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Strategy Derivation for Small Progress Measures

M. Gazda and T.A.C. Willemse

Eindhoven University of Technology, The Netherlands

Abstract Small Progress Measures is one of the most efficient parity
game solving algorithms. The original algorithm provides the full solu-
tion (winning regions and strategies) in O(dm · (n/⌈d/2⌉)⌈d/2⌉) time,
and requires a re-run of the algorithm on one of the winning regions.
We provide a novel operational interpretation of progress measures, and
modify the algorithm so that it derives the winning strategies for both
players in one pass. This reduces the upper bound on strategy derivation
for SPM to O(dm · (n/⌊d/2⌋)⌊d/2⌋).

1 Introduction

A parity game [3,13,18] is an infinite duration game played on a directed graph
by two players called even and odd. Each vertex in the graph is owned by one
of the players, and labelled with a natural number, called a priority. The game
is played by pushing a token along the edges in the graph; the choice where
to move next is made by the owner of the vertex on which the token currently
resides. The winner of the thus constructed play is determined by the parity
of the minimal (or maximal, depending on the convention) priority that occurs
infinitely often, and the winner of a vertex is the player who has a strategy to
force every play originating from that vertex to be winning for her. Parity games
are determined; that is, each vertex is won by some player [13]. Solving a game
essentially means deciding which player wins which vertices in the game.

Parity games play an important role in several foundational results; for in-
stance, they allow for an elegant simplification of the hard part of Rabin’s proof
of the decidability of a monadic second-order theory, and a number of decision
problems of importance can be reduced to deciding the winner in parity games.
For instance, the model checking problem for the modal µ-calculus is equivalent,
via a polynomial-time reduction, to the problem of solving parity games [4,16];
this is of importance in computer-aided verification. Winning strategies for the
players play a crucial role in supervisory control of discrete event systems, in
which such strategies are instrumental in constructing a supervisor that controls
a plant such that it reaches its control objectives and avoids bad situations;
see e.g. [1] and the references therein. In model checking, winning strategies are
essential in reporting witnesses and counterexamples, see [16].

A major impetus driving research in parity games is their computational
status. Even though the solution problem belongs to both the complexity classes
NP and coNP, no polynomial algorithm has been devised so far. Taking a slightly
simplified view, today’s deterministic algorithms for parity game solving can be
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classified into three categories: a category of two early classical algorithms, viz.
the recursive algorithm [18], solving games with d different priorities, n vertices
and m edges in O(m ·nd) and the small progress measures (SPM) algorithm [10],
solving games in O(dm · (n/⌊d/2⌋)⌊d/2⌋); a category of the fastest known al-
gorithms, viz. the deterministic subexponential algorithm [11] and the bigstep
algorithm [14]; and a category of strategy improvement algorithms [17,15,5].

For a considerable time, strategy improvement algorithms were perceived as
likely candidates for solving parity games in polynomial time, but they were
ultimately proven to be exponential in the worst-case [6]. In fact none of today’s
strategy improvement algorithms matches the bigstep algorithm or the determ-
inistic subexponential algorithm. The latter is a modification of the classical
recursive algorithm, running in nO(

√
n), and the bigstep algorithm combines the

recursive algorithm and the SPM algorithm, running in O(m ·(κn/d)γ(d)), where
κ is a small constant and γ(d) ≈ d/3.

Somewhat surprisingly, our knowledge of the classical algorithms is still far
from complete. For instance, the recursive algorithm is regarded as one of the best
algorithms in practice, which is corroborated by experiments [7]. However, until
our recent work [8] where we showed the algorithm is well-behaved on several
important classes of parity games, there was no satisfactory explanation why this
would be the case. In a similar vein, in ibid. we provided tighter bounds on the
worst-case running time, but so far, no tight bounds for this seemingly simple
algorithm have been established. We expect that, if improvements on the upper
bound on the parity game solving problem can be made, such improvements will
come from improvements in, or through a better understanding of the classical
algorithms; this expectation is fuelled by the fact that these classical algorithms
are at the basis of the currently optimal algorithms.

Here, we focus on the second classical algorithm, namely Jurdziński’s small
progress measures algorithm. Using a fixpoint computation, it computes a pro-
gress measure, a labelling of vertices, that witnesses the existence of winning
strategies. In general, no clear, intuitive interpretation of the information con-
tained in the progress measures has been given, and the mechanics of the al-
gorithm are still quite mysterious. This is in contrast to the self-explanatory
recursive algorithm, and the strategy improvement algorithm, where, thanks to
ordering of plays according to profiles, at every step, one has a clear picture
of the currently known best strategy. Apart from Jurdziński’s original article,
some additional insight was offered in [9] (an intuitive progress measure in the
setting of solitaire games), and also in Schewe’s paper on bigstep [14] (restricted
codomain and small dominions). Our first contribution is to provide a better
understanding of these progress measures and the intermediate values in the
fixpoint computation, see Section 3. By doing so, a better understanding of the
algorithm itself is obtained.

Progress measures come in two flavours, viz. even-and odd-biased, and their
computation time is bounded by eitherO(dm·(n/⌊d/2⌋)⌊d/2⌋) orO(dm·(n/⌈d/2⌉)⌈d/2⌉),
depending on the parity of the extreme priorities. From an even-biased progress
measure, one immediately obtains winning regions for both players, but only a
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winning strategy for player even on its winning region and not for her oppon-
ent. Likewise for odd-biased progress measures. Obtaining the winning strategy
for an opponent thus requires re-running the algorithm on the opponent’s win-
ning region. Note that the effort that needs to be taken to obtain a strategy in
the same time bound as the winning region stems from a more general feature
of parity games: a winning partition in itself does not allow one to efficiently
compute a winning strategy (unless there is an efficient algorithm for solving
parity games). This basic result, which we nevertheless were unable to find in
the literature, is formalised in Section 4.

An essential consequence of this is that the algorithm solves a parity game
in O(dm · (n/⌊d/2⌋)⌊d/2⌋), as one can always compute one of the two types of
progress measures in the shorter time bound. Contrary to what is stated in [10],
the same reasoning does not apply to computing the winning strategy for a fixed
player; this still requiresO(dm·(n/⌈d/2⌉)⌈d/2⌉) in the worst case, as also observed
by Schewe in [14]. An intriguing open problem is whether it is at all possible
to derive the winning strategies for both players while computing one type of
measure only, as this would lower the exponent in the time bound to ⌊d/2⌋.
Our second contribution is to give an affirmative answer to the above problem.
We modify the generic SPM by picking a partial strategy when a vertex won
by player � is discovered, and subsequently adjust the lifting policy so that it
prioritises the area which contains an �-dominion. Both steps are inspired by
the interpretation of the progress measures that we discuss in Section 3. Like
the original algorithm, our solution, which we present in Section 4, still works
in polynomial space.

2 Preliminaries

We briefly introduce parity games in Section 2.1 and Jurdziński’s Small Progress
Measures algorithm in Section 2.2. For an in-depth treatment of both, we refer
to [9] and the references therein.

2.1 Parity Games

A parity game is an infinite duration game, played by players odd, denoted by
� and even, denoted by 3, on a directed, finite graph. The game is formally
defined as follows.

Definition 1. A parity game is a tuple (V,E,P , (V3, V�)), where

– V is a finite set of vertices, partitioned in a set V3 of vertices owned by
player 3, and a set of vertices V� owned by player �,

– E ⊆ V ×V is a total edge relation, i.e. all vertices have at least one outgoing
edge,

– P :V → N is a priority function that assigns priorities to vertices.
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Parity games are depicted as graphs; diamond-shaped nodes represent vertices
owned by player 3, box-shaped nodes represent vertices owned by player � and
the priority assigned to a vertex is written inside the node, see the game depicted
in Figure 1 Throughout this section, assume that G = (V,E,P , (V3, V�)) is an

1

v6

0

v5

2

v4

3

v3

3

v2

0

v1

Figure 1. A simple parity game in which 4 vertices are owned by player odd, 2 vertices
are owned by player even and with 4 different priorities.

arbitrary parity game. We write v → w iff (v, w) ∈ E, and v• to denote the
set of successors of v, i.e. {w ∈ V | v → w}. For a set of vertices W ⊆ V ,
we will denote the minimal priority occurring in W with minP(W ); by Vi we
denote the set of vertices with priority i; likewise for V≤k. Henceforth, we assume
that # denotes an arbitrary player; that is # ∈ {�,3}. We write #̄ for #’s
opponent: 3̄ = � and �̄ = 3. For a set A ⊆ V , we define G∩A as the structure
(A,E∩(A×A),P|A, (V3∩A, V�∩A)); the structureG\A is defined as G∩(V \A).
The structures G ∩ A and G \ A are again a parity game if their edge relations
are total (in general, this is not the case).

Plays and Strategies A sequence of vertices v1, . . . , vn is a path if vm → vm+1

for all 1 ≤ m < n. Infinite paths are defined in a similar manner. We write pi to
denote the ith vertex in a path p.

A game starts by placing a token on some vertex v ∈ V . Players 3 and
� move the token indefinitely according to a single simple rule: if the token is
on some vertex that belongs to player #, that player moves the token to an
adjacent vertex. An infinite sequence of vertices created this way is called a play.
The parity of the least priority that occurs infinitely often on a play defines the
winner of the play: player 3 wins if, and only if this priority is even. This is
known as the parity condition.

A strategy for player # is a partial function σ:V + → V satisfying that
whenever it is defined for a finite path u1 · · ·un ∈ V +, both un ∈ V# and
σ(u1 · · ·un) ∈ u•

n. An infinite play u1 u2 u3 · · · is consistent with a strategy
σ if all prefixes u1 · · ·un of the play for which σ(u1 · · ·un) is defined, un+1 =
σ(u1 · · ·un). Some strategy σ is winning for player # from vertex v iff all plays
consistent with σ are won by player #. Vertex v is won by player # whenever she
has a winning strategy for all plays starting in vertex v. Parity games are determ-
ined [3], meaning that every vertex is won by one of the players; they are even
positionally determined, meaning that if # wins a vertex then she has a winning
positional strategy: a strategy that determines where to move the token next
based solely on the vertex on which the token currently resides. Such strategies
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can be represented by a function σ:V# → V . Solving a parity game G essentially
means computing the partition (Win3(G),Win�(G)) of V into vertices won by
player 3 and player �, respectively.

