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1. INTRODUCTION
1.1. General cutline

Analysis of serniconductor devices is an important means of obtaining a clearer
picture of what is really going on inside the device, and how this is related with
doping profile, geometry, lifetime etc. and with external electrical characteristics
measured at the device terminals. Owing to the nonlinear character of this problem
it is not possible to solve it analytically without introducing a lazge number of
simplifications e.g. low injection, constant mobilities and lifetimes, simplified doping
profiles etc. In the classical analysis of pn-junction devices [1] the device is divided
into neutral and space charge regions. In each region the equations are solved
analytically using assumptions that are reasonable for that region, and these
solutions are fitted at the boundaries. In spite of the simplifications used, this
solving procedure often gives a very practical and useful description.

Since the inventtion of the transistor there has been a continuous trend in technol-
ogy towards reduced device dimensions. This may be illustrated by a reduction of
the thickness of the base region in a high-frequency bipolar transistor from several
microns towards one tenth of a micron or even less. This rapid technological

* development has made several of the above-mentioned classical assumptions
problematic, while at the same time the perfection of device design needed a more
quantitative and generally applicable description of device behaviour. Circuit analysis
programs moreover, which are necessary for the analysis and design of large integrated
cireuits, also require aceurate device characterization.

With the help of modern computers and numerical analysis techniques it is possible
to anatyse the transistor problem while taking into account realistic device data and
the basic physical equations as accurately as they are known. Possible improvements
in physical formulation or the influence of one particular parameter can easily be
investigated. In 1964 Gummel [2] published a self~consistent irerative scheme for
one-dimensional steady-state transistor calculgtions which described for the first
time a general way of solving the transistor problem while considering the transistor
as an entity and applying boundary conditions only at points representing contacts.
This work started a whole train of numerical investigations for other semiconductor
devices as well, and the method has come into general use for device analysis. Right
at the beginning of this development it becarne clear that this new method of analysis
was seriously hindered by a number of typical numetical problems such as:

— the small differences between nearly equal numbers;

— carrier concentrations that vary many decades over small dmtances
— numereal instability of the difference equations;

— slow convergence rate of iterative processes.



[n addition to these problems gradually several weaknesses in the physical formulation
manifested themselves such as:

— influence of impurity concentration on bandgap and carrier lifetime due to
fundamental physical phenomena (high doping effects);

— influence of the fabrication process on doping profile, carrier lifetime, ete.;

— uncertainties concerning the temperature dependence of carrier mobilities and
lifetimes.

In this thesis recent developments of transistor analysis will be discussed in the light
of several of the author’s contributions in this field.
Chapter 1 presents the basic device equations, including the influence of heavy
doping, and touches on quantities such as doping profile, mobility and recombination.
In chapter 2 the numerical analysis of bipolar transistors is studied with emphasis on
the numetical problems. In the second part of this chapter a recently developed
one-dimensional transistor analysis program (TRAP |) is presented and calculated
results are compared with measurements. This program uses experimentally deter-
mined values for the bandgap narrowing and minority carrier lifetime as a function

- of impurity concentration.
In chapter 3 measuremnents and calculations concerning bandgap narrowing are
discussed in detail.
Chapter 4 describes the direct consequences of this effect for the emitter efficiency
in normal transistors as well as in a new transistor structure, which has an extra
emitter region with a fow impurity concentration, and the theory is compared - with
experiments.
Reprints of the publications discussed in the foregoing chapters are included in
chapter 5.

1.2, Basic device equations

The basic physical equations describing the flow of electrons and holes in the semi-
conductor under steady state conditions are {3]:

dE _ g

. (p—n+Np-Ny) (Poisson’s equation) (1.1)
dJ

d_.f = gR (1.2)
N (Continuity equations}

d_: = gR (1.3)

where the electric field E = —dWr/dx and the hole and electron current
densities are




Jp = —amp P (1.4)
dyn

In = —qun 0~ (1.5)

and further

R = the generation-recombination rate

Np—~Na = the net ionized impurity concentration
p, Mo hole and electron mobility
Pp, vn hole and electron quasi-Fermi potential (see below).

- ///z//////////,:
g conduchon band. .

Ee
_____________ Ep £ F—'—-L'“?"" —w= density of
= &, energy states
E b
%fﬂlence band: / Y
S AASS LTSS LS

P

Fig. 1:1. Schematic representation of the bandgap Ep and the density of energy states functions
for eiectrons () and holes (py) for an n-type semiconductor. At high imputity concentrations
an impurity band and tails are formed.

In equilibrium the carrier concentrations are given by (fig. 1.1):

[~-]

ng =/ pe(B) f{E).dE (1.6)

E;

Ey
o= S pn(E) {1-F(E)}dE . (1.7)
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The density of energy states for the electrons (pe) and the holes (ph) are usually
approximated by a square root dependence on encrgy. The Fermi-Dirac distribution
function f(E} gives the probability that an energy level £ is cocupied by an electron:

1

FE) = 1 +exp {(E ‘ F)/kT‘ (1.8)

and F is the Fermi energy level.
The position of the Fermi level in the bandgap can be derived from egs. (1.6} and
(1.7) and the charge neutrality condition:

Po —Ng *Np =Ny =0, (1.9)
When the allowed energy Jevels are at a distance of more than about 2 kT/q from F,

then the Fermi-Dirac distribution can be approximated by the Maxwell-Boltzmann
function:

K(E) = exp |- (E-F)T} . {1.10)

The material is then called non-degenerate. Assuming Maxwell-Boltzmann statistics
egs. (1.6) and (1.7) can be integrated and the result written as

ny = Ne exp {— (Ec — F)/kT} (111
Po = Ny exp {—(F —Ev)/kT} (1.12)
where N and Ny are the effective density of states in the conduetion and valence
bands.

For an intrinsic semiconductor the hole and electron carrier concentrations are
equal:

Py = Ny =DNjg (1.13)

It is possible to express the carrier concentration in extrinsic material in the intrinsic
carrier concentration njg

ng = njp exp §—(Ei — F)/ KT} = nj, exp {q (¥ — )/ kT} (1.14)
Po * Rip exp {—(F—Ei)/kT} = njg exp {q(p ~ W) KT | (1.15)
where Ej is the Fermi level in intrinsic material;

Ej = %(E + Ey) + % kT In (Ny/Nc) (1.16)
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and ¥ = —Fj/q and ¢= —F/q are the electric and Fermi potentials. The pn-product
is: '

Potty = NeNy exp (— Eg / KT) (117
where the bandgap Ey (T) = E¢ — Ey (see fig. 1.1).

Optical absorption measurements on pure silicon show that 3t temperatures above
230 K the bandgap can be approximated by a linear function of temperature (see
5.3, fig. 3):

Eg(T) = Ego —aT (1.18)

withEgg = 1206 eVande = 2.8 - 107 eV /K .
Measurements of the pn-product as z function of temperatute in pure silicon (see
5.3) are described by

Pofa = njp® = 9.61 - 10% T3 exp (— 1.206 / kT) . (1.19)

This is in reasonably good agreement with the theoretical formula [4] assuming
parabolic density of states functions independent of the impurity concentration.
However it will be shown in chapter 3 that this is not justified in het case of
impurity concentrations above 107 cm™. An impurity band and bandtails are then
formed which reduce the bandgap. This effect increases with higher impurity
concentrations and as a result the bandgap and also the pn-product are not constant
throughout the device but are position-dependent. For practical purposes it is useful
to approximate the pn-product by

Pole = ni? (N, T) = 9.61 - 10 T* exp {—q Vio (N)/le’ (1.20)
where. Vg, (N) is interpreted as the dope-dependent bandgap (see chapter 3).

In non-equilibrium it is useful to define quasi-Fermi potentials iwp and ¢p by analogy
with the Fermi level in equilibrium:

n = pjexp {q(\I’—xpn)/kT} (1.21)
p = njexp {q(qap—\lf)/kT} . (1.22)

These two expressions assume Maxwell-Botzmann statistics and the only difference
cornpared with egs. (1.14) and (1.15) is that n; is dope-dependent because the
qengity of states functions depend on the dopiny level and therefore on posttion.
Substitution of eqs. (1.21) and (1.22) into the expressions for the current denstities
gives



kT 1 dnj L dp

= +— =) - = 23
Jp = qupp(E T o g ) T 4P gy (1.23)
In = @Kt L dniy, op do (1.24)
n = Qupn q n ax 4 -4
whete use has been made of the Einstein relationship

D,

Dp_ Dn_ kT (1.25)
Hp #n 4

In the current density equations an extsa term kT/q - d(In nj) / dx appears which
describes the position-dependent bandgap throughout the device. These transport
equations in heavily doped silicon have been discussed in more detail by van Over-
straeten ¢.8. [5], Mock [6] and by Marshak and van Vliet [7].

1.3. Doping profile

For detailed numerical analysis of semiconductor devices it is necessary to know
" accurately the doping profile. Unfortunately it is very difficult and laborious to

determine.

Several of the most commonly used techniques are:

— stripping of thin layers after anodic oxidation and measuring the incremental
sheet Tesistance [8];

— measuring the spreading resistance when stepping with probes along a bevelled
angle [9];

— sputtering the wafer with an ion beam 2nd measuring the secondary ions by means
of a mass spectrometer (SIMS [10]);

— measuring the capicitance of a Schottky diode as a function of voltage.

The problem to derive the doping profile directly from the diffusion equations,
taking into account temperature, diffusion time, ambient etc_, has not yet been
solved satisfactorily, although recently [11] a process modelling of this type has
been claimed to give quantitatively reliable results.

Another more indirect way is to approximate the doping profile by a set of analytical
expressions [12] . The parameters in these expressions are chosen in agreement with
sheet resistances, epitaxial layer thickness and resistivity, junction depths ¢tc., and
are further derived from electrical measurernents at the device terminals, Based on
this idea we developed a method that will be illusirated for a double-diffused NPN
transistor (see fig. 1.2).

First only the doping profile in the base and neighbouring junctions will be
considered. 1t is assumed that in this region the profile N(x) can be approximated



10°L
Nig exp (-{x-x,1/L,)
-
T 108
Impurit
conc,(cn¥3) “_N B |
[ Nie_ :
|
1074 |
|
!
= NL Vi (" |
| 4 ’-' I
1015 L i i I/ : ! I |I
] Xb‘/ t Xy 2 % 3 L7 7 8 9

distance {pm}—
Fig. 1.2. Modelled doping profile of an NPN transistor.
by the following expressions
N(x) = Np (x) =N (x)
Np (x) = Nje exp {— (x —xe)/ Le }# Ne (1.26)

Nbo for 0= x g xy

Ny =
A = .
™ Nbeo exp{—[(x—Xb)/Lb]zf for x> xp

The interpretation of the parameters in these expressions follows from fig. 1.2. In
order 10 determine these parameters we assumed that the junction depths xp and x,
the impurity concentration in the collector N, and the sheet resistance of the base
uniderneath the emitter

X
Ripg = J aupNdx (i-27)
Xe

{itp is dope-dependent, see fig. 1.5) are known. The gradient of the doping profile
in the junction regions, which can be derived from capacitance measurements (see
e.g. [13], [14]), is important for the analysis of the cut-off frequency fy and should
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therefore also be taken into account for the parameter determination. For small
forward and reverse bias the junctions can be considered as linear and the gradient
of the profile in the junctions can be derived from the slope of a C# versus V plot
(see fig. 1.3).

501
m'|0_3

""0; a,= 4.2-10%cm=¢

[p?'3]

-3
Cea
MJ
(]
T

10+

{reverse) {forward } Y

0y
i i | i

300 0 0 100 300 500 700
emitter - base voltage (mV) —m=

i

Fig. 1.3, C*2 (V) plot of measured emitter-base capacitance for low voltages. a. is the gradient
of the doping profile in the emitter-basc junction (emitter junction area Ap = 3.6 - 10" cm?).

Because xe, X and N are known, the other five parameters in eq. (1.26) can be
determined from the following relations:

dN

_ _o AN AN
N{xg)=0, N{x)=0, o 0 ac and eq. (1.27).

.

Once the parameters Njg. Le. Npo, Xp and Ly have been calculated the profile in
the base and jurction regions is given by eq. (1.26).

The profile in the emitter is usually approximated by
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Neo for 05 x S xq
Np ()= (1.28)
™ Neg exp { [(x —xe) /L] ® } +Ny; forx®xa

where Neo and lp are chosen such that dN / dx | x, = —Nje / Le and the sheet
resistance of the emitter is
Xe
Rop = [ quaNdx . ' (1.29)
a

On the collector side the profile can be extended straight-forwardly in accordance
with the data on the epitaxial layer thickness, substrate concentration and out-
diffusion.

Infig. 1.2. 2n example of a similar procedure is shown where in this case, as a refine-

ment, in the emitter profile two gaussian curves are used because extra data from

profile measurements, made by the anodic oxidation and stripping method, were

available. This detail is relevant to the caleulation of the recombination in the emit-
- ter region (see section 4.1).

0.6+ N _
from slope follows Ng = 24107cm
.
o 04 \
L
s L
N m *\\
0.2k e
0 (reverse) ™ {forward)
7 5 3 e

1
emitter - base voltage (V) ~—

Fig. 14. C™ (V) plot of measured emitter-base capacitance for reverse voltages {emitter junction
area Ag = 3.6 ~ 10" em?).

The junction capacitances have been measured at higher reverse biases, which made it
possible [14] to derive from the C? (V) plot the maximum base impurity concentration
(NB) (see fig. 1.4), and the collector impurity concentration N¢. The derved values
agree well with the modelled profile.
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1.4. Mobility

The mobility of the electrons and holes in the crystal depends upon several scattering
mechanisms which are difficult to describe theoretically, For the device analysis it is
better to usc empirical expressions based on experimental data (for a review of mobility
data see [15]). The dependence of the mobility on the impuriry concentration is

quite well known from cxperiments [16] and can be described by the following fit
formula [17] - ‘

Hmax — Mmin
N) = - + n - 1.30
u (N) T+ (N7 Neer® (N7 Npep) Hmin ( )

With this expression it is possible to approximate the experimental data with the
parameter vatues as given in Table 1. The corresponding mobility curves are shown
in fig. 1.5.

1400 T

e N-type silicon |
(T=300K)

g
|

(0]
<3
S
i
i
|

:~

=)

S5
L~

\,_______

0 [
10" 10" 10" 10 10" 10" 10" 10°
Impurity concentration [cm™3) ——=

M
(=)
[=]
1
]

electron mobility [cm?/Vsec) —»
&
Z
[}

Fig. 1.5a. Electron mobility as a function of impurity concentration.




P-type silicon
(T=300 K)
500 —_—
—_
~ 400
A
o
R 300 - N
k5 \
;*if" 200 \
<
£
@ 100 \\
2 P
0
10% % % ® w7 % g T o®

Impurity concentration (cm=%) ——m

Fig. 1.5b. Hoie mobility as a function of impurity concentration.

Table 1 (T =300 K)

H max (em® [Vsec)| i min(om® /Vsec)| @ | Nygp(om™) | vpfom/sec)| 8
holes 4935 47.7 0.76/19-10" | 95-10% |1
electrons| 1360 92 09113107 1.1-107 |2

Several papers have dealt with the experimental determination of the drift velocity
as a function of elecrric field [18] (see fig, 1.6). This field dependence can be
approximated [17] by

- Ho
#(E) M—E/E;W (1.31)

where wy = Vin/Ee and vy is the saturated drift velocity at high electric fields. The
values for the parameters vy and § are given in Table 1,

For the combined effect of N and E on the mobility the dope-dependent value p(N}
from eq. (1.30) is substituted for g, in eq. (1.31).
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~3

—
o

[=.3

drift velocity vicm/sec) ——®

i 1 L 1 1
10 102 10° 104 10° 10°
electric field (V/icm) ———m

Fig. 1.6. Carrier drift velocity as a function of clectrie field.

Although the literature contains little quantitative data about the influence of
temperature on mobility at different impurity concentrations [19] it is an important
parameter for the temperature behaviour of the trapsistor characteristics. Usually

it is assumed that the total mobility is caused by lattice scattering (iy ) and impurity
scattering (ug) and given by the following relationship :
11,1

[ P |

The temperature dependence of yp is given by [20] :

(1.32)

T
m (T) = pg (T=300) « (55507
where 7 is 2.7 for holes and 2.5 for electrons and yup (T =300K) equals u max in

eq-{1.30).
The temperature dependence of gy is modelled as :

ur (T) = g (T=300) - exp §0.5 - 10 (T — 300)} (1.33)

In fig. 1.7 the result of this modelled temperature dependence of the electron and
hole mobility is shown.




1000F 1000,

T 30 ) 'Q

— fe—_10® >

W

w —

E: 100"_ 2 ‘2 100 21

* —19T______~_ N 10

| —————-

z | g

B c [

E T £

@ P

2 1 R PR \ T 10 . L . N
250 300 350 400 480 250 300 350 400 450

Tempardture [ K} —— temperature | K) ——

Fig. 1.7. Camier mobilities 25 a function of temperature with the tmpurity concentration
{em™ ) a3 a parameter. .

1.5. Recombination

Recombination in bipolar transistors is important because it determines particularly
the base current and its dependenece upon voltage and temperature. In [21] is shown
that the total steady-state recombination rate of electrons and holes is given by the
following expression

R =(pn - ni’) [(B+Can+Cpp)+ )‘Tpo (n+n,)+~rn0(p+p,)}'1] (1.34)

which can be considered as 4 generalization of the usual Hall-Shockley-Read re-
combination because also direct band to band and Auger recombination are included.
The band to band recombination, characterized by the coefficient B, will be
neglected because for silicon the lifetimes involved are much larger than experimen-
tally determined values.

Hall, Shockley and Read [22] have shown that recombination-generation via traps
having energy levels within the forbidden energy gap, due to imperfections in the
perodicity of the crystal lattice, play 2 dominant role in silicon devices. This
mechanism is described by the following expressior: :

pn —n;?
Tpo (n 1)+ 1o (p+py)

Rygsg = (1.35)
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the lifetimes Tpy, Tno being given by (vip Ny ap,n)" where vi is the thermal velocity
(~ 107 em/sec), Ny the trap density and op n the hole and electron capture cross-
sections. The carrier concentrations p;, and ny are the hole and clectron con-
centrations that would exist if the Fermi level were at the trap level Ey

n = nifp, = niexp{(ﬁt—Ei)/kT} . (1.36)

The three parameters Eq, pg and 7o depend strongly upon the processing of the
device and will vary throughout the device. As a rule not much is known quantitatively
about these parameters and therefore as a first approximation it will be assumed

that

Tpo = Tno = To
(1.37)

Pr S TN

Now the recombination is characterized by only one parameter 7o . Measurements of
IV characteristics indicate that the lifetime in the junction is about 1 — 0.1 usec.

- Furthermore it is plausible that the trap density N¢ will increase for higher impurity
concentrations and therefore to will decrease. In practical devices 7o varies roughly
between about 20 usec for N = 10" - 10 towards | usec for N = 1017em™,

Recent expetiments (see fig. 1.8) show that the minority carrer lifetime decreascs
strongly for high impurity concentrations above about 107 — 10%em® [23, 24, 25].
This phenomenon is ascribed to Auger recombination, where an electron recombines
with a hole and the excess energy is transferred to another carrier as kinetic energy
{this is the inverse of the impact ionization process). This recombination mechanism
is described by (see eq. (1.34))

Ray = Cn(np ~nni?) + Cp(np? ~ni’p). (1.38)

The coefficients Cy, and Cp, have not only been derived from lifetime measurements
of minority carriers in heavily doped regions [23, 24] but also for pn plasmas

with high carrier concentrations {26, 27] and agree rather well with each other
(Cp=Cp=15"+ 10* em®sec’ ). In [24] is shown that Cp and Cp are nearly
independent of temperature measured for 77,300 and 400 K. Measurements

of the recombinationdiffusion length [25] as a function of impurity
concentration are also shown in fig. 1.8 (these measurements have been converted
to lifetimes using L =+/ D7 together with the mobility values given in fig. 1.5).

It appears from these experimental data that they agree rather well and spread
relatively little at high impurity concentrations, whereas at the lower concentrations
the spread is much larger. This is probably connected with the different origins: at
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Fig. 1.5. A survey of experimentally derived minority carrier lifetimes as a function of impurity
concentration (T = 300 K) :
o,+ are measurements of Beck and Conradt [23],

a,4  arc measurements of Iles and Soclof [23];
@, % are measurements of Dziewior and Schmid [24] .

(o,0and ® are Hfetime measurements in n-type silicon and the other ﬂymbuls represent lifetimes
in p-type silicon).

high impurity concentrations Anger recombination dominates (a basic physical
phenomenon) while at low impurity concentrations recombination via traps is
important (a more process-dependent phenomenon).

In the analysis of NPN transistors both recombination mechanisms are taken into
account as

2
. 14 19 1.3
R P CETYL Y +22510% pN . (1.39)

The second term is a fit of the experimental data at high impunty concentrations.
The surface recombination is characterized by the surface-recombination velocity s
defined by

Jp(®) = —qs(p(0) — po(0)) (1.40)
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for holes, recombining at the surface (x = Q) of the n-type emitter. The concentrations
p{0) and py (0) are the holes at x =0 under bias and equilibrivm conditions. When
the surface-recombination dominates the electrical device characteristics, it has to be
considered in more detail and can no longer be characterized by one constant

parameter s,




2.  NUMERICAL ANALYSIS OF BIPOLAR TRANSISTORS

2.1. Caleulations without high doping effects
2.1.1.  The Gummel method

The classical formulation of the basic equations governing the carrier flow in one
dimension and in the steady state in semiconductor devices is, in normalized form:

-3 .

%”““’“ —efP T ¥ - N @)

dJ . 1 _w dvp

a?(z = W'lth Jp = —7— E'pp T}Eﬂ (22)
> _

dJn _ . _ 1 W — gy d‘ﬂn

= =R with Jp = —o e T {2.3)

where n = exp (¥ — ¢y), p=exp (tpp —¥)and 7P" and ™! are normalized
mobilities. The norm factors used are given in Table 2.

Table 2 (T = 300 K)

. normalized normalization factor

description .
quantity symbol numerical value
position coordinates Xy Lp =~/ EciT‘ 3 fx' 3.64-10% cm
10

time t,r Lpt/ D, 1.33-1075 sec
potentials T, pp,on, V| kT/q 002588V
carrier diffusion constants|vp ™', 1™ | Do 1 cm®/sec
carrier mobilities 7p . m’ qDg /KT 38.64 cm?®/Vsec
carrier concentrations  [p,n ° Rig 1.22:10' em™
impurity concentrations (N, Np, N4 | njo 1.22:10% em™
generation-recombination
rate R Dy njp/Lp? 9.20-10% em™@sec™?
electric fietd E kT/qLp 7.11 V/em
capacitance c e/Lp 2.75-10""° F/em?
current densities 3,15, 30 qDyg nije/Lp 5361077 Afem?

This system of equations can be considered as three second-order nonlinear differen-
tial equations in ¥, ¥p and p, while for R and Tp: Tn the nonlinear functions as
described in sections 1.4 and 1.5 are used.
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As mentioned in chapter 1, Gummel made an important breakthrough with his
numerical iteration scheme for solving this problem for a one-dimensional transistor
structure. He formulated the problem as a boundary value problem, specifying two
sets of boundary conditions for the potentials at the emitter and collector contact
following from the assumption of charge neutrality (p — n + N = 0) and equilibriom
(ph = njg %) at these boundaries. Moreover the quasi-Fermi potential for the majority
carriers in the base is specified at a point B in the base region representing the base
contact {sce fig. 2.1). Since the base current is relatively small the quasi-Fermi
potential in the p-type base region will be nearly constant. Consequently the choice
of the base point B is not critical.

E ‘?B C
N [P N R o
=0 R p— J'm -
19
Impuri’ry10 I
conc.(cma())w
1
15 N . -
T 11050 7R T R B Rl
{Volt)
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1.0F _high-injection
Potentials |
(Volt)  05F~=~  ___®_
IB f
0 " el .

F\ib'—‘—‘/
/
-05
v
-0
Fig. 2.1. Doping profile and calculated potential distributions of ¥, ¢p and g for low injection
(Vgg = 520 mV) and high injection (V gy = 880 mV). The reverse-bias collector base voliage is

1V. The dashed linc gives the Fermi potential in equilibrium, The non-uniform step size distri-
buticn is schematically indicated (i=0,1, ..., jm}

These three differential equations are approximated by three sets of difference
equations after discretizing the variables on a finite number of mesh points and are
solved successively as follows:



(1) Poisson's equation is considered as & nonlinear two-point boundary value
prablem in ¥ with the boundaries x = 0 and x = L. The mathematical aspects of
this problem have been considered in detail in [28] . Assuming an approximate
solution ¥(x) of ¢q. (2.1}, a correction &(x), given by

Wnew(x) = ¥(x)+4(x), (24)

rmust satisfy after Newton-linearization the following equation:

2 2
$L b= Veovormy = d X v -vn _ovp-v (23)

or in finite difference approximations:
3jq 8ia — ai8i + aih S+ = by (2.6)

(i=1,2,...jm—1)
where aj., = ai+; = 1, aj and b; are functions opr, ¢n and ¥,
In matrix notation eq. (2.6} is

A5 = b : (2.7)

where the coefficient matrix A is tridiagonal. This set of equations can easily be
solved by gaussian elimination [28]. For @p, ¥ and W first guesses or results from
a previous iteration are used. With, the calculated corrections §j the “old™ ¥ values
are corrected. Although an accurate solution of Poisson’s equation alone requires
an iterative process, only one §-iteration is often ¢énough, because ¢p and yp have
yet 1o be changed in the next step of the overall iteration procedure.

