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Abstract

Aggregation and fragmentation mechanisms play a major role in the reactive
transport of colloidal particles especially in relation to contaminant transport
in porous media. In this thesis, we treat the aggregation and fragmentation in
the context of reaction-diffusion-advection systems. We use multiscale concepts
to develop a mathematical and numerical framework that can be useful in fore-
casting the transport of colloids. The focus of our research lies on the modeling,
analysis and simulation of multiscale reaction-diffusion systems taking place in
heterogeneous media.

We investigate the processes first at the pore level and then try to predict
their behavior on the observable macroscopic scales. As microstructure model,
we consider arrays of periodically distributed pores (i.e. cells with prescribed
inner geometry). We show the well-posedness of the microscopic system and then
apply both formal and rigorous periodic homogenization techniques to derive the
corresponding upscaled system together with explicit formulae for the effective
transport and reaction constants.

Within our modeling framework, we additionally treat the Soret and Dufour
effects, as the transport of colloidal particles can be influenced by the tempera-
ture gradients occurring in the medium, while the particles themselves carry heat
and influence the temperature distribution. This combination of transport terms
results in a cross-diffusion-like system, for which we prove the well-posedness and
study its numerical (a priori) analysis.

We show that our class of models is able to predict within the experimental
range the effect of colloid deposition on the transport of matter in soils. Essen-
tially, we have recovered the experimental results obtained by M. Elimelech and
collaborators in [61].

This thesis sets up a modeling framework which can be helpful in further
multiscale investigations of colloidal transport in heterogeneous media.



ii Abstract



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Synopsis of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Modeling Aggregation in Homogeneous Media 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Background on aggregation and fragmentation of colloids with

finitely many discrete size classes . . . . . . . . . . . . . . . . . . 6
2.2.1 Population balance equations (PBE) . . . . . . . . . . . . 6
2.2.2 Modeling of βij . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Fractal dimension . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Colloidal stability . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Fragmentation / breakage mechanism . . . . . . . . . . . 10
2.2.6 The advection-diffusion-reaction equations . . . . . . . . . 10

2.3 Application to the modeling of group formation in pedestrian flows 11

3 Modeling the Deposition of Colloids in Porous Media 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Microscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Aggregation and fragmentation of clusters . . . . . . . . . 20
3.2.2 Diffusion coefficients for clusters . . . . . . . . . . . . . . 21
3.2.3 Deposition rate of colloids on grain surfaces . . . . . . . . 21
3.2.4 Setting of the microscopic model equations . . . . . . . . 22

3.3 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Derivation of the macroscopic model . . . . . . . . . . . . . . . . 24

3.4.1 Colloids dynamics in structured media. The periodic ho-
mogenization procedure . . . . . . . . . . . . . . . . . . . 24

3.4.2 Computation of the effective diffusion tensors D̄i = D̄ijk . 27
3.4.3 Extensions to non-periodic microstructures . . . . . . . . 29

3.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Mathematical Analysis and Homogenization of the Thermo-
Diffusion Problem for Colloidal Populations 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Model description and geometry . . . . . . . . . . . . . . 38
4.2.2 Smoluchowski population balance equations . . . . . . . . 40



iv Contents

4.2.3 Soret and Dufour effects . . . . . . . . . . . . . . . . . . . 40
4.2.4 Setting of the model equations . . . . . . . . . . . . . . . 41
4.2.5 Assumptions on data . . . . . . . . . . . . . . . . . . . . . 42

4.3 Global solvability of problem (P ε) . . . . . . . . . . . . . . . . . 42
4.4 Passing to ε→ 0 (the homogenization limit) . . . . . . . . . . . . 59

4.4.1 Preliminaries on periodic homogenization . . . . . . . . . 59
4.4.2 Two-scale homogenization procedure . . . . . . . . . . . . 62
4.4.3 Strong formulation of (P 0) . . . . . . . . . . . . . . . . . 64

5 Numerical Solution of the Transport Problem 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Discretization of the population balance equation . . . . . . . . . 68

5.2.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Discretization approaches for the aggregation term . . . . 69

5.2.2.1 Hidy and Brock approach . . . . . . . . . . . . . 69
5.2.2.2 Batterham approach . . . . . . . . . . . . . . . . 70
5.2.2.3 Hounslow approach . . . . . . . . . . . . . . . . 70
5.2.2.4 Fixed pivot approach . . . . . . . . . . . . . . . 71

5.2.3 Approximation details . . . . . . . . . . . . . . . . . . . . 72
5.2.3.1 Approximation of the breakage mechanism . . . 72
5.2.3.2 Approximation of the aggregation mechanism . . 74
5.2.3.3 Discretized equation for aggregation-breakage in-

teractions . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Time and space discretization of the diffusion-advection-reaction

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Linearization schemes . . . . . . . . . . . . . . . . . . . . 75
5.3.2 An iterative Newton scheme . . . . . . . . . . . . . . . . . 79
5.3.3 An iterative splitting scheme . . . . . . . . . . . . . . . . 80

5.4 Discretization of cell problems and periodic boundary conditions 81
5.5 Overview of the used Numerics libraries . . . . . . . . . . . . . . 82

5.5.1 DUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 deal.II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Numerical Analysis of the Upscaled Thermo-Diffusion Problem 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Formulation of the problem. Main results . . . . . . . . . . . . . 86
6.3 Concept of weak solution. Technical preliminaries. Available re-

sults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Semi-discrete error analysis . . . . . . . . . . . . . . . . . . . . . 92
6.5 Fully discrete error analysis . . . . . . . . . . . . . . . . . . . . . 98

7 Conclusions and Open Issues 105
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2.1 Open issues at the modeling level . . . . . . . . . . . . . . 107



Contents v

7.2.2 Open issues at the mathematical level . . . . . . . . . . . 107

Bibliography 112

Summary 123

Index 126

Publications 127

Acknowledgments 129

Curriculum Vitae 131



vi Contents



Chapter 1

Introduction

1.1 Background

Particles with sizes less than 1 µm are typically classified as colloids. If many
such colloids are present within a flow passing through confined regions, then
their interaction and dispersion affects the transport properties of the flow in a
non-trivial manner. As a rule of thumb, the stronger the colloidal interactions,
the more complex the flow behavior [31]. The analogy goes beyond non-living
particles – inspiration from the experimental and theoretical understanding of
colloidal systems has become nowadays a tool to explore living systems like
pedestrian flows (see e.g. [90]), growth of collagen networks (see e.g. [78]), and
transport in plant tissues (see e.g. [20]). If the host media are heterogeneous,
then challenges appear for both experimental and theoretical approaches; see for
instance [38] and [108].

This thesis focuses on the modeling, analysis and simulation of the transport
of colloids in heterogeneous domains (for instance, in porous media), with a
particular emphasis on aggregation, fragmentation, deposition, and the effects
induced by the presence of coupled fluxes.

It is worth noting that most of our considerations can be used to handle
similar aspects for conceptually different modeling scenarios (like the dynamics
of crowds within corridors or the self-assembly of polymeric networks). To fix
ideas and also to be able to validate our modeling approach, we study the case
of the transport and interaction of populations of finitely many size classes of
colloidal particles in porous media composed of arrays of periodically distributed
pores (microstructures). Paying special attention to aggregation effects between
size classes, and hence, to the granularity of the flow, this thesis can be seen as a
follow up research along the lines open in recent multiscale works, e.g., cf. [35],
[59], [108], and [38].

The main mathematical difficulties encountered in this framework are due to

• the presence of coupled fluxes (i.e. due to the Soret and Dufour effects);

• the nonlinearity of the Smoluchowski production term;

• the non-dissipative feature of the deposition component of the model;
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• the coupling induced by the structure of the production term by Henry’s
law.

Our working techniques, facing these difficulties, include basic estimates like
L∞, energy and positivity estimates, as well as fixed-point arguments, two-scale
convergence and compactness for periodic media together with a priori error
estimates on FEM Galerkin approximates very much in the spirit of V. Thomée;
see for instance [121] and references cited therein.

We look for a mathematically well-posed class of reaction-diffusion systems
that is able to describe at low spatial scales the motion, interaction, and depo-
sition of populations of colloids as well as their interplay with heat conduction
effects in media with microstructures. As ultimate goal, we wish to have an
upscaled version of such a model that is flexible enough to recover experimental
data, in a numerically efficient way in 2D and 3D situations. Once the trust in
such an upscaled model and numerical approximation tool is reached, multiscale
finite elements (MsFEM, see e.g. [56], [17]) way of thinking can introduce fluc-
tuations (microstructure information) back into the model equations improving
this way the chance of obtaining better predictions when highly heterogeneous
media are involved.

1.2 Synopsis of the thesis

The thesis is structured as follows:
Chapter 2 is devoted to the basic modeling of colloidal interactions, treated

at the pore scale. This is the place where the main reaction kinetics that couples
the system of equations is described in detail, including various parameters of
the continuous medium that influence these interactions. We also use this place
to discuss a prominent example of group formation in a particular type of a
pedestrian flow.

In Chapter 3, we focus on the deposition of colloids on grain surfaces within
a porous medium. We extend our microscopic model from Chapter 2 by adding
immobile species that live on the grain surface and describe their evolution. We
apply formal asymptotic homogenization techniques to the extended model. As
a result, we obtain an upscaled model with effective coefficients that depend on
the information from the microscopic scale. We perform simulation studies for
this basic model and compare the model output (profiles of colloidal populations)
with the experimental data by M. Elimelech and collaborators (see [60], [61]).

In Chapter 4, we further extend the model from Chapter 3 by coupling the
existing microscopic system with heat conduction, leading the way to nonlinearly
coupled flux-like terms called in the literature the Soret and Dufour effects (see
e.g. [46]).

We study the well-posedness of this further extended system, and ensure the
positivity and L∞ bounds on the concentrations and temperature. We are able
to prove here the global-in-time existence of solutions. As next step, we proceed
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with the averaging. We use two-scale convergence in the spirit of [1] (see also
[95], [13], [86], [24]) to derive rigorously the corresponding upscaled system.

Chapter 5 presents the discretization techniques required to solve our problem
and comments on the details of using and extending the simulation platforms
DUNE [7] and deal.II [5] to cope with the structure of our model equations.
Also, here we point out a few relevant implementation details.

The role of Chapter 6 is to ensure that the the discretization schemes used
in this thesis (cf. Chapter 2 and Chapter 3) lead actually to convergent finite
element Galerkin approximates. To this end, we prove the semi-discrete error
bounds for the FEM discretization of the thermal diffusion problem, followed by
the fully discrete error analysis.

Note that the Chapters 2 - 6 can be read independently. We conclude the the-
sis with Chapter 7, where we show a few conclusions of this work. Furthermore,
we point out a few open issues and possible future research directions.
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Chapter 2

Modeling Aggregation and
Fragmentation in Homogeneous
Media

2.1 Introduction

Small particles with sizes within the range 1 − 103 nm are typically referred to
as colloids. A few concrete examples of materials that fall in this size range are
fine clay particles, iron oxides, humid substances, bacteria and viruses (see e.g.
[31], [80], [58]). Natural colloids have been found in large amounts in waters of
diverse geological environments [119]. They are mobile in groundwater and thus
can play an important role in the transport of contaminants [122]. Similarly,
they are important for the efficiency of drug delivery designs [87].

In suspensions, such populations of particles interact via basic attraction and
repulsion mechanisms (explained in detail in e.g. [31]) which finally lead to clus-
ters – groups of particles sticking together and having a joint evolution. These
clusters are subjected to aggregation and fragmentation depending on their dis-
tribution and the configuration of the medium in which they are suspended.

This Chapter discusses the mechanisms of colloidal aggregation and fragmen-
tation at the level of populations of colloids having a discrete distribution of sizes.
Although theoretically it is possible to handle the case of an infinite number of
sizes, we focus our attention to the practical case of finitely many size classes.
The main reason is that straightforward discretizations of the Becker-Döring
and/or Smoluchowski systems are natural mathematical models to describe the
evolution of a finite number of populations of colloids with distinct sizes [67].

Throughout this thesis, N ∈ N denotes the maximum size class allowed. In
the coming Chapters, this N should be seen as a fixed large number (for instance,
N ≈ 1000 for collagen). Note however, that in most practical situations a small
value of N is sufficient. In other cases, it is legitimate to wonder what happens
when this threshold N goes to infinity. We do not touch this aspect here.

The Chapter is organized as follows. We present in Section 2.2 the basic mod-
eling of aggregation and fragmentation in homogeneous media of finitely many
discrete size classes. This is the bulk of the Chapter. The case of a heterogeneous
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media is much more complex and is addressed in the reminder of the thesis. In
Section 2.2, we decide to list a number of practical approximations of interaction
convolution integrals, their moments, etc. The list is far from exhaustive, but it
gives nevertheless a general impression on these common facts. We called them
"practical approximations" mainly because of their use and general acceptance
in the engineering community. We will used them in Chapter 3 to recover the
experimental data from [60]. Also, it is worth mentioning that these choices
are used in our implementations discussed in Chapter 5. Note however that the
mathematical analysis in Chapter 4 and the numerical analysis in Chapter 6 do
not rely on the precise structure of these particular approximations.

We close this part with an example of the application of the modeling method-
ology to a particular crowd dynamics scenario. We study group formation in
pedestrian flows moving in the dark, recovering this way the same cooperation
pattern as reported in [25]. The details of this example are explained in [90].

2.2 Background on aggregation and fragmenta-
tion of colloids with finitely many discrete
size classes

2.2.1 Population balance equations (PBE)

The foundations of aggregation modeling were laid down in the classical work
of Smoluchowski [115]. Here we assume that the colloidal population consists
of identical particles, called primary particles, some of which form aggregate
particles that are characterized by the number of primary particles that they
contain – i.e. we have u1 particles of size 1, u2 particles of size 2, etc. We refer
to each particle of size i as a member of the ith species.

The fundamental assumption: aggregation is a second-order rate process [31],
i.e. rate of collision is proportional to concentrations of the colliding species.
Thus Aij – the number of aggregates (of size i+ j) formed from particles of sizes
i and j per unit time and volume equals:

Aij := αijβijuiuj . (2.1)

Here βij is the collision kernel – a rate constant determined by the transport
mechanisms that bring the particles in close contact, while αij ∈ [0, 1] is the
collision efficiency – fraction of collisions that finally form an aggregate. αij are
determined by particle-particle interactions.
For example, when α = 0, the particles are fully stable and no aggregation
occurs. And when α = 1, the particles are fully destabilized and every collision
results in an aggregation. In ([119]) α has been suggested to be of order 10−4 −
10−6 in natural groundwaters and 10−1 − 100 in seawater for hydrous oxides of
Si, Al, and Fe.
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From (2.1) it follows that the rate of change of concentration of k-sized
aggregates is

duk
dt

=
1

2

∑
i+j=k

αijβijuiuj − uk
∞∑
i=1

αkiβkiui, (2.2)

where uk(0) are prescribed. The first term represents the gain in the kth species
by collisions of i+ j = k. The second term represents the loss of kth species due
to collisions with others.

2.2.2 Modeling of βij

The collision kernel βij is determined by a combination of three main transport
mechanisms:

Perikinetic (cf. [115]):

βij :=
2kT

3µ

(di + dj)
2

didj
; (2.3)

Orthokinetic (cf. [115]):

βij :=
1

6
G(di + dj)

3; (2.4)

Sedimentation (cf. [39]):

βij :=
πg

72µ
(ρs − ρ)(di + dj)

3(di − dj). (2.5)

Perikinetic aggregation results from that fact that colloids, due to their size,
undergo Brownian motion. The derivation of (2.3) can be obtained by consid-
ering the rate of diffusion of spherical particles to a fixed sphere. Each particle
captured by the central sphere is removed from the suspension resulting in a
concentration gradient. After the steady-state is established, we can derive the
number of particles contacting the fixed sphere in unit time as the product of
surface area, diffusion and concentration. Then, it only remains to use the mu-
tual diffusion coefficient instead of the regular one since the central sphere is
also in motion.

Orthokinetic aggregation results when the fluid in which they are suspended
is subjected to shear. The movement of fluid brings more particles into contact,
resulting in aggregation.

Another mechanism that contributes to aggregation is the differential sedi-
mentation - the process when particles of different size are settling from a sus-
pension. Larger particles are sedimenting faster than smaller ones, and capture
them as they are falling. A comparison of perikinetic, orthokinetic and sedimen-
tation aggregation rates is given in Figure 2.1.
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Figure 2.1: Comparison of rates for perikinetic, orthokinetic and sedimentation
aggregation mechanisms at room temperature in water. d0=8e-9 m, G=50 1/s.

In (2.3)-(2.5), di is the diameter of the ith species, k is the Boltzmann con-
stant, T is the absolute temperature, µ is the dynamic viscosity, G is the local
shear rate, ρ is the density of fluid, ρs is the density of the aggregate, g is grav-
itation acceleration. Smoluchowski considered only the case of uniform laminar
shear, i.e. G = du/dx. Camp and Stein [19] have derived for a more general
case a mean velocity gradient:

G :=

√
ε

ν
, (2.6)

where ε is the power input per unit mass of fluid and ν is the kinematic viscosity.
G can be inserted in place of G in (2.4). The relations (2.3) and (2.4) suggest that
a coupling of (2.2) to heat conduction equation or the Navier-Stokes equation is
possible. We discuss the influence of heat on the colloidal transport in Chapter
4. While a one-way coupling through G being the solution of a Navier-Stokes
system is possible, it is beyond the scope of this thesis to investigate the influence
of colloidal particles on the flow of the fluid that they are dispersed in.

2.2.3 Fractal dimension

Except for the special case of liquid droplets that coalesce on aggregation, form-
ing a sphere of equivalent volume, aggregates generally have a porous structure
– they take up much greater volume than the number of primary particles that
constitute them.



2.2. Background on aggregation and fragmentation of colloids with finitely many

discrete size classes 9

Aggregates are typically recognized as fractal objects see e.g. [85]. Due to
the fractal structure of the aggregates the collision diameters are larger than
that of volume-equivalent spheres. Self-similarity of the aggregate results in a
power-law relationship between the size and mass of the aggregate. The collision
diameter can thus be calculated as:

di = d0i
1
DF , (2.7)

where DF is called the fractal dimension. For geometric reasons, it holds that
1 < DF ≤ 3. Note that DF = 3 corresponds to entirely compact aggregates,
such as coalesced spheres. The lower DF the more porous is the structure of the
aggregate. Typical experimental values of DF range from 1.8 to 2.1, depending
on the transport mechanism and stability of particles.

2.2.4 Colloidal stability

The collision efficiency αij and its reciprocal – the stability ratio Wij depend on
the interaction potential Vij(h) of particles i and j at distance h. The stability
ratio was calculated by Fuchs [40]:

Wij = 2

∞∫
0

eVij(h)/kT

(ρ+ 2)2
dρ, where ρ =

h

di + dj
. (2.8)

The theory of colloid stability of hydrophobic (lyophobic) colloid dispersions
most commonly accepted is that proposed by Derjaguin and Landau [28] and
Verway and Overbeek [125]. Based on this theory, the total potential energy V
for the interaction for a two particle system is given by

V = VR + VA, (2.9)

where VR is the potential energy of repulsion, VA is the potential energy of
attraction.

The potential energy of repulsion can be calculated approximately as indi-
cated by by Reerink and Overbeek [109]:

V aaR = 3.469× 1019ε(kT )2(aγ2/v2)e−τρ (2.10)

= 4.62× 10−6(aγ2/v2)e−τρ = C e−τρ,

where

γ = (ez − 1)/(ez + 1), z = veψσ/2kT, (2.11)

τ = κa u = H0/a,

In (2.10)-(2.11), ε - dielectric constant of the suspension, a - particle radius, v -
valency,
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κ - reciprocal Debye-Hückel double-layer thickness, H0 - particle separation, and
ψσ is Stern potential.

For the repulsion between two unequal spheres of radii a and b, we take

V abR =
2b

a+ b
× V aaR , b > a. (2.12)

The potential energy of attraction for two spherical particles of equal size
has been given by Hamaker (see [50], [120]) as

V aaA = − A
12

(
1

x2 + 2x
+

1

x2 + 2x+ 1
+ 2ln

x2 + 2x

x2 + 2x+ 1

)
, (2.13)

where x = ρ/2.

In (2.13), A is the Hamaker constant (tabulated in [80, A9.1]), which for particles
of first material immersed in a liquid medium of second material is given by:

A = (
√
A11 −

√
A22)2. (2.14)

V abA for unequal spheres can be calculated as in (2.12)

2.2.5 Fragmentation / breakage mechanism

The discrete coagulation-fragmentation equation is described in [117], for in-
stance, as follows:

duk
dt

=
1

2

∑
i+j=k

βijuiuj − uk
N∑
i=1

βkiui

− bkuk +

N∑
i=k

dkibiui, (2.15)

where bk - fragmentation rate of flocs of size k, dki - breakage distribution defining
the volume fraction of the fragments of size k coming from i-sized particles
(see e.g. [64], [101] for details). We denote by N the largest size class that
we consider. Although (2.15) is just a system of ODEs, i.e. there’s no space
component involved, it still is challenging to solve numerically, since N can be
very large, reaching millions in some cases. To see this, consider an aggregate
as a lattice for primary particles. Allowing for the aggregate to be 200 primary
particles-wide in each direction (which is allowable by the 1− 1000 nm colloidal
range), the largest aggregate can contain 2003 primary particles. A few methods
to reduce the amount of unknowns to make the system (2.15) computationally
tractable are discussed in Chapter 5.

2.2.6 The advection-diffusion-reaction equations

Different aggregates have varying size, which allows us to prescribe different
diffusion coefficients Dk to the species according to Einstein-Stokes relation (see,
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e.g. [30]). The advection rates ck can also be influenced by the particle size (c.f.
[84], [114]) The resulting transport equation is:

duk
dt

=∇ · (Dk∇uk − ckuk) +
1

2

∑
i+j=k

βijuiuj − uk
N∑
i=1

βkiui

− bkuk +

N∑
i=k

dkibiui.

(2.16)

The system (2.16) has to be completed by the appropriate initial and boundary
conditions. These equations are discussed in more detail in Chapter 3. It is
worth noting that equations (2.16) (the so-called Smoluchowski system) can be
derived rigorously from an interacting particle system as described in [47].

2.3 Application to the modeling of group forma-
tion in pedestrian flows

Inspired by the modeling of charged colloids transport in porous media (see
e.g. [68, 106]), we consider now a system of reaction-diffusion equations describ-
ing the aggregation and fragmentation (dissolution) of social groups (groups of
pedestrians); the ith variable in the vector of unknowns represents the specific
size of the subgroup i (density of the i-mer ui). Here u1 – density of crowds of
group size one (individuals), u2 – density of groups of size two, and so on until
uN are the corresponding Radon-Nikodym derivatives of suitable measures (see
the Appendix of [90]).

The following equations describe our system:

∂tu1 +∇ · (−d1∇u1) = −u1

N−1∑
i=1

βiui +

N∑
i=2

αiui − β1u1u1 + α2u2 (2.17)

∂tu2 +∇ · (−d2∇u2) = β1u1u1 − β2u2u1 + α3u3 − α2u2 (2.18)

...
∂tuN−1 +∇ · (−dN−1∇uN−1) = βN−2uN−2u1− (2.19)

− βN−1uN−1u1 + αNuN − αN−1uN−1 (2.20)

∂tuN +∇ · (−dN∇uN ) = βN−1uN−1u1 − αNuN . (2.21)

This system of partial differential equations indicates that groups diffuse in-
side Ω. If the groups meet each other, then they start to interact via the mech-
anism suggested by the right-hand side of the system (aggregation or fragmen-
tation being the only allowed interaction behaviors). Note that the aggregation
mechanism in (2.17)-(2.21) is a simplification of the Smoluchowski mechanism
in which species aggregate only if one of them is of size one (the Becker-Döering
dynamics). From the modeling point of view, it means that only individuals
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are allowed to join a group, i.e. two groups that meet keep going their separate
ways. We take as boundary conditions

u1 = 0 on ΓD (2.22)

−d1∇u1 · n = 0 on ∂Ω \ ΓD (2.23)

−di∇ui · n = 0 on ∂Ω, i ∈ {2, . . . , N}, (2.24)

while the initial conditions at t = 0 are

u1 = M in Ω (2.25)

ui = 0 in Ω, i ∈ {2, . . . , N}. (2.26)

These boundary conditions model the following scenario: only the population of
size one is allowed to exit, all the other groups need to split in smaller groups
close to ΓD. In (2.26), M > 0 denotes the initial density of individuals, the
total number [of pedestrians] in the system being

∫
Ω

∑N
i=1 iui. The total mass

at t = 0 is M |Ω|. Note that (2.25) indicates that, initially, groups are not yet
formed. Group formation happens here immediately after the initial time. As
transport mechanism, we have chosen to use Fickian diffusion fluxes to model
the mesoscopic erratic motion of the crowd [with all its N group structures]
inside the corridor Ω.

Similarly to the case of moving colloidal particles in porous media (cf. for
instance [68] and references cited therein), we take as reference diffusion coef-
ficients the ones given the Stokes-Einstein relation, i.e. the diffusion coefficient
of the social conglomeration is inversely proportional to its size as described
by di := 1√

i
(which would correspond to the colloidal particles diffusion in 2D)

for any i ∈ {1, . . . , N}; see for instance [30]. In contrast to the case of trans-
port in porous media, we assume that no heterogeneities are present inside Ω.
Consequently, the diffusion coefficients are taken here to be independent of the
space and time variables. If heterogeneities were present (like it is nearly always
the case e.g. in shopping malls), then one needs to introduce concepts like local
porosity and porosity measures as in [33]; see [22] for a related scenario discussing
stochastically interacting self propelled particles within a heterogeneous media
with dynamic obstacles. We restrict ourselves here to the case of homogeneous
corridors.

We take the degradation (dissociation, group splitting) coefficients αi > 0
(i ∈ {2, . . . , N}) as being given constants, while for the aggregation coefficients
we use the concept of social threshold. We define

βi :=

i i < T

1 i ≥ T,
(2.27)

where T ∈ (0,∞) is the social threshold. Essentially, using (2.27) we expect
that the choice of T essentially limits the size of groups that can be formed by
means of this Becker-Döring-like model. In other words, even if large values of
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N are allowed (say mimicking N → ∞) most likely groups of sizes around bT c
will be created; here bpc denotes the integer part of p ∈ R. For an analysis of
Becker-Döring-like models see e.g. [118].

For the numerical examples illustrated here, we consider N = 20 species
waking inside the corridor Ω = (0, 1) × (0, 1). On the boundary ∂Ω, we design
the door ΓD = {(x, y) : x = 0, y ∈ [0.4, 0.6]}, while the rest of the boundary
∂Ω \ ΓD is considered to be impermeable, i.e. the pedestrians cannot penetrate
the wall ∂Ω \ ΓD.

The goal of our simulation scenarios is to provide insight into whether it’s
beneficial to group up when exiting the building, or it’s better to go alone. To see
this we compare the exiting flux of people averaged over large time for various
values of the social threshold T .