Example 1. In the parity game of Figure 1, v1, v2 and v3 are won by player 3;
v4, v5 and v6 are won by player �. A winning positional strategy for player 3

is to play from v2 to v1 and from v3 to v2. A winning strategy for � is to move
from v4 to v6 and from v5 to v6.

Attractors and Dominions An #-attractor into a set U ⊆ V contains all those
vertices from which player # can force any play to U ; it is formally defined as
follows.

Definition 2. The #-attractor into a set U ⊆ V , denoted #-Attr(U), is the
least set A ⊆ V satisfying:

1. U ⊆ A
2. (a) if w ∈ V# and w• ∩ A 6= ∅, then w ∈ A

(b) if w ∈ V#̄ and w• ⊆ A, then w ∈ A

Observe that the complement of an attractor set of any subset of a parity game
induces a parity game, i.e. G\#-Attr(U) for any U and # is a well-defined parity
game. Whenever we refer to an attractor strategy associated with #-Attr(U), we
mean the positional strategy that player # can employ to force play to U ; such
a strategy can be computed in O(|V | + |E|) using a straightforward fixpoint
iteration.

A set of vertices U is an #-dominion whenever there is a strategy σ for
player # such that every play starting in U and conforming to σ is winning for
# and stays within U . A game is a paradise for player # if the entire game is an
#-dominion.

We shall frequently work with strategies or dominions in the context of a
certain subgame G′ ⊂ G, which do not retain their properties when moving to
a larger context of G. For instance, consider a subset of vertices W ⊂ V that
induces a subgame G∩W , and moreover that there is a subset D ⊆ W which is
a #-dominion in G∩W . Observe that, in general, D is not a #-dominion within
G. In such cases we always explicitly state which context is assumed.

2.2 Jurdziński’s Small Progress Measures Algorithm

The SPM algorithm works by computing a measure associated with each vertex
that characterises even (resp. odd) cycles: it is such that it decreases along the
play with each “bad” odd priority encountered, and only increases upon reaching
a beneficial even priority. In what follows, we recapitulate the essentials for
defining and studying the SPM algorithm; our presentation is—as in the original
paper by Jurdziński—from the perspective of player 3.

Let G = (V,E,P , (V3, V�)) be a parity game. Let d be a positive number
and let α ∈ Nd be a d-tuple of natural numbers. We number its components from
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0 to d − 1, i.e. α = (α0, α1, . . . , αd−1), and let < on such d-tuples be given by
the lexicographic ordering. These tuples will be used to (partially) record how
often we can or must see vertices of a particular priority on all plays. We define
a derived ordering <i on k-tuples and l-tuples of natural numbers as follows:

(α0, α1, . . . , αk) <i (β0, β1, . . . , βl) iff (α0, α1, . . . , αi) < (β0, β1, . . . , βi)

where, if i > k or i > l, the tuples are suffixed with 0s. Analogously, we write
α =i β to denote that α and β are identical up-to and including position i.
Intuitively, the derived ordering provides enough information to reason about
the interesting bits of plays: when encountering a priority i in a play, we are
only interested in how often we can or must visit vertices of a more significant
(i.e. smaller) priority than i, whereas we no longer care about how often we have
seen less significant priorities.

Now, assume from hereon that d − 1 is the largest priority occurring in G;
i.e., d is one larger than the largest priority in G. For i ∈ N, let ni = |Vi|. Define
M3 ⊆ Nd ∪ {⊤}, containing ⊤ (⊤ /∈ Nd) and only those d-tuples with 0 on even
positions and natural numbers ≤ ni on odd positions i.

The lexicographical ordering < and the family of orderings <i on d-tuples is
extended to an ordering on M3 by setting α < ⊤ and ⊤ = ⊤. Let ρ:V → M3

and suppose w ∈ v•. Then Prog(ρ, v, w) is the least m ∈ M
3, such that

– m ≥P(v) ρ(w) if P(v) is even,
– m >P(v) ρ(w), or m = ρ(w) = ⊤ if P(v) is odd.

Definition 3. Function ρ is a game parity progress measure if for all v ∈ V :

– if v ∈ V3, then for some w ∈ v•, ρ(v) ≥P(v) Prog(ρ, v, w)
– if v ∈ V�, then for all w ∈ v•, ρ(v) ≥P(v) Prog(ρ, v, w)

Proposition 1 (Jurdziński [10]). If ρ is the least game parity progress meas-
ure, then for all v ∈ V : ρ(v) 6= ⊤ iff v ∈ W3.

The least game parity progress measure can be characterised as the least fixpoint
of a monotone transformer on the complete lattice we define next. Let ρ, ρ′:V →
M3 and define ρ ⊑ ρ′ as ρ(v) ≤ ρ′(v) for all v ∈ V . We write ρ < ρ′ if ρ ⊑ ρ′

and ρ 6= ρ′. Then the set of all functions V → M3 with ⊑ is a complete lattice.
The monotone transformer defined on this set is given as follows:

Lift(ρ, v) =

{

ρ[v 7→ min{Prog(ρ, v, w) | v → w}] if v ∈ V3

ρ[v 7→ max{Prog(ρ, v, w) | v → w}] if v ∈ V�

As a consequence of Tarski’s fixpoint theorem, we know the least fixpoint of the
above monotone transformer exists and can be computed using Knaster-Tarski’s
iteration scheme. This leads to the original SPM algorithm, see Algorithm 1.
Upon termination of the iteration within the SPM algorithm, the computed game
parity progress measure ρ is used to compute the sets Win3(G) and Win�(G) of
vertices won by player 3 and �, respectively.
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Algorithm 1 The original Small Progress Measures Algorithm

1: function SPM(G)
2: Input G = (V,E,P , (V3, V�))
3: Output Winning partition (Win3(G),Win�(G))
4: ρ← λv ∈ V. (0, . . . , 0)
5: while ρ < Lift(ρ, v) for some v ∈ V do

6: ρ← Lift(ρ, v) for some v ∈ V such that ρ < Lift(ρ, v)
7: end while

8: return ({v ∈ V | ρ(v) 6= ⊤}, {v ∈ V | ρ(v) = ⊤})
9: end function

Theorem 1 (See [10]). Algorithm 1 solves a parity game in O(dm·(n/⌊d/2⌋)⌊d/2⌋).

The above runtime complexity is obtained by considering the more optimal
runtime of solving a game G, or G’s ’dual’, obtained by shifting all priorities
by one and swapping ownership of all vertices. The runtime complexity for com-
puting winning strategies for both players using the SPM algorithm is worse. A
winning strategy σ3:V3 → V for player 3 can be extracted from ρ by setting
σ3(v) = w for v ∈ V3 ∩ Win3(G) and w ∈ v• such that ρ(w) ≤ ρ(w′) for all
w′ ∈ v•. A winning strategy for player � cannot be extracted from ρ a posteri-
ori, so, as also observed in [14], the runtime complexity of computing a winning
strategy cannot be improved by considering the dual of a game (contrary to the
claim in [10]).

Theorem 2 (See also [14]). Algorithm 1 can compute winning strategies for
both players in O(dm · (n/⌈d/2⌉)⌈d/2⌉).

To facilitate the analysis of SPM, we will use the following terms and notions.
The term measure refers to the intermediate values of ρ in the lifting process
as well. Given a tuple m ∈ M3, we say that the position i in m is saturated, if
(m)i = |Vi|.

A convenient abstraction of an instance of SPM being executed on a partic-
ular game is a sequence of intermediate measure values ρ0ρ1 . . . ρC , where ρC is
the current measure value (as we frequently consider partial executions of SPM,
ρC is not necessarily the final, stable measure). Formally, we define a lifting
context as a tuple 〈G,ms〉, where G is a parity game, and ms = ρ0ρ1 . . . ρC a
sequence of all intermediate measure values.

3 An operational interpretation of progress measures

While SPM is a relatively simple algorithm in the sense that it is concise and
its individual steps are elementary operations, it lacks a clear and appealing ex-
planation of the devices used. It is therefore difficult to understand, and possibly
enhance. Apart from the formal definition of progress measures, little explana-
tion of what is hidden behind the values in tuples is offered. Notable exceptions
are [12], which explains that when restricted to 3-solitaire games, one can use
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the maximal degrees of ‘odd stretches’ (a concept we make precise below) in
order to define a certain parity progress measure, and Schewe’s bigstep paper
[14], where it is shown that dominions of a bounded size can be detected using
measures with a restricted codomain. In general, the high-level intuition is that
the larger progress measure values indicate more capabilities of player �, and
a value at a given position in the tuple is somehow related to the number of
priorities that � can enforce to visit.

In what follows, we present a precise and operational interpretation of meas-
ures. Our interpretation is similar in spirit to the one used in [12], but applicable
to all parity games, and uses a concept known from the realm of strategy im-
provement algorithms – a value (or profile) of a play. Here, values are defined in
terms of maximal odd-dominated stretches occurring in a prefix of a play. With
this notion at hand, we can consider an optimal valuation of vertices, being the
best lower bound on play values that player 3 can enforce, or the worst upper
bound that � can achieve, i.e. it is an equilibrium. The optimal valuations range
over the same codomain as progress measures, and the main result of this sec-
tion states that the least game parity progress measure is equal to the optimal
valuation.

Let M3
ext denote all tuples in Nd ∪ {⊤} such that for all m ∈ M

3
ext and even

positions i ≤ d, (m)i = 0; i.e. compared to M3, the requirement that values on
odd positions i are bounded by |Vi|. Elements in M

3
ext are ordered in the same

fashion as those in M
3. Given a play π, a stretch is a subsequence πsπs+1 . . . πs+l

of π. For a priority k, a k-dominated stretch is a stretch in which the minimal
priority among all vertices in the stretch is k. The degree of a k-dominated stretch
is the number of vertices with priority k occurring in the stretch.

Definition 4. Let us denote all plays in the parity game by Π. An 3−value (or
simply value) of a play is a function θ3 : Π −→ M

3
ext defined as follows:

– if π is winning for �, then θ3(π) = ⊤
– if π is winning for 3, then θ3(π) = m, where m 6= ⊤, and for every odd

position i, (m)i is the degree of the maximal i-dominated stretch that is a
prefix of π

Observe that the play value is well-defined. This is because an infinite i-
dominated stretch for an odd i implies that a game is won by �, hence its value
is ⊤ in such case.

