(S). The first
condition ensures that those transitions disabled by fs do not appear in the transition
structure of S; while the second condition ensures that those transitions enabled by
fs, and which are possible in G, do appear in the transition structure of S. S and G
are assumed to run in parallel, following the semantics of parallel composition with
full synchronization.

3.9 Synthesis algorithm
Section 3.5 specifies that the supremal controllable sublanguage is derived by taking
the union of all controllable sublanguages of a specification. In practice, algorithms
to compute the supremal controllable sublanguage are based on the automaton repre-
sentation of a language. Instead of taking the union of controllable sublanguages,
states that are reachable by strings that do not conform to the specification are marked
as bad.

As an example of an implementation, consider the following synthesis algorithm.
The algorithm starts by constructing the plant automaton and marks the states that
do not satisfy the requirements as bad. Then the algorithm proceeds via a two step
iteration, until a fixed point (fixpoint) is reached. The first step marks all reachable
states as bad from which an already bad state can be reached via an uncontrollable
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Figure 3.4: Coffee machine

event. The second step calculates the set of reachable states (starting from the initial
states, and avoiding bad states), and marks all of the reachable states from which a
marker state cannot be reached as bad. Note that when a state is marked as bad, the
incoming controllable transitions can also be removed. Then the iteration returns
to the first step, and goes on until no additional states can be marked as bad. The
remaining states represent the controlled behavior.

3.10 Synthesis example: Coffee Machine
To illustrate the computation of a supervisor consider the following example of a
coffee machine, see Figure 3.4. The machine consists of the parallel composition of
the following two behaviors:

• After a coin is inserted, a choice can be made for coffee or tea, both controllable.
Then the machine makes either coffee or tea, represented by uncontrollable
events, as shown in Figure 3.4a.

• After a coin is inserted (controllable), the machine dispenses a plastic cup
(uncontrollable), see Figure 3.4b.

Computing the parallel composition of these two automata results in the automaton
shown in Figure 3.5. It is clear that the coffee machine has unsafe behavior: After
the coin is inserted, the choice for coffee or tea can be made, even before the cup
is dispensed. As a result, coffee or tea can be made when a cup is not yet ready,
resulting in spilled coffee or tea.

To prevent spilling liquids, the control requirement as modeled in Figure 3.6 is
introduced. This ensures that coffee or tea can only be made after a cup is dispensed.

Composing the control requirement with the plant model of the coffee machine
results in the state wait.cup to be marked as bad, see Figure 3.7. In the (first) itera-
tion of the algorithm, the uncontrollable events leading to the bad state are removed,
and the source of the transitions are marked as bad, namely states coffee.cup and
tea.cup, see Figure 3.8. From all remaining reachable states, a marker state can now
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Figure 3.6: Coffee machine control requirement

be reached, so that the iteration terminates. In Figure 3.9, the two states coffee.cup
and tea.cup are removed together with the incoming controlled transitions. Now
the automaton conforms to the specification, and is controllable and non-blocking,
see Figure 3.10.
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Figure 3.7: Initial marking of a bad state.
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Chapter 4

MRI scanners

Magnetic Resonance Imaging (MRI) is primarily a medical imaging technique used
to visualize the internal structure and function of the human body. MRI is a fairly
new technique, the first MR image of an inhomogeneous object, two tubes of water,
was published in 1973 [37]. The first live human images were reported by Sir Peter
Mansfield in 1976. By comparison, the first human X-ray image was taken in 1895.
The first human body MRI exam was performed on July 3, 1977 [28]. Producing the
image took almost five hours. By 1983, continuous improvements of MRI hardware
and software had resulted in whole body imaging systems that were capable of
producing high contrast images, with a spatial resolution of under 1mm, in only a
few minutes.

Other medical imaging techniques include radiographic techniques (like conven-
tional X-ray, and X-ray Computerized Tomography (CT)) and ultrasound. Radio-
graphic techniques produce shadow images, resulting from the absorption of the
X-ray photons by the body. The differences in tissue density provides the contrast in
these images. Ultrasound produces echo images, resulting from the partial reflection
of the sound waves by the layers between different tissues. Specifically, sound is
reflected anywhere there are density changes in the body. MRI uses quantum me-
chanic properties of atoms to create its images. It does not use ionizing radiation like
radiographic techniques. The contrast between different soft tissue in an MRI image
is much higher then in a radiographic one. Furthermore, the spatial resolution is
higher than in ultrasound. This makes MRI especially useful in neurological, muscu-
loskeletal, cardiovascular and oncological imaging. The following sections describes
the basic principle of MRI and the system overview, more detailed descriptions can
be found in [78].

31
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4.1 MRI physics
MRI scanners use a strong magnetic field to align the nuclear magnetization of
(usually) hydrogen atoms in the body. The nuclei of certain atoms, such as hydrogen
atoms, act like rotating microscopic magnets, due to quantum mechanic effects.
Normally, these nuclei rotate in any direction. However, when these nuclei are
subjected to a magnetic field, they align with this field either parallel or anti-parallel
and precess about the field lines of the applied field. At room temperatures, slightly
more nuclei align parallel with the applied field. This causes a net macroscopic
magnetization of the object in the field, in the same direction as the field, the
longitudinal magnetization. This net magnetization cannot be measured, because it
is very small compared to the applied field.

Radio frequency (RF) fields are used to systematically alter the alignment of
nuclear magnetization, causing the hydrogen nuclei to produce a rotating magnetic
field that is detectable by the scanner. If the nuclei are excited at their resonance
frequency by means of a Radio Frequency (RF) pulse, they align differently to the
applied magnetic field. Nuclei can be aligned to rotate perpendicularly to the applied
field. This lowers the macroscopic longitudinal magnetization, and creates an rotating
magnetization perpendicular to the applied field, the transverse magnetization. This
rotating transverse magnetization can be measured by means of a coil, since a
changing magnetic field induces a current in the coil.

After the RF pulse is stopped, the nuclei return relatively slow to there equilibrium
state, restoring the original longitudinal field. The recovery of the longitudinal
magnetization is called T1 relaxation (or spin-lattice relaxation). The decay of the
transverse magnetization is called T2 relaxation (or spin-spin relaxation). These
two relaxations are independent, however they cannot be measured independently.
Still, T2 relaxation is much shorter than T1 relaxation; therefore the signals can be
separated. The relaxation times depend on the surrounding tissue type, different
tissue types give different relaxation times, this provides the contrast in MR images.

The signal detected by the scanner, can be manipulated by additional magnetic
fields to build up enough information to construct an image of the body. The
resonance frequency of the nuclei depends on the field strength of the applied field.
By making small variations in the applied magnetic field, in x, y and z directions,
specific slices in the body can be excitated. This adds spatial encoding to the
measured signals. This allows to construct (three dimensional) images of the body.

From the obtained measured signals, the images are reconstructed by applying
Fourier transformations.

4.2 MRI system
The main subsystems of an MRI system are the static magnet, the magnetic field
gradient system, the RF transmit system, the RF receive system, and the control
system. Furthermore, the MRI system must provide subsystems to view and archive
the produced images, to position the patient into the magnetic field, to interact with
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Figure 4.1: Basic MRI hardware.

the patient and to monitor the patient during a scan. A schematic view of the MRI
system is given in Figure 4.1.

In modern systems, the static magnetic field is provided by a superconducting
electromagnet. A special alloy is cooled by liquid helium; it looses resistance to the
flow of electrical current. So once an inductive current has been introduced into the
magnet coils, the system can be disconnected from the external power supply, while
the current, and thus the magnetic field, is maintained. These magnets provide a
stable and homogeneous magnetic field. The field strength provided by the magnet
varies 1 T (Tesla) to 7 T . For comparison, the earth’s magnetic field varies between
30–60 µT .

The magnetic gradient system is used to vary the magnetic field to add spatial
encoding to the signals. It consists of coils in x, y and z direction, and amplifiers
to power the coils. The gradient creates magnetic fields that change linearly with
position, superimposed on the main magnetic field. The gradient fields can be
oriented in any direction, by powering coils in combination. Typical gradient systems
can achieve gradients from 20 mT/m to 100 mT/m. The direction of the gradient
field can be switched quickly during an measurement. The slew rate of a gradient
system is a measure of how quickly the gradients can be ramped up or down. Typical
higher performance gradients have a slew rate of up to 100–200 T/ms. Switching
these gradient fields causes the acoustic noise characteristic to MR measurements.

The RF transmit system consists of a RF synthesizer, power amplifier and trans-
mission coil, to produce the RF pulses to excited the nuclei. The output power is
variable, with a peak power of up to 35 kW .

The RF receiver system consists of a receive coil and signal processing systems.
The RF transmission coil can be used as receiver too. However, for better signal to
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noise ratio close fitting small coils are used. Many different coils are available which
fit parts of the body, like the head, knee, wrist. The measured signal is amplified
and converted by the signal processing systems. The resulting images are sent to a
console for viewing and archiving.

The control system coordinates all previous subsystems. It performs the MR
measurements based on the input parameters. It coordinates and synchronizes the
gradient system and the RF transmit and receive systems.

The magnetic field generated by the MRI scanner is only homogeneous in a
limited area. The area in which images can be taken is only about 50 cm, this area is
called the imaging volume. The patient support system is used to position the part of
the patient to be imaged into the imaging volume. In case that complete body images
are needed, which exceed the imaging volume, the patient is moved by the patient
support table during the MRI examination.

4.3 The patient environment
The patient support system is used to position a patient in an MRI scanner, see
Figures 4.2 and 4.3. The MRI system is operated by two operators. One of the
operators is in the examination room together with the patient. The other operator is
in the control room that is separated from the examination room. Figure 4.4 shows
a schematic layout of the MRI rooms. The main controller of the MRI system is
called the MRI host system. Figure 4.5 shows the operator in the control room and
the MRI scanner with patient in the examination room.

4.3.1 Support table
The patient support system is used to position a patient in an MRI scanner, see
Figure 4.2. An MRI scanner is used mainly in medical diagnosis to render pictures
of the inside of a patient non-invasively. The patient support system, see Figure 4.3,
can be divided into the following components: vertical axis, horizontal axis and
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user interface. The vertical axis consists of a lift with appropriate motor drive and
end-sensors. The horizontal axis contains a removable tabletop which can be moved
in and out of the bore, either by hand or by means of a motor drive depending on
the state of the clutch. It contains sensors to detect both the presence of the tabletop
and its position. The system is equipped with hardware safety systems, namely
an emergency stop and the tabletop release switch TTR, that allow the operator to
override the control system in emergency situations. Finally, the system contains a
light-visor for marking that part of the patient’s body which is scanned. This marking
is then used by the MRI scanner to determine the correct position of the patient in
the bore. The system is controlled via a user-interface UI. This interface contains
a tumble-switch to control the movement of the table, and three buttons to control
the clutch, the emergency system and the light-visor with automatic positioning.
Furthermore, the UI contains LEDs to display the current state of the system to the
operator.
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Figure 4.5: The patient communication system.

The supervisor should accomplish multiple control objectives. When the operator
operates the tumble-switch, the table should move up and down, or in and out of
the bore. This depends on the current position of the table and the position of the
tumble-switch. When the manual button is pushed, the clutch should be released
such that the table can be moved manually by hand. Pushing the light-visor button,
should enable the light-visor, and when the button is pushed again, the position is
stored for automatic positioning. Finally, the table should not move beyond its end
positions, and it should not collide with the magnet.

4.3.2 Communication system
The patient communication (sub)system is responsible for the delivery of all audio
signals in the patient environment and control room. Audio signals originate from
multiple sources. First, from the patient and the two operators. These signals are
captured by microphones. Second, from an audio stream that can be played by the
MRI host system to instruct the patient during a scan. For instance, the patient can
be instructed to hold his breath during some stages of the scan. Finally, from an
auxiliary device such as an MP3-player, that can play music to give extra comfort to
the patient. The audio signals are delivered to the patient and the two operators via
speakers and headphones.

The operators can control which audio signal is played. Furthermore, the patient
has a nurse-call button, to draw attention of the operators in cause of an emergency.
When the button is pushed, the operator is notified and the audio channel between
the patient and operator should be opened.

For more information on the patient communication system, the reader is referred
to Section 7.2.



Chapter 5

Event-based SCS of the patient support table

Background This chapter describes the main steps of event-based control synthesis
for the patient support table described in Section 4.3. First, a discrete-event (finite-
state automaton) model of the uncontrolled patient support table is created. Only
the behavior of the plant in the absence of errors is modeled. Second, the control
requirements are modeled as automata. Then, SCT is applied to obtain a supervisor.
The obtained supervisor is first tested by means of simulation, using both untimed
and hybrid plant models. Second, the actual patient support system is controlled
by means of the model of the synthesized supervisor executing in real-time, and
also by means of real-time control code, obtained by model transformation from the
synthesized supervisor. No errors could be detected in the final controlled patient
support system, after extensive testing.

Contribution Dividing the control requirements into small, modular, finite state
automata specifications, is shown to lead to models that can be easily adapted to
changing requirements. This evolvability of the controller is tested by redesigning
it for slightly different control requirements; the design and implementation, of the
new controller on an actual MRI scanner, took only half a day, see Section 5.4.2 for
more details.

Developing the models and modeling techniques is work of the author. Develop-
ing the (proptotype) toolchain was joint work with Ramon Schiffelers. This toolchain
was later elaborated by Dennis Hendriks of the Systems Engineering Group at TU/e,
resulting in the CIF 3 tool set, available at [69].

Apart from the advantages of applying supervisory control synthesis for the
control of the patient support system, in terms of improved evolvability, also a
number of deficiencies are indicated. These are elaborated in the ‘Concluding
remarks’ in Section 5.6. They relate to, first, the duplication of information in plant
models and control requirements, second, to the limitations imposed by the use of a
single initial state, and third, to the limited tool support for debugging supervisory

37
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control specifications.
Finally, note that the models presented in this chapter are slight modifications

of the models which were used to synthesize the supervisor that was implemented
on existing hardware. For instance, the sensors models in Figures 5.5a and 5.5b are
added for clarity. Omitting these models does not change the functionality because
the parallel composition of these models with the model in Figure 5.6a is equal to
Figure 5.6a itself. These modifications are applied to render the models easier to
understand. However, they do not influence the functional behavior of the models.
Note that software simulation reveals that the supervisor obtained from the models
of this chapter also satisfies the control requirements.

Some of the results of the chapter were announced in conference proceedings
[71]. With respect to [71], the main difference is that this chapter presents more
detailed models and a modeling methodology, in addition this chapter systematically
explains the role of supervisory control in improving evolvability. An abbreviated
journal version of this chapter was published as [73].

Outline The outline of the chapter is as follows. Section 5.1 contains an infor-
mal description of the case-study. Section 5.2 presents the concepts and design
considerations underlying the formal models of the plant components and control
requirements. The specifications of the models can be found in Section 5.3. The
automatic generation of the supervisory controller, its implementation, and the vali-
dation of the obtained controller by means of simulation are all discussed in Section
5.5. Section 5.6 presents conclusions and proposes directions for future research.

5.1 Functionality of the patient support system
The goal of this case study is to design a supervisor for the patient support system of
an MRI scanner, see Section 4.3.1. The patient support system is more difficult to
control than might appear at first sight. It contains several complex interactions of
components. Even though the version of the patient support system that is discussed
in this chapter is simplified compared to the real system, the control requirements
consist of 62720 reachable states, and 869520 transitions. Another parameter which
reflects the complexity is that the plant model together with the model of the control
requirements, as discussed in this chapter, consists of 31 automata of 2 to 4 states,
and one automaton with 7 states.

The complexity of the designer’s task becomes even more apparent when one
considers the time which is required to build the control software manually. In fact,
it was estimated that one would need a week for manual adaptation of the control
software to meet the modified requirements described in Section 5.4.2. Note that with
the approach of this chapter, the adaptation of the models of control requirements
and the generation of new control software took merely half a day.
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5.2 Modeling concepts
The goal of this section is to sketch the structure of the models of the plant and of the
control requirements. The detailed models can be found in Section 5.3. The classical
Ramadge-Wonham framework [79], see Chapter 3, is used for modeling the plant,
the supervisor and the requirements.

5.2.1 Plant model
The plant is represented as a parallel interconnection of automata representing the
following plant components:

• Model of the vertical axis VAxis,

• Model of the horizontal axis HAxis,

• Model of the user interface UI, which describes the effect of the actions of the
operator on the plant.