(2) With the above described improved electric potential, the continuity

equations are solved by integration, which avoids numerical instability (see 2.1.2.2).
The electron current density equation is integrated for O x <L :

X
e¥n®) = £ 15 () yn (1) &F (2t + Const. (2:8)
¢

Ty(x} and the integration copstant are found from integration of the recombination
(see eq. (2.3)) and from the boundary conditions. When recombination cap be
neglected (Jn = const.) the well-known relationship (unnormalized) follows:

_ 2
q Mo o VEB/KT _ qVeB/KT { 29
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The denominator is usually called the “Gummel number” (Gg) and is in general a
function of VER and VCR.

For low injection the hole concentration equals the net base impurity concentration
and then eq. (2.9) is the usual Moll-Ross relation [29] .

(3) In a similar way, but now separately in the emitter-basc region (x = B) and
in the base-collector region (x = B), the hole current density equation is integrated:

X

eP™) = —f Jpe () yp (1) ¥ dt + Const, x=B) (2.10)
1]
X

POV = f Joe (1) 7p (1) ¥ dt + Const. (x=B) . (2.11)
B

This gives a discontinuity for the calculated hole current density at the base point B,
which, in physical terms, means the lateral supply of base current.

* With the new values derived for gp(x) and ¢n(x) 2 new iteration can be started by
going back to (1). When sufficient accuracy has been reached, the calculation is
stopped and results are printed out.

The recombination term (R) and the mobilities (yp ™, yq?) are calculated at an
appropriate stage of the iteration cycle. It is clear that adding these nonlinearities
generally will degrade the overall convergence rate, particularly when they strongly
influence the potential distributions. Mock [30] has shown by a perturbation method
that convergence failures in this method may be expected when the carriet diffusion
lengths become small compared to the device dimensions. In general, experience

with bipolar transistors has shown that the convergence rate of the above described
“Gummel method” can become unpractically low for:

— power device structures of several hundreds of microns thickness,
— high bias conditions, when the electric field is relocated because of the high
current densities (see fig. 2.1).

Other difficulties with this method were that terms like exp (+ ¥) and exp (£ ¢) can
easily cause overflow of computer capacity (at high reverse voltages ¥ and y can have
normalized values of 200 or more). Differences of nearly equal numbers in the rhas.
of egs.(2.8), (2.10) and (2.11) can also cause severe difficulties. Notwithstanding

the difficulties this solution method has successfully been used for analysing the

Kirk effect [31] in the base collector region of bipolar transistors. The electron
current [low in an NPN transistor influences the charge distribution and therefore

the electric field in the collector base junction. This phenomenon will be illustrated
with a simplified example.
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For a lightly doped collector region with impurity concentration N, the width of
the space charge layer (xq) is not only a function of the applied voltage Vg, but
also of the electron current Jp (= Ji;) flowing through that junction. Integration of
Poisson’s equation and assuming that the electrons move with the saturated drift
velocity in the space charge region, it follows that:

Veg +Vp —ow] .
x4 & /26 CBT Ve —pWlo (2.12)
qNg (1 -Jc/1y)
where p w I is the voltage drop in the collector and V, the built-in voltage of the
junction. The eritical current density J; is given by

1, = qNevy - 2.13)

From eq. (2.12) it follows that T has two effects: first the electrons, necessary to
carry the current, partly compensate the fixed ionized impurities (this is given by
the term (1 — J/T;)) which tends to increase xd. And secondly, the ohmic voltage
drop in the collector region tends to decrease the depletion region width, At low
reverse voltages the depletion layer disappears when

oz qunNe(Vep + Vo) fw . . (2.14)

Then the transistor is said to operate in the “injection mode” or “quasi-saturation™
because extra electrons (n > N¢) are needed in some part of the collector epitaxial
layer in arder to carry this current flow. At the same time extra holes are injected
from the base and will neutralize these electrons. This extra hole charge storage
strongly influences the electrical transistor characteristics. The boundary between
base and collector is no longer well defined and the nonlinear dependence of the
drift velocity on the electric field makes numerical calculations necessary for a
detailed investigation. The results of these calculations have been used extensively
for developing approximate analytical models, as is clearly described in the work
of de Graaff [32].

2.L2.  Two~dimensional transistor analysis
2.1.2.1. Introduction

In order to describe tateral effects such as inhomogeneous current density distribution
(current crowding), injection along the emitter-base side wall junction and lateral
charge storage (the “2D Kirk effect™) it was necessary to solve the basic device
equations in two dimensions. This is a difficult problem because it is not possible

to integrate the current density equation as is done in the 1D Gummel method.
Particularly the difference approximation for the current density equation has to

be chosen carefully in order to prevent numerical instability.
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Two papers in which the author has presented a solution of this problem will be
discussed.

2.1.2.2, “Iterative scheme for one- and two-dimensional d.c. transistor
simulation’ (see 5.1).

The problem of the two-dimensional transistor structure is formulated as a set of
three coupled partial differential equations (see 5.1 eqs. 10, 11, 12), in the variabies
W, @y and ®p. The last two variables are exponentials of the quasi-Fermi
potentials:

®p = oxp ¢p)

5]

$p = exp (—en)

As in the 1D Gummel method, Poisson’s equation is linearized by considering 2
small perturbation & (x, y) on the électric potential ¥ (x, y). The resulting linearized
equation in & (x, y) and the two continuity equaticons are linear elliptic differential
equations of the following form:

d au a , odu _ .
a(aa)+a—y(ca—y)+fu—-g()&,y) (2.15)

where a > 0, ¢ > 0 and = 0. This “self adjoint” form is very attractive for
numerical solution because for differential cquations of this type standard theory
on numerical analysis gives theorems about the existence of a unigue solution and
convergence properties of iterative solution methods [33].

A non-uniform rectangular mesh is chosen covering the two-dimensional structure.
Varga [33] shows that by means of integrating eq. (2.15) over a small box around
each mesh point (i, i), difference equations can be derived, given by
Au=h (2.16)
where A is 4 symmetrical coefficient matrix with the following properties:
aji >0, aij <0
ajj oF E$ | aj | with strict inequality for some i (strictly diagonally dominant),

jHi

A is “irreducible”, which means that eq. (2.16) cannot be reduced into two or more
isolated problems.

The matrix A with these properties is positive definite.
Because A is a large and sparse matrix with many elements equal to zero, it is
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preferred for reasons of storage and operation time on the computer to solve

eq. (2.16) by itetative solution techniques instead of by direct solution methods.

It can be shown {33, 34] that the method of successive over-relaxation for a matrix
with the above described properties is convergent and the convergence rate can be
optimized by choosing an optimal relaxation parameter.

Apart from the difference in the method of solving each of the three differential
equations, the overall iteration scheme is the same as the one-dimensional Gummel
method.

— .
|:1 M:1 | M |;-1

Fig. 2.2.

" In this paper (see 5.1) the current density at a point M midway between two mesh
pointsiandi+1 (see fig. 2.2) is approximated by

By —B
Sy = -yt €M L}:_i _ (2.17)

As will be shown, this approximation aveids numerical instability, but it is not very
accurate when there are large differences in potentials between twa neighbouring
points. Because of the importance of the discretization of the current density
&quation, this will be discussed in more detail.

Consider the one-dimensional continuity equation for holes:

dIp '

== R (2.18)
where

I = g d (2.19)
pPT % ‘ -

or when we use p instead of $p as variable
- d
o =1 GE-£) . (2.20)

It is assumed that yp and ¥ are known funetions of position.
Integrating egs. (2.19) and (2.20) gives :
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X
By (x) = Pp (x) # {q?p (s) ¥ Iy (s)ds (2.21)

and
X x X
px)= [exp {— {(iE (t) dt}] p{x)+ _)fq'yp () Jp () exp {— {qE (t) dt} ds. (2.22)

From eq. (2.22) it is clear that the hole concentration at any point xj is coupled via
positive coefficients with the hole concentration at any other point X. The same is
true for the variable ®p. Notice that in eq. (2.22) the coefficients ate unequal, where-
as in eq. (2.21) they are equal, The formulation in the variable $p will appear to

lead to a symmetric matrix for the difference equations and the formulation in p

will not. We shall discuss several possible difference approximations for the current
density Jy at point M.

{1) Conventional difference approximation:

v =y {% (piEj +pitl Ej+1) — piﬂh—_pi} (2.23)

or

‘ 1 +% Ein Iv v

pitl S\ —3—— ] P - ‘"‘“”"‘1'— (2.24)
1 -3 Ejt1h 1 -5 Ejx1h

whenever | Bj+1h | = 2 (unnormalized this means that | Ej+qh | > 2 kT / g) there is no
positive coupling. This violates the physical property of the original differential
equation (see eq. (2.22) ). When substituting this approximation in eq. (2.24) the
resulting matrix A only satisfies the necessary conditions for convergence and

stability when at every mesh point | Ej i { <22, In practice, {ailure to satisfy this
condition will result in numerical instability, leaving no alternative but to choose
locally very small step sizes.

Approximation (2.24) can be derived from eq. (2.22) assumning that Jp = constant

(= Ip).vp = const. and | hE | € 1 in each cell,

(2) The difference approximation given in eq. (2.17).

The coupling between @ and $;+] is positive, as it has to be, and gives for the
continuity equation a positive definite coefficient matrix.

Eq. (2.17) can be derived from eq. (2.21) under the assumptions that in each cell
Jp = const. (= Jyp). yp = const. and exp (¥) is a linear function in x (which is
equivalent to saying | hE | <2 1). This forces one again to use very small step sizes at
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places where ¥ changes considerably (e.g. in the reverse-biased base collector
junction). The conclusion is that although this difference approximation will always
be stable and convergent, the validity range is still small.

(3) The difference approximation suggested by Scharfetter and Gummel [35].
In their one-dimenzional large-signal calculations on a silicon Read Diode
Qscillator Scharfetter and Gurmel intreduced a new difference approximation for
the current density equation which was numerically stable under all conditions.

It is assumed that in each cell Jp = constant (= Jyy), vp = const. (= yy) and E =
constant (= Ey). From eq. (2.22) it follows then that

e = gty Pit1 X0 (- REy) — pj
M TN EM exp (— hEy) — 1

(2.25)

The positive coupling between pj and pi+ is always present. Because the
assumption of E = const. is much less restrictive than | hE | < 1, the validity range
of this approximation it much larger. Unfortunately substitution of eq. (2.25) in
the continuity equation resulis in 2 matrix A that is not symmetric and not
diagonally dominant. However starting with eq. (2.21) and using the same

" assurnptions does give a symmetric relation and a definite positive coefficient
matrix A for the continuity equation. It can be shown (see 5.2) that this matrix
is similar to the one that would follow from eq. (2.25) and thus it can be said
that the difference approximation of eq. (2.25) is the most practical one from a
numerical as well as a physical point of view.

2.1.2.3, “Computer-aided two-dimensional analysis of bipelar
transistors” (see 5.2).

The method for solving numerically the two-dimensional semiconductor steady-
state transport equations for bipolar transistors is described in this paper in detail
and is a continuation of the paper discussed above, The Scharfetter-Gummel
difference approximation for the current density (see above (3) ) is shown to be
a remarkable improvement for the two-dimensiona) analysis as well. In addition
two rectangular meshes are used, one fine mesh for Poisson’s equation adapted to
follow the rapid potential changes, and another coarser mesh for discretization
of the continuity equations. In the last case the step sizes may be larger because
the current densities do not vary so rapidly.

In fig. 9 of this paper the overall convergence rate is given as a function of the
forward bias conditions. In much the same way as in the one-dimensional
Gummel method, the convergence rate becomes worse at higher currents. A number
of computer plots illustrate the internal and the external behaviour of an NPN
transistor. Electron current flow lines as a function of biasing are shown in fig. 11
and fig. 13 (5.2). Current crowding along the emitter-base junction takes place
due to a voltage drop in the base region underneath the emitter. When the base-
collector junction is swamped with electrons and holes, the electron current starts
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spreading directly behind the emitter junction. This introduces a strong lateral change
in the cartier concentrations (see 5.2, fig. 17) and the electric potential (see 5.2, fig.
15). Fig 16 (5.2) shows that a lot of hole charge also is stored laterally, out of the
“active” transistor region. Fig. 2.3 shows how the coilector current and the applied
collector base voltage influence this stored hole charge.

In fig_ 18 (5.2) a comparison is made for the fT characteristic between the two-
dimensional structure and the correspending one-dimensional trapsistor. In the latter
case the f1 falls off earlier and more steeply because of the larger collector series
resistance. The one-dimensional calculated f1 values can sasily be corrected for this
effect by taking the voltage drop in the one-dimensional structure (I ow) equal to
that in the two-dimensional structure (I-Rg) [36] :

Jopw = IcRg (2.26)

where Rg is the collector spreading resistance [37]. In this way the crosses (x) in
fig. 2.4 are obtained. For very high current densities the predicted curve deviates
appreciably because the current spreading is then a function of current and voltage
and Rg will change too.

At the beginning of the paper reprinted in 5.2 4 short, incomplete review of the
literature on numerical transistor calculations is given. More recent work in the
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— ane - dimensional
% transformed (TpW=IR;]
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Fig. 2.4. The onc-dimensionally calculated f characteristic is corrected for eollector spreading
resistance (see the crosses).
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field of bipolar transistors has been published by Heimeier [38], Manck and Engl
[39], Gaur and Navon [40] , Jesshope, Zaluska and Kemhadjian [41], Mock [42],
Hachtel and Mack [43] and many others, For a more complete review and
discussion of each of these publications is referred to [44, 43| . An interesting
development is the use of the finite-clerment method [46] .

2.2, Calculations including high doping effects
2.21.  Discussion of TRAPL

Recently we have developed an efficient ene-dimensional TRansistor Analysis
Program (TRAF1) which incorporates a number of considerable improvements,
both physical and numerical, compared to the original Gummel method. The
influence of the impurity concentration on the bandgap and on the minority
carrier lifetime has been taken into account in accordance with the experimental
results for these phenomena (see section 1.5 and Chapter 3).
But the numerical solution procedure, too, has become much more efficient

. becausc of a simplifying assumption first reported by Ruch and Scharfetter |47},
which is an attractive compromise between accuracy and computational effort.
It is assumed that the hole quasi-Fermi potential is constant throughout the
transistor (see fig- 2.1):

ep(x) =0 (2.27)

‘This means that internal recombination is neglected and only two of the three
differential equations are left:

= N Wo—yn _ ni e-"l'r —N (2.28)

o= -0t (E,N,T) nje¥ =¥ = const. (2.29)

This assumption is justified because in “useful” bipolar transistors the recombination
currents are roughly an order of magnitude smaller than the main current (Jp). Or, in
other words, the base current is usually only a small fraction of the collector current
(e.g. hpg > 20), Once this problem has been solved the recombination currents are
calculated from a perturbation of this solution, the internal recombination this time
being fully taken into account. The resulting function yp () deviates only in the
heavily doped n-resiens from the a priori assumption (2.27) and its effect on W (x)
and Jp, can be neglected (see fig. 2.1). This has been verified with the Gummcl
method and deviations were found to be less than a few percent. Eqs. (2.28) and
(2.29) are linearized by considering small perturbations 8 (x) and e (x) on ¥ (x)

and ¢y, (%), according to the Newton method.
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This results in the following difference equations:

aly &1 +a2;5; +a3i Bj41 + +adi g =4
(2.30)
blidi_1 +b2i8; +b3j 41 + +b4] gi—] +b5] e + b6 6i+] = e

(i=1,2,3,...jm=1)

Use has been made of the Scharfetter-Gummel difference approximation for the
current density equation. The ceefficients in eq. (2.30) are formulated in such a way
that only the carrier concentrations and potential differences between two neigh-
bouring mesh points are involved. This prevents overflow of computer capacity. The
complete set of difference equations is solved simultaneously by means of Gauss
elimination.

doping profile
Input:|| temperature
life time To
VEEI}VCB
M ur'\ift;)r[m1 stepsizes
hlii

[First guess ¢, p,n |
I

t
ICCIICulutE coefficients ’

Solve |8, e)-diff. eqs.
(Gauss-elimination)

Corrections
Glil= ¢iij+5 il
Pulil=@nlilselil

esl>

Solve hole continuity eq
(Gauss-elimination )

Fig. 2.5. Flow diagram of TRAPF1,
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A simplified flow dizgram of the solution procedure of TRAPT is shown in {ig. 2.5.

The requircd input data are the doping profile, the transistor temperature, the tHall-

Shockley-Read lifetime 7, (see 1.5) and the applied voltages.

Depending on the doping profile 4 non-uniform step-size distribution is automatically

chosen. For this purpose the Lotal number of mesh points (usually 100 to 200) and

the minimum and maximum allowed step-size must be specificd, after which the

step-size distribution is chosen in a rather pragmatic way with small steps where the

profile is steep (junctions) and larger steps in regions where the profile did not

change strongly. The changes in the step-sizes must be smooth (see fig. 2.1).

As a first guess for ¥ (x), p (x) and n(x), results from a previous bias condition

can be used or directly generated from simplified physical models, c.g. complete

depletion, charge neutrality, constant quasi-Fermi potentials, etc.

The calculation of the coefficients contains many exponentials, which for small

arguments can be expanded in order to save computing lime.

For the solution of the linearized set of difference equations (2.30) a procedure

based on Gauss elimination has been written.

Usually three iterations are sufficient to solve the non-linear problem of egs. (2.28)

and (2.29). This is iflustrated in fig. 2.6 in a comparison with the Gumimel method.
. The computing time is more than ten times shorter.

The continuity equation for the holes is discretized using the difference equation
(2.25) and also solved directly. The two recombination mechanisms discussed in
section 1.5 and a finite surface recombination velocity s at the ernitter ontact are

taken into account.
— Gurmmel-methed
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Vig. 2.6. The number of iterations needed to solve the transistor problem for a given biasing
as found with the otiginal Gummel method and with the method used in TRAPL, (The arrows
corrospond to the maximum in current gain).
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The TRAP1 program is equipped with a number of extra features, such as PNP or
NPN structures, with or without high doping effects, avalanche effect, perturbation
of the de solution (for capacitance and f calculations), emiiter contact resistance,
crowding, etc. In general it is very simple to investigate the effect of one particular
parameter without changing the others. The program has been used for analysing a
large number of transistor structures, including IC transistors, high-frequency
transistors, power transistors and transistors with epitaxial layers in the emitter
tegion (I°L, LEC). Several of the possibilities and results will be shown in the next
section. It is noted that no fitting has been used in these calculations apart from the
parameter values already discussed (chapter 1),

222 Example: IC transistor
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Fig. 2.7. Measured and catculated I, g (VER) characteristics.



32

The electrical characteristics of an integrated circuit transistor have been calculated
with TRAPI and compared with measurements. The doping profile of this transistor
has been modelled as discussed in section 1.3 (see fig. 1.2).

Infig. 2.7 the Jo-Vgg and Jg-Vgg characteristics are shown. At high current densities
pulse measurements [48] were made jn order to prevent heating of the transistor.
The dotted lines are derived from the measured values by correcting for the resistive
voltage drop in the emitter and base region.

The current gain hpg (= Lo / Ig) as a function of collector current is given in fig.
2.8 It appears that a lifetime of 1 psec. in the Hall, Shockley and Read recombination
mechanism fits the measured values well. The effect of changing this lifetime is
demonstrated in fig. 2.9. Reducing it means an increase of recombination in the
cmitter-base junction and makes the non-ideal base current component larger;

it therefore causes a stronger fall-off in he g at low currents. At about 700 mV
the current gain has its maximum value; at higher currents it falls off owing to’
extra hole charge storage. The current gain usually increases with temperature
(see fig. 2.10) due to two counteracting phenomena, as will be discussed in 4.2,
At high currents the temperature coefficient changes sign because of an increasing
voltage drop in the chmic collector region.

V5= 6 Vot
150 | ﬂEASURED Tg= 10 sec
-
Lt Caleulated
without crowding
100 | with crowding
50 |
I (mA) —=
0 -3 ‘-2 ‘ -1 ‘ o \ ¥ 3
10 10 10 10 10 10 10

Fig. 2.8. Measured and calculated current gain as a fanetion of collector current. The influence
of crowding is also shown.
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Fig. 2.9. Influence of H.8.R. lifetime 1, on the calculated current gain,
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Fig. 2.10. Influence of temperature on the calewlated custent gain (the dots correspond to
VEp = 700 mV).
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Collector

Fig. 2.11. Cross section of bipolar transistor, The coupled one-dimensional transistor sections are
schematically indicated.

Current crowding caused by lateral voltage drop in the base region has already been
mentioned in the discussion of the two-dimensional analysis (2.1.2.3). It can be
approximated by putting a number of one-dimensional transistors in parallel,
coupled through bias dependent base resistances (fig. 2.11). These arc calculated
from the base sheet resistance

L

Roep' =a fuppdx (2.31)
4]

valid for the local one-dimensional transistor under consideration. The influence of
this crowding on the current gain characteristic is shown in fig. 2.8 for an emitter
width of 45 um. At the high current densities in the corner of the emitter-base
junction the voltage drop is much less than would be predicted from a model with
constant current gain and sheet resistance [49] . This is also illustrated in the internal
lateral current distribution (fig. 2.12).

In fig. 2.13 calculated and measured Io-Veg characteristics are shown. Like the
recombination currents the avalanche effect is included in the program as a first-
order approximation. This seems a reasonable approximation as long as the current
(1g) generated in the avalanche process is small compared with the electron current
Mlow (¥p). This avalanche-generated current density is calculated {rom

L
Jg = alp Sexp(—8/1E{)dx {2.32)
B

where @ = 2.4-10% e and 8= 1.6 10% V/em.
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Fig 2.12. Current crowding along the emitter-base junetion.
L Inly)/ In max for I = 52 mA and J pax = 10* Ajem® aty = 0. The base-sheet resistance

(RE'EB) is also shown a3 3 function of position along the emitter junction (the dashed line

17). The dotted line glves the corresponding current crowding when it is assymed that R FE
and the cutrent gain are constant along the junction (i = 52 mA, o max = 2+10° Alem?).

2. In () / Jnmax for I = 6 mA, Jp may = 350 Afcm® and R_ps is given by the dashed line 2% .

Particularly in the case of thin collector epilayers an interesting phenomenon [50]

can occur at high current levels when the space charge in the depleted collector
region

p=qNe —In/qvm) (2.33)

changes sign. Then the maximum electric field shifts from the collector-base junction
towards the nn* interface (zee fig. 2.14). The avalanche-generated base current flows
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Fig. 2.13. Comparison between measured and calculated Ig-VoE characteristics.
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Fig. 2.14. The same doping profile as is shown in fig. 1.2 is used, the only difference being that
the collector epilayer is made very thin (about 0.5 um, see the dashed time). At high current
densities the maximum of the electric field is at the nn™ barrier.
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Fig. 2.15, Calculated J-Vo characteristics showing a negative resistance due to avalanche
generation at the nn™ barrier.

in a direction opposite to the normal base current and tends to decrease the total
base current or may even invert its direction. When the total base current is kept
constant the collector current increases and also | E | jyay. This generates even more
avalanche current and leads to an unstable situation which finally (probably together
with temperature effects) causes second-breakdown of the transistor. This is
illustrated in the calculated Ip-Ve g characteristic shown in fig. 2.15.

Usually it is assumed that the maximum of the recombination takes place at the
emitter-base junction where p = n, because in this case the H.S.R. recombination
term has & maximum. However, when Auger recombination together with dope-
dependent bandgap narrowing and lifetime are taken into account, another peak of
the recombination takes place deeper in the neutral emitter region (see fiz. 2.16 and
5.6). This recombination peak is exactly proportional to exp (g Veg / kT) while

the space charge recombination, controlled by the H.8.R. lifetime To. 18 proportional
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Fig. 2.16. Recombination rate in the emitter-base region for three emitter-base voltages, The
recombination peak in the space-charge layer is due to tecombination via traps (r, ) and the
other peak deeper it the neutral cmitter is the result of bandgap nartowing and Auger re-
combination.

to exp (g Vgg / m kT) with 1 < m < 2. When the forward bias and temperatures
are¢ low, recombination in the space charge region via traps is dominant, but at
higher forward voltages and higher temperatures Auger recombination in the
neutral bulk is dominant.