Example 2. Suppose that the sequence of priorities corresponding to a certain
play π is 453453213(47)∗. Then θ3(π) = (0, 1, 0, 2, 0, 0, 0, 0).

Successor up-to-k For m ∈ M3 \ {⊤} and k ∈ N, we will denote with succk(m)
the least m′ ∈ M3 such that m′ >k m.

Lemma 1. If ρ is a game progress measure of a parity game G, then for all v
there is a strategy σ3 ∈ S3 such that for every π ∈ Π(σ3, v), θ3(π) ≤ ρ(v)
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Proof. We will show that player 3 has a strategy to force plays with values not
exceeding ρ(v). The strategy in question (denoted by σmin) is the same as used
by the SPM algorithm – 3 always picks the vertex minimising ρ(v).

We proceed with induction on ρ(v). The base case (ρ(v) = (0, 0, . . . , 0)) is
trivial. For the inductive step, we assume that whenever the value of ρ(w) for
any game progress measure of an arbitrary game G and its vertex w is lower
than m, then for all plays consistent with σmin and starting at w, their values
do not exceed ρ(w).

Take v with ρ(v) = m. Let π = v1v2 . . . be a play starting at v1 = v and
conforming to σmin, and let m′ = θ3(π). We will prove that m′ = m. Let k be
the smallest (most significant) position such that (m′)k > 0. Since m′ = θ3(π),
there exists a non-trivial k-dominated stretch in the prefix of π. Let vn be the
first vertex with priority k occurring in π. From game progress measure property,
the way σmin is defined, and the fact that k is the least priority seen until vn,
we know that ρ(vi) ≥k ρ(vi+1) for v1 ≤ i ≤ n , and moreover for all vi with
P(vi) = k the inequality is strict. Hence we have m = ρ(v) ≥ ρ(vn) >k ρ(vn+1),
and by applying the inductive hypothesis to vn+1, we know that for all plays
π′ ∈ Π(σmin, vn+1), we have θ3(π

′) ≤ ρ(vn+1) < m. Let πpost be the postfix
of π starting with vn+1. Since vn was the first occurrence of priority k in π,
and dominating the prefix, we have (θ3(π))k = (θ3(πpost))k +1, and (θ3(π))i =
(θ3(πpost))i for i < k. In short, we have thus m′ = θ3(π) = succk(θ3(πpost)).
Since m > θ3(πpost), we obtain m ≥ succk(θ3(πpost)) = m′.

Lemma 2. If ρ is the least game progress measure of a parity game G, then
there is a strategy σ� ∈ S∗

�
such that for every π ∈ Π(σ�, v), θ3(π) ≥ ρ(v)

Proof. We will prove the above statement using the definition of the least pro-
gress measure as the least fixed point of the lifting operator. Fix a game G. We
proceed by induction on the number of liftings that were performed until the
partial measure ρ has been reached.

Base case (no liftings performed, ρ(w) = (0, 0, . . . , 0) for all w) is trivial. For
the induction step we fix a vertex v which was the last vertex to be lifted before
the measure ρ was obtained, and as the inductive hypothesis, we assume that
for all partial measures ρ′ that were obtained in all intermediate stages of lifting
before v was lifted to ρ, and all vertices w, it holds that ϕ∗

3(w) ≥ ρ(w).
We need to show that � can force a strategy on v whose value is at least

ρ(v) (we only need to show it for v, as the ρ-values of all other nodes are as
in the previous measure approximation ρprev, and for them IH applies). Let
σv be defined as: if v ∈ V�, a one-point strategy defined only on v as the
successor maximising ρ, or if v ∈ V3, σv = ∅. We consider two cases, depending
on the priority of v. If P(v) is even, then from the definition of the lifting
operator, for any vertex w in a play consistent with σv that appears right after
v, we have ρ(v) ≤P(v) ρprev(w). From the inductive hypothesis we know that
� has a strategy σw that forces any play starting at w to have a value at
least ρprev(w) ≥P(v) ρ(v). If we define σ as σv for an empty history starting
at v, and then proceeding as σw, any play π consistent with σ has some value
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m ≥P(v) ρprev(w) (as P(v) is even, P(v) does not influence any odd i-dominated
stretch for i ≤ P(v)); therefore m ≥P(v) ρ(v), and since (ρ(v))i = 0 for i ≥ 0,
we have m ≥ ρ(v).

From lemmata 1 and 2 we obtain the following theorem.

Theorem 3. If ρ is the least progress measure of a parity game G, then, for all
v:

1. there is a strategy σ� ∈ S∗
�

such that for every π ∈ Π(σ�, v), θ3(π) ≥ ρ(v)
2. there is a strategy σ3 ∈ S3 such that for every π ∈ Π(σ3, v), θ3(π) ≤ ρ(v)

The above theorem links the progress measure values to players’ capabilities
to enforce beneficial plays or avoid harmful ones, where the benefit from a play is
measured by a specially devised play value, as it is done in strategy improvement
algorithms. This offers a more operational view on progress measure values,
which, combined with a more fine-grained analysis of the mechanics of SPM
allows us to extract winning strategies for both players in the next section.

A notable difference between strategy improvement algorithms and SPM is
that SPM does not work with explicit strategies, and the intermediate meas-
ure values do not represent any proper valuation induced by strategies – only
the final least progress measure does. Still, these intermediate values give an
underapproximation of the capabilities of player � in terms of odd-dominated
stretches that she can enforce.

Note that a consequence of Theorem 3 is that the least (resp. greatest) play
values that player � (resp. 3) can enforce are equal, and coincide with ρ.

4 Strategy construction for player �

Computing winning strategies is typically part of a practical solution to a com-
plex verification or a controller synthesis problem. In such use cases, these
strategies are employed to construct witnesses and counterexamples for the veri-
fication problems, or for constructing control strategies for the controller [1].
As we explained in Section 2.2, the SPM algorithm can easily be extended to
construct a winning strategy for player 3. The problem of deriving a winning
strategy for player � in SPM (other than by running the algorithm on the
‘dual’ game, or by using a ‘dual’ domain M�) has, however, never been ad-
dressed. Note that the problem of computing strategies is at least as hard as
solving a game. Indeed, even if we are equipped with a valid winning parti-
tion (Win3(G),Win�(G)) for a game G, then deriving the strategies witnessing
these partitions involves the same computational overhead as the one required
to compute (Win3(G),Win�(G)) in the first place.

Proposition 2. The problem of finding the winning partition (Win3(G),Win�(G))
of a given game G can be reduced in polynomial time to the problem of computing
a winning strategy for player # in a given #-dominion.

10



Proof. We will reduce the problem of recognising whether a given set D is a
dominion of a given player to the strategy derivation problem. The former prob-
lem is known to be polynomially equivalent to the winning partition problem
[2].

Suppose there is an algorithm A that, given a dominion D ⊆ V (G) of player
#, computes a winning strategy σ of player #, closed on D. Moreover, we as-
sume that the worst-case running time of A has an upper bound T (|V |, |E|, d).
We can construct an algorithm A′ that decides whether D is a #-dominion in
O(T (|V |, |E|, d) + (|V | + |E|) · log d) by simply running A on D and analysing
the outcome.

– A has not returned a well-defined strategy σ within T (|V |, |E|, d) steps. In
this case the answer is no

– A has returned some answer σ within T (|V |, |E|, d) steps. By solving the
induced solitaire game in (|V | + |E|) · log d time, we verify whether σ is
indeed a winning strategy for # on D. Is so, return yes, otherwise return
no.

2 1 3 . . . 2N − 2 2N − 1 2N

Figure 2. A parity game won by player � for which the SPM using M
3 is significantly

faster than using M
� to compute the non-top stable measure. For M3, the first ⊤ value

will be reached after the first full pass of the cycle containing priority 1 (O(N2) using
a fair lifting strategy), and it will be propagated immediately to the rest of the nodes.
Computation using M

� will take an exponential time to lift the node with priority 2N .

Deriving a strategy for both players by using the SPM to compute M3

measures and M� measures consecutively, or even simultaneously, affects, as
we already discussed in Section 2.2, SPM’s runtime. This is nicely illustrated
by the family of games depicted in Figure 2, for which lifting to top using an
even-biased measure is exponentially faster than arriving at a stable “non-top”
odd-biased measure. Being able to compute � strategies without resorting to
the aforementioned methods would allow us to potentially significantly improve
efficiency on such instances. It may be clear, though, that extracting a winning
strategy from the small progress measures algorithm for vertices with measure
⊤ will require modifying the algorithm (storing additional data, augmenting the
lifting process). For instance, simply following the vertex that caused the update
to top, fails, as the example below shows.

Example 3. Reconsider the game depicted in Figure 1. Recall that in this game,
vertices v4, v5 and v6 are won by player �, and in all possible lifting schemes,
the first vertex whose measure becomes ⊤ is v6. After that, a possible sequence
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of liftings is that first ρ(v5) is set to ⊤ (due to v6), followed by ρ(v4) = ⊤ (due
to v5). In case we set the strategy based on the vertex that caused the given
vertex to be lifted to top, we obtain σ(v4) = v5, which is clearly not winning for
player �.

The key problem is that for vertices won by player �, from some point onwards,
the lifting process discards significant information. This is best seen in case of
lifting to ⊤ – a partial characterisation of reachable odd priorities contained in a
tuple (see also our previous section) is ultimately replaced with a mere indication
that player � can win.

4.1 Key observation

At this point we shall give an intuitive explanation of the main insight that
enables us to define part of player � strategy in the course of lifting, once a top
value is reached. In section 5 the observations made here will be formalised and
proved, leading to Theorem 4, which forms the basis of our algorithm.

Consider a game G on which a standard SPM algorithm with an arbitrary
lifting policy has been applied. Suppose that at some point a vertex v is the first
one to be lifted to ⊤, and after lifting of v the algorithm is suspended, resulting
is some temporary measure ρ. Let k be the priority of v.

We will start with two straightforward observations. The first one is that k
must be an odd number; this is because a vertex with an even priority obtains,
after lifting, a ρ-value equal to the ρ-value of one of its successors, and therefore
it cannot be the first vertex lifted to ⊤. Another immediate conclusion is that at
least one (or all, if v ∈ V3) successor(s) of v has (have) a ρ-value saturated up
to the k-th position, i.e. it is of the form m = (0, |V1|, 0, |V3|, . . . , 0, |Vk|, ∗ ∗ ∗);
were it not the case, then a non-top value m′ such that m′ >k m would exist,
which would be inconsistent with the definition of Prog.

kv ρ(v) = ⊤

umax . . .