To solve the system numerically, we use the library DUNE and rely on a 2D
Finite Element method discretization (with linear Lagrange elements) for the
space variable, with implicit time-stepping. Note that we allow only crowds of
size one, i.e. u1, to exit the door. For larger group sizes the door in impenetrable.
Such groups need to dissociate first and then attempt to exit. We choose constant
degradation coefficients and take as reference values αi = 0.7 (i ∈ {1, . . . , N}).
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Figure 2.2: Outgoing flux with respect to initial density.

As we can see from Figure 2.2, the outgoing flux (close to the steady state1)
exhibits a polynomial behavior with respect to the initial number of people,
where the polynomial exponent is influenced by the choice of the threshold T .
It seems than the higher the threshold, the smaller is the polynomial power.
This effect is rather dramatic – it indicates that, regardless the threshold size,
behaving/moving gregariously is less efficient that performing random walks.

Figure 2.3 shows that there’s no apparent saturation for the outgoing flux
with respect to the mass: the growth goes on in a polynomial fashion. The linear

1The mass exiting the system is re-inserted into Ω following a uniform distribution.
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Figure 2.3: Outgoing flux for T = 5 versus large initial data M →∞.

behavior has been obtained by setting to zero the aggregation and degradation
coefficients.

In Figure 2.4, we see that the influence of variable diffusion coefficients is
marginal; since a lot of mass exchange is happening in terms of species u1,
setting all the other coefficients d2, . . . , dN to be lower than d1 = 1 (i.e. bigger
groups move somewhat slower than individuals) does not affect the output too
much. Probably, the effect of diffusion could be stronger as soon as the effective
diffusion coefficients are allowed to degenerate with locally vanishing ui; this is
a situation that can be foreseen in a modified setting [48].
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Figure 2.4: Homogeneous diffusion (c) and Stokes-Einstein diffusion (e). Note
that the profiles are overlapping very closely.
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Figure 2.5: Steady-state mass distributions. Pile-up effect around group size
T .
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Figure 2.6: Clusters behavior close to the exit. The case of u1–u4.

In Figure 2.6, we see the mass escaping from the clusters u1–u4 in the neigh-
borhood of the exit. Note the dramatic change in u1 compared to what happens
with the other group sizes. It is visible that large group have to stay in the
queue until the small groups exit.

On the other hand, we can see in Figure 2.7 how the crowd breakage directly
influences the outward flux. Essentially, a faster splitting of the groups tends to
increase the averaged outgoing (evacuation) flux. This effect is due to our choice
of boundary conditions at the exit.

Our results here are in agreement with the results of [25], which use a lattice
model to investigate pedestrian flows. Their cellular automata model uses a 2D
lattice with any number of individuals allowed to occupy each site. At each time
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Figure 2.7: Comparison of outgoing flux for different values of degradation
coefficients α.

tick, the probability of each individual moving in one of four directions is based
on the amount of individuals in these directions and the social threshold.

A challenging question is to derive the mean field limit of the lattice model
and compare it to our model. Another interesting question is the coupling of the
lattice model and our model within a single multiscale network. More discussions
on these topics are given in [90]. It is also of interest to try derive the reaction
coefficients from a psychological point of view using cognitive group dynamics
[26].
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Chapter 3

Modeling Deposition of Colloids in
Porous Media

3.1 Introduction

The dynamics of colloidal particles plays a significant functional role in a number
of technological and biological applications, such as waste water treatment, food
industry, printing, design of drug delivery; see e.g. [100, 110]. The existing
literature on colloids and their dynamics is huge. Here we only mention that
the self-assembly of collagen structures (basic component of the mechanics of
the human body) together with secondary nucleation effects have recently been
treated in [78], starting off from an interacting particle system for colloids. A
detailed discussion of the main principles of aggregation mechanisms can be
found in [102], while a thorough analysis of the aggregation in terms of ordinary
differential equations can be found e.g. in [18].

The central topic of this chapter is the treatment of the aggregation and
deposition of colloids in porous media (particularly, soils) that has been recently
shown to be a dominant factor in estimating contaminant transport; see [122].
Essentially, one supposes that that the presence of colloidal aggregation strongly
affects the deposition rates on the pore (grain) boundary. Similar aggregation
(group formation, cooperation) patterns can emerge also in pedestrian flows
strongly affecting their viscosity [90]. Previous investigations on contaminant
dynamics in soils, yet not accounting explicitly for aggregation, can be found,
for instance, in [65] and [123].

Our aim here is to study the influence of multiscale aggregation and deposi-
tion on the colloidal dynamics in a saturated porous medium mimicking a column
experiment performed by Johnson, Sun and Elimelech and reported in [61]. For
more information on this experimental context, we refer the reader also to Refs.
[79, 60]. To get more theoretical insight in this column experiment, we proceed
as follows: As departure point, we assume that at the pore scale we can model
the aggregation of colloids by the Smoluchowski equation. Consequently, the col-
loidal mass is distributed between different size clusters. We treat these clusters
as different species involved in a coupled diffusion-advection-reaction system.
This modeling procedure allows for different material properties to be varied
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between the different species, specifically the rates of diffusion, aggregation, de-
position as well as the advection velocities. As next step, we apply the periodic
homogenization methodology to give insight into the effective coefficients of the
upscaled model equations. Finally, for a set of reference parameters, we solve
the upscaled equations for different choices of microstructures and investigate
the influence of aggregation on both transport and deposition of the colloidal
mass, validating in the same time our methodology and numerical platform by
means of the results from [61].

The outline of the chapter is as follows: In Section 3.2 we set up a micro-
scopic pore-scale model for aggregation, diffusion and deposition of populations
of colloidal particles. In Section 3.3 the microscopic model is nondimensional-
ized. One of the small dimensionless numbers pointed out therein (denoted by
ε) connects a ratio of characteristic time scales of the process to the relevant
microscopic and macroscopic length scales arising in the system. In Section 3.4
we use the concept of two-scale asymptotic expansions to obtain in the limit
of small ε an equivalent macroscopic model together with the corresponding ef-
fective coefficients. We conclude the chapter with a few numerical multiscale
experiments and discussions on further work (cf. Section 3.5 and Section 3.6).

3.2 Microscopic model

The foundations of the modeling of colloids aggregation and fragmentation were
laid down in the classical work of Smoluchowski [115]. A nice overview can be
found, for instance, in [31]. The role of this section is to introduce our modeling
Ansatz on the second order kinetics describing the colloidal cluster growth and
decline, the functional structure of the deposition rate, as well as the assumptions
on the microscopic diffusion coefficients for the clusters.

3.2.1 Aggregation and fragmentation of clusters

We assume that the colloidal population consists of identical particles, called
primary particles, some of which form aggregate particles that are characterized
by the number of primary particles that they contain – i.e. we have u1 particles
of size 1, u2 particles of size 2, etc. We refer to each particle of size i as a member
of the ith species (or of the i−cluster).

The fundamental assumption behind this modeling strategy is that aggrega-
tion can be perceived as a second-order rate process, i.e. the rate of collision is
proportional to concentrations of the colliding species. Thus Aij – the number
of aggregates of size i + j formed from the collision of particles of sizes i and j
per unit time and volume, equals:

Aij := γijuiuj , with (3.1)

γij := αijβij . (3.2)

Here βij is the collision kernel – rate constant determined by the transport
mechanisms that bring the particles in close contact, while αij ∈ [0, 1] is the
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collision efficiency – the fraction of collisions that finally form an aggregate. The
coefficients αij are determined by a combination of particle-particle interaction
forces, both DLVO (i.e. double-layer repulsion and van der Waals attraction)
and non-DLVO, e.g. steric interaction forces (see [28], [50]).

A typical choice for αij and βij can be found in for instance in [68]. The
interaction rates (written in the spirit of balance of populations balances as
reaction rates) should then satisfy

Ri(u) =
1

2

∑
i+j=k

αijβijuiuj − uk
∞∑
i=1

αkiβkiui, (3.3)

where u = (u1, . . . , uN , . . .) is the vector of the concentrations for each size class
i ∈ {1, . . . , N} for a fixed choice of N .

3.2.2 Diffusion coefficients for clusters

We take the diffusivity d1 of the monomers as a baseline. All the other diffusiv-
ities are here assumed to depend on d1 in agreement with the Einstein-Stokes
relation

di =
kT

6πηri
. (3.4)

The cluster diffusion coefficients di arising in (3.4) are designed for the diffusion
of spherical particles through liquids at low Reynolds number. In (3.4), T denotes
the absolute temperature, k is the Boltzmann factor, η is the dynamic viscosity,
while ri is the aggregate (i-mer, i-cluster) radius. Note the following dependence
of the aggregate radius ri on the number of monomers contained in the i-cluster:

ri = i
1
DF r1, (3.5)

with DF being a dimensionless parameter called the fractal dimension of the
aggregate [85]. DF indicates how porous the aggregate is. For instance, a
completely non-porous aggregate in three dimensions, such as coalesced liquid
drops, would have DF = 3. Combining (3.4) and (3.5), we obtain:

di =
1

i
1
DF

d1, i ∈ {1, . . . , N}. (3.6)

3.2.3 Deposition rate of colloids on grain surfaces

The colloidal species ui, defined in Ω (see Figure 3.1), can deposit on the grain
boundary of the solid matrix Γ ⊂ ∂Ω, transforming into an immobile species vi,
defined on Γ. This means that the colloids of different size can be present both
in the bulk and on the boundary. The boundary condition for Γ then looks like:

− di∇ui · n = Fi(ui, vi). (3.7)
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The structure of Fi can be quite complex, as seen e.g. in [89], but at this stage,
we assume the deposition rate Fi to be linear, which is also a valid modeling
choice under certain conditions (c.f. [61]). Namely we take

Fi(ui, vi) = aiui − bivi, (3.8)

this resembles the structure of Henry’s law acting in the context of gas exchange
at liquid interfaces [9]. In Section 3.5 we will also consider a non-linear choice
of Fi.

3.2.4 Setting of the microscopic model equations

Collecting the modeling assumptions from Section 3.2.1, Section 3.2.2, and Sec-
tion 3.2.3, we see that the microscopic system to be tackled in this context is as
follows:

Find (u1, . . . , uN , v1, . . . , vN ) satisfying

∂tui +∇ · (−di∇ui) = Ri(u) in Ω, (3.9)

∂tvi = aiui − bivi on Γ, (3.10)

with the boundary conditions

− di∇ui · n = aiui − bivi on Γ, (3.11)

− di∇ui · n = 0 on ΓN , (3.12)

ui = uiD on ΓD, (3.13)

and the initial conditions

ui(0, x) = u0
i (x) for x ∈ Ω, (3.14)

vi(0, x) = v0
i (x) for x ∈ Γ. (3.15)

3.3 Nondimensionalization

Let τ , χ, d, u0, v0, and a0 be reference quantities. We choose the scaling t := τ t̃,
x := χx̃, di := dd̃i, ui := u0ũi, vi := v0ṽi, ai := a0ãi, and bi := a0u0

v0
b̃i.

As reference quantities, we select χ := L, d := d1, u0 := max{ui0, uiD : i ∈
{1, . . . , N}}, and v0 := max{vi0 : i ∈ {1, . . . , N}}.

Note that we need to distinguish between u0 and v0 since they have dif-
ferent dimensions, i.e. volume and surface concentration, respectively. After
substituting these scaling relations into (3.9)-(3.15) and dropping the tildes, we
obtain:

∂tui +
τd

L2
∇ · (−di∇ui) = τu0β11Ri(u) (3.16)

−di∇ui · n =
a0L

d
(aiui − bivi) (3.17)

∂tvi =
τa0

v0
u0(aiui − bivi). (3.18)
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Here R̃i(u) is a rescaled version of (3.3):

R̃i(u) =
1

β11

1

2

∑
i+j=k

αijβijuiuj − uk
∞∑
i=1

αkiβkiui

 . (3.19)

This nondimensionalization procedure involves three relevant dimensionless num-
bers. We denote by ε our first dimensionless number, viz.

ε :=
a0L

d
. (3.20)

For our particular scenario, the dimensionless number ε takes a small value
(here ε ≈ 7.61e-7). We refer to ε as the homogenization parameter. The factor ε
is used to take the different scalings of surfaces and volumes into account and thus
to allow for a reasonable and meaningful homogenized model, see ([54, p. 130]). It
can be seen as the ratio of the characteristic time scales of deposition of particles
and macroscopic diffusion. In Section 3.4 we treat ε as the ratio of characteristic
micro-macro length scales, ε =

lpore
L , where lpore = a0L

2

d . Furthermore, we
choose to scale the time variable in the system by the characteristic time scale
of diffusion τ := L2

d of the fastest species (i.e. the monomers). This particular
choice of time scale leads to two further dimensionless numbers:

• the Thiele modulus

Λ :=
L2

d
u0β11 (3.21)

• the Biot number

Bi := a0
L2

d

u0

v0
. (3.22)

According to our reference parameters, we estimate that Λ = 42.91 and Bi =
7.6914e-08. The order of magnitude of the Thiele modulus Λ indicates that
the characteristic reaction time is small compared to the characteristic time of
monomers diffusion, the overall reaction-diffusion process being with this scaling
in its fast reaction regime. The order of magnitude of the Biot number Bi points
out the slow deposition regime. Essentially, since Lu0

v0
= O(1), we have Bi =

O(ε). To remove a proportionality constant in the scaled boundary condition
(3.25), we take L := v0

u0
.

Finally, we obtain the following dimensionless system of governing equations:

∂tui +∇ · (−di∇ui) = ΛRi(u) in Ω, (3.23)

∂tvi = Bi(aiui − bivi) on Γ, (3.24)

with the boundary conditions

− di∇ui · n = ε(aiui − bivi) on Γ, (3.25)

− di∇ui · n = 0 on ΓN , (3.26)

ui(t, x) =
uD(t, x)

u0
on ΓD, (3.27)
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and the initial conditions

ui(0, x) =
u0
i (x)

u0
for x ∈ Ω, (3.28)

vi(0, x) =
v0
i (x)

v0
for x ∈ Γ. (3.29)

3.4 Derivation of the macroscopic model

In this section, we suppose that our porous medium has an internal structure
that can be sufficiently well approximated by an array of periodically-distributed
microstructures. For this situation, starting off from a partly dissipative model
for the dynamics of large populations of interacting colloids at the pore level
(i.e. within the microstructure), we derive upscaled equations governing the
approximate macroscopically observable behavior. To do this, we employ the
technique of periodic homogenization; see, for instance, [13, 81, 21]. In what
follows, we apply the technique in an algorithmic way, giving complete and
explicit calculations.

3.4.1 Colloids dynamics in structured media. The periodic
homogenization procedure

The porous medium Ωε that we consider is modeled here as a composite periodic
structure with ε > 0 as a small scale parameter, which relates the the pore length
scale to the domain length scale. Ωε is depicted in Figure 3.1. We assume in
this context that this scale parameter is of the same order of magnitude as ε
introduced in (3.20). Note in Figure 3.1 the periodic array of cells approximating
the porous media under consideration. Each element is a rescaled (by ε) and
translated copy of the standard cell Y .

ε

ε

Yij

Γ

ε

ε

Yij

Γ

Figure 3.1: Microstructure of Ωε. Left: isotropic case; Right: anisotropic case.
Here Yij is the periodic cell.
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(0, T ) = time interval of interest

Ω = bounded domain in Rn

∂Ω = ΓR ∪ ΓN piecewise smooth boundary of Ω, ΓR ∩ ΓN = ∅
~ei = ith unit vector in Rn (n = 2 or n = 3)

Y = {
∑n
i=1 λi~ei : 0 < λi < 1} unit cell in Rn

Y0 = open subset of Y that represents the solid grain

Y1 = Y \ Y 0

Γ = ∂Y0 piecewise smooth boundary of Y0

Xk = X +
∑n
i=1 ki~ei, where k ∈ Zn and X ⊂ Y

Table 3.1: ε-independent objects.

Ωε0 = ∪{εY k0 : Y k0 ⊂ Ωε, k ∈ Zn} array of pores

Ωε = Ω \ Ω
ε

0 matrix skeleton

Γε = ∂Ωε0 pore boundaries

Table 3.2: ε-dependent objects.

Note that Figure 3.1 we use the term "isotropic" loosely. What we mean is
that the medium is symmetric in the Cartesian x and y directions.

As customary in periodic homogenization applications, we introduce the fast
variable y := x/ε and let all the unknowns be represented by the following
expansions: uε(x) := u0(x, y) + εu1(x, y) + ε2u2(x, y) +O(ε3),

vε(x) := v0(x, y) + εv1(x, y) + ε2v2(x, y) +O(ε3).
(3.30)

The asymptotic expansions (3.30) can be justified by means of the concept of two-
scale convergence by Nguetseng and Allaire; see Chapter 4 for the mathematical
analysis of a more complex case including also thermal effects, and [55] for a
closely related scenario.

Now, taking into account the chain rule ∇ := ∇x + 1
ε∇y, we get:

∇uεi = ε−1∇yuεi,0 + ε0(∇xuεi,0 +∇yuεi,1) + ε1(∇xuεi,1 +∇yuεi,2) +O(ε2).

∇vεi = ε−1∇yvεi,0 + ε0(∇xvεi,0 +∇yvεi,1) + ε1(∇xvεi,1 +∇yvεi,2) +O(ε2).
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This gives us the following diffusion term:

∇ · (di(y)∇uεi ) = ε−2∇y · (di(y)∇yuεi,0)

+ ε−1(di(y)∇x · ∇yuεi,0 +∇y · (di(y)∇xuεi,0) +∇y · (di(y)∇yuεi,1))

+ ε0(di(y)∆uεi,0 + di(y)∇x · ∇yuεi,1
+∇y · (di(y)∇xuεi,1) +∇y · (di(y)∇yuεi,2)) +O(ε1).

Collecting the terms with ε−2 gives:

∇y · (di(y)∇uεi,0) = 0.

Recalling that this PDE with periodic boundary conditions has a solution unique
up to a constant, we get uεi,0 = uεi,0(x). Consequently, we have ∇yuεi,0 = 0.

The terms with ε−1 can be arranged as

∇y · (di(y)∇yuεi,1) = −∇ydi(y) · ∇xuεi,0. (3.31)

Let wj(y) solve the following cell problem endowed with periodic boundary
conditions:

∇y · (di(y)∇wj) = −(∇di(y))j j ∈ {1, . . . , d}, y ∈ Y (3.32)

Using (3.32), we can express the first order term in (3.30) as:

uεi,1(x, y) = w(y) · ∇uεi,0(x) + uεi,1(x), (3.33)

where the function uεi,1(x) does not depend on the variable y. Note that

∇yuεi,1(x, y) = ∇w(y) · ∇uεi,0(x). (3.34)

The terms with ε0 give:

∂tu
ε
i,0 =di(y)∆uεi,0 + di(y)∇w(y) : ∇∇uεi,0

+∇y · (di(y)∇xuεi,1 + di(y)∇yuεi,2) + ΛRi(u0).

Integrating over Y and noting that |Y | = 1 yields:

∂tu
ε
i,0 = D̄i : ∇∇uεi,0 −

∫
∂Y

di(y)(∇xuεi,1 +∇yuεi,2) · ndσ(y) + ΛRi(u0). (3.35)

The upscaled diffusion tensors D̄i := [D̄ijk] reads:

D̄ijk =

∫
Y

di(y)(δjk + ∂yjwk(y))dy i ∈ {1, . . . , N}; j, k ∈ {1, . . . , d}. (3.36)

Because of the periodic boundary conditions, the active part of ∂Y is only Γ.
Here we have:

∂tu
ε
i,0 = D̄i : ∇∇uεi,0 −

∫
Γ

di(y)(∇xuεi,1 +∇yuεi,2) · ndσ(y) + ΛRi(u0). (3.37)
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The boundary term in (3.37) can be expressed recalling the corresponding de-
position boundary condition:

− di∇ui · n = ε(aεiui − bεivεi ) (3.38)

Using the prescribed asymptotic expansions, (3.38) becomes:

−di(y)(ε−1∇yuεi,0 + ε0(∇xuεi,0 +∇yuεi,1) + ε1(∇xuεi,1 +∇yuεi,2)) · n
= aεi (y)(ε1uεi,0 + ε2uεi,1)− bεi (y)(ε1vε0 + ε2vε1) +O(ε2).

Consequently, we obtain

−di(y)(∇xuεi,1 +∇yuεi,2) · n = aεi (y)uεi,0 − bεi (y)vε0.

Finally, the upscaled equation for uεi reads:

∂tui −∇ · (D̄i∇ui) +Aiui −Bivi = ΛRi(u). (3.39)

Note that the microscopic surface exchange term turns as ε→ 0 into the macro-
scopic bulk term Aiui −Bivi. Furthermore, the upscaled equation for vi is

∂tvi = Aiui −Bivi, (3.40)

where the effective constants Ai and Bi are defined by

Ai := Bi

∫
Γ

ai(y) dσ(y) (3.41)

and
Bi := Bi

∫
Γ

bi(y) dσ(y). (3.42)

Summarizing, the upscaled system describing the macroscopic dynamics of
the colloids is:

∂tui −∇ · (D̄i∇ui) +Aiui −Bivi = ΛRi(u) in Ω, i ∈ {1, . . . , N} (3.43)

∂tvi = Aiui −Bivi in Ω, i ∈ {1, . . . , N} (3.44)

− (D̄i∇ui) · n = fi on ΓR, i ∈ {1, . . . , N} (3.45)

ui = uiD on ΓD, i ∈ {1, . . . , N} (3.46)

ui(·, 0) = u0
i in Ω, i ∈ {1, . . . , N} (3.47)

vi(·, 0) = v0
i in Ω, i ∈ {1, . . . , N}. (3.48)

3.4.2 Computation of the effective diffusion tensors D̄i =
D̄ijk

We rely on equation (3.36) to approximate the main effective transport coeffi-
cients – the effective diffusion tensors D̄ijk responsible in this scenario for the
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transport of the N species of colloids. See Table 3.3 for a calculation example
(notice the symmetry of the tensors corresponding to the isotropic case).

Figure 3.2 and Figure 3.3 show the solutions to the cell problems (3.32) for
the isotropic and anisotropic geometry case, respectively. The 2D solver for
elliptic PDE with periodic boundary conditions needed for these periodic cell
problems was implemented in C++ using deal.II Numerics library; see [5] for
details on this platform.

Figure 3.2: Solutions to the cell problems that correspond to isotropic periodic
geometry (Figure 3.1, left). See Table 3.3 for the resulting effective diffusion
tensor.

Figure 3.3: Solutions to the cell problems that correspond to anisotropic pe-
riodic geometry (Figure 3.1, right). See Table 3.3 for the resulting effective
diffusion tensor.

Controlling the cell functions allows us also to approximate the tortuosity
tensor in a direct manner, avoiding complex analytical calculations hard to jus-
tify theoretically or experimentally; compare e.g. with Ref. [49]. An example in
this sense is shown in Figure 3.4. To obtain it, we use the relation

D̄1 = d1φT̄∗,
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Isotropic Anisotropic

D̄1 =

[
0.75 0.171476

0.171476 0.75

]
D̄1 =

[
0.817467 0.0786338

0.214942 0.817467

]

Table 3.3: Examples of effective diffusion tensors corresponding to the first
species (i.e. to the monomer population) for the two choices of microstructures
shown in Figure 3.1.

where d1 is a scalar diffusion coefficient, φ is the porosity, and T̄∗ is the tortuosity
(see [10], e.g.) and the fact that for the microstructures shown in Figure 3.1
we know that the porosity for the isotropic case is 0.75, while the porosity
for the anisotropic case amounts to 0.85. We refer the reader to [59] for more
numerical examples of multiscale investigations of anisotropy effects on transport
in periodically perforated media.

Isotropic Anisotropic

T̄∗ =

[
1.0000 0.2286

0.2286 1.0000

]
T̄∗ =

[
0.9617 0.0925

0.2529 0.9617

]

Table 3.4: Examples of effective tortuosity tensors corresponding to the first
species (i.e. the monomer population) for the two choices of microstructures
shown in Figure 3.1.

As soon as the covering with microstructures lacks ergodicity and/or station-
arity, such evaluations are often replaced by efforts to calculate accurate upper
bounds on the prominent effective coefficients; see Ref. [86], for instance, for
details in this direction.

3.4.3 Extensions to non-periodic microstructures

One can relax the periodicity assumption on the distribution of the microstruc-
tures. Instead of promoting the stochastic homogenization approach (cf. Ref.
[127], e.g.) which is prohibitory expensive from the computational point of view,
we indicate two computationally tractable cases: (1) the locally periodic arrays
of microstructures (see [15, 34, 92]) and (2) the weakly stochastic case (see [76]
and references cited therein). We will show elsewhere not only how our model
formulation and asymptotics as ε→ 0 translate into the frameworks of these two
non-periodic settings, but also the way the new effective transport coefficients
can be approximated numerically.
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3.5 Simulation studies

In this section, we study how aggregation affects deposition during the trans-
port of colloids in porous media. Within this frame we work with a reference
parameter regime pointing out to the fast aggregation – slow deposition regime,
that is high Λ and low Bi.

We take the model from [61] as the starting point of this discussion and aim
at recovering their results. We interpret all coefficients from [61] in terms of our
effective coefficients obtained by the asymptotic homogenization performed in
Section 3.4. As main task, we search for new effects coming into play due to
colloids aggregation.

The model for the evolution of the single mobile colloid species n(x, t) and
the surface coverage of the porous matrix by the immobile colloids θ(x, t) (that
corresponds to the amount of mass deposited) is as follows: Find the pair (n, θ)
satisfying the balance equations

∂tn = −vp · ∇n+Dh∆n− f

πa2
p

∂tθ, (3.49)

∂tθ = πa2
pknB(θ), (3.50)

with the switch boundary conditions

n(t, 0) =

n0 t ∈ [0, t0]

0 t > t0

, (3.51)

∂n

∂ν
(t, L) = 0, (3.52)

and initial conditions

n(0, x) = 0, (3.53)

θ(0, x) = 0, x ∈ [0, L]. (3.54)

Here vp is the interstitial particle velocity of the suspended colloids, Dh is the
hydrodynamic particle dispersion, ap is the particle radius, while f is the specific
surface area. t0 is the switching off time in the boundary condition.

Given a column of cross-section surface S and height Z randomly packed
with spherical collector beads of radius ac and porosity (void volume fraction) φ
typically of order of 0.4, f can be calculated (cf. [104]) as the ratio of the total
surface area of all beads in the column to the void volume φZS. For spherical
beads of uniform radius, the specific surface area f is

f(φ) :=
3(1− φ)

φac
. (3.55)

The dynamic blocking function B(θ) arising in (3.50) accounts for the transient
rate of particle deposition. As the colloids accumulate on the surface of the
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Interstitial particle velocity vp = U
φ (2− (1− ap

r0
)2)

Hydrodynamic dispersion coefficient Dh = D∞
τ + αLvp

Particle radius ap = 0.15 [µm]

Specific surface area f = 3(1−φ)
φac

Collector grain radius ac = 0.16 [mm]

Pore radius r0 = (1.1969ε− 0.1557)ac

Darcy velocity U = 1.02× 10−4 [m/s]

Porosity φ = 0.392 [−]

Dispersivity parameter αL = 0.692 [mm]

Kinetic rate constant k = 0.25ηU = 5× 10−7 [m/s]

Characteristic length L = 0.101 [m]

Characteristic time t0 = 5445 [s]

Initial concentration n0 = 5.58× 108 [cm−3]

Table 3.5: Reference parameters for simulation studies. The numerical values
are taken from [61].

porous matrix, they exclude a part of the surface, limiting the amount of sites
for further particle attachment.