Experimental verification of the Auger recombination peak will be discussed in
section 4.1,

From a perturbation of the de solution, approximations for several important ac
quantities can be made in accordance with the charge control pringiple, which
assumnes that the internal charge distribution follows instantaneously the applied
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voltages and controls the currents without time delay (for a critical discussion of the
charge controd principle see [51]. The total transit time from emitter to collector
contact is then given by

1 _ AQot

= = 2.34
e T@mir  Eic \VCE = const (2:34)
and the emitter-base capacitance by
AQgp
Cep = 75— - 2.35)
ER AVEp (

The total stored charge A Qint and the charge A Qgjp stored in the emitter region
are defined by

10%F 73 psec. LLhpsec Ghpsec 12p.56c
I Veg =690 mV
AQcp [depl.) Te =234 Alem?
Ven= 5V
0% T ap .
& em™)
101}
stk
10" 1 1 L | 1 L 1 L
0 s 1 5T 8 2 257 ‘ 3 35
; emtter- base base-coltecter
distance {um) ——a= Tunction anction

Fig. 2.17. Perturbations of the hole and electron carrier concentrations as 4 function of position
in the transistor when a small perturbation A Joof the given bias condition is applied.
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L

AQut = gf dpdx (2.36)
0
B

AQpy = qf Apdx (2.37)
L]

where Ap (x) is the change in hole concéntration caused by a small perturbation in
the applied emitter base voltage.

In fig. 2.17 is shown how the electron and hole carrier concentrations change due to
a perturbation AJcof a bias condition given by Jo = 23.4 Afem® and Vg =5 V.
Integration of q Ap / Al¢over the whole transistor gives the total delay time 74,

(see eqs. (2.34) and (2.36) ). Because the total transistor is charge-neutral, integration
of q An / Al should give the same result (in TRAP1 a comparison of both
calculations is used as an indication of the numerical accuracy). For low forward

bias most of the charge is stored in the emitter-base junction, while at higher current
the charge storage in the base and collector regions becomes dominant.

=VCE: 4.5 Volt
1000
TfT (MHz) n, = constant
n, {N)
500+
| rmeasured
i J-{Alem?}——e-
0 L L L L - |
10° 10° T 10? Twod 10°

Fig. 2.18. Measured and calculated f characteristics (the measurements have been done by
B.C. Boumz).

In fig. 2.18 the calculated fp (J¢) characteristic is compared with the measurements
and also with a calculation where no bandgap narrowing is involved (no corrections
have been made for the emitter side-wall capacitance nor for the base-collector
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capacitance outside the active transistor area). Bandgap narrowing increases particu-
larly the charge storage in the region of the emitter-base junetion and reduces there-

fore the fT values [52].

Fig. 2,19 shows the emitter-base capacitance calculated with the help of eqs. (2.35)
and (2.37).
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Fig. 2.19. Emitter-base capacitance as a function of voltage.

From the calculations it is easy to separate the total stored charge into different
charge packets (see fig, 2.17);

AQuot = AQep + AQp + AQc | (2.38)

each correlated with a ime constant 7, 7g and 7¢.
The important emitter-base charge storage AQgg can be further divided into
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B

AQEg (depl)=q [ 14p — An |/ 2 dx (2.39)
ki

AQgp (stor) = AQgp — AQgg (depl) ., (2.40)

where AQgyg (depl) is the result of changes in space charge and called usually the
“depletion capacitance” or “transistion region capacitance-charge, while

AQgp (stor) represents that part of the total stored hole charge that is neutralized
by storage of electron charge. AQgg (stor) is not only present in the space charge
neutral emitter but also in the space charge region itself (see fig. 2.17). The two
components of the emitter-base capacitance are also shown in fig, 2.17.



43

3. EXPERIMENTS AND CALCULATIONS OF BANDGAF NARROWING IN
SILICON

3.1. Introduction

At low impurity concentrations the impurities do not disturb the periodicity of the
crystal and the forbidden enetgy gap Ey is well-defined by sharp band-edges. The
density of states functions for electrons and holes are proportional to ~/E and
independent of the impurity concentration. The pn-product in equilibrium is given
by (see chapter 1)

Pollo = i (T} = NN, exp (- Eg (T)/kT) . (3.1)

The imnpurity atoms create a discrete enerpy level located in the forbidden band at
a distance from the nearest band-edge equal to the ionization energy. The wave
funetion of an electron occupying this level is localized in the vicinity of the

~ impurity atom.

At high Impurity concentrations when the impurity atoms are no longer “isolated”
the wave functions of their associated electrons are going to overlap. This results
in a splitting of the impurity energy levels (an impurity band is formed) and due
to the Coulomb interaction of the large number of electrons the potential energy
of these electrons is reduced, resulting in a narrowing of the bandgap.

Because the impurity atoms are not periodically arranged in the crystal but are
more likely to be randomty distributed, there will be Jocal variations in impurity
concentration on a microscopic scale. This results in potential fluctuations which
introduce zails on the energy bands, not only the impurity band but also the
conduction and valence bands. Theoretical description of these effects is very
complicated and will be briefly discussed in 3.3,

A number of experiments are known in the literature which support the above
described bandgap changes at high impurity concentrations:

(1) Pearson and Bardeen {53] found in silicon, that the impurity ionization
energy decreases with increasing impurity concentration and vanishes at con-
centrations of about 10 cm™ (see fig, 3.1). This is explained as the result of an
impurity band which broadens with increasing impurity concentration and finally
overlaps with the conduction or valence band resulting in one continuous encrgy
band. Debye and Conwell [54] found the same behaviour in germanium,

{2) Optical ahsorption measurements on heavily doped germanium [35] and
silicon [56, 57] show a reduction in the energy bandgap.



o p-type Si
0.08r ®* n-type S

la¥) —p

006

0.04t

0021

] L

® 107 10'® 0™

Impurity cone. (em3) ——=

10

Ionization - energy

Fig. 3.1, Dependence of ionization energy of impurities upon concentration.

(3)  Current gain measurements on bipolar transistors [58, 59]. It was stated that

a difference in bandgap in the emitter and base regions could explain the measured
positive temperature coefficient of the current gain and also the discrepancy between
theoretically predicted and measured values for the current gain.

Other experiments on the recombination-radiation spectra of high concentrations
of pn carrier plasmas, excited in pure silicon [60, 61] and low-doped germanium
[62], are also explained by bandgap narrowing due to Coulomb interaction. In all
these experiments the bandgap narrowing was empirically described by

AEg it N3 ' (3.2)

This can roughly be explained [63] by the Coulomb energy saved by the lectron-
electron avoidance that results from the Pauli principle and that scales with the
inverse of the average inter-electronic distance g, given by :

4 1
gﬂ'[sa EI_\I— . (3.3)

The reduction in energy is of the order
2

oo o1 oy 08 wl/3
Ay C4ners C2I0T N (3.4

Keyes [63] shows that our measurements of the bandgap narrowing (see 3.2) are
closely proportional to N1/% with € = 2.
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Recently several authors (for a short review see 5.3) brought these bandgap changes

at high impurity congentration back into discussion and stressed then possible large
influence on important device characteristics such as hpy and f1 in bipolar transistors.
They calculated the dope-dependent pn-product and derived carrier transport
equations incorporating extra terms for the position-dependent bandgap (see chap. 1).
They found, however, fairly considerable quantitative differences between the
different theoretical calculations and the optical absorption measurements.

Because it was clear that this fundamental phenomenon could be of great importance
for the understanding of silicon devices in general, we felt it necessary to try to
measure it in the transistor itself. This should aiso avoid difficulties in interpretation
of possible differences between optical and electrical bandgap. These experiments wiil
be described in 3.2 and will be supported by calculations discussed in 3.3. In séction
3.4 a discussion of the results will be given.

3.2. “Measnrements of bandgap nartowing in Si-bipolar transistors™ (see 5.3)

Because many transistor characteristics depend strongly upon changes in the bandgap
we tried to derive the influence of the impurity concentration on the bandgap from
electrical measurements of a number of trangistor structures.

The emitter is the most heavily doped region in bipolar transistors and therefore it
seems obvious to investigate the [g-Vgg characteristic because this is primarily
controlled by the properties of the emitter region. However, the base current is not
only determined by recombination in the heutzal emitter but also by recombination
in the space charge region, at the surface or in the base and collector regions. Where
most of the recombination takes place depends upon technology (lifetimes in the
bulk, at the interfaces, in the space charge region, ete.) and further upon the bias
conditions {applied voltages, temperature). Because the electrical and temperature
behaviour of these base current components is different, the In-Vgp characteristic
isnot a very attractive means of investigating the bandgap narrowing. Xt seems better
to consider the I--VEg characteristic, which is one of the best defined transistor
characteristics and is not affected by surface effects or recombination phenomena.
This characteristic usually shows a perfect exponential relationship over many
decades of current, and the non-ideality factor m deviates less than about 2% from
the exact value 1.

KT up 0
IC = AE T

where ni® is the pn-product in the base and Qp the total base charge.

exp (qQ Vgg / kT )} (3.5)

The simplest method to determine ng® is first to measure at a given temperature

(e.g. T = 300K} the Io-Vgp characteristic for low injection and then to determine Qg
from a measurement of the base sheet resistatice underheath the emitter (Rugg)on a
sample taken from the same slice as the transistor. The value of n;® follows directly
(zee also 5.3 eq. (8) ). For the mobility in the base région mean values have to be used.
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It is important that the temperature is measured and kept constant during the
measurement. The next exampie gives an impression of how large the increase in nj?
can be.,

For an epitaxial base transistor with pepi = 0.005 £2em, which corresponds to an
impurity concentration of 2.3 « 10" cm™, the ratio measured is

(1)2 = 70 (T =303.1 K) (3.6)

Mg

which means a bandgap narrowing (see 5.3 eq. 7) of AV, =112 mV.

A narrowing of the bandgap not only increases the value of ni® but also changes its
temperature dependence. This suggests that AV, could be derived equally well
from temperatute measurements of the Io-Vg g characteristic. However, thisis a
much more complicated measurement than the method described above. The reason
is that the change in temperature dependence is relatively small (compare AVgo with
the total bandgap Eg) and moreover it is complicated by the temperature dependence
of the mobility py, in eq. (3.3). The following procedure seems cbvious.

Substitute the expression (3) of 5.3 for nj® into eq. (3.5) and assume that Vg {(T)=
= Vg —aTand pp T

1c=CT8 exp {q(VEg — Vgo) / KT} . (3.7)
This can be written as

kT
4
The emitter-base voltage is measured as a function of temperature with [ kept
constant. The three parameters C, f and Vgo can be derived in principle from a least
square fit of these measurements using eq. (3.8). However, we did not succeed to
derive 1 unique set of parameter values in this way. Moreover, the values changed
appreciably upon a change in the temperature interval in which the measurements
were made. This difficulty is due to the fact that the assumptions made for the
temperature dependence of the mobility and of the bandgap are only valid
approximately in a limited temperature interval which is difficult to predict in
advance. Additional independent information is necessary in order to eliminate the
approximation for the temperature dependence of the mobility. This can be derived
from measurements of Rgppg assuming that the electron and hole mobilitics in the
base region have the same temperature dependence:

T = 300
u (T} = {ﬁ up(T) . (39

Vep = Vgo — m(%) - . (3.8)
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Now eq. (3.5) reduces to

Ic= A ﬁ“%ﬁ“’TZ_EB ni® exp (4 Vig / KT) (3.10)
(b is the ratio of the electron and hole mobility at T = 300 K, i the base).

The values of nj? (T) follow directly from eq. (3.10) using the measured Vgg values
with I¢ is constant and the measurements of Rpp (T). However, a logarithmic plot
of nj as a funetion of T does not cleaily show the influence of the impurity
concentration on the temperature dependence. The change in temperature dependence
is more clearly shown after differentiation of eq. (3.10) :

dv, d Vpg kT d
(Vg—TT-I?)E(VEB“TT)—T(“'“Ta'fl"RnEB), (3.11)

where n;® has been chosen proportional to T? exp (—q Vg [KT).

Two examples are given in fig. 4 of 5.3. for a transistor with a low base-dope con-
centration (N =4-10" ¢m™) showing no bandgap narrowing (Vgo * 1.200 ¢V) and
in fig. 6 of 5.3. for a heavily doped transistor (Ng = 10" cm™) showing a large

- narrowing of about 70 mV.

An overall survey of the results of both measuring methods is given in fig. 7 of 5.3.
Because the latter method is difficult and requires a high degree of accuracy of the
Vyp and temperature values, the measurement set-up will briefly be discussed.

The transistor is placed above the surface of liquid nitrogen and can be heated by a
small aven, built around the transistor holder. A feedback system kesps the adjusted
temperature stable within Q.1 K. The temperature of the transistor is measured with
a gauged chromel-alumel thermocouple with the other junction in melting ice. The
absolute accuracy is assumed to be 0.5 °K. With an accurate current source two

fixed collector currents between 10 — 10 A can be adjusted (acc. == 1 %o )

[64] . The Vg is measured on a digital HP 3450 B-multimeter with an accuracy

of 0.1 mV or better. At each temperature two Vgp values are measured by switching
between the two pre-adjusted collector currents. This makes it possible to check the
temperature derived from the slope of the Ip-Vgy characteristic with the temperature
derived from the thermocouple voltage during each measurement. The difference

for the transistors used in the bandgap investigation was always less than about 0.5 K.
This means that the non-ideality factor m in the Ic-Vgp relation deviates less than
2% from the ideal value 1. This check is very important to ensure the reliability of
the derived changes in bandgap. It was found that high-frequency transistors in
particular, which have thin base regions, may sometimes deviate appreciably from

the ideal slope because the total base charge Qp is sensitive to changes in Vpg
{zompare the Early effect for the collector base junction) [65, 66] .

It should be remarked that the above mentioned accuracy between the two tempera-
tures makes transistors very suitable for use as accurate absolute thermometers over
a large temperature range [67, 68].



3.3, “The pn-product in silicon” (see 5.4)

This paper presented calculations of the pn-product (nj?) as 1 function of tempera-
ture for a number of impurity concentrations. The cafeulations were based on the
expressions for the density of energy states functions resulting from the work of
Kane, Morgan and Bonch-Bruyevich. Their theoretical considerations are very
complicated and show that the random distribution of the impurities introduces
local potential fluctuations which cause band tails for the impurity band as well

as for the conduction and valence bands. This effect increases with higher impurity
concentrations. An important parameter in these theories is the screening length A
This is a measure of the distance over which the Coulomb potential of an fon is
effective (V = q? /4 e r - exp (—r/ A} ). Several authors (see 5.4) have used the
results of these theories for calculating the pn-product as a function of impurity
concentration and for different rates of compensation. In this paper these theones
were used to investigate whether nj® as a function of temperature and impurity
concentration could be described by the following, already experimentally found,
relation :

“ponp =nj° (T, N} = CT® exp {—q Ve (N)/kT} . (3.12)

After differentiation, an expression for (Vg — T d V, / dT) follows which can be
derived from the calculated nj* values (see eq. 9 in 5.4). The result for different
impurity concentrations is shown in fig. 3 of section 5.4, It appears that in a
practical temperature range Vg (N, T) = Vgo (N) — oT. Moreover, the calculated
values for Vg (N} and the constant C agree well with the corresponding values
derived from pn measurements (see fig. 3 and Table 1 in 5.4).

It should be noted that calculations made at immpurity concentrations above

5+ 10" start to deviate from this relationship. One of the probable reasons is
that Fermi statistics at these very high impurity concentration causes that C is no
longer a constant.

3.4. Discussion

A lively discussion is going on in the literature [63, 69, 701 about the presence and
magnitude of the bandgap narrowing at high impurity concentrations because it is
important for the understanding and optimal design of semiconductor devices in
general, The interpretation of the experiments is often complicated and leads to
rather large differences. Several of these difficulties will be discussed below.

{1) In our measurements (see 3.2 and 5.3) the product (uy n;®) is determined as
a function of temperature for 2 number of base-dope concentrations. And although
for high impurity concentrations (N > 10'7 ¢cm™) there is no experimental evidence
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that the temperature dependence of the minority and majority carrier mobilities is
the same, we still have made that assumptlon (see eq. (3.9) ). This raiscs the question
of the correctness of the derived nj* values. In the papers reprinted in 3.3 and 5.5

it is argued that the given interpretation agrees with theoretical caleulations and
gives a quantitative explanation for the measured injection of minority carriers into
heavily doped regions for a large number of device structures. Furthermore, highly
improbable values for up would result from the measurements of (in n;% ) if the
classical values for ni® were assumed.

(2)  Alarge difference is found between the bandgap values derived from the n;?
measurernents and those obtained from optical absorption measurements (sse fig. 7
in 5.3 and [63]). The reason of this discrepancy is not known, At high impurity
congentrations the band-edges disappear and the physical concept of the bandgap
is no longer well-defined.
As a definition of the bandgap we have used eq. (3.12) by analogy with the
expression of n;® at low impurity concentrations. However, this is an empirical
definition and may in principle differ from the bandgap involved in optical
absorption measurements.

- On the other hand interpretation of the optical absorption measurements is also
complicated because of the presence of free carrier absorption (this topic is
discussed in the book by Fistul [71]).

(3)  Strain and lattice defects have been suggested as possible reasons for bandgap
narrowing. At high impurity concentrations the misfit of the impurity atoms in the
silicon lattice can change the bandgap. X-ray measurements [72] show that the
change in the lattice parameter of silicon increases with impurity eoncentration but
is always less than about 8 » 10 A, so that Aa [ a < 1.5-10°3,
The estimated bandgap narrowing of this effect is

342 (5E dEg )

Xa

where the compressibility x is equal to 0.98 - 10°"? em? /dyne and the pressure
dependence of the bandgap is dEg/dP = —1.5 - 10" eV dyne™ cm? for silicon.
This predicts AEg <7 » 107 eV It seems therefore that this effect can be neglected.
Another argument for believing that strain is probably not the explanation for band.
gap narrowing is that minority carrier injection into heavily doped regions is not
very sensitive to the dopant atoms used (arsenic emitters should give much less
strain than phosphorus emitters because the radius of arsenic atoms deviates much
less than phosphorous atoms from silicon atoms).

AEg = (3.13)

(4)  Partial ionization has been suggested [73] as a possible source of difficulties,
rarticularly affecting the results of the temperature measurement. Caleulations [74]
show that due to partial jonization the concentration of mobile carriers would be
20 - 50% less than the total impurity concentration in the dope range of 107 —
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2:10%¢m™ . For higher impurity concentrations complete ionization is present. From
a practical point of view it seems justified to assume complete ionization for the
whole impurity concentration range, the more so because this corresponds to the
experimental mobility data which are based upon the same assumption. The
caleulations of the pn-product also took into account the total carrier concentrations
without discriminating between carriers in the impurity band and in the conduction
and valence hand.

(5)  Recently Martinelli [69] reported measurements of [V characteristics for
silicon bipolar transistors as a function of temperature. He concluded that there

was no evidence of bandgap narrowing, Because the base doping was about 10*%¢m™
a narrowing of 42 mV would be predicted by our cmpirical formula (see 5.3). The
reason for this disagreement is analysed in a short comment (see 5.6). After a revision
of his analysis [75] Martinelli confirmed our interpretation in terms of bandgap
narrowing.
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4. EMITTER EFFICIENCY
4.1. Introduction

The curtent gain hpg of modem bipotar transistors is usually determined by the
emitter efficiency n, which is defined for an NPN transistor as

7 =1In/{In+Jp) (4.1)

where Jy, is the injected electron current density and (T + Jp) is the total current
density at the emitter base junction. When it i assumed that the impurity con-
centrations in emitter and base are constant (Ng and Ng), then classical transistor
theory states:

.2
_ 4nis” Dng
In = “Npwg P (qVgp /kT) (4.2)
2
_ anio” Dpp
_Jp " TNg W exp{q Vg / kT) . 43)

The current gain is then given by:

heg = i Jn _NeWeDnp _ Roep Hps Dns
J3 Tp NpWpDpg ReE  inp Dpe

(4.4)
where Rgp and R are the base and emitter sheet resistances. Although this

simple description has been vsed for many years in the design of transistors, it
suffers from a number of sefous difficulties:

— It predicts unrealistically high current gain values. Consider for instance a
transistor with the following data: Ng =5 + 10®em™, Ng = 10"7cm™,
Wg =2 - 10%cm, Wg = 10™ cm, Dyp = 20 cm?/sec and Dpg =1 em? fsec.
Eq.{4.4)then giveshgg = 2 + 10°, This has to be compared with a measured
vatue of about 100.

— It predicts a continuous increase of hpg with higher emitter doping. In reality,
however, the current gain saturates more or less at impurity concentrations
above 10" em™,

— Eqg. (4.4) predicts a negative temperature coefficient of the current gain on the
ground that the diffusion constant in the heavily doped emitter would increase
while the diffusion constant in the lower doped base would decrease with
temperature (see 1.4). However, measurements show a positive temperature
coefficient of the hpg.
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Although these difficulties have been recognized and discussed for a long time, a
quantitative explanation of the current gain and its temperature dependence (or
different doping profiles was seriously obstructed by the lack of reliable experimental
data about the influence of the impurity concentration oit the bandgap and on the
minority carrier lifetime. These experimental data, becoming only recently available
(see fig. 1.8 in section 1.5 and chap. 3), made it possible to remove much of the un-
certainties.

This has been illustrated already by the agreement between the numerical cal-
culations made with TRAP1 and the measurements (sce section 2.2.2).

Tt was also shown that using these two effects an extra recombination peak in the
neutral emitter region (see fig. 2.16) is predicted which is important for the inter-
pretation of the voltage and temperature dependence of the base current. In order

to verify the presence of this recombination peak, thin layers have been etched

from the surface of the emitter [76] and the influence of the thinner emitter on

the current gain repeatedly measured (see also section 5.7). This experiment has been
simulated with TRAP1, It was expected that when the emitter contact, after etching,
reaches the recombination peak, the emitter would become more and more

o measured
— caleulated
===calculated

0 1 1 I | L I 1 _L
0 1
removed layer - thickness — (m)

TFig. 4.1. Comparison between measured and calculated reduction of the maximum current gain
us a function of the removed emitter layer, The dashed line is calculated with ng? values derived
from the optical absorption measurements of Vol'fson and Subashiev [37] and the full drawn
line follows for n;® values derived from our measurements discussed in chap. 3.
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“transparent™ and would affect the injected hole current. The result would be an
increasing base current and therefore a decreasing current gain. In fig. 4.1. this
simulation and the measured values are compared and agree rather well. When
bandgap narrowing occuss only for N 2> 2-10'° (see the dashed line in fig. 4.1) this
simulation shows that the fall-off starts much too late (more than 0.8 ym has to be
etched away). In this cage it was necessary to assume a much smaller value for the
lifetime Tq in order to calculate reasonable vatues for the base current corresponding

I Emitter L
o -
!
!
i !
107} l"t°= 30nsec
5
§ 1022m
7
£
2
!
§ :
: :
o , B
e |
§ 10 |
= i
|
I
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|
I
|
|
1020 i L t..1 \-—-",i L P | ! i
0 Qs 1 15
distance ( pm) ——=

Fig. 4.2. Distribution of the recombination inside the emitter at Vgg = 700 mV for two different
nj® models.
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1o hpg = 150 (fig. 4.2). Moreover it is found (see fig. 4.3) that such a short lifetime
introduces a large non-ideal (m 2 1) base current component which is not in
agreement with the measured Tg-Vi g characteristic.

/
//
A
10k
107k
I 10k
&
o
S
=
SRUNS
o measured
5 — caiculated
W+ (slotboom - de graaff)
- ——- calculated
(vol'fson - subashiev)
6
10

| ] | 1
£00 500 800 700
Veg [MV) — i

I'ig. 4.3. Jp-VEg characteristic, Measurements are compared with caleulations using two
different ny* models.

[t may be concluded that this etching experiment proves that most of the recombi-
nation takes place in the neutral emitter at a distance of about 1.4 pm from the
junction. This continms the dominance of the Auger recombination peak instead

of the usually assumed recombination maximum in the junction space-charge tegion.
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The classical equations (4.2) and (4.3) will change when the high doping effects are
taken into aceéunt and are usually described by

qn4e”
In = 5— exp (@ VEg / kT) 4.5)
B
and
T _ 4%io” Vgs / kT) ' 4.6
p= gy *PVEs ; (4.6)

where Gy is called the Gummel number and Gg is a figure of merit for the emitter
region.

When bandgap narrowing in the base region is present Gy is given by

Lyomg
Gp = [p-p(—=)dx. 4.7
o i

Injection into the emitter is more complicated because, apart from the bandgap
narrowing, recombination in the bulk and at the contact is alse involved.
In the following sections analytical expressions for G are given.