�-dominion
D ⊆

⋃
i≥k

Vi

V

kv ρ(v) = ⊤

. . .

�-dominion
D ⊆

⋃
i≥k

Vi

V

Figure 3. Snapshot of the SPM algorithm after the first vertex v is lifted to top.

There are two more complex properties, which we can utilise to modify the
SPM algorithm and compute the winning strategy for player � (see Figure 3).
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1. Vertex v belongs to an �-dominion D within G such that the minimal pri-
ority in D is k.

2. If v ∈ V�, then picking the successor umax of v with the maximal current
ρ-value among v• is a part of a (memoryless) winning strategy for � that
stays within such a dominion D as described above.

The intuition concerning the above facts is as follows. Vertices with a measure
value m saturated up to but possibly excluding a certain position i have a neat
interpretation of the measure value at position i:

Player � can force the following outcome of a play:

1. priority i appears mi times without any lower priority in between
2. it will reach a ⊤-labelled vertex via priorities not more significant than i
3. it enters a cycle with an odd dominating priority larger (less significant) than

i.

Therefore, in the situation as described above, � can force a play starting at
v to first go in one step to the successor umax of v with a measure of the form
(0, |V1|, 0, |V3|, . . . , 0, |Vk|, ∗ ∗ ∗), and then to play further and either force a less
significant odd-dominated cycle (cases 2 and 3, since v is the only ⊤-labelled
vertex), or to visit vertices with priority k |Vk| times without any lower priority
in between. But in the latter case, since v has priority k, we have in fact |Vk|+1
vertices with priority k not “cancelled” by a lower priority. Hence player � has
forced an odd-dominated cycle with the lowest (most significant) priority k. Note
that this does not imply we can simply construct a winning strategy for � by
always picking a successor with the maximal measure to further vertices that
can be visited along the play; such a method may lead to an erroneous strategy,
as illustrated by Figure 4.

1

v1

⊤

2

v2

(0, 2, 0, 0)

1

v3

(0, 2, 0, 0)

3

v4

(0, 2, 0, 1)

Figure 4. A simple parity game, won entirely by player �, and demonstrating that a
strategy defined by a greedy choice of vertex with the maximal tuple does not work.
After lifting the vertices in order v1, v3, v2, v4, v1, we obtain the measure values as
above. Player � would then choose v2, which leads to a losing play, whereas the choice
of the other successor (v1) yields a winning play for �.
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5 A bounded � dominion

5.1 Lifting History Graph

We first introduce an auxiliary notion of a Lifting History Graph. Its nodes
(states) contain all snapshots of ρ-values that appeared at every parity game
vertex in the course of the lifting, whereas the edges explain the causal depend-
ency between ρ-values at a given vertex and its successors. In other words, the
graph contains the entire history of lifting up to a certain point, and along its
edges we can “go back” in the history of updates.

Definition 5. (Lifting History Graph) Suppose we are in the context of some
partial execution of the SPM algorithm, in which t liftings have been performed on
a certain parity game G = (V,E,P , (V3, V�)), starting with ρ0 = λw ∈ V. (0, . . . , 0)
and yielding after each i-th lifting a temporary measure ρi. We define the cor-
responding Lifting History Graph LH = (VLH , ELH). The set of nodes VLH ⊆
V ×M3 contains all pairs (v,m) such that at some stage of lifting v had a value
m (i.e. there is i such that ρi(v) = m), and we define the edge relation as:

(v,m)•
△
= {(w,m′) | w ∈ v•(in G) ∧ ∃i ≤ t : m = ρi(v) > ρi−1(v)

and either v 6= w ∧ ρi−1(w) = ρi(w) = m′

or v = w ∧ ρi−1(v) = m′}

that is, the successors of (v,m) in LH are those pairs (w,m′) such that w ∈
v• and when v was lifted to m, ρ(w) had value m′. In other words, (v,m)•

constitutes a “snapshot” of ρ-values of v’s successors just before v was lifted to
m.

The following technical proposition summarises how the ρ−values in the
Lifting History Graph change as we move one step back in the history of de-
penendencies.

Proposition 3. Let LH = (VLH , ELH) be a lifting history graph, and (w,m) ∈
VLH a position in LH such that (w,m)• 6= ∅. Let us denote mmin and mmax

respectively the minimal and maximal value of the set {m′ | (u,m′) ∈ (w,m)•}.

1. if m 6= ⊤, then

for all i > P(w), (m)i = 0 (PLH.0)

and one of the following holds:

w ∈ V3 P(w) even mmin =P(w) m (PLH.11)
w ∈ V3 P(w) odd mmin =i−1 m ∧ (mmin)i = (m)i− 1 (PLH.12)

∧ for all j ∈ {i+ 1, . . . ,P(w)} (mmin)j = |Vj |
where i = max {l | (m)l > 0}

w ∈ V� P(w) even mmax =P(w) m (PLH.13)
w ∈ V3 P(w) odd mmax =i−1 m ∧ (mmax)i = (m)i− 1 (PLH.14)

∧ for all j ∈ {i+ 1, . . . ,P(w)} (mmax)j = |Vj |
where i = max {l | (m)l > 0}
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2. if m = ⊤, then one of the following holds:

w ∈ V3 P(w) even mmin = ⊤ (PLH.21)
w ∈ V3 P(w) odd mmin = ⊤or for all i ≤ P(w) (mmin)i = |Vi| (PLH.22)
w ∈ V� P(w) even mmax = ⊤ (PLH.23)
w ∈ V� P(w) odd mmax = ⊤or for all i ≤ P(w) (mmax)i = |Vi| (PLH.24)

Proof. Directly from the definitions of Prog and Lift. Observe that the value i
in two subcases of the first part is well-defined, since (w,m)• 6= ∅.

Another important property of the Lifting History Graph is that the measure
strictly decreases when a LH state with the same vertex is re-encountered along
the path in LH .

Proposition 4. If there is a non-trivial path in LH (i.e. containing at least one
edge) from (w,m) to (w,m′), then m > m′.

Proof. The property is easy to observe, since, intuitively, moving to a successor
of (w,m) entails moving to a time spot just before w was lifted to m; when
w is encountered again, the corresponding snapshot (w,m′) comes from some
earlier moment, and from the monotonicity of lifting we have m > m′ (for a
more formal proof, see appendix).

We can use the lifting history graph to define a strategy of player � that
witnesses some useful capabilities of player �: being able to force a certain
number of vertices with priority k to appear during the play with no lower
(more significant) priority in between, or to force a winning play within a set of
priorities bounded by k. We call this strategy a lifting history-based (LH-based)
strategy σv

LH . Note that the strategy is not memoryless, and it is of theoretical
importance only: its existence serves as a proof of certain properties from which
we can in turn derive correctness of our algorithm.

LH-based strategy

Convention Thoughout the entire section about LH-based strategy, we assume
a parity game G = (V,E,P , (V3, V�)) on which some sequence of liftings has
been applied, yielding a temporary, not necessarily stable, measure ρ. Let k be
an odd number and let v0 be a vertex such that the ρ-value of v0 is saturated
on all positions smaller than k, and at position k equal to kval. That is, more
formally, for all odd i < k, (ρ(v0))i = |Vi|, and (ρ(v0))k = kval. We also assume
a lifting history graph LH = (VLH , ELH) associated with the aforementioned
sequence of liftings performed on G.

In such a context, we define the lifting history-based strategy σv0
LH : a memory-

wise partial strategy of player � that guarantees the following objective: for all
plays π starting at v0 and conforming to σv0

LH , either of the three holds:

1. π is finite and contains kval occurrences of vertices with priority k, or
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2. π is finite and it terminates in a vertex v such that ρ(v) = ⊤
3. π is infinite, winning for �, and visits only vertices with priorities larger or

equal to k

For ease of presentation, we will present the definition of σv0
LH using an on-line

construction procedure (i.e. an algorithm selecting the desired strategy on-the-fly
as the play progresses). The procedure utilises a lifting history graph, on which
it performs moves in parallel to those in the play. Intuitively we move backwards
along the history of updates (liftings) of the corresponding nodes. The measures
are thus successively decreased1, until a useful (odd) cycle is encountered. We
also keep track of the sequence of states in LH visited so far. If the current node
in the game is w ∈ V� and the corresponding current state in the lifting history
graph is (w,m), the strategy always picks the successor that had the maximal
measure value when the current node w was lifted to m. Moreover, whenever an
odd-dominated cycle is encountered, we remove the entire corresponding suffix
from the history and revert to the last state in the lifting history graph that
contained w.

We proceed with a more formal description of the on-line strategy construc-
tion procedure OddResponse, which starts a play at the inital vertex v0 and,
depending on the ownership of the current node, either receives a choice of succe-
sor of player 3, or generates such a choice for player �. The procedure maintains
the following current state information:

– (u,m): current state in LH , u is the current vertex and m one of its measure
values from the lifting history. Initially (u,m) = (v0, ρ(u)), where ρ(u) is of
the form (0, |V1|, 0, , . . . , |Vk−2|, 0, kval, ∗ ∗ ∗), ∗ ∗ ∗ denoting some arbitrary
values.

– λ = λ1 . . . λn ∈ V ∗: history of the play (in the parity game G) so far,
excluding the current vertex, initialised to an empty sequence ǫ

– vis = vis1 . . . visvislen ∈ V ∗
LH : a sequence of states in LH already visited,

initialised to an empty sequence ǫ

OddResponse proceeds as follows:

1. If m = ⊤, or there are kval different nodes with priority k in vis, terminate.
2. If an odd-dominated cycle has been encountered, we prune vis accordingly.

That is, if (u,m′) = visj for some j < vislen (we have already visited u
and at that point it had a measure m′), and moreover the corresponding
induced cycle u = λi . . . λn.u in G is odd-dominated, then we remove the
suffix containing the cycle from vis, i.e. vis := vis1 . . . visj−1. Moreover, we
replace the current measure value with the previously encountered one, i.e.
(u,m) := (u,m′).