The model of the complete uncontrolled patient support system (which is referred to
as the plant model) is thus defined as the following synchronous parallel composition:

VAxis ‖ HAxis ‖ UI

Each component above represents a separate aspect of the plant’s functionality.
The components themselves are modeled as a parallel interconnection of the models
of the: actuators, the sensors, and the relations between the actuators and sensors.
The actuator-sensor relations represent the physical structure of the machine, relating
actions of actuators to activations of sensors.

Thus for example, the model of the vertical axis is of the form

VAxis , VActuators ‖ VSensors ‖ VRelations

Here, VActuators describes the model of the motor which moves the vertical axis.
It essentially defines that the motor can be started and then stopped. The automaton
VSensors models the functioning of the sensors which detect if the table is in the
maximally down or up position. It defines that a sensor can be switched on when it
is off, and vice versa. Finally, VRelations models the actuator-sensor relation: as a
result of their physical positions, the vertical sensors cannot be active at the same
time. Furthermore, the sensors cannot change their state if the motor is not moving.
In somewhat more detail: the maximally up sensor may be activated only when the
table is moving up, and the maximally down sensor may be activated only when the
table is moving down.

The detailed description of the vertical axis model as well as the models of the
other components can be found in Section 5.3.

5.2.2 Control requirements
The control requirements of interest are safety requirements. More precisely, the
control requirements are sets of sequences of events which the closed-loop system
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is allowed to generate. The control requirements are represented by finite-state
automata. The language accepted by the automaton is exactly the set of all safe
sequences of events which the closed-loop system is allowed to generate.

The components of the control requirements reflect the components of the plant.
That is, for each plant component the corresponding control requirement is modeled
separately. Hence, the model of the control requirements is of the form

VReq ‖ HReq ‖ HVReq ‖ UIReq

Here, VReq is the model of the control requirements for the vertical axis, HReq is
the model of the control requirements for the horizontal axis, HVReq is the model of
control requirements pertaining to the interaction between the horizontal and vertical
axis, and finally UIReq is the model of the control requirements for the interface.
For example, VReq formalizes the following requirements. Movement beyond the
maximally up position is not allowed. This implies that initiating movement in
the upper direction must be prevented when the table is maximally up. Further-
more, movement in the upper direction must be stopped when the table reaches the
maximally up position. The detailed models can be found in Section 5.3.

5.2.3 Modeling logical conjunction and disjunction
The plant and control requirements are divided into sub-specifications that are
each modeled by means of small, relatively independent, automata. Composing
requirements by means of a network of parallel automata leads to the conjunction of
the requirements, as a result of the semantics of synchronous execution of shared
events. To obtain logical disjunction in control requirements is more difficult. This
will be explained by means of small fragments of control requirements relating
to table movement along the vertical axis, where two end sensors are defined: a
vertically down sensor, and a vertically up sensor. Movement is controlled by means
of a motor that has commands to move down, move up, or stop. After the stop
command has been received, the table slows down to come to a halt, which will be
reported by the vStopped event.

Consider, for example, the specification of Figure 5.1. The first requirement
VReqDownSensor0 specifies for the motor movement that the vMoveDown event
may occur only when the vertically down sensor is in the state VertDownOff. The
third requirement VReqMotor specifies that the vMoveDown event may occur
only when the motor is in the state VertStopped. The semantics of synchronous
execution of the shared event vMoveDown enforces the conjunction of the two
requirements: the vMoveDown event can occur only in the state described by the
predicate VertDownOff∧VertStopped.

The specification VReqMotor specifies for the stop event that it is allowed
only in the state (VertMoveDown∨ VertMoveUp). The combination of the three
specifications, thus defines that the stop event vStop is allowed only in the state

VertDownOn∧VertUpOn∧ (VertMoveDown∨VertMoveUp).
This is obviously not the required behavior, since the stop event is then allowed only



Modeling concepts 41

VERTDOWNOFFVERTDOWNON
vDownOn

vMoveDown
vDownOff

vStop

(a) VReqDownSensor0

VERTUPOFF VERTUPON

vUpOn
vMoveUp

vUpOff

vStop

(b) VRegUpSensor0

VERTSTOPPED
VERTMOVEUPVERTMOVEDOWN

vMoveUp

vMoveDown vStopped

vStopped
vStopvStop

(c) VReqMotor

Figure 5.1: Models VReq0: incorrect requirements with single stop event

VERTMID
VERTUPONVERTDOWNON

vUpOn

vUpOffvDownOn

vDownOff
vStop

vMoveDown
vMoveUp vStop

(a) VReqSensors

VERTSTOPPED
VERTMOVEUPVERTMOVEDOWN

vMoveUp

vMoveDown vStopped

vStopped
vStopvStop

(b) VReqMotor

Figure 5.2: Model VReq1: incorrect requirements with single stop event

when the down sensor and the up sensor are active at the same time.
To obtain the disjunction of the two states VertDownOn and VertUpOn, the two

sensor models can be merged into one sensor model, as specified by Figure 5.2a.
The combination of the two requirements VReqSensors and VReqMotor results in
the predicate

(VertDownOn∨VertUpOn)∧ (VertMoveDown∨VertMoveUp),
that defines when the vStop event is enabled. This also is not correct, because the
required predicate is

(VertDownOn∧VertMoveDown)∨ (VertUpOn∧VertMoveUp).
Furthermore, the specification from Figure 5.2a defines that the vMoveDown event
(and also the vMoveUp event) is allowed only in the case that the vertically up and
down sensors are both off. This requirement is too strong, since it disables downward
movement in the case that the vertically up sensor is on.

To obtain the correct specification, a technique that can be referred to as ‘event
splitting’, or ‘event duplication’ is used: instead of the single event vStop , two events
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vStopDown and vStopUp are used, leading to the correct specification of Figure 5.3.
The motor is switched of whenever any of the two events vStopDown or vStopUp
occurs. For the complete models, see Section 5.3.1.

5.3 Models
Below the formal models for the plants and control requirements are presented. The
presentation is done component-wise. That is, first the plant model and the model
of control requirements for the vertical axis are presented, then for the horizontal
one, then for the interaction of the axes, and finally the plant model and the model of
control requirements for the user interface are presented.

In the models, states are denoted by vertices, initial states are indicated by
an unconnected incoming arrow, and marked states are denoted by filled vertices.
Controllable and uncontrollable events are depicted by solid and dashed edges,
respectively. If several event names are indicated on an edge, then this should be
understood as a collection of edges (with the same source and target as the depicted
edge), with each edge labelled by one of the events. A bold event name indicates a
set of events, representing an edge for each event in the set.

5.3.1 Vertical axis
The patient table can move up and down along the vertical axis. The vertical axis
contains two end sensors, maximally up and maximally down, and one actuator for
the vertical motor drive. The motor can move the table up and down. The system
should never move beyond the maximally up and down position.
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Plant model (VAxis)

The plant model of the vertical axis consists of the synchronous parallel composition
of the models of the actuators, sensors and structure of the vertical axis:

VAxis , VActuators ‖ VSensors ‖ VRelations

The actuator, sensor and structure models are defined as:

VActuators , VMotor

VSensors , VUpSensor ‖ VDownSensor

VRelations , VSensorsRelation ‖ VMotorSensorRelation

Motor drive (VMotor) The motor is controlled by a resource controller, which
controls the brakes, and calculates set-points for the feedback control loop. The
model of the motor drive only includes the behavior exposed to the supervisor, see
Figure 5.4. Initially, the motor is stopped. From this state, a movement can be started.
The event set vMove is an abbreviation for two move events: vMove , {vMoveUp,
vMoveDown}. If the motor is moving and a stop event in the set vStop (vStop ,
{vStopUp, vStopDown, vStopTTR, vStopTumble}, is triggered, the motor slows
down to come to a halt. When the motor has come to a halt, the event vStopped
is emitted, and the motor enters the stopped state again. Only the stopped state is
marked, because the motor must always be able to return to the stopped state.

Distinguishing different stop events facilitates decomposition of the complete
stop behavior into multiple independent requirements. Individual stop events should
be enabled in distinct cases. For instance, vStopUp is enabled only when the
table has reached its maximally up position. By having a different stop event for
each case, these stop events do not synchronize, so that the cases can be modeled
independently of one another. The stop events vStopUp and vStopDown are used in
the control requirements of Figures 5.7a–5.7c, whereas the stop events vStopTTR
and vStopTumble are used in the control requirements of Figures 5.14a and 5.16a,
respectively.

Sensors (VDownSensor, VUpSensor) The maximally down and maximally up
sensors are modeled in Figures 5.5a and 5.5b. The sensors are active if the table is at
the sensor position, otherwise the sensors are inactive. This is modeled by means
of two (marked) states, namely On and Off. The sensors emit the uncontrollable
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events vDownOn (vUpOn) or vDownOff (vUpOff ), when a sensor becomes active
or ceases to be active, respectively. Initially the table is assumed to be neither up or
down, so that both end sensors are inactive, indicated by the states VertDownOff
and VertUpOff.

Sensor-sensor relation (VSensorsRelation) The two sensors are never active at
the same time, as a result of their physical location. This relation is modeled in
Figure 5.6a. The model includes the complete behavior of the two individual sensors.

Motor-sensor relation (VMotorSensorRelation) The sensors do not change state
when the table is not moving vertically, see Figure 5.6b. Only when the motor drive
is moving the table up, the maximally down sensor can turn off (vDownOff ) and the
maximally up sensor can turn on (vUpOn), and likewise for the opposite direction.

Control requirements (VReq)

The requirement model of the vertical axis consists of the synchronous parallel
composition of multiple control requirements, namely:

VReq , VStopDown ‖ VStopUp ‖ VStopUpDown

Maximally up and down (VStopDown, VStopUp, VStopUpDown) Movement be-
yond the maximally up position is not allowed. This implies that initiating movement
in the upper direction must be prevented when the table is maximally up. Further-
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more, movement in the upper direction must be stopped when the table reaches the
maximally up position. Likewise it is not allowed to move beyond the maximally
down position.

These requirements are modeled in Figures 5.7a–5.7c. First, the event vMove-
Down (vMoveUp) is only allowed if the table is not maximally down (up). Sec-
ond, the event vStopDown (vStopUp) is enabled only in the maximally down (up)
position. This allows the table to stop when the end position has been reached.
Finally, the vStopDown (vStopUp) event is enabled only if the motor is moving
down (up), see Figure 5.7c. The synchronizing semantics of the parallel composi-
tion in VStopDown ‖ VStopUp ‖ VStopUpDown ensures that event vStopDown
(vStopUp) is enabled only if the states VertDownOn (VertUpOn) and VertMoveDown
(VertMoveUp) are both active (see Figures 5.7a, 5.7b, and 5.7c).

5.3.2 Horizontal axis
The horizontal axis consists of a removable tabletop on top of the main table. The
tabletop (if present) can be moved in and out of the bore. It can be added and
removed only in the maximally out position. The presence of the tabletop is detected
by a sensor. Like the vertical axis, the horizontal axis contains two end sensors,
maximally in and maximally out, and a motor drive. The motor drive is coupled to
the tabletop by a clutch. When the clutch is released, the tabletop (if present) can
be moved freely by an operator, otherwise the positioning is controlled through the
motor drive. Finally, the control of the clutch can be overridden by a hardware safety
system, called Table Top Release (TTR). The clutch is released when the TTR switch
is active, independently of the controller. The system should never move beyond the
maximally in and maximally out positions. Furthermore, the horizontal axis may not
move, when the tabletop is not present, when the clutch is released or when the TTR
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Figure 5.8: Model HActuators: horizontal actuators

switch is active.

Plant model (HAxis)

The plant model of the horizontal axis consists of the synchronous parallel composi-
tion of the models of the actuators, sensors and structure of the horizontal axis:

HAxis , HActuators ‖ HSensors ‖ HRelations

The actuator, sensor and structure models are defined as:

HActuators , HMotor ‖ HClutch ‖ HTTRSwitch

HSensors , HInSensor ‖ HOutSensor ‖ HTabletopSensor

HRelations , HSensorsRelation ‖ HActuatorSensorRelations

Actuators (HMotor, HClutch, HTTRSwitch) The horizontal motor drive is sim-
ilar to the vertical motor drive, see Figure 5.8a. The event set hStop denotes a
number of different stop events, namely hStop, {hStopIn, hStopOut, hStopTTR,
hStopTabletop, hStopTumble}. The event set hClutch is an abbreviation for the
clutch events, hClutch , {hClutchOn, hClutchOff}, and the event set hMove is an
abbreviation for the move events, hMove , {hMoveIn, hMoveOutNormal, hMove-
OutRestricted}. The clutch is modeled with one state (Clutch) in which the clutch
events are self-looped, see Figure 5.8b. The tabletop release switch is modeled
similarly to a sensor, see Figure 5.8c.

Sensors (HInSensor, HOutSensor, HTabletopSensor) The sensors of the hori-
zontal axis are modeled similarly to the sensors in the vertical axis, see Figures 5.9b–
(c). Initially, the tabletop is not present (TTOff), the maximally out sensor is on
(hOutOn), and the maximally in sensor is off (vMaxInOff).
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Figure 5.10: Model HSensorsRelation: horizontal structure (synchronizing par-
allel composition part)

Sensors relations (HSensorsRelation) The two end-sensors cannot be active at
the same time, as result of their physical location, see Figure 5.10. Furthermore, the
tabletop can only be added and removed in the maximally out position. Note that
this model includes the complete behavior of the individual sensors.

Sensor-actuator relation (HActuatorSensorRelations) Only when the tabletop
is present and is moving horizontally, can the maximally in and out sensors change
state. The tabletop can move horizontally in three distinct cases:

• The clutch is released, see Figure 5.11a; the table can be moved by hand,
therefore the sensors can always switch in any order. Note that the state of the
clutch is defined by the control system.

• The TTR switch is activated, see Figure 5.11b; the table can be moved by
hand, as in the case that the clutch is released. Note that, the state of the TTR
switch is defined by the operator.

• If the clutch is applied, and the TTR switch is not active, the movement is
controlled by the motor, see Figure 5.11c; analogous to the vertical axis.

That is, if either the clutch is released or the TTR switch is activated, then the table
can be moved manually, and hence the sensors at the maximally in and maximally
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out positions can be activated in any order. This behavior can be defined by a single,
12-state, automaton, representing the interleaving (non-synchronising) parallel com-
position (cartesian product) of the three automata of Figure 5.10 (see Figure 3.3 for
the difference between synchronising and interleaving parallel composition):

HActuatorSensorRelations , HClutchSensorRelation9
HTTRSensorRelation9
HMotorSensorRelation

The only shared events in the three automata are the events hInOn, hInOff,
hOutOn, hOutOff, occurring as self loops. Because the other events (hClutchOn,
hClutchOff, hTTROn, hTTROff, hMoveIn, hMoveOut, hStopped) each occur in one
automaton only, the only difference between the synchronizing and interleaving
parallel composition of the three automata is in the self loops: the states, and the
transitions between the states are identical. Therefore, the interleaving parallel
composition of the three automata is still a deterministic automaton. Each state of the
parallel composition (interleaving or synchronous) consists of the three sub-states of
the respective automata. The difference between the synchronous and interleaving
parallel composition is that the set of self loops of each state of the interleaving
parallel composition is obtained by taking the union of the sets of self loops of the
three sub-states, whereas for the synchronous parallel composition, the intersection
of the sets of self loops of the sub-states is taken.

Note that if synchronous parallel composition had been used instead of the
interleaving one, models would have been obtained which are inconsistent with
the physical system. For example, consider the synchronous parallel compo-
sition of HClutchSensorRelation and HMotorSensorRelation. Notice that in
HClutchSensorRelation, the events hInOn, hInOff, hOutOn, hOutOff can occur
only in the initial state. In contrast, none of these events can occur in the ini-
tial state of HMotorSensorRelation. Hence, none of the events hInOn, hInOff,
hOutOn, hOutOff can occur in the initial state of the synchronous composition
of HClutchSensorRelation and HMotorSensorRelation. This contradicts the
physical behavior that should be modeled.

Control requirements (HReq)

The requirement model of the horizontal axis consists of the synchronous parallel
composition of multiple control requirements, namely:

HReq , HStopIn ‖ HStopOut ‖ HStopInOut ‖
HStopTabletop ‖ HStopTTR ‖ HClutchMove

Maximally in and out (HStopIn, HStopOut, HStopInOut) The horizontal axis
may not move beyond its maximally in and out positions, see Figures 5.12b–5.12c.