4.2. “Minority carrier injection into heavily doped silicon™ (see 5.6)
For the injection of minority carriers (holes) into a heavily doped n*t region it is

assumed that the impurity concentration is constant (Ng). It is well known that the
excess hole concentration is given by the diffusion equation:

d&p i
ok | “s

where =4/ Dpr is the recombination-diffusion length and depends upon the
impurity concentration via Dp and 7 (sce 1.4 and 1.5). This classical equation is
solved in the normal way with a finite surface recombination velocity s at the
emitter contact and using the Boltzmann relationship for the hole concentration
at the edge of the space charge region x = W (see fig. 1 in 5.6). It follows that G,
defined by eq. (4.6), is given by the next expression:
NEWE Mo

Dys (hi
and f=F L./ Wg, where F is 2 function of s and W / L (see eq_ 4 of 5.6).
Fig. 4.4 shows how Gg depends upon s and Wg / L. When the emitter region is not
transparent, that means Wg / L # 1, all of the injected minorities recombine in the
bulk of the emitter and do not reach the surface. In that case the surface conditions

Gg = f (4.9)
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Fig. 4.4, Influence of the surface recombination velocity on the minority carrier injection into
a heavily doped transparent reghon (calculated with eq. (4.9) ).

do not influence the injection. How Gg depends on the impurity concentration and
the lifetime is shown in 5.6, fig. 2, and agrees rather well with experiments. This
simple model explains the fact that measurements of injection into heavily doped
1egions appear to be rather insensitive of the fabrication process (diffusion depth,
dopant atoms or doping prefile). This was already noticed by Burtscher, Dannhiuser
and Krausse [77] and is clearly shown in fig. 4.5 which has been taken from their
work. Using eqs. (4.7) and (4.9) the current gain is given by

Ge _ _Rygp Mpe Dus

hpp = e = 2 exp(—q AVge 4.10
HE = &g Roe  Hing Dpr xp (—q AVgrs / kT) (4.10)
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Fig- 4.5, A review of measured minority currents in heavily doped regions which were made
by many different processes (J, = g ni,* / GE, sce eq. (4.6) ). The review is copied from
ref. [77].

where A Vapp is the difference in bandgap between the base and the emitter. This
equation has 10 be compared with the classical formula eq. (4.4). The last term in
eq. (4.10) causes the positive temperature coefficient of the hpg. Values for the
bandgap narrowing as a function of impurity coneentration are given in chap. 3.

4.3. “The emitter efficiency of bipolar transistors: Theory and Experiments”
(322 5.7)

In the previous section we have seen how Gg depends upon impurity concentration,
bandgap narrowing and recombination in a constant doped region. In this paper
mote realistic doping profiles are considered. A general expression for G is derived
and given as:

. Wi .
Gg = E.s_(_o){%rg(ﬂ)ﬂ-{ g;’&) {?':IO(T)’P g (x) dx (4.11)
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where g (x) is a weighting function
g(x) = Jp () / Jp (Wi) {4.12)

and s is the recombination velogity at the emitter contact at x = 0,
It can be shown thal for N (x) = const. ¢q. (4.11) simplifies to the already described
formula for G (see eq. 4.9),

From one-dimensional calculations (see 2.2) for a large number of Gaussian doping
profiles it appeared that g (x) can be characterized by only one parametes, Lp cft-
This effective recombination diffusion length is defined as the distance between
the cdge of the neutral emitter (x = Wy) and the point where the hole current has
been halved. In the plots of the internal recombination distribution (see 2.2.2,

fig. 2.1.6) this corresponds {o the Auger recombination peak.

The calculated weighting functions g (x) could be fitted, after normalization with
a position variable

U= (Wg—x)/Lp eff . 4.13)

by the following expression (see fig. | in 5.7) :

G{u) = exp %—(ﬁ )Ai . {4.14)

Fig. 4 in 5.7 shows how Ly, eff / Wy depends upon the surface congentration N (0).
For gaussian doping profiles however, it is not vety sensitive to the shape of the
daping profile. For deeply diffused emitters (W / Ly, off > 1.5) the surface
recombination is not important and g (x) is independent of the surface recombina-
tion velocity, When the emitter is transparent (Wg / Lp, eff < 1.5) the surface
recombination changes the weighting function. This effect can also be modelled
analytically, as described in 5.7, ¢q. (10), which approximates the numerical
calculations rather well (see 5.7, fig- 3).

Several experimental results could be explained with the model just given:

(1) The etching experiment (see section 4.1). From the measured Gy value and
the doping profile the effective recombination diffusion length Ly eff is found
from eq. (4.11) to be 1.4 um. This agrees well with the position of the recombina-
tion peak calculated in 2.2.2.1. When so much emitter material is etched away that
the remaining emitter region becomes transparent, the measured current-gain values
indicated that the surface recombination velocity was about 3 + 10° cm/sec.

{2) L. (4.11) predicts that Gy is proportional to L for a Gaussian doping profile.
This has been verified by experiments on a number of LEC transistor structures
(see 4.4) with increasing diffusion depths (sec 5.7, fig. 8).
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(3)  Minority carrier injection in I* L (see 5.7 fig. 9) and LEC structures.

The injected minority carriers recombine at the surface, which is partly covered

with an aluminium contact and partly with §i0. . Investigation of a number of
structures varying in the ratio of area covered by Al and Si0; makes it possible to
derive s ® 10° em/sec for the surface recombination velocity at the Al contact and

s == 3000 em/sec at the 5i-8i0; interface. Caution is necessary with these quantities
because of possible deviations of the recombination current components from the
ideal voltage dependence. The measured bandgap narrowing values {see chap. 3)
were consistent with the minority currents measured for the I* L-structures [78, 79].

(4)  Polysil emitter. This is a new transistor structure having an n* emitter

consisting of doped polysilicon. The emitter-base junction lies precisely in the mono-
crystalline silicon, This transistor structure deviates considerably from ail other known
eritters in having 4 Gg vatue about an order of magnitude higher. Although the
detafled physical mechanism is not yet known, it can be described by an effective
surface recombination velocity of about 5000 em/sec for an assumed surface
concentration of 10%° cm™.

44. “Some aspects of LEC transistor struchures” (sec 5.8).

Several years ago a Low-Emitter-Concentration {(LEC) transistor structure was
suggested. The emitter region consisted of a lightly doped n™ region followed by

a usual n* region, and can be considered as the inverse of a double-diffused transistor
as is used in an I*L structure. It was suggested that the nn barrier in the emitter
would “reflect” the minority carriers, resulting in extremely high current gain

values (hpg = 2000).

Measurements and numerical calculations, however, show that the minority carrier
current is determined by recombination in the n* region and is about equal to that
in a corresponding conventional transistor without.the n™ layer.

Possible advantages of this transistor structure are probably of a more technological
nature, e.g. the total base doping is independent of the emitter n* diffusion or
implantation and can be made rather small, resulting in high current gain values.
In practical current ranges the electron current will cause a voltage drop in the n~
region, thus influencing the distribution of the injected hole charge. This follows
directly from eq. (16) and fig. 2 in section 5.8. One of the main effects of the n™
layer is the extra charge storage in that region, particularly at higher currents (see
fig. 4.6). This reduces the f values appreciably compared with a corresponding
conventional transistor (see 5.8, fig. 7).

When the area of the n* region becomes small in relation to the total emitter area,
voltage drop in the n” region results in an inhomogeneous distribution of the
emitter and base currents (see 5.8, fig. 9).
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Fig. 4.6, Distribution of electrons () and holes (b} ina LEC transistor, caleulated for several
forward voltages.




The lightly doped emitter region offers the possibility of making other diffusions
e.g. a p* ring around the n* area. The transistor characteristics can be influenced
strongly by the voltage applied to this p* ring.

6l
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5. REPRINTS OF PUBLICATIONS

5.1. “Iterative scheme for 1- and 2-dimensional dc transistor stmulation’
JL.W_Slotboom, Electr, Lett., Viol, 3, No. 26, Dec. 1969,

ITERATIVE SCHEME FOR 1- AND 2-
DIMENSIONAL DC.-TRANSISTOR
SIMULATION

A numerical iterative scheme is presented for the solution of the 1- and 2-dimensional
semiconductor d.c. tansport equations. This scheme & applicd to an wpw transistor
strugture. Input data are geometry, doping profile, boundary cenditions and, option-
ally, mobility dependencies and generation-recombination law.

. fntroduction: With a view to accurate device analysis, and to be able to design
accurate device models, one must regard the device as a single structure in which
the basic semiconductor transport equations must be solved.

This has been realised already in 1-dimensional models for transistors and
diedes. ' ~ * However, realistic solutions requirc 2-dimensional calculations in
order to include spreading effects and the iafluence of the surface on the electrical
behaviour of the device. There exist approximate 2-dimensional transistor tepresen-
tations, where the structure is split up into a set of coupled 1-dimensional transis-
tors ' 7% or into neutral and depletion regions. * These approximations are often
not rigotous enough.

The normalised transport equations are

V3w =n=p-N (1)
Jom T BV EVEY L 2)
e R ) T {3)
Vedo= =R e (4)
Vo= R %)
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where

wlx, 3) = electrostatic potentiat
alx, ¥), plx. ¥) = electron, hole density
N(x,¥) = pet concentration of the jonised impurity atoms
Jy(x, ¥} Jhx, ¥) = electron, hole current density
R(x,y) = generatioﬁ-recombination rate

pa~x, ¥), v~ 0%, ¥) = electron, hole mobility

We explicitly introduce two variables &, and &,

T G I (8)
Dy m BXD () o v v e e )

where ¢, and &, dre the electron and hole quasi-Fermi potentials defined by

We substitute the variables @, and ®, in the potential equation (eqn. 1) and in the
two current-density equations (eqns. 2 and 3). Using the new curremt-density
expressions in the continuity equations (eqns. 4 and 3), we find

Vig = @,exp )~ pexp(—w)—N ... i (10)
Vi lep(—dVB =R ... (11)
Vi lexp@VBJ m R oo (12)

These are three coupled elliptic partial-differential equations for the three unknown
variables i, ®p and @, .

Problem: The problem is to solve this set of equations for a device structure of
which the following data are given: geometry, doping profile, mobilities as functions
of impurity concentration and electric field, generation-recombination law and the
right boundary conditions.

Method of solution: The iterative process, which is started with a trial solution for
%, and D, is as follows: :
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{4) We assume that ®, and €, are known quantities and consider eqn. 10 as a non-
linear elliptic differential equation in ¢ (v, ). 7 7 * This equation is linearised, as
in Gummel’s 1-dimensional approach. The resulting linear equation for the correc-
tion & (x, y) can be replaced by a set of difference equations, which can rapidly be
solved by the method of successive overrelaxation {s.0.r.).* The difference equa-
tion at the point (7, /) (see Fig. 14) is

#i

h L)L

b, isdel i i
h

i sl
-..;,Joi

|I:l,j +1
Fig. 1A Mesh points of 3 regular square net

[3-+45D,, | explw, )+ @, exp (=i, N Gy
= Gren, o, 0 e H 0 o= b (13)

where b is a known function of ¢, ®,, &, and N.

Conivergence of the sox. is always guaranteed by the diagonal deminance
criterion. © With the calculated & values, we correct the old  values and so find
new i values.

(b) Because Tp. Tn and R depend in a given way on the electrostatic potential, we
¢an, at this point in the iteration cycle, compute new values for these three quanti-
ties.
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(c) Now we assume that @/, ¥, 7y and R are known guantities and consider eqns.
11 and 12. These lincar equations are also replaced by two scts of difference
equations for &, and &, and are solved by s.0.r. The difference equation for egn.
11 at the point (7, j) (see Fig. 14} is (Reference 6, p. 184)

Ll I TR o T 1 “J.J-F}'Fa'yl“l)tbp‘_/. + HH,J“,F,‘ 1 *

""“l-&.jrbn,‘__,““F('(..ll-lq){‘.d.‘\ e gy Py =h* R, ; (14

wherca =7, exp (—¥)-

The value of 7 at the point midway between two mesh points is approximated
from the known values of 2 at these two mesh points. The difference equation for
eqn. 12 is similar to eqn. 14, but witha = 7,,™" exp (V).

Bor both sets of difference equations, convergence is unconditionally guaranteed
by the diagonal dominance criterion. With the computed %, and P, values we
return to the beginning (@) for computing new  values etc.

Our preliminary computer calculations demonstrate that this iterative scheme

. converges very wel,

y E buse ;.S 'I: ev:nitter' 1M
ﬂj l\__“. R
p ——
n
il a2 I
K collector lL
1
¥

Fig. 18 Z2-dimensional geometry with metallurgical emitter and collector Junctions
of an rrp-n transistor,

Results: Although this very general and rigorous solution method can be used not
only for transistor calculations but for any 1- or 2-dimensional semiconductor
structure, we will demonstrate the method for a 2-dimensional #-p-n germanium
transistor. The geometry is shown in Fig. 18. For the doping profile, we use the
solution of the 2-dimensional diffusion equation.® For reasons of simplicity, we
assume that the electron and hole mobilities are constant and that the generation-
recombination rate equals zero.

The boundary conditions are
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(i) At the emitter, base and collector contacts, we assume that the semiconductor
is in thermodynamic equilibrium and that there exists charge neutrality (the
usual assumptions for ideal ohmic contacts). Together with the applied
voltages Fry and Vep, we can then find the boundary values of v, &, and
By at the contacts.

(i) Along ML, which is an axis of symmetry, we have

w_o, o,
ay dy T ay

=0

iif} Along NK, where the behaviour is approximately 1-dimensional, we have
g ¥

Qv _ 0% 9y _
gy By B

(iv) Along TS, we assume that the normal components of the current densities
and of the electrostatic field are zero, Therefore we have

dy %, _ 00, _,

dx dx  dx

With the given iterative scheme we solved this 2-dimensional transistor problem. In
Fig. 2 the computed electron-density distribution is shown for Fgg = —250 mV and
Veg =05V,

The process converged very well, and within eight iteration cycles the computed
new potential values differed not more than one percent from the old ones. The
computatjon time at the EL-X8 machine was about 15 min. From Fig. 2 it can be
seen that, in the neighbourhood of the base contact, the electron density is smaller
than its equilibrium value due to the vicinity of the collector junction.

The iteration process can also be used for solving 1.dimensional structures. For
instance, we computed with this method the electrostatic and quasi-Fermi potentials
for the 1dimensional transistor along ML (¥ = 0) in Fig. 1B. Comparing these
results with those following Gummel’s method, we found that the agreement was
better than one percent.

The author wishes to thank C. Weber for helpful discussions and P.A . Hart for
his stimulating interest.

JW. SLOTBOOM 27th November 1969

FPhilips Research Laboratories
NV Philips’ Gloeilampenfubrieken
Eindhoven, Netherlunds
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Fig. 2 Normalised electron-density distribution n/n; ¥
n;=2.5 % 10" cm™ ;x and y in micrometres
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5.2. “Computer-aided two-dimensional analysis of bipolar transistors™
IEEE Tiansact. on EL Dev., Vol. ED-20, No. &, Aug. 1973,

Computer-Aided Two-Dimensional Analysis
of Bipolar Transistors

JAN W. SLOTBOOM

Abstract — A method for solving numetically the two-dimensional (2D) semi-

conductor steady-state transport equations is described.
The principles of this method have been published earlier [1]. This paper discusses
in detail the method and a mumpber of considerable improvements. Poisson’s equation
and the two contitnity equations are discretized on two networks of different
* rectangular meshes. The 2D continuity equations arc approximated by a set of
differentce equations assuming that the hole and electron current density compo-
hents along the meshlines are constant between two neighboring meshpoints in 2
way similar te that used by Gummel and Scharfetter [2] for the one-dimensional
(1D) continwity equations. The resulting difference approximations have generally a
much larger validity range than the conventional differance formulations where it is
assumed that the change in electrostatic potential between two neighboring points
is small compared with kTfq. Therefore, 3 much smaller number of meshpoints is
necessary than for the conventional difference approximations, This reduces con-
siderably the computation time and the required memory space. It will be shown
that the matrix of the coefficients of this set of difference equations is always
positive definite. This is an important property and gurarantees convergence and
stability of the numerical solution of the continyity equations.

The way in which the difference approximations for the continuity equations
are derived gives directly consistent expressions for the current densities that can be
used for caleulating the currents, In order to demonstiate the kind of solutions ob-
tainable, steady-state results for a bipolar n-p-n silicon transistor are presented and
discussed.

Manuscript received August 17, 1972; revised March 16, 1973,
The author is with the Research Laboratories, N.V. Philips’ Gloeflampenfabrieken, Eindha-
ven, The Netherlands,



72

1. INTRODUCTION

semiconductos transport equations accurately without the conventional
vestrictions such as locally neutral or space-charge regions, constant
mobilities, simplified doping profiles, etc.

In 1964 Gummel [3] described a very attractive and efficient method for sotving
the 1D steady-state carrier transport equations. Later many other authors published
solution methods not only for steady-state but also for smell-signal and transient
opetation of 1D diode and transistor structures [4] — [15]. With these methods it
is possible to study how physical parameters such as doping profile, carriet mobili-
ties, lifetimes, and geometry are related to the electrical behavior of the device and
to get a clear insight into high-level effects that are of growing importance for
device optimization and design of accurate circuit models.

Lateral variations in current densities and potentials and their relationship with
base current cannot be taken into account in the 1D transistor structures. Quasi-2D
models have been made to include these 2D effects [16], {17] - They consist of a
number of 1D transistor models coupled with lateral base resistances. The basic
assumption is that, apart from the base current, the transistor behavior is 1D, In
fact, as will be shown by our rigorous 2D transistor calculations, this is not truc
when current spreading s present. Particularly for high current densities when base
widening occurs (see, eg., [L8], [19]), current and voltage dependent current
spreading takes place directly behind the emitter-base junction (see Section VII).
It is also difficult to represent realistically the emitter sidewall injection in a quasi-2D>
model. Other approximate 2D transistor models have been made by splitting up the
2D transistor structure into neutral and space-chatge regions [20], [21].

However, in order to analyze accurately tramsistors and other semiconductor
structures under all kinds of operation conditions, the general basic carrier transport
equations must be solved rigotously:

B ¥ means of numerical solution methods it is possible 1o solve the general

vy = —gfelp —n 4 No* = Na) (Poisson’s equation) (1)

Jr=- W—L!'I:’V\l’ - quJVP

Ju = — quan¥ + ¢ D,V (Current density equations) (2)
V. J, 4 gop/ot = —qR
V. J. — gin/ol = gR (Continuity equations). (3)
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Kennedy and O’Brien {22} — {24} have presented detailed graphical results of
2D steadystate caloulations for junction field<ffect transistors (JFET’s). Unfor-
tunately, they give no details of the way in which these equations are solved. Kim
and Yang [25] consider in their numerical analysis of JFET’s the majority carriers
only and assume that the quasi-Fermi potential is one dimensional. This makes
direct integration of the current density equation possible, which simplifies appre-
ciably the numerical solution.

Recently it has been shown [1] how the 1D steady-state iterative scheme given
by Gummel [3] can be extended to the 2D problem, This method will be described
briefly, Normalizing (1),(2),and (3) in the same way as de Mari [4] did, the steady-
state equations become

V=n—p— N )
Jo = — 7 1 (pVy + Vp)
Jo= — 1.1 (n % — V) (5}
V-lyu=—R
V-J.=R (©)

Here 7,," and 7, are the normalized carrier mobilities. In the eXpressiong for the
current densities the Einstein relationship between the diffusion coefficient and the
mobility is used,

With two new variables ¢p and ¢, , defined by

@ = €Xp (p5)
$u = exp (—ga) &

where p, and v, ate the hale and electron quasi-Fermi potentials

ve =+ In (p)
en = ¢ — In (n) (8)

the basic equations (4) — (6) reduce to three coupled elliptic partial differential
equations in , ¢ and ¢, :

Vi = ¢uexp{¢) — ¢pexp(—y) — ¥ (9}
V-lvalexp (—¢) Vo) = R (10)
v- I'Y,Fl exp (¢)V¢h} = R (11)

with
Jo = = vt exp (—y) Vg, (122)
J" = Tﬂ_‘ exp (‘;‘) ng”, (] 2b)
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These three equations are discretized on a nonuniform mesh. Poisson’s equation,
(9), is considered as a nonlinear cquation in ¥ and is linearized according to the
Newton method (see Section 11T). The two continuity equations (10) and (1 1) are
linear self-adjoint elliptic partial differential cquations in ¢, and é, . The sequence
of solution of this system of equations is the same as in the 1D Gummel method:
first the nonlinear Poisson equation is solved, assuming ¢p, and ¢, are known, and
pext each of the continuity equations is solved using the just calculated electric
potentials from the Poisson equation. This cycle is iterated until a sufficient ac-
curacy is reached (see Fig. 1). The main difference between the 1D and the 2D
solution method is the way each of these equations is solved numerically. In the 2D
analysis the equations are solved by iterative solution methods, such as the method
of successive overrelaxation (SOR) or suceessive line overrelaxation (SLOR) [26] .
In the 1D solution process, on the other hand, the linearized Poisson equation can
be solved directly by Gaussian elimination and the two continuity equations by
integration. This difference in solution method introduces severe complications
for the 2D solution process. The coefficient matrices of the continuity difference
cquations depend upon the electric potential y, which changes with each “outer™
iteration. Therefore, it it necessary that independent of the values of the electric
potential in each meshpoint the difference equations are numerically stable and
that the iterative solution method of the individual equations is always conver-
gent. Though the difference approximations described in {1] satisfy these
conditions, we will derive in this paper other difference appreximations that are
more accurate and have also the mentioned properties.

With this method, taking into account the oxide and the oxide-semiconductor
interface, Heydemann [27] and van Dorpe and Xuong [28] have analyzed a

Guees (i
and R, Ea i

Sofve Poiszon's e,
{nonlinear in )

Sofve eq.

(Hmﬂfuﬂﬂ%)p)
" aoiee gl
(i?nﬁg?ﬁ;%ﬂ“ .

Fig- 1. Flow diagram of the iterative scheme-
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metal-oxide-semiconductor (MOS) transistor. The last mentioned authors have
refined the difference equations for the continuity equations in order to avoid
computational difficulties for high applied voltages. Kilpatrick and Ryan |29] used
the method for analyzing 2 lateral p-n-p transistor. Dubock [30] uses a special
difference formpulation for the continuity equations. Depending upon the sign of
the electric field at each meshpoint a suitable difference approximation is chosen.
The difference approximation thus changes in the different meshpoints, which
seems unattractive from a numerical point of view. Reiser [31] has published a
method for the solution of the time dependent 2D ¢quations. Assumning that the
space-charge term in (4) is known, this equation is solved by means of Hockney’s
method [32]. Although this is a very rapid and direct method of solution, it has
some restrictions and cannot be used to solve the Newton-linearized Poisson equa-
tion. Therefore, the rapid rate of convergence of the Newton process is lost, which
is especially important for low injection. Another restriction is that constant step-
sizes in both directions are needed. This can inttoduce an excessive number of
meshpoints in areas where they are not needed.

In a recent paper [33] van Dorpe, Borel, Merckel, and Saintot describe a 2D
numerical analysis of the MOS transistor. The used difference approximations are

- the same as already given in [27]. At the end of their program they caleulate the
longitudinal component of the hole current density via an integral formulation
because of the great inaccuracy met when the current density is calculated from
numetically differentiation. Heydemann uses in his last paper [34] the strongly
implicit method of Stone [35] for solving each of the three systems of difference
equations instead of the more usual SOR or SLOR methods.

An important drawback of the above-mentioned methods is the large number
of meshpoints involved for accurate caleulations. This is caused by the used dif-
ference approximations and the way of solving. Rather large computation time and
required memory space are the consequence of it. Usually the number of iterations
for each of the three equations depends rather strongly upon the number of mesh-
points, which increases the computation time even more.

We will show that the efficient difference approximation, which Gummel and
Scharfetter used for their analysis of a silicon Read diode oscillator [2], can be
extended to two dimensions. Assuming that the hole and electron current density
components along the meshlines are constant between two neighboring meshpoints,
it is possible to derive difference approximations for (10) and (11) that have a
much larger validity range than those used in the above-mentioned methods, which
are based on the assumption that the change in electrostatic potential between two
meshpoints is small compared to kT/g. The large validity range of the new dif-
ference approximations requires less meshpoints for accurate caleulations.

We will prove that the matrix built vp from the coefficients of the difference
equations is always positive definite [26]. This property is very important for the
rumerical solution because it guarantees numerical stability and convergence of,
e.g., SOR and SLOR.

The use of different meshes that are optimal for each of the three equations
reduces the total number of meshpoints again.
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II. DATA AND BOUNDARY CONDITIONS
OF THE USED EXAMPLE

We shall illustrate our method with an example of a bipolar np-n silicon transistor.
The geometrical structuye is given in Fig. 2. The doping profile is calculated from
the 2D diffusion equation [37]. The doping profile along the X axis and under the
hase contact is shown in Fig. 3. The gencration-recombination term is given by the
Hall, Shockiey, and Read model [38}]

R = (P" - nﬁ')/{"nﬁ(ﬁ + PI) + T;,O(ﬂ + "l), (13)
where
Tpe:Tpo  tlectron and hole lifetime;

Dy, My the hole and electron concentration that would exist if the Fermi Jevel
were at the trap jevel,
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Fig. 2. Geometrical structure of n-p-n silicon transistor. Metallurgical juncrions are indicatad.
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Fig. 3, Doping profile alobg ML and NK (ses Fig. 2).
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We will assume that the recombination centers are near the center of the band-
gdp.