3. we update the history: λ := λ.u and vis := vis.(u,m)

1 Strictly speaking, the measure values do not necessarily decrease with every single
step in the LH graph, but re-visiting a vertex in LH graph entails a decrease in
measure - see Proposition 4.
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4. If u ∈ V3, then we receive an input from player 3 who picks the next state
x from the successors of u. We set the current LH state (u,m) := (x,mx)
such that (x,mx) ∈ (u,m)• in LH .

5. Otherwise, if u ∈ V�, then we define a choice for player �:
σv
LH(λ) := x : (x,mx) ∈ (u,m)• and mx is maximal within (u,m)• in LH .

We set (u,m) := (x,mx).

The following technical lemma states an invariant that holds before every
new state is processed by OddResponse. The intuition is as follows. Decrease
in the tuple at position k can happen either due to an occurrence of priority k,
which is good for the objective of the procedure, or due to the phenomenon of
“carrying” – successor w with a lower priority than k had saturated (maximal)
values on all positions from P(w) till k. Decrease at a given position due to
carrying comes at the expense of saturated positions of less significant priorities,
hence a consecutive decrease in measure must finally be compensated by visiting
stretches of odd priorities greater or equal k that are not cancelled out by more
important even priorities. This will finally lead to an odd cycle, or visiting kval
nodes with priority k.

Let us denote with stretch(i) the number of distinct vertices of priority i
occurring in the suffix of the sequence vis without a lower priority in between
(counting also u if P(u) = i). The intuition behind the following lemma is that
during the execution of OddResponse, the current tuple m can be split into
three parts:

1. positions i < k (more significant than k): saturated, (m)i = |Vi|
2. positions k ≤ i ≤ L: the sum stretch(i) + (m)i has a fixed lower bound

(depending on kval or |Vi|)
3. positions i > L: irrelevant

In addition, the lower bound for stretch(L) + (m)L is greater by 1 than on
the other positions, which guarantees that always (m)L > 0.

Lemma 3. If m 6= ⊤ and stretch(k) < kval (i.e. the termination condition is
not satisfied), then there is a position L ≥ k such that for all odd i ≤ L:

position in m invariant

(i ranges over odd numbers)
i < k (m)i = |Vi| and stretch(i) = 0 (C1)
i = k if L = k, then stretch(k) + (m)k ≥ kval (C21)

if L > k, then stretch(k) + (m)k ≥ kval − 1 (C22)
k < i < L stretch(i) + (m)i ≥ |Vi| (C3)
i = L and L > k stretch(L) + (m)L ≥ |VL|+ 1 (C4)

Moreover, the inequalities at position L can be further strengthened if L coincides
with the priority of the current state:

– if P(u) = L = k, then stretch(k) + (m)k ≥ kval + 1 (C5)
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– if P(u) = L > k, then stretch(L) + (m)L ≥ |VL|+ 2 (C6)

The above invariant implies in particular that (m)L > 0, and P(u) ≥ k.

Proof. See the appendix.

The first corollary of the above lemma, already explained in the proof, is that
during the execution ofOddResponse only vertices with priorities at least equal
to k are visited. The other solves one potential problem with OddResponse:
if it happened that at some point m = (0, . . . , 0), we would have (u,m)• = ∅
and the choice of succesor in lines 4 and 5 would not be well-defined. But if the
termination condition is not satisfied, then (m)L > 0, hence (u,m)• 6= ∅.

Corollary 1. If during the execution of OddResponse the current state is
(u,m) and the termination condition is not satisfied, then P(u) ≥ k and moreover
the choice of successors in OddResponse is well-defined.

Lemma 4. Provided that the procedure OddResponse leads to an infinite play
π, the minimal priority occurring infinitely often in π is odd.

Proof. Assume towards contradiction that there is an execution ofOddResponse

that leads to an infinite play π such that the minimal priority occurring infinitely
often on π is an even number e. Take the suffix π′ of π such that e is also the
lowest value occurring in π′ (so we exclude transient more important priorities).
Consider the path in the lifting history graph induced by π, in particular its
part once π′ has been entered. Take a node ue with priority e that has been en-
countered infinitely many times (there must be one, since there are finitely many
nodes). As ue was not part of any odd cycle in the suffix π′, the correponding
occurrences of ue in vis were not removed in the pruning step and hence the
measures m′ with which ue occurs in vis form a strictly decreasing sequence (by
Proposition 4). But since a sequence of decreasing measures must be finite, it
means that ue occurred only finitely many times – a contradiction.

Corollary 1 and Lemma 4 together yield correctness of the OddResponse

procedure.

Proposition 5. Assume a parity game G = (V,E,P , (V3, V�)) on which a se-
quence of liftings has been applied, resulting in a temporary measure ρ. Let k be
an odd number and let v0 be a vertex such that for all odd i < k, (ρ(v0))i = |Vi|,
and (ρ(v0))k = kval.

There exists a strategy σv0
LH of player � that guarantees the following object-

ive: for all plays π starting at v0 and conforming to σv0
LH , either of the three

holds:

1. π has a finite prefix that is a k-dominated stretch of degree kval (kval oc-
currences of vertices with priority k)

2. π has a finite prefix that contains only vertices in V≥k, and terminates in a
vertex v such that ρ(v) = ⊤
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3. π is infinite, winning for �, and visits only vertices with priorities larger or
equal to k

It is not difficult to observe that if there is a strategy which forces an objective
consisting of a disjunction of a winning condition for one of the players, and a
reachability objective, then there is a memoryless strategy that guarantees the
same objective (one can formally prove this, for instance, using a straightforward
conversion to a winning condition in a parity game).

The second observation is that while executing OddResponse, whenever
the play returns to v0, a k-dominated cycle is formed, and the history is reset to
the initial one. OddResponse then picks the same successor as in the beginning
(it can be any of the neighbours maximising ρ). Because of this, we can be more
precise as to the choice made by the abovementioned memoryless strategy on v0
– any choice of a maximal neighbour works.

We summarise our considerations in the following lemma.

Lemma 5. Assume a parity game G = (V,E,P , (V3, V�)) on which a sequence
of liftings has been applied, resulting in a temporary measure ρ such that ρ(v) = ⊤
for some vertex v ∈ V .

There exists a memoryless strategy σ of player � that guarantees the following
objective: for all plays π starting at v and conforming to σ, either of the two
holds:

1. π visits a vertex v⊤ such that ρ(v⊤) = ⊤; moreover, before visiting v⊤, only
priorities larger or equal to k are encountered

2. π is winning for �, and visits only vertices with priorities larger or equal to
k

In addition, if v ∈ V�, then for every successor u of v with a maximal measure
among v• the local strategy σu(v) = u can be extended to strategy σu with all the
above properties.

5.2 Existence of the bounded � dominion and a partial strategy
assignment

We are now in a position

Corollary 2. Assume a parity game G = (V,E,P , (V3, V�)) on which a se-
quence of liftings has been applied, resulting in a temporary measure ρ such that
there is exactly one vertex v with ρ(v) = ⊤. Let k = P(v).

– if v ∈ V�, then for every successor u of v with a maximal measure among v•

there is an �-dominion Du such that for all w ∈ Du, P(w) ≥ k. Moreover,
there is an � strategy σ winning for �, closed on Du, and defined on v as
σ(v) = u

– if v ∈ V3, then there is an �-dominion D such that v ∈ D and for all w ∈ D,
P(w) ≥ k. Note that in this case it must hold that v• ⊆ D.
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Proof. Observe that the abovementioned maximal successor u (or all successors,
in case of v ∈ V3), has a measure saturated on all positions up to and including
k, and hence meets the condition of Proposition 5. We are thus able to construct
a lifting history-based strategy σu

LH that either yields an infinite play within
priorities larger or equal k, or will visit exactly |Vk| nodes with priority k, or
a top-labelled vertex. In the last two cases, v must be visited as well. Hence
the desired strategy for player � picks the successor u maximising the measure
on v•, and then follows σu

LH ; if v is re-visited, the same choices are repeatedly
made.

Let D be the set of all vertices that can occur in plays conforming to σu
LH (or

equivalently vertices that can be visited while executing OddResponse). They
constitute a dominion of � on which no vertex has a priority exceeding k. From
memoryless determinacy of parity games, we know that there is a memoryless
strategy on D winning for �, and hence a memoryless winning strategy visiting
vertices that have priority values of at least k. Moreover, we know precisely the
kind of choice made by this memoryless strategy on v – picking the successor
with maximal measure.

The above observations are important from an algorithmic perspective, be-
cause they allow us to set the strategy of player � on the first node v lifted to
top while executing the SPM. In fact at this stage we may be able to set an �

strategy for even more nodes, following a reasoning similar to that in Zielonka’s
recursive algorithm – by using a strategy with which � can “attract” the play
from other nodes to v. However, to retain soundness, we use a special guarded
attractor �-Attr≥k({v}), which can pass only through nodes of priority not more
significant than k.

The definition of the guarded attractor given below may be parameterised
with a subset of vertices W ⊆ V , if we wish to consider only part of the game
(in the remainder of the paper, we always use as W a set of vertices inducing a
well-defined subgame G ∩W ).

If we assume U ⊆ W ∩ V≥k, then �-Attr≥k
W (U) is the least set A satisfying:

1. U ⊆ A ⊆ W ∩ V≥k

2. (a) if u ∈ V� and u• ∩ A 6= ∅, then u ∈ A
(b) if u ∈ V3 and u• ∩W ⊆ A, then u ∈ A

Let σ1 and σ2 be two strategies of the same player #. By σ1 ⊲ σ2 we will
denote a strategy of player # defined on dom(σ1) ∪ dom(σ2) as σ1(w) for all
w ∈ dom(σ1), and as σ2(w) for all w ∈ dom(σ2) \ dom(σ1).

Lemma 6. Let D ⊆ G be any dominion of � in G and k an odd number such
that all vertices in D have priority at least k, v ∈ D such that P(v) = k and σD be

a winning strategy for � on D and closed on D. Let σ≥k
Attr be a strategy defined

on all vertices in the attractor �-Attr≥k({v}) \ {v} as the strategy attracting

towards v. Then σ≥k
Attr ⊲ σD defined on D ∪�-Attr≥k({v}) is winning for � and

only visits priorities greater than or equal to k.
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Proof. Consider an arbitrary infinite play π, conforming to σ≥k
Attr ⊲σD. If π visits

�-Attr≥k({v}) infinitely often, then from the construction of σ≥k
Attr ⊲ σD, it will

visit v infinitely often, and from the assumption about D the lowest priority in
π is k, hence π is winning for �. Otherwise, π has a suffix that stays within D,
on which it conforms to σD, and therefore is winning for � as well.

