

Redundancy on the software design process is essential for
designing correct software
Citation for published version (APA):
Brand, van den, M. G. J., & Groote, J. F. (2014). Redundancy on the software design process is essential for
designing correct software. ERCIM News, 99, 34-35.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/581d3b62-8a0e-4db2-b0ce-35b3f0661d91

ERCIM NEWS 99 October 201434

Special Theme: Sofware Quality

If an engineer was asked how reliable a
critical artefact must be, a likely answer
might be that a system can only fail once
in 1010 times. For example, the proba-
bility of a ship’s hull collapsing during
its lifetime or an active high water bar-
rier failing to function when it is
requested to do so, are typically in the
order of 10-10. These numbers are so low
that no engineer will ever experience the
failure of his own artefact.

Considering such a question led us to
reflect on how it may be possible to
obtain similar numbers when designing
software. In our previous work, we
addressed this question by constructing
a simple failure model and, we found a
simple answer [1]. The only way to
obtain such figures was by employing
redundancy. Such an approach is very
common in the more classical engi-
neering disciplines. For example, when
considering support columns with a
failure probability of 10-5, an engineer
can simply use two columns (where only
one is truly necessary), thus allowing the
overall failure probability to be
increased to 10-10.

To examine how this redundancy
approach applies in the software devel-
opment field, we must realise that soft-
ware is very different from physical
artefacts. In physical artefacts, compo-
nents fail due to wear and tear while
software fails due to built-in errors, for
example, a small typing error, an incor-
rect algorithm or the wrong use of an
interface. When such an error is acti-
vated, the software fails. As software has
many varied states, it can take a long
time for some errors to become active,
although as shown in [2] many program-
ming faults lead to a multitude of erro-
neous states. Therefore, these latter
faults are far easier to catch.

The probability of a hardware failure is
almost negligible and thus, can be
ignored. Software errors are always
directly caused by either the program-
mers or program designers that left those

errors in the code. As humans they have
a large probability of doing something
wrong [3]. At best, the failure proba-
bility of humans is only 10-3 but even
this figure can only be applied in situa-
tions where the tasks are very simple
and the programmer highly trained. For
more complex tasks, failure probabili-
ties of 10-2 or 10-1 are more realistic. In
situations where a human must com-
plete a non-trivial task under stress, they
are almost certain to fail.

It should be obvious that the difference
between the failure probability of a pro-
grammer and the desired failure proba-
bility of a critical piece of software is
around eight orders of magnitude.
Obvious measures, such as comprehen-
sive training for programmers or the use
of the most modern programming lan-
guages are excellent solutions but
alone, these measures are unable to
bridge this gap. Training can never
accomplish an improvement of more
than a factor 10-2 and for a complex task
such as programming, even this is
unlikely. Using modern programming
languages, even domain specific lan-
guages, in combination with libraries
can lead to substantial reductions in the
amount of required code and thus,

reduce the overall numbers of errors.
However, here too, the possible reduc-
tions that can be achieved (at most a
factor of 100) are insufficient.

Thus, the only way to achieve the
desired failure probability of 10-10 is to
consciously employ redundancy in the
software design process. Typically,
when constructing software, it must be
described in several ways. These dif-
fering approaches should then be metic-
ulously compared and challenged, with
the goal of removing as many of the
flaws that will be inherent in each
description.

Several forms of redundancy are
already present in actual programming,
such as type checking and testing.
However, these forms of redundancy
came about as good practices, not con-
scious ways to introduce redundancy
with a view to attaining a certain level
of software quality.

Active redundancy can be brought into
the software design process through the
introduction of high level models of the
software, for instance, in the form of
domain specific languages, property
languages such as modal logics to inde-
pendently state properties, independ-
ently (and perhaps multiple) con-
structed implementations, and a priori
described test cases. The comparison of
these different views can be done by
model checking (software or models
against properties), model based testing
(model against implementation), and
systematic testing (tests against model
or software). Code inspection and
acceptance tests are also fruitful, but
lack the rigour of comparison that the
more mathematical methods have.

By acknowledging that redundancy in
design is the only way to obtain reliable
software, one can then question certain
trends. For instance, there is an on-
going trend to eliminate the annoyance
associated with static type checking. A
language like Python is a typical

Redundancy in the Software design Process

is Essential for designing Correct Software

by Mark G.J. van den Brand and Jan Friso Groote

Researchers at Eindhoven University of Technology in the Netherlands plead the case for more redundancy

in software development as a way of improving the quality of outcomes and reducing overall costs.

This footbridge (Nederwetten, The

Netherlands) is made of more steel than

strictly necessary to assure its quality.