= p = .
And further we have taken in our example

oy = Tng = 0.5 X 10775,

The mobility is a function of doping and electric field {3], [39]. The boundary
conditions are the same as described in [1]. At the ohmic contacts the electrostatic
and quasi-Fermi potentials are known from the assumed charge neutrality and
equilibiium and from the given applied voltages. Along the other parts of the
boundary the normal derivatives of the potentials are zero. For analyzing MOS
transistors, more realistic boundary conditions at the interface with the oxide layer
can be used {27]. [28]. The calculations and computer plots were made on a rather
small Philips ELX8 computer with a memeory capacity of about 23K words of 27 b.

III. POISSON'S EQUATION

Poissan’s equation, (9), is considered as a nonlinear equation in y while ¢, and
¢n are known. This equation is linearized in the usual way [1}, [3]:

V% —a% =% (14)
where -

§ a perturbation onyy,;

a® =g, exp (o) +epexp (—d) = ntp;

b = — Vit exp (o) ~dy exp (—) — N
==V t+rn—p—N,;

dy  they values of the former iteration.

Because 4> is a function of x and ¥ (14) cannot be solved by Hockney’s method
as mentioned before. This linear elliptic partial differential equation is discretized
on a nonuniform mesh (see Fig. 4) and replaced by a set of finite difference equa-
tions by means of the box integration method [40]. This net of meshpoints is
called the £-net.

The problem can be written in a matrix notation as

As = b, (15)
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Fig. 4. Nonuniform mesh for discretizing Poisson's equation (E-net: 46 x 41 meshpoints).
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parameter.

The matrix A is a symmetric and positive definite matrix with diagonal dominance.
Therefore, the usual iterative solution methods are convergent [26] . Even with this
very nonuniform mesh the rate of convergence is sufficient (see fig. 5) because of
the presence of the term —&* &, which provides an extra diagonal dominance. The
solution of the linearized Poisson equation is used to correct the Yo values. This is
one Newton iteration. By recalculating the coefficients 2° and b, the process can
be repeated, etc. Fig. 6 gives the quadratic rate of convergence of this Newton
process. Usually it is sufficient to cortect the ¥, values only once with the caleulated
& values and then continue with the solution of the continuity equations.
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IV. CONTINUITY EQUATION

Consider the continuity equation for the holes, and omit the subscript p for the
sake of simplicity; the corresponding equation for the elecirons can be treated in
the same way. The functions ¥, ¥, and R are assumed to be known in the mesh-
points of the F-net.

In Appendix A it is shown in detail how the Gummel-8charfetter difference
approximation for the current density, formulated in the variable ¢, is cxtended to
two dimensions. The two continuity equations are discretized on a second network
of meshpoints, the so-called J.net (see fig. 7). It is assumed that the current density
component along the meshlines is constant between two neighboring meshpoints of
the Jnet, while the electric field component along the meshlines is assumed con-
stant between two neighboring meshpoints of the £wnet. The conventionally used
difference approximations are only valid when the change in electric potential be-
tween two meshpoints is less than AT/g. In a reverse-biased base-collector junction
this would require very small stepsizes [41].

According to these new approximations we use two different networks of mesh-
points, the already mentioned £-net and J-net. The resulting system of difference

* equations can be written in matrix notation as (see Appendix A)

Ap = b. (16)

The coefficient matiix A is symmetric and positive definite. This makes it possible
to solve this problem by standard numerical techniques [26]. Because the Je-net
needs generally a much smaller number of meshpoints, which are more uniformly
distributed than the meshpoints of the F-net, the rate of convergence of SOR and
SLOR is much improved.

The *“positive™ properties of the mattix A are also important for the difference
approximations of the time dependent continuity equation (see Appendix C).

From the quasi-Fermi potentials in the corners of each cell of the J-net (points
A, B, C, and I in Fig. 8) we derive by means of bilinear interpolation the quasi-
Fermi potentials in the meshpoints of the E-net. These are needed for the solution

hasa emitier
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Fig. 7. Nonuniform mesh for discretizing the continuity equation (J-net; 16 x 25 meshpoints).
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Poisson’s equation and for the calculation of the recombination in every meshpoint
of the E-net.
In order to avoid very large values for ¢, and ¢, these variables are scaled down
by means of a similarity transformation (see Appendixes A and B). Then a system
of difference equations in the variable p results [see Appendix A, (A12)]:

Tp=h (17)

T is the transformed coefficient matrix 4.

All the quantities in these difference equations are bounded in value and no
problems with overflow can oceur. The eigenvalue spectrum of the original coef:
ficient matrix is not changed when a similarity transformation is applied. Con-
sequently, the iterative solution process (2.g., SOR and SLOR) behaves in the same
way for these difference equations.

V. CURRENT, CURRENT DENSITY,
AND CUTOFF FREQUENCY

At every midpoint between two meshpoints of the J-net the current density can
be calculated from the same difference approximation for the current density s is
used for the continuity equation:

T = — ap) prove exp Pune — das) — Prat. (18)

This follows from transformation of (A9) (sce Appendix A) to the variable p.
When the quasi-Fermi potential is locally nearly constant this calculation introduces
numerical inaccuracy because nearly equal numbers are subtracted. Therefore, it 18
difficult in this way to calculate the electron current density in the quasi-neutral
emitter region of the hole current density underneath the base contact. Apart from
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the difficulties in these areas the total current flowing through a line x = constant
(see Fig. 2) is easily calculated by integrating the current density along the line. The
collector current is calculated in this way by integrating along a line x = constant
just before the collector contact. The base current is given by

I e — (f Rdx u’y. ' (19)
» Bolad Trilim il baT (Lres

This follows from integration of the hole continuity equation on the assumptions
that the base current consists of holes only and that holes are fed into the transistor
via the base contact only.

From I and I the current amplification factor is caleulated:

hpg = /Ty 20)

The cutoff frequency is caleulated in accordanee with the charge control principle
from a perturbation of the charge concentration and the resulting change in col-
lector current:

fr = (1/2m)Alc/AQ, 1)
where AQ, is the change in total stored hole charge.

VI. CONSIDERATIONS ABOUT CONVERGENCE
AND CHOICE OF MESHPOINTS

In all our computer calculations the “outer” iteration (see Fig. 1) converged well
except for very long device structures (e.g., larger than 100 um) with heavy recom-
bination in the whole device; the rate of convergence then can be extremely small
which makes the method rather impractical under these conditions. This experience
agrees with a recent study of this convergence problem [42] .

In order to check the convergence behavior we test during each “outer” iteration
the relative and absolute change in electric potential in each meshpoint, Also, the
relative change in the carrier concentrations is checked in each meshpoint. In order
to get an idea of the rate of convergence, we show in Fig. 9 the maximum absolute
change in electric potential for two successive iterations as a function of the pum-
ber of iterations. For low current levels the rate of convergence of the Newton-
linearized Poisson equation dominates the overall convergence behavier and a
nearly quadratic convergence results [compare the quadratic rate of convergence
when Poisson’s equation alone is solved by means of the Newton method (see
Fig. 6)]. For higher current levels the mutual coupling between the equations be-
comes stronger and the convergence rate slows down (see Fig. 9). This rate of
convergence can still be speeded up [43]. The convergence behavior is very similar
to the 1D Gummet method.
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The total current flowing through lines x = constant is, as a function of x, con-
stant within 1 percent. This conservation of current is self-cvident because the
expression for caleulating the current density is also used in the difference approx-
imation for the continuity equations.

Because one wants to use a minimum number of meshpoints it is very important
to choose carefulty an optimal distribution of meshpoints. This depends also upon
the specific phenomena and characteristics of the transistor to be studied. We have
found that often errors, introduced because of locally too few meshpoints, are kept
very localized and hardly influence phenomena somewhere else or the overall
characteristics.

We refined the J-net from 400 to 729 meshpoints and found only small differ-
ences (less than 5 percent) in the carrier concentrations and the electric potential.
But when we reduced the number of meshpoints to only 247, differences in these
variables of the order of 20 percent and in some few points of 100 percent took
place. However, the caleulated total currents in the I Vg characteristic (see
Fig. 10) deviate for these three J-nets less than | percent. The total base current
in the last network of 247 meshpoints deviates in about 20 percent of the values
calculated with the finer meshes, which were nearly equal. The number of mesh-

* points of the E-net was the same for these three Jaets, namely 1886.

VII. DISCUSSION OF THE RESULTS

In a number of computer plots the internal as welt as the external behavior of
the n-pn silicon transistor under normal and saturation conditions will be flvs-
trated,

In Fig. 11 the electron current spreading under normal operation is shown.
Current spreading is only present in the quasi-neutral collector region. Three-dimen-
sional pictures of the electron density distribution in the transistor under low
injection are shown in Fig. 12, When the current is increased, the space-charge con-
centration in the base-collector junction decreases and finally disappears. Spreading
of electron flow lines takes place more and more right behind the emitter-base
junction dependent upon current and voltage (see Fig. 13). Consequently the x
component of the electron current density is nrot constant in the x direction as it is
in a 1D model (apart from the influence of recombination} but deviates appreciably
from that value (see Fig. 14). For low current densities the x component of the
electron current density along the line ¥ = 0 is nearly constant up to the point
where the electrons leave the collector space-charge layer and spread into the
ohmic collector region. The current density then decreases because of the current
spreading. When Fep = 3 V, very little spreading is possible because the ohmic
collector region is very thin. At higher current densities we see from this figure that
the current density already decreases behind the emitter-base junction. In this
situation the electric field at the collector junction is very small and cannot focus
the electrans any longer. The lines of equipotential and of constant hole concen-
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tration in Figs. 15 and 16 show how the well-known Kirk effect [18] works out in
the lateral dimension.

In Fig. 17 it is shown how strongly the hole and electron concentrations vary
along the basecollector junction in the lateral direction under several injection
levels.

These rather strong lateral variations under the emitter area, together with the
above-shown current and voltage dependent current spreading when the transistor is
in saturation, are a severe difficulty in trying to model the transistor with a set of
coupled 1D models.

In Fig. 13 current erowding along the emitter-base junction is shown. This
crowding under saturation conditions is an effect that has not yet been explored.
More numerical caleulations are needed to be able to model crowding under these
very complicated and noplinear situations. In this figure we have also indicated how
the current spreading would be according to the hypothesis of van der Ziel and
Agouridis [44]. Their hypothesis states that there is a maximum current density,
the so-called space-chargelimited current density Jgo; , when the current increases.
This S5, is defined as that current density at which the electric field at the base-
collector junction has become zero. This current density is given by [45]

' | Ven + Vo
Tser = quim (_v,, + g T _1) (22)

Wt
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“Any further increase in collector current must result in a widening of the region
in which collector current flows™ [44]. Our 2D calculations, as represented in Fig.
13, show clearly that the current density is not limited by Jgrp . The current
spreading in the base is much less than predicted by these authors, which is a result
of their unrealistic assumption. More 2D numerical cslculations are needed to con-
struct a well-founded model for the current spreading under saturation conditions.
In Fig. 18 the calculated cutoff frequency is given as a function of the current. The
points of these characteristics that correspond with the presented and discussed
plots of internal current density, potential, and carrier density distributions can
easily be found. We have also indicated the corresponding results for the 1D transis-
tor structure (that is, the transistor along the line ¥ = 0 in Fig. 2). In order to
compare the 1D caleulations with the 2D results, the current density i the 1D
structure is multiplied by an effective emitter width L.z, This follows from the
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consideration that for low injection the integral of the 2D calculated current density
along the emitter-base junction must be equal to the product of Leygp. and the 1D
calculated current density (see Fig. 11). For low currents the f7 values are for the
2D structure somewhat smaller than in the 1D structure because of the extra
emitter sidewall capacitance. For high current densities the fi shows a later and
slower falloff in the 2D structure than in the 1D structure, due to the current
spreading in the 2D} transistor. This effect of current spreading on the f charac-
teristic is also shown by Slatter [47] in his cylindrical-geometry bipolar transistor
structure.
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VIII. CONCLUSION

An efficient and general numerical method for solving the carrier lransport ¢qua-
tions for 2D semiconductor device structures is presented and demonstrated for a
bipolar n-p-n silicon trangistor. The deseribed difference approximations for the
continuity equations allow rather coarse meshes while still being accurate. Because
. the coefficient matrices of the difference equations for the three basic partial dif-
ferential equations (9), (10), and (11) are always positive definite, convargence and
stability of the numerical solution of these three equations is guaranteed. The
overall convergence was present in all our caleulations and behaves very similar to
the 1D Gumimel method,

With the described method it is possible to analyze important nonlincar effects
such as: emitter-base crowding under extreme conditions as high injection in the
base and saturation of the base-collector junction; lateral current spreading and
charge storage; and how these effects are related to the external electrical behavior.

AFPENDIX A

DIFFERENCE EQUATIONS FOR THE
CONTINUITY EQUATIONS

We will consider the continuity equation for the holes and omit the subscript p.
The normalized hole continuity equation is

v.J=— R, withJ=— vy lexp{—§)Vg (Al

The continuity equation is discretized on the so-called J-net. It is assumed that the
current density changes slowly per cell of the Jamet, while the electric field varies
slowly per cell of the £Fnet. For simplicity we assume that the E-net covers the /-
net (see Fig. 8).

Using the box integration method [40] and the Gaussian theorem it follows that

ff VS dady =fl..”.-,..m ds
AHCH )
= — ff R dx dy. (A2)

ARBOD

Approximation of the integrals gives

b + B ) (e — Tro) + S+ b ) v — Txed)

= — Yh + e 2+ b QR (A3
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where Repr)x is the effective recombination in the rectangle ABCD defined by
Z R_n.n/f,}f
J.i

(L Mo + ey lhe + )

(a4)

R;; is the mean value of the recombination in the four corners of the cell {f, 1)
(see Fig. 8). Only that part of each cell (j, /) contributes to the summation in the
numerator in as far as it lies within the rectangle ABCD. Jpq, Jas ., ,Jn, and Jy_,
are the current density components along the meshlines at points midway between
two meshpoints (see Fig. 8) and are assumed to be constant between the two mesh-
points. Considering the interval x) % x = x;4, along the line vy =y, it follows that

i — oy Vexp (=)dd/dx = const (=Jy). (A5)

Instead of approximating this expression by numersical differentiation we first inte-
grate and then approximate the integral. Then it follows that

By = Py
Ju= ' (A6)

f” v(s) exp 1)} ds

I}

Define a coefficient

an = 1 ‘ (A7)

fﬂﬂ (5} exp Lg(s) — Yuulds

-l

Assuming that the electric field between two meshpoints of the E-net is constant,
we approximate this coefficient as follows:

1
wa v(s) exp {W(s) — $uu} ds
J zy

1
) Z Tirgifty €30 (g, — Yoedsh(d,40.9 (48)

Gy =




sh{x) = sinh (&) /&
Ajpy = Yy — ‘I’;.n)

Yot = 201+ Wi

From (A6) and (A8) it follows that

Tu=—auexp (—ue) by 1e—den),  With au> (. (A9)

Notice that the integral in the denominator of a4, is bounded in magnitude also
when the electrostatic potential takes onlarge values, because we have exp (U — Wy £ )
instead of exp (¥). In the same way, difference approximations can be derived for
Jyi— 1,y and Jyy_ ;. Substitution of these approximations in (A3) gives

(@sr + aw_y + ray + rag_ 1) exp (=i,
— apexp (= — ayoexp (= e
— ray exp (—Vu)bierr — Pax_r exp (— ) dri—y
==+ ki) R (A10)

with
r=(h+ ke O/ + hia)
In matrix notation the set of difference equations can be written as
Ag = b. (A1)

Note that when the £-net and Jnet coincide and if the stepsizes are small enough,
this difference approximation is identical to the more conventional one [1]. The
coefficient matyix A is symmetric with positive diagonal cntries and nonpositive off-
diagonal entries. Further, this matrix is diagonally dominant and positive definite.
This system of difference equations is therefore always stable, independent of the ¥
values during the iteration process and can be solved by standard numerical tech-
nigues [26] .

Because the potentials tp and ¢, can take on large values, practical difficulties
can arise, such as overflow of computer capacity [4], [28]. This can easily be
avoided by applying a similarity transformation (see Appendix B) to the set of dif-
ference equations (A10)
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(ap 4 aw_y + rav + rav_ ) pre = au oxp (Froe
— Wradplene = daroy 6Xp (Wioe = Yl i
— raw eXp (Yragr — $ra)Prar — Favoy €XP (Yreoy

— Y pie-r = — 5k + ki) R s (A12)

This final difference equation could have been derived more directly if we would
have started with the variable p instead of ¢,. But then, however, it would not be
easy to conclude from the resulting coefficient matrix, which then is not symmetric
and not diagonalty dominant, that the iterative solution methods are convergent.
By the derivation as we have shown via the varjable ¢ we have proven that this coef-
ficient matrix is similar to a positive definite matrix.

APPENDIX B

SCALING BY MEANS OF A SIMILARITY
TRANSFORMATION

The matrix & is said to be similar to the matrix A if a nonsingular matrix € exists
such that B = €' AC. Matrix B is said to be obtained from matrix A by a similarity
transformation [46]. In Appendix A we have shown that it is possible to find a
difference approximation that results in a diagonally dominant and symmetric
positive definite matrix A:

Ap = b,  with 4 = (a: ). (B1)

When C'is defined by the following diagonal matrix

|, )
: 0

(LY (BZ)

(e F R
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(B1) can be transtormed:

(CAC D{Cey = (Ch). (B3)

Working out these matrix multiplications we have at point

(”’ff"’Qi l)an.v‘ NN 0+ (1._,‘(!1&}),)
+ (o) nlan i) = @b (B4)
The new matrix (CAC?) is generally not symumetric and diagonally dominant.
However, the eigenvalue spectrum is invariant for a similarity transformation. The
variable @; is transformed to a new variable (a;¢;). The scaling factors o5 can be
chosen in such a way that the new variable (CP) varies smoothly. When we use
exp(—;) as scaling factors we have a difference formulation in the variable p.
Because the eigenvalue spectrum of a mattix is invariant for a similarity transforma-
tion, the cocfficient matrix of the difference equations in the variable p behaves in
the same way as the matrix of the difference equations in the variable ¢.

APPENDIX C
THE TIME-DEPENDENT CONTINUITY EQUATIONS
The time-dependent continuity equation for the holes is considered and the sub-

script p is skipped for simplicity. The corresponding equation for the electrons
can be treated in the same way, The time-dependent continuity equation is

v-J+o/atieesp (=)} = —R. (C1)

Using the method of Crank-Nicolson we obtain the following difference equation
for the unknown ¢ values at the time Zp4 ¢

Aatrnginin g g imgin] 4 kAt exp (—g™*))
— (b(n) exp (_,.wh«))] = —1p (Cz)

ar

[‘A (n1) +(2i{/1ﬂ) esp (_ll!(nﬂ))[]d,tn-ﬂ)
= — [t — (24 AL exp (—l e =2 (C3)
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Equation (C3) is of the type A*®("*1) = b_[ i¢ the unit matrix. The matrix 4 is the
same as in the steady-state problem (see (A11}) with elements following from (A8)
and (A9). The new coefficient matrix A* consists of the already known matrix A
with extra positive diagonal terms added. This extra diagonal dominance results in
a larger rate of convergence. Because this matrix is also positive definite the usual
overrelaxation methods can be used. The difference approximations used by Reiser

- {317 lead to a coefficient matrix with complex eigenvalues, and underrelaxation
instead of overrelaxation has to be used, which usually results in a smaller rate of
convergence [40].

ACKNOWLEDGEMENT

The author wishes to thank C. Albrecht, H.C. de Graaff, P A.H. Hart, J. Janse,
and C, Weber for helpful discussions, and A.CM. Kilsdonk for assistance with the
programming of the plot procedures.

REFERENCES

{1] LW. Slotboom, “Tterative scheme for 1- and 2-dimensional de-transistor simulation,™
Elgetrom, Lett., vol. 5, pp. 677678, Dec. 1969,

[2] ILL. Scharfetter and HX. Gummel, “Large-signal analysis of a silicon Read diode
oscillator,™ IEEE Trans. Electron Devices, vol. ED-16, pp. 64-77, Jan. 1969,

[3] HK. Gummel, "A self-consistent iterative scheme for one-dimensional steady state
transistor calculations,” IEEE Trans, Electron Deviees, vol ED-11, pp. 455-465, Oct.
1964,

[4]  A. de Mari, “Ar accurate numerical steady-state one dimensional solution of the p-n
junction,” Sefid-State Electron,, vol. 11, pp. 33-58, 1968.

[5] -, “An accurate numerical one-dimensional solution of the p-n junction under arbitrary
trapsient conditions,” Solid-State Electron., vol. 11, pp. 1021-1053, 1968.

[6] DM. Caughey, “The computer simulation of gigahertz transistors,” presented at the
IEEE Int, Electron. Conf., Torento, Ont., Canada, 1967.

[71 -, “Simulation of UHF transistor small signal behavior to 10 GHz for circuit modeling,”
in Pror, Cornell Conf. Computerized Electron., Aug. 1969, pp. 369-375,

[8] V. Agandjelovic, “General iterative scheme for one dimensional calculations of steady-
state electrical properties of transistors,” Ins. J. Elsctrom., vol. 27, pp. 459-478, 1969,

[#] -, “Accurate numerical steady-state solutions for a diffused cnc-dimensional junction
diode,” Selid-State Electron., vol. 13, pp. 865-971, 1870,

(10] B.¥. Gokhale, “Numerical solutions for 2 one-dimensional silicon n-p-n transistor,”
IEEE Trans. Electron Devices, vol ED-17, pp. 594602, Aug. 1970,

[11] M. Kurata, “A small-signal caleulation for one-dimensional transistors,” IEEE Trans.
Electron Devices, vol. ED-18, pp. 200-210, Mag, 1971,



94

[12]

(13]
[14]

(5]
[16]

(171

(18]

[19]
(20

{211

[22]

[23]
[24]
251

[26]
[27]

(28]
[29]
[30]
(1]
(32]

[33]

1341

133]
136}

G.D. Hachtel, R.C. Joy, and J.W. Cooley, A new cfficient onc-dimensional analysis
program for junction device modeling,” Proc, IFEE, vol, 60, pp. 86-98, Jan. 1972,

(. Albrecht and D, Dijkstra, to be published,

5.C. Choo, “Numerical analysis of a forward-biased stepjunction P-I-N diode,™ JHEE
Trars, Eleptron Devices, vol. FD-18, pp. 574-586, Aug. 1971,

E.D. Graham and LR, Hauser, “Effects of bage doping and width oft the J-V character-
istics of the n i+ structure,” Selid-Stete Flectron, vol, 15, pp. 303-310, 1972,

H.N, Gogh, P H_ de lu Moneds, and N.R. Dono, “Computer aided transistor design
characterization and optimization,” Solid-State Fleceron., vol. 10, pp. 705-726, 15967,
D.J. Roulston, 5.G. Chambetlain, and J. Seghal, “High level asympiotic variation of
transistor basc resistance and current gain,” Hisctron. Lett., vol. 7, pp. 438-440, July
1971,

C.T. Kirk, It., “A theory of trungistor cutott frequency (f7) falloff at high current
densities,” IRE Trans. Electron Devices, vol. ED-9, pp. 164-174, Mar, 1962,

H.C. de Graaff, Sokid-State Llectron., vol. 16, pp. 587-600, 1973,

T.W. Collins, “Two-dimensionul numericsl anulysis of integrated bipolar transistors,”
presented at the Int. Electron Devices Meeting, Washington, D.C., 1968.

Pl Calvolan and 5. Graffi, ““Two-dimensional theory of the uniform base trunsmstor at
any injection level,” Alta Freg., vol. 38, pp. 126-134, Feb. 1569,

D.F Kennedy and R.R. OBricn, "“Two-dimensiona! mathematical analysis of a planar
type junction field effect transistor,” IBM J, Res. Develop., vol. 13, pp. 662-674, Nov.
15969.