We used the Finite Element Numerics toolbox DUNE [7] to implement a
solver for the model. We employed the Newton method to deal with the non-
linearities in the aggregation term (counterpart of R(·) cf. Section 3.2.1) and in
the blocking function term (here denoted by B(·)). An implicit Euler iteration
is used for time-stepping.

The first results of our simulation with the reference parameters indicated
in Table 3.5 are shown in Figure 3.4. Essentially, a single-species system (3.49)-
(3.54) is compared to a two-species system with a square pulse going from one
side of the domain for a fixed amount of time in the first species only. The
resulting breakthrough curves are plotted. It is of interest to compare the break-
through curves for the total amount of mass going through, no matter if it is in
the form of small or large particles. As we can observe, there is a perceptible dif-
ference between the two curves, being the mass for the two-species case coming
in slower. This is due to larger particles having higher affinity for deposition.

Let us focus now our attention on a specific aspect of the deposition pro-
cess, namely on the effect of the dynamic blocking functions. The context is as
follows: The rate of colloidal deposition is known to go down as more particles
attach themselves the the favorable deposition sites of the porous matrix; see,
for instance, [79] and references cited therein.
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Figure 3.4: Simulation comparison for a single species system versus an ag-
gregating system. The straight line is the breakthrough curve for the colloidal
mass for the problem without aggregation. The dashed line is the breakthrough
curve for the colloidal mass for the problem with aggregation. It is obtained by
summing mass-wise the breakthrough curves for the monomers u1 and dimers
u2.

One of the choices for the blocking function in (3.50) corresponds to Lang-
muir’s molecular adsorption model [75]. It is an affine function in terms of θ,
reaching the maximum of 1 when the fraction of the surface covered is zero. In
other words, B(·) is defined as

B(θ) := 1− βθ. (3.56)

For the simulations, we used the value β = 2.9. This corresponds to the
hard sphere jamming limit θ∞ = 0.345, which is specific to spherical collector
geometry and the experimental conditions described in [60].

A simulation example of our balance equations (3.49)-(3.54) with the Lang-
muirian blocking function is shown in Figure 3.5.

Another choice is the RSA dynamic blocking function as developed in [112].
RSA stands for "random sequential adsorption". The RSA blocking choice is
based on a third order expansion of excluded area effects and can be used for
low and moderate surface coverage. Here B(θ) is defined as:

B(θ) := 1− 4θ∞βθ + 3.308(θ∞βθ)
2 + 1.4069(θ∞βθ)

3. (3.57)
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Here, θ∞ is the hard sphere jamming limit. A simulation example of the bal-
ance equations (3.49)-(3.54) including the RSA blocking function is shown in
Figure 3.6.
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Figure 3.5: The effect of the Langmuirian dynamic blocking function on the
deposition (right) versus no blocking function (left). u1 and u2 are the break-
through curves, while v1 and v2 are the concentrations of the deposited species.
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Figure 3.6: The effect of the RSA dynamic blocking function on the deposition
(right) versus no blocking function (left). u1 and u2 are the breakthrough curves,
while v1 and v2 are the concentrations of the deposited species.

3.6 Discussion

This chapter sheds light on transport, aggregation, fragmentation and deposition
of colloidal particles in heterogeneous media. We succeeded to recover basic
results obtained with standard models for (single class, single species) colloidal
transport. Furthermore, our model includes information about the multiscale
structure of the porous medium and demonstrates new effects attributed to
flocculation, such as the occurrence of an overall decrease in the species mobility
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Figure 3.7: The effect of aggregation rates on the breakthrough curves. In the
first case, the default rate of aggregation is used, in the second - it is doubled.
A change of aggregation rate can be achieved by varying the concentration of
salt in the suspension, according to the DLVO theory. Note the strong effect of
aggregation on deposition.

due to a higher affinity for deposition of the large size classes of colloidal species;
see Figure 3.7 for this effect. The simulations show that our model depends
continuously on the initial data, the boundary data and the model parameters.

Extensions of this work can go in multiple directions:

(i) Cf. [79], the extent of colloidal transport in groundwater is largely deter-
mined by the rate at which colloids deposit on stationary grain surfaces.
The assumption of stationarity can be potentially relaxed, thus aiming to
incorporate the interplay between biofilms growth and deposition, hence
obtaining a better understanding of the clogging/blocking of the pores; see
e.g. [99, 107].

(ii) If repulsive forces between colloids are absent due to suitable chemical con-
ditions, then the deposition rate tends to increase as colloids accumulate
on the grain surface (see Figure 3.1). Based on [79], this enhancement of
deposition kinetics is attributed to the retained particles and is generally
referred to as ripening. Active repulsive forces seem to lead to a decline in
the deposition kinetics. These effects could be investigated by our model,
provided suitable modifications of the fluxes responsible for the transport
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of colloidal species are taken into account [52].

(iii) The role of the electrolyte concentration (typically a salt, e.g. KCl) and
the effect of the interplay between the electrostatic and van der Waals
interactions on deposition kinetics can be studied by further developing
the model. A few basic ideas on how to proceed in this case are collected,
for instance, in [106].

(iv) Non-periodic distributions of microstructures are relevant for practical ap-
plications. We leave as further work the extension of our solver towards
the MsFEM approach, where cell problems are solved for each grid ele-
ment, parametrized by the localized properties of the medium. We refer
the reader to Section 3.4.3 for comments in this direction.
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Chapter 4

Mathematical Analysis and
Homogenization of the
Thermo-Diffusion Problem for
Colloidal Populations

4.1 Introduction

We aim at understanding processes driven by coupled fluxes through media with
microstructures. In this Chapter, we study a particular type of coupling: we look
at the interplay between diffusion fluxes of a fixed number of colloidal populations
and a heat flux, the effects included here are incorporating an approximation of
the Dufour ad Soret effects (cf. Section 4.2.3, see also [46]. The type of system
of evolution equations that we encounter in Section 4.2.4 resembles very much
cross-diffusion and chemotaxis-like systems; see e.g. [124, 41]. The structure
of the chosen equations is useful in investigating transport, interaction, and
deposition of a large numbers of hot multiple-sized particles in porous media.

Practical applications of our approach would include predicting the response
of refractory concrete to high-temperatures exposure in steel furnaces, propaga-
tion of combustion waves due to explosions in tunnels, drug delivery in biological
tissues, etc.; see for instance [11, 12, 111, 116, 44, 43]. Within this framework,
our focus lies exclusively on two distinct theoretical aspects:

(i) the mathematical understanding of the microscopic problem (i.e. the well-
posedness of the starting system);

(ii) the averaging of the thermo-diffusion system over arrays of periodically-
distributed microstructures (the so-called, homogenization asymptotics limit;
see, for instance, [13, 86] and references cited therein).

The complexity of the microscopic system makes numerical simulations on the
macro scale very expensive. That is the reason that the aspect (ii) is of concern
here. Obviously, the study does not close with these questions. Many other issues
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like derivation of corrector estimates, design of efficient convergent numerical
multiscale schemes, multiscale parameter identification etc. need also to be
treated. Possible generalizations could point out to coupling heat transfer with
Nernst-Planck-Stokes systems (extending [106]) or with semiconductor equations
[83]. The Chapteris structured in the following manner. We present the basic
notation and explain the multiscale geometry as well as some of the relevant
physical processes in Section 4.2. Section 4.3 contains the proof of the solvability
of the microstructure model. Finally, the homogenization procedure is performed
in Section 4.4. The strong formulation of the upscaled thermo-diffusion model
with Smoluchowski interactions is emphasized in Section 4.4.3.

4.2 Notations and assumptions

4.2.1 Model description and geometry

The geometry of the problem is depicted in Figure 4.1, given a scale factor ε > 0.
The standard cell is shown in Figure 4.2.

(0, T ) = time interval of interest

Ω = bounded domain in Rn

∂Ω = piecewise smooth boundary of Ω

~ei = ith unit vector in Rn

Y = {
∑n
i=1 λi~ei : 0 < λi < 1} unit cell in Rn

Y0 = open subset of Y that represents the solid grain

Y1 = Y \ Y 0

Γ = ∂Y0 piecewise smooth boundary of Y0

Xk = X +
∑n
i=1 ki~ei, where k = (k1, . . . , kn) ∈ Zn and X ⊂ Y

Ωε0 = ∪{(εY0)k : (Y0)k ⊂ Ωε, k ∈ Zn} pore skeleton

Ωε = Ω \ Ω
ε

0 pore space

Γε = ∂Ωε0 boundary of the pore skeleton

The cells regions without the grain εY k1 are filled with water and we denote
their union by Ωε. Colloidal species are dissolved in the pore water. They react
between themselves and participate in diffusion and convective transport. The
colloidal matter cannot penetrate the grain boundary Γε, but it deposits there
reducing the amount of mass floating inside Ωε. Here ∂Ωε = ∂Ω ∪ Γε, where
Γε = ΓεN ∪ΓεR and ΓεN ∩ΓεR = ∅. The boundary ΓεN is insulated to the heat flow,
while ΓεR admits flux.
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Γ

Figure 4.1: Porous medium geometry Ω = Ωε0 ∪ Ωε, where the pore skeleton
Ωε0 is marked with gray color and the pore space Ωε is white.

Y
ΓR

ΓN

Figure 4.2: The unit cell geometry. The colloidal species ui and temperature θε

are defined in Y , while the deposited species vεi are defined on Γ = ΓR∪ΓN . The
boundary conditions for θε differ on ΓR and ΓN , while the boundary conditions
for ui are uniform on Γ.

The unknowns are:

• θε – the temperature in Ωε.

• ui – the concentration of the species that contains i monomers in Ωε.

• vεi – the mass of the deposited species on Γε.
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Furthermore, for a given δ > 0 we introduce the mollifier:

Jδ(s) :=

Ce1/(|s|2−δ2) if |s| < δ,

0 if |s| ≥ δ,
(4.1)

where the constant C > 0 is selected such that∫
Rd
Jδ = 1,

see [32] for details.
Using Jδ from (4.1), define the mollified gradient:

∇δf := ∇

[∫
B(x,δ)

Jδ(x− y)f(y)dy

]
. (4.2)

The following statement holds for all f ∈ L∞(Ωε), g ∈ Lp(Ωε)d and 1 ≤ p ≤ ∞:

‖∇δf · g‖Lp(Ωε) ≤ cδ‖f‖L∞(Ωε)‖g‖Lp(Ωε)d . (4.3)

‖∇δf‖Lp(Ωε) ≤ cδ‖f‖L2(Ωε) (4.4)

In the equations below all norms are L2(Ωε) unless specified otherwise, with cδ
independent of the choice of ε.

4.2.2 Smoluchowski population balance equations

We want to model the transport of aggregating colloidal particles under the
influence of thermal gradients. We use the Smoluchowski population balance
equation, originally proposed in [115], to account for colloidal aggregation:

Ri(s) :=
1

2

∑
k+j=i

βkjsksj −
N∑
j=1

βijsisj , i ∈ {1, . . . , N}; N > 2. (4.5)

Equation (4.5) is explained in detail in Chapter 2. Here si is the concentration
of the colloidal species that consists of i monomers, N is the number of species,
i.e. the maximal aggregate size that we consider, Ri(s) is the rate of change of
si, and βij > 0 are the coagulation coefficients, which tell us the rate aggregation
between particles of size i and j [31]. Colloidal aggregation rates are described
in more detail in [68].

4.2.3 Soret and Dufour effects

The system we have in mind is inspired by the model proposed by Shigesada,
Kawasaki and Teramoto [113] in 1979 when they have studied the segregation of



4.2. Notations and assumptions 41

competing species. For the case of two interacting species u and v, the diffusion
term looks like:

∂tu = ∆(d1u+ αuv), (4.6)

where the second term in the flux is due to cross-diffusion. The second term can
be expressed as:

∆(uv) = u∆v + v∆u+ 2∇u · ∇v. (4.7)

As a first step in our approach, we consider only the last term of (4.7), i.e.
∇u · ∇v, as the driving force of cross-diffusion and we postpone the study of
terms u∆v and v∆u until later.

From mathematical point of view, still it is not easy to treat the term∇u·∇v.
Hence, in the paper we approximate this term by ∇δu · ∇v for δ > 0.

4.2.4 Setting of the model equations

We consider the following balance equations for the temperature and colloid
concentrations:

(P ε)

∂tθ
ε +∇ · (−κε∇θε)− τε

N∑
i=1

∇δui · ∇θε = 0, in (0, T )× Ωε, (4.8)

∂tu
ε
i +∇ · (−di∇uεi )− δεi∇δθε · ∇uεi = Ri(u), in (0, T )× Ωε, (4.9)

with boundary conditions:

− κε∇θε · n = 0, on (0, T )× ΓεN , (4.10)

− κε∇θε · n = εg0θ
ε, on (0, T )× ΓεR, (4.11)

− κε∇θε · n = 0, on ∂Ω, (4.12)

− di∇uεi · n = 0, on ∂Ω, (4.13)

and a boundary condition for colloidal deposition:

− di∇uεi · n = ε(aεiui − bεivεi ), on (0, T )× Γε, (4.14)

∂tv
ε
i = aεiui − bεivεi , on (0, T )× Γε. (4.15)

As initial conditions, we take for i ∈ {1, . . . , N}:

θε(0, x) = θε,0(x), in Ωε, (4.16)

uεi (0, x) = uε,0i (x), in Ωε, (4.17)

vεi (0, x) = vε,0i (x), on Γε. (4.18)

We refer to (4.8)- (4.18) as (P ε) – our reference microscopic model. Note
that the Soret and Dufour coefficients determine the structure of the particular
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κε heat conduction coefficient

di diffusion coefficient

τε Soret coefficient

δε Dufour coefficient

gi Robin boundary coefficient, i ∈ {0, . . . , N}
aεi Deposition coefficient 1, i ∈ {1, . . . , N}
bεi Deposition coefficient 2, i ∈ {1, . . . , N}

cross-diffusion system (see [46], [113] [4], [11], [96], [124]). The coefficients aεi
and bεi describe the deposition interaction between ui and vεi . Consequently,
each ui has a different affinity to sediment as well as a different mass.

All functions defined in Ωε and on Γε are taken to be ε-periodic, i.e. κε(x) =
κ(x/ε) and so on.

Note the use of the mollified gradient in the cross diffusion terms in (4.8) and
(4.9). This is a choice that we have to make at this point in order to obtain the
necessary estimates for our equations. From a physical point of view, smoothed
gradients causing advection can be interpreted as there being no turbulence.

4.2.5 Assumptions on data

(A1) κε, τε, and di, gi, aεi , bεi are positive constants for i ∈ {1, . . . , N} and ε > 0.
Moreover, κ0 ≤ κε ≤ κ∗, τ ε ≤ τ∗, d0 ≤ dεi ≤ d∗, δεi ≤ δ∗, a0 ≤ aεi ≤ a∗ and
bεi ≤ b∗ for i ∈ {1, . . . , N} and ε > 0, where κ0, κ∗, d0, d∗, δ∗, a0, a∗ and b∗
are positive constants.

(A2) θε,0 ∈ L∞+ (Ωε) ∩ H1(Ωε), u0
i ∈ L∞+ (Ωε) ∩ H1(Ωε), vε,0i ∈ L∞+ (Γε) for

i ∈ {1, . . . , N} and ε > 0. Moreover, ||θε,0||H2(Ωε) ≤ C0, ||u0
i ||H2(Ωε) ≤ C0,

and ||vε,0i ||L∞(Γε) ≤ C0 for i ∈ {1, . . . , N} and ε > 0. Here C0 is a positive
constant independent of ε.

4.3 Global solvability of problem (P ε)

Definition 1. The triplet (θε, ui, v
ε
i ) is a solution to problem (P ε)if the following

holds:

θε, ui ∈ H1(0, T ;L2(Ωε)) ∩ L∞(0, T ;H1(Ωε)) ∩ L∞((0, T )× Ωε),

vεi ∈ H1(0, T ;L2(Γε)) ∩ L∞((0, T )× Γε),
(4.19)

for all φ ∈ H1(Ωε) :∫
Ωε

∂tθ
εφ+

∫
Ωε

κε∇θε · ∇φ+ g0

∫
ΓεR

θεφ = τε
N∑
i=1

∫
Ωε

∇δui · ∇θεφ, (4.20)
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for all ψi ∈ H1(Ωε) :∫
Ωε

∂tuiψi +

∫
Ωε

di∇ui · ∇ψi + gi

∫
ΓεR

uiψi +

∫
Γε

(aεiui − bεivεi )ψi

= δεi

∫
Ωε

∇δθε · ∇uiψi +

∫
Ωε

Ri(u)ψi,

(4.21)

for all ϕi ∈ L2(Γε) :∫
Γε

∂tv
ε
iϕi =

∫
Γε

(aεiui − bεivεi )ϕi. (4.22)

together with (4.16), (4.17) and (4.18) for a fixed value of ε > 0.

Remark 4.3.1. We note that each term appearing in Definition 1 is finite, since
∇δui and ∇δθε are bounded in Ωε due to (4.3).

To prove the existence of solutions to problem (P ε), we introduce the fol-
lowing auxiliary problems as iterations steps of the coupled system:

(P1)

∂tθ
ε +∇ · (−κε∇θε)− τε

N∑
i=1

∇δūi · ∇θε = 0, in (0, T )× Ωε,

− κε∇θε · n = 0, on (0, T )× ΓεN ,

− κε∇θε · n = εg0θ
ε, on (0, T )× ΓεR,

− κε∇θε · n = 0, on (0, T )× Γε,

θε(0, x) = θε,0(x), in Ωε,

and

(P2)

∂tu
ε
i +∇ · (−di∇uεi )− δεi∇δ θ̄ · ∇uεi = RMi (u), in (0, T )× Ωε,

− di∇uεi · n = 0, on (0, T )× ΓεN ,

− di∇uεi · n = εgiui, on (0, T )× ΓεR,

− di∇uεi · n = ε(aεiui − bεivεi ), on (0, T )× Γε,

uεi (0, x) = uε,0i (x), in Ωε,

∂tv
ε
i = aεiui − bεivεi , on (0, T )× Γε,

vεi (0, x) = vε,0i (x), on Γε.
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Here

RMi (s) := Ri(σM (s1), σM (s2), . . . , σM (sN )), for s ∈ RN (4.23)

denotes our choice of truncation of Ri, where

σM (r) :=


0, r < 0

r, r ∈ [0,M ]

M, r > M,

(4.24)

where M > 0 is a fixed threshold. Note that if M is large enough, the essential
bounds obtained later in this paper will remain below M . This means that the
existence result is obtained also for the uncut rates.

In the following, assuming (A1)-(A2), we show the existence, positivity and
boundedness of solutions to (P1) and (P2).

When we denote the solutions as θε = P1(ū) and (ui, v
ε
i ) = P2(θ̄), we can

define the solution operator (θε, ui, v
ε
i ) = T(θ̄, ūi). We will show that the oper-

ator T is a contraction in the appropriate functional spaces and use the Banach
fixed point theorem to prove the existence and uniqueness of solutions to (P ε).

Notation 1. Let K(T,M) := {z ∈ L2(0, T ;L2(Ωε)) : |z| ≤M a.e. on (0, T )×
Ωε}.

Lemma 4.3.2. Existence of solutions to (P1).
Let ūi ∈ K(T,M), and assume that (A1)-(A2) hold.
Then there exists θε ∈ H1(0, T ;L2(Ωε)) ∩ L∞(0, T ;H1(Ωε)) that solves (P1) in
the sense:

for all φ ∈ H1(Ωε) and a.e. in [0, T ]:∫
Ωε

∂tθ
εφ+

∫
Ωε

κε∇θε · ∇φ+ g0

∫
ΓεR

θεφ = τε
N∑
i=1

∫
Ωε

∇δūi · ∇θεφ, (4.25)

and

θε(0, x) = θε,0(x) a.e. in Ωε. (4.26)

Proof. Let {ξi} be a Schauder basis of H1(Ωε). Then for each n ∈ N there exists

θε,0n (x) :=

n∑
j=1

α0,n
j ξj(x) such that θε,0n → θε,0 in H1(Ωε) as n→∞. (4.27)

We denote by θεn the Galerkin approximation of θε, that is:

θεn(t, x) :=

n∑
j=1

αnj (t)ξj(x) for all (t, x) ∈ (0, T )× Ωε. (4.28)
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By definition, θεn must satisfy (4.25) for all φ ∈ span{ξi}ni=1, i.e.:∫
Ωε

∂tθ
ε
nφ+

∫
Ωε

κε∇θεn · ∇φ+ g0

∫
ΓεR

θεnφ = τε
N∑
i=1

∫
Ωε

∇δūi · ∇θεnφ. (4.29)

The coefficients αni (t) can be found by testing (4.29) with φ := ξi and using
(4.27) to solve the resulting ODE system:

∂tα
n
i (t) +

n∑
j=1

(Aij +Bij − Cij)αnj (t) = 0, i ∈ {1, . . . , n}, (4.30)

αni (0) = α0,n
i . (4.31)

The coefficients in (4.30) and (4.31) are defined by the following expressions

Aij :=

∫
Ωε

κε∇ξi · ∇ξj , i, j ∈ {1, . . . , n},

Bij := g0

∫
ΓεR

ξiξj , i, j ∈ {1, . . . , n},

Cij := τε
N∑
k=1

∫
Ωε

∇δūk · ∇ξjξi i, j ∈ {1, . . . , n}.

Since the system (4.30) is linear, there exists for each fixed n ∈ N a unique
solution αni ∈ C1([0, T ]).

To prove uniform estimates for θεn with respect to n, we take in (4.29) φ = θεn.
We obtain:

1

2
∂t‖θεn‖2 + κε,0‖∇θεn‖2 + g0‖θεn‖2L2(ΓεR) ≤ τ

ε
N∑
i=1

∫
Ωε

|∇δūi · ∇θεnθεn| := τε
N∑
i=1

Ai.

Using the Cauchy-Schwarz inequality and Young’s inequality in the form
ab ≤ ηa2 + b2/4η, where η > 0, we get:

Ai ≤ η‖∇θεn‖2 +
1

4η
‖∇δūiθεn‖2 ≤ η‖∇θεn‖2 +

1

4η
‖∇δūi‖2L4(Ωε)‖θ

ε
n‖2L4(Ωε).

The mollifier property (4.3) yields ‖∇δūi‖2L4(Ωε) ≤ cδ‖ūi‖2∞. Using Gagliardo-

Nirenberg inequality (see [98] e.g.), we get:

‖θεn‖2L4(Ωε) ≤ c‖θ
ε
n‖1/2‖∇θεn‖3/2. (4.32)

Applying Young’s inequality, we obtain:

c‖θεn‖1/2‖∇θεn‖3/2 ≤ η‖∇θεn‖2 + cη‖θεn‖2. (4.33)
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Finally, we obtain the structure:

1

2
∂t‖θεn‖2 + (κε,0 − 2Nη)‖∇θεn‖2 + g0‖∇θεn‖2L2(ΓεR) ≤ c

δ
η

N∑
i=1

‖ūi‖2‖θεn‖2.

Gronwall’s lemma gives:

‖θεn(t)‖2 + κε,0ε

∫ t

0

‖∇θεn(t)‖2 < C for t ∈ (0, T ),

where C > 0 is independent of n, since ūi are uniformly bounded. This ensures
that

θεn ∈ L∞(0, T ;L2(Ωε)) ∩ L2(0, T ;H1(Ωε)). (4.34)

To show uniform estimates for ∂tθ
ε
n with respect to n, we take φ = ∂tθ

ε
n in

(4.29) (note that we can do this due to H1 regularity of ∂tθ
ε
n, which we have in

the finite-dimensional case, due to the properties of the Schauder basis) and use
the Cauchy-Schwarz and Young’s inequalities, as well as the mollifier property
(4.3) to get:

‖∂tθεn‖2 +
1

2
∂t‖κε∇θεn‖2 +

g0

2
∂t‖θεn‖2L2(ΓεR) ≤ τ

ε
N∑
i=1

∫
Ωε

|∇δūi · ∇θεn∂tθεn|

≤

(
cδτε

N∑
i=1

‖ūi‖L∞(Ωε)

)
(η‖∂tθεn‖2 +

Cη
κε,0
‖κε∇θεn‖2).

Gronwall’s lemma gives:

‖κε∇θεn‖2 +

∫ t

0

‖∂tθεn‖2 < C for all t ∈ (0, T ),

where C > 0 depends on δ, but is independent of n. Together with (4.34) this
ensures that:

θεn ∈ H1(0, T ;L2(Ωε)) ∩ L∞(0, T ;H1(Ωε)). (4.35)

Hence, we can choose a subsequence θεni ⇀ θε in H1(0, T ;L2(Ωε)) and θεni
∗
⇀ θε

in L∞(0, T ;H1(Ωε)) as i→∞.
Now, using

vm(t, x) :=

m∑
j=1

βmj (t)ξj(x) (4.36)

as a test function in (4.29) and integrating with respect to time we get:

T∫
0

∫
Ωε

∂tθ
ε
nivm +

T∫
0

∫
Ωε

κε∇θεni · ∇vm + g0

T∫
0

∫
ΓεR

θεnivm

= τε
N∑
i=1

T∫
0

∫
Ωε

∇δūi · ∇θεnivm.

(4.37)
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Using (4.35), we pass to the limit as i→∞ to obtain:

T∫
0

∫
Ωε

∂tθ
εvm +

T∫
0

∫
Ωε

κε∇θε · ∇vm + g0

T∫
0

∫
ΓεR

θεv = τε
N∑
i=1

T∫
0

∫
Ωε

∇δūi · ∇θεvm.

(4.38)
Note that (4.38) holds for all v ∈ L2(0, T ;H1(Ωε)) since we can approximate v
with vm in L2(0, T ;H1(Ωε)), hence

T∫
0

∫
Ωε

∂tθ
εv +

T∫
0

∫
Ωε

κε∇θε · ∇v + g0

T∫
0

∫
ΓεR

θεv = τε
N∑
i=1

T∫
0

∫
Ωε

∇δūi · ∇θεv,

holds for all v ∈ L2(0, T ;H1(Ωε)).
Finally, we show the initial condition holds. Indeed, the Aubin-Lions lemma

guarantees that θεni → θε in C((0, T );L2(Ωε)). Then on account of θεni(0)→ θε,0

in L2(Ωε) as i→∞, we get θε(0) = θε,0.

Lemma 4.3.3. Positivity and boundedness of solutions to (P1).
Let ūi ∈ K(T,M), M > 0, and assume (A1)-(A2).
Then 0 ≤ θε ≤ ‖θε,0‖L∞(Ωε) a.e. in (0, T )× Ωε.