Software engineers must also consciously

employ redundancy to ensure quality.

ERCIM NEWS 99 October 2014 35

example, as is the introduction of the

auto keyword in C++ which allows a

programmer to skip writing down an

explicit type. The desire for code gener-

ation out of a model, or research in gen-

erating a model and software out of

requirements put on the software intro-

duce a single point of failure in the

design process. These approaches do

not pay tribute to the need for redun-

dancy and discourage the detection of

flaws that are inevitably made in the

design of the software. This is a serious

problem, as we all know that such flaws

can wreak havoc when they happen to

be activated.

Links:

http://www.win.tue.nl/~mvdbrand/

http://www.win.tue.nl/~jfg/

References:

[1] M.G.J. van den Brand and J.F.

Groote: “ Software Engineering:

Redundancy is Key”, J.J. Vinju editor,

preprint Science of Computer

programming, Special issue in Honour

of Paul Klint, pp. 75-82, 2013.

[2] J.F. Groote, R. van der Hofstad and

M. Raffelsieper: “On the Random

Structure of Behavioural Transition

Systems”, Computing Science Report

CS-R1401, Department of

Mathematics and Computer Science,

Eindhoven University, 2014.

http://www.win.tue.nl/~jfg/articles/CS

R-14-01.pdf

[3] D.J. Smith: “Reliability,

maintainability and risk. Practical

Methods for Engineers”, Elsevier,

2011.

Please contact:

Mark G.J. van den Brand

Eindhoven University of Technology,

The Netherlands

Tel: +31402472744

E-mail M.G.J.v.d.Brand@tue.nl

Jan Friso

Eindhoven University of Technology,

The Netherlands

E-mail J.F.Groote@tue.nl

The ICEBERG project was developed to

consider the issue of Transfer of

Knowledge (ToK) in the Software

Quality Assurance (QA) domain and had

two main objectives: (1) investigating,

defining and implementing model-based

processes oriented to identifying the

most effective and efficient QA strategy

for software development in general,

and more specifically, software devel-

oped for telecommunications and

finance organisations; and, as stated for

this type of Marie Curie projects, (2)

bolstering the research platform in this

area for future work through the second-

ment of researchers and the specific

training of early stage and recruited

researchers.

Project Motivation

Commonly, software projects need to be

performed and delivered against project

schedules that specify timings, costs and

quality constraints (amongst other

things). One of the most cost- and time-

intensive components of the overall

development cycle is the QA process. A

major issue associated with this process

is that the individual analysis of single

factors in isolation is frequently inaccu-

rate, as pairs of factors may visibly (and

sometimes adversely) affect each other.

Therefore, frameworks that support

decisions made in relation to meeting

scheduling and quality requirements,

while keeping project costs within

budget, would be very helpful for

project managers.

Research Themes and Challenges

The ICEBERG project started in

February 2013 and will end in

December 2017. It is funded through

the European Marie Curie program

(IAPP category). The project’s main

scope is to provide researchers with

new research skills and broaden the

horizons of models-based processes

with a view to identifying the most

effective and efficient QA strategy in

software development.

A number of institutions collaborated

on this project: two research centres

(CINI (Consorzio Interuniversitario

Nazionale per l’Informatica) -

University of Naples and University of

Alcalá (UAH)) and two SMEs

(Assioma.net and DEISER).

Specifically, the two universities pro-

vided skills in the areas of quality esti-

mation and forecasting models of soft-

ware products/processes and related

costs. The SMEs contributed highly

qualified real-life experience on the

testing of software projects/processes.

The project involves up to 19

researchers who all have the opportu-

nity to make cross-entity swaps with the

other partner institutions. The

researchers then have the opportunity to

share their capacities, acquire new skills

and develop new competences on deci-

sion support systems in the quality

assurance domain. Once they return,

this knowledge flow continues, this

time back to their home institutions,

enhancing European economic and sci-

entific competitiveness. Up to three

researchers have been specifically con-

tracted for periods of 18 or 24 months in

order to contribute to the project and to

be trained as specialists in the field..

The key focus of the project will be the

enhanced support that a joint analysis of

schedules/times, costs and quality can

Estimating the Costs of Poor Quality Software:

the ICEBERG Project

by Luis Fernández, Pasqualina Potena and Daniele Rosso

Project ICEBERG investigated a novel approach to improving understanding of the real cost impacts

of poor quality software and supporting the suite of management decisions required to take

corrective action across the entire software development cycle.

http://www.win.tue.nl/~jfg/articles/CSR-14-01.pdf