—, “Computer-aided two dimensional analysis of the junction field-effect transistor,”
IBM J. Res. Develop., vol. 14, pp. 95-116, Mar. 1970,

-, "Two-dimensional analysis of J.F.E.T. structures containing a low-conductivity sub-
strate,’” Bleceron, Lert., vol, 7, pp. 714-716, Dec, 1971,

C.K. Kim and F.8. Yang, ““An analysis of current saturation mechanism of junction field-
effect transistors,” JELE Trans. Electron Devices, vol. ED-17, pp. 120-127, Feb. 1970.
R.5. Varga, Matrix Itevative Analysis. Englewood Cliffs, N.J.: Prentice-Hall, 1962,

M. Heydemann, “Méthode numérique d’&tude des structures MOST,” Eleciron. Lett.,
vol. 6, pp. 735-737, Nov. 1970,

I¥. van Dorpe and N.H. Xuwong, “Mathematical 2-dimensional model of semiconductor
devices,” Electron, Leer, vol. 7, pp. 47-30, Jan, 1971,

I.A. Kilpatrick and W.D, Ryan, “Two-dimensional analysis of lateral-base transistors,”
klectron. Lett., vol. 7, pp. 226-227, May 1971,

P. Dubock, “"D.c. numerical model for arbitrarily biased bipolar transistoss in two di-
mensions,” Flectron. Lere., vol. 6, pp. 53-55, Feb. 1970,

M. Reiser, “Difference methods for the solution of the time-dependent yemiconductor
flow equations,” Electron. Lett,, vol. 7, pp. 353-355, June 1971,

R.W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis,”
J. Ass. Comput, Mach,, val, 12, pp. 95-113, 19635,

D van Dorpe, 1. Borel, (;. Merckel, and P. Saintot, “An agcurate two-dimensional
numerical analysis of the MOS transistor,” Solid-State Electrom., vol, 15, pp. 547-557,
1972,

M. Heydemann, “Solution numérique bidimenyionelle des équations générales de truns-
port dans Jes semiconducteurs en régime permanent,” 'Onde Elec., vol. 52, pp. 185-191,
Apr, 1972,

H.L. Stone, “lterative solution of implickt approximations of mubtidimensional partial
differential equations,”” SIAM J. Numer. Anal., vol. 5, pp. 530-558, Sept. 1968,

H.K. Gummel, “Computer device modeling,” presented at the European Sem. Develop.
Res. Conf,, Munich, Germany, 1969,




[37]

(38]
{391
[40]

[41]
142]

(43]
[44]

[45]
[46]
471

95

D.P. Kennaedy and R.R. O'Bricn, “Analysis of the impurity atom distribution near the
diffusion mask for 2 planar pn junction,” IBM [ Res. Develop., vel. 9, pp. 179-186,
1965,

W. Shockley and W.T. Read, “Statistics of the recombination of holes and electrons,”
Phys. Rev., vol. 87, pp. 835-842, Sept. 1952,

DM, Caughey and R.E. Thomas, “Carrier mobilitics in silicon empirically related to
doping and field,” Proc, IEEE (lett.), vol. 53, pp. 2192-2193, Dec., 1967,

E.L. Wachspress, frerative Solution of Elliptic Systems. Englewood Cliffs, NJ.: Prentice-
Hall, 1966. '
H.K.Gummel, private communication.
M.S. Mock, “On the convergence of Gummel’s nurerical algorithm,” Solid-State Elec-
tron., vol. 15, pp. 14, 1972,

1.W. Slotboom and A.C.M. Kilsdonk, to be published.

A van der Ziel and D. Agouridis, “*The cutoff frequency falloff in UHF transistors at
high currents,” Proc. IEER, vol. 54, pp. 411412, Mar. 1966.

1.L. Moll, Physics of §emiconductors, New York: McGraw-Hill, 1964, p. 153.

V.N. Faddeeva, Computational Methods of Linear Algebra. New York: Dover, 1958.
I.AG. Slatter, “Fundamental modeling of cylindrical geometry bipolar transistors,”
Eleceron, Lett., vol. 8, pp. 222-223, May 1972.

w

Reprinted from IEEE TRANSACTIONS
ON LLECTRON DEVICES
Volume ED-20, Number & August, 1973
pp. 660-679

CopyriGHT © 1973—THg Enserrure or Hnkermican ann Evkemeonics ENCINEzks, INC

FRINTED IM THE U.5.A.



96

53,

“Measurements of bandgap-narrowing in 5i bipolar transistors™

Solid-State Electr., Vol. 19, p. 857, 1976.

MEASUREMENTS OF BANDGAP NARROWING
IN $i BIPOLAR TRANSISTORS

I. W, SLoTBoOM and H. . nE GRAART
Philtps Reserch Laboratories, Eindhoven, The Wetherlands

(Received 19 januury 1976; in revised form 33 Marck 1976)

Almgtraet—Theory predice: appraciable batdgap nurréwing in silicon for imptrity concentrations grenrer than shout

10" em " This effect

slrongly the

of silicon devices. partieularly the minority ¢urrier

¢harge slurage and the minarity carrier eurrent flow in heavily doped regions. The few experimental duta knawn are
Trom optical shsorption messurements on ubiformly deped silicon samples. Mew experiments In order b délenmine
the bandgap i silicon arc described here, The bipolar transistor itself is used 23 the vehicle Tor measuring the
bandeap in the base. Results giving the bandjap narrowing (AV, ) 38 4 Tugction of the impurity coneentration (N) in
the: hase (in the range of 4.10-2.5 10™ em ™"y arc discussed. The experimental values of AV, 18 8 function of N can

v o )

Itis also shown how the effective intrinsic carricr concentration (n, ) is related with the bandgip narowing (A V...

be fitted by

where V.. Naand £ are conglants,

1 INTRODUCTION

The phenomenon of bandgap narrowing in heavily doped
germanium andd silicon has been studied theoretically and
experimentily because of the interest in tunnel diodes
[i-41.

Theoretiza) work by Kane[4], Morgan[5] and Bonch-
Bruyevich (6] shiows that a1 high impurity concentrations
the density of coergy states no longer has a parabolic

states were used by Van Oversirasien, de Mup and
Mertens[12] in 1973 in calculating the manner in which the
effective intrinsic carrier concentration {r, ), defined by
3

o = P (0
(where po und e are the equilibrivm carrier concentra-
tions), depends on the impurity concentration; they gave

Lived

encrgy distribution and becomes d d on the

1 i tuking into account the

impurity concentration. The bandgap is efectvely re-
duced due to the broadening of the impurity bind and the
formation of band tails on the edges of the conduction and
valence band,

Yol'fson and Subushiev(7] in 1967 investigated experis
mentally the fundamental absorption edge of silicon and
found only chinges in the bandgap for impurity concent.
rations above 10" gm™*; the greatest narrowing measured
was 0.068 ¢V for n-type silicon with N =9.10"em *.

Referring to these experiments Kauffman and Bergh[8]
in 1968 used the differcnce in effective energy gap of the
emitter and base region in bipolar transistors to explim
the discrepancy between theoretically predicted injection
efficiency and exparimentally observed values and, like
Buhanan[9] in 1969, they used this difference in bundgap
10 ¢xphain the temperature dependence of the current gain
a3 well, De Man[10] in 1971 calculated the influsnce of the
position-dependent bandgap in the emitter region on the
injected minotity camer current. For the impurity-
dependent bandgap he also used the experimental values
of Yol'fzan and Subashiey. On the busis of the theories of
Kane, Morgan and Ronch-Bruysvich, Kleppinger and

of the positi bundgup. [n unother
paper(13] they took these results as the basis for
caleutations of eminter efficiency of bipolar transistors.

- Alsoin 1973 Mock | 14] presented very similar work, bul
he found quantitatively different a.-values, particularly
for the higher dope concentrations sbove 410" cm ', One
of the main reasons for this was iy use of @ more gensral
formulation for the screemmg length. The resulls of
Heasell [15] in 1975 agree with the results of Mock. The
results of these caleulations are shown in Fig. 1, together
with the experimental values reported by Vol'fson and
Subashiev, In later work Van Overstraaten et al.[16-18)
and Mock|19] have shown how bandgap narrowing
influences both the elecirical and the pptical behaviour of
silicon devices. However because the theory contains
some not wellkkpown parsmeters, ¢.g the screening
length, all this work yields quantitatively uncertain results
for the theoretically calculated . -vidues, This i illus-
trated it Fig. 2, where current gun values are shown
which we have calenlated by solving sumerically the
transport cquations, taking high-doping effects into
aceount in several different wuys., This stresses the

Lindholm{11] devel # general rel hip between

y of determining accurately the effective intringsic

M
the impurity eoncentration and the density of states for
the whole runge of impurity concentrations of practical
importance. These generaf formulations of the density of
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coneentration is 4 function of the impurily concentration
by mesns of experiments, 1a this paper we will discuss in
<detai] experiments ysed 10 messure the effective intrinsic
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it clear that, apart from the product (un i), all the other
quantitics are known from geometry and straightforward
MEASUTEMENtS.

For low impurity concenirations the intrinsic carrier
concentration is given by:

nL=ni=const, T expi—qV,/kT). €]

The f LT only on
temperature. The bandgap V, is also a function of
temiperature, From optical eaperiments of MacFurline (22}
(see Fig, 3} we know that above a certain lemperature
(T > Ty} the bandgap can be approximated by a liner
function of T, V; = Vo~ aT.

1.200]

11501

11060 |

'
1050 v
'

Tt —=Tikl
200 300 00

o 560

Fig. 3. The bamdgep (V) vs temperature (7% in very pure
silicon{22], Tom 250 K and Vo w 1206V,

degsity (1., ehowing the influence of the intringic trati Substinition in eqo (3) gives:

values on device characteristics,

nh=CT cap(—gV,/kT). )]

concentration n, a3 g fi of impurity
and and its ralationship with the bandgwp  Putley and Mitcheli[23] bave found experimentally that
narrowing AV, We also give an ampirical sxpressi the are w965 107 and Vya= 1206V,
which fits our i 1 values. Prefi veesiltsof  For high impurity concentrations we have caleulited
this experimental investigation have already been pre- ically the affective intri 100 (M) in 3

sented elsewhere[20, 21].

1 TEEORETICAL MOBEL AND MEASURING METHODS

In the i wie fi 4 our on the
well-known I« Ven charscterigtic of NEPN bipolar
transistors. During all our measurements care was taken
to keep the injection in the base very low. Assuming that
the minority carmiers in the basa obay the Boltzmann
distribution law, it can be shown that the I~ Vi
chaticteristic 1% given by:

e = Lexp (4Va /KT )

where
L= MHO.L"E‘V

in this expression: An=emitter arem, p. = electron
mobility in thé ptype basc, (h =total number of
holesfer®, ni,= pr-product W equilibrium in the base.
(Whent the impurity concentration in the base io not
comstant, ga and nl are mean values over the base region
weighted by the bole concentration). Equation (2) makes

similar way as in (12, 14, 15], not only a4 & Tusction of
impurity concentration, but also a3 a function of
temperature [24). These calculations show that not only
for low but for all impurity concentrations #, can be
described by:

ri= CT° exp (—g Vi NWET) 03]
for T To.
The extrapolated bandgap value, Vio(N), i3 3 foaction
of the impuri fom (), bt C is approctinstely

independent of the lmpurlty concentration. If we liaﬁne
the bandgap narrowing AV,o by
AV, N} = 1106 - Vo[ N), {8)

the effective intringic carrier concentration can be written
a5

nilN, Y= al{T) cxp (qA Vil NYKT). M
We will now describe two methods for determining A Vio
which are based om eqn (2).
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Mathod 1 )
From egn (2) it follows that
3l — 8
ni=l o 8

At room temperature the - — Vir characteristic and the
sheet resistance underneath the emifier (Rrmaa) are
measured, From the tesulis [ and Qp can casily be
derived. For the electron mobility the majority carrier
value in n-type material with the same impurity concent-
ration a5 in the base iz taken (zee Section 4). In this way
nl.is derived and AV, is fonnd from eqn (7) for a number
of transistors with varying base dope concentrations.

Method 2
If we substitute the gencral form for the intrinsic
concentration {eqn 3) in eqn (2) we obtain:

I wconst, T T exp (@(Vea(T)~ VI{THKT). (B
Here it is assumed that O is constant (see Section 4),

Differentiation with respect to the temperature T while Io
is kept constunt gives:

- :r (vm—Td‘!‘;“) "T(w'r—(lnu,))

)

With [ constant, Vg, is measursd very accuraiely for a
series of temperatures in the range 150420 K, incrensing
in smali ¢ steps. The temp is measurzd
with a calibrated thermocouple and a check is made on the
accuracy of the ideal exponential slope of the Iz — Ven
characteristie. It is found that over the whole temparuture
range the temperature derived from this slope always
differs less than 0.5 K as compared {0 the temperature
measured with the thermocouple, From the measured Vea
values the term (Ven — TidVan ATH of e () is
derived as a function of temperature. In the same way we
measure the sheet résistance of the base (Ropaw) 38 2
fupction of temperatura. This gives us the temperature
dependence of the hole mobility in this base. Knowing [28]
that the temperature dependence of the mobility of
electrons and holas, when thay ave majority carriers, is
very similar and using the same assumption for the
minority camrier mobility as in méthed 1 (zee also the
discussion in Section 4), we assume:

S0 0) = el ). an
In this way the term kT /q(4+ T{d/dT)In 12,)) in eqn (10)
follows from the temperature measurement of the Ronwe
By subtracting the two terms in eqn {10) which resulted
from the transistor and the Rowee measurements, we find
how (¥, - T(dV,/dT)} changes with temperature. In
agresment with theoretical calcuiations[24] it appeius that
this function has the constant value V,p above & certain
temperature value To. The bundgap narrowing, AV, is
found with the aid of e (8).
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3. EXFEXIMENTAL RESULTS

The measuring procedures and the analysis of the
results will be illustrated for two differemt coses: 2
transistor with a lightly doped base and one with a heavily
doped base. We consider first a transistor wath a base
doping of N = 4,10" cm ™, Using method 1 and substitu-
tion of #% in cqn (7) we find A Ve ~0.

In Fig. 4 the resulty of method 2 are shown, The term
(Ve — TAV JATY is ;nrrecud by the term rasuiting
from the 1 d of the el
mobility, The varmmn of the hole mobility in the base
with terpperature, constructed from the méasurements on
the Ropue 15 shown i Fig. 5. The temperaturs dependence

00

1250

EY

Pra
oy
T =5

150F - Mogharigne

—_— Tl Kl
L F—
0 200 0 400 el
Fig 4 The quistiter (Vo - T(AVenfAT) and (¥, -
TAV./ATY) vi temperoture. Boase doping  conceptration
N=410"em™,

X . A
_'_,_.m
TiK)

T-|’P1
r mcg \\_
~n:cm’/w-=s\“1-
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ey ™,

o™
/o

5,

B e

oh—
&5 S0 50 5o

Fig. 5 Majonty camier mobility () in the base ve
temparnturs (T), for varlons bave dopings. The curves were
obtained from Brma. MeEasUrements.

of the werm (V, — T(AV,/AT)) agrees very well with the
valugs for this term derived from MocFartane's measure-
ments of the e d d of the (gt
Fig. 3). For temperatures higher than about Z50 K this
term has a constant vahae Vi of about 1200 mY dué 1o the
linear temperature dependence. In conclusion we can
say thal the silicon bandgap measured in the base region
of a bipolar transistor with 2 base dope of 4.10" em™
not narowed and agress very well with MacFarlane's
menslitements.

Next we consider a trumsistor with a large impurity
concentration in the tase (N = 10" em™),
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In Tuble 1 the measured data imd the resuits of method
1 are given. The bundgap narrowing AV, is 74 mV. The
results of method 2 are presented in Fig. 6. The term
(Ver — T(5Vaa/AT)) is scen to be a liness function of the
temperature, with a slope of 4 kT/q. In Fig. 5 we sec that
the mobility is almost mdepandant of temperature,
According to eqn (10} this results in a nearly constant
value for (V, — T(dV,/dT)) over the whole temperadure
interval measured with Vio= 1130 mV. We see that both
wethods agres and give # bandgap narrowing AV, of
approximately 75mV,

Finally, Fig, 7 gives a sucvey of similar measurements
ont a number of transistors having base dope concentra
tions from 4% 10 to 2,8 % 10" em™. The experimental
values of Vol'fson und Subashiev[7), alsc indicated in tis
figure, arc scen 10 Jiffer appreciably from ours (for
discussion see Section 4). Qur experimental values arg

mebility for minority carriers {see Section 4), the
estimated accuracy in the determination of AV is
*10mV.

4, DISCUSSION
As mentioned, the cxperimental investigation was
concentrated on the I — Ves chiwactetistic (eqn (2)) and
in fact we measured the product (uanl) as a function of
P e. Mcthod 1 (pan ) 3t COOM tempera-
ture andd method 2 its variation with temperure.
From eqn () it follows that for Jo constint:

SR

Lin Ty = g (Veu -

Several authors (8,9, 31, 32] have described the tempera-

" also indicated 1 Fig. | and are in good agr with
theoretical m, values, Apart from the uncertainty in the
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50| . ) .DT
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Fig, 6 The quanlities (Viw = T{AVa/aTH and (V.-
TAV./ATY vs wmperamze Base doping  concentration
N=110"em™

THAQ
180
o
"y

Hed

100

o 0 & ov it
base dope congentration [cm'')
il

Fig. 7. The meuyured extrupolated bandgap value Vi, a5 a

function of the impurity concentration N. The fully drawn line

represants V,, according to eqn (1%) (8 measured accerding to
method 2 and () messured according to method 1).

ture o i of s which is identical to that for
{Tuant3) in terms of wn activation energy E,:

Tuattle = const, exp (—E. /K1) 13
However, this would mesn that (Ve = T(dVes/dT)) is
constant and this i3 not in agreement with owr
capriments (3¢ ¢.8. Fig. 4 and Fig. €). Our experiments
indicute that above the temperature Ty this term is a linsar
funiction of temperature:

\7 kT
o LR Vot fL, (1T,

(14)
Consequently pur experiments together with sgn (12)
indicate that the praduct (u.nl) must be described by

i = const, T#' exp (—qV/kT), (15)
where £ and Vi foliow from the measured term
(Vpo — T(dVya/dT). In Teble 2 these parsmeters are
given for three tramsistors with different base dope
concentrations.

In geder to be able to determine nb itself as a function
of temperature it is necessary 10 have more data about the
electron mobility in the base. However, in contrast to
majority carrier mobilities, very little is known about the
minority mobility, The majerity carrier mobility is usually
derived from resistivity meagurements sssuming that the
carmier comcentration is equal to the chemically deter
mined concentration of impurity atoms(25-27] The
temperature dependence of the majority carrier mobility
for holes and clectrons ate approximately cqual [28] and
can be described by:

pn T (16}
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Table 2,

)
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[T [ b kb
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1 e

ti

where % ix constant above a certain temperature {(see also
Fig. 3

For low impurity concentrations (N < 10''¢m ") it is
known from experiments [29, 304, that the electron mokbil
ity and its temperature dependence are the same in n-typs
and g -type silicon. Although for high impurity concentra-
Liong there is no such experimental evidence we assume
thatt this form of relationship is still true. Substitution of
eyn {16) 1 egn (15) gives:

al e T ayp (— g Vel T). (17

Table 2 ulso gives vatues for C and 7, where 5 wus

decived from the measured temperature dependence of

the R mm- and C was obtuined from an s measucément at
. room temperature. 18 ¢an be seen that anall impurity levels

€ =9 10" (the value found by Putley and Mitchell[23]

for intringic silicon) and that B — 1 +% =3,

This meuns that the well-knywn Putley and Mitchell
formula for aj, can be used for any impurity concentra-
tion (W), provided that V., is taken as a function of N,

Theorstical calculitions [24] confirn this remarkuble
result and therefors strongly indicate that the pli

odges of the conduction and valence band based on the
theorics of Kane, Morgan and Bongh-Bruyevich I'a the
most reasonable m for the d b
narrowing

CONCLUSION
Bandgip marrowing in silicon has bheen determined in
the base region of bipolar teansistors. At impurity
concentrations greMer thin about 107em * thig effect
becomes important, The experi iy derived handgay
NAIFOWINg as & of impuriry ation can be
fitted by the following empirical formula:

AVl N) = Vi +4/(F 4 CmV) 18)

where V) =9 mV]|
=In{N/Nw

N =impurity concentiation {om |
No= 107 [em ")

C=~035

It is shown that the tempersturs dJepgndence of the
effective i carrier coms ation iy described by

concerning the cquality of the electron mobility and ity
temperature dependence in - and p-type silicon iy
juatified.

Using the majerity cormier motility vahues #5 distussed
above, {y is the net sum of chemicsl impurity atoms in
the base regicn and therefore independent of temperatuce.
In all our experiments transistors with mther thick bases
(varying from 1 to 5 pm) were usesd and the influeace of
Via on On cun be neglected. For these reasons Gn is
tuken as & constant in our experiments. The results of our
measurements differ appreciably from the bandgap values
obtained from optical absorption experiments (Volf"son
and Suhaghiey [7, se Figs. 1 and ). This discrepancy iz
probably duc to the fact that optical absorption inveives
the energy gap between two free levels, which cun be
larger than the bandgap that determines the pr-product.
Regarding the origing of bandgap narrowing it has been
sugresled[31] that the bandgap is greatly reduced by
mechamcal stress dug to the mishit of the impurity atoms.
However, feom Xoray measurements [33] of changes in
lattice constant in heavily doped silicon samples 2 AV, of
only 5-7mV is predicted[3a] in the worst case.

Long range impurity density fluctuations (over hun-
dreds of atomic distances) can canse potential fluctuations
which increase the averaged pn-product without a change
in bandgap. However for this hypothezis no quantitative
justification is known at present. It seems therefore, as if
the formation of un impurity band and bandtails on the

the equation.

NN, T) = i Thexp (g8 Vil N}ET) (19)

where T =Ty =250 K.,
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AbstractwOptical absorption

[1] and
silicon 15 not only

but ix also infh

[2-9] have shewn thal the bandgap in

Recent electrieal

d by the impurity concentration at higher values.

10] of the pa-product in the base ragion of hipolar ransistors made i poesitle to

derive the bandgap narréwing Qushtitatively a5 a funcuon of the impurity contentration.

i

1 this paper it will be shown (hnt h
impurity ion can be

the g as a function of temperature nnd

by the

pn = aEN, T = CT exp (- gV (NIKT)

fot temperatures hetwean about 280 and 430°K.

Morenver the caloutated values for O and ¥y, {N) show surprisiogly good qusntitative sgreement with the values
derived from the above meptioned pa-measurements[10].

1. INTRODUCTION
C AL low impurity concentrations the pr-product iy
indapendent of the impurity concentration wnd iy theretir

eally given by[11]:
pr = RE(T) = CT7 exp (- gV, kT) (0
where V,, is the towards zero degree Kelvin extrapolated
bandgap. This formula has been verified xperimentally
by Putiey and Mitchall[12]. [n agresment with the optical
bandgap measurements of MagFarlane[13] they found
V, w1206eV and for the conatant C the value of
961 Iem ™ K™ which  can be  explained
theoretically[11],

At hmher meurnly cotwentrations the pa—product
dent. The i of the fmpurity
concentration has recently been derived[10] from meas-
wrements of the pr-product in the baxe region of &
nmmber of bipolar NPM amsistors with base dope
concentrations varyimg from 10%-3x 10™ cm™. Thess
measirementa show that above » lemperitute of about
20K the pn-product is described by the well-known
formula (1) provided that V., iz taken as a function of the

AV,,, waicstimated as T 10 mV, apart from the incertainty
about the assumption thit the slectron mobility in the
p-type base is the same as if the base were n-type.

In the calculations we will consider uncompensated
p-type silicon, Most of the measured transistor stiuctures
hiad uncompensated boron doped base regions (epitaxial
bauses), In the double diffused transistor structures the
phosphorous concentration in the base was always less
than about 208% of the boron concentration.

L THEORETICAL CALCULATRONS
The calenlations are based on the density of energy
states functions resultng from the work of Kanef2,
Morgan[3] and Bonch-Bruyevich{4). We shall cnly
mention the cquations used, without discussion. For more
details about the physics and possible uncertainties in the
theory we refer to the work of these authors themselves
and to a number of authors who have used these
for similar cal [6-9], In thig paper we
use more particularly the formulation ae given by
Mack[8). In the sqnations rationalized MK S-units will be
vsed,
The impurity co“enmlmmdzpcndcm density of states

impurity concentration (N only. For impurity

fi are for d as perturbations on the density

tions above about 0¥ em V_ (N} starts to deviate from
1.206 eV,

In this paper theoretical calenlations of the pa—product
as & function of tesnperature (280—450°K) and imputity
coneentzation (10%-3 % 10" em™ will be discussed, It
will be shown that these caiculations confirm the above
mentioned experimental results and the calculated valies
for ¢ and ¥, (N} agrec well with the measwred values.
. Further it will be demonstrated that, in analogy to the
bandgap definition at low impurity concentrations,
Vo (N} cin be comsidered as the impurity concentralions
dependent bandgap extrapolated towards zero degree
Kelvin.

The accurzcy of the derivad bandgap narrowing in [10].