Tabletop move (HStopTabletop) When the tabletop is not present, initiating hori-
zontal movement is not allowed and the motor should be stopped, see Figure 5.12d.
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Figure 5.11: Model HActuatorSensorRelations: Actuator sensor relation (inter-
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TTR move and clutch (HStopTTR) Commands for horizontal movement and
clutch commands may only be issued when the TTR switch is off, see Figure 5.12e.
However, it cannot be prevented that the TTR switch is turned on while moving.
Whenever the TTR switch is turned on, the table should be stopped (hStopTTR ).

Clutch move (HClutchMove) The tabletop may only be moved by the horizontal
motor if the clutch is applied, see Figure 5.12f. If the clutch is not applied, the motor
may not move the table. While the motor is moving the table, the clutch may not be
released.

5.3.3 Horizontal and vertical axis interaction
There is no physical interaction between the transducers of the horizontal and vertical
axis. However, the tabletop might collide with the magnet, when moving inward
if the table is not maximally up, or the table might be damaged, when moving
downward if it is not maximally out. These situations must be prevented. Therefore,
either the maximally out sensor or the maximally up sensor must be on, unless the
TTR switch is on. If the TTR switch is on, the table can be moved freely by the
operator. In this case, the control system cannot prevent the situation in which both
sensors are off.

Plant model (HVNormal)

In Figure 5.13 the internal event normal is introduced. This event is used to dis-
tinguish two internal states in the requirements, namely, 1) control after TTR is
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Figure 5.12: Model HReq: horizontal control requirements
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Figure 5.13: Model HVNormal: internal event normal

activated, and 2) control after the normal event has occurred, see Figure 5.14a.

Control requirements (HVReq)

The control requirements for horizontal and vertical interaction are defined by the
synchronizing parallel composition of two models:

HVReq , HVMode ‖ HVSafe

Movement restrictions (HVMode) Initially the system is in the state restricted,
see Figure 5.14a. In this state, the table may not move horizontally inwards



Models 51

NORMAL RESTRICTED
normal

hTTROn
vStopTTR

hTTROn

vMove
hMoveIn

(a) HVMode

V̂HN

VHN

VĤN

V̂HN̂

VHN̂

VĤN̂
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Figure 5.14: Model HVReq: horizontal and vertical restrictions

(hMoveIn), and all vertical movements (vMove) are disabled. After the event normal,
the system enters the state normal, in which all movement events are allowed. After
occurrence of the event hTTROn, the system enters the state restricted again.

Normal operation (HVSafe) The system can switch to normal operation if it
can be ensured that the system stays either maximally out, or maximally up, see
Figure 5.14b. Normal mode is represented by the states v̂hn, vhn and vĥn. In these
states it is ensured that the table remains either maximally out or maximally up. The
letters v, h and n represent the states vertically maximally up, horizontally maximally
out, and normal, respectively. The hat represents negation, e.g. v̂ represents not
vertically maximally up. After an event hTTROn, any horizontal or vertical position
can be reached (corresponding to the states v̂hn̂, vhn̂, vĥn̂ and v̂ĥn̂).

Notice that in Figure 5.14b state v̂ĥn is not present. The control requirement
forbids that this state be reached. Therefore, all events leading to this state are
disabled in the requirement model. The controller synthesis algorithm ensures that
this requirement is met by disabling only controllable events. For instance, in normal
mode when the table is not maximally up, the supervisor will ensure that the clutch
is enabled and horizontal movement is prohibited.
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5.3.4 User interface
The user can control the system by means of a button and a tumble-switch. When
the button is pushed, the clutch is released (applied) to switch the table to manual
mode (motorized mode). Therefore, this button is called the ‘manual button’. In the
motorized mode, the position of the tumble-switch determines the movement of the
table. A LED is used to indicate whether the system is in the manual mode or in
the motorized operation mode. Note that in manual mode, the supervisor can still
prevent the table from performing operations requested by the user, such as moving
the table motorized.

Plant model (UI)

The user interface only contains external events. The button and switch generate
uncontrollable external events. The plant model of the user interface model consists
of the synchronous parallel compositions of the actuators:

UI , UITumbleSwitch ‖ UIManualButton ‖ UIManualLED

Tumble-switch (UITumbleSwitch) The tumble-switch can either be in the position
up, down, or neutral, see Figure 5.15a. When released, the switch returns to the
neutral state, as a result of its physical construction. Therefore only state Neutral is
marked.

Manual button (UIManualButton) When the manual button is pressed, the event
uManualPushed is emitted and a timer is set. When the timer has elapsed, a timeout
event is emitted. However, when the manual button is pressed before the timer has
elapsed, the event uManualPushed is emitted again, and the timer is set again. An
infinite sequence of rapid presses of the manual button could thus lead to an infinite
model. This behavior is simplified to one state where the two events are self-looped,
see Figure 5.15b.

LED (UIManualLED) The LED indicates manual or motorized operation mode of
the system. It can either be on, off, blinking slowly, or blinking fast. The LED is
controlled by events named accordingly, see Figure 5.15c.

Control requirements (UIReq)

The requirement model for the user interface consists of the synchronous parallel
composition of multiple control requirements, namely:

UIReq , UIReqTumble ‖ UIManualClutch ‖ UIReqLED

where

UIReqTumble , UITumbleMove ‖ UIHVSwitch

and

UIReqLED , UILedModes ‖ UILedClutch ‖ UILedSequence
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Figure 5.15: Model UI: user interface

Tumble move (UITumbleMove) The position of the tumble-switch determines
which kind of movement of the table is allowed. When the tumble-switch is up, the
table is only allowed to move up or to move horizontally into the bore. When the
switch is in the down position, the table is only allowed to move down or to move
horizontally out of the bore. When the tumble-switch is in its neutral position, all
movement should be stopped, see Figure 5.16a.

Tumble HV switch (UIHVSwitch) If the table is moving up and reaches the upper-
most position, the tumble-switch must return to the neutral position before movement
into the bore may begin. Similar behavior is required when moving in the opposite
direction. These requirements are modeled in Figure 5.16b.

Manual clutch(UIManualClutch) Pushing the manual button results in the uManu-
alPushed event, and starts a timer. As a result, the event hClutchOn or hClutchOff
should be triggered, if one of these events is allowed by the other requirements.
If both hClutchOn and hClutchOff are not allowed before the timer expires, the
uManualTimeout event will be executed instead, see Figure 5.17.

LED (UILedModes, UILedClutch) The LED indicates which operating mode
is active, and whether the clutch is applied. The LED blinks if the system is in
restricted mode, otherwise the LED is on or off, see Figure 5.18a. If the clutch is
applied, the LED is off or blinks slow, see Figure 5.18b. If the clutch is released, the
LED is on or it blinks fast. The operating modes are defined in Figure 5.18c.

5.4 Model evolvability
The goal of this section is to present the experimental results on the effect of using
supervisory control theory on evolvability of the controller. The experiment involved
generating a new controller in order to meet a user request for improved functionality.
Note that for the actual experiment, models were used which are slightly different
from, but functionally equivalent to, those presented in this chapter, similarly to the
differences described earlier.
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Figure 5.19: Updated requirements for evolvability case

5.4.1 Updated functionality
The control requirements presented in this chapter result in a controller that does
not allow inward movement of the tabletop when the table is not maximally up.
Therefore, if the user switches the tumble-switch up (which corresponds to inward
or upward movement of the tabletop) in this state, the tabletop will not move. This
behavior of the closed-loop system was considered to be counter-intuitive for the
user. The desired new behavior in this case was, that when the tumble-switch was up,
the table should move out until it reached the maximally out position, after which
the controller should continue its normal operation by moving to the maximally up
position, and subsequently moving into the bore. These new requirements were
implemented on the actual patient support table in half a day. Implementing the same
requirement using the currently used design approach was estimated to take a week.
The updated models are presented below.

5.4.2 Updated control requirements
To model the changed requirements, the event hMoveOut is defined as an abbrevia-
tion of two events in all figures, apart from Figures 5.14a and 5.16a: hMoveOut ,
{hMoveOutNormal , hMoveOutRestricted}. Figure 5.14a is adapted so that the event
hMoveOutNormal can occur only in mode Normal, whereas the event hMoveOutRe-
stricted can occur only in mode Restricted, leading to Figure 5.19a. In Figure 5.16a,
the event hMoveOut is replaced by hMoveOutNormal , and the event hMoveOutRe-
stricted is added to the self-loops in states TumbleDown and TumbleUp, leading to
Figure 5.19b. In this way, operating the tumble switch in either direction in Restricted
mode always leads to the only allowed safe movement: out of the bore.
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5.5 Generation, implementation and validation of
the control software

The plant models and control requirements were modeled using the SCIDE (Supervi-
sory Control Integrated Development Environment) tool set; see [68]. Subsequently,
in SCIDE, a corresponding supervisor was generated using the SuSyNA (Supervisory
control Synthesis of Nondeterministic Automata) tool set. This tool set is available
via [66]. It contains an optimized implementation of the algorithms described in [64].
Calculation takes a few seconds on a Core 2 Duo, 3Ghz, 3Gb computer. The resulting
supervisor contains 30,880 states and 264,456 transitions.

5.5.1 Validation of functional correctness
Although supervisory control theory ensures that the controller satisfies the control
requirements by construction, it remains a non-trivial task (but still easier than the
development of the supervisory controller itself) to define the correct plant and
requirement models. Thus, errors or undesired behavior may still be present in the
plant models and/or requirement models. To help validate the controlled system, the
framework of [59] is used. This framework is based on the model-based engineering
paradigm, where models are the primary artifacts in the design process. Below a brief
overview of the framework is given, for details see [59]. Remark that the framework
is a general one and it has already been applied to other case-studies.

The design process of [59] consists of the following steps:

A) Modeling of the uncontrolled plant and control requirements.

B) Synthesis of the supervisory controller using the models from step A, resulting
in a model of the supervisor.

C) Simulation (un-timed) of the parallel composition of the plant models from
step A, and the supervisor obtained in step B.

D) More detailed, e.g. timed or hybrid, modeling of the plant models.

E) Simulation (timed or hybrid) of the model of the closed-loop system which is
obtained by combining the plant model from step D with the supervisor from
step B.

F) Real-time simulation involving the actual plant hardware (the uncontrolled
system) coupled with the model of the supervisor obtained in step B.

G) Code generation from the supervisor model obtained in step B.

H) Real-time control of the plant hardware controlled by the realization of the
supervisor obtained by step G.

The framework consists of:
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• Modeling environments to support the design steps A and D.

• Transformation tools to transform:

1. The models of step A to input models of the synthesis tools used in step
B. This transformation amounts to transforming the model represented
in one modelling formalism to an equivalent model in another modelling
formalism. This transformation is a purely syntactic one.

2. The models of steps A, B, and D to input models of the simulation tools
used in steps C and E.

• An infrastructure to couple models and realizations of components for step F.

• Code generators to generate code (step G) from the supervisor model obtained
in step B.

The transformation and simulation tools that are described in the preceding steps are
all based on the Compositional Interchange Format (CIF, see [51, 69, 1]), which
has been developed in several European projects, in particular in the HYCON and
HYCON2 networks of excellence [32, 31], and in the FP7 Multiform project [50].
Steps C, E, and H are described in more detail in the sections below.

5.5.2 Untimed simulation
Although the supervisor obtained using the SCT framework is guaranteed to meet the
formalized control requirements, this does not yet mean that the plant will meet the
initial (informal) control requirements. This can happen due to inadequate modelling
of the plant or control requirements. Hence, it is still necessary to validate the
correctness of the synthesized controller. In case of an incorrect controller, one
immediately knows that the mistake must be in the model of the uncontrolled plant
or in the control requirements.

To validate the synthesized controller, the state space of the model of the con-
trolled system is explored by hand, using user guided simulation. That is, based on
different scenarios of occurrence of events, events are chosen manually and executed.
Scenarios are sequences of external events, which the environment is expected to
generate. The scenarios are determined manually, based on the domain knowledge.
It is stressed that scenarios are used to test the correctness of the controller, not to
design the controller.

5.5.3 Hybrid simulation
To validate the dynamic behavior of the plant controlled by the synthesized supervi-
sor, the CIF model of the supervisor is simulated together with (using synchronizing
parallel composition) a more detailed, hybrid model of the plant. During simula-
tion, the reaction of the model to various sequences of external events (i.e. events
generated by the environment, such as error conditions, operator actions, etc.) is
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Figure 5.20: Simulation results tabletop movement controlled by tumble-switch.

evaluated. The models of the plant and the various external events are specified in
CIF, modeling both discrete-event and continuous-time behavior.

In order to facilitate timed simulation of the closed-loop system, the timing
of the events generated by the supervisor should be presented. Note that in SCT
framework, the supervisor is assumed to be untimed and in fact it is assumed that it
enables/disables events, rather than generating them. Hence SCT does not tell us
how to interpret the supervisor’s behavior in a timed setting.

Supervisors in a timed environment are interpreted as follows. The events present
in the discrete-event plant model are taken to be urgent, see [75], in the hybrid model.
That is, first all the events which are enabled by the supervisor and which can be
executed immediately from the current state of the plant are executed. During the
execution of these events, time is not allowed to progress. When there are no more
events which are both enabled and can be executed immediately, then time is allowed
to progress again.

Figure 5.20 shows the simulation results as a function of time of a representative
case where the horizontal and vertical movement of the table-top is controlled by the
tumble-switch. The position of the tumble-switch ranges from -1 to + 1. When the
tumble-switch is released, its position is 0. Initially, the table is halfway up, and the
tabletop is placed onto the table at the maximally out position. The tumble-switch
is used to move the table to the upper position. When the table reaches the upper
position at time 3, the table stops, and the tumble-switch is released. Then the table
is moved inward, first slowly, then faster. After that, at time 7, the movement is
stopped. Then, the table is moved out , until the table reaches the maximally out
position, where it stops at time 9. The tumble-switch is momentarily released (for
1 time-unit), causing downward table movement until the table reaches its lowest
position.

Apart from output of the model variables in a graph as a function of time, as
shown in Figure 5.20, the CIF simulator also supports real-time, interactive, simula-
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Figure 5.21: SVG image for real-time, interactive, simulation and animation.

tion and animation, based on user supplied images of the system in the standardized
SVG (Scalable Vector Graphics) format [77, 27], as shown in Figure 5.21. To ensure
that the simulation model can be used in its original form, without the need for user
defined animation statements, a user-supplied ‘hooks file’ [27] defines connections
between the dynamic state of the simulation model (e.g. the value of a differential
variable that models the position of the table top) and attributes of objects (e.g.
the graphical position of the table top) in the user supplied SVG drawing. User
interaction with the simulation by means of, for example, pressing buttons in the
animation, is interfaced with the simulation by means of execution of events named
in the hooks file. More information on ’hooks files’, including their format, can be
found in [27].

5.5.4 Real-time implementation
When implementing supervisors for actual real-time control, three issues need to be
dealt with:

1. The SCT framework is untimed. Implementations, however, are timed. This
issue was first discussed in detail by [4].

2. Synthesis generates a set of maximally permissive supervisors, so that for
an implementation, choices need to be made. Furthermore, in the original
supervisory control theory, events originate from the plant, and can be disabled
or enabled by the supervisor. Real-time controllers, however, actually generate
events. To support synthesis of controllers, as opposed to supervisors, [24]
proposes forced events, [18] proposes a subset of controllable events that are
initiated by the controller, and [29] proposes directed controllers, that select at
most one controllable event to be enabled at any instant.
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An overview of several of the issues discussed above, in the context of PLC-based
supervisory controller implementations, is given by [19].

In the actual real-time implementation of the patient support system, the sensors
and actuators are connected to an industrial grade control unit. This control unit is
connected to a standard PC by means of an IEEE 1394 FireWire high speed serial bus
interface. The control unit conditions the sensor signals, and takes care of motion and
I/O control. Furthermore, it translates sensor state changes to (uncontrollable) events
and it executes the high-level commands (controllable events) generated by the PC.
On the PC, the events from the control unit are buffered in an input event queue,
and handled by an event handler. After executing an event from the input event
queue, the state of the supervisor is updated. If the event queue is empty, the set of
controllable events that is allowed by the supervisor in the current state is calculated.
From this set, an event is selected and sent to the control unit for execution. In this
way, nondeterminism is resolved by giving priority to uncontrollable events over
controllable events. This strategy is based on the assumption that the uncontrollable
events are properly conditioned by the control unit, ensuring a minimum time
interval between successive uncontrollable events from each component. Switches
would need to be properly debounced, and switching the tumble switch from the
up position, via the neutral position to the down position, for instance, would
mean generation of a sequence of the uTumbleNeutral and uTumbleDown events
separated by a minimum time interval, giving the supervisor time to empty the
input queue after receipt of the uTumbleNeutral event, and to subsequently execute
the hStopTumble or vStopTumble event. Considering various other strategies for
resolving nondeterminism is the subject of future research.