Proof. Let θε := θε,+ − θε,−, where z+ := max(z, 0) and z− := max(−z, 0).
Testing (4.25) with φ := −θε,−, and using (4.3) gives:

1

2
∂t‖θε,−‖2 + κε,0‖∇θε,−‖2 + g0‖θε,−‖2L2(ΓεR) ≤ c

δτε
N∑
i=1

‖ūi‖∞‖∇θε,−θε,−‖L1(Ωε)

≤

(
Cδε τ

ε
N∑
i=1

‖ūi‖∞

)
‖θε,−‖2 + ε‖∇θε,−‖2.

Choosing ε < κε,0 and taking into account that θε,−(0) = 0, Gronwall’s lemma
gives ‖θε,−‖2 ≤ 0. This means θε > 0 a.e. in Ω for all t ∈ (0, T ).

Let φ = (θε −M0)+ in (4.25) with M0 ≥ ‖θε(0)‖L∞(Ωε):

1

2
∂t‖(θε −M0)+‖2 + κε,0‖∇(θε −M0)+‖2 + g0‖(θε −M0)+‖2L2(ΓεR)

+

∫
ΓεR

M0(θε −M0)+ ≤ τε
N∑
i=1

∫
Ωε

∇δūi · ∇(θε −M0)+(θε −M0)+

≤

(
τεcδ

N∑
i=1

‖ūi‖∞

)(
cε‖(θε −M0)+‖2 + ε‖∇(θε −M0)+‖2

)
.

Discarding the positive terms on the left side and then applying Gronwall’s
lemma leads to:

‖(θε −M0)+(t)‖2 ≤ ‖(θε −M0)+(0)‖2 exp

(
τεcδcε

N∑
i=1

‖ūi‖∞t

)
.
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Since ‖(θε −M0)+(0)‖ = 0, we obtain (θε −M0)+(t) = 0. Thus the proof of the
lemma is completed.

Lemma 4.3.4. Existence of solutions to (P2).
Let θ̄ ∈ K(T,M),M > 0 and (A1)-(A2) hold.
Then (P2) has solutions ui ∈ H1(0, T ;L2(Ωε)) ∩ L∞(0, T ;H1(Ω)) and vεi ∈
H1(0, T ;L2(Γε)) in the following sense:

For all ψi ∈ H1(Ωε), it holds:∫
Ωε

∂tuiψi +

∫
Ωε

di∇ui · ∇ψi + gi

∫
ΓεR

uiψi +

∫
Γε

(aεiui − bεivεi )ψi

= δεi

∫
Ωε

∇δ θ̄ · ∇uiψi +

∫
Ωε

RMi (u)ψi

(4.39)

ui(0, x) = u0
i (x) a.e. in Ωε, (4.40)

and for all ϕi ∈ L2(Γε):∫
Γε

∂tv
ε
iϕi =

∫
Γε

(aεiui − bεivεi )ϕi, (4.41)

vεi (0, x) = vε,0i (x) a.e. on Γε. (4.42)

Proof. Let {ξj} – Schauder basis of H1(Ωε). Then, for each n ∈ N, there exists

u0
i,n(x) :=

n∑
j=1

α0,n
i,j ξj(x) such that u0

i,n → u0
i in H1(Ωε) as n→∞. (4.43)

We denote by ui,n the Galerkin approximation of ui, that is:

ui,n(t, x) :=

n∑
j=1

αni,j(t)ξj(x) for all (t, x) ∈ (0, T )× Ωε. (4.44)

ui,n must satisfy (4.39), and hence,∫
Ωε

∂tui,nψi +

∫
Ωε

di∇ui,n · ∇ψi + gi

∫
ΓεR

ui,nψi +

∫
Γε

(aεiui,n − bεivεi )ψi

= δεi

∫
Ωε

∇δ θ̄ · ∇ui,nψi +

∫
Ωε

RMi (un)ψi, for all ψi ∈ span{ξj}nj=1.

(4.45)
Accordingly, let {ηj} – an orthonormal basis of L2(Γε). Then for each n ∈ N
there exists

vε,0i,n(x) :=

n∑
j=1

β0,n
i,j ηj(x) such that vε,0i,n → vε,0i in L2(Γε) as n→∞. (4.46)
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We denote by vεi,n the Galerkin approximation of vεi , that is:

vεi,n(t, x) :=

n∑
j=1

βni,j(t)ηj(x), for all (t, x) ∈ (0, T )× Γε. (4.47)

vεi,n must satisfy (4.41), and hence,∫
Γε

∂tv
ε
i,nϕi =

∫
Γε

(aεiui,n − bεivεi,n)ϕi, for all ϕi ∈ span{ηj}nj=1. (4.48)

αni,j(t) and βni,j(t) can be found by substituting ui,n and vεi,n into (4.39) – (4.42)
and using ξk and ηk for k ∈ {1, . . . , n} as test functions:

∂tα
n
i,k(t) +

n∑
j=1

(Aijk +Bijk + Cijk −Dijk)αni,j(t)−
n∑
j=1

Eijkβ
n
i,j(t)

=

∫
Ωε

ξk

i−1∑
a=1

βa,i−aσM

(
n∑
b=1

αna,b(t)ξb

)
σM

(
n∑
c=1

αni−a,c(t)ξc

)

−
∫
Ωε

ξk

N∑
a=1

βa,iσM

(
n∑
b=1

αni,b(t)ξb

)
σM

(
n∑
c=1

αna,c(t)ξc

)
,

(4.49)

αni,j(0) = α0,n
i,j , (4.50)

∂tβ
n
i,k(t) =

n∑
j=1

Gijkα
n
i,j(t)−Hijkβ

n
i,j(t), (4.51)

βni,j(0) = β0,n
i,j . (4.52)

The coefficients arising in (4.49) are defined by:

Aijk :=

∫
Ωε

di∇ξj · ∇ξk, Bijk := gi

∫
ΓεR

ξjξk,

Cijk := aεi

∫
Γε

ξjξk, Dijk := δεi

∫
Ωε

∇δ θ̄ · ∇ξjξk,

Eijk := bεi

∫
Γε

ξkηj , Gijk := aεi

∫
Γε

ξjηk,

Hijk := bεi

∫
Γε

ηjηk.

The left-hand side of this system of ODEs is linear, while the right-hand side is
globally Lipschitz. Thus there exists a unique solution αni,j(t), β

n
i,j(t) ∈ H1(0, T )

to (4.49) (4.52) for t ∈ (0, T ).
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To show uniform in n estimates for ui,n and vεi,n, we take ψi = ui,n and
ϕi = vεi,n in (4.45) and (4.48) respectively. We get the inequality:

1

2
∂t‖ui,n‖2 + d0

i ‖∇ui,n‖2 + gi‖ui,n‖2L2(ΓεR) + aεi‖ui,n‖2L2(Γε)

≤ bεi
∫
Γε

|vεi,nui,n|+ τεcδ‖θ̄‖∞‖∇ui,n‖‖ui,n‖+

∫
Ωε

RMi (un)ui,n

≤ ε‖ui,n‖2L2(Γε) + Cε‖vεi,n‖2L2(Γε) + ε‖∇ui,n‖2

+ Cδε‖θ̄‖∞‖ui,n‖2 + CM‖ui,n‖
1

2
∂t‖vεi,n‖2L2(Γε) + bεi‖vεi,n‖2L2(Γε) ≤ ε‖ui,n‖

2
L2(Γε) + Cε‖vεi,n‖2L2(Γε).

After adding the two inequalities, Gronwall’s lemma gives:

‖ui,n‖2 + d0
i

∫ t

0

‖∇ui,n‖2 + ‖vεi,n‖2L2(Γε) < C for all t ∈ (0, T ), (4.53)

where C > 0 depends on δ, M and T , but is independent of n and ε, which
ensures:

ui,n ∈ L∞(0, T ;L2(Ωε)) ∩ L2(0, T ;H1(Ωε)), (4.54)

vεi,n ∈ L∞(0, T ;L2(Γε)). (4.55)

To show uniform estimates for ∂tui,n and ∂tv
ε
i,n with respect to n, we take

ψi = ∂tui,n and ϕi = ∂tv
ε
i,n in (4.45) and (4.48) respectively, noticing that they

are in H1 due to being in a finite-dimensional space. We obtain:

‖∂tui,n‖2 +

∫
Ωε

di
2
∂t(∇ui,n)2 +

gi
2
∂t‖ui,n‖2L2(ΓεR) +

aεi
2
∂t‖ui,n‖2L2(Γε)

= bεi

∫
Γε

∂tui,nv
ε
i,n + δεi

∫
Ωε

∇δ θ̄ · ∇ui,n∂tui,n +

∫
Ωε

RMi (un)∂tui,n

(4.56)

‖∂tvεi,n‖2L2(Γε) +
bεi
2
∂t‖vεi,n‖2L2(Γε) = aεi

∫
Γε

ui,n∂tv
ε
i,n. (4.57)

Multiplying (4.56) by aεi and (4.57) by bεi , then adding them, and finally inte-
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grating the result over (0, T ), we get:

T∫
0

aεi‖∂tui,n‖2 +

T∫
0

bεi‖∂tvεi,n‖2 +
aεid

0
i

2
‖∇ui,n(T )‖2 +

aεi gi
2
‖ui,n(T )‖2L2(ΓεR)

+
aε,2i
2
‖ui,n(T )‖2L2(Γε) +

bε,2i
2
‖vεi,n(T )‖2L2(Γε)

− aεi bεi‖ui,n(T )‖L2(Γε)‖vεi,n(T )‖L2(Γε) + aεi b
ε
i‖ui,n(0)‖L2(Γε)‖vεi,n(0)‖L2(Γε)

≤ aεid
0
i

2
‖∇ui,n(0)‖2 +

aεi gi
2
‖ui,n(0)‖2L2(ΓεR) +

aε,2i
2
‖ui,n(0)‖2L2(Γε)

+
bε,2i
2
‖vεi,n(0)‖2L2(Γε) + ε

T∫
0

aεi‖∂tui,n‖2 + aεi δ
ε
i c
δcε‖θ̄‖∞

T∫
0

‖∇ui,n‖2

+ CMCε + ε

T∫
0

aεi‖∂tui,n‖2.

Dropping the positive terms on the left, and denoting the initial condition terms
on the right as C0, we get:

T∫
0

aεi (1− 2ε)‖∂tui,n‖2 +

T∫
0

bεi‖∂tvεi,n‖2 +
aεid

0
i

2
‖∇ui,n(T )‖2

≤ C0 + aεi δ
ε
i c
δcε‖θ̄‖∞

T∫
0

‖∇ui,n‖2 + CMCε. (4.58)

Gronwall’s lemma gives:

‖∇ui,n‖2 +

T∫
0

‖∂tui,n‖2 +

T∫
0

‖∂tvεi,n‖2 ≤ C,

where C > 0 depends on δ, M and T , but is independent of n. Together with
(4.54) this gives:

ui,n ∈ H1(0, T ;L2(Ωε)) ∩ L∞(0, T ;H1(Ωε)), (4.59)

vεi,n ∈ H1(0, T ;L2(Γε)). (4.60)

Hence, we can choose subsequences ui,nj ⇀ ui in H1(0, T ;L2(Ωε)) and ui,nj →
ui in C([0, T ], L2(Ωε)) and weakly∗ in L∞(0, T ;H1(Ωε)) as i→∞ and vεi,nj ⇀ vεi
in H1(0, T ;L2(Γε)) as j →∞. Since RMi is Lipschitz continuous, the rest of the
proof follows the same line of arguments as in Lemma 4.3.2.
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Lemma 4.3.5. Positivity and boundedness of solutions to (P2).
Let θ̄ ∈ K(T,M), M > 0 and assume (A1)-(A2). Then 0 ≤ ui ≤ Mi(T + 1)
a.e. in (0, T )× Ωε, 0 ≤ vεi ≤ M̄i(T + 1) a.e. on (0, T )× Γε, where Mi > 0 and
M̄i > 0 are independent of M .

Proof. Testing (4.39) with ψi = −u−i and the definition of RMi gives:

1

2
∂t‖u−i ‖

2 + d0
i ‖∇u−i ‖

2 + gi‖u−i ‖
2
L2(ΓεR) + aεi‖u−i ‖

2
L2(Γε) + bεi

∫
Γε

vεi u
−
i

≤ δεi cδ‖θ̄‖∞
∫

Ω

∇u−i u
−
i −

∫
Ωε

i−1∑
j=1

βj,i−ju
+
j u

+
i−ju

−
i

+

∫
Ωε

N∑
j=1

βiju
+
i u

+
j u
−
i .

The second term on the right is always negative, while the third is always zero.
We can discard them and apply Cauchy-Schwarz and Young’s inequalities to the
first term on the right, as well as discard the positive terms on the left to obtain:

1

2
∂t‖u−i ‖

2 + (d0
i − η)‖∇u−i ‖

2 ≤ δεi cδ‖θ̄‖∞cη‖u−i ‖
2 + bεi

∫
Γε

vε,−i u−i . (4.61)

Testing (4.41) with ϕi = −vε,−i gives:

1

2
∂t‖vε,−i ‖

2
L2(Γε) ≤ b

ε
i‖v

ε,−
i ‖

2
L2(Γε) + aεi

∫
Γε

vε,−i u−i . (4.62)

We rely on Cauchy-Schwarz, Young’s and trace inequalities to estimate the last
term. We obtain:∫

Γε

vε,−i u−i ≤ ‖v
ε,−
i ‖L2(Γε)‖u−i ‖L2(Γε) ≤ cη‖vε,−i ‖

2
L2(Γε) + η‖u−i ‖

2
L2(Γε)

≤ cη‖vε,−i ‖
2
L2(Γε) + ηC(‖u−i ‖

2 + ‖∇u−i ‖
2)

Adding (4.61) and (4.62) and choosing η+ηC < d0
i and taking into account that

u−i (0) ≡ 0, Gronwall’s lemma gives ‖u−i ‖2 + ‖vε,−i ‖2 ≤ 0, that is ui ≥ 0 a.e. in
Ωε and vεi ≥ 0 a.e. in Γε for all t ∈ (0, T ).

Let i = 1 and ψ1 := (u1 −M1)+ in (4.39) and ϕ1 := (vε1 − M̄1)+ in (4.41).
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Apply (4.3) for the cross-diffusion term to get:

1

2
∂t‖(u1 −M1)+‖2 + d0

1‖∇(u1 −M1)+‖2

+ g1‖(u1 −M1)+‖2L2(ΓεR) + g1

∫
ΓεR

M1(u1 −M1)+

+ aε1‖(u1 −M1)+‖2L2(Γε) + (aε1M1 − bε1M̄1)

∫
Γε

(u1 −M1)+

+ bε1

∫
Γε

(vε1 − M̄1)−(u1 −M1)+ ≤ bε1
∫
Γε

(vε1 − M̄1)+(u1 −M1)+

+ δε1c
δ‖θ̄‖∞‖∇(u1 −M1)+(u1 −M1)+‖L1(Ωε) + cM‖(u1 −M1)+‖

1

2
∂t‖(vε1 − M̄1)+‖2L2(Γε) + bε1‖(vε1 − M̄1)+‖2L2(Γε) + aε1

∫
Γε

(u1 −M1)−(vε1 − M̄1)+

≤ aε1
∫
Γε

(vε1 − M̄1)+(u1 −M1)+ + (aε1M1 − bε1M̄1)

∫
Γε

(vε1 − M̄1)+.

Now, we add the two inequalities, while dropping the positive terms on the left
and using Cauchy-Schwarz and Young’s inequalities on the right to obtain:

1

2
∂t‖(u1 −M1)+‖2 + (d0

1 − η)‖∇(u1 −M1)+‖2 + aε1‖(u1 −M1)+‖2L2(Γε)

+
1

2
∂t‖(vε1 − M̄1)+‖2L2(Γε) ≤ (aε1 + bε1)(η‖(u1 −M1)+‖2L2(Γε)

+ cη‖(vε1 − M̄1)+‖L2(Γε)) + δε1c
ηcδ‖θ̄‖∞‖(u1 −M1)+‖2

+ η + cηcM‖(u1 −M1)+‖2 + η + cη(aε1M1 − bε1M̄1)‖(vε1 − M̄1)+‖2L2(Γε).

We choose M1 and M̄1 such that aε1M1 − bε1M̄1 = 0. Then Gronwall’s lemma
gives:

‖(u1 −M1)+(t)‖2 + ‖(vε1 − M̄1)+‖2L2(Γε)

≤ (‖(u1 −M1)+(0)‖2 + ‖(vε1 − M̄1)+(0)‖2L2(Γε)) exp
(
C(δεi , θ̄, δ,M)t

)
.

Since we choose M1 to satisfy ‖(u1 −M1)+(0)‖ = 0, and M̄1 to satisfy ‖(vε1 −
M̄1)+(0)‖L2(Γε) = 0, we get u1 ∈ L∞+ ((0, T )× Ωε) and vε1 ∈ L∞+ ((0, T )× Γε).

Let i = 2 and ψ2 := (u2−M2(t+ 1))+ in (4.39) and ϕ2 := (vε2− M̄2(t+ 1))+



54
Chapter 4. Mathematical Analysis and Homogenization of the Thermo-Diffusion

Problem for Colloidal Populations

in (4.41):

1

2
∂t(‖(u2 −M2(t+ 1))+‖2 + ‖(vε2 − M̄2(t+ 1))+‖2L2(Γε))

+
d0

2

2
‖∇(u2 −M2(t+ 1))+‖2

+ aε2‖(u2 −M2(t+ 1))+‖2L2(Γε) + bε2‖(vε2 − M̄2(t+ 1))+‖2L2(Γε)

≤ C‖(u2 −M2(t+ 1))+‖2 +

∫
Ωε

RM2 (u)(u2 −M2(t+ 1))+

−M2

∫
Ωε

(u2 −M2(t+ 1))+ − M̄2(vε2 − M̄2(t+ 1))+.

Here, we note that

RM2 (u) ≤ 1

2
β11σM (u1)2 ≤ 1

2
β11u

2
1 ≤

1

2
β11M

2
1 .

Similarly, we have:

1

2
∂t(‖(u2 −M2(t+ 1))+‖2 + ‖(vε2 − M̄2(t+ 1))+‖2L2(Γε))

≤ C‖(u2 −M2(t+ 1))+‖2 + (
1

2
β11M

2
1 −M2)

∫
Ωε

(u2 −M2(t+ 1))+

≤ C‖(u2 −M2(t+ 1))+‖2.

By applying Gronwall’s lemma with 1
2β11M

2
1 ≤M2, we see that u2 ≤M2(T +1)

in (0, T ) × Ωε and vε2 ≤ M̄2(T + 1) on (0, T ) × Γε. Recursively, we can obtain
the same estimates for ui and vεi for i ≥ 3.

Lemma 4.3.6. The boundedness of the concentration gradient for (P2).

Let θ̄ ∈ K(T,M0) and assume (A1)-(A2) to hold. Then there exists a positive

constant C(M0) such that ‖∇ui(t)‖ ≤ C(M0) and
∫ T

0
||∂tui(t)||2dt ≤ C(M0) for

t ∈ (0, T ).

Proof. Let ψi = ∂tui in (4.39):

‖∂tui‖2 +
d0
i

2
∂t‖∇ui‖2 +

gi
2
∂t‖ui‖2L2(ΓεR) +

aεi
2
∂t‖ui‖2L2(Γε) ≤

bεi

∫
Γε

vεi ∂tui︸ ︷︷ ︸
A

+ |δεi
∫
Ωε

∇δ θ̄ · ∇ui∂tui|

︸ ︷︷ ︸
B

+ |
∫
Ωε

Ri(u)∂tui|

︸ ︷︷ ︸
C

.

We shall now estimate one by one the terms A, B, and C. Note first that

A = bεi∂t

∫
Γε

vεi ui − bεi
∫
Γε

ui∂tv
ε
i ≤ bεi∂t

∫
Γε

vεi ui +
1

2
‖∂tvεi ‖2L2(Γε) +

1

2
bε,2i ‖ui‖

2
L2(Γε).
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Then we have

B ≤ 1

2
‖∂tui‖2 +

δε,2

2

∫
Ωε

(∇δ θ̄)2(∇ui)2 ≤ 1

2
‖∂tui‖2 +

δε,2

2
cδ‖θ̄‖2∞‖∇ui‖2,

and

C ≤ CB,η + η‖∂tui‖2.

All this leads to, after integration from 0 to T :

(
1

2
− η)

∫ T

0

‖∂tui‖2 +
d0
i

2
‖∇ui(T )‖2 +

gi
2
‖ui(T )‖2L2(ΓεR) +

aεi
2
‖ui(T )‖2L2(Γε)

+ bεi

∫
Γε

v̄(0)ui(0) ≤ TCB,η +
δε,2

2
cδ‖θ̄‖2∞

∫ T

0

‖∇ui‖2

+
d0
i

2
‖∇ui(0)‖2 +

gi
2
‖ui(0)‖2L2(ΓεR) +

aεi
2
‖ui(0)‖2L2(Γε)

+ bεi

∫
Γε

v̄(T )ui(T )

︸ ︷︷ ︸
D

+bεi

∫ T

0

∫
Γε

ui∂tv̄.

Removing some positive terms on the left and using Cauchy-Schwarz and Young’s
inequalities to obtain an upper bound for D, we finally get:

(
1

2
− η)

∫ T

0

‖∂tui‖2 +
d0
i

2
‖∇ui(T )‖2 + (

aεi
2
− η)‖ui(T )‖2L2(Γε)

≤ TCB,η +
δε,2

2
cδ‖θ̄‖2∞

∫ T

0

‖∇ui‖2 + C0

+ bεi‖v̄(T )‖2L2(Γε) + bεi‖ui‖∞‖v̄‖∞,

where C0 depends on ‖u0
i ‖. Using Gronwall’s argument, we obtain the statement

of the lemma.

Lemma 4.3.7. The boundedness of the temperature gradient for (P1).

Let ūi ∈ K(T,M0) and assume (A1)-(A2) to hold. Then there exists a positive

constant C(M0) such that ‖∇θε(t)‖ ≤ C(M0) and
∫ T

0
∂tθ

ε(t)||2dt ≤ C(M0) for
t ∈ (0, T ).

Proof. Let φi = ∂tθ
ε
i in (4.25):

‖∂tθε‖2 +
κε0
2
∂t‖∇θε‖2 +

g0

2
‖θε‖2L2(ΓεR) ≤ c

δMN(η‖∂tθε‖2 +
1

4η
‖∇θε‖2).

Applying Gronwall’s lemma gives us the desired statement.
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Theorem 4.3.8. Existence and uniqueness of weak solutions (P ε)
Let (A1)-(A2) hold. Then there exists a unique solution to (P ε).

Proof. For any M > 0, XM := K(M,T ) × K(M,T )N is a closed set of X :=

L2(0, T ;L1(Ωε))
N+1

. Let θ̄1, θ̄2, ūi,1, ūi,2 ∈ K(M,T ), for i ∈ {1, . . . , N}, and
put θ̄ := θ̄1 − θ̄2, ūi := ūi,1 − ūi,2, (θε1, ui,1, v

ε
i,1) = T(θ̄1, ū1) and (θε2, ui,2, v

ε
i,2) =

T(θ̄2, ū2). Moreover, we define θε = θε1−θε2 and ui = ui,1−ui,2 and vεi = vεi,1−vεi,2.

By Lemma 4.3.3 and Lemma 4.3.5, T : XM → XM forM > max(‖θε,0‖L∞(Ωε),M1(T+
1),M2(T +1), . . . ,MN (T +1), ). Hence, we want to prove the existence of a pos-
itive constant C < 1 such that

‖T(θ̄1, ūi,1)−T(θ̄2, ūi,2)‖X ≤ C‖(θ̄1, ūi,1)− (θ̄2, ūi,2)‖X

for small T > 0. Substituting θε1, θ
ε
2, ui,1, ui,2, v

ε
1, v

ε
2 into the formulation:∫

Ωε

∂tθ
ε
1(θε1 − θε2) +

∫
Ωε

κε∇θε1∇(θε1 − θε2) + g0

∫
ΓεR

θε1(θε1 − θε2)

= τε
N∑
i=1

∫
Ωε

∇δūi,1 · ∇θε1(θε1 − θε2),

∫
Ωε

∂tθ
ε
2(θε2 − θε1) +

∫
Ωε

κε∇θε2∇(θε2 − θε1) + g0

∫
ΓεR

θε2(θε2 − θε1)

= τε
N∑
i=1

∫
Ωε

∇δūi,2 · ∇θε2(θε2 − θε1).

Adding the last two equations we obtain:

1

2
∂t‖θε‖2 + κε,0‖∇θε‖2 + g0‖θε‖2L2(ΓεR)

≤ τε
N∑
i=1

∣∣ ∫
Ωε

(∇δūi,1 · ∇θε1 −∇δūi,2 · ∇θε2)(θε1 − θε2)

︸ ︷︷ ︸
A

∣∣.
The term A can be expressed as:

A =

∫
Ωε

(∇δūi,1 · ∇θε1 −∇δūi,2 · ∇θε1)(θε1 − θε2)

+

∫
Ωε

(∇δūi,2 · ∇θε1 −∇δūi,2 · ∇θε2)(θε1 − θε2)

=

∫
Ωε

∇δūi · ∇θε1θε︸ ︷︷ ︸
B

+

∫
Ωε

∇δūi,2 · ∇θεθε

︸ ︷︷ ︸
C

.
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With the help of Lemma 4.3.7, the terms B and C can be estimated as follows:

B ≤ cδM‖ūi‖2 +M‖θε‖2

C ≤ cδ‖ūi,2‖∞(η‖∇θε‖2 +
1

4η
‖θε‖2).

Looking at the formulation for the concentrations, we have:

∫
Ωε

∂tui,1(ui,1 − ui,2) +

∫
Ωε

di∇ui,1 · ∇(ui,1 − ui,2) + gi

∫
ΓεN

ui,1(ui,1 − ui,2)

+ aεi

∫
Γε

ui,1(ui,1 − ui,2)− bεi
∫
Γε

vεi,1(ui,1 − ui,2)

= δε
∫
Ωε

∇δ θ̄1 · ui,1(ui,1 − ui,2) +

∫
Ωε

Ri(u1)(ui,1 − ui,2),

∫
Ωε

∂tui,2(ui,2 − ui,1) +

∫
Ωε

di∇ui,2 · ∇(ui,2 − ui,1) + gi

∫
ΓεN

ui,2(ui,2 − ui,1)

+ aεi

∫
Γε

ui,2(ui,2 − ui,1)− bεi
∫
Γε

vεi,2(ui,2 − ui,1)

= δε
∫
Ωε

∇δ θ̄2 · ui,2(ui,2 − ui,1) +

∫
Ωε

Ri(u2)(ui,2 − ui,1).

We also test the deposition equation with vεi to obtain:

1

2
‖vεi ‖2L2(Γε) = aεi

∫
Γε

vεi ui − bεi‖vεi ‖2L2(Γε).