78

of states functions for intrinsic silicon. The energy i3
chosen zero in the middle of the intrinsic bandgap and is
defined positive towards the conduction band for elec-
trons and towards the valence hand for holes. Apart from
a small corrcclmn lcrm {see Section 3) the temperatire
d dgap, E,(T), is d to be
gvcn by the values meanured by MacFarIanu[l!)
The impurity band density of states iy given by
Morgan{3] 43!

where E, is the acceptor energy level and o, ig the

(E-Ea)
2o

PUE) = 2N ey W exp (- {2a)



A0

effective standard deviation of the impurity band, given
by:
o, & 103 exp (—(11.3806wNY'7A %)

The sereening bangth A i3 a critical parameter in the theory
and 1 given by the general formula[14]:

(26}

(2)

Here Fis the Farmi lavel, For non-dsgenerate material,
when Boltzmann statistics can be applied, this formula
veduces 1o the wellkaows Debye length (Ap i N7T)
while for strongly degenerate material it can be shown{17]
that AN assuming FermiDirac statistics and
parabolic energy distribution of the density of states.
According te the theory of Kane and Bonch-Bruyevich
the density of states function for the valence band is:

_En
) (3)

E
o WA AL -2 i
ov(E)= mPH PR a2k ’y( v

where m? i the hole effective mass[t1) and o is the
standard deviation given in eqn (2c).

)?(.\.'):,;ﬂ'"’J’l VMix—ayexp(=utdu.  (3b)
This integral can be approximated[15] as follows:

](x)ﬂx"‘(l-ﬁ;) for ¥R0601 ()

representing the parabalic energy distribution in the band

itaelf, while in the band tails the following approximation

holds:

ey =4dx "% exp (- s2H 1225 - 0.906(1 — exp (2 )}
for x=0601. (3d)

The density of states function for the condnction bang
(minority tariéers) con be described by the same
cquations with replacing m% by the electron effective
mass m¥. However, Bonch-Rruyevich[4] kas pointad sut
that in thiy case the decper lying energy levels, given by
«qn (3d), arc not present becanse of the rapelling force
betwesn the ¢lectrons and acceptor ions{16), He sugkests
that only the first-order term in the series expansion of
eqn (3d) should be taken into account:

Yy =t B (1225 +1812x) for 0676 x <0.601.
(3¢

The density of energy states of the conduction hand iz
then deseribed by eqns (Ja)-3c). At low impurity
concantetions the density of states functionz reduce to
the usual approximation of & discrele acceptor cncrgy

1. W, Svoreoom

2dy

level and parabolic energy distribution for the valénce and
conduction band. For higher tmpurity eoncentrations the
impurity band broadens and band taily appeac at the
conduction and valence band edges. The total hole ard
clectron concentrations aie:

= I"max(&(ﬁ).gv(ﬁ' 4B @

I +exp s

E(E] dE.
Further, charge neutrality is assumed:

%)

1+exp(

p—-n-N=0 (2]
The sets of eqns (2}-{6) are golved by means of a
Newton-iteration scheme untit a consistent solatipn is
reached.

A RESULTS

The intrinsic bandgap E,(T). used in the equations
mven i Section 2, is chosen in such a way that the
bandgap for N = 10"¢m™ 43 & function of temperanire
equals MacFarlane's measured bandgap values. From the
calculated standard deviation & in Fig. 2 it follows that
even for this low impurity concentration of 10'°em™ the
odges of the enargy bands are not exactly abmpt, We have
defined these edges as the energies abave which %% of
the carriars are located. This definition 15 not very critical
and has been chosen such that the calculated pn—products
at low imphtity concentrations ané squal o the measared
risvalues[12). In Fig. 1 the band edges for N = 10" om™
uré indicated and also the bandgap value £, (T = 300) =
1.121 &V according to MacFarlane's measurements. How
the bundgap is defined at higher impurity concentrations
will be discuszed later on. In Fig. 2 severl quantities
charastarsing the width of the band tils (o, o) and the
screening length {A ) are shown as function of the impurity
concentration. It appears that the screening length is
nearly equal to the Debye length, valid for non-degenerate
matarial,

In the e figures d and d
results[10] will be compared. Lo analogy with the case of
low doping we want to describe the calculated n, -values
a3 follows:

AN, T) = KT exp (- gV, (N, TVAT). M
In [10] it has been shown that V,(N,T) can be
approximated for T = 250K, by:

Vo(N, T)m Vo (N) - aT. ®)
in order to check i this experimental resnlt is also
corfitmed by the calenlutions, we differentiate sqn (T

V.- Ti‘_’, kT(dlnn 3)‘

g \dInT )
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TACD O340 .60
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Fig. L. Density of encegy states for plype silieon doped with 10'*

and 10" imputity stomsfom’. The distribution of the earriers as ::

function of energy at T = 300 K 1% also shown, At N = 10" em

the bardgay is smalter due to broadening of the impurity band and
the forming of band tails.
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KJ,T ﬂ;m m)! x‘,m ’079 ,Daa ,oa
= Impurity Cones o™
Fig. 2. {: standard d {7, )md lepgth
(A} as & function of the impurity concentration at T =HOK.

The calculation of a, (see Section 2) does not mvolve any
fitting parameters, but only those known from the energy
gap, effective mtasses, impurity energy Jevel ete.

Upon substimation of the caloulated nl-values on the
right-hand side of eqn (9, it follows how V, - TAV,/dT)
behuves as 5 fanction of temperature, This is shown in
Fig, 3 for a aumber of impurity consentrations. From the
fat part of these curves for temperatures above abolt
280°K, it fullows that V.(N, T} indeed is » lingar function
of temperatare. V., (N} is given by the valne of the flat
part of these curves, This value ix used as a definition of

the impurity ation-d dert band It follows
thit in this temperature range eqn (7) can be written as:

AN, Th= O ezp (- gV (INVRT). [0}
The bandgap narrewing is.
AV, (N) = 1206 = Vo (V) (L

Figure 3 also indicates (V, - T(dV, M T derived from
measurements 1101, 11 was found that the' constant € in
eqn {10) is not exactly constant but depends weakly on the
impurity concentration, This may be due to & (see eqn §)
not being 2 constant but 3 functien of N.

Tn Table 1is shown that C changes by about a factor of
two when N varies over about five orders of magnitude,
The value of C agrees well with the eorresponding
constapt in the experimental formula of Putiey and
Mitehell (see Seetion 1), It follows from these caloulations
that as a first ooder approximation the jonship
between a, (N, T) and n,(T) is given by:

ALN, Th= a{Thexp (gA VL (NYET), (1)
It has been shown in {10] that the messured bandpap
narrowing van be fit by the following formula:

AV (W) =910 ‘{'n(,gv) m )"yj]

A{eV] (13
In Fig. 4 and Table ] this is compared with the calcnlated
values taken from Fig, 3.
Having shown tht the n}, catculations as function of N
and T can be approximated by eqn (10) where ¥, (N} is
uy a doping depend we will check
up what patt of the total muTewing comes from respecs
tively the valence and conduction band. In analogy with the
axpressions for low impurity concentrations we try to
describe the cartier concentrations us folows:

Nop= CT"“"‘('W(? 'A"'F)) )

n = C;Thexp (—#(%-Aﬁ F))

where A, and A; arg the doping dependent narrowing of the
bandpap on the side of the valence and conduction bund. T
arder to determine &, and A; cqns {14) and (15} are

15

differentiated:
(514G rsmar
(Bar)-1 & (Ber)- Ak h- T, (1)

The terms on the left-hand side are derived from the
calculations (see Section 7) and can be approximated as
lineur functions of kT (see Fig, $). From these straight
fines the parameters Ay, & and Ay, f; are derived and
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Fig. 3. The caiculated and measured quantity {¥, — TAV,/AT)} as a function of température for differenl imptrity
conténiriling.

Fig. 4. Comparison batwesn (see Fig. 3y and

1 -I 1 L
z fmha sz gz s P

—atmpurity Cont.fm™D

d{10] bandgap ing as a function of impurity

concentration.

Table 1.

N aVemubVoo CX107 2, &
Em®  g@V)  (mV) {equll) (mV) (mV) B B

it (] b 4 1 9 13 LS
1o 0 ] k4 4 0 16 LS
g & 7 - 115 a@ 18 LS
L 42 % & 4 4 21 L5
Ix1p” 62 43 3 L) 0 I 16
" 83 63 5 8 17 18 17
LR L 1] & ¥ w17 L8l

givan in Table I, It appears that apart from the doping
dependent narrowing A, amd A, also B; and 8, are not
exactly constant and differ sonewhat from the low doping
value 1.5. Comparing the prodnct of eqns (14) and {15)
with equn (10) (8, + £y) can deviate somewhat from the
value 3 which in eqn (10) was enforced upon the power of
7. This influences not only the constant factar but is also
the reason for the discrepancy between the sum (A, + A;)
and the total bandgap namrowing AV,, calculated from
eqos (10) and (11). In Fig. | the values of A, and A, for
N = 107 cm™ are indicated,

4. CONCLUSIONS

It has been shown thet calculations of the pr—product
for temperatures from 280 to about 450°K and for

T @ alodom
S.040—
o'o.w: N it e

Fig. 5. Caleulated quantities (%- #)- n(% -F) / AT snd

(525 . F) - n(%v #) / AT - kT8 (R mAAUN T) 43 a function
of kT (3ce eqme (1-(17)
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impurity concentrations var'ying from 10" to about
3% 10" em™? agres wcll with the m:uurements and sun
pott the already experi y feund [10] r ;

pr=aiN,TY=nlT)exp(qAV,(NVAT) (IT)
where ni(T) and AV,,{N) arc given by eqns (1) and (13)
which have been darived from ¢xperiments.

According to the caleulationg the total carrier concent-
rations can be described by eqns (14) and {15).

Ak fod

with H. €. de

Many helpful di
Graafl are gratefully scknowledged.
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5.5. Bandgap Narrowing in Silicon Bipotar Transistors
Reprinted from IEEE Transactions ON ELECTRON DEVICES, Volume
ED-24, August, 1977.
JW_SLOTBOOM and H.C. DE GRAAFF

Abstract — Martinelli [1] recently reported on measurements of the /¥ charac-
teistics of silicon bipolar transistors as a function of temperature. His conclusion
was that there was no evidence of bandgap narrowing in the transistors,

Qur experiments [2] on N-P-N transistors indicate that the bandgap does narrow
for impurity concentrations above ¥ = 107 cm™ _ The reason for this discrepancy
follows from Martinelli’s assumption that the temperature dependence of the
minority carrier mobility in the p-type base it given by 77, independently of the
impurity concentration, which is not justified by our measurements.

Optical absorption measurements [3], [4] have shown that the bandgap of
silicon changes for high impurity concentrations. Using these measurements Kauff-
man and Bergh [5] and Buhanan [6] mterpreted their measurements of the tem-
perature dependence of the /- characteristics and the current gain in bipolat
transistors by assuming a different bandgap in the base and in the heavily doped

* emitter. Because of the importance of this effect for the understanding and optimal
design of semiconductor devices, there has been a discussion about the presence and
magnitude of this phenomenon. In a recent publication [1] dealing with the tem-
perature dependence of the (Ig-VEg) and (fc-Fgpg) characteristics of silicon bi-
polar transistors Martinelli came to the following conclusions:

1) the (fg-Fgp) characteristics are nonideal and therefore cannot be used to

prove the presence of bandpap narrowing.

) the (Ic-Vgp) characteristics are well described by the classical model without

bandgap narrowing in the base region (Vg = 1.20 £V).

In view of these conclusions it seems appropriate to present a short survey of
arguments demonstrating why in our opinion, bandgap narrowing indeed is present.
These arguments are taken from some recent publications [2] describing experi-
ments on a number of N.P-N transistors, varying in base-doping concentration from
4 x 10% to 2 x 10*® cm™®. It appeared that bandgap narrowing (AVyq) is present
for impurity concentrations abave about N = 10'7 cm™ and given by

AV M) = 9{In 13’7 + . /(in (13%))2 +0.5} (mv]. )

Concerning ‘the above mentioned conclusions [1], we completely agree with
the first one and in fact it was for that reason that our experiments were ¢oncen-
trated on the (/c-VEg) instead of the nonideal (/g-VEg) characteristics. We cannot
agree with his second econclusion. For transistors with base doping concentration of
about N = 10" cm™, as were used by Martinelli, a bandgap narrowing of 42 mV



108

would follow from (1). The reason for the disagreement lies in Martinelli’s assump-
tion that the temperature dependence of the electron mobility is given by T 3%,
independently of the base doping concentration. This assumption means that in the
expression

[C = CT" exp (--‘Q(Vgo - V) kD @

m has a constant value 1.4 for N-P-N transistors {1]. It will be shown, however,
that our experiments do not agree with this assumption. Differentiation of (2) with
respect Lo the temperature T while [ is kept constant gives:

dVy
Veg - T —rn =Vgo*mF;—T‘ (3)

We measured Fgg as a function of temperature for a number of N-P-N transistors
with different impurity concentrations in the base while fz was constant. in Fig. 1
the term (Vg — T A Vg / A T), which was directly derived from these measure-
ments, is shown as a function of temperature for two transistors with different base
doping concentrations. For comparison a line with Vgp = 1.205 eVand m= 1.4 i
‘included. It is clear that this line does not fit our experiments very well, these

1300}
[ 8 T 7
_T AVes N =41Q -
Sl I e
1250[- 0270 ° X »./7/
I -5 .
tmv) _.w martinelli [1]
5 - - w % /“
ool AN Ex 0k
L .x/
~x
150
I 1 1 ] ] !
0 100 200 300 400 500

temperature (K) ———

Fig. 1. Meagurements of Vg — T A Vgg / & 1" as a function of temperature for two transistors
with different base doping concentrations [2], compared with the behaviour suggested by
Martineili [1];
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experiments indicating that m should be a function of the impurity concentration
rather than being a constani. These transistor temperature measurements are not
enough to derive the value of m and the bandgap narrowing accurately and we
combined them with similar temperature measutements of the base sheet resistance
{RnBase) underneath the emitter, which was taken from the same slice as the tran-
sistor [2]. The m-values derived in this way are shown in Fig. 2 (the f-values from
[2c] table 2 are the same as the m-values). We see that for N = 10" cm™ m is
about 3, When this value for m is applied in Martinelli’s [1, fig. 6], which gives a
relationship between m and the bandgap for his transistors, a narrowing of about
45 mV appears. This accords well with the bandgap narrowing of 42 mV which we
predict according to {1).

0 . ' '
10" 107 10 10
base doping conc.{em-3) ——wm

1

Fig. 2. The impurity concentration dependence of m (se2 2q. (1)) dJerived from measure-
ments [2].

It is important to notice that the bandgap narrowing was derived not only from the
temperature dependence as described above, but also from the magnitude of the f
and Rppag. measured at roomi temiperature [2]. Bandgap narrowing values ob-
tained by both methods agree and are fitted by (1), It was pointed qut in [2¢] that
in all these transistor measurements it is in fact the product (u,n;.>) which is
measured and that the behavior of the pn-product, r;,%, can only be derived from
these measurements if the minority carrier mobility is known. Unfortunately, there
are no experimental data on minerity carrier mobility for high impurity ¢oncen-
trations. For concentrations below 10'7 em™ there is no difference between drift
mobility and conductivity mobility [7], and although there is no experimental
evidence for high impurity concentrations we assumed that the electron mobilities
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in n- and p-type silicon are similar as a function of impurity concentration and
temperature. A number of arguments support this assumption:
1) theoretical calculations [8] of the pn-product as a function of temperature
and impurity concentration,
2) if the measurements were interpreted in terms of minority carrier mobility
and it was assumed that no bandgap narrowing at all occurred, the resultant
mobility behaviour would seem highly improbable, being given by

o min, VT = iy maj (NT)exp (g A Viyo(N) [ kT) (4)

as shown in Fig. 3,

3) using bandgap narrowing values according to (1) in calculations for the magni-
tude and temperature dependence of injection of minority carriers into heavi-
ly doped regions, such as nt of pt emitters, buried layers, isolation regions
etc_agrees quantitatively well with measurements [9], [10].

!
3000}- /
electron mobility ,l
= upicm? /ivs) /
/
minarities /
2000}~ .
/!
/
s
B s
s
-
e
1000 R

majorities

0 1 ] i 1 -
0% 10 107 10 10"
impurity conc. N {em3) ———

Fig. 3. Compurison of the majority carrier mobility with the minority carrier mobility as a
function of imputity concentration, assuming that there is ne bandgap narrowing at all {see
eq. 4).
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In conclusion it can be said that Martinelli’s assumption that the parameter 2 in (2)
should have a constant value of 1.4 (for bipolar N-P-N transistors) is not in agree-
mént with our experiments, which show that m has a much higher value and varies
with the impurity concentration in the base region,

It has been shown that our interpretation in terms of bandgap narrowing, which
explains our own measurements, is equally applicable to Martinelli’s measurcments
and indicates that for base doping concentrations of about & = 10% ¢m™ a band-
gap narrowing of about 42 mV occurs. Several arguments supporting our assump-
tion concerning the minority carrier mobility have been discussed.
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5.6. “Minorxity carrier injection into heayily doped silicon”
Solid-State Elegtr., Vol, 20, p. 167, 1977,

COMMUNICATION

MINORLTY CARRIER INJECTION INTO HEAVILY DOFED SILICON

J.W. Slotboum
Fhilips Research Laborataories
Eindhoven,The Nuthaylandsa

Introduction fart Lj] thot above an impurity

Many avthovs have 5cud}ed the concentration lavel of about |019¢m_3
probiem of injfection of minoerity tha current densily is fairly inaen-
carriers inte a haavily doped region, sitive to the other process parame—
because of Ate great importance for ters (diffusion depth, dopant atoms,
the unuerstunding of sillean devices doping profile etc.}. Thix oftfsct
. (emitter officicncy in bipelar will a4l8o he illustrated by accurata
transistors, IQL, thyriastors, aclar somputer calculations showing that
2ells ate,), Particular pttention the gradiapt of the doping proefile
has becn paid to weveratl affacts naa anly o relatively amaill influence
&.&, tha influgnee of a gradient on the injectad minority curcent
doping profile {built-in elactrie denaity as long ua the regicon is not
riwld) [q , bandgap narrowing [2] ' frnnupurent.

Augeay recombination [3] ats. Simple mogal (N = constant)

In this letter it will be shown that [n the classical analyais of the

Lhe most simple model with a constant injection of minority coarrierse (!-E-

impurity concentration, peedicta tne halea) into a heavily doped raegion
currant dansity of tho injected (N*—reginn) with a constant impurity
minoerkty carciers in goed agrecment concentrution N (ses fig. 1}, the

with measurements. The cruclal peint wxcass hole Goncentration im given

i4 that in tha classical expresslen by the diffusion sguation @
for the surrent density the doping 1a a
= LayBT (1)
dependrnce of both the elffective d_xF L P
‘bandgap EA] and the mipnarity carrier The deping dependence of the carrier
lifetime [5] have te be taken into lifetime T is Laé
=15 -

sveount, This simpls modal alao b=l + 22510 N (2)

T To

#xplaina the pxparimentally known

167
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Fig. 1

where Tﬁ is the HellaShocklay-Read
lifatime and the se¢ond term Tollowe
from a fit of the measured minority
earrier lifetimes by Beck and Conradt
‘ tﬁ]. Egq.{1) is solvad in tha usual
wvay with a Tinite surlace recombino-
tion velocity, s, at the contast in
x = 0. Tha hola curyrent density in-
Jected at x = My (the bounﬂnry of

the quasienautral regZion) iz given

Ty ¢

1

T-TexpiaT) | IF 1hNacy)
The faster F i= given by :
F::dnaf‘*ﬂ_) + (5L [0y} cash (wefL ) ,

wsh{vh/L} 1 (sL/D,) sinh (we/L) )
and represents the infiusnse of the
surface recombination. If the ragion
is not troansparent (uey L) the aur—
face condition has ne influence and
¥ = 1. Due to the doping dependence
of the bandgap, ni_ 1 & Tunetien
of N, Zxperimentally and theorctia=

cally Ehﬁ] it has been found that

Fie{TN)=np(T) exp (4.0, /KT) ()

where nin(T) ia the waual pn=-product

for intrimsiec and lowly doped silicon
[7] ““"AVSD(N) the effective bandgayp

narrowing [k.&].

Ge{5/cr)

T
——“Nﬁmﬂ

Fig. 2
Minority carrier injection into nt-
region as function of Lhe dopin
level {see:  simple madel eq.(9)).
The recombination diffusion length L
{egs. (1,2)) is indicated in um tn
the circleaa along the curves,

By analegy with the Guwme) number for
the base ragion of a transistar, a
flgure of merit, GE, can bBe defined
characterizing the injection in

heuvily doped reglons,
2k
— i)
T.= (89
(3
In contrast with the clasaigal ana-

lyaia the influencs ¢f the impurity

condentration on n2

‘e and L in the

expressions for J  ang G (Bee eg.
{3) and (6)) have hoon taken into
account in the manner gilvan above.
In fig. R the rasults are given
assuming VG»L. Experimentally
Tound valuea Tor the minority gur—

rent densitica [3,9] are usually
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always sttuated in the dashed area.

Numerical mpalysis (8 = N{w))

In evder to analyse more raalistic

doping prafiles, accurate oamerical
calonlations have Lesan dona taking
into account the deping dopendence
of the bandgap and of the minority
curpier lifetime in-the way deadért—
bed above. The minority carrier

current density iz [3] s

Teampf TR0 2 =T T )

The influence of 4 penconatant

impurity profile wiil be illusirated
by the vesulte caleulated tor a sew

. riey of Joping proafiles varviag in

). The thickness

gradiont {see [ig.

ol the dopsd roglon Ras been chosen

such that the surface recombination
is not important {i,%,. nearly all of
the injected minority varrieps have
disappedred by recombination in the
Balk af the N* Tegion before Lhe

contact at x = 0 is reached). Fram
the continuity aquation it follows
then that the injévted current done=
sity i4 the integral of the recom-

binativn

b’
J;: ?'oj P/ dx

From the caleulations (uee tig, ?)

(&}

it appears Lhat & proncunced maxie

mum af the recombination ocears in

the bulk of the quasi-neutral ragion
at u point where the hole concan—
iration low.

iy rather This ta

Boping profhe em™)

p-5

1 2

— = Oittanee jum)

Fig.,
Influeacs of the deping protils an
the distribution of the recombination
{P/t) =nd the holes; the scale for
the recombination is 10 x larger as
indivated and for the hole cvoncen-
tration 100 x smaller. V = GO0 mv,

cauaed by two essential phenomenn

acting togethesr: doping-dependent

handgap narrowing iAnPreasss the hole
concentralion and dearcascs its stuowep

tali-off, and further the mingrity

enrrier lilfetims danreases strongly
with an inereasing doping conceantra-
tion. When the gradient of the doping

proftla ta increased, the pecombinas

tion peak shit'ts tewards the junctioen

and increases but narrews at the

wama tima, Lt is clear that an abirapt

profile can be madse much shallower

than o ®ove alewly changing profile

without the region bacoming franapa=

rent, Although (he internal distri-

bution of carriegs, alectric field,

recombination ete, depends sirongly
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1% Commumications

.
upen the ahape of the doping profile,
the total injected minority current
density at x o= v, is only slightly
changed (see table 1), The slectris
field a4t = = Wa it partly compenaated
(20-90 percent) by the changing band-
gap (586 4a (7)) and Jpp.y And dpype,
wers always nearly gqual and saveral
orders of maganitude larger than the
reauiting injected current density JP'
Conclusion
The welative inssnaitivity of J_ and
G to the process parametars and tha

-
daping protile, rallowing Crom expe—
. riments and numerical caleulations,

is the baalc roagsen that the simple

Shockley mogel with N = constant
Pradicta remarkably well the injected
minerity carrier surrant dansity
provided that nfe and T as furction
of N ars taken inte account.
Houaver; the internal diatributions
are indeed atrongly profile depen-—
dent. For a transparcnt regionm with

2 doping profile which strongly de-
viates Irem an abrupt profila the
influenca of the surface recombina=-
tion according to the simple medel,
Laes to be interpreted cautiously.
A morw detailed and accurate analy=
tical model, valid foy realistic
doping pratilées und also toking into
acgount surface rocombingatian Correct-
ly, will pe published elsewherc [9].

The author is grateful te H.C. de

GraalflT and P.A.H. Hart for helpful

discussions,

Tnblg 1
Prarile| Gela/em') I {A/om®)
(fig.3) (ve508 MV, T=300K )
1 T 0.6 1072
H 3.9 10'? 0.7 1072
3 3.4 107 0.8 107F
4 2.5 1013 0.5 107%
3 2.9 103 0.9 1072
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Abstract—A figure of merit ((7.) for the emitier is defined, which takes account of bandgap narrowing cansed by high
ienpurity concentrations, 2 dophp-dependent bifetime, the buili-in electric field and the recombination velacity al the
emitter contact. A simple formala is given for G,, based o computer simulations, and tested by several experimats.