The real-time implementation was extensively tested on an actual patient support
system: several operating procedures, that are used in practice, were carried out. In
addition, attempts were made to generate erroneous behavior by means of very rapid
pressing of buttons and switches, and by intentionally giving illegal commands. In all
cases, the control system reacted as desired. The system was also operated and tested
by Philips employees, but no errors were found. Notice, however, that the control
system specifications presented in this chapter do not deal with error detection and
error handling, such as broken sensors, or broken actuators. The patient support
table that was controlled in the experiments was not taken into actual production,
because the decision was taken to employ more ‘off the shelf’ components in the
patient support system, such as motors complete with servo feedback control.

5.6 Concluding remarks
This chapter reports on a successful industrial application of supervisory control
theory (SCT) to synthesize a supervisory controller for real-time control of a patient
support system of an MRI scanner. The use of SCT and tools enables easy adaptation
to changing control requirements. In the case of such a change, only the new
requirements need to be formally defined. After the formalization step is completed,
the theory and tools provided by the supervisory control framework allow automatic
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generation of suitable control software.
One way to improve evolvability of the control system is by using controller

synthesis instead of coding controllers by hand. It is also shown that evolvability
can be improved by dividing the control requirements into small, independent,
specifications that are modeled by means of finite state automata. In this way,
errors can be detected, and attributed to specific parts of the specification. The
improved evolvability has been demonstrated by means of a redesign of the control
requirements—to incorporate a user change request—followed by automatic control
code generation and real-time implementation.

Key aspects of the proposed method that facilitate modeling of control require-
ments by means of small, independent automata is a) the separation of models into
actuator models, sensor models, and models that specify different structural restric-
tions; b) splitting of events, such as stop events, into a number of independent sub
events; and c) introduction of internal events, in this case the ‘normal ’ event, to
allow modeling of different modes of operation.

Using the supervisory control framework has indeed enabled us to focus on
specifying and debugging the control requirements and plant models, instead of
coding and debugging the control code. However, three issues in the event-based
supervisory control framework have been found that need to be addressed:

1. Duplication of information. In the event-based supervisory control frame-
work, control requirements and plant models interact exclusively by means
of events: control requirements cannot refer to the state of a plant model.
To refer to the current state of an automaton of the plant, that state must be
reconstructed in the control requirement.

As an example, consider the control requirement that specifies that the hori-
zontal outward movement of the table needs to be stopped when the table is
maximally out and the motor is moving outward. This requirement is specified
by the self loop hStopOut in the two automata HStopOut and HStopInOut in
Figures 5.12a and 5.12c. To reconstruct the required states of the out sensor
and the motor in Figures 5.12a and 5.12c, respectively, these automata are
copies (apart from the self loops) of the automata of the plant model of the
sensor and the motor in Figures 5.9a and 5.11c, respectively.

2. Limited initialization. In the event-based supervisory control framework,
each automaton has a single initial state. This means that the model of the un-
controlled plant also has a single initial state. In practice, however, controlled
systems can usually be in different initial states when the system is switched on.
As a result, special initialization sequences are required to ensure consistency
of the state of the controlled system with the state of the supervisor.

3. Limited debugging tool support for supervisory control specifications. In
the process of developing the appropriate specifications of the control require-
ments and the plant model, inevitably errors can be made. It was experienced,
that in many cases, errors in specifications led to supervisors where part, or
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all of the desired state space was unreachable. In fact, the case of an empty
supervisor was not uncommon. This can be caused by conflicting control
requirements. The problem with this behavior is that current control synthe-
sis algorithms and tool implementations do not provide any feedback on the
reason why parts of the state space have been removed, making it difficult to
find the cause of undesired state space reductions. This is in fact a difficult
issue, since the synthesis algorithm has no way of knowing the difference
between desired state space reductions to ensure safety, and undesired state
space reductions due to erroneous specifications.

In the next two chapters, state-based supervisory control synthesis will be discussed,
in an attempt to deal with the three issues raised above.



Chapter 6

State-based SCS of the support table

Background The main three issues in the event-based supervisory control frame-
work that were found in the previous chapter, are first, duplication of information;
second, limited initialization in the form of a single initial state; and third, limited
tool support for debugging of supervisory control specifications. In an attempt to
alleviate these three issues, this chapter discusses development of a supervisory
controller for the patient support system, using so-called ‘state-based supervisory
control synthesis’. This term is somewhat misleading, since it does not replace
event-based synthesis by state-based synthesis, but rather extends it, by allowing
direct references to the state of a plant model in control system requirements, and by
allowing multiple initial states. Please note that a subset of the functionality of the
patient support systems is discussed in this chapter. The emergency system and the
light-visor with automated positioning, are not modeled.

Contribution An overview of the main contributions of the chapter follows below.
The main contributions are elaborated in more detail in the ‘Concluding remarks’
in Section 6.5. As state-based supervisory control synthesis tool the open source
STSlib tool [43] was used. After developing the control requirements for the patient
support case in the syntax allowed by the tool, this syntax appeared to be too
restrictive, and too error-prone. This lead to the desire for generalized state-based
control requirements, as discussed in Section 6.1. The resulting publication was the
combined effort of several of people, and the implementation was done by Dennis
Hendriks.

The subsequent redesign based on generalized state-based control requirements,
as presented in this chapter, is indeed much more readable and intuitive. The multiple
initial states that are allowed by the synthesis algorithm are essential. In fact, any
arbitrary safe combination of sensors is allowed as initial state. This allows the actual
patient support system to be started in any, arbitrary, safe position.

Finally, the state-based control requirements are developed in a modular way,

63
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as in the event-based case, by dividing the requirements into small, relatively inde-
pendent components. The same set of experiments, involving simulation, validation,
and real-time control as described in the previous Chapter 5, are executed with the
state-based supervisory control models. Also in this case, no errors could be detected
in the final controlled patient support system, after extensive testing. The limited
tool support for debugging of supervisory control specifications was experienced
as considerably less troublesome in the case of the state-based specifications as
described in the sequel, since the state-based control requirements could be specified,
understood, and debugged more easily.

Outline The outline of the chapter is as follows. Section 6.1 presents the required
new language concepts for supervisory control specifications based on automata and
predicates. Sections 6.2 and 6.3 describe the plant models and control requirements,
respectively, of the patient support system. Finally, the required toolchain is described
in Section 6.4, and concluding remarks are presented in Section 6.5.

6.1 Supervisory control specification using automata
and predicates

In event-based supervisory control as defined in [79, 12, 62, 64], see Chapter 3, the
plant and the control requirements are both modeled by finite-state automata. The
goal of these models is to capture the dynamic behavior of the uncontrolled system
and safe behavior for the controlled system, respectively. Both behaviors are defined
as languages, e.g. sequences of events. Automata are used to represent the languages
compactly.

In [3, 2], event-based supervisory control is defined in a process algebraic frame-
work. This framework allows specification of event-based models completely without
states. It uses the successful termination concept as the equivalent of marked states
in automata.

In nonblocking supervisory control of state tree structures, see [45], plant speci-
fications are also modeled by means of automata. However, unlike in event-based
supervisory control, multiple initial locations (states) are allowed, and the states of
the automata can be referred to in the control requirements. The control requirement
specifications are specified as predicates over states and events in two forms: mutual
state exclusion and state-event exclusion. The accompanying open source STSlib
tool [43] also allows specification of control requirements as automata, by rewriting
them as plant automata in combination with control requirements in the form of
state-event exclusion.

The allowed input form of the control requirements as implemented in the STSlib
tool is quite restricted. Mutual state exclusion requirements are each defined as the
negation of a conjunction of location references, where a location reference is the
name of a location of an automaton. The predicate over the state in a state-transition
exclusion requirement is defined as a conjunction of location references.

To allow a more intuitive way of defining control requirements, [48] proposes
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Table 6.1: Syntax of generalized predicates.

S invariant
S =⇒ ¬E state-event exclusion
E =⇒ S state-event exclusion

generalized state-based control requirements. Generalized state-based requirements
extend the input format of state-based supervisory control synthesis by allowing
general propositional logic in the mutual state exclusion requirements and in state-
transition exclusion requirements. This is done by symbolic preprocessing of the
requirements to obtain the form required for the STSlib tool.

Table 6.1 presents the allowed syntax of the generalized state-based predicates.
In this table, S is a predicate over the locations of an automaton, and E is a set of
events. The invariant S defines the predicate ¬S as mutual state exclusion predicate.
The predicates S =⇒ ¬E and E =⇒ S are both state-event exclusion predicates.
The latter form is defined in terms of the first, more primitive form, as ¬S =⇒ ¬E.

Finally, to allow the use of mutual state exclusion and state-event exclusion
specifications also in plant models, [21] defines a transformation that eliminates
these predicates in plant models in terms of a parallel composition of automata.

6.1.1 Plant model
In the state-based supervisory control framework, the goal of the plant model is
twofold:

First, the plant model should capture the relevant states of the uncontrolled
system, that is the states required for intuitive control requirement specifications.
Such states can refer, for instance, to the state of a sensor that can be on and off, and
a clutch that can be applied or released. The states of the plant model are used to
define control requirements and to implement a controller (supervisor).

Second, the plant model should capture the dynamic behavior of the uncontrolled
system. That is, the model should contain the response of the system to the events.
It should model in which states an event can occur, and what the new state of the
system is after an event occurred. For example, a sensor can only emit the event
sensor_on if the sensor is in the state off, and after the occurrence of this event, the
state of the sensor is on. As in the event-based framework, states can be defined as
marked, meaning that these states must be reachable by the supervised plant. The
dynamic behavior is used in combination with the control requirements to synthesize
the supervisor, in other words, the dynamic behavior is used to determine how the
system must be controlled to meet the control requirements.

The plant models are divided into components, such as the vertical and horizontal
axis. These components are divided into subcomponents and ultimately into the
smallest subcomponents that are physically relevant for control: the actuators, sensors
and structure. Actuators change the state of the system, sensors detect the state of the
system, and the structure of the system defines the interaction between the actuators
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and sensors.
Component models consist of automata and predicates over locations of the

automata and events. The sensors and actuators have an observable state. Therefore,
the sensors and actuators are modeled by automata. The structure, that defines the
relation between the actuators and the sensors, poses constraints on the combinations
of the states of the sensors and actuators. The structure is usually stateless, that is,
the set of states of the structure is a subset of the set of states of the sensors and
actuators. Therefore, it is modeled by predicates over the models of the sensors and
actuators.

6.1.2 Control requirements
Control requirements can be defined in terms of predicates or automata. There are
two kinds of these automata:

• Automata that define additional states. These states are referred to as internal
states. An example is the definition of the states Normal and Restricted in
automaton HVMode in Figure 6.8.

• Automata that define sequences of events as control requirements. The states
that are introduced by the automata are not referred to in other specifications.
An example is the automaton UIHVSwitch of Figure 6.10 that defines the
horizontal-vertical switching requirement.

6.2 Plant models
The goal of this section is to describe the formal models of the plant and of the
control requirements. In the models, states are denoted by vertices, initial states are
indicated by an unconnected incoming arrow, and marked states are denoted by filled
vertices. Controllable and uncontrollable events are depicted by solid and dashed
edges, respectively. Multiple events on an edge represent an edge for each event. A
bold event name indicates a set of events, representing an edge for each event in the
set.

6.2.1 Vertical axis
The table can move up and down along the vertical axis. The vertical axis contains
two end sensors, maximally up and maximally down, and one actuator for the vertical
motor drive. The motor can move the table up and down.

The plant model of the vertical axis consists of the automaton models of the
vertical motor drive and the up and down sensors, that are modeled in the paragraphs
‘Motor drive’ and ‘Sensors’ below. The relations between the sensors and the motor
drive, which are imposed by the physical structure of the system, are modeled by
predicates over the states and events of the sensor and motor drive models.
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Figure 6.1: Model VMotor of the vertical motor.
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Figure 6.2: Models of the vertical sensors.

Motor drive (VMotor) The motor is controlled by a resource controller, which
controls the brakes, and the motion feedback control loop. The model of the motor
drive only includes the behavior exposed to the supervisor, see Figure 6.1. It
is assumed that initially the motor is Stopped. Movement is started via events
vMoveUp and vMoveDown . Switching between the movement directions is assumed
to be instantaneously. If the motor is moving and the vStop event is triggered, the
motor slows down to come to a halt. The motor switches to the corresponding
location StoppingUp or StoppingDown. When the motor has come to a halt, the
event vStopped is emitted, and the motor enters location Stopped again.

Sensors (VUpSensor,VDownSensor) The maximally up and maximally down
sensors are active if the table is at the sensor position, otherwise the sensors are
inactive. This is modeled by means of automata with two locations, namely On
and Off, see Figure 6.2. When they become active or inactive, the sensors emit
the uncontrollable events vUpOn (vDownOn) or vUpOff (vDownOff ), respectively.
When the system is started, the table can be in any position. Therefore, each of the
locations of the sensors can be the initial location of the sensor.

Component relations The two sensors are never active at the same time, as a result
of their physical location. This is modeled by the state exclusion predicate (6.1).

¬(VUpSensor.On∧VDownSensor.On) (6.1)

The vertical sensors only change state when the table moves vertically. Only
when the motor drive is moving the table up, the maximally down sensor can turn
off (6.2), and the maximally up sensor can turn on, and likewise for the opposite
direction (6.3).
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Figure 6.3: Model HMotor of the horizontal motor.
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Figure 6.4: Models of the horizontal sensors.

{vDownOff,vUpOn} =⇒ VMotor.MovingUp∨ VMotor.StoppingUp
(6.2)

{vDownOn,vUpOff} =⇒ VMotor.MovingDown∨ VMotor.StoppingDown
(6.3)

6.2.2 Horizontal axis
The horizontal axis consists of a removable tabletop on top of the main table. The
tabletop can be moved in and out of the bore. The plant model of the horizontal
axis consists of the automata models of the horizontal motor drive, the clutch, the
maximally in and out sensors, the table top sensor, and the table top release switch.

Motor drive (HMotor) The horizontal motor drive is similar to the vertical motor
drive, see Figure 6.3.

Sensors Figure 6.4 presents the models of the sensors of the horizontal axis. The
sensors HInSensor, HOutSensor and HTabletopSensor indicate the position of
the tabletop, and its presence, respectively. Initially, the tabletop can be in any
position. Therefore, any location can be the initial location of the sensors.

Clutch, manual button and table top release switch The models of the clutch
(HClutch), manual button (UIManualButton) and table top release switch
(HTTRSwitch) are given in Figures 6.5a, 6.5b, and 6.5c, respectively.

The operator can request to toggle the state of the clutch by pressing the manual
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Figure 6.5: Models of the clutch, manual button, and TTR switch.
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Figure 6.6: Model UIManualLED of the user-interface LED.

button. This causes occurrence of the uManualPushed event, and setting of a timer.
When the timer has elapsed, a timeout event is emitted. The control system changes
the state of the clutch only when it is safe to do so, and only when the timer has
not yet expired. However, when the manual button is pressed again before the timer
has elapsed, the event uManualPushed is emitted again, and the timer is set again.
An infinite sequence of rapid presses of the manual button could thus lead to an
infinite model. This behavior is simplified to one location where the two events are
self-looped, see Figure 6.5b.

LED (UIManualLED) The LED indicates manual or motorized operation mode
of the system. It can either be on, off, blinking slowly, or blinking fast. A more
detailed explanation of the meaning of the LED indication is given in the section on
the control requirements.

Component relations The two end-sensors cannot be active at the same time (6.4),
as a result of their physical location. The tabletop can only be added and removed
in the maximally out position. When the tabletop is not present, the maximally out
sensor remains active. This results in the relation between the table top sensor and
horizontally out sensor of (6.5).