After adding the three above equations, we obtain:

1

2
∂t‖ui‖2 +

1

2
∂t‖vεi ‖2L2(Γε) + d0

i ‖∇ui‖2 + gi‖ui‖2L2(ΓεR) + aεi‖ui‖2L2(Γε)

≤ (aεi + bεi )

∫
Γε

|vεi ui| − bεi‖vεi ‖2L2(Γε) +

∫
Ωε

|(∇δ θ̄1 · ∇ui,1 −∇δ θ̄2 · ∇ui,2)ui|

+

∫
Ωε

|(Ri(u1)−Ri(u2))ui|,
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1

2
∂t‖ui‖2 +

1

2
∂t‖vεi ‖2L2(Γε) + d0

i ‖∇ui‖2 + gi‖ui‖2L2(ΓεR) + (aεi − η)‖ui‖2L2(Γε) ≤

(
(aεi + bεi )

2

4η
− bεi )‖vεi ‖2L2(Γε) +

∫
Ωε

|∇δ θ̄1 · ∇uiui|

︸ ︷︷ ︸
A

+

∫
Ωε

|∇ui,2 · ∇δ θ̄ui|

︸ ︷︷ ︸
B

+

∫
Ωε

|(Ri(u1)−Ri(u2))ui|

︸ ︷︷ ︸
C

,

where the sub-expressions can be estimated as:

A ≤ η‖∇ui‖2 +
1

4η
cδ‖θ̄‖2∞‖ui‖2,

B ≤ cδM‖θ̄‖2 +M‖ui‖2.

Note that with the boundedness of ui we can treat Ri as Lipschitz:

C ≤ CL‖ui‖2.

Adding up the estimates for the temperature and concentrations:

1

2
‖ui‖2 +

1

2
‖vεi ‖2 +

1

2
‖θε‖2 + d̂i‖∇ui‖2 + κ̂ε‖∇θε‖2 + ĝi‖ui‖2L2(ΓεR)

+ âεi‖ui‖
2
L2(Γε) + ĝ0‖θε‖2L2(ΓεR) ≤ c1‖ui‖

2 + c2‖vεi ‖2 + c3‖θε‖2

+ cδM(‖ūi‖2 + ‖θ̄‖2).

Gronwall’s lemma gives the estimate:

‖θε(t)‖2 + ‖ui(t)‖2 ≤ C
(
‖θ̄‖2L2(0,T ;L2(Ωε)) + ‖ūi‖2L2(0,T ;L2(Ωε))

)
.

Integrating over (0, T ), we have:

T∫
0

‖θε(t)‖2 + ‖ui(t)‖2 ≤ CT
(
‖θ̄‖2L2(0,T ;L2(Ωε)) + ‖ūi‖2L2(0,T ;L2(Ωε))

)
.

Accordingly, T is a contraction mapping for T ′ such that CT ′ < 1. Then the
Banach fixed point theorem shows that (P ε)admits a unique solution in the
sense of Definition 1 on [0, T ′]. Next, we consider (P ε)on [T ′, T ]. Then we can
solve uniquely this problem on [T ′, 2T ′]. Recursively, we can construct a solution
of (P ε)on the whole interval [0, T ].
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4.4 Passing to ε→ 0 (the homogenization limit)

4.4.1 Preliminaries on periodic homogenization

Now that the well-posedness of our microscopic system is available, we can in-
vestigate what happens as the parameter ε vanishes. Recall that ε defines both
the microscopic geometry and the periodicity in the model parameters.

Lemma 4.4.1. Additional a priori estimates.
Let (A1)-(A2) hold. Then the following bounds hold uniformly in ε:

‖∂t∇θε‖L2(Ωε) ≤ C, (4.63)

‖∂t∇ui‖L2(Ωε) ≤ C, (4.64)

where C > 0 is independent of ε.

Proof. For simplicity, we decide to do first a few formal calculations. We dif-
ferentiate (4.8) and (4.9) with respect to time and then test with φ ∈ H1(Ωε).
This gives∫

Ωε

∂2
t θ
εφ+

∫
Ωε

κε∂t∇θε · ∇φ

+ g0

∫
ΓεR

∂tθ
εφ = τε

N∑
i=1

∫
Ωε

∂t(∇δui · ∇θε)φ. (4.65)

Choosing φ = ∂tθ
ε, we get:

1

2
∂t‖∂tθε‖2 + κε0‖∂t∇θε‖2 + εg0‖∂tθε‖2L2(ΓεR) ≤

≤ δε
N∑
i=1

∫
Ωε

(∇δui · ∂t∇θε∂tθε + ∂t∇δui · ∇θε∂tθε). (4.66)

Here we see that

τ ε
N∑
i=1

∫
Ωε

(∇δui · ∂t∇θε∂tθε) ≤ τ ε
N∑
i=1

∫
Ωε

||∇δui||L∞(Ωε)||∂t∇θε||||∂tθε|| ≤

τ εCδ

N∑
i=1

||ui||||∂t∇θε||||∂tθε|| ≤
κ0

2
||∂t∇θε||2 +

1

2κ0
(τ εCδN

2)||ui||2||∂tθε||2,

and also

τ ε
N∑
i=1

∫
Ωε

(∂t∇δui · ∇θε∂tθε) = τ ε
N∑
i=1

∫
Ωε

(∇δ∂tui · ∇θε∂tθε) ≤
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τ ε
N∑
i=1

∫
Ωε

||∇δ∂tui||L∞(Ωε)||∇θε||||∂tθε|| ≤
1

2
τ εCδC(M0)

N∑
i=1

(||∂tui||2 + ||∂tθε||2).

Since ||∂tθε(0)|| ≤ ||∇·κε∇θε(0)||+τ ε
∑N
i=1 ||∇δui(0)·∇θ(0)|| and taking into ac-

count that we already have estimated ‖ui‖L∞(Ωε), ‖∂tui‖L∞(Ωε) and ‖∇θεi ‖L2(Ωε)

in Lemma 4.3.5 and Lemma 4.3.6, Gronwall’s lemma gives us (4.63). We get
(4.64) in the same fashion.

Definition 2. (Two-scale convergence [95],[1]). Let (uε) be a sequence of
functions in L2(0, T ;L2(Ω)), where Ω is an open set in Rn and ε > 0 tends to
0. (uε) two-scale converges to a unique function u0(t, x, y) ∈ L2((0, T )×Ω× Y )
if and only if for all φ ∈ C∞0 ((0, T )× Ω, C∞# (Y )) we have:

lim
ε→0

T∫
0

∫
Ω

uεφ(t, x,
x

ε
)dxdt =

1

|Y |

T∫
0

∫
Ω

∫
Y

u0(t, x, y)φ(t, x, y)dydxdt. (4.67)

We denote (4.67) by uε
2
⇀ u0.

The space C∞# (Y ) refers to the space of all Y -periodic C∞-functions. The
spaces H1

#(Y ) and C∞# (Γ) have a similar meaning; the index # is always indi-
cating that is about Y -periodic functions.

Theorem 4.4.2. (Two-scale compactness on domains)

(i) From each bounded sequence (uε) in L2(0, T ;L2(Ω)), a subsequence may be
extracted which two-scale converges to u0(t, x, y) ∈ L2((0, T )× Ω× Y ).

(ii) Let (uε) be a bounded sequence in H1(0, T ;H1(Ω)), then there exists ũ ∈
L2((0, T )×H1

#(Y )) such that up to a subsequence (uε) two-scale converges

to u0 ∈ L2(0, T ;L2(Ω)) and ∇uε 2
⇀ ∇xu0 +∇yũ.

Proof. See e.g. [95],[1].

Definition 3. (Two-scale convergence for ε-periodic hypersurfaces [94]). A se-
quence of functions (uε) ∈ L2((0, T )×Γε) is said to two-scale converge to a limit
u0 ∈ L2((0, T ) × Ωε × Γ) if and only if for all φ ∈ C∞0 ((0, T ) × Ωε;C∞# (Γ)) we
have

lim
ε→0

ε

T∫
0

∫
Γε

uεφ(t, x,
x

ε
) =

1

|Y |

T∫
0

∫
Ω

∫
Γ

u0(t, x, y)φ(t, x, y)dγydxdt. (4.68)

Theorem 4.4.3. (Two-scale compactness on surfaces)

(i) From each bounded sequence (uε) ∈ L2((0, T )× Γε) one can extract a sub-
sequence uε which two-scale converges to u0 ∈ L2((0, T )× Ωε × Γ).
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(ii) If a sequence (uε) is bounded in L∞((0, T )×Γε), then uε two-scale converges
to a u0 ∈ L∞((0, T )× Ωε × Γ)

Proof. See [94] for proof of (i), and [82] for proof of (ii).

Lemma 4.4.4. Let (A1)-(A2)hold. Denote by ui and θε the Bochner exten-
sions1 in the space L2(0, T ;H1(Ω)) of the corresponding functions originally
belonging to L2(0, T ;H1(Ωε)). Then the following statement holds:

(i) ui ⇀ ui and θε ⇀ θ in L2(0, T ;H1(Ω)),

(ii) ui
∗
⇀ ui and θε

∗
⇀ θ in L∞((0, T )× Ω),

(iii) ∂tui ⇀ ∂tui and ∂tθ
ε ⇀ ∂tθ in L2(0, T ;L2(Ω)),

(iv) ui → ui and θε → θ strongly in L2(0, T ;Hβ(Ω)) for 1
2 < β < 1 and√

ε‖ui − ui‖L2((0,T )×Γε) → 0 as ε→ 0,

(v) ui
2
⇀ ui, ∇ui

2
⇀ ∇xui +∇yu1

i where u1
i ∈ L2((0, T )× Ω;H1

#(Y )),

(vi) θε
2
⇀ θ, ∇θε 2

⇀ ∇xθ +∇yθ1 where θ1 ∈ L2((0, T )× Ω;H1
#(Y )),

(vii) vεi
2
⇀ vi ∈ L∞((0, T )× Ω× Γ) and ∂tv

ε
i

2
⇀ ∂tvi ∈ L2((0, T )× Ω× Γ).

Proof. We obtain (i) and (ii) as a direct consequence of the fact that ui and θε are
uniformly bounded in L∞(0, T ;H1(Ω)) ∩ L∞((0, T )× Ω). A similar argument
gives (iii). We get (iv) using the compact embedding Hα(Ω) ↪→ Hβ(Ω) for
β ∈ ( 1

2 , 1) and 0 < β < α ≤ 1, since Ω has Lipschitz boundary. Note that (iv)
implies the strong convergence of ui up to the boundary.

Denote W := {w ∈ L2(0, T ;H1(Ω)) and ∂tw ∈ L2(0, T ;L2(Ω))}. We have
ui, θ

ε ∈ W . Using Lions-Aubin lemma [77] we see that W is compactly em-
bedded in L2(0, T ;Hβ(Ω)) for β ∈ [0.5, 1]. We then use the trace inequality for
perforated medium from [55], namely for all φ ∈ H1(Ωε) there exists a constant
C independent of ε such that:

ε‖φ‖L2(Γε) ≤ C(‖φ‖2L2(Ωε) + ε2‖∇φ‖2L2(Ωε)). (4.69)

Applying (4.69) to ui − ui, we get:
√
ε‖ui − ui‖2L2((0,T )×Γε) ≤ C‖ui − ui‖

2
L2(0,T ;Hβ(Ωε))

≤ C‖ui − ui‖2L2(0,T ;Hβ(Ω)), (4.70)

where ‖ui − ui‖2L2(0,T ;Hβ(Ω)) → 0 as ε → 0. As for the rest of the statements

(v)-(vii), since ui are bounded in L∞(0, T ;H1(Ω)), up to a subsequence we

have that ui
2
⇀ ui in L2(0, T ;L2(Ω)), and ∇ui

2
⇀ ∇xui + ∇yu1

i , where u1
i ∈

L2((0, T )× Ω;H1
#(Y )). By Theorem 4.4.3, vεi

2
⇀ vi ∈ L∞((0, T )× Ω× Γε) and

∂tv
ε
i

2
⇀ ∂tvi ∈ L2((0, T )× Ω× Γε).

1For our choice of microstructure, the interior extension from H1(Ωε) into H1(Ω)) exists
and the corresponding extension constant is independent of the choice of ε; see the standard
extension result reported in Lemma 5 from [55].
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4.4.2 Two-scale homogenization procedure

Theorem 4.4.5. Let (A1)-(A2)hold. Then the sequence of solutions (θε, ui, v
ε
i )

to (P ε)converges as ε → 0 to θ, ui ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and
vi ∈ H1((0, T );L2(Ω× Γ)) respectively that satisfy (4.74), (4.75) and (4.76).

Proof. Testing (P ε)with oscillating functions φ(t, x) = α(t, x)+εβ(t, x, xε ), where
α ∈ C∞((0, T )× Ω) and β ∈ C∞((0, T )× Ω;C∞# (Y )), we obtain:∫

Ωε

∂tθ
ε(α+ εβ) +

∫
Ωε

κε(
x

ε
)∇θε(∇xα+ ε∇xβ +∇yβ)

+ g0ε

∫
Γε

θε(α+ εβ) =

N∑
i=1

∫
Ωε

τε(
x

ε
)∇δui · ∇θε(α+ εβ), (4.71)

∫
Ωε

∂tui(α+ εβ) +

∫
Ωε

di(
x

ε
)∇ui(∇xα+ ε∇xβ +∇yβ)

+ giε

∫
Γε

ui(α+ εβ) + ε

∫
Γε

(aεiui − bεivεi )(α+ εβ)

=

∫
Ωε

δεi (y)∇δθε · ∇ui(α+ εβ) +

∫
Ωε

Ri(u)(α+ εβ), (4.72)

ε

∫
Γε

∂tv
ε
i (α+ εβ) = ε

∫
Γε

(aεi (
x

ε
)ui − bεi (

x

ε
)vεi )(α+ εβ). (4.73)

Using the concept of two-scale convergence for ε→ 0 in (4.71), (4.72) and (4.73)
yields:∫

Ω

∂tθ
0α+

1

|Y |

∫
Ω

∫
Y

κ(y)(∇θ0 +∇yθ1)(∇xα(x) +∇yβ(x, y))

+ g0
|Γ|
|Y |

∫
Ω

θ0α =

N∑
i=1

1

|Y |

∫
Ω

∫
Y

τ(y)∇δu0
i · (∇θ0 +∇yθ1)α (4.74)

∫
Ω

∂tu
0
iα+

1

|Y |

∫
Ω

∫
Y

di(y)(∇u0
i +∇yu1

i )(∇xα+∇yβ)

+ gi
|Γ|
|Y |

∫
Ω

u0
iα+

1

|Y |

∫
Ω

∫
Γ

(ai(y)ui − bi(y)vi)α

=
1

|Y |

∫
Ω

∫
Y

δi(y)∇δθ0 · (∇u0
i +∇yu1

i )α+

∫
Ω

Ri(u
0)α (4.75)

∫
Ω

∂tv
0
i α =

1

|Y |

∫
Ω

∫
Γ

(ai(y)u0
i − bi(y)v0

i )α. (4.76)
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Note that we have used strong convergence for passing to the limit in the ag-
gregation term in (4.75). Now we just need to find θ1 and u1

i . To do this we
choose α = 0 in (4.74) and (4.75). This gives for all β ∈ C∞((0, T )×Ω;C∞# (Y ))
a system of decoupled equations:∫

Ω

∫
Y

κ(y)(∇θ0 +∇yθ1)∇yβ(x, y) = 0 (4.77)

∫
Ω

∫
Y

di(y)(∇u0
i +∇yu1

i )∇yβ(x, y) = 0 (4.78)

Since θ1 and u1
i depend linearly on θ0 and u0

i respectively, they can be defined
as:

θ1 :=

3∑
j=1

∂xjθ
0θ̄j , (4.79)

u1
i :=

3∑
j=1

∂xju
0
i ū
j
i , (4.80)

where θ̄j and ūji solve the cell problems (4.81)-(4.82) and (4.83)-(4.84), respec-
tively: 

−∇y · (κ(y)∇y θ̄j) =

3∑
k=1

∂ykκjk(y) in Y,

θ̄j is periodic in Y,

(4.81)

(4.82)
−∇y · (di(y)∇yūji ) =

3∑
k=1

∂ykd
jk
i (y) in Y,

ūj is periodic in Y.

(4.83)

(4.84)

Now, choose β = 0 in (4.74) to obtain:∫
Ω

∂tθ
0α+

1

|Y |

∫
Ω

∫
Y

κ(y)(∇θ0 +∇y(

3∑
j=1

∂xjθ
0θ̄j)∇xα(x))

+ g0
|Γ|
|Y |

∫
Ω

θ0α =

N∑
i=1

1

|Y |

∫
Ω

∫
Y

τ(y)∇δu0
i · (∇θ0 +∇y(

3∑
j=1

∂xjθ
0θ̄j)α. (4.85)

Integrating (4.85) w.r.t. y leads to:∫
Ω

∂tθ
0α+

∫
Ω

K∇θ0∇xα+ g0
|Γ|
|Y |

∫
Ω

θ0α =

N∑
i=1

∫
Ω

T∇δu0
i · ∇θ0α, (4.86)
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where

Kij :=
1

|Y |

∫
Y

(κij(y) +

3∑
k=1

κkj∂yk θ̄
i(y)), (4.87)

and

Tij :=
1

|Y |

∫
Y

(τij(y) +

3∑
k=1

τkj∂yk θ̄
i(y)). (4.88)

We can similarly derive from (4.75) that:∫
Ω

∂tu
0
iα+

∫
Ω

Di∇u0
i∇xα+ gi

|Γ|
|Y |

∫
Ω

u0
iα

+

∫
Ω

(Aiu
0
i −Biv0

i )α =

∫
Ω

Fi∇δθ0 · ∇u0
iα+

∫
Ω

Ri(u
0)α, (4.89)

∫
Ω

∂tv
0
i α =

∫
Ω

(Aiu
0
i −Biv0

i )α, (4.90)

where

Dl,ij :=
1

|Y |

∫
Y

(dl,ij(y) +

3∑
k=1

dl,kj∂yk ū
i
l(y)), (4.91)

Ai :=
1

|Y |

∫
Γ

ai(y), (4.92)

Bi :=
1

|Y |

∫
Γ

bi(y), (4.93)

Fl,ij :=
1

|Y |

∫
Y

(δl,ij(y) +

3∑
k=1

δl,kj∂yk ū
i
l(y)). (4.94)

We refer to the system (4.86)- (4.94) as (P 0). Note that the initial conditions
for (P 0) are the same as for (P ε).

4.4.3 Strong formulation of (P 0)

We summarize the strong formulation for (P 0) in the following Lemma:

Lemma 4.4.6. (Strong formulation). Assume (A1)-(A2) to hold. Then as
ε→ 0, the sequence of weak solutions of the microscopic problem (P ε) converges
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to the weak solution of the following macroscopic problem:

∂tθ +∇ · (−K∇θ) + g0
|Γ|
|Y |

θ

−
N∑
i=1

Ti∇δui · ∇θ = 0 in (0, T )× Ω (4.95)

∂tui +∇ · (−Di∇ui) + gi
|Γ|
|Y |

ui +Aiui

−Bivi = Fi∇δθ · ∇ui +Ri(u) in (0, T )× Ω (4.96)

∂tvi = Aiui −Bivi (4.97)

with boundary conditions:

−K∇θ · n = 0, on (0, T )× ∂Ω, (4.98)

− Di∇ui · n = 0, on (0, T )× ∂Ω, (4.99)

and initial conditions:

θ(0, x) = θ0(x) in Ω, (4.100)

ui(0, x) = u0
i (x) in Ω, (4.101)

vi(0, x) = v0
i (x) on Γ. (4.102)

Here |Γ|/|Y |, K, Di, Ai, and Bi are the effective coefficients defined in (4.91)-
(4.94).

Proof. This follows from Theorem 4.4.5. See also [82] and [36] for a similar
application of the two-scale convergence method.
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Chapter 5

Numerical Solution of the
Transport Problem

5.1 Introduction

This Chapter describes the discretization techniques that we have used in or-
der to solve our problem numerically. The main challenges are the very large
number of unknowns resulting from the Smoluchowski equations, as well as the
very large number of degrees of freedom for each unknown, resulting from the
complexity of the porous medium geometry. We deal with these challenges by
leveraging homogenization techniques in both cases, thus greatly reducing the
computational effort, while still providing relevant information on the macro-
scopic scale, which is of most interest usually. The introduction to our problem
can be found in Chapter 2, which also describes the physical phenomena related
to aggregation and fragmentation as well as gives an overview on parameters
and coefficients related to the implementation.

In this thesis, we use two different concepts of averaging. On one hand, we use
periodic homogenization methods to treat the multiscale nature of the porous
medium (cf. Chapter 3 and Chapter 4). On the other hand, we drastically
reduce the original number of colloidal species (unknowns) to a computationally
tractable amount. This is shown in Section 5.2, where we present an overview
of discretization techniques for the Smoluchowski population balance equation
(PBE). They describe not only how we discretize the right hand side of our
system, but essentially they also explain how we choose the variables that we
solve for, since solving the full system can result in millions of variables in some
cases.

In Section 5.3, we give an overview of the techniques used to discretize our
reaction-diffusion system, including the Newton method and iterative splitting
schemes.

In Section 5.4 we give details related to solving numerically the cell problems
that were introduced in Chapter 3, which we need to compute in order to obtain
the effective coefficients on the macroscopic scale.

In Section 5.5 we give an overview of the Numerics libraries used to implement
our discretization along with their advantages and drawbacks that we faced along
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the way.

5.2 Discretization of the population balance equa-
tion

5.2.1 Basic equations

We consider the discrete aggregation-breakage PBE

∂nk(t)

∂t
=

1

2

∑
i+j=k

β(ai, aj)ninj −
N∑
i=1

β(ak, ai)nink

− bknk +

N∑
i=k

γkibini,

as well as its continuous version

∂n(v, t)

∂t
=

1

2

v∫
0

β(v − u, u)n(v − u)n(u)du−
∞∫

0

β(u, v)n(u)n(v)du

− b(v)n(v) +

∞∫
v

γ(v, u)b(u)n(u)du (5.1)

together with suitable initial conditions. The momentsMi of the number density
function n(v, t) are defined as

Mi =

∞∫
0

vin(v, t)dv, for i ∈ N. (5.2)

Substitute (5.2) into (5.1) to obtain:

dMi

dt
=− 1

2

∞∫
0

dv

∞∫
0

du
[
vi + ui − (v + u)i

]
β(v, u)n(v)n(u)

+

∞∫
0

 u∫
0

( v
u

)i
γ(v, u)− 1

n(u)b(u)uidu dv. (5.3)

Integrating the continuous equation (5.1) over [vi, vi+1] gives:

dNi(t)

dt
=

1

2

vi+1∫
vi

dv

v∫
0

β(v − u, u)n(v − u)n(u)du−
vi+1∫
vi

n(v)dv

∞∫
v

β(u, v)n(u)n(v)du

+

vi+1∫
vi

dv

∞∫
v

γ(v, u)b(u)n(u)du−
vi+1∫
vi

b(v)n(v)dv, (5.4)
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where the quantity Ni(t) is defined by

Ni(t) :=

vi+1∫
vi

n(v, t)dv. (5.5)

A complete set of equations can be obtained by representing the right-hand
side of (5.4) in terms of Ni. This is precisely the term modeling the aggregation
and fragmentation of the colloidal species.

There are two major approximate approaches to discretizing (5.4): the M-I
and M-II methods.

The M-I approach applies the mean-value theorem on the collision frequency:

vi+1∫
vi

dv

vj+1∫
vj

β(u, v)n(u, t)n(v, t)du = βijNi(t)Nj(t), (5.6)

βij := β(xi, xj), xi ∈ [vi, vi+1], xj ∈ [vj , vj+1]. (5.7)

The M-II approach applies the mean value theorem on the density:

vi+1∫
vi

dv

vj+1∫
vj

β(u, v)n(u, t)n(v, t)du =

n̄i(t)n̄j(t)

vi+1∫
vi

dv

vj+1∫
vj

β(u, v)du, (5.8)

n̄i(t) :=
1

vi+1 − vi

vi+1∫
vi

n(v, t)dv. (5.9)

5.2.2 Discretization approaches for the aggregation term

In the following subsections we give an overview of discretization approaches
for the right hand side of (5.1). For a practical application of some of these
approaches see e.g. [105].

5.2.2.1 Hidy and Brock approach

The reference [53] used the M-I approach with a linear grid to restore autonomy
for PBEs with only aggregation. They considered particle population in a size
range [vi, vi+1] to be represented by size xi = ix1:

n(v, t) =

N∑
j=1

Njδ(v − xj). (5.10)
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Substitute (5.10) in (5.4), use Aij = βijNi(t)Nj(t) for shortness:

dNi
dt

=
1

2

i−1∑
j=1

Aj,i−j −
N∑
j=1

Aij . (5.11)

The variation of the µth moment can be obtained by substituting (5.10) in (5.3):

dMµ

dt
= −1

2

N∑
i=1

N∑
j=1

(xµi + xµj − (xi + xj)
µ)Aij . (5.12)

Alternatively, multiplying (5.11) by xµi and summing up over all i gives:

d

dt

(∑
i

Nix
µ
i )

)
=
dMµ

dt
= −1

2

N∑
i=1

N∑
j=1

(xµi + xµj − (xi + xj)
µ)Aij . (5.13)

(5.12) and (5.13) are exactly the same for all values of µ. This is called “internal
consistency”. Thus, the discretization technique based on uniform grid yields a
set of equations which is internally consistent. The major disadvantage of this
technique is that it requires a large number of size ranges to cover the entire size
range with acceptable resolution.

5.2.2.2 Batterham approach

The reference [8] used the M-I approach with a geometric grid vi+1 = 2vi for pure
aggregation PBE. Particles in [vi, vi+1] are represented by xi. The aggregation
of these particles led to the formation of new particles lying on the boundaries
of a size range. The authors divided such particles equally (mass) between the
adjoining size ranges. The particles formed in a sub-size range, e.g. [xi, vi+1] for
the ith size range, were assigned to xi such that the mass was conserved:

dNi(t)

dt
=

3

8
Ai−1,i−2 +

3

4
Ai,i−1+

Ai−1,i−1 +

i−2∑
j=1

(1 + 2j−i)Aij −
N∑
j=1

Aij −Aii. (5.14)

These equations conserve total mass(internal consistency with regard to first
moment), but fail to yield the correct discrete equation for total numbers or any
other moment.

5.2.2.3 Hounslow approach

[57] used the M-I approach with same grid as [8], but assumed the particles to be
uniformly distributed in a size range. They identified four types of interactions
that can change the total population in a size range and derived expressions for
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each one of them separately. The set of equations derived was internally con-
sistent w.r.t. only M0, but with a correction factor, independent of aggregation
kernel, also w.r.t. M1. Here, we have:

dNi(t)

dt
=

i−2∑
j=1

2j−i+1Ai−1,j +
1

2
Ai−1,i−1 −

i−1∑
j=1

2j−iAij −
N∑
j=1

Aij . (5.15)

5.2.2.4 Fixed pivot approach

This method is due to [72]. Consider quantity of interest F (t) of entire popula-
tion obtainable from property f(x) of a single particle of volume x ∈ (0,∞):

F (t) =

∞∫
0

f(x)n(x, t)dx. (5.16)

To obtain the evolution of F (t), one calculates the evolution of the number
density n(x, t), which can also be used to obtain any other integral property.
Another approach is to directly address how changes in certain desired proper-
ties F1(t), F2(t), ... are brought about by enforcing exact preservation of changes
in properties f1(x), f2(x), ... when particles break or aggregate. In other words,
discrete equations are designed to produce the “correct” equation for the evolu-
tion of F (t).