1. INTRODUCTION

When the cument gain (Am) of a bipolur transistor is
measured #5 # (unetion of the collector current (1), one
can see Ut by increases with £, at low current levels,
then reaches a maximum, and decteases at high current
levels. Thiz decrease in Ay 1% due to high injection in the
base andfor to collector saturation[l, 21 The fow level
current gain is Jominated by mechanisms such as surface
n and 1 jon in the emitter-base
space churge region. In this current range the hase current
(I,) usually mcreases with explaVi/mkT) where the
non-idenlity factor m is between 1 and 2[3].

By choosing cmitter geometries with a large area to
periphery ratio side wall injection ¢an be made negligitly
small,

The maximum value (Hum.) Of the current gain is
mainly determined by the emitter efficiency. For an npm
transistor this efficiency is defined a3 the ratio of the
current dengities of electrons and holes

7 Sl + )
For the electron current density (L} we can write
I, = JexplgVikT)

Wit Jyo = gniJG. G, is culled the (base) Gummel
number[d]. In the current range around Mrme. We can
write for the base current density (J,}[5]

J, = L explqVidmia), with m =~ 1.

J, ia & hole current dus to recombination in the bulk of the
n* emitter and at the interface between the contact and
the silicow. If the m-values are Jarger than 1.1-1.2 this
indicates that other recombination components are alse
significant, and that Apgas 1s N6t mainly determined by the
emitter efficiency.

- By analogy with the Gummel sumber for the base, we
can intreduce a figure of merit (G,) for the emitter, by
patting

48]

§1§

Tn the literature G, it sometimes denoted by (G ).y I
the emitter impurity ation (Np) 1% and
the surface recombination velocity is infinite . takes the

form{6)
W
z)

with I, = VD7, = diffusion recombination length
D, = diffusion constant for holes
7, = lifetime for holes
W, = width of the neutral emitter region,

[ %’-‘v]ﬁmnh( 2)

In veal emitters Np is not conatant, but decréases from
the surface Is the This gives
tise to the following effects: (a} The lifetime is doping:
dependent and this varies with position, Auger processes
are probagly respongible for this(7, 8). (b) The diffusion

D, is also doping-d dent. Together with a
nop=constant 7, it mmkes [, a function of position.
Becanse it is desirable for modelling purposes to have a

diffusion ion length, a new definition
of this quantity will be given, (s} At high doping
concentrations, s enc d in the band
of silicon decraases. This decrewse makes the intrinsic
concentration  (m)  higher at  higher  doping
concentzations [9) which, in turn, inereases the imected
minority carrier concentration. (d) There is a built-in
sleetric ficld in the emitter, counteracting the diffusion of
foles from the buse to the contact, Moregver, the built-in
electric field is modified by the position dependent n.

Kennedy and Murley[10] also treated the case of
non-comstant doping profile, but with a constant lifetime
and no bandgap namrowing, Choo[l1] made the same
simplifications but neglected morcover the emitter conkact
tecombination.

Sheng has developed a modeli$) which takes bandgap
narrowing and Avger recombination info account, but it
omits the infiuence of the cleciric Aeld. Computer
simulations have shown, however, that the field and
diffusion components are of the same order of magnitude.

This paper describes a simplified, analytical model for
the calculstion of the figure of merit (4,), based on
numerical results of compater solutions of the one-

gical }
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di jonal transport {12], extended with
bandsab narrowing and Auger rncombmauon The mode!

all the aboves d effects plus the
influence of a finits surface racombination velocity at the
emitter contact, With the help of this analytical model
several experiments are analyzed, such as the influence of
the emitter  diffusion depth of the G, of LEC
transistors{3]. the influence of the Al contact in double-
diffused and °L. structures and the effectiveness of the
mone and poly parts in polysil emitters[12].

L THE EMHTER MODEL
For the fipurs of merit G, in agn (1) wa can deduce (sée
Appendix)

G =Mt Kooy fg;‘(%["—:‘(%}’emd: o

where 5 = swrface recombination velocity (surface band
bending incorporated) at the emitter contact.
W, = width of the newtral emitter region,
#{z)=weighting function for the doping concen-
tatign,

The cmitter contact is situnted at the surface (x =0)
Physically speaking g(s) is the rtio of the hole current at
a point x and the hols eurrent entening the newtral emitter
zone al ¥ = W,

_ i)

glz)= m @)
The advantage of writing G, in tha form of eqn (3} is that
only the weighting fumction g(x) has to ba modelled,
beczuse the other quantities are known functions of
doping concentration. Thus the doping profile N{x) being
given, D,(x} can be calculated[14]. The intringic concen-
tration follows from(15)

e} = mo exn{qd Ve ()T} 0]
whare{16]
a2 =961 % 10°T" exp (—1.205 'ngf) I

Tae bnnﬂﬂnlnmwin( (4 V) is a function of the doping
concenimation|17]

svarevefo ()T o

To evaluate G, by means of eqn (3) we still need to
know the weighting fonction g{#). In general this function
depensds on the contact recambination velocity (5) and,
becanze of the Anger racombiration, bandgap narowing
and built-in clectric field, on the doping profile N(x), It
tumed out that g(x) can be modelled in 2 simple,
normalized form, which i3 nearly indepandent of the
doping profile. This simpla form is obtained by fitting the
numerical resulte of a one-dimensional computer

H. C. de GRAsFF & ol

simulation[12). In this simulation the recombination is
given by

-ro(u+n+2n)+c"u" @

where

Ca =225 % 107" em'fs.

The ﬁrsl term in equ (8) represents the BRH recom-
and infl mainly the ¢ in the
space charge region; it is made of minor impottance by
choosing 7, = 107*s. The Auger term in aqn (8) i 2 fit of
the experimental residta of Beck and Conradt[18] for the
lifetime as a function of impurity concentration,

If a new diffusion-recombination teagth (L,.4) is defined
as the distance between the adge (x = W,) of the neuiral
cmitter and the point” where the hola current has been
alved (G{W,— Lyy) =} L(W)). we can introduce o
normalized position variable

Un EI,_Tx and put glxEEG ).

We learned from the compiater simlations that the
function G{u) is nearly independent of the doping profile
und can be approximated by

G(u)ﬂiexp{— (ﬁ)} @)

Figure 1 gives the numerical results for four Gaussian

S

Bt}
i
E [

®

- yronstant

o]

Fig. }. The weighting function G(u) for tnfinite surface recom-

bination velocity, Fully drawn line: according to ¢qn (9). Dashed

tine: eonstant daping concentration and W, w 1 5V D v, Computer

simblations: OO, geussan prefle, N(o}= 110 m™ AA.

gaussian profils, N(o)=1.10"¥cm™; + +, geogsion profile,

Ntoyw 310" cm™ OO, ganssian profile, N(o)w 110" cm™;
&%, non-gaussinn profils, Nia) = £.10%em™,
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profiles with different vatues of the surface concentration
N0} and for one non-gaussian profile. The surface
recombination veloeiry (x) is assumed to be infinite, The
fully drawn line gives Gu) according to eqn (9, The
weighting funetion for an emitter with Ny = constant wnd
W, = L3V ) hr, 15 also shown i Fig, 1,

Going from the contact at 2 =0 1o the edge of the
neutral emitter at x = W,, the vartable u varies between
W,/L,. and 0. In the case of deep emitter diffusions,
especially when Willpe ™15 and GIW/ L) =0 (see
Fig. 1) the value of the surface recombination velocity is
of no impartance becavse holes do not reach the contact.
However, in the cuse of shallow emitters (WL, r < 1) the
value of 5 is important and in fact changes the function
g¢x). Thus for s infinite, the weighting function is given by
G(u}). For finite values of s the weighting function
changes and becomes mathematically more complicated.

Therefors we approximate g(x) in this case by two
straight lines through the points P | and P2, as indicated in
Fig, 2. The value of g(%) at the contact is modelled as

The emiteer efficiency of bipolar ranaistars 517
7 T
-
g0 N —comp- shm,
T -—— mppros.
i
R
\\
\‘
Il
1, 1
.mm | \‘
a i ro”
] 0.5 3 z
1 ﬂ‘l—"
Bary

&

= ({5
1] 1
EWiTom " VOAWI L)

_ sy
(o)

o) =g =

with

Equation (102) shows thal for s == one has glo)=
G(W.JL, ) and for 5 =0 one has g{o) =0, The point P2
is chosen in the middie of the neutral emitter region
(1 = SWi L) and gy i3 taken a5

ge =1g(0) +] G{ L AT (10b)
F(0
r Lo,
! . <§(a '/L.a,,,.)

4 N

o } \\W_G[u).s‘- o
| \
1 | e f fLp i)
1 \\
I 4
i \
' \
i \
N A
1 \
\ \
1 ‘\

gl-- ! ‘ A \
1 | \\
I i S
I . -

¢ i Wﬂﬁm Mpm — g ey

Fig. 2. The straight lines approximation for x(x) when s is finite.
The coordinates of the points F1 and P2 are choser ax P1:
(WofL, o) tnd glo). P2 (W L) A0 GGG(W Luur) » asil03).

Fig. 3. Compater simulalions for g(x) with ¥ = 100cm/s. The
dashed lings give the appreximation indicated in Fig. 2.

In Fig. 3 the straight Imes approxlmaunn is compared with
numerically caleul functi taking s =
100 em/s.

Another important parameter of the weighting function
is the newly defined diffusion-recombination length £ .p; it
s not very sensitive to the shape of the doping profiie, but it
does depend on the surface concentration N(o). Taking
gaussian profiles with a characteristic length L(= 4 xm)

N(:)=N(o)cxp[~(1—"_):}—m. ()

we obtained, by means of computer simulations, £,./L a3
a function of N{o). This is shown in Fig. 4. The neutral
cmitter width (W} is almost qual to the metalhargical
junction depth (X,.). As a rule of thumb we put

%_ngg_...l- 098 M

T
‘ computed with L=dopm
| eaen mégsured

[$k)]

wde 5
—+= N %)
Fig. 4. The normalised width WAL of the newral emitter region

' . L .
e 3 L) 5

and the lised diftusion length Lo/l as 2

function of the surface concentration N{o) for gaussian profiles.

‘The quantity L./ W, is also shown; the dots are expetimental
values.
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t2 }

hd ]

aix)
/<
[T ¥ P4 s

N

S I TN ”

I \\

[y
[3 75

!
W x(pm)

Fig, 5. The non-gaussian, reduced profile [N(x}/ D, (=)] [shinfix)],
the weighting function 2{x) and the mterand of eqn (3) for »
- double-diffased transistar with W, =17 .m, Loue= 5 and
G, =54%10"scm™.

This is also shown in Fig. 4, together witk the ratio
Lpuf W.. The latter quantity which is supposed to be
uscful for other than gaussian profiles toe, is alse
deiermined experimentuily (sze Section 3.13. Figure $
pves an example of an emitter with 2 figure of merit
G, =59x 10" s em™, The doping profile is not ganssian, 5
is infinite and N(o}~5 % 107 cm™

3 EXFERIMENTS
The figure of merit is determined sxperimentally from
the Arres a0d the base Gummel numbar

G, = Rrgran % O, (13)

G, is obtained from the (I.V,,) characteristic. This
method for the détérmination of &, is based on the
assumption that for the base current the non-ideality
factor m is cqual to 1, at least in the curvent range around
Mpems. Especially with lightly doped bases this 35 oot
always tnre and errors in &, will oceur. To illugtrate this,
two fictitions transistors are compared (see Fig_ 6); they
have identical emitters and therefore identical base
currcots, with m = 1.2 in the lower current range. Their
bise impurity concentrations and Gummel numbers differ
hrwever by a factor of ten. We abtain for the transistor
with the more lightly doped base a &7, which is about two
times lower than the other G., where in fact they shonld
be equal. An alternative method is to measure the
completa (I, ¥,,) ¢haracterstic,

3.1 Experimental determination of L.,

The G, was measured for a greal many (ransistors of
different types, with amitter surfacs concentrations
ranging from N(g) = 1.5 10" to 1 % 10" cm™ and emitter

Iay r

e

Fig. 6. L and L, vs V., for two fictitious transistors with identicnl
emitters bot base dopings differing by a factor of ten. The most
lightly doped base {I. = I..) gives the lower GG, valve,

diffusion depths between X, = .27 and 16 xm, From the
values of G.. N(o) and W, we obtained with the help of
eqos (3) and (9) the diffusion-recombination length (I,.¢),
asstming that the profile is more or less gaussian and that
the recombination velocity is infinite. The resulis are
shown in Fig. 4; the agreement with the theoretical model
18 fairly satisfactory, except for the microwave transistors
BFR %0-91, These have very shallow As-doped implanted
émitters with 8 more or less constant impurity concen-
teation, For such emitter the classical weighting function
{sea Fig. 1) is batter suited than Gu).

3.2 Eiching away the emitter material

‘We start with cight identical slices. The emitter junction
depth X, w 1.7 s, the doping profile 13 gven i Fig 7
and G, = 14X 10" ¢ cm™. Then for each shice a different
smount of emitter surface material is stched away so that
we end vp with cight different junction depths, ranging
from X, = 1.7 1o 0.3 pm. For each valuc of X}, the G, is
determined and the results are given in Fig. 7(b).
Application of eqn (3) gives the best reslts for the higher
X,-values if Lp=14um; the value of & is of minor
miportance here. For low X,-valoes 1, has little
mfuence because the emitter becomes gradually tran-
spasant for holes {g{x)=1). In this region &, is very
sengitive iy the valwe of 5. The best fit is obtained for
5 3 10° ernls.

3.3 Influsnce on G, of the diffusion depth of the n* region
in LEC trangisiors

Several LEC t [5) were invest . The #*
¢mitter doping profile was approximately gaussian with
N{)=1= 10" cm™, The diffusion depth of the a* region
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I
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el
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. — L{um
Fig. 8. Dependence of (7, on the ch istic length (L) of the
gossian deping profile. The mensured points are from LEC
. : {runsisiors.
P ]
: 3.4 Minority carrier infection in I'L and LEC structures
e 2| y Wulms [19] used a structure s sketched in Fig, 9 o

r—,—n- ¥ (1)

Fig. 7(a). Doping profile of the wansistors in the etching
experiment hefore any emitter matertal is slchsd away. ‘The base
. Gumemel number G, = 14,10" g om™,

Gt em)

0.5 7

LY 2
— afm)

Fig. 7(b). & as a tunetion of juaction depth, The best it to the
experimental points i obtained with Len=1.dpm and £=
310" cm/s.

was vared between 135 and 337um. The ratio
WL = 3.3 being kept constant, the characteristic length
L. (see eqn 11) varied between 0.4 and 1 pm.

1f we aseume ¢ to be sufficiently large, eqn {3} gives

w, Wil
=[N pqeer | X ('s_ ; (x
G,-In,(m)gdx L rD. m)gd L)
° i (14}
= constant % L.
Equation {}4) predicts that G, increases linearly with L,

Figure 8 shows the results of measurements of G, versus
L. The best straight line fit is obtained with Lue= 1.5 L.

determine the electron current densitics underncath the
Al contaet and oxide in a p-type base, He did so by vary-
ing the arcas of the Al contact und the oxide and found at
Ve =600 mV Lo ~39%107 Afem? and L, ~3.9% 107
Alew®. The impurity concentration in the base wag
2% 10%em™, I = 5 cm/x, the basawidth was W= 2 pm.
At this doping level Lyge= 17 pm, s the bage is rather
transparent for etectrons (g(x) = 1). Becauss eqn (3) is
generally valid for minority carrier injection into heavily
doped regions we ¢an apply it here to the electron current
in the basé and get

¥
Go = It 1P ()1 (o 2, 15y

" s/

It we apply eqn (15} to 1., we find 5., = 5000 cm/s,

If we subatitute the value of Jy in eqn (13) we find
W+ Djs = W =2 xm, from which we ¢an ooly conelude
that D Js & W or 5225 % 10*cm/s.

We camied out similar experiments ou upn LEC
transistors, In that case hole currents in an n-type emitier
are involved, The impurity concentration in the n-type
emitter was much lower than the p-type buse of the I'L
strncture (Np = 1% 10" em™), Nevertheless we akso
found £, =3 10° to 1% Kt emiy and g, 1% 10° em/s.
We see that the values for s,, found here arc not in
conteadietion with the value given in Section 3.2, but the
value for 3,, scems to be too high for #-lype materizl with

Fiz. 9. Basic JUL structure for the dotermination of the cumrent
dengitiod Jou a0d Sus
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a < 111> orientation, This can be atiributed to the fact
that recombination in the space charge region is included
(see also Section 4},

3.5 The Polyzil emitter
The polysii emitter[13] consists of a very thin
(x,.wo.lum) monoerystalline region, covered with a
icom layer. H we the surface trath
of the impurities in the monucryslallmc purt o be
1% 10® cm™, then the integral in eqn (3) 1

f gf(’;))—’,’-('-!-)g(x)dx I 107 8 et

The measured value of &, for polysil cmitters is howaver
=4 10* yom™, 5o the contribution of the monoerystal-
line region to G, is negligibke and recombination takes
place in the w]y.sﬂlmn and/or at the interfacé regwn If
this is ized by a b
velotity for the mono-poly silicon interface, this velosity
i about 5000 cm/s, as can be deduced with the help of eqn
.

4, MECTISSHIN ANTF CONCLUSIONS

In the foregoing a figure of ment (G} for emitters is
defined and a simplifisd model is developed for calculating
* this Gp The model i bandgap ing dus to
high deping a doping-dependent lifetime
% occurs in Auger recombination procasses, a built-in
electric field and a finite récombination velocity (£) at the
interface of the Al contact and the silicon. The ¢ssential
part of the modal, the weighting function g(x) is modelled
analytically, but it is based on one-dimensional computer
simulations, The feature of g(x) is that the function is
characterized by only one quantity, the diffusion recom-
bination length (L,,2). Because the doping profile is ot

the assumption that the pon-ideality factor 4 was squal 1
1. Often the diffcrent base current components have
m-vilues betwesn 11 and (4. In that case the recom-
bination velocities become voltage-dependent, Further we
must stipulate [hat, £3. J.. in Fig. 9 may also contain the
recombination currénts of the bulk and space charge
region undermesth the oxide. Expressed in teems of
surface recombination they increase the value of 3.,

Cotcarning  the recombination velocity at  ihe
poly/monosilicon mt:rfme. itg valtue may stmneJy depend
on the impurity of the

In geueral we mnat say that the values of recombination
velocitias at surfaces and interfacey should be used very
carsfully.
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constant 2 modified definition of L, g, was y. By
nermalizing the variable 110 Loy, the function gixfLoor)
can be made almost independant of the doping profile,
although for shallow emitiers (WJL, n = 0.5) g(x) docs
depend on 5. Por WJL,p=15 the value of s is
unimportant because the minority carriers do not reach
the contact, For WIL,a=%05 the emitter becomes
transparent and § acquires a dominant influence {se¢ Figs.
1 and 2), The higheat values of &, for conmventional
emitters are reached if WiL,,.% 1.5 and the diffusion
depth i lasge (W, = 15 pm); the doping concentration must
be lowered in that case in order to enlarge Lo also,

It hiss baen shown that the formula for G, (#qn 3) can be
applied 1o a variety of structores, The results of Section
3.3 can be generalized for other than LEC transistors and
pgaussian profiles. Thus we may state that G, increases
more or less linearty with the #* emitter diffusion depth,
provided that the surface concentration N{e) is kept
constant.

From the other cxperiments, deseribed in Section 3, we
determined the following vatues for the recombination
velocities: at the mterface Al contact/silicon, s~
3% 1(F em/ s, at the interface oxide/silicon, £, ~ 5000 em/s
and at the interface poly/monesilicon. S, ~ 5000 cm/s.

We must remark that (hese $-values were obtained on

14, L C. Irvin, Bell Syst, Techn. J, 41, 387 (1962).

15. 1. W, Slotboom, Solid-5t. Elecrron 20, 167 (1977).

16, E. H. Putley and W. H. Mitchell, Proc, Phys. Sue. Loadon,
AT72, 193 (1958).

17. . W. Slatboom and H. C. de Greaft, Solid-St. Eleciron 19, 857
(1976).

18. 5. B, Beck and R, Conradt, Sulid- State Compun, 13,93 (1973}

19, H, B I Wulms, IEEE Int, Solfd-5t, Circ. Conf., Philadciphin,
paper THAM 9.1 {1976),

APFENDEL
For the hole and electron current densities we writ

(e

Jo=- GD-%xEHW-P( &, t”—"‘)

T g dx
dN
oD BN o LY _ AT dn, . 17
1= DA+ g ) o
1n these cquations handgep rarrowing i méluded by the fact that
#, it & function of x. Further we have put p = N, N being the nct

doping goneentration. This is altowed under quasi-neutrality and
Tow injection conditions, In equilibrium 7, = 0 and

_gg_g(ndn. 14N

(18

The right-hand side of eqn (18) is the built-in clectric field,
modified by bundgap namowing effects, In non-sguilibrivm
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situations we assume that the field in the heavily doped mitter
region, given by can (18), will not change significantly and we can
wiite :

) 2dm 14
;,m-qn,£+qﬂ,v (Eﬁ‘ﬁd (19
or
Nix) _Fin)
” dx[ {n (x)}] aD.. @)

The differential equ (20) & valid in the neutrol emitter region and
for lorw injection condztions, These are not severn restrictions for
#0fnal srtittérs. The ganernl solytion of ¢qn (20) is:

] L
plx} M){mm _(:%:W‘"} (2an

The boundary conditions are:

#(0)— g~ p(0} = -’—

W)=

Fron (21) and (222) it follows that

LA
N{W.}

EA L]

explgV, tkT)

qn... axp (qV,../kT

AW = N(o)

] n. (u)

whith proves eqe (3).

Ldn)
J(W]

1

s

£22a)

{22b)
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SOME ASPECTS OF LEC TRANSISTOR BEHAVIOUR

H. C. oe Graarr and J. W. SLOTEOOM

Philips R h L

Einghy

. The M.

{Recehed 12 November 1975; in revised form 19 February 1978)

Abstract—3ome properties of bipolar transistors with low emitter

arg in both,

and experimentally. It turns oyt that the bast current of LEC transistors at medium and high injection levels it the
snme 8 in double diffused tnsistars and can be explained by Auger rzcombination in the emitter n * region. The
cutoff fraquancy [r is rather low, due to extra charge storage in the lightly doped emitter reglon. Small n - emitter
RrERS, sUrtOUnded by a pring may introduce anomalies such as kinks i the (2., V,,) characteristics and fegative

TEsistanees,

1. INTRODUCTION

A new bipolar transistor structure with Low Emitter
Concentrations (LEC transistor) was first reported in the
literatuee by Yogi et ah[1]. The emitter region of these
strictres consisted of an n*n barrier whose purpose was
to reflect the minority carriers (holea), injectad from the
base, thus keeping the base current low and making the
current gain high,

" We investigated similar striclures, whose cross-section
ind doping profile are givan in Fig. 1. The lightly dopad
emitier région was an epitaxial layer w ali cases; the base
was cither 2 butied layer made by ion implantation, or
angther epitaxial layer. Several layer thicknesses and
impurity concentrations were used for both emitter and
base regions: N, Ny ~ 10"-10"cm™ and W, W, ~)-
Spm. The emitter #* region was made by a normal
phosphorus diffusion (surface concentration ~16°' em™),
It this paper we report the results of our investigations,
with special cmphasis oa bage cuent and curvent gain
and fr behaviour. A short treatment will aleo be given of
some anomalics which arise when the emitter n* aren is
aimaiter than the total cmitter area andfor a p-type ring
arcund the n° arem is pressnt. Throughout this paper
sattiration effects in the collector are axcluded.

L CHARCE STORAGE AND COLLECTOR CURRENT

Apart from the normal charge storage in the base,
which can be written ag

Qe = QA0
and
I my
ACh wqu,Wb -1+ 14+ N exp (¥ Vi)
A
n
there is also 2 ¢harge storage in the lightly doped emitter

-region. At medivm injection levals (A mVY < V,, <
700 mV} it is given by:

AQ, =iqu,W,{—l + J[[ + (ZN—":‘)zcxp(yv,,,)]},
(23)

In these cquations y = (q/4T), They are derived in tha
Appendix. The charges ars given for | cm? of emitter area.
The charge distributions of AQ, and A} are skeiched in
Fig. 3. At high injeation levels in the n° emitter layer the
ftinority carrier distribution will show 2 negative gradient
(dp/dx) = (). [2gD,}. The eqn (2a) iz uo longer vaiid and
has to be replaced by

_(2w.+w.)—\/(wh=+4w.w.)}

AQ ="”‘W'[’ aw,

oxp (5 1V ). @b

see Appendix. From eqns (1) and (2) it will be clear that
the stored ehirges increase with exp(yV,,) at low and

dium injection levels, at high inj levels
they increase with &xp (byVi, ). One should baar in mind
that high injecticn conditions can exist in the emitter layer
together with low injection conditions in the bage 2ud vice
versa, depending on the impurity concentrations N, and
N

The collector cument is written as

2 3
L= %-g'-f—&'mp(ﬂfh). )]

Under high injection conditions (