¬(HInSensor.On∧HOutSensor.On) (6.4)
HTabletopSensor.Off =⇒ HOutSensor.On (6.5)

The maximally in and out sensors change state only when the tabletop is present



70 State-based SCS of the support table

NEUTRAL UPDOWN

uTumbleUp

uTumbleNeutraluTumbleDown

uTumbleNeutral

Figure 6.7: Model UITumbleSwitch of the tumble-switch.

and is moving horizontally. The tabletop can move horizontally in three distinct
cases:

• The clutch is released; the table can be moved by hand, therefore the sensors
can always switch in any order. Note that the state of the clutch is defined by
the control system.

• The TTR switch is activated; the table can be moved by hand, as in the case
that the clutch is released. Note that, the state of the TTR switch is defined by
the operator.

• If the clutch is applied, and the TTR switch is not active, the movement is
controlled by the motor, analogous to the vertical axis.

These restrictions on the plant behavior of the maximally in and out sensors are
specified by the following two state-event exclusions:

{hOutOn,hInOff} =⇒ HClutch.Off ∨
HTTRSwitch.On ∨
HMotor.MovingOut∨HMotor.StoppingOut

(6.6)

{hOutOff,hInOn} =⇒ HClutch.Off ∨
HTTRSwitch.On ∨
HMotor.MovingIn∨HMotor.StoppingIn

(6.7)

6.2.3 Tumble switch
Figure 6.7 shows the model of the tumble switch. The tumble switch can either be in
the position up, down, or neutral. When released, the switch returns to the neutral
state, as a result of its physical construction. Therefore, only location Neutral is
initial and marked.

6.3 Control requirements

6.3.1 Normal and restricted operating modes
The table can collide with the magnet when moving inward if the table is not
maximally up. The table can also be damaged when moving downward if it is
not maximally out. These situations should be prevented. Therefore, either the
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Figure 6.8: Model HVMode defining the Normal and Restricted control modes

maximally out sensor or the maximally up sensor must be on, unless the TTR switch
is on. If the TTR switch is on, the table can be moved freely by the operator. In such
a case, the control system cannot prevent the potentially unsafe situation in which
both sensors are off.

To facilitate specification of the requirements for the interaction between the
horizontal and the vertical axis two control modes are introduced, namely, 1) con-
trol after TTR is activated (Restricted), and 2) control after the normal event
has occurred (Normal), as shown in Figure 6.8. Detection of the occurrence of a
potentially unsafe event (hTTROn) is decoupled from the response to this situation.
The detection is modeled in the automaton. The appropriate response is modeled in
the control requirements.

When the system is in mode Normal it must be ensured that the system is
either maximally up, or maximally out, and that the TTR switch is off, see control
requirement (6.8). This prevents the table from colliding with the magnet. The
requirements also ensures that the normal mode is only entered if it can be ensured
that the system stays within the safe states (maximally up or maximally out).

HVMode.Normal =⇒ HTTRSwitch.Off ∧
(VUpSensor.On∨HOutSensor.On)

(6.8)

6.3.2 Vertical axis control
Maximally up and down Although the upper most and lower most position must
be reachable, movement beyond the maximally up and maximally down position
is not allowed. This implies that initiating movement in the upper direction is only
allowed when the table is not maximally up (6.9). Likewise it is only allowed to
initiate movement in the lower direction when the table is not maximally down (6.10).
Furthermore, movement must be stopped if and only if either the table is moving up
(or down) and the table is maximally up (or down), or the tumble switch is in the
neutral position, or the control mode is HVMode.Restricted (6.11).
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{vMoveUp} =⇒ VUpSensor.Off ∧
UITumbleSwitch.Up ∧
HVMode.Normal

(6.9)

{vMoveDown} =⇒ VDownSensor.Off ∧
UITumbleSwitch.Down ∧
HVMode.Normal

(6.10)

{vStop} =⇒ (VUpSensor.On∧VMotor.MovingUp) ∨
(VDownSensor.On∧VMotor.MovingDown) ∨
UITumbleSwitch.Neutral ∨
HVMode.Restricted

(6.11)

6.3.3 Horizontal axis control
Motor control

The horizontal axis should never move beyond the maximally in and maximally out
positions. Furthermore, the horizontal axis may not move, when the tabletop is not
present, when the clutch is released or when the TTR switch is active.

{hMoveIn} =⇒ HInSensor.Off ∧
UITumbleSwitch.Up ∧
HTabletopSensor.On ∧
HVMode.Normal

(6.12)

{hMoveOut} =⇒ HOutSensor.Off ∧
UITumbleSwitch.Down ∧
HTabletopSensor.On

(6.13)

{hStop} =⇒ (HInSensor.On∧HMotor.MovingIn) ∨
(HOutSensor.On∧HMotor.MovingOut) ∨
UITumbleSwitch.Neutral ∨
HTabletopSensor.Off ∨
HTTRSwitch.On

(6.14)

The motor should not be moving when the tabletop is not present. However, it is
not possible to prevent the table from moving horizontally without tabletop, because
the tabletop can be removed by the operator while the table is moving horizontally.
In other words, the supervisor cannot ensure that the table is not moving when the
operator removes the tabletop. To model this requirement, initiation of horizontal
movement is allowed only when the tabletop is present (6.12), 6.13. In addition,
horizontal movement must be stopped when the tabletop is not present (6.14).
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Figure 6.9: Model UIManualClutch of the manual button modes.

Clutch control

The manual button toggles the table between manual and motorized mode (if allowed).
In the motorized mode, the position of the tumble switch determines the movement
of the table. In the manual mode, the operator can move the tabletop by hand. When
the button is pushed, the clutch is released (or applied) to switch the table to manual
mode (or motorized mode). Therefore, this button is called the ‘manual button’.
Note that in manual mode, the supervisor can still prevent the table from performing
operations requested by the user, such as moving the table motorized.

Clutch motor interaction The tabletop may only be moved by the horizontal motor
if the clutch is applied:

¬HMotor.Stopped =⇒ HClutch.On (6.15)

Manual operation of the clutch (UIManualClutch) Figure 6.9 shows that pushing
the manual button should trigger an event hClutchOn or hClutchOff , if one of these
events is allowed by the other requirements. If both hClutchOn and hClutchOff are
not allowed, the push event is ignored when a timeout occurs.

Clutch and TTR switch interaction Clutch commands may not be issued when the
TTR switch is on:

{hClutchOn,hClutchOff} =⇒ HTTRSwitch.Off (6.16)

LED control

The LED indicates which operation mode is active, and whether the clutch is applied.
The LED blinks if the system is in restricted mode. In normal mode, the LED is on
or off. If the clutch is applied, the LED is off or blinks slow. If the clutch is released,
the LED is on or it blinks fast.

{mLedOn} =⇒ HVMode.Normal∧HClutch.Off (6.17)
{mLedOff} =⇒ HVMode.Normal∧HClutch.On (6.18)

{mLedBlinkSlow} =⇒ HVMode.Restricted∧HClutch.On (6.19)
{mLedBlinkFast} =⇒ HVMode.Restricted∧HClutch.Off (6.20)
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Figure 6.10: Model UIHVSwitch of the horizontal-vertical switching requirement
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Figure 6.11: State-based tool chain, where P = Plant, R = Requirement, S =
Supervisor, and the subscripts A = Automata, G = Generalized predicates, GA =
Automata with Generalized predicates, P = Predicates, STS = State Tree Structures,
BDD = Binary Decision Diagram.

6.3.4 Tumble switch horizontal-vertical mode (UIHVSwitch)
If the table is moving up and reaches the upper most position, the tumble switch
must return to the neutral position before movement into the bore may begin. Similar
behavior is required when moving in the opposite direction. These requirements
include the history of event occurrences, therefore they cannot be modeled by
predicates. An automaton is used to model this requirement, see Figure 6.10.

6.4 Supervisory control synthesis toolchain
Figure 6.11 gives an overview of the tool chain used to synthesize the supervisor.
First, the plant model PGA that consists of automata, and possibly mutual state
exclusion specifications and state-event exclusion specifications, is converted to a
plant model PA consisting of automata only, using the algorithm defined in [21].
Then, the plant automata and control requirement specifications are transformed
into the input format for the STSLib tool [43]: the generalized control requirement
predicates RG are transformed to the negated conjunctive form RP, as defined in [48],
and the plant automata PA are transformed to the corresponding state tree structure
form PSTS. The latter transformation is straightforward. All automata are added as a
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child to the root AND-superstate of the STS model. The automata that are part of
the requirements are added to the root AND-superstate as well. These automata are
marked as ‘memories’. The STSLib synthesis algorithm translates any restriction on
uncontrollable events made by such memory automata to predicates. In this way, the
memory automata cannot constrain the uncontrolled behavior of the plant.

The supervisor SBDD is synthesized using the STSLib tool. It returns for each
controllable event a predicate encoded as a binary decision diagram (BDD). This
predicate defines when the event is enabled by the supervisor. These BDDs and their
associated events are then transformed to the single location automaton SA, that has
a guarded self loop for each controllable event.

For a more detailed overview of the tool chain, the interested reader is referred
to [67].

6.5 Concluding remarks
A straightforward comparison of the models of Chapters 5 and 6, that discuss event-
based and state-based supervisory control of the patient support system, respectively,
illustrates the intuitiveness and conciseness of generalized state-based control re-
quirements. Duplication of information, that was observed in event-based control
requirements, see Section 5.6, has been completely eliminated. Experience at Philips
Healthcare has also shown that generalized state-based control requirements are
intuitive for both domain engineers and software engineers, since they closely match
the view of the systems in terms of states, transitions between states, and restrictions
on allowable states and state-transitions. The most striking example of this, is the
specification of the safety restrictions for horizontal and vertical interaction of the
patient support table. Figure 6.12 shows the event-based specification (copied from
Figure 5.14b), and Control requirement 6.21 shows the corresponding state-based
specification (copied from Specification 6.8):

HVMode.Normal =⇒ HTTRSwitch.Off ∧
(VUpSensor.On∨HOutSensor.On)

(6.21)

As a result of the more intuitive, and simplified control requirement specifications,
the specifications were easier to develop, understand, and debug. The synthesized
state-based supervisor was implemented for real-time control of the actual patient
support system, and was tested and found to operate correctly, just as the event-based
supervisor (see Section 5.5.4).

A crucial improvement of the synthesized state-based supervisor versus the
event-based supervisor is that the state-based supervisor can deal with multiple
initial states of the controlled system. In the event-based specifications of the plant
models, for example, each sensor has one initial state only, whereas in the state-based
specifications, each sensor has two initial states. As a result, the event-based plant
and supervisor (see Chapter 5), have one initial state only. Therefore, the patient
support table has to be moved into the specified initial state, before the event-based
supervisory controller can be activated. The state-based supervisor on the other hand,
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Figure 6.12: Event-based horizontal and vertical safety interaction.

can be activated immediately, independently of the initial state of the patient support
system.

In principle, state-based supervisory control specifications and the associated
synthesis algorithms lead to supervisors that can be represented much more efficiently
than their event-based counterparts, as described in [44, 45]. This is due to the fact
that state-based synthesis algorithms separate the two basic tasks of a supervisor,
namely, first, to keep track of the state of the controlled plant, and second, to make
control decisions based on the current state of the plant. In state-based supervisory
control, the first task is executed by one or more automata, and the second tasks is
implemented by means of a set of control functions that define for each state, and for
each event, whether or not the event is allowed. In this way, the parallel composition
of the automaton that keep track of the state of the plant can be preserved, the
state-space is not expanded. In event-based supervisory control, these two tasks
are integrated in the same automaton, that keeps track of the state, and at the same
time implements the control functions. As a result, the supervisor that is derived in
Chapter 5, which implements the same behavior as the supervisor that is derived in
this chapter, contains 30,880 states. To implement the supervisor that is derived in
this chapter, only 46 states need to be tracked.

The current state-based supervisory control synthesis tool chain, as defined in
Figure 6.11, can, however, still lead to large and inefficient supervisors. Such blow-
up in synthesized supervisors is mainly caused by the use of disjunction in control
requirements, as for example in Control requirement (6.14), which is repeated below:
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{hStop} =⇒ (HInSensor.On∧HMotor.MovingIn) ∨
(HOutSensor.On∧HMotor.MovingOut) ∨
UITumbleSwitch.Neutral ∨
HTabletopSensor.Off ∨
HTTRSwitch.On

(6.22)

The use of disjunction leads to blow-up due to the transformation to the negated
conjunctive form RP, as defined in [48] (see Section 6.4). Blow-up can be avoided
by partitioning the stop event into multiple, different stop events, as has been done
in Chapter 5 on event-based supervisory control of the patient support system. Such
a partitioning could also be done by an improved synthesis algorithm, such as
described in Section 7.10. Alternatively, the input syntax of the synthesis tool (in
this case, STSlib [43]) could be extended to deal directly with disjunction in BDD
manipulations. Finally, the use of BDDs in the synthesis algorithm is always prone
to the well known variable ordering problem, which is NP-complete, see [70].

As a final remark, note that although the formalism used in this chapter is state-
based, states must be expressed by means of automata, and cannot be expressed by
means of variables. This restriction is not a problem for the patient support case. For
the patient communication system, as discussed in the next chapter, however, the use
of variables for supervisory control synthesis is essential.
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Chapter 7

State-based SCS of the communication system

Background Experience with application of supervisory control synthesis in indus-
try, see previous chapters and [7, 46, 21], has shown that key aspects of the successful
application of supervisory control synthesis in industry are the expressiveness and
user-friendliness of the formalism for the specification of plant models and control
requirements. Currently, requirements are defined by domain experts, and the corre-
sponding control code is implemented by software experts. For example, the required
number of pages that a printer is supposed to print, or the action to be taken when
a sheet is stuck in the printer, or the functionality of the user interface for an MRI
scanner are all defined by experts on the design and operation of a printer, or MRI
scanner, respectively. Software experts then implement these informal requirements
as executable code.

To facilitate the use of formal models of the plant and control requirements as
the basis of controller synthesis and subsequent real-time code generation, the speci-
fication formalism should be expressive and intuitive enough to support definition
and understanding of the plant models and control requirements by both domain
experts and software experts. Experience has demonstrated that the ability to refer to
the state of the controlled system is a key aspect in the definition of formal control
requirements by domain experts.

Contribution The contribution of this chapter is the definition and use of a (subset
of a) specification formalism for supervisory control synthesis that is both expressive
and intuitive enough to be used by both domain experts and software experts. The
language is shown to facilitate systematic, state-based and event-based, composi-
tional specification of a control system for a patient communication system of an
MRI scanner.

A modular approach is generally considered beneficial for the design of complex
systems; see for example [20]. For the design of evolvable systems, modularity is
especially valuable, since it implies decomposition of the system in a number of

79
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smaller, relatively independent subsystems, that interact via well-defined interfaces.
In this way, changes in a subsystem do not affect other subsystems, as long as the
interfaces between the subsystems remain unchanged. This chapter also shows that
the specification formalism can deal with both event-based and state-based interfaces.

To support systematic, modular specification of models for supervisory control
synthesis, observers are introduced. Observers are well known from feedback control
theory for continuous-time dynamical systems [36]. In this chapter, observers are
shown to be extremely usefull for supervisory controller design. Observers records
sequences of events in terms of states, where the states are represented by values
of variables, and/or automaton locations, that are required for the specification of
control requirements. For the variables, two classes are introduced: the independent
and the dependent variables, where the values of the dependent variables can be
defined in terms of functions of the independent variables.

The specification formalism integrates concepts from supervisory control syn-
thesis based on state tree structures; see [44], with concepts from CIF (see [1, 74]),
extended automata (see [62]), and generalized state-based control requirements from
[46].

The requirements modeled in this chapter are a snapshot of the requirements for
the actual communication system. At the time of writing, the system was still under
development. The requirements were changing due to interaction with the customer.

A slightly modified version of this chapter was published as [72].

Outline This chapter is structured as follows. The patient communication system is
described in Sections 4.3 and 7.2. Section 7.3 describes the specification formalism,
and Section 7.4 discusses the control architecture used for modeling the patient
communication system. The plant model, the requirements models and the supervisor
model are presented in Sections 7.5, 7.6 and 7.7, respectively. Section 7.8 describes
how changes from a state-based interface to an event-based interface can be readily
incorporated into the control system by straightforward addition of plant components
and control requirements. Sections 7.9 and 7.10 present the synthesized supervisor
for the changed model and the used tool chain, respectively. Finally, Section 7.11
presents concluding remarks.