Consider the aggregation of two particles of sizes xj and xk. In general,
aggregation can be defined as change in property f(x) from f(xj) + f(xk) to
f(xj+xk). For uniform grid (xi = ix1, the size of a new aggregate always exactly
matches with one of xi’s. Thus, for this discretization, changes in any property
f(x) corresponding to aggregation of two particles are exactly preserved.

If the size of the new particle does not match with any of the representative
sizes, then many possibilities exist with regard to its representation. The particle
should be assigned to the nearby representative sizes such that the changes
in properties f1(x), f2(x), ... due to aggregation or breakage events are exactly
preserved in equations for Ni(t).

Example 1. We need to predict the evolution of the second moment of the distri-
bution. A particle of size v ∈ (xi, xi+1) is formed due to breakage or aggregation.
Particle v should be represented through populations at sizes xi and/or xi+1 in
a way that the second moment should be exactly preserved. The reassigned par-
ticles should have second moment equal to v2. Formation of (v/xi)

2 particles of
size xi or (v/xi+1)2 particles of size xi+1, both satisfy the requirement. Clearly,
at least one more property should be preserved to uniquely specify an aggregation
or breakage event.

This method, unlike several others, does not distinguish between intra- and
inter-interval events:

• all events leading to formation of new particle are birth terms,
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• all events leading to loss of a particle are death terms.

Thus, the intra-interval events that result in the birth as well as loss of particles
from the same size range will be considered twice, but treated like inter-interval
events eliminating the need for special treatment of intra-interval events. This
substantially simplifies the method.

When a new particle has its size corresponding to a representative size, all
properties associated with it are naturally preserved. In other case, we assign
to particle to the adjoining representative volumes such that two pre-chosen
properties of interest are exactly preserved.

The formation of a particle of size v ∈ [xi, xi+1], due to break up or aggre-
gation, is represented by assigning fractions a(v, xi) and b(v, xi+1) to particle
populations at xi and xi+1, respectively. For the conservation of two general
properties f1(v) and f2(v), these fractions must satisfy the following equations:a(v, xi)f1(xi) + b(v, xi+1)f1(xi+1) = f1(v),

a(v, xi)f2(xi) + b(v, xi+1)f2(xi+1) = f2(v).

Note that these equations can be generalized for the preservation of four
properties by assigning a particle of size v to populations at xi−1,xi,xi+1,xi+2.

5.2.3 Approximation details

In what follows, we describe in detail the approximations for the terms on the
right hand side of (5.4).

5.2.3.1 Approximation of the breakage mechanism

Dealing with the birth term. Using B(v, u) := γ(v, u)b(u)n(u, t) for short-
ness, the birth term given by:

Rb+ =

vi+1∫
vi

dv

∞∫
v

B(v, u)du (5.17)

is modified to

Rb+ =

xi+1∫
xi

a(v, xi)dv

∞∫
v

B(v, u)du+

xi∫
xi−1

b(v, xi)dv

∞∫
v

B(v, u)du. (5.18)

Since the particle population is assumed to be concentrated at representative
sizes xi,

n(v, t) =

N∑
i=1

Ni(t)δ(v − xi). (5.19)
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Substituting (5.19) into (5.17):

Rb+ =
∑
k≥i

bkNk(t)

xi+1∫
xi

a(v, xi)γ(v, xk)dv

+
∑
k≥i

bkNk(t)

xi∫
xi−1

b(v, xi)γ(v, xk)dv. (5.20)

Substitute solutions of (5.17) into (5.20) to get:

Rb+ =

N∑
k=i

ψi,kbkNk(t). (5.21)

In (5.21) ψi,k is interpreted as the contribution to population at ith representa-
tive size due to the breakage of particle of size xk:

ψi,k :=
B

(ξ)
i,kx

η
i+1 −B

(η)
i,k x

ξ
i+1

xξix
η
i+1 − x

η
i x

ξ
i+1

+
B

(ξ)
i−1,kx

η
i−1 −B

(η)
i−1,kx

ξ
i−1

xξix
η
i−1 − x

η
i x

ξ
i−1

, (5.22)

B
(ξ)
i,k :=

xi+1∫
xi

vξγ(v, xk)dv. (5.23)

The exact preservation of numbers and mass, for instance, is achieved by setting
ξ = 0, η = 1. In this case:

ψi,k :=

xi+1∫
xi

xi+1 − v
xi+1 − xi

γ(v, xk)dv +

xi∫
xi−1

v − xi−1

xi − xi−1
γ(v, xk)dv. (5.24)

The first and second integral terms reduce to zero for i = k and i = 1, re-
spectively. The integral terms appearing in (5.23) or (5.24) can be evaluated
analytically for a large class of γ(u, v) functions. Otherwise they can be com-
puted numerically at negligible computational cost.

Dealing with the death term. Substituting (5.19) into death term(last term
in (5.4)) given by:

Rb− =

vi+1∫
vi

b(v)n(v, t)dv,

we obtain
Rb− = biNi(t). (5.25)
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5.2.3.2 Approximation of the aggregation mechanism

Dealing with the birth term. Using A(u, v) = β(u, v)n(u, t)n(v, t) for short-
ness, the birth term is given by:

Ra+ =
1

2

vi+1∫
vi

dv

v∫
0

A(v − u, u)du. (5.26)

The population at representative volume xi gets a fractional particle for every
particle born in (xi−1, xi) ∪ (xi, xi+1):

• a(v, xi) particles are assigned to xi for particles born in (xi, xi+1),

• b(v, xi) particles are assigned to xi for particles born in (xi−1, xi).

Here, we have:

Ra+ =
1

2

xi+1∫
xi

a(v, xi)dv

v∫
0

A(v − u, u)du+
1

2

xi∫
xi−1

b(v, xi)dv

v∫
0

A(v − u, u)du.

(5.27)
Substitute n(v, t) from (5.19):

Ra+ =

N∑
k=1

N∑
j=k

xi−1≤(xj+xk)≤xi+1

(1− 1

2
δjk)φjki Ajk, where (5.28)

φjki =


vξxηi+1−v

ηxξi+1

xξix
η
i+1−x

η
i x
ξ
i+1

, xi ≤ (v = xj + xk) ≤ xi+1

vξxηi−1−v
ηxξi−1

xξix
η
i−1−x

η
i x
ξ
i−1

, xi−1 ≤ (v = xj + xk) ≤ xi.
(5.29)

For preservation of mass and numbers, φjki is given by a simple expression:

φjki =


xi+1−v
xi+1−xi , xi ≤ (v = xj + xk) ≤ xi+1

v−xi−1

xi−xi−1
, xi−1 ≤ (v = xj + xk) ≤ xi.

(5.30)

Note that (5.28) applies for a general grid. Possible combinations of classes
j and k satisfying the constraint xi−1 ≤ (xj + xk) ≤ xi+1 are determined at
the time of grid generation, which eliminates the need for checking the same
inequalities repeatedly as the computation proceeds.

Dealing with the death term. Substituting (5.19) into death term(second
term in (5.4)) given by

Ra− =

vi+1∫
vi

∫ ∞
0

A(u, v)du. (5.31)
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we obtain

Ra− =

N∑
k=1

Aik. (5.32)

5.2.3.3 Discretized equation for aggregation-breakage interactions

Summarizing, the discretized equations approximating the coupled aggregation-
breakage problem are:

dNi(t)

dt
=

N∑
k=1

N∑
j=k

xi−1≤(xj+xk)≤xi+1

(1− 1

2
δjk)φjki Ajk −

N∑
k=1

Aik +

N∑
k=i

ψi,kbkNk(t)− biNi(t),

where

φjki :=


xi+1−v
xi+1−xi , xi ≤ (v = xj + xk) ≤ xi+1

v−xi−1

xi−xi−1
, xi−1 ≤ (v = xj + xk) ≤ xi

,

ψi,k :=
B

(ξ)
i,kx

η
i+1 −B

(η)
i,k x

ξ
i+1

xξix
η
i+1 − x

η
i x

ξ
i+1

+
B

(ξ)
i−1,kx

η
i−1 −B

(η)
i−1,kx

ξ
i−1

xξix
η
i−1 − x

η
i x

ξ
i−1

,

B
(ξ)
i,k :=

xi+1∫
xi

vξγ(v, xk)dv.

The parameters of the method are ξ and η. They determine which of the two
moments of the distribution are needed to be preserved.

The present technique permits variations in the grid, allowing for an easy
testing of the convergence and accuracy of the numerical solutions.

5.3 Time and space discretization of the diffusion-
advection-reaction equation

This section presents a fully discrete numerical scheme that approximates the so-
lution of the diffusion-reaction-deposition problem, where the Soret and Dufour
coupling terms are taken into consideration.

5.3.1 Linearization schemes

Now we describe the Newton scheme and an iterative splitting scheme used to
discretize our problem, which we recall here:
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Find u = (θ, u1, . . . , uN , v1, . . . , vN ) satisfying:

∂tθ +∇ · (−κ∇θ)− τ
N∑
i=1

∇δui · ∇θ = 0 in (0, T )× Ω (5.33)

∂tui +∇ · (−di∇ui)− δ∇δθ · ∇u = Ri(u) in (0, T )× Ω, (5.34)

∂tvi = aivi − bivi on (0, T )× Γ, (5.35)

with the boundary conditions

− κ∇θ · n = 0 on (0, T )× ΓN , (5.36)

θ = θD on (0, T )× ΓD, (5.37)

− di∇ui · n = aiui − bivi on (0, T )× Γ, (5.38)

− di∇ui · n = 0 on (0, T )× ΓN , (5.39)

ui = uiD on (0, T )× ΓD, (5.40)

and the initial conditions

θ(0, x) = θ0(x) for x ∈ Ω, (5.41)

ui(0, x) = u0
i (x) for x ∈ Ω, (5.42)

vi(0, x) = v0
i (x) for x ∈ Γ. (5.43)

Recall also the definition of the weak solutions to (5.33)-(5.43):

Definition 4. A vector u = (θ, u1, . . . , uN , v1, . . . , vN ) of functions is a weak
solution of (5.33)-(5.43) if θ, ui ∈ L2(0, T ;H1(Ω)) and vi ∈ L2(0, T ;L2(Ω)) for
i ∈ {1, . . . , N} and the following identities hold:

for all φ ∈ H1(Ω):∫
Ωε

∂tθφ+

∫
Ωε

κ∇θ · ∇φ = τ

N∑
i=1

∫
Ωε

∇δui · ∇θφ, (5.44)

and for all ψi ∈ H1(Ω):∫
Ωε

∂tuiψi +

∫
Ωε

∇diui · ∇ψi +

∫
Γε

(aεiui − bεivi)ψi

= δi

∫
Ωε

∇δθ · ∇uiψi +Ri(ui)ψi, (5.45)

and for all ϕi ∈ L2(Ω):∫
Γε

∂tviϕi =

∫
Γε

(aεiui − bεivi)ϕi, (5.46)

together with (5.41)-(5.43).
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Recall that in Chapter 4 we have proven existence, uniqueness, positivity
and boundedness of solutions to (5.33)-(5.43) under the assumptions:

1. 0 < κ0 ≤ κ ≤ κ1, 0 < d0 ≤ di ≤ d1, δi < δ1, aε,0 ≤ aεi ≤ aε,1, and bεi ≤ bε,1
for i ∈ {1, . . . , N} where κ0, κ1, d0, d1, δ1, aε,0, aε,1 and bε,1 are positive
constants.

2. θ0 ∈ L∞+ (Ω) ∩ H2(Ω), ui ∈ L∞(Ω) ∩ H2(Ω), and v0
i ∈ L∞(Γ) for i ∈

{1, . . . , N}.

We split our time interval [0, T ] into a finite number of closed subinter-
vals [t0 := 0, t1], [t1, t2], . . . , [tN−1, tN := T ]. The subintervals need not be
equidistant, so we denote their lengths as τj = tj − tj−1. Further, denote
uji (x) := ui(tj , x), and vji (x) := vi(tj , x), and θj(x) := θ(tj , x).

We now use the following approximations to the time derivatives

∂tθ(tj , x) ≈ θj(x)− θj−1(x)

τj
, (5.47)

∂tui(tj , x) ≈ uji (x)− uj−1
i (x)

τj
, (5.48)

∂tvi(tj , x) ≈ vji (x)− vj−1
i (x)

τj
. (5.49)

Using Rothe’s method (see e.g. [103], [63]), we substitute (5.47)-(5.49) into
(5.33)-(5.43) and obtain the following time-discrete nonlinear system.

Find (θj , uj1, . . . , u
j
N , v

j
1, . . . , v

j
N ) satisfying

θj − θj−1

τj
+∇ · (−κ∇(αθj + (1− α)θj−1))−

τ

N∑
i=1

∇δ(αuji + (1− α)uj−1
i ) · ∇(αθj + (1− α)θj−1) = 0 in Ω (5.50)

uji − u
j−1
i

τj
+∇ · (−di∇(αuji + (1− α)uj−1

i ))−

δ∇δ(αθj + (1− α)θj−1) · ∇(αuji + (1− α)uj−1
i )

= Ri(αu
j + (1− α)uj−1) in Ω, (5.51)

vji − v
j−1
i

τj
= ai(αu

j
i + (1− α)uj−1

i )− bi(αvji + (1− α)vj−1
j ) on Γ, (5.52)
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with the boundary conditions

− κ∇θj · n = 0 on ΓN , (5.53)

θj = θD on ΓD, (5.54)

− di∇uji · n = aiu
j
i − biv

j
i on Γ, (5.55)

− di∇uji · n = 0 on ΓN , (5.56)

uji = ujiD on ΓD, (5.57)

where θ0, u0
i and v0

i are the given by the initial conditions. Note that we have
introduced a parameter α here. The choose of α = 0 corresponds to the explicit
Euler method, while α = 1 corresponds to the implicit Euler method. Both
methods are first order accurate. Another choice of α = 0.5 leads to the Crank-
Nicholson method which is second order accurate and implicit.

Now that the time variable has been discretized, the next step is to discretize
the spatial variable using the Finite Element method (see e.g. [16]). We mul-
tiply (5.50)-(5.52) with a test function and integrate over Ω and Γ respectively,
integrating by parts where necessary. We obtain:

(θj , φ)− (θj−1, φ) + τj [α(κ∇θj ,∇φ) + (1− α)(κ∇θj−1,∇φ)−

τ

N∑
i=1

(∇δ(αuji + (1− α)uj−1
i ) · ∇(αθj + (1− α)θj−1, φ))] = 0 (5.58)

(uji , ψ)− (uj−1
i , ψ) + τj [α(di∇uji ,∇ψ) + (1− α)(di∇uj−1

i ,∇ψ)+

α(aiu
j
i − biv

j
i , ψ)Γ + (1− α)(aiu

j−1
i − bivj−1

i , ψ)Γ

− δ(∇δ(αθj + (1− α)θj−1) · ∇(αuji + (1− α)uj−1
i ), ψ)] = (R(uj), ψ) (5.59)

(vji , ϕ)− (vj−1
i , ϕ) = τj [α(aiu

j
i − biv

j
i , ϕ)Γ + (1− α)(aiu

j−1
i − bivj−1

i , ϕ)Γ].
(5.60)

We discretize the space variable by making a triangulation Th of Ω and
approximating uji (x) ≈

∑
k U

j,k
i φh,ki (x), where φh,ki are the shape functions,

polynomials on each triangle of Th, that approximate the space H1(Ω), and
U j,ki are the unknown nodal values of the solution.

Accordingly θj(x) ≈
∑
k T

j,kψh,k(x) and vji (x) ≈
∑
k V

j,k
i ϕh,ki (x), where

ψh,k(x) and ϕh,ki (x) are the appropriate shape functions.

We then substitute these expansions into (5.58)-(5.60), taking the test func-
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tions to be φh,ki , ψh,k, ϕh,ki , and α = 1 for the implicit Euler method:

F1(T j , U ji , V
j
i ) := MθT j −MθT j−1 + τj(A

θT j −
∑
i

U j,Ti ST j) = 0, (5.61)

F i2(T j , U ji , V
j
i ) := MuU ji −M

uU j−1
i

+ τj(A
uU ji −

∑
i

U j,Ti DT j −Ri(U j)) = 0, (5.62)

F i3(T j , U ji , V
j
i ) := MvV ji −M

vV j−1
i + τj(−CiU ji +BiV

j
i ) = 0. (5.63)

5.3.2 An iterative Newton scheme

Based on Newton’s method, we compute the nth approximate solution from the
n − 1st, using a damping parameter β to ensure a better global convergence.
Here we denote Uj := [T j , U ji , V

j
i ], and F := [F1, F

1
2 , . . . , F

N
2 , F 1

3 , . . . , F
N
3 ]:

∇F (Uj)∆Uj = −F (Uj), (5.64)

Uj+1 = Uj + β∆Uj . (5.65)

Thus, we start with U0, which we interpolate from the initial conditions (5.41)-
(5.43), and advance each step according to (5.65), solving a linear system to
find ∆Un. Below we give the matrix of this linear system, that depends on the
solution of the previous step Uj :

∇F (Uj) =

Mθ + τj(A
θ − U j,Ti S) −τjST j 0

−τjU j,Ti D Mu + τj(A
u
i −DT j −∇R(U j)) 0

0 τjCi Mv + τjBi


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Here are the definitions of the matrices used in the definition of ∇F (Uj):

Mθ
jk :=

∫
Ωε

ψj,hψk,h, (5.66)

Mu
i,jk :=

∫
Ωε

φj,hi φk,hi , (5.67)

Aθjk :=

∫
Ωε

κ∇ψj,h · ∇ψk,h, (5.68)

Aui,jk :=

∫
Ωε

di∇φj,hi · ∇φ
k,h
i , (5.69)

Mv
i,jk :=

∫
Γε

ϕj,hi ϕk,hi , (5.70)

Sijk :=

∫
Ωε

τ∇φi,h · ∇ψj,hφk,h, (5.71)

Dijk :=

∫
Ωε

δi∇φi,h · ψj,hφk,h, (5.72)

Cijk :=

∫
Γε

aεiφjϕk, (5.73)

Bijk :=

∫
Γε

bεiφjϕk. (5.74)

For each time step, we make the iterations (5.64)-(5.65) until the residual
becomes smaller than the given tolerance. The Newton iterations converge
quadratically when given a proper initial value [66].

5.3.3 An iterative splitting scheme

The matrix from the Newton scheme includes entries for all degrees of freedom
in the system and can quickly become very large. This can be mitigated by an
operator splitting scheme, that decouples the equations (5.33)-(5.35) and solves
them sequentially, until the iterations converge to the fixed point.

We solve first the temperature equation, using the mobile concentrations
from the last time step, then use the obtained temperature values and the im-
mobile concentrations from the previous time step to solve for the new mobile
concentrations, and finally use the new mobile concentrations to solve for the
new immobile concentrations.

Consider a fixed-point operator F := F3 ◦ F2 ◦ F1, where F : (θj , uji , v
j
i ) →

(θj , uji , v
j
i ), and

• F1 : (θj , uji , v
j
i )→ (θj , uji , v

j
i ) such that θj is the weak solution of (5.44).
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• F2 : (θj , uji , v
j
i )→ (θj , uji , v

j
i ) such that uji are the weak solutions of (5.45).

• F3 : (θj , uji , v
j
i )→ (θj , uji , v

j
i ) such that vji are the weak solutions of (5.46).

Here’s the algorithm to obtain the solution for the time step Uj+1 from Uj ,
we start with Uj+1,0 = Uj and

Algorithm 1. (Iterative splitting scheme)

1. Find U1 = F1(Uj+1,k)

2. Find U2 = F2(U1)

3. Find Uj+1,k+1 = F3(U2)

We continue the iterations until ‖Uj+1,k+1−Uj+1,k‖ < ε, where ε is a given
tolerance. These iterations are expected to converge linearly.

5.4 Discretization of cell problems and periodic
boundary conditions

Periodic boundary conditions are usually used when a solution on a larger do-
main that repeats in one or more directions can be substituted with a solution
on a representative piece of this domain as in Figure 5.1. The computation is
then periodically extended to the other cells.

Figure 5.1: Illustration of the periodic domain (left) and a triangulation of the
periodic cell (right). Boundaries of the same color must match.

Assuming the periodic cell in Figure 5.1 to be [0, 1] × [0, 1], the periodic
boundary condition will look like:
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u(0, y) = u(1, y) for x ∈ [0, 1]

u(x, 0) = u(x, 1) for y ∈ [0, 1]

To simplify the implementation of the periodic boundary conditions, assume
that the mesh is uniformly refined, at least on the boundary. Then, after the
FEM discretization there’s an equal amount of nodes on the top and bottom,
left and right boundaries respectively. And there is a correspondence between
each respective node: for each degree of freedom on the boundary, i, there exists
a degree of freedom on the opposite side of the boundary p(i). Except for the
corners, p reverses itself, i.e. p(p(i)) = i. So if we’re representing our solution as
uh(x) =

∑
Uiφ

h
i (x), we have to constrain:

Ui = Up(i) for all i ∈ B,

where B is the set of the degrees of freedom on the boundary.
The algorithms used to implement generalized constraints for FEM are de-

tailed in [6].

5.5 Overview of the used Numerics libraries

5.5.1 DUNE

DUNE, the Distributed and Unified Numerics Environment (cf. [7]) is a modular
toolbox for solving partial differential equations (PDEs) with grid-based meth-
ods. It supports the easy implementation of methods like Finite Elements (FE),
Finite Volumes (FV), and also Finite Differences (FD). DUNE is free software
licensed under the GPL (version 2).

DUNE is designed to provide a slim interface that allows efficient use of legacy
and/or new libraries. It used modern C++ templating techniques to enable very
different implementations of the same concept (i.e. grids, solvers, ...) to have a
common interface at a very low overhead.

DUNE is based on the following main principles:

• Separation of data structures and algorithms by abstract interfaces.

• Efficient implementation of these interfaces using generic programming
techniques. Static polymorphism allows the compiler to do more optimiza-
tions, in particular function inlining, which in turn allows the interface to
have very small functions (implemented by one or few machine instruc-
tions) without a severe performance penalty. In essence the algorithms are
parametrized with a particular data structure and the interface is removed
at compile time. Thus the resulting code is as efficient as if it would have
been written for the special case.
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• Reuse of existing finite element packages with a large body of functionality.
In particular the finite element codes UG, ALBERTA, and ALUGrid have
been adapted to the DUNE framework. Thus, parallel and adaptive meshes
with multiple element types and refinement rules are available. All these
packages can be linked together in one executable.

In our experience of using DUNE, the advantages listed above have some
disadvantages to offset the advantages that they provide in some situations:

• The abstract interfaces being very loosely coupled through the use of tem-
plates can be seen as an advantage for adding new features and optimiza-
tions, has the drawback of being less inspectable and discoverable in the
application usage.

• The efficiency of implementation that leverages templates greatly increases
the compilation time. Most of the code needs to be re-compiled even with
a very small change. But this is mainly a drawback of the current defini-
tion of the template aspects of C++, as well as the current implementation
of the compilers. The compiler output in case of an error is quite over-
whelming, being megabytes worth of text with many places to inspect the
possible location of the error.

• The reuse of existing packages is good, although it comes at a price of
a lengthy configuration to ensure that all the pieces of the library know
about each other and can be used together.

DUNE provides many grid formats, of which we used mainly ALUGrid and
YaspGrid (for testing). Particular grids can be created using third party tools
and saved in gmsh format, which DUNE can read. The most of the widely
used shape functions for the FEM are implemented, such as Lagrangian shape
functions of arbitrary order, Monomial shape functions of arbitrary order for
Discontinuous Galerkin methods, and Raviart-Thomas shape functions of the
lowest order. DUNE contains ISTL (the Iterative Solver Template Library),
which provides nice abstractions for the block matrices that result from our sys-
tem. The solutions can be outputted in VTK format, and standard tools such as
Paraview can be used to visualize the output. DUNE provides three discretiza-
tion to choose from: dune-FEM, dune-fufem, and dune-PDELab, of which we
chose dune-PDELab, since it was best suited for solving our problem. The main
advantage of dune-PDELab is their implementation of product spaces for sys-
tems of equations, as well as the straightforward implementation for transient
problems. We have used DUNE to produce the numerical results in Chapter 2
and in Chapter 3.

5.5.2 deal.II

deal.II (cf. [5]) is the successor to the Differential Equations Analysis Library.
It is a C++ program library targeted at the computational solution of partial
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differential equations using adaptive finite elements. It uses state-of-the-art pro-
gramming techniques to offer a modern interface to the complex data structures
and algorithms required.

The main aim of deal.II is to enable rapid development of modern finite
element codes, using among other aspects adaptive meshes and a wide array of
tools classes often used in finite element program. The library takes care of the
details of grid handling and refinement, handling of degrees of freedom, input of
meshes and output of results in graphics formats etc. Support for several space
dimensions at once is included in a way such that programs can be written
independent of the space dimension without unreasonable penalties on run-time
and memory consumption.

We added deal.II to the implementation the discretization of our model in
order to handle the periodic boundary conditions for the cell problems, which
were difficult to implement in DUNE. deal.II is also much faster for prototyping,
since it involves much less aggressive optimization than DUNE, i.e. usual poly-
morphism instead of static polymorphism. The extensive documentation and an
open source license add a lot to the attractiveness of this library.

We have contributed to the documentation base of deal.II as well as to the
source code [27].

We have used deal.II to produce the numerical results of Chapter 3, where
it was instrumental in solving the related cell problems.

One disadvantage of deal.II over DUNE, is that it is only able to use rectan-
gular elements for the triangulation, while DUNE can deal with a multitude of
meshes, including mixed triangles and rectangles. This choice however greatly
improves the clarity of the interfaces and allows for more optimization, since it
is possible to prescribe many geometrical constants, such as number of faces per
cell in each space dimension.

A big advantage of deal.II is its model of treating the constraints on the de-
grees of freedom, which was instrumental in implementing the periodic boundary
conditions. After the assembly of the stiffness matrix, it is possible to constrain
a degree of freedom to a linear combination of other degrees of freedom. As long
as there are no cyclic dependencies, the library can handle these constraints.
Another important advantage is the ease of implementation of various grid re-
finement strategies. Note that the grid adaptivity is a very attractive feature if
one needs to resolve the relevant fluctuations in a multiscale model.



Chapter 6

Numerical Analysis of the
Upscaled Thermo-Diffusion
Problem

6.1 Introduction

We are interested in quantifying the effect of coupled macroscopic fluxes1 on
the aggregation, fragmentation and deposition of large populations of colloids
traveling through a porous medium. To do so, we are using a well-posed partly-
dissipative coupled system of quasilinear parabolic equations posed in a con-
nected open set Ω with sufficiently smooth boundary. The particular structure
of the system has been obtained via periodic homogenization techniques in [69]
[see e.g. Ref. [55] for a methodological upscaling procedure of reactive flows
through arrays of periodic microstructures]. For details, see Chapter 4.