Finally, as an immediate consequence of Corollary 2 and Lemma 6, we ob-
tain the main result of this section. The theorem below forms the basis of our
algorithm; it describes the relevant information about an �-dominion that can
be extracted once the first vertex in the game is lifted to top.

Theorem 4. Let G be a parity game on which an arbitrary lifting sequence is
applied, such that at some point a vertex v with P(v) = k is the first vertex
whose measure value becomes top. Let ρ be the temporary measure at that point.
The following holds:

– if v ∈ V�, then for every successor u of v with a maximal measure among
v• there is an �-dominion Du containing �-Attr≥k({v}) such that for all
w ∈ Du, P(w) ≥ k. Moreover, there is an � strategy σ winning for �, closed
on Du, defined on v as σ(v) = u, and on �-Attr≥k({v})\{v} as the strategy
attracting towards v

– if v ∈ V3, then there is an �-dominion D containing �-Attr≥k({v}) such
that for all w ∈ D, P(w) ≥ k. Moreover, there is an � strategy σ winning for
�, closed on D, and defined on �-Attr≥k({v})\{v} as the strategy attracting
towards v. Note that in this case it must hold that v• ⊆ D.

6 The extended SPM algorithm

Theorem 4 captures the core idea of our algorithm. It provides us with the
means to locally resolve (i.e. define a local strategy for) at least one vertex
in Win�(G), once a top value is found while lifting. Moreover, it indicates in
which part of the game the remainder of the �-dominion resides, implying that
one can temporarily restrict the lifting to that area until the dominion is fully
resolved. There is still a non-trivial task ahead: how to proceed such that the
composition of all local strategy assignments will be globally valid. We will give
a description of our solution (Algorithm 2), and informally argue the correctness
of our approach. The formal correctness proof can be found in section 6.1.

The algorithm proceeds as follows. First, a standard SPM is run until the
first vertex reaches top [l. 12–14 in Alg. 2]. Whenever v is the first vertex lifted
to top, then the issue of the winning strategy for v can be resolved immediately
[l. 18], as well as for vertices in the ‘at-least-k’ attractor of v (if there are any).
We will denote this set of ‘resolved’ vertices with RES. Moreover, we can restrict
our search for the remainder of the �-dominion D only to vertices with priorities
less significant than k, in fact only those from which player 3 cannot attract
a play to visit a priority more significant than k. Hence we can remove from
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Algorithm 2 Modified SPM with strategy derivation for player Odd

1: function Solve(G)
2: Input G = (V,E,P , (V3, V�))
3: Output Winning partition and strategies ((Win3(G), σ′), (Win�(G), σ))
4: initialise σ to an empty assignment
5: ρ← λw ∈ V. (0, . . . , 0)
6: SPM-Within(V )
7: compute strategy σ′ for player Even by picking min. successor w.r.t. ρ
8: return (({v ∈ V | ρ(v) 6= ⊤}, σ′), ({v ∈ V | ρ(v) = ⊤, σ))
9:
10: procedure SPM-Within(W )
11: while (W 6= ∅) do
12: while ρ < Lift(ρ,w)for some w ∈W and for all w ∈W :ρ(w) 6= ⊤ do

13: ρ← Lift(ρ,w) for w ∈W such that ρ < Lift(ρ,w)
14: end while

15: if for all w ∈ W : ρ(w) 6= ⊤ return ρ end if

16: v ← the only vertex in W such that ρ(v) = ⊤
17: k ← P(v)
18: σ(v)← u where u ∈ v• ∩W for which ρ(u′) ≤k ρ(u) for all u′ ∈ v• ∩W
19: RES← �-Attr≥k

W ({v})
20: for all w ∈ RES \ {v} do
21: ρ(w)← ⊤
22: if w ∈ V� then assign σ(w) the strategy attracting to v end if

23: end for

24: DOM← RES

25: IRR← 3-AttrW ({w ∈ W | P(w) < k})
26: REM← W \ (RES ∪ IRR)
27: SPM-Within(REM)
28: DOM← DOM ∪ {w ∈ REM | ρ(w) = ⊤}
29: A← �-AttrW (DOM)
30: for all w ∈ A \ DOM do

31: ρ(w)← ⊤
32: if w ∈ V� then assign σ(w) to be the strategy attracting to DOM

33: end if

34: end for

35: W ←W \A
36: end while

37: end procedure

38: end function

the current computation context the set IRR = 3-Attr({w ∈ W | P(w) < k}),
vertices that may be considered at the moment irrelevant.

After discarding the resolved and currently irrelevant vertices, the algorithm
proceeds in the remaining set of vertices that constitutes a proper subgame (i.e.
without dead ends) induced by the set REM. After the subroutine returns, all
vertices labelled with top are won by player � in the subgame G ∩ REM. In
other words, those vertices are won by � provided that the play does not leave
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REM. Since the only way for player 3 to escape from REM is to visit RES,
where every vertex is won by player �, the top-labelled vertices from REM are
in fact won by � in the context of the larger game G∩W . Therefore the set DOM
computed in line 28 constitutes an �-dominion within the game G∩W , in which
we have moreover fully defined a winning strategy σ for player �. Finally, every
vertex from V \ DOM that can be attracted by player � to the dominion DOM

is certainly won by �, and for those vertices we assign the standard strategy
attracting to DOM. The �-dominion A is then removed, and the computation
continues in the remaining subgame.

The algorithm may at first sight appear to deviate much from the stand-
ard SPM algorithm. However, the additional overlay, apart from defining the
strategy, can be seen as a special lifting policy that temporarily restricts the
lifting to parts where an � dominion is known to reside.

6.1 Correctness of the modified algorithm

The core of the correctness proof consists of showing that upon return proced-
ure SPM-Within computes the winning strategy for player � for all vertices in
Win�(G ∩ W ), provided that the input set W meets certain guards, which we
call suitability conditions.

We need to define a few notions first. Let A ⊆ V in the lifting context
〈G, ρ〉. We will say that A has only nonprofitable �-escapes with respect to ρ
if for every w → u such that w ∈ A ∩ V� and u ∈ V \ A, it holds that u ∈
3-AttrNonTop(ρ)({w

′ ∈ V | P(w′) < minP(A)}), where NonTop(ρ) = {w′ ∈ V |
ρ(w′) 6= ⊤}.

Moreover, we will say that A has only top 3-escapes with respect to ρ, if for
every w → u such that w ∈ A ∩ V3 and u ∈ V \A, it holds that ρ(u) = ⊤.

We will call a subset W ⊆ V suitable w.r.t ρ if:

S1 for all w ∈ W , ρ(w) 6= ⊤
S2 G ∩W is a proper sugbame
S3 W has only nonprofitable �-escapes w.r.t. ρ
S4 W has only top 3-escapes w.r.t. ρ

Theorem 4 captures the main idea behind our algorithm, and for the sake
of understanding and readability it was singled out in a simplified form, as
compared to the version that is formally required to prove correctness of the
algorithm. The latter version is the following generalisation of Theorem 4, that
allows us to reason about a context in which possibly more than one top value
has occurred in the course of the lifting and certain parts of the game have
already been resolved.

Theorem 5. Suppose that W ⊆ V induces a proper subgame and W has only
nonprofitable �-escapes. Let ρ be a measure corresponding to a lifting sequence
in which v ∈ W is the only vertex in W such that ρ(v) = ⊤, and v was the last
lifted vertex. Let k = P(v). Then there is a (memoryless) strategy σ, winning
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for � in the context of the subgame G ∩W , such that all plays conforming to σ
visit only vertices with priorities not smaller than k. Moreover, if v ∈ V�, then
σ(v) is (one of the) maximal successor(s) of v w.r.t. ρ.

The key property concerning correctness of Algorithm 2 is proved in Propos-
ition 6. The proposition utilises several lemmata, which we state below. Their
proofs can be found in the appendix.

Lemma 7. If W is a subgame, then the set REM = W \ (RES ∪ IRR) that is
computed in line 26 induces a subgame (i.e. it does not have “dead ends”).

Lemma 8. Suppose some arbitrary lifting procedure has been applied on the
entire G, yielding a temporary measure ρ̄ Assume that W is a set of vertices
that induces a well-defined subgame of G, G ∩W , and moreover the only edges
leading from the even-owned vertices in W to G \W , have top-labelled vertices
as endpoints. Furthermore, suppose that D ⊆ W induces an �-dominion on the
subgame G ∩W . Then lifting of ρ restricted to W will finally yield a top value.

Lemma 9. Let D be a dominion within a game G. Let D′ ⊆ D be a nonempty
subset of D such that D′ has only 3-escapes to D \D′. That is, for all u → w
such that u ∈ D′ and w ∈ D \D′, it holds that u ∈ V3. Then D′ is a dominion
within any subgame G′ containing the entire D′, but not containing any vertices
from D \D′.

We are now in the position to prove the key result of this section (here, we
provide a high-level description of the main steps of the proof, and for the details
we refer to the appendix).

Proposition 6. Assume a lifting context 〈G,ms〉. Suppose that during the ex-
ecution of the procedure SPM-Within, before some while-loop iteration (line 11),
ρ has a certain value ρI , and it holds that W is suitable w.r.t. ρI . Let ρF be the
final value of ρ when SPM-Within returns. Then after executing SPM-Within, the
following hold:

– for all w ∈ W , w ∈ Win�(G ∩W ) ⇐⇒ ρF (w) = ⊤
– σ|Win�(W ) is winning for � in the context of a subgame G ∩W

Proof. We proceed with structural induction on W ; assume that the statement
holds for all suitable subsets of W . We will prove that it holds for W .

I If Win�(G ∩W ) 6= ∅, then the iteration of liftings in lines 12–14 will even-
tually lead to a top-value in some vertex v.