7.1 Different flavors of supervisory control theory
In centralized event-based supervisory control synthesis, the plant and control re-
quirements are each modeled by means of a set of finite automata, synchronizing on
shared event labels; see Chapters 3 and 5. The synthesis algorithm leads to a single
supervisor. Although this form of supervisory control synthesis is conceptually
simple, it is practically infeasible to handle large complex systems due to the expo-
nentially high computational complexity resulting from synchronous composition
of local component and requirement models. To cope with the complexity issue,
many new event-based techniques have been introduced, such as interface-based
hierarchical synthesis [39], and distributed aggregative synthesis [64]. For a more
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complete overview, see [63]. In interface-based synthesis, the plant consists of
several components located at various levels. The components interact via interfaces.
The components are controlled by local supervisors that can be locally synthesized,
as long as all interfaces can remain fixed during synthesis. In distributed aggregative
synthesis, local supervisors are also used, but the main technique used to avoid
high synthesis complexity is model abstraction. The common denominator among
event-based synthesis methods is the use of automata to model the plant and control
requirements. Control requirements are thus specified as sequences of events.

A different method of supervisory control synthesis proposes the use of state
tree structures as the underlying model of the plant, and state-based expressions as
control requirements. The STS symbolic synthesis [44] algorithm utilizes binary
decision diagrams to manipulate states. It is highly efficient and results in a single,
efficiently encoded, supervisor. State tree structures are a superset of automata.
They enable hierarchical modeling and support efficient storage. State-based control
requirements restrict the behavior of the plant by forbidding combinations of states
of the parallel components. These state-based control requirements are referred to
as mutual state exclusion requirements. There are also state-transition exclusion
requirements, which specify that events are disabled for a given combination of
states. Apart from these state-based control requirements, the method also allows
so-called dynamic state feedback, in which automata are used to specify control
requirements as sequences of events, by transforming such automata to a form suited
for state-based supervisory control. By means of this dynamic state feedback, event-
based control requirements can also be defined in the state-based supervisory control
framework. However, the allowed input form of the state-based control requirements
as implemented in the STSlib [43] tool is quite restricted. Mutual state exclusion
requirements are defined as the negation of a conjunction of location references,
where a location reference is the name of a location of an automaton. The predicate
over the state in a state-transition exclusion requirement is defined as a conjunction
of location references.

To allow a more intuitive way of defining control requirements, [46] proposes
generalized state-based control requirements. Generalized state-based requirements
extend the input format of state-based supervisory control synthesis by allowing
general propositional logic in the mutual state exclusion requirements and in state-
transition exclusion requirements. This is done by symbolic preprocessing of the
requirements to obtain the form required for the STSlib tool. Using generalized
state-based control requirements to define the control requirements for a coordinator
of maintenance procedures of a high-tech printer by Océ show a considerable gain in
the process of formalizing the informally specified control requirements; see [47].

Another way of extending event-based supervisory control with state-based
functionality is by extending automata with variables, guards and updates. Multiple
frameworks that extend automata with variables exist, such as [15, 81, 22, 62]. In
[15], it is assumed that variables are updated by at most one automaton. In [81],
automata extended with variables are used to implement a supervisor. In [22], it is
assumed that variables are local to each automaton. In [62], variables are global
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Figure 7.1: Overview of the audio channels

and can be updated by any automaton. These automata are referred to as extended
automata. The algorithms defined in [62] are implemented in the Supremica [65]
tool.

7.2 Description of the patient communication system
In this chapter a supervisor for the patient communication system, see Section 4.3.2,
is generated. The communication system consists of audio channels that should be
opened and closed depending on the input on the different user interfaces.

7.2.1 Audio channels
The audio signals traverse from the sources to the targets via audio channels. Fig-
ure 7.1 shows an overview of the audio channels. Audio sources are depicted by
single line boxes, while audio source and sinks are depicted by double line boxes.
The audio channels are depicted by arrows connecting the sources to the targets. Au-
dio channels can be opened and closed. Audio channels are unidirectional, meaning
that audio signals are transferred in one direction only. For two-way communication,
an audio channel in each direction must be open.
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7.2.2 Communication modes
The communication system can operate in various communication modes. In each
mode, various entities communicate with one another. A communication mode may
be active or inactive. The following communication modes are implemented in the
system:

• OpEx_ListenToPat: The operator in the examination room listens to the
patient.

• OpEx_TalkWithPat: The operator in the examination room talks with the
patient (two way conversation).

• OpCo_ListenToPat: The operator in the control room listens to the patient.

• OpCo_TalkWithPat: The operator in the control room talks with the patient
(two way conversation).

• OpCo_ListenToOpEx: The operator in the control room listens to the operator
in the examination room.

• OpCo_TalkWithOpEx: The operator in the control room talks with the operator
in the examination room (two way conversation).

• AutovoiceToAll: The auto-voice messages are sent to the patient and both
operators.

• MusicToPatient: The patient listens to music from the auxiliary audio
source.

When a communication mode is active, the relevant channels must be open to allow
the communication corresponding to that mode. Otherwise, the channels should be
closed. Table 7.1 shows which channels are used for each communication mode.

Note that in principle all communication modes could be enabled at the same time.
However, requirements may prevent some modes being enabled simultaneously. For
instance, the requirement that the patient may only hear one source at a time prevents
the modes MusicToPatient and OpCo_TalkWithPat to be active simultaneously.
These conflicts are resolved by introducing priorities for the communication modes.
In the case described above, the priorities ensure that mode MusicToPatient can
only be active if mode OpCo_TalkWithPat is not active.

7.2.3 Requests
The communication modes in the communication system are activated and deac-
tivated via requests to activate or deactivate a mode. These requests are made by
the host and the users. The users of the system are the patient, the OpEx and the
OpCo. The MRI host system makes requests via a network. The host is informed
if a request is accepted or rejected via the same network. The users make requests
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Communication mode Channels to open

OpEx_ListenToPat Ac_Pat2OpEx
OpEx_TalkWithPat Ac_Pat2OpEx

Ac_OpEx2Pat
OpCo_ListenToPat Ac_Pat2OpCo
OpCo_TalkWithPat Ac_OpCo2Pat

Ac_Pat2OpCo
OpCo_ListenToOpEx Ac_OpEx2OpCo
OpCo_TalkWithOpEx Ac_OpEx2OpCo

Ac_OpCo2OpEx
AutovoiceToAll Ac_Avc2Pat

Ac_Avc2OpEx
Ac_Avc2OpCo

MusicToPatient Ac_Aux2Pat

Table 7.1: Communication modes with the corresponding channels

via buttons. The users are informed about the internal state of the communication
system via indicators (LEDs).

A communication mode can be active only if there is a corresponding request. If
no other conflicting higher priority communication modes are active, the request is
granted immediately; otherwise the requested communication mode is activated as
soon as all other higher priority conflicting communication modes are inactive.

For each communication mode, there is an indicator that visualizes the current
state of the mode. Each indicator distinguishes three cases:

• communication mode is active;

• communication mode is inactive and requested;

• communication mode is inactive and not requested.

The buttons and the associated indicators together form the user interface. Table 7.2
shows the buttons that are in the system, and for each button to which communication
mode it relates. Furthermore, it shows which communication modes are related to
the host.

7.3 Specification formalism
This section informally introduces a subset of the supervisory control specification
formalism used to specify the plant model and the control requirements of the patient
communication system. This formalism is based on a small subset of the general
Compositional Interchange Format (CIF) for hybrid systems, see [1, 74]. The sub-
set has several concepts in common with the extended automata defined in [62];
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User Button Communication mode

Patient Nursecall OpCo_ListenToPat
OpEx Talk with patient OpEx_TalkWithPat

Listen to patient OpEx_ListenToPat
Talk to OpCo OpCo_ListenToOpEx
Patient music MusicToPatient

OpCo Talk with patient OpCo_TalkWithPat
Listen to patient OpCo_ListenToPat
Talk with OpEx OpCo_TalkWithOpEx
Listen to OpEx OpCo_ListenToOpEx
Patient music MusicToPatient

Host OpCo_ListenToPat
AutovoiceToAll

Table 7.2: Relation between the user interface buttons and the communication
modes

in particular, untimed automata with shared discrete variables, shared uncontrol-
lable and controllable events, guards, and assignments. Differences are that this
formalism has several additional concepts from CIF: the independent and dependent
variables (referred to as algebraic variables in CIF), the invariants, and multiple
initial locations.

7.3.1 Automata
An automaton consists of locations Q, variables V , alphabet Σ, and transitions E. The
variables are divided into independent and dependent variables. They are discrete,
and have a finite domain. The values of independent variables can be changed by
means of assignments. An automaton can assign only its own variables. The value
of a variable of another automaton can be referred to by prefixing such a variable by
the name of the automaton that declares the variable. E.g. if a variable x is declared
in an automaton A, then the value of that variable can be referred to as A.x in another
automaton. Independent boolean variables that are not explicitly initialized are
initialized to false by default. The value of each dependent variable is obtained
by evaluation of its defining expression. The events are divided into controllable
and uncontrollable events. The supervisor can disable controllable events in certain
states, whereas uncontrollable events cannot be disabled. The supervisor can prevent
occurrence of uncontrollable events in certain states only by disabling controllable
events in all states that may lead to occurrence of the uncontrollable event. The
defined automata are composed in parallel and synchronize on shared events. An
edge consists of a number of optional components: an event, a guard in the form of a
predicate over variables and location references, and a multi-assignment on one or
more variables.
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Figure 7.2: Example automaton Ex.

A graphical representation of a supervisory control automaton is shown in
Figure 7.2. The automaton has locations Off, Requested, Accepted, control-
lable events av_reject, av_accept, av_abort, uncontrollable events host_av_request,
host_av_done, and guard expressions that are represented by not av_ok and av_ok.

Locations are modeled by vertices, and transitions are modeled by arrows. All
states labels are unique. For instance, in Figure 7.2, Ex.Off refers to state Off in
automaton Ex. Controllable and uncontrollable transitions are represented by solid
and dashed arrows, respectively.

Dependent variables are declared as aliases:
alias dependentvar = expr

where EXPR is an expression over variables, location references and constants. Both
independent and dependent variables can be used in EXPR as long as no circular
dependencies are introduced.

A transition is labeled as follows:
eventlabel when guard do multi-assignment

where:

• GUARD: Optional guard predicate over variables V and states Q. The predi-
cates P are defined as follows:

P ::= true | s | v = e | not P | P op P
where s is a location reference, v ∈V is an variable, e is a boolean or integer
expression over variables and constants, and op ∈ { and,or,=> } is a logical
operator. Note that only the subset of the language that is actually used in this
chapter is presented.

• EVENTLABEL: An event label σ ∈ Σ.

• MULTI-ASSIGNMENT: Optional multi-assignment v1 := e1, · · · ,vn := en where
vi is an independent variable and ei is an expression over variables (independent
and/or dependent) and constants.
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transition1 transition2

transitionn

Figure 7.3: Graphical representa-
tion of an automaton with a single
location.

event transition1
event transition2
...

event transitionn

Figure 7.4: Textual representa-
tion of an automaton with a single
location.

The guard and the keyword ‘when’ are omitted when the guard is always true.
The multi-assignment and the keyword ‘do’ are omitted when the variables are not
updated.

Execution of a transition transforms the state before execution, the old state, to a
new state. The guards and the expressions ei, including any dependent variables (if
present), are evaluated in the old state. In the new state, the values of the assigned
(independent) variables are equal to the values of the expressions ei evaluated in the
old state. The values of the independent variables that have not been assigned remain
unchanged.

The well-known ‘if then else’ statement can be associated with an event by means
of the following notation:
eventlabel when guard do if guard′

then multi-assignment1
else multi-assignment2

end

which is an abbreviation for:
eventlabel when guard and guard′ do multi-assignment1
eventlabel when guard and not guard′ do multi-assignment2

A textual representation is introduced for an automaton with a single location
and self-loops, as shown in Figure 7.3. The textual model hides the single location,
which is not relevant in this case. The textual representation of this automaton is
shown in Figure 7.4. This textual representation is easer to read for models that have
many self-loops.

7.3.2 Requirement invariants
A requirement invariant is a predicate P over variables and location references (as
defined in Section 7.3.1) that must always evaluate to true. The invariant defines
which states are safe in the controlled system. Requirement invariants are used in
Section 7.8.4. However, plant invariants are not used in this chapter.

7.4 Control architecture
The control architecture of the patient communication system is shown in Figure 7.5.
MRI host H and user U generate uncontrollable events σHU and σUU , respectively,
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Figure 7.5: Control architecture

that activate or deactivate requests for communication modes in the observer O12.
This observer uses variables to keep track of whether a communication mode is
requested. It consists of the two observers O1 and O2, presented in Listings 7.1
and 7.2, respectively. The domain of the state of the supervisor is the union of the
domain of the state xT of the observer and the domain of the state xH of the host.
The output states xUI and xA, that are made available to the indicators of the user
interface U and to the audio channels A, respectively, are defined by functions on the
state of the supervisor. The controllable events σHC that are sent to the host H are
enabled/disabled by the supervisor on the basis of the supervisor’s state.

7.5 Plant model P

The plant model is a parallel composition of the models of the host H, user U , audio
channels A, and observer O12.

7.5.1 Host model H

The host behavior consists of two parts: host notifications, and host auto-voice
requests. These aspects of host behavior are described in the following subsections.

Host notifications

The interface σHU (see Table 7.3) from host H to observer O12 is event-based. The
host informs the communication system about host state changes that might require
actions to be taken by the communication system; For instance, to improve the
workflow, or to warn that a hazardous situation might occur. The communication
system is notified when a scan starts and stops (workflow), and when the table
starts and stops moving (hazard; the patient’s fingers might become trapped), see
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event contr.

σHU host_scan_started No
host_scan_stopped No
host_tablemove_started No
host_tablemove_stopped No

Table 7.3: Events from host to observer

the events specified in Table 7.3. The host itself does not restrict the occurrences
of these host notification events. Therefore, this aspect of the host behavior is not
explicitly modeled. Note that the absence of restrictions for some events can be
modeled as a single state automaton with self-loops for each of the events. Adding
such an automaton does not change the meaning of the model if the event already
occurs in other automata.

Host auto-voice requests

The host can request enabling of the communication mode AutovoiceToAll. In
this communication mode, an auto-voice message is played to the patient and to the
operators. In certain circumstances, such an auto-voice request from the host may
be ignored by the communication system. Therefore, the communication control
system must notify the host whether the request is accepted or rejected. This is
done according to the events listed in Table 7.4. The host behavior is specified by
automaton H as presented in Figure 7.6.
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Figure 7.6: Host plant automaton H

Initially, the automaton is in mode Off. After a request from the host, the au-
tomaton changes to mode Requested. The request is accepted or rejected via the
controllable events autovoice_accept and autovoice_reject, respectively. An
accepted AutovoiceToAll request from the host, which results in playing of the
auto-voice message, can be aborted by the supervisor via event autovoice_abort.
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event contr.

σHC autovoice_reject Yes
autovoice_accept Yes
autovoice_abort Yes

Table 7.4: Events from supervisor to host

automaton location

xH Off
Requested
Accepted

Table 7.5: Locations in interface from host to supervisor

The host can also terminate AutovoiceToAll requests by means of the uncon-
trollable event host_autovoice_done. The state xH (see Table 7.5) of the host
automaton is made available to the supervisor in the form of location references: the
boolean expression H.`, where ` can be any of the three location names of automaton
H, is true if and only if that location is active.

7.5.2 User model U

The interface σUU (see Table 7.6) from user U to observer O12 is event-based. When
a user pushes a button, an event is generated which is sent to the observer. The user
interface has two kinds of buttons: push-buttons and hold-buttons. A push-button
generates an event <button>_pushed when it is pushed. A hold-button generates
two events: <button>_pressed and <button>_released. The user interface
itself does not restrict the occurrence of these events in any way. Therefore this
interface is not explicitly modeled.

The interface between the supervisor S and the user U is state-based. The state
of the indicators in the user interface is a function of the state of the supervisor. Each
indicator has three states: inactive, hold and active. Therefore, an indicator is mod-
eled by a dependent enumerated variable with the values {Inactive,Hold,Active}.
The relevant variables are given in Table 7.7.

7.5.3 Observer model O12

The observer O12 of Figure 7.5 is modeled by two automata O1 and O2, shown in
Listings 7.1 and 7.2, respectively. The observers receive uncontrollable events from
the host H and the user U , and relate these events to request for communication
modes. The requests are modeled by the variables shown in Table 7.8.