The primary motivation of this part of the thesis is to develop and analyze
appropriate numerical schemes to compute at macroscopic scales approximate
solutions to our thermo-diffusion system with Smoluchowski interactions. Ac-
counting for the interplay between heat, diffusion, attraction-repulsion, and de-
position of the colloidal particles is of paramount importance for a number of
applications including the dynamics of the colloidal suspension in natural or
man-made products (e.g. milk, paints, toothpaste) [37], drug-delivery systems
[3], hierarchical assembly of biological tissues [78], group formation in actively
interacting populations [90], or heat shocks in porous materials [12]. Further
details on colloids and their practical relevance are given in [31, 68], e.g.

The discretizations shown here have been successfully used in Chapter 3 (see
also [70]) to capture the effect of multiscale aggregation and deposition mech-
anisms on the colloids dynamics traveling within a saturated porous medium
in the absence of thermal effects. Now, we are preparing the stage to include
the Soret and Dufour transport contributions – cross-effects between molecular
diffusion and heat conduction; for more details on the macroscopic modeling of

1In this context, the fluxes are driven by a suitable combination of heat and diffusion
gradients [46].
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thermo-diffusion, we refer the reader to the monograph by De Groot and Mazur
[46]. The a priori estimates are obtained in a similar fashion as for problems
involving reactive flow in porous media (see, for instance, [71, 29] and references
cited therein), however specifics of the cross transport, interaction terms, and of
the non-dissipative (ode) structure play here an important role and need to be
treated carefully. For the numerical analysis of case studies in cross diffusion, we
refer the reader for instance to [42, 4] and [93]. Note that there is not yet a uni-
fied mathematical theory to deal with general cross-diffusion or thermo-diffusion
systems. Due to the presence of the nonlinearly coupled transport terms, essen-
tial difficulties arise in controlling the temperature gradients (and the gradients
in the concentrations of colloidal populations) especially in more space dimen-
sions (see e.g. [11] for a nice discussion of a related PDE system posed in one
space dimension), the problem sharing many common features with the Stefan-
Maxwell system for multicomponent mixtures (compare Refs. [14, 62, 51] and
the literature mentioned therein).

In this Chapter, we investigate the semidiscrete as well as the fully discrete a
priori error analysis of the finite elements approximation of the weak solution to
a thermo-diffusion reaction system posed in a macroscopic domain that allows
for aggregation, dissolution as well as deposition of colloidal species. The main
results are summarized in Theorem 6.4.7 and Theorem 6.5.5. The mathemati-
cal techniques used in the proofs include energy-like estimates and compactness
arguments, exploiting the structure of both the interaction terms and nonlocal
coupling. Once these a priori estimates are proven and, additionally, corrector
estimates for the homogenization process explained in Chapter 4 become avail-
able, then the next natural analysis step is to prepare a functional framework
for the design optimally convergent MsFEM schemes approximating, very much
in the spirit of [56, 17], multiscale formulations of our thermo-diffusion system.

The Chapter has the following structure: Section 6.2 presents the setting
of the model equations and briefly summarizes the meaning of the parameters
and model components. We anticipate already at this point the main results.
In Section 6.3, we list the main mathematical analysis aspects of our choice of
thermo-diffusion system and briefly recall a collection of approximation theory
results that are used in the sequel. Section 6.4 and Section 6.5 constitute the
bulk of the Chapter. This is the place where we give the details of the proof
of the semidiscrete and fully discrete a priori error control, i.e. the proofs for
Theorem 6.4.7 and Theorem 6.5.5.

6.2 Formulation of the problem. Main results

Let I denote an open sub-interval within the time interval (0, T ], and let x ∈ Ω
be the variable pointing out the space position. The unknowns of the system
are the temperature field θ, the mobile colloidal populations ui (i ∈ {1, . . . , N}),
and the immobile (already deposited) colloidal populations vi (i ∈ {1, . . . , N}).
N ∈ N represents the amount of the monomers in the largest colloidal species
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considered. All unknowns depend on both space and time variables (x, t) ∈ Ω×I.

Definition 5. Given δ > 0, we introduce the mollifier:

Jδ(s) :=

Ce1/(|s|2−δ2) if |s| < δ,

0 if |s| ≥ δ,
(6.1)

where the constant C > 0 is selected such that∫
Rd
Jδ = 1,

see [32] for details.

Definition 6. Using Jδ from (6.1), define the mollified gradient:

∇δf := ∇

[∫
B(x,δ)

Jδ(x− y)f(y)dy

]
, (6.2)

where B(x, δ) ⊂ Rd is a ball centered in x ∈ Ω with radius δ.

With the Definition 6.2 at hand, the following inequalities hold for all f ∈
L∞(Ω) and g ∈ Lp(Ω;Rd) (with 1 ≤ p ≤ ∞):

‖∇δf · g‖Lp(Ω) ≤ C‖f‖L∞Ω‖g‖Lp(Ω;Rd) (6.3)

‖∇δf‖p(Ω) ≤ C‖f‖L2(Ω), (6.4)

where the constant C depends on the choice of the parameter δ and structure of
the mollifier Jδ.

For all t ∈ I, the setting of our thermo-diffusion equations is the following:
Find the triplet (θ, ui, vi) satisfying

∂tθ +∇ · (−K∇θ)−
N∑
i=1

Ti∇δui · ∇θ = 0 in Ω (6.5)

∂tui +∇ · (−Di∇ui)− Fi∇δθ · ∇ui+ (6.6)

+Aiui −Bivi = Ri(ui) in Ω (6.7)

∂tvi = Aiui −Bivi in Ω (6.8)

−K∇θ · n = 0 on ∂Ω (6.9)

ui = 0 on ∂Ω (6.10)

θ(0, ·) = θ0(·) in Ω, (6.11)

ui(0, ·) = u0
i (·) in Ω, (6.12)

vi(0, ·) = v0
i (·). in Ω. (6.13)

Here for all i ∈ {1, . . . , N}, the parameters K, Di, Fi and Ti are effective trans-
port coefficients for heat conduction, colloidal diffusion as well as Soret and
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Dufour effects. Furthermore, Ai and Bi are effective deposition coefficients. θ0

is the initial temperature profile, while u0
i and v0

i are the initial concentrations
of colloids in mobile, and respectively, immobile state. General motivation on
the ingredients of this system (particularly on Soret and Dufour effects) can be
found in [46]. Note that as direct consequence of fixing the threshold N , the
system coagulates colloidal species (groups) until size N only.

This particular structure of the system has been derived in [69] by means
of periodic homogenization arguments (two-scale convergence), scaling up the
involved physicochemical processes from the pore scale (microscopic level, rep-
resentative elementary volume (REV)) to a macroscopically observable scale.

Remark 6.2.1. Theorem (4.4.5) ensures the weak solvability of the system
(6.5)–(6.13). Furthermore, under mild assumptions on the data and the param-
eters the weak solution is positive a.e. and satisfies a weak maximum principle.
The basic properties of the weak solutions to (6.5)–(6.13) are given in Section
6.3.

Denoting by θh(t) the continuous-in-time and semidiscrete-in-space approxi-
mation of θ(t) and by θh,n the corresponding fully discrete approximation, with
similar notation for the other unknowns, we can formulate our main result: For
all t, tn ∈ I, the following a priori estimates hold:

‖θh(t)− θ(t)‖+

N∑
i=1

‖uhi (t)− ui(t)‖+

N∑
i=1

‖vhi (t)− vi(t)‖

≤ C1‖θ0,h − θ0‖+ C2(‖u0,h
i − u

0
i ‖+ ‖v0,h

i − v0
i ‖) + C3h

2

(6.14)

and

‖θh,n − θn‖+

N∑
i=1

‖uh,ni − uni ‖+
N∑
i=1

‖vh,ni − vni ‖

≤ C4‖θh,0 − θ0‖+ C5

(
N∑
i=1

‖uh,0i − u
0
i ‖+

N∑
i=1

‖vh,0i − v0
i ‖

)
+ C6(h2 + τ). (6.15)

The constants C1, . . . , C6 depend on data, but are independent of the grid pa-
rameters h and τ . The hypotheses and the results under which (6.14) and (6.15)
hold are stated in Theorem 6.4.7 and Theorem 6.5.5, respectively.

The following Sections focus exclusively on the proof of these inequalities.

6.3 Concept of weak solution. Technical prelim-
inaries. Available results.

Our concept of weak solution is detailed as follows:
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Definition 7. The triplet (θ, ui, vi) is a solution to (6.5)-(6.13) if the following
holds:

θ, ui ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)),

vi ∈ H1(0, T ;L2(Ω)),
(6.16)

and for all t ∈ J and φ ∈ H1(Ω) :

(∂tθ, φ) + (K∇θ,∇φ)−
N∑
i=1

(Ti∇δui · ∇θ, φ) = 0, (6.17)

(∂tui, φ) + (Di∇ui,∇φ)− (Fi∇δθ · ∇ui, φ)

+ (Aiui −Bivi, φ) = (Ri(u), φ), (6.18)

(∂tvi, φ) = (Aiui −Bivi, φ). (6.19)

To be able to ensure the solvability of our thermo-diffusion problem, we
assume that the following set of assumptions on the data (i.e. (A1)-(A2)) hold
true:

(A1) Ti, Fi, Ai, Bi are positive constants for i ∈ {1, . . . , N}, and there exist m
and M such that: 0 < m ≤ K ≤M and 0 < m ≤ Di ≤M .

(A2) θ0 ∈ L∞+ (Ω)∩H2(Ω), u0
i ∈ L∞+ (Ω)∩H2(Ω), v0

i ∈ L∞+ (Γ) for i ∈ {1, . . . , N}.

Fix h > 0 sufficiently small and let Th be a triangulation of Ω with

max
τ∈Th

diam(τ) ≤ h.

Let Sh denote the finite dimensional space of continuous functions on Ω that
reduce to linear functions in each of the triangles of Th and vanish on ∂Ω. Let
{Pj}Nhj=1 be the interior vertices of Th with Nh ∈ N. A function in Sh is then
uniquely determined by its values at the points Pj . Let Φj be the pyramid
function in Sh which takes value 1 at Pj , but vanishes at the other vertices.
Then {Φj}Nhj=1 forms a basis for Sh. Consequently, every ϕ in Sh can be uniquely
represented as

ϕ(x) =

Nh∑
j=1

αjΦj(x), with αj := Φ(Pj), for j ∈ {1, . . . , Nh}, (6.20)

see e.g. Ref. [66].
A smooth function σ defined on Ω which vanishes on ∂Ω can be approximated

by its interpolant Ihσ in Sh defined as:

Ihσ(x) :=

Nh∑
j=1

σ(Pj)Φj(x). (6.21)
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We denote below by ‖ · ‖ the norm of the space L2(Ω) and by ‖ · ‖s that in
the Sobolev space Hs(Ω) = W s

2 (Ω) with s ∈ R. If s = 0 we suppress the index.
We recall that for functions v lying in H1

0 (Ω), the objects ‖∇v‖ and ‖v‖1 are
equivalent norms. Let us also recall Friedrichs’ lemma (see, for instance, [16,
23]): there exist constants cF > 0 and CF > 0 (depending on Ω, see Ref. [88]
for explicit expressions for these constants) such that

cF ‖σ‖1 ≤ CF ‖∇σ‖ ≤ ‖σ‖1, for all σ ∈ H1
0 (Ω). (6.22)

The following error estimates for the interpolant Ihσ of σ [cf. (6.21)] are
well-known (see, e.g., [16] or [23]), namely for all σ ∈ H2(Ω) ∩H1

0 (Ω) we have

‖Ihσ − σ‖ ≤ Ch2‖σ‖2 (6.23)

‖∇(Ihσ − σ)‖ ≤ Ch‖σ‖2. (6.24)

Testing the equations (6.5)-(6.6) with ϕ ∈ Sh leads to the following semi-discrete
weak formulation of (6.5)-(6.13) as given in Definition 8.

Definition 8. The triplet (θh, uhi , v
h
i ) is a semidiscrete solution to (6.5)-(6.13)

if the following identities hold true for all t ∈ I and ϕ ∈ Sh:

(∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · ∇θh, ϕ) = 0 (6.25)

(∂tu
h
i , ϕ) + (Di∇uhi ,∇ϕ)− (Fi∇δθh · ∇uhi , ϕ)

+ (Aiu
h
i −Bivhi , ϕ) = (Ri(u

h), ϕ) (6.26)

(∂tv
h
i , ϕ) = (Aiu

h
i −Bivhi , ϕ) (6.27)

θh(0) = θ0,h (6.28)

uhi (0) = u0,h
i (6.29)

vhi (0) = v0,h
i . (6.30)

Here, θ0,h, u0,h
i , and v0,h

i are suitable approximations of θ0, u0
i , and v0

i respec-
tively in the finite dimensional space Sh.

Remark 6.3.1. Note that vi as solution to (6.8) can be expressed as:

vi(t) =

(∫ t

0

Aiui(s)e
Bisds

)
e−Bit + v0

i e
−Bit for all t ∈ I. (6.31)

We will make this substitution later and also use (6.31) to obtain an error esti-
mate for vhi based on the error estimate for uhi . This path can be followed due to
the linearity of the equation. If the right-hand side of the ordinary differential
equations becomes nonlinear, then a one-sided Lipschitz structure is needed to
allow for the Gronwall argument to work.
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Remark 6.3.2. The existence of solutions in the sense of Definition 7 is ensured
by periodic homogenization arguments in [69], while the existence of solutions in
the sense of Definition 8 follows by standard arguments. We omit to show the
details of the existence proofs. Note that the existence of the respective solutions
is nevertheless re-obtained here by straightforward compactness arguments. The
proof of uniqueness of both kinds of solutions follows the lines of [69].

We represent the approximate solutions to the system (6.5)–(6.13) by means
of the standard Galerkin Ansatz as:

uhi (x, t) :=

Nh∑
j=1

αij(t)Φj(x),

θh(x, t) :=

Nh∑
j=1

βj(t)Φj(x),

vhi (x, t) :=

Nh∑
j=1

γij(t)Φj(x)

for all (x, t) ∈ Ω× I. Based on the Galerkin projections, the semidiscrete model
equations read:

Nh∑
j=1

β′ij(t)(Φj ,Φk) +

Nh∑
j=1

βij(Ki∇Φj ,∇Φk)

−
N∑
i=1

Ti
Nh∑
j=1

Nh∑
l=1

βij(t)αil(t)(∇δΦl · ∇Φj ,Φk) = 0 (6.32)

Nh∑
j=1

α′ij(t)(Φj ,Φk) +

Nh∑
j=1

αij(Di∇Φj ,∇Φk)

− Fi
Nh∑
j=1

Nh∑
l=1

αij(t)βl(t)(∇δΦl · ∇Φj ,Φk) = (Ri(

Nh∑
j=1

αij(t)Φj),Φk). (6.33)

To abbreviate the writing of (6.32)-(6.33), we define:

αi := αi(t) = (αi1(t), . . . , αi,Nh(t))T ,

β := β(t) = (β1(t), . . . , βNh(t))T ,

γi := γi(t) = (γi1(t), . . . , γi,Nh(t))T ,

G := (gjk), gjk := (Φj ,Φk),

Hu
i := (huijk), huijk := (Di∇Φj ,∇Φk),

Hθ := (hθjk), hθjk := (K∇Φj ,∇Φk),

M := (mjkl), mjkl := (∇δΦl · Φj ,Φk).
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Then (6.32)-(6.33) become:

Gβ′ +Hθβ −
∑N
i=1 TiαTi Mβ = 0

Gα′i +Hu
i αi − FiβTMαi +G(Aiαi −Biγi)

= (Ri(
∑Nh
j=1 αΦj),Φk)

Gγ′i = AiGαi −BiGγi
β(0) = β0

αi(0) = α0
i

γi(0) = γ0
i .

(6.34)

Note that (6.34) is a nonlinear system of coupled ordinary differential equations.
Based on (A1)–(A2), we see not only that Hθ and Hu

i are positive definite, but
also that the right-hand side of the differential equations form a global Lipschitz
continuous function, fact which ensures the well-posedness of the Cauchy prob-
lem (6.34) on I and eventually on its continuation on the whole interval (0, T ];
we refer the reader to [2] for this kind of extension arguments for ordinary dif-
ferential equations. Essentially, we get a unique solution vector

(β, αi, γi) ∈ C1(Ī)N
h

× C1(Ī)NN
h

× C1(Ī)NN
h

satisfying (6.34); see [91] for the proof of the global Lipschitz property of the
right-hand side of a similar system of ordinary differential equations.

6.4 Semi-discrete error analysis

Our goal is to estimate the a priori error between the weak solutions of (6.25)–
(6.30) and the weak solutions of (6.5)–(6.13). We proceed very much in the spirit
of Thomeée [121]; cf., for instance, Chapter 13 and Chapter 14.

We write the error as a sum of two terms:

θh − θ = (θh − θ̃h) + (θ̃h − θ) = ψ + ρ. (6.35)

In (6.35), θ̃h is the elliptic projection in Sh of the exact solution θ, i.e. θ̃h
satisfies for all t ≥ 0 the identity:

(K∇(θ̃h(t)− θ(t)),∇ϕ)−
N∑
i=1

(Ti∇δui · ∇(θ̃h(t)− θ(t)), ϕ) = 0 (6.36)

for all ϕ ∈ Sh.

Lemma 6.4.1. Let k ∈ C1(Ω̄), b ∈ L∞(Ω,R3), and ∇ · b ∈ L∞(Ω). Suppose
that γ ∈ H1

0 (Ω) is a weak solution to the elliptic boundary-value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω. (6.37)
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Additionally, assume

∂Ω ∈ C2. (6.38)

Then we have

‖γ‖2 ≤ C‖δ‖. (6.39)

Proof. The proof of this result is a particular case of the proof of Theorem 4
given in [32, p. 317]. We omit to repeat the arguments here.

Remark 6.4.2. The condition (6.38) can be relaxed to Ω being a convex polygon,
see [45, p. 147] (compare Theorem 3.2.1.2 and Theorem 3.2.1.3).

Lemma 6.4.3. Let k ∈ L2(Ω) and b ∈ L∞(Ω,R3), and k(x) ≥ m > 0, and m >
‖b‖∞CF , where CF is the constant entering (6.22). Suppose that γ ∈ H1

0 (Ω) is
a weak solution of the elliptic boundary-value problem

−∇ · (k∇γ + bγ) = δ in Ω, γ = 0 on ∂Ω. (6.40)

Then we have

‖γ‖2 ≤ C‖δ‖. (6.41)

Proof. We can directly verify that

m‖γ‖2 ≤ (k∇γ,∇γ) = (δ, γ) + (b · γ,∇γ)

≤ ‖δ‖‖γ‖+ ‖b‖∞‖γ‖‖∇γ‖
≤ ‖δ‖‖γ‖+ ‖b‖∞CF ‖∇γ‖2.

Here, we used the Friedrichs inequality (6.22). Since m > ‖b‖∞CF , we have
(6.41).

Lemma 6.4.4. Take k ∈ L∞(Ω) ∩H1(Ω) and b ∈ L∞(Ω,R3) ∩H1(Ω,R3) and
assume that there exist m and M such that 0 < m ≤ k(x) ≤ M for all x ∈ Ω.
Let w ∈ H2(Ω) ∩H1

0 (Ω) satisfying

(k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ) = 0 for all ϕ ∈ Sh. (6.42)

Then the following estimates hold:

‖∇(wh − w)‖ ≤ C1h‖w‖2 (6.43)

‖wh − w‖ ≤ C0h
2‖w‖2. (6.44)

Here, the constant C1 depends on Th, m, and M . The constant C0 depends
additionally on the upper bound of ∇k and b in the corresponding L∞-norm.
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Proof. We proceed very much in the spirit of Ciarlet estimates. By (A1), we
have that

m‖∇(wh − w)‖2 ≤ (k∇(wh − w),∇(wh − w)) =

(k∇(wh − w),∇(wh − ϕ)) + (k∇(wh − w),∇(ϕ− w)) =

(b · ∇(wh − w), wh − ϕ) + (k∇(wh − w),∇(ϕ− w)) ≤
‖b‖∞‖∇(wh − w)‖‖wh − ϕ‖+M‖∇(wh − w)‖‖∇(ϕ− w)‖.

Take ϕ := Ihw - the Clement interpolant of w. Then we have:

m‖∇(wh − w)‖ ≤ ‖b‖∞(‖wh − w‖+ ‖Ihw − w‖)
+ M‖∇(Ihw − w)‖ ≤ C1h‖w‖2, (6.45)

which yields

‖∇(wh − w)‖ ≤ (C1h+ C2‖b‖∞h2)‖w‖2

+
‖b‖∞
m
‖wh − w‖. (6.46)

It is worth noting that (6.46) leads to (6.43) when we show later that (at least)

‖wh − w‖ ≤ Ch‖w‖2.

Next, we show (6.44) using a duality argument. Let γ ∈ H1
0 (Ω) solve the

problem

−∇ · (k∇γ − bγ) = δ in Ω, γ = 0 on ∂Ω.

Then

(wh − w, δ) = (wh − w,−∇ · (k∇γ − bγ))

= (k∇(wh − w),∇γ)− (b · ∇(wh − w), γ)

= (k∇(wh − w),∇(γ − ϕ))− (b · ∇(wh − w), γ − ϕ)

+ (k∇(wh − w),∇ϕ)− (b · ∇(wh − w), ϕ).

Let ϕ := Ihγ and use (6.42):

(wh − w, δ) ≤M‖∇(wh − w)‖‖∇(γ − Ihγ)‖
+ ‖b‖∞‖∇(wh − w)‖‖γ − Ihγ‖.

Using the standard approximation properties for Ihγ, we get:

(wh − w, δ) ≤ (C1Mh+ C2‖b‖∞h2)‖γ‖2‖∇(wh − w)‖. (6.47)

Using δ := wh − w in (6.47), and either Lemma 6.4.1 or Lemma 6.4.3, we
obtain:

‖wh − w‖ ≤ (C1Mh+ C2‖b‖∞h2)C3‖∇(wh − w)‖. (6.48)
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Using (6.48) in (6.46) leads to:

‖∇(wh − w)‖ ≤ C1h‖w‖2 + C2h‖∇(wh − w)‖. (6.49)

After solving the recurrence in (6.49), (6.43) is proven, and hence (6.44) follows
from (6.48).

Lemma 6.4.5. Let θ̃h be defined by (6.36), and let ρ := θ̃h − θ. Then the
following estimates hold:

‖ρ(t)‖+ h‖∇ρ(t)‖ ≤ C(θ)h2 t ∈ I, (6.50)

‖ρt(t)‖+ h‖∇ρt(t)‖ ≤ C(θ)h2 t ∈ I. (6.51)

Proof. Using Lemma 6.4.4, we have that ‖∇ρ‖ ≤ C1h‖θ‖2 and ρ ≤ C0h
2‖θ‖2,

so (6.50) follows by adding these estimates.
To obtain (6.51), we differentiate (6.36) with respect to time to obtain:

(k∇ρt,∇ϕ)− (bt · ∇ρ+ b · ∇ρt, ϕ) = 0.

Assuming k uniformly bounded, which it is, since it doesn’t depend on θ in our
case:

m‖∇ρt‖2 ≤ (k∇ρt,∇ρt) = (k∇ρt,∇(θ̃ht − ϕ+ ϕ− θt))
= (k∇ρt,∇(ϕ− θt)) + (k∇ρt,∇(θ̃h − ϕ))

= (k∇ρt,∇(ϕ− θt)) + (bt · ∇ρ+ b · ∇ρt, θ̃h − ϕ).

We have used (6.36) in the last equation since (θ̃h − ϕ) ∈ Sh. Thus we get that

m‖∇ρt‖2 ≤M‖∇ρt‖‖∇(ϕ− θt)‖+ (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)‖θ̃h − ϕ‖.

Now, take ϕ := Ihθt to obtain:

m‖∇ρt‖ ≤M‖∇ρt‖Ch‖θt‖2 + (C1(b)‖∇ρ‖+ C2(b)‖∇ρt‖)(‖ρt‖+ Ch‖θt‖2)

≤ m

2
‖∇ρt‖2 + Ch2‖θt‖22 + Ch(‖ρt‖+ Ch‖θt‖2)

+ C2(u)‖∇ρt‖‖ρt‖+ C2(u)Ch‖∇ρt‖‖θt‖2.

Using Young’s inequality a few times, it finally follows that:

‖∇ρt‖2 ≤ C1h
2 + C2‖ρt‖2, (6.52)

where C1 and C2 are independent of h.
Now, we use the duality argument as in Lemma 6.4.4 to gain:

(ρt, δ) = (ρt,−∇ · (k∇γ − bγ)) = (k∇ρt,∇γ)− (b · ∇ρt, γ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ) + (k · ∇ρt,∇ϕ)− (b · ∇ρt, ϕ)

= (k∇ρt,∇(γ − ϕ))− (b · ∇ρt, γ − ϕ).
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Choosing ϕ := Ihγ and δ := ρt yields

‖ρt‖2 ≤ C1‖∇ρt‖(Mh+ ‖b‖∞h2)‖γ‖2
≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖δ‖ ≤
≤ C2‖∇ρt‖(Mh+ ‖b‖∞h2)‖ρt‖.

We now see that

‖ρt‖ ≤ C(u, θ)h‖∇ρt‖. (6.53)

Combining (6.52) and (6.53) leads to convenient recurrence relations, thus prov-
ing the statement of the Lemma.

Lemma 6.4.6. Let θ̃h be defined by (6.36). Then:

‖∇θ̃h(t)‖∞ ≤ C(θ) for all t ∈ I. (6.54)

Proof. We rely now on the inverse estimate:

‖∇ϕ‖∞ ≤ Ch−1‖∇ϕ‖ for all ϕ ∈ Sh. (6.55)

The statement (6.55) is trivial to prove for linear approximation functions, since
in this case ∇ϕ is constant on each triangle. Using Lemma 6.4.5 and the known
error estimate for Ihθ, we have:

‖∇(θ̃h − Ihθ)‖∞ ≤ Ch−1‖∇(θ̃h − Ihθ)‖
≤ Ch−1(‖∇ρ‖+ ‖∇(Ihθ − θ)‖) ≤ C(θ). (6.56)

The main result on the a priori error control for the semi-discrete FEM
approximation to our original system is given in the next Theorem.

Theorem 6.4.7. Let (θ, ui, vi) solve (6.16)-(6.19) and (θh, uhi , v
h
i ) solve (6.25)-

(6.30), and let assumptions (A1)-(A2) hold. Then the following inequalities
hold:

‖θh(t)− θ(t)‖ ≤ C‖θ0,h − θ0‖+ C(θ)h2 t ∈ I, (6.57)

‖uhi (t)− ui(t)‖ ≤ C‖u0,h
i − u

0
i ‖+ C(ui)h

2 t ∈ I, i ∈ {1, . . . , N}. (6.58)

Proof. With an error splitting as in (6.35), it is enough to show a suitable upper
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bound for ψ := θh − θ̃h. We proceed in the following manner:

(∂tψ,ϕ) + (K∇ψ,∇ϕ) = (∂tθ
h, ϕ) + (K∇θh,∇ϕ)−

N∑
i=1

(Ti∇δuhi · θh, ϕ)

+

N∑
i=1

(Ti∇δuhi · θh, ϕ)− (∂tθ̃
h, ϕ)− (K∇θ̃h,∇ϕ)

= −(∂t(θ + ρ), ϕ)− (K∇(θ + ρ),∇ϕ) +

N∑
i=1

(Ti∇δuhi · θh, ϕ)

= −(∂tρ, ϕ)− (K∇ρ,∇ϕ) +

N∑
i=1

(Ti∇δui · ∇ρ, ϕ)

+

N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ), ϕ).