II Vertex v defined in line 16 belongs to Win�(G ∩W )
III In line 26, REM is suitable w.r.t. ρ
IV For any D ⊆ (RES∪REM) which is an � dominion in the context of G∩W ,

all vertices in D \ RES are also won by � in G ∩ REM, i.e. D \ RES ⊆
Win�(G ∩ REM)
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V σ|REM is winning for � on Win�(G ∩ REM)
VI σ|RES∪Win�(G∩REM) is a winning strategy for � in Win�(G ∩ REM) ∪ RES in

the context of the subgame G ∩W
VII σ|A is a winning strategy for � in A in the context of the subgame G ∩W
VIII if the new Wnew := W \ A, computed in line 35, is not empty, then it is

suitable w.r.t. ρ.

Theorem 6. SPM-Within returns the least game progress measure of G, and the
strategy σ, fully defined on Win�(G) ∩ V�, is a winning strategy of player � on
Win�(G).

Proof. As V is obviously suitable w.r.t. the initial ρ = λv.(0, . . . , 0), from Pro-
position 6 we immediately obtain correct resolution of the Win�(G) part.

Running time Every attractor computation takesO(n+m) time, and whenever it
occurs, at least one new vertex is ‘resolved’. Hence the total extra time introduced
by the attractor computations is bounded by O(n(n+m)). As with the standard
SPM, the lifting operations dominate the running time, and their total number
for every vertex is bounded by the size of M3.

Theorem 7. For a game G consisting of n vertices, m edges, and d priorities,
the extended algorithm solves G and computes winning strategies for player 3

and � in worst-case O(dm · (n/⌊d/2⌋)⌊d/2⌋).

Proof.

O
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Example 4. We illustrate the various aspects of Algorithm 2 on the game G
depicted in Figure 5, with two (overlapping) subgames G1 and G2.

Note that the entire game is an�-paradise: every vertex eventually is assigned
measure ⊤ by Algorithm 2 (and Algorithm 1, for that matter). Suppose we use
a lifting strategy prioritising v2, v3, v7 and v8; then vertex v3’s measure is the
first to reach ⊤, and the successor with maximal measure is v7. Therefore, �’s
strategy is to move from v3 to v7. The set RES, computed next consists of vertices
v3 and v2; the strategy for v2 is set to v3 and its measure is set to ⊤. The 3-
attractor into those vertices with priorities ≥ 3, i.e., vertices v1 and v4, is exactly
those vertices, so, next, the algorithm zooms in on solving the subgame G1.

Suppose that within the latter subgame, we prioritise the lifting of vertex v7
and v8; then vertex v7’s measure is set to ⊤ first, and v7’s successor with the
largest measure is v8; therefore �’s strategy is to move from v7 to v8. At this
point in the algorithm, RES is assigned the set of vertices v7 and v8, and the
measure of v8 is set to ⊤. Note that in this case, in this subgame, the winning
strategy for � on v7 is to remain within the set RES. Since all remaining vertices
have more signficant priorities than v7, or are forced by 3 to move there, the next
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Figure 5. An example game G with two (overlapping) subgames G1 and G2.

recursion is run on an empty subgame and immediately returns without changing
the measures. Upon return, the �-attractor to all �-won vertices (within the
subgame G1, so these are only the vertices v7 and v8) is computed, and the
algorithm continues solving the remaining subgame (i.e. the game restricted to
vertices v5, v6 and v9), concluding that no vertex in this entire game will be
assigned measure ⊤.

At this point, the algorithm returns to the global game again and com-
putes the �-attractor to the vertices won by player � at that stage (i.e. vertices
v2, v3, v7 and v8), adding vertices v1 and v9, setting their measure to ⊤ and
setting �’s strategy for v9 to move to v1.

As a final step, the algorithm next homes in on the subgame G2, again within
the larger game. The only vertex assigned measure ⊤ in the above subgame is
vertex v4; at this point RES is assigned all vertices in G2, the measure of v5 and
v6 is set to ⊤ and the � strategy for vertex v5 is set to v4. This effectively solves
the entire game.

7 Conclusions and Future Work

The two key contributions of our work are:

1. We have proposed a more operational interpretation of progress measures
by characterising the types of plays that players can enforce.

2. We have provided a modification of the SPM algorithm that allows to com-
pute the winning strategies for both players in one pass, thus improving the
worst-case running time of strategy derivation.

The second enhancement has been made possible due to a thorough study
of the contents of progress measures, and their underapproximations in the in-
termediate stages of the algorithm (building on the proposed operational inter-
pretation).

As for the future work, we would like to peform an analysis of SPM behaviour
on special classes of games, along the same lines as we have done in case of the
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recursive algorithm [8], specifically, identifying the games for which SPM runs
in polynomial time, and studying enhancements that allow to solve more types
of games efficiently.
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Appendix

Proofs of Section 5.1

Proposition 4. If there is a non-trivial path in LH (i.e. containing at least one
edge) from (w,m) to (w,m′), then m > m′.

Proof. Suppose there is a path in LH (w,m) = (w0,m0) → (w1,m1) → · · · →
(wn,mn) = (w,m′). Let ρt denote the value of ρ after the t-th lifting; for j ∈
{0, . . . , n} we will define tj as the step in which wj was lifted to mj . From
monotonicity of lifting and the fact that two vertices cannot be lifted at the
same moment, it is not difficult to observe that tj > tj+1, and hence from
transitivity we have t0 > tn We consider two cases:

– if n > 1, then

m = ρt0(w0)
def. of t0

> ρt0−1(w0)
t0−1≥tn

≥ ρtn(w0) = ρtn(wn) = m′

– if n = 1, then

m = ρt0(w0)
def. of t0

> ρt0−1(w0) = ρtn(wn) = m′

Lemma 3. If m 6= ⊤ and stretch(k) < kval (i.e. the termination condition is
not satisfied), then there is a position L ≥ k such that for all odd i ≤ L:

position in m invariant

(i ranges over odd numbers)
i < k (m)i = |Vi| and stretch(i) = 0 (C1)
i = k if L = k, then stretch(k) + (m)k ≥ kval (C21)

if L > k, then stretch(k) + (m)k ≥ kval − 1 (C22)
k < i < L stretch(i) + (m)i ≥ |Vi| (C3)
i = L and L > k stretch(L) + (m)L ≥ |VL|+ 1 (C4)

Moreover, the inequalities at position L can be further strengthened if L coincides
with the priority of the current state:

– if P(u) = L = k, then stretch(k) + (m)k ≥ kval + 1 (C5)
– if P(u) = L > k, then stretch(L) + (m)L ≥ |VL|+ 2 (C6)

The above invariant implies in particular that (m)L > 0, and P(u) ≥ k.

i < k i = k k < i < L i = L
saturated lower bound

on stretch(i) + (m)i
(m)i = |Vi| kval |Vi| |VL|+ 1

(kval + 1 if L = k)
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Proof. Let us start with proving the last observation: if the invariant holds and
the termination condition is not satisfied, then (m)L > 0, and k ≤ L ≤ P(u).

Suppose that the invariant holds and m 6= ⊤ and stretch(k) < kval. Then
there must exist L ≥ k with the above properties (C1-C6). If L = k, then from
C21 we have (m)L ≥ kval − stretch(L). Since stretch(L) = stretch(k) < kval,
we obtain (m)L > 0. If L > k, then we have (m)L ≥ |VL| − stretch(L) + 1 (C4).
Observe that stretch(L) ≤ |VL|, because a longer stretch than VL means that a
cycle has been encountered in which L was the dominating priority, an in this
case OddResponse prunes the list vis and reverts to the previously encountered
LH state (step 2). Hence in this case we have (m)L > 0 as well. Since for all
states in the lifting history graph (w,m′) it holds that (m′)i = 0 for i larger
than P(w) (Proposition 3), (m)L > 0 implies that k ≤ L ≤ P(u).

Initialisation We proceed to prove that the invariant holds at the start of the
procedure OddResponse, when u = v0. We simply take L = k. Since at this
point m is of the form

(0, |V1|, 0, , . . . , |Vk−2|, 0, kval, ∗ ∗ ∗)

the condition that positions smaller than k are saturated (C1) is satisfied. Since
stretch(k) ≥ 0 and (m)k = kval, C21 holds as well. In case when P (u) = L = k,
we have stretch(k) ≥ 1 (at least u belongs to the k-dominated stretch), hence
stretch(k) + (m)k ≥ kval + 1 and thus C5 holds.

Maintenance We will now show that the invariant is always maintained. Suppose
the invariant held on each step before the current one; we show that it must hold
after the entire current step (processing the current state in lines 1–5) is finished.

In case the termination condition in line 1 is not satisfied, we proceed and
check for the odd cycle (step 2). If an odd cycle has been encountered, a certain
suffix is removed from vis and we revert to the previous state containing u,
say (u,m′) with a pruned list vis = vis1 . . . visj−1. This state has already been
encountered, and from the assumption we know that the invariant must have
held there. Hence the invariant holds before we enter step 3 of OddResponse.

In steps 3-5 the list vis is extended with the current state and the new state
(u,m) is picked by one of the players. Let us denote the old and new values
of (u,m) and other artefacts with superscripts “O” and “N” respectively, e.g.
(uO,mO) and (uN ,mN).

Suppose that the termination condition is not satisfied in the new state, in
particular mN 6= ⊤. We need to show that (uN ,mN) together with the extended
list vis.(uO,mO) meet the requirements C1-C6.

From Proposition 3 we can derive certain relationships between mO and mN :

(*) Let gnz = max {l | (mO)l > 0}. Then either:
1. mN ≥gnz mO, or
2. mN =gnz−1 mO and (mN )gnz = (mO)gnz − 1

and for all j ∈ {gnz + 1, . . . ,P(uO)}(mN )j = |Vj |
Moreover, the second case is possible only if P(uO) is odd.
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Note that LO ≤ gnz.
Let us first explain that all odd positions smaller than k must remain sat-

urated (C1). Since (mO)LO > 0, we have k ≤ LO ≤ gnz, and hence from (*)
mN ≥k−1 mO. Therefore if mN 6= ⊤, then for all odd i < k, (mN )i = |Vi|.

We proceed to prove that the lower bounds for stretch(j) + (m)j hold on
positions k ≤ j ≤ LN (C2-C6).

Let us first make a straightforward remark that for all odd j < P(uN ),
stretchN (j) = stretchO(j), and if moreoverP(uN) is odd, then stretchN (P(uN )) =
stretchO(P(uN)) + 1.

We consider the following cases:

– if P(uN ) < LO: in this case P(uN) < LO ≤ gnz; we first prove that
mN >P(uN ) m

O.