Note that the observers do not impose any restrictions on the occurrence of the
events. Therefore, the observers could also have been introduced as part of the
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event contr.

σUU bt_opex_talkwithpat_pushed No
bt_opex_listentopat_pushed No
bt_opex_talktoopco_pushed No
bt_opex_patmusic_pushed No
bt_opco_listentopat_pushed No
bt_opco_listentoopex_pushed No
bt_opco_patmusic_pushed No
bt_opco_talkwithpat_pressed No
bt_opco_talkwithpat_released No
bt_opco_talkwithopex_pressed No
bt_opco_talkwithopex_released No
bt_pat_nursecall_pushed No

Table 7.6: Events from user interface to observer

output variable

xUI Indc_OpEx_ListenToPat
Indc_OpEx_TalkWithPat
Indc_OpCo_ListenToPat
Indc_OpCo_TalkWithPat
Indc_OpCo_ListenToOpEx
Indc_OpCo_TalkWithOpEx
Indc_AutovoiceToAll
Indc_MusicToPatient

Table 7.7: User interface output variables

requested communication mode

xT Rq_OpEx_ListenToPat
Rq_OpEx_TalkWithPat
Rq_OpCo_ListenToPat
Rq_OpCo_TalkWithPat
Rq_OpCo_ListenToOpEx
Rq_OpCo_TalkWithOpEx
Rq_MusicToPatient

Table 7.8: Observer request variables
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control requirements instead of as part of the plant. There would be no difference for
the resulting synthesized supervisor.

The observers are essential for evolvability of the control system, because they
relate sequences of input actions to values of the request variables. These request
variables were considered to be highly intuitive by the domain specialists, because
they allow reasoning about the system at a higher level of abstraction. All changes to
input action sequences required for communication mode requests can remain local
to the observer specifications, as long as the names of the request variables do not
change.

Observer O1

Observer O1 declares the variables from Table 7.8, apart from variable
Rq_OpCo_ListenToPat, which is declared in observer O2. The variables are of
type boolean. If the value of a request variable is true, the associated communication
mode is requested, otherwise no action is taken. Note that omission of the initial
value of a variable of a certain type, defaults to initialization of that variable to the
default initial value for that type. For boolean variables, the default initial value
is false. Therefore, the request variables are initially false. The requests that are
modeled by observer O1 in Listing 7.1 are toggled or always set to true or false when
an event occurs.

Note that the events bt_opex_talkwithpat_pushed, host_scan_started
and host_scan_stopped are included in both Listings 7.1 and 7.2. Due to the
synchronous composition of these two automata, occurrence of an aforementioned
event causes multiple requests for modes to be enabled (or disabled) simultane-
ously. The two automata O1 and O2 could be combined in one automaton. In that
case, the assignments associated to the events bt_opex_talkwithpat_pushed,
host_scan_started and host_scan_stopped in both automata would have to be
combined as multi-assignments.

The variable Rq_OpEx_TalkWithPat is declared in observer O1, where its
value is updated. The value is used in observer O2, where it is referred to as
O1.Rq_OpEx_TalkWithPat.

Observer O2

Listing 7.2 shows how the requests for communication mode OpCo_ListenToPat
are modeled. The OpCo listens to the patient when the patient pushes the nursecall-
button or when table is moving. Furthermore, the OpCo overhears the conversation
between the OpEx and the patient. Finally, the OpCo can activate and deactivate
the mode OpCo_ListenToPat whenever he or she likes. The four distinct cases
must not influence one another. Therefore, four variables are used to model the
request for communication mode OpCo_ListenToPat, each modeling a sub-request.
The sub-request can only be deactivated by the same entity that activated it, with
exception of the OpCo who can deactivate all sub-requests. The required behavior
is modeled by the dependent variable (alias) Rq_OpCo_ListenToPat, which is
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1 plant O1:
2 uncontrollable
3 host_scan_started, host_scan_stopped,
4 bt_opex_listentopat_pushed, bt_opex_talkwithpat_pushed,
5 bt_opex_talktoopco_pushed, bt_opex_patmusic_pushed,
6 bt_opco_listentoopex_pushed, bt_opco_patmusic_pushed,
7 bt_opco_talkwithopex_pressed, bt_opco_talkwithopex_released,
8 bt_opco_talkwithpat_pressed, bt_opco_talkwithpat_released;

10 var bool Rq_OpEx_ListenToPat, Rq_OpEx_TalkWithPat,
11 Rq_OpCo_ListenToOpEx, Rq_OpCo_TalkWithOpEx,
12 Rq_MusicToPatient, Rq_OpCo_TalkWithPat;

14 // host:
15 event host_scan_started do Rq_OpEx_ListenToPat := false
16 , Rq_OpEx_TalkWithPat := false;
17 event host_scan_stopped do Rq_OpEx_ListenToPat := true;

19 // user interface buttons:
20 event bt_opex_listentopat_pushed
21 do Rq_OpEx_ListenToPat := not Rq_OpEx_ListenToPat;
22 event bt_opex_talkwithpat_pushed
23 do Rq_OpEx_TalkWithPat := not Rq_OpEx_TalkWithPat;
24 event bt_opex_talktoopco_pushed
25 do Rq_OpCo_ListenToOpEx := not Rq_OpCo_ListenToOpEx;
26 event bt_opex_patmusic_pushed
27 do Rq_MusicToPatient := not Rq_MusicToPatient;
28 event bt_opco_listentoopex_pushed
29 do Rq_OpCo_ListenToOpEx := not Rq_OpCo_ListenToOpEx;
30 event bt_opco_patmusic_pushed
31 do Rq_MusicToPatient := not Rq_MusicToPatient;
32 event bt_opco_talkwithopex_pressed do Rq_OpCo_TalkWithOpEx := true;
33 event bt_opco_talkwithopex_released do Rq_OpCo_TalkWithOpEx := false;
34 event bt_opco_talkwithpat_pressed do Rq_OpCo_TalkWithPat := true;
35 event bt_opco_talkwithpat_released do Rq_OpCo_TalkWithPat := false;
36 end

Listing 7.1: Observer O1

defined in terms of the four independent variables Rq_OpCo_ListenToPat_i, i ∈
{opco,opex,host,nursecall}, thus resulting in one request variable for this mode
that can be used in the remainder of the specifications. The suffix of the variables
indicates —for each submode—which entity enabled the request.

7.5.4 Rationale for using automata with variables
Analysis of the specification of the second observer in Listing 7.2 provides the
rationale for using specifications based on automata that have been extended with
variables. The majority of the control requirements can easily be specified using
automata without variables, where each boolean variable is represented by an au-
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1 plant O2:
2 uncontrollable
3 host_tablemove_started, host_tablemove_stopped,
4 bt_pat_nursecall_pushed, bt_opco_listentopat_pushed;

6 var bool Rq_OpCo_ListenToPat_nursecall, Rq_OpCo_ListenToPat_host,
7 Rq_OpCo_ListenToPat_opex, Rq_OpCo_ListenToPat_opco;

9 alias bool Rq_OpCo_ListenToPat = Rq_OpCo_ListenToPat_opco
10 or Rq_OpCo_ListenTopat_opex
11 or Rq_OpCo_ListenToPat_host
12 or Rq_OpCo_ListenToPat_nursecall;

14 // host:
15 event O1.host_scan_started do Rq_OpCo_ListenToPat_opco := false;
16 event O1.host_scan_stopped do Rq_OpCo_ListenToPat_opco := true;
17 event host_tablemove_started do Rq_OpCo_ListenToPat_host := true;
18 event host_tablemove_stopped do Rq_OpCo_ListenToPat_host := false;

20 // user interface buttons:
21 event bt_pat_nursecall_pushed
22 do Rq_OpCo_ListenToPat_nursecall := true;
23 event O1.bt_opex_talkwithpat_pushed
24 do Rq_OpCo_ListenToPat_opex := not O1.Rq_OpEx_TalkWithPat;
25 event bt_opco_listentopat_pushed
26 do if Rq_OpCo_ListenToPat
27 then
28 Rq_OpCo_ListenToPat_nursecall := false,
29 Rq_OpCo_ListenToPat_host := false,
30 Rq_OpCo_ListenToPat_opex := false,
31 Rq_OpCo_ListenToPat_opco := false
32 else
33 Rq_OpCo_ListenToPat_opco := true
34 end;
35 end

Listing 7.2: Observer O2

tomaton with two locations: one for the value true, and one for the value false.
In particular, all control requirements where variables are updated to a literal value
(in this case either true or false), can be easily represented by means of two
edges in the specific automaton: a self loop in the location corresponding to the
assigned value, and a transition from the other location to the location corresponding
to the assigned value. There are, however, two specifications where the variables
cannot so easily be eliminated: in particular lines 23 and 24, where the new value
of variable Rq_OpCo_ListenToPat_opex depends on the value of another vari-
able O1.Rq_OpEx_TalkWithPat; and lines 25 - 34, where a guard is used that is
represented by the variable Rq_OpCo_ListenToPat, the value of which is defined
in terms of a disjunction of four other variables. The variables in these control
requirements can be eliminated according to the algorithm defined in [62], but at the
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output variable

xA Ac_Pat2OpEx_Opened
Ac_Pat2OpCo_Opened
Ac_OpEx2Pat_Opened
Ac_OpEx2OpCo_Opened
Ac_OpCo2Pat_Opened
Ac_OpCo2OpEx_Opened
Ac_Sys2Pat_Opened
Ac_Sys2OpEx_Opened
Ac_Sys2OpCo_Opened
Ac_Mus2Pat_Opened

Table 7.9: Audio interface output variables

cost of duplication/multiplication of the events (bt_opex_talkwithpat_pushed
and bt_opco_listentopat_pushed) used in the requirements. The resulting spec-
ifications, without variables, but with the additional artificially created events, would
be much less intuitive than the presented specifications.

7.5.5 Audio channel model A

The audio channels are controlled by directly setting the state of the channels to
opened or closed. Each channel is modeled by a boolean variable. If the value is true,
the channel is opened, otherwise it is closed. The variables are given in Table 7.9.

7.6 Control requirements model
Based on the values of the variables and location references, supervisor S generates
control outputs. The outputs can be event-based or state-based, depending on the
interface for the control output. The supervisor enables and disables events used in
observer O12 and host H. The supervisor directly sets the indicator variables in U
and the variables for the audio channels in A.

7.6.1 Communication mode priorities
The operators and the patient can each listen to multiple audio sources. For clarity,
no more than one audio source may be heard at any one time. This implies that for
each target, at most one of the audio channels to that target may be in the state open
at one time. Therefore, communication modes may only be enabled at the same time
if all corresponding channels can be opened at the same time.

Table 7.10 defines a partial order on the priorities of the communication modes.
The tick marks in the table indicate the required resources for each mode. There is
an ordering among communication modes only if they share resources. For such
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modes, the highest listed mode in Table 7.10 has the highest priority. However, if
communication modes do not share resources, they can be active at the same time.

The requirements that define when each communication mode is enabled are
derived from the priority table. A mode is enabled when its associated request
variable is true, and when there is no higher priority mode enabled that shares one
or more resources. For instance, mode OpEx_TalkWithPat is enabled only when
the modes OpCo_TalkWithPat and OpCo_TalkWithOpEx are not active, whereas
the modes MusicToPatient and OpCo_TalkWithOpEx are unordered: they can be
active at the same time. These priority requirements are specified using aliases
that define the values of the (dependent) communication mode variables in terms
of the (independent) request variables and other, already defined, communication
mode variables. In this way, the value of each communication variable is ultimately
defined as a function of request variables. This is essential for the evolvability of the
control system. Changes in the required priority rules can remain local to the alias
definitions, because the only interaction with the other parts of the control system
specification is by means of the names of the requests and the communication modes.
alias bool

OpCo_TalkWithPat = O1.Rq_OpCo_TalkWithPat,
OpCo_ListenToPat = O2.Rq_OpCo_ListenToPat

and not OpCo_TalkWithPat,
OpCo_TalkWithOpEx = O1.Rq_OpCo_TalkWithOpEx

and not OpCo_TalkWithPat
and not OpCo_ListenToPat,

OpCo_ListenToOpEx = O1.Rq_OpCo_ListenToOpEx
and not OpCo_TalkWithPat
and not OpCo_ListenToPat
and not OpCo_TalkWithOpEx,

OpEx_TalkWithPat = O1.Rq_OpEx_TalkWithPat
and not OpCo_TalkWithPat
and not OpCo_TalkWithOpEx,

OpEx_ListenToPat = O1.Rq_OpEx_ListenToPat
and not OpCo_TalkWithOpEx
and not OpEx_TalkWithPat,

AutovoiceToAll = H.Accepted
and Autovoice_OK,

MusicToPatient = O1.Rq_MusicToPatient
and not OpCo_TalkWithPat
and not OpEx_TalkWithPat
and not AutovoiceToAll;

where Autovoice_OK is defined as:
alias bool Autovoice_OK = not OpCo_TalkWithPat

and not OpCo_ListenToPat
and not OpCo_TalkWithOpEx
and not OpCo_ListenToOpEx
and not OpEx_TalkWithPat
and not OpEx_ListenToPat;
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Resources (Targets)

Boolean variable Patient OpCo OpEx

OpCo_TalkWithPat X X
OpCo_ListenToPat X
OpCo_TalkWithOpEx X X
OpCo_ListenToOpEx X
OpEx_TalkWithPat X X
OpEx_ListenToPat X
AutovoiceToAll X X X
MusicToPatient X

Table 7.10: Communication mode priorities

7.6.2 Auto-voice
Auto-voice requests are accepted only if the corresponding audio channels can be
opened, indicated by Autovoice_OK. If the channels remain closed or be closed due
to an active higher priority communication mode, the request is rejected or aborted,
respectively. This behavior is defined by the control requirement AV defined below,
in combination with the host model H presented in Figure 7.6.
requirement AV:

event autovoice_accept when O1.Autovoice_OK;
event autovoice_reject when not O1.Autovoice_OK;
event autovoice_abort when not O1.Autovoice_OK;

end

7.6.3 Channel open and close
Table 7.1 in Section 7.2.2 defines—for each communication mode—which channels
must be open when the mode is active. Based on this table, the globally defined
aliases below, define for each channel when it is open and when it is closed. The
aliases define the interface between the communication modes in the control system,
and the actual channels in the hardware specification, and in this way contribute to
the evolvability of the control system design.
alias bool

Ac_Pat2OpEx_Opened = OpEx_TalkWithPat
or OpEx_ListenToPat,

Ac_Pat2OpCo_Opened = OpCo_TalkWithPat
or OpCo_ListenToPat,

Ac_OpEx2Pat_Opened = OpEx_TalkWithPat,
Ac_OpEx2OpCo_Opened = OpCo_TalkWithOpEx

or OpCo_ListenToOpEx,
Ac_OpCo2Pat_Opened = OpCo_TalkWithPat,
Ac_OpCo2OpEx_Opened = OpCo_TalkWithOpEx,
Ac_Aux2Pat_Opened = MusicToPatient,
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Ac_Avc2Pat_Opened = AutovoiceToAll,
Ac_Avc2OpEx_Opened = AutovoiceToAll,
Ac_Avc2OpCo_Opened = AutovoiceToAll;

7.6.4 Indicators
For each communication mode, there is an indicator that visualizes the current state
of the mode. The value of each indicator is specified by means of a conditional
expression. An indicator is in state Active if the corresponding communication
mode is active. It is in state Hold if the mode is requested but not active, and it is in
state Inactive when the mode is not requested. For example for communication
mode OpEx_ListenToPat:
alias LEDS

Indc_OpEx_ListenToPat =
if OpEx_ListenToPat
then Active
else if Rq_OpEx_ListenToPat then Hold else Inactive end
end;

7.7 Supervisor model S

The supervisor consists of the aliases that define the states of the audio channels, the
indicators, and the synthesized control functions for the controllable events. The
control functions are synthesized using the method described in Section 7.10. The
supervisor control functions for the control problem defined in Sections 7.5 and 7.6
are equivalent to the control requirements as defined in Section 7.6.2. Therefore, for
this control problem, the control functions could be implemented by means of the
control requirement automata.

Note that the control requirements defined in the preceding sections are the result
of an iterative engineering process. In each iteration, the synthesized supervisor
is tested by means of interactive, user-guided simulation to establish whether the
defined control requirements define the behavior required by the customer. In
these iterations, the control requirements can be blocking and/or uncontrollable
(meaning that uncontrollable events are disabled by the control requirements). In
such cases, synthesis is a valuable tool to help find errors in the control requirements
by simulating the synthesized nonblocking and controllable supervisor on the plant
model.