After eliminating the terms that vanish due to the definition of the elliptic pro-
jection, we obtain the following identity:

(∂tψ,ϕ) + (K∇ψ,∇ϕ)

= −(∂tρ, ϕ) +

N∑
i=1

(Ti(∇δuhi · ∇θh −∇δui · (∇θ +∇ρ)), ϕ). (6.59)

We can deal with the second term on the right hand side of (6.59) as follows:

∇δuhi · ∇θh −∇δui · ∇θ −∇δui · ∇ρ
= (∇δuhi −∇δui) · ∇θh +∇δui · (∇θh −∇θ −∇ρ)

= (∇δuhi −∇δui)(∇ψ +∇θ̃h) +∇δui · ∇ψ

Now using ϕ := ψ as a test function and relying on the bound

‖∇θ̃h‖∞ < C(θ)

(available cf. Lemma 6.4.6), we obtain:

1

2
∂t‖ψ‖2 +m‖∇ψ‖2 ≤ 1

2
‖∂tρ‖2 +

1

2
‖ψ‖2

+

N∑
i=1

(C‖uhi − ui‖2 + ε‖∇ψ‖2 + ε‖ui‖∞(‖∇ρ‖2 + ‖∇ψ‖2) + ‖ψ‖2).

Gronwall’s inequality gives

‖ψ(t)‖2 ≤ ‖ψ(0)‖2 + C

∫ t

0

(‖∂tρ‖2 + ‖∇ρ‖2 +

N∑
i=1

‖uhi − ui‖2).
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The estimate

‖ψ(0)‖ ≤ ‖θh,0 − θ0‖+ ‖θ̃h(0)− θ0‖ ≤ ‖θh,0 − θ0‖+ Ch2‖θ0‖2,

together with the estimate ‖uhi − ui‖ ≤ C(u)h2 give the statement of the Theo-
rem.

6.5 Fully discrete error analysis

Let τ > 0 to be a small enough time step and use tn := τn while denoting
θn := θ(tn) and uni := ui(tn). The discrete in space approximations of θn and
uni are denoted as θh,n and uh,ni , respectively.

Definition 9. The triplet (θh,n, uh,ni , vh,ni ) is a discrete solution to (6.5)-(6.13)
if the following identities hold for all n ∈ {1, . . . , N} and ϕ ∈ Sh:

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) = 0, (6.60)

1

τ
(uh,n+1
i − uh,ni , ϕ) + (Di∇uh,n+1

i ,∇ϕ)− (Fi∇δθh,n · ∇uh,n+1
i , ϕ)

+ (Aiu
h,n+1
i −Bivh,n+1

i , ϕ) = (Ri(u
h,n), ϕ), (6.61)

1

τ
(vh,n+1
i − vh,ni , ϕ) = (Aiu

h,n+1
i −Bivh,n+1

i , ϕ), (6.62)

θh,0 = θ0,h, (6.63)

uh,0i = u0,h
i , (6.64)

vh,0i = v0,h
i . (6.65)

Here, θ0,h, u0,h
i , and v0,h

i are the approximations of θ0, u0
i , and v0

i respectively
in the finite dimensional space Sh.

Remark 6.5.1. To treat (6.60) and (6.61), we use a semi-implicit discretization
very much in the spirit of Ref. [74]. Note however that other options for the
time discretization are possible.

Lemma 6.5.2. (Consequence of Brouwer’s fixed point theorem) Given
a mapping G : Sh → Sh, such that:

(G(ϕ), ϕ) > 0 for ‖ϕ‖ = q, (6.66)

The equation G(x) = 0 has a solution x ∈ Bq = {ϕ ∈ Sh : ‖ϕ‖ ≤ q}.
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Proof. We follow along the lines of the proof of Theorem 13.1 from [121], see also
[126, p. 52]. Assume that Gh(ϕ) 6= 0 in Bq. From this follows that the mapping

Φ(ϕ) = −qGh(ϕ)
‖Gh(ϕ)‖ : Bq → Bq is continuous. Therefore it has a fixed point ψ ∈ Bq

with ‖ψ‖ = q. But then

q2 = ‖ψ‖2 = − (G(ψ), ψ)

‖G(ψ)‖
. (6.67)

Since the norm can’t be negative, this contradicts the Lemma’s assumption.

Theorem 6.5.3. Let assumptions (A1)-(A2) hold. Then there exists a solution

(θh,n, uh,ni , vh,ni ) to (6.60)-(6.65).

Proof. We will show the existence of solutions using the consequence of Brouwer’s
fixed point theorem in Lemma 6.5.2. Denoting ϕ := (ϕθ, ϕui , ϕ

v
i ), we define the

mapping Gh : Sh → Sh as:

(Gh(ϕ), ϕ) = 2(ϕθ − θh,n, ϕθ)︸ ︷︷ ︸
I1

+ 2τ(K∇ϕθ,∇ϕθ)− 2τ

N∑
i=1

(Ti∇δuh,ni · ∇ϕθ, ϕθ)︸ ︷︷ ︸
I2

+

N∑
i=1

[
2(ϕui − u

h,n
i , ϕui )︸ ︷︷ ︸

I1

+ 2τ(Di∇ϕui ,∇ϕui )− 2τ(Fi∇δθh,n · ∇ϕui , ϕui )︸ ︷︷ ︸
I2

+ 2τ(Aiϕ
u
i −Biϕvi , ϕui )− 2τ(Aiϕ

u
i −Biϕvi , ϕvi )︸ ︷︷ ︸

I3

− 2τ(Ri(u
h,n), ϕui )︸ ︷︷ ︸
I4

+ 2(ϕvi − vh,n, ϕvi )︸ ︷︷ ︸
I1

]

Since Gh was derived from (6.60)-(6.65), there exists a solution (θh, uhi , v
h
i ) if

(Gh(ϕ), ϕ) = 0 has a solution. We can use Lemma 6.5.2 for this. Essentially, we
only need to show that there exists a ϕ ∈ Sh such that (Gh(ϕ), ϕ) > 0. Below we
give the estimates for the terms I1, I2, I3, and I4 that will give (Gh(ϕ), ϕ) > 0
when added together. The duplicate terms are omitted, since they can be treated
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in the same way. We have:

I1 = 2(ϕθ − θh,n, ϕθ) = 2‖ϕθ‖2 − ‖θh,n‖‖ϕθ‖ ≥ ‖ϕθ‖2 − ‖θh,n‖2,

I2 = 2τ(K∇ϕθ,∇ϕθ)− 2τ

N∑
i=1

(Ti∇δuh,ni · ∇ϕθ, ϕθ),

≥ 2τ(K0‖∇ϕθ‖2 − Ti,0Cδ‖uh,ni ‖‖∇ϕ
θ‖‖ϕθ‖)

≥ 2τ((K0 − ε)‖∇ϕθ‖2 − Cε‖ϕθ‖2),

I3 = 2τ(Aiϕ
u
i −Biϕvi , ϕui − ϕvi )

= 2τ
[
(Ai(ϕ

u
i − ϕvi ), ϕui − ϕvi )− ((Bi −Ai)ϕv, ϕu)− ((Ai −Bi)ϕv, ϕv)

]
≥ −2τ‖Ai −Bi‖∞

(
1

2
‖ϕu‖2 +

3

2
‖ϕv‖2

)
,

I4 = −2τ(Ri(u
h,n), ϕui ) ≥ τ(2‖Ri(uh,n)‖2 +

1

2
‖ϕui ‖2).

Adding them together, provided τ > 0 is small enough and ‖ϕ‖ < ∞ is large
enough, we see that (Gh(ϕ), ϕ) = I1 + I2 + I3 + I4 > 0, which concludes the
proof.

Theorem 6.5.4. Let assumptions (A1)-(A2) hold. Then there exists at most

one solution (θh,n, uh,ni , vh,ni ) to (6.60)-(6.65).

Proof. Let x := (xθ, xui , x
v
i ) and y := (yθ, yui , y

v
i ) be two solutions to (6.60)-

(6.65) for a given (θh,n, uh,ni , vh,ni ). Substituting x and y into (6.60) and then
subtracting leads to:

(xθ − yθ, ϕ) + τ(K∇(xθ − yθ),∇ϕ)

− τ
N∑
i=1

(Ti∇δuh,ni · ∇(xθ − yθ), ϕ) = 0, for all ϕ ∈ Sh.

Letting ϕ := xθ − yθ, we obtain

‖xθ − yθ‖2 + τK0‖∇(xθ − yθ)‖2 ≤ τ(

N∑
i=1

‖Ti‖∞Cδ‖uh,ni ‖)‖∇(xθ − yθ)‖‖xθ − yθ‖

Now, using Young’s inequality results in

‖xθ − yθ‖2 + τ(K0 − η)‖∇(xθ − yθ)‖2 ≤ τCη‖xθ − yθ‖2

We choose τ such that τCη < 1, with η < K0, and hence we get ‖xθ − yθ‖ = 0.

The facts that ‖xui − yui ‖ = 0 and ‖xvi − yvi ‖ = 0 can be shown in a similar
way.
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Theorem 6.5.5. Let (θ, ui, vi) solve (6.16)-(6.19) and (θh, uhi , v
h
i ) solve (6.60)-

(6.65), and assumptions (A1)-(A2) hold. Then the following inequality holds:

‖θh,n − θn‖+

N∑
i=1

‖uh,ni − uni ‖+

N∑
i=1

‖vh,ni − vni ‖

≤ C1‖θh,0 − θ0‖+ C2

N∑
i=1

‖uh,0i − u
0
i ‖+ C3

N∑
i=1

‖vh,0i − v0
i ‖

+ C4(h2 + τ). (6.68)

The constants C1, . . . , C4 entering (6.68) depend on controllable norms of θ, ui,
but are independent of h and τ .

Proof. Similar with the methodology of the proof of the semidiscrete a priori
error estimates, we split the error terms into two parts:

θh,n − θn = ρθ,n + ψθ,n := (θh,n −Rhθn) + (Rhθ
n − θn), (6.69)

uh,ni − uni = ρui,n + ψui,n := (uh,ni −Rhuni ) + (Rhu
n
i − uni ), (6.70)

where Rhθ and Rhui are the Ritz projections defined by:

(K∇(Rhθ − θ),∇ϕ) = 0, ∀ϕ ∈ Sh, (6.71)

(Di∇(Rhui − ui),∇ϕ) = 0, ∀ϕ ∈ Sh, i ∈ {1, . . . , N}. (6.72)

Here, ψθ,n and ψui,n satisfy the following bounds:

‖ψθ,n‖ ≤ Ch2‖θn‖2, (6.73)

‖ψui,n‖ ≤ Ch2‖uni ‖2, (6.74)

so it remains to bound from above ρθ,n and ρui,n. We can write for ρθ,n the
following identities:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ) =

1

τ
(θh,n+1 − θh,n, ϕ) + (K∇θh,n+1,∇ϕ)

−
N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ) +

N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)

− 1

τ
(Rhθ

n+1 −Rhθn, ϕ)− (K∇Rhθn+1,∇ϕ)

=

N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθn, ϕ)− (K∇θn+1,∇ϕ)

=

N∑
i=1

(Ti∇δuh,ni · ∇θh,n+1, ϕ)− 1

τ
(Rhθ

n+1 −Rhθn, ϕ)

+ (∂tθ
n+1, ϕ)−

N∑
i=1

(Ti∇δun+1
i · ∇θn+1, ϕ).
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After re-arranging the terms in the former expression, we obtain:

1

τ
(ρθ,n+1 − ρθ,n, ϕ) + (K∇ρθ,n+1,∇ϕ)

=

N∑
i=1

(Ti(∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1), ϕ)︸ ︷︷ ︸

A

+ (∂tθ
n+1 − 1

τ
(θn+1 − θn), ϕ)︸ ︷︷ ︸
B

− 1

τ
(ψθ,n+1 − ψθ,n, ϕ)︸ ︷︷ ︸

C

.

Let us deal first with estimating the term C, then B, and finally, the term A.

To estimate the term C, we use our semidiscrete estimate for ‖∂tψ‖ stated
in Lemma 6.4.5, we get:

‖1

τ
(ψθ,n+1 − ψθ,n)‖ = ‖1

τ

∫ tn+1

tn
∂tψ

θ‖ ≤ CC(θ, u)h2.

The term B can be estimated as follows:

B = (
1

τ

∫ tn+1

tn
(s− tn)∂ttθ(s)ds, ϕ) ≤ τ

2
( sup
[tn,tn+1]

|∂ttθ|)‖ϕ‖ = CB(θ)τ‖ϕ‖.

Finally, to tackle the term A, we proceed as follows:

A = (∇δuh,ni · ∇θh,n+1 −∇δun+1
i · ∇θn+1, ϕ)

= (∇δuh,ni · (∇θh,n+1 −∇θn+1) +∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)

≤ ε‖uh,ni ‖∞(‖∇ρn+1‖2 + ‖∇ψn+1‖2) + Cε‖ϕ‖2

+ (∇θn+1 · (∇δuh,ni −∇δun+1
i ), ϕ)︸ ︷︷ ︸

D

.

At its turn, the term D can be expressed as:

D = (∇θn+1 · (∇δuh,ni −∇δuni ), ϕ) + (∇θn+1 · (∇δuni −∇δun+1
i ), ϕ)

≤ ‖∇θn+1‖∞(ε‖∇δ(uh,ni − uni )‖2 + Cε‖ϕ‖2) + (∇θn+1 ·
∫ tn+1

tn
∂t∇δui, ϕ)︸ ︷︷ ︸

E

.

Finally, the term E can be estimated as:

E ≤ ‖∇θn+1‖∞‖∂t∇δui‖∞τ‖ϕ‖.
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Adding together all the terms, and then substituting ϕ := ρθ,n+1 we finally
obtain:

1

τ
‖ρθ,n+1‖2 +m‖∇ρθ,n+1‖2 ≤ 1

τ
‖ρθ,n‖2 + (CB(θ)τ)2

+ (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2 + C‖ρθ,n+1‖2

:= C‖ρθ,n+1‖2 +Rn, (6.75)

where the reminder Rn is defined by:

Rn :=
1

τ
‖ρθ,n‖2 + (CB(θ)τ)2 + (CC(θ)h2)2 + ε‖uh,ni ‖∞(‖∇ρθ,n+1‖2 + ‖∇ψn+1‖2)

+ CDε‖∇δ(uh,ni − uni )‖2 + (CE(u, θ)τ)2

For Rn it holds:

Rn ≤ C(θ, u)(h2 + τ)2.

Note that we can derive a similar estimate for ρui,n+1, which we then add to
(6.75).

To conclude, we denote

en := ‖ρθ,n‖2 +

N∑
i=1

‖ρui,n‖2,

to obtain the short structure

1

τ
en+1 ≤ 1

τ
en + C(en+1 +Rn).

From here it follows that:

(1− Cτ)en+1 ≤ en + CτRn.

For sufficiently small τ , we can instead write the expression

en+1 ≤ (1 + Cτ)en + CτRn.

Iterating the later inequality, we obtain

en+1 ≤ (1 + Cτ)n+1e0 + Cτ

n∑
j=1

Rj .

Finally, this argument yields

en+1 ≤ C‖θh,0 − θ0‖+ C‖uh,0i − u
0
i ‖+ C(θ, u)(h2 + τ),

which proves the Theorem 6.5.5.
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Chapter 7

Conclusions and Open Issues

7.1 Conclusions

In this thesis, we used multiscale reaction-diffusion systems with Smoluchowski
production terms to describe the transport of colloids in porous media (consisting
of arrays of periodically distributed microstructures). We focus here on the
aggregation-fragmentation mechanism that enables us to differentiate between
the populations of aggregates of different sizes, instead of just considering the
whole of the colloidal mass as a single species. This modeling strategy allows
us to assign different properties to each species that depend on the size of that
species, such as the diffusion coefficient, the Soret and Dufour coefficients, as
well as the deposition rates. Our study goes in a threefold direction:

(i) Modeling of the aggregation, fragmentation, deposition, and transport of
colloids in porous media;

(ii) Multiscale mathematical analysis;

(iii) Multiscale simulation.

We developed a multiscale methodology that allowed us to proceed towards
comparison with experiments. Our reaction-diffusion system contains informa-
tion from two spatial scales (microscopic and macroscopic). We are interested
primarily in the concentration profiles at the macroscopic scale. To obtain this
information, we solve cell problems on the microscopic scale, incorporating the
effects of the porous medium geometry into the effective coefficients of the macro-
scopic problem.

The models we discussed in the thesis incorporate the following important
mechanisms:

• non-equilibrium exchange between populations of aggregates of different
sizes;

• deposition of the colloids onto the porous matrix;

• advection of the colloids and heat due to Soret and Dufour effects (coupled
flows).
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We modeled the aggregation mechanism using the Smoluchowski population
balance equations. This strategy leads to a coupled semilinear reaction-diffusion
system in a spatially heterogeneous domain. The spatial heterogeneities as well
as the population balance heterogeneities make the computational effort required
to solve the full problem too expensive. To make our problem computationally
tractable, we employ two different kinds of averaging techniques:

• Periodic homogenization allows to deal with the spatially oscillating coef-
ficients;

• Lumping aggregates into size clusters allows us to treat a great range of
sizes with relatively few species, while conserving chosen quantities, such
as mass, consistently throughout the discretization method.

We dealt with the following mathematical issues:

1. Formal derivation of a transport model withing a periodic domain, includ-
ing aggregation and deposition;

2. Well-posedness of the aggregation-deposition model in the presence of ther-
mal fluxes (the thermo-diffusion problem);

3. Rigorous derivation of the upscaling of the thermo-diffusion problem;

4. Semi-discrete and fully-discrete a priori error estimates for the FEM dis-
cretization of the thermo-diffusion problem.

For our thermo-diffusion transport problem, we ensured the positivity and
L∞− bounds for the concentrations of mobile and immobile species, as well as
for heat content and temperature. We then proved the global in time existence
and uniqueness of positive and bounded solutions to this problem. In the proof
we used the Galerkin approach for each sub-problem separately and then, thanks
to the Banach fixed-point theorem, we did unite the sub-problems.

Efficient 2D/3D solvers were implemented in C++, extending the deal.II and
DUNE numerics libraries to cope with the special structure of our model equa-
tions [27]. Newton method is used to handle the nonlinear terms in the system.
Backward Euler and BDF methods are used for time discretization. Operator
splitting is optionally used to decouple the transport part of the problem from
the reaction part. In that case, the CVODE library from the SUNDIALS package
is used to handle the resulting stiff system of ODEs.

The simulation results compare well with the breakthrough curves measured
in [61] and [60]. Our model is quite complex, featuring more species and pa-
rameters than standard models for colloidal transport, so more detailed mea-
surements are needed to fit and use the power all the available parameters and
model components.
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7.2 Open issues

There are a few modeling and mathematical issues that need further investiga-
tion.

7.2.1 Open issues at the modeling level

• The deposition of the colloids onto the boundary of the porous matrix
typically leads to the growth of the matrix grains, and ultimately pores
clogging. The foundation for this has been set up with our modeling of the
aggregation terms, since it is the larger species of aggregates that will cause
pore clogging and will feel its effects the most. The current mathematical
analysis and upscaling techniques need then to be extended to include x-
dependent microstructures (and hence x-dependent Bochner spaces) and
averaging of non-periodic microstructures.

• The aggregation of colloids is heavily influenced by the chemical composi-
tion of the medium. The influence of the double layer repulsion and van
der Waals attraction has been implemented as part of the code according
to the DLVO theory. Some additional extensions such as steric interactions
could be added, since they are not covered by the DLVO theory.

• The presence of colloids has an influence on the viscosity of the fluid that
they are suspended in. It would be interesting to couple our system to the
Navier-Stokes system, accounting for a colloids-dependent flow.

7.2.2 Open issues at the mathematical level

• It is hard to prove the well-posedness of the thermo-diffusion problem
without using a mollifier. Nevertheless, it may be possible to achieve this
in 1D.

• Corrector estimates for the upscaling of the thermo-diffusion problem need
to be proven to be able to design convergent MsFEM schemes to capture
efficiently the effects of the multiscale geometry.

• Rigorous mathematical analysis of the operator-splitting scheme applied
to thermo-diffusion system is for the moment an open problem.

• Dealing in a consistent mathematical way with free-boundary formulations
of spatial and temporal changes of the pore surfaces is currently out of
reach. However, we believe that the approach by Lacey [73] and later by
Nikolopoulos [97] would potentially be able to derive a macroscopic model
that accounts for the porosity changes at the pore level.
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[40] N. Fuchs. “Über die Stabilität und Aufladung der Aerosole”. In: Zeitschrift
für Physik A Hadrons and Nuclei 89.11 (1934), pp. 736–743.

[41] T. Funaki, H. Izuhara, M. Mimura, and C. Urabe. “A link between mi-
croscopic and macroscopic models of self-organized aggregation.” In: Net-
works and Heterogeneous Media 7.4 (2012), pp. 705–740.

[42] G. Galiano, M. L. Garzon, and A. Jüngel. “Analysis and numerical solu-
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Summary

Aggregation and fragmentation in reaction-diffusion
systems posed in heterogeneous domains

Colloidal particles play an important role in a multitude of technological
and biological processes. A main issue which influences the colloidal dynamics
within a porous medium, e.g. the soil, are the processes of flocculation and
fragmentation. Its accurate description in the context of advection-diffusion-
reaction equations is not only of great impact since the microstructure of the
porous medium depends on the attachment of flocculated particle clusters but
also because contaminant transport is dictated by the dynamics of colloidal
particles. Our research focuses on flocculation by investigating the effects of
aggregation and fragmentation for a class of reaction diffusion systems posed in
heterogeneous media.

At the microscopic level, we consider a system of non-linearly coupled partial
differential equations to describe the transport (diffusion, convection, Soret and
Dufour terms...) of colloidal particles as well as their interactions. In this thesis,
the interactions are of two types:

(1) the classical Smoluchowski interactions;

(2) the deposition of the population of the biggest size colloids to the micropore
surface.

The system is mathematically challenging due to the strong coupling induced
by the presence of the thermal gradients, which makes our problem resembling
very much the cross-diffusion and chemotaxis systems. Taking into considera-
tion arrays of periodically-arranged microstructures (pores, perforations,...), we
study the global solvability of our system posed at the microstructure level, and
then use formal and rigorous homogenization asymptotics to scale it up to a
macroscopic observable scale.

The resulting upscaled system of evolution equations has effective, com-
putable coefficients that remember the volume (and, in the locally-periodic case,
also the shape) of the microstructure. We verify the validity of the model by
checking its forecast power against experimental data for column experiments
by Elimelech and collaborators (cf. [60]).
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To bring more microstructural information in our multiscale view on the
materials and on the processes taking place there, we prepare a framework
where one can use theoretical estimates (for instance, the corrector estimates
for the homogenization procedure) to design controllable multiscale approxima-
tion schemes (based on MsFEM, for instance).

The thesis puts the rigorous mathematical foundations of a numerical multi-
scale framework able ultimately to detect the nonlocal effects induce by heating
on diffusing and interacting populations of colloidal particles.
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secretaries of CASA, Marése and Enna, for all the administrative work.

I would like to thank my office mates throughout my PhD time for the
pleasant and productive atmosphere. Thank you, Fabian, Joachim, Nicolae,
Stefan, Tasnim, Patrick, Giovanni, and Joep.

I thank my friends and family for keeping me in good mood throughout this
time. I thank my parents for supporting my scientific career and for providing
me access to best education, letting me choose my own path.



130 Acknowledgments



Curriculum Vitae

Oleh Krehel was born at Lviv, Ukraine on April 29th, 1986. He finished his
Bachelor degree at Ivan Franko National University in Lviv, Ukraine in 2008.
In 2010, he finished his M. Sc. in Applied Mathematics at the University of
Hamburg, Germany with distinction.

In October 2010, he started his doctoral research in the Department of Ap-
plied Mathematics at the Friedrich-Alexander University of Erlangen-Nuremberg
under the supervision of Prof. Dr. P. Knabner. In October 2012, he continued his
research under the supervision of Dr.habil. A. Muntean and Prof. Dr. M.A. Peletier,
the results of which are presented in this thesis.


	Introduction
	Background
	Synopsis of the thesis

	Modeling Aggregation in Homogeneous Media
	Introduction
	Background on aggregation and fragmentation of colloids with finitely many discrete size classes
	Population balance equations (PBE)
	Modeling of ij
	Fractal dimension
	Colloidal stability
	Fragmentation / breakage mechanism
	The advection-diffusion-reaction equations

	Application to the modeling of group formation in pedestrian flows

	Modeling the Deposition of Colloids in Porous Media
	Introduction
	Microscopic model
	Aggregation and fragmentation of clusters
	Diffusion coefficients for clusters
	Deposition rate of colloids on grain surfaces
	Setting of the microscopic model equations

	Nondimensionalization
	Derivation of the macroscopic model
	Colloids dynamics in structured media. The periodic homogenization procedure
	Computation of the effective diffusion tensors i=ijk
	Extensions to non-periodic microstructures

	Simulation studies
	Discussion

	Mathematical Analysis and Homogenization of the Thermo-Diffusion Problem for Colloidal Populations
	Introduction
	Notations and assumptions
	Model description and geometry
	Smoluchowski population balance equations
	Soret and Dufour effects
	Setting of the model equations
	Assumptions on data

	Global solvability of problem (P)
	Passing to 0 (the homogenization limit)
	Preliminaries on periodic homogenization
	Two-scale homogenization procedure
	Strong formulation of (P0)


	Numerical Solution of the Transport Problem
	Introduction
	Discretization of the population balance equation
	Basic equations
	Discretization approaches for the aggregation term
	Hidy and Brock approach
	Batterham approach
	Hounslow approach
	Fixed pivot approach

	Approximation details
	Approximation of the breakage mechanism
	Approximation of the aggregation mechanism
	Discretized equation for aggregation-breakage interactions


	Time and space discretization of the diffusion-advection-reaction equation
	Linearization schemes
	An iterative Newton scheme
	An iterative splitting scheme

	Discretization of cell problems and periodic boundary conditions
	Overview of the used Numerics libraries
	DUNE
	deal.II


	Numerical Analysis of the Upscaled Thermo-Diffusion Problem
	Introduction
	Formulation of the problem. Main results
	Concept of weak solution. Technical preliminaries. Available results.
	Semi-discrete error analysis
	Fully discrete error analysis

	Conclusions and Open Issues
	Conclusions
	Open issues
	Open issues at the modeling level
	Open issues at the mathematical level


	Bibliography
	Summary
	Index
	Publications
	Acknowledgments
	Curriculum Vitae