From mN ≥gnz−1 mO and P(uN ) < gnz, we obtain mN ≥P(uN ) m
O. But

then it must be the case that mN >P(uN ) m
O, because the suffix of mN con-

sisting of positions larger than P(uN ) contains only zeros, and the corres-
ponding suffix in mO has at least one position with a non-zero value, namely
LO. Hence the smaller suffix in mN must be compensated by a strictly larger
prefix up to P(uN).
We have thus established that mN >P(uN ) mO. We can now take as the

new LN the smallest j such that (mN )j > (mO)j (k ≤ j, because mO was
saturated up to k). The invariant held at (uO,mO), so the inequality C22
or C3 held at position LN ; by increasing (mN )LN at least by 1, and with
the same (at least) length of LN -dominated stretch, we obtain inequality
with a strengthened right-hand side – C21, or C4 respectively. If it is also
the case that LN = P(uN), then stretchN (LN ) = stretchO(LN ) + 1, there-
fore the lower bound can be further strengthened by 1, yielding C5 or C6,
respectively.

– if P(uN ) ≥ LO:
• if mN >LO mO, then LN can be defined in exactly the same manner
as above (the smallest j ≥ k such that (mN )j > (mO)j), and the same
argument applies

• if mN =LO mO, then we can take LN := LO; since lengths of stretches
remain the same – apart from possibly stretch(LO), which increases by
1 if P(uN) = LO, the required inequalities are easily derived from those
that held in the previous state (uO,mO)

• if mN <LO mO: in this case we must be in the second case of (*) and
P(uO) is odd. We also have LO = gnz, because on one hand LO ≤ gnz,
and on the other gnz has the property that it is the smallest position j
on which mN <j m

O.

∗ if gnz = LO = P(uO), then we take LN := LO. We have stretchN (LO) =
stretchO(LO) + 1, hence the fact that value at position LO in the
tuple has been decremented is compensated by a larger value of the
stretch, and the invariant is preserved.

∗ if gnz = LO < P(uO), then we take LN := P(uO). The value at
position LO in mN has been decremented as compared to mO, but it
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was the position on which an inequality with a strengthened right-
hand side (C21 or C4) held, therefore a weaker condition (C22 or C3)
will be satisfied in the new state. Furthermore, from Proposition 3
we have (mN )j = |Vj | for all odd j ≤ LN , and since stretchN (j) ≥ 0,
the condition C3 is readily satisfied. Finally, for position LN we have
stretchN (LN ) ≥ 1, and (mN )LN = |VLN |, hence C4 holds, and if it
also happens that P(uN ) = LN = P(uO), then stretchN (LN) ≥ 2,
and C6 holds as well.

Theorem 5. Suppose that W ⊆ V induces a proper subgame and W has only
nonprofitable �-escapes. Let ρ be a measure corresponding to a lifting sequence
in which v ∈ W is the only vertex in W such that ρ(v) = ⊤, and v was the last
lifted vertex. Let k = P(v). Then there is a (memoryless) strategy σ, winning
for � in the context of the subgame G ∩W , such that all plays conforming to σ
visit only vertices with priorities not smaller than k. Moreover, if v ∈ V�, then
σ(v) is (one of the) maximal successor(s) of v w.r.t. ρ.

Proof. Consider the strategy σ from Lemma 5. No play conforming to σ can visit
a vertex with priority smaller than k, unless it is a top-labelled node occurring
after a prefix of non-top nodes having priorities at least k. Therefore no such play
can enter 3-AttrNonTop(ρ)({w

′ ∈ V | P(w′) < k}) ⊆ 3-AttrNonTop(ρ)({w
′ ∈ V | minP(W )}).

From this and the fact that W has only non-profitable �-escapes, we know that
σ(w) ∈ W for all w ∈ dom(σ) ∩ W . Hence σ is a well-defined strategy in the
context of the subgame G ∩W .

Consider any play π conforming to σ within G ∩W . In case when π is finite
and visits the first top-labelled vertex, it can only be v, on which σ is defined.
From this cyclic property we know that for all vertices w ∈ V� encountered in
π, σ is defined. If π visits v inifinitely often, then π is winning for �, because π
does not visit any more significant priority in between. If v is visited only finitely
many times, from Lemma 5 we know that π is winning for �. In both cases no
priority more significant than k is encountered.

Proofs of Section 6.1

Lemma 7. If W is a subgame, then the set REM = W \ (RES ∪ IRR) that is
computed in line 26 induces a subgame (i.e. it does not have “dead ends”).

Proof. Since G is a well-defined game, we know that u• 6= ∅. Suppose, towards
contradiction, that there is a node u ∈ V \(RES∪ IRR) such that u• ⊆ RES∪ IRR.
We distinguish two cases:

– if u ∈ V3, then, since V \ IRR is an �-closed set, we have u•∩ IRR = ∅, so the
only possibility is that u• ⊆ RES. However, since u ∈ V \(RES∪IRR), we have
P(u) ≥ k and hence it must be the case that u ∈ �-Attr≥k(RES) = RES, a
contradiction.

– if u ∈ V�, then u• ∩ RES = ∅ (because P(u) ≥ k and in that case we would
have u ∈ �-Attr≥k(RES) = RES). Therefore u• ⊆ IRR - but it means that
u ∈ 3-Attr(IRR) = IRR, a contradiction.
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Lemma 8. Suppose some arbitrary lifting procedure has been applied on the
entire G, yielding a temporary measure ρ̄ Assume that W is a set of vertices
that induces a well-defined subgame of G, G ∩W , and moreover the only edges
leading from the even-owned vertices in W to G \W , have top-labelled vertices
as endpoints. Furthermore, suppose that D ⊆ W induces an �-dominion on the
subgame G ∩W . Then lifting of ρ restricted to W will finally yield a top value.

Proof. We can transform G to a game G′, in which we remove all edges from
W , to V \W . The codomain of SPM for G′ is the same as for G. Lifiting in G′

must reach a top because of D, and it will yield smaller values that lifting in G.
Indeed, the removed edges leading from W ∩V3 (vertices on which min is taken)
outside lead only to top-labelled vertices, so the effect is the same as removing
these edges. Edges originating in W ∩ V� may only increase the measure.

The purpose of the following lemma is to establish that the remainder of the
dominion containing RES, and contained in REM, is a dominion within REM.
Note that the subgame G′ mentioned in the lemma may actually not exist (how-
ever, in our case it always exists (REM)– see Lemma 7).

Lemma 9. Let D be a dominion within a game G. Let D′ ⊆ D be a nonempty
subset of D such that D′ has only 3-escapes to D \D′. That is, for all u → w
such that u ∈ D′ and w ∈ D \D′, it holds that u ∈ V3. Then D′ is a dominion
within any subgame G′ containing the entire D′, but not containing any vertices
from D \D′.

Proof. Consider the � strategy σ, winning for �, and closed on D. Since there
are no �-escapes from D′ toD\D′, for any w ∈ dom(σ)∩D′ we have σ(w) ∈ D′.
Hence for any subgame G′ containing D′, but not any vertex from D \D′, the
strategy σ restricted to D′ is well-defined, and the two desired properties are
carried over from the original strategy.

Proposition 6. Assume a lifting context 〈G,ms〉. Suppose that during the ex-
ecution of the procedure SPM-Within, before some while-loop iteration (line 11),
ρ has a certain value ρI , and it holds that W is suitable w.r.t. ρI . Let ρF be the
final value of ρ when SPM-Within returns. Then after executing SPM-Within, the
following hold:

– for all w ∈ W , w ∈ Win�(G ∩W ) ⇐⇒ ρF (w) = ⊤
– σ|Win�(W ) is winning for � in the context of a subgame G ∩W

Proof. We proceed with structural induction on W ; assume that the statement
holds for all suitable subsets of W . We will prove that it holds for W .

I If Win�(G ∩W ) 6= 0, then the iteration of liftings in lines 12–14 will even-
tually lead to a top-value in some vertex v.
Proof Follows from Lemma 8 and the assumption of W having only top
3-escapes.

II Vertex v defined in line 16 belongs to Win�(G ∩W )
Proof Immediately from Theorem 5.
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III In line 26, REM is suitable w.r.t. ρ
Proof
S1 obvious, since v is the only vertex inW such that ρ(v) = ⊤, and v /∈ REM

S2 proved in Lemma 7
S3 from the assumption about W , all � escapes from REM outside W are

non-profitable. Consider any �-escape to W \REM, that is, u → w such
that u ∈ REM ∩ V�, and u ∈ W \ REM = IRR ∪ RES. Suppose towards
contradiction that w /∈ IRR, hence w ∈ RES. But since P(u) ≥ k and
u ∈ W ∩ V�, we have u ∈ RES, and therefore u /∈ REM, a contradiction.

S4 from the assumption about W , all 3-escapes from REM outside W are
to top-labelled nodes. Observe that no even-owned vertex w ∈ REM

can have an edge to IRR = 3-AttrW ({w ∈ W | P(w) < k}), because w
would then belong to IRR. Hence the only 3-escapes outside REM lead
to RES, and every vertex therein has measure top.

IV For any D ⊆ (RES∪REM) which is an � dominion in the context of G∩W ,
all vertices in D \ RES are also won by � in G ∩ REM, i.e. D \ RES ⊆
Win�(G ∩ REM)
Proof Follows from Lemma 9 and the fact that there are no �-escapes from
REM to RES.

V σ|REM is winning for � on Win�(G ∩ REM)
Proof Follows from the inductive hypothesis.

VI σ|RES∪Win�(G∩REM) is a winning strategy for � in Win�(REM) ∪ RES in the
context of the subgame G ∩W
Proof Follows from Lemma 6 and the previous point.

VII σ|A is a winning strategy for � in A in the context of the subgame G ∩W
Proof Follows from the previous point and the obvious fact that extending
the dominion with its attractor, and assigning the attracting strategy for the
extended part yields a winning strategy.

VIII if the new W := W \A, computed in line 35, is not empty, then it is suitable
w.r.t. ρ

S1 by removing A, all top-labelled vertices have been removed from W
S2 W , as a complement of an �-attractor, is 3-closed, and constitutes a

proper subgame
S3 the new W doesn’t have any additional �-escapes as compared to the

old one
S4 the only possible new 3-escapes lead to A, in which all vertices are top-

labelled
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