7.8 Event-based output
In the preceding sections, the interfaces from the supervisor to the user and to the
audio channels are state-based. The output of the supervisor is a function of the
communication modes and the other variables of the model. In this section, the



Event-based output 99

P

O12

S′

H U ′

A′

OUI

OA

σHU σUUxHσHC σUC

xT

σAC

xOA

xOU

Figure 7.7: Control architecture for event-based output

interface between the supervisor and the user and audio channels is changed to be
event-based: instead of defining the output state as a function of the state of the plant
and the observer, events are used as outputs.

Figure 7.7 shows the new control architecture. The signals to users U ′ and audio
channels A′ are changed from variables (x...) to events (σ...), and two observers are
added to the plant. Observer OUI keeps track of the state of the indicators in U ′ by
monitoring the events sent to U ′. The state of OUI is used by the supervisor to enable
and disable events that are sent to U ′. Observer OA has the same purpose for the
states and the events of A′.

The host model H remains the same. Also the events generated by the users U ′

remain the same. Therefore, the observer model O12 also stays unchanged. In fact,
the new model clearly demonstrates the evolvability of the control system design:
the changes can be implemented by means of additional specifications, without
changes to the original specifications. The specifications of the state-based output
variables defined in Sections 7.6.3 and 7.6.4 are no longer required in an event-based
output system, but the specifications need not be removed. The only component that
changes is the supervisor S, which can be generated using a synthesis algorithm.

In the following sections, the changes to the plant model and control requirement
model are discussed.

7.8.1 User interface model U ′

The state of the indicators is changed by sending events to the user interface. Ta-
ble 7.11 shows the events related to mode OpEx_ListenToPat. For the other modes,
similar events are used. The user interface accepts the events in any order, and is
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output event contr.

σUC indc_opexlistentopat_active Yes
indc_opexlistentopat_hold Yes
indc_opexlistentopat_inactive Yes

Table 7.11: New user interface output events

output event contr.

σAC ac_opco2pat_open Yes
ac_opco2pat_close Yes

Table 7.12: New audio interface output events

therefore not explicitly modeled.

7.8.2 Audio channel model A′

The state of the audio channels is also changed by sending events. Table 7.12 shows
the event for the audio channel between the OpCo and the patient. For the other
channels, similar events exist. The interface accepts the events in any order, and is
therefore not explicitly modeled.

7.8.3 Observers OUI and OA

The indicators in U ′ and the audio channels in A′ do not provide feedback about
the current state of the system. Therefore, observers are added to the plant model.
These observers provide the current state of the indicators and audio channels for the
supervisor. The indicator observer model for the mode OpEx_ListenToPat is given
below. The state of the indicator is modeled using an enumerated variable with the
values Inactive, Hold and Active. The other indicators are modeled in a similar
way.
enum LEDS = {Inactive,Active,Hold};

plant O_UI:
var LEDS Indc_OpEx_ListenToPat = Inactive;

event indc_opexlistentopat_active
do Indc_OpEx_ListenToPat := Active;

event indc_opexlistentopat_hold
do Indc_OpEx_ListenToPat := Hold;

event indc_opexlistentopat_inactive
do Indc_OpEx_ListenToPat := Inactive;

// ... and so on for other indicators
end
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The plant model T_A is the observer for the audio channels. The model below
specifies only the channel between the Patient and the OpEx. The state of the audio
channel is modeled using a boolean variable. The audio channel is opened and closed
via controllable events ac_pat2opex_open and ac_pat2opex_close, respectively.
The models of the other audio channels are similar.
plant O_A:

var bool Ac_Pat2OpEx_Opened;

event ac_pat2opex_open do Ac_Pat2OpEx_Opened := true;
event ac_pat2opex_close do Ac_Pat2OpEx_Opened := false;
// ... and so on for other audio channels

end

7.8.4 Control requirement models
The control requirements defined in Section 7.6 remain unchanged. For event-
based output, three types of requirements are added: requirements related to mutual
exclusion of audio sources, to opening and closing of channels, and to setting of
indicator states.

Mutual exclusion of audio sources

To prevent that the operators and the patient can hear multiple sources during
transitions between control modes, a mutual exclusion requirement is added. This
requirement prevents that channels with the same target may be open at the same
time.

For compact notation of mutual exclusion requirements, a function is introduced.
A set of mutually exclusive states imply that if any one of the states in a set is active,
all other states must be inactive. The function is defined for a set of state predicates
SP:

mutex(SP) =
∧

x∈SP

(
x =⇒

( ∧
y∈SP,y6=x

¬y
))

(7.1)

For example mutex(x,y,z) =(
x =⇒ (¬y∧¬z)

)
∧
(
y =⇒ (¬x∧¬z)

)
∧
(
z =⇒ (¬x∧¬y)

)
At all times, the following mutual exclusion rules must be obeyed for the patient,

the operator in the examination room and the operator in the control room:
requirement Channel_mutex:

invariant
mutex( Ac_OpCo2Pat_Opened

, Ac_OpEx2Pat_Opened
, Ac_Avc2Pat_Opened
, Ac_Aux2Pat_Opened ),

mutex( Ac_OpCo2OpEx_Opened
, Ac_Pat2OpEx_Opened
, Ac_Avc2OpEx_Opened ),
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mutex( Ac_Pat2OpCo_Opened
, Ac_OpEx2OpCo_Opened
, Ac_Avc2OpCo_Opened )

end

Opening and closing of the channels

The following requirement defines when a channel open or close event may occur.
The other channels are opened and closed using similar rules.
requirement Audio_Channel_events:

event ac_pat2opex_open
when ( OpEx_TalkWithPat or OpEx_ListenToPat )
and not Ac_Pat2OpEx_Opened;

event ac_pat2opex_close
when not ( OpEx_TalkWithPat or OpEx_ListenToPat )
and Ac_Pat2OpEx_Opened;

end

Setting the indicator states

The following requirement defines when the output events for the OpEx listen to Pat
indicator may occur. The other output events are defined using similar rules:
requirement Indicator_events:

event indc_opexlistentopat_active
when Rq_OpEx_ListenToPat and OpEx_ListenToPat

and Indc_OpEx_ListenToPat != Active;
event indc_opexlistentopat_hold

when Rq_OpEx_ListenToPat and not OpEx_ListenToPat
and Indc_OpEx_ListenToPat != Hold;

event indc_opexlistentopat_inactive
when not Rq_OpEx_ListenToPat

and Indc_OpEx_ListenToPat != Inactive;
end

7.9 Supervisor model S′

As an example of the result of the synthesis procedure, the generated supervisory
control rules for the audio channel from the patient to the OpEx in the form of
a supervisory control automaton is shown below. The restrictions that the other
channels must be closed before the channel can be opened are the result of the
synthesis algorithm:
event ac_pat2opex_open

when not ac_Pat2OpEx_Opened
and not Ac_Avc2OpEx_Opened
and not Ac_OpCo2OpEx_Opened
and ( OpEx_TalkWithPat or OpEx_ListenToPat )

event ac_pat2Opex_close
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when ac_Pat2OpEx_Opened
and not ( OpEx_TalkWithPat or OpEx_ListenToPat )

7.10 Toolchain
Figure 7.8 shows the toolchain that was used to synthesize the supervisor.

First, the automata of the plant model PA are transformed into regular automata
PA by elimination of the variables, using the algorithm defined in [62]. The output of
this algorithm are automata without variables PA, and a mapping table M that maps
the variables, states and events in the A automata to states and events in the regular
automata.

Second, control requirement automata RA are translated to (generalized) state-
transition predicates RSTPA [46]. Note that all requirements are modeled by self-loops
without multi-assignments. Therefore, the translation is straightforward. A transition:

event eventlabel when guard

is translated to the following state-transition predicate:
→eventlabel ⇒ guard↓

which is equivalent to:
¬guard↓ ⇒ ¬→eventlabel

meaning that the event EVENTLABEL is disabled in all states where the guard GUARD

does not hold.
Third, state-transition predicates RSTPA and requirement invariants RInvA are

mapped to the states of the plant without variables, resulting in RSTPA and RInvA .
Fourth, regular plant automata PA with the corresponding control requirements

RInvA and RSTPA are used to synthesize the supervisor SSTPA . The synthesis algorithm
defined in [44], and the preprocessing transformation defined in [46] are used to
synthesize the supervisor. These algorithms take as input the plant modeled as
parallel automata and the requirements modeled as predicates over the states and
events of the automata. The result of this synthesis method is a set of predicates
SSTPA , which define for each controllable event when the event is enabled. These
predicates are defined over the states of the regular plant automata PA.

Using mapping M, the synthesized state-transition predicates SSTPA , are mapped
to predicates over the states and variables that are used in the plant model PA. The
resulting state-transition predicates are transformed to automata SA. This supervisor
can be simulated together with plant model PA.

Alternatively,

7.11 Concluding remarks
First, the concepts of a specification formalism for supervisory control synthesis that
is expressive and intuitive enough to be used by both domain experts and software
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Figure 7.8: Toolchain, where P = Plant, R = Requirement, S = Supervisor, and
the subscripts A = Automata with variables, A = Regular automata, STP = State-
Transition Predicate, and Inv = Invariant.

experts is defined. The formalism is based on untimed automata and invariants,
that can each be of type ‘plant’ or ‘requirement’. Automata consist of locations,
edges, and variables. An edge of an automaton consists of an event label, a guard,
and a multi-assignment. The variables are divided in two classes: independent
variables that can be assigned, and dependent variables whose values are obtained
by evaluation of their defining expressions.

Second, the supervisory control specification formalism is applied for the control
system design of a patient communication system of an MRI scanner. The application
illustrates how the division of the specification into a number of small, relatively
independent components with well-defined interfaces increases the evolvability of
the control system.
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Essential for the increased evolvability is the use of observers and both dependent
and independent variables. The observers record the history of events, generated
by the user interface and the host, in the independent request variables that model
the requests for specific communication modes. This decouples the recording of the
input events, from the requirements that specify which communication mode can be
activated. These requirements define the value of each (dependent) communication
mode variable as a function of its associated (independent) request variable and
the values of other, higher priority, communication variables. Thus, changes in the
observers and changes in the control requirements can be made independently of
each other, as long as the interface between the observer and the control requirements
in terms of the request variables remains unchanged.

It is explained why the use of variables in automata can lead to specifications that
are more intuitive than equivalent specifications based on automata without variables.
This is especially so in the case of specifications where the new value of a variable
in an update depends on other variables, and in the case of disjunctions in guard
expressions.

The output of the supervisor is defined as a function on the communication mode
variables. This definition of the output of the supervisor as a function on the state of
the observers, where observers do not restrict the occurrence of uncontrollable events
in any way, leads to supervisory control specifications that are very easy to develop,
understand and debug, and where deadlock is impossible. Deadlock is impossible,
since observers do not restrict the occurrence of events, invariants and guards are not
used (are always true), and the output functions are always defined.

As an illustration of the evolvability of the control system design, the specification
is updated for event-based output, by adding events, observers, and requirement
invariants that ensure mutual exclusion of communication channel activation. Thus,
the defined communication mode interface decouples the output specification from
the other control system requirements. The only component that is changed in the
specification for event-based output is the supervisor, which can be generated using
a supervisory control synthesis algorithm.

For implementation of the supervisory control synthesis algorithm, a sequence
of steps connecting already existing supervisory control synthesis tools by means of
various translations has been defined. These steps were manually executed to obtain
the synthesized supervisors. Currently, the steps are automated. Future work is to
define a synthesis algorithm that can directly manipulate the defined plant models
and control requirements. This would eliminate the translation steps and reduce the
complexity of the synthesis algorithm. A synthesis algorithm based on extended
automata is defined in [62]. However, that algorithm does not support requirement
invariants and results in a monolithic supervisor automaton without variables.

The automated steps shown in Figure 7.8 execute within seconds. The experi-
ences with the supervisory control synthesis algorithm based on state tree structures
([44]) on bigger examples are also quite positive. The supervisor for a patient support
system of an MRI scanner, where the uncontrolled system consisted of 6.3 billion
states, is generated in seconds. However, to deal with much bigger systems, it is
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expected that some form of modular supervisory control is required.
One of the obstacles in realizing evolvable systems is the difficulty to capture

the customers needs. Customers find it difficult to envision what the system’s
behavior will be and what exact behavior is desired, when the desired system is
not yet available. Therefore, the customer cannot tell in advance what the exact
requirements for the system are. This is one of the reasons that informal control
requirements are usually incomplete and and/or ambiguous. Only after the system
has been created, can the customer evaluate if the system obeys the exact customer
needs. As a result, iterations are required in all development stages to make the
customer needs clear.

For interaction with the customer, the synthesized supervisor can be interactively
simulated together with the plant model. For this purpose, a computer visualization
of the user interface, with clickable buttons, and a visualization of the state of the
communication channels can be connected to the interactive simulation. Such an
interactive simulation based on a generated supervisor allows for early user feed-
back to establish whether or not the defined control requirements correspond to the
behavior required by the customer. This interaction with the customer in the form of
iterative testing of the synthesized controller by means of interactive simulation, and
subsequent updates of the formal control requirements, allows the generation of a
consistent set of requirements that meets the customer’s expectation in a relatively
short period of time. The same approach can also be used in the case of later changes
if the system evolves over time.

The specifications presented in this chapter were used as the basis for the con-
trol system specification of the actual patient communication system, which was
implemented by an external party. At the time of writing, the system was still under
development, and the requirements were still changing due to interaction with the
customer.
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Concluding remarks

In the traditional approach to controller design, behavioral requirements are infor-
mally specified by domain engineers, and software is coded by software engineers.
This leads to long development cycles, and to code and requirements that are dif-
ficult to develop, debug, maintain, and adapt. Observed erroneous behavior of the
system under test can be caused by, among others, ambiguous or inconsistent control
requirements, miscommunication between domain engineer and software coder, and
errors in the control code. This can be especially problematic when the functionality
of existing products needs to evolve over time, such as in the case of MRI scanners
that are upgraded to state of the art functionality over a period of ten years.

To address these issues, this thesis proposes the use of a single model of the
control requirements and the uncontrolled plant, and to generate the control code
by means of supervisory control synthesis. Although the supervisory control theory
required for this originated as early as 1987 [57], it has not been until recently that
the theory and associated tools have matured to a level that has enabled successful
application in industry. This thesis has discussed two of such applications: supervi-
sory control of the patient support system and of the patient communication system
of MRI scanners. Recently, also the controller for the Gradient Amplifier of MRI
scanners has been specified by means of supervisor control synthesis [23], and results
were so positive that a successor project has been started to investigate supervisory
control for all major components of MRI scanners.

A major factor in the success of supervisory control synthesis in industrial
applications is the extension of event-based supervisory control with generalized
state-based control requirements, as introduced in this thesis, and the availability
of adequate tooling [67, 69]. Experience at Philips Healthcare has shown that
generalized state-based control requirements are intuitive for both domain engineers
and software engineers, since they closely match the view of the systems in terms
of states, transitions between states, and restrictions on allowable states and state-
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transitions. The use of state-based control requirements leads to models that are
easier to develop, understand, and debug, and duplication of information, as can be
observed in event-based supervisory control, is completely eliminated.

State-based supervisory control synthesis using state tree structures, as introduced
by [43], also facilitates the use of multiple initial states, which is essential for actual
real-time control of industrial systems. This was illustrated by the patient support
table case. The real-time controller that was initially developed using event-based
supervisory control (see Chapter 5), had one initial state only. Therefore, the patient
support table had to be moved into the specified initial state, before the supervisory
controller could be activated. The state-based supervisory controller that was later
developed (see Chapter 6), could be activated immediately, independently from the
initial state of the patient support system.

Even though extension of the event-based supervisor control framework with
state references via locations of automata is an enormous step forward, Chapter
7 shows that additional state references via variables are essential for intuitive
modeling of the various modes of operation of a patient communication system.
An additional advantage of having automata with variables is that they facilitate
state-based output. That is, the definition of the values of output variables as a
function of the state of the control system. In combination with the use of observers,
that record sequences of events in terms of states, this leads to specifications that
are easy to develop, understand, and adapt. The new tool chain, as proposed in
Figure 7.10, which includes variables for supervisory control synthesis, is currently
implemented, see [69].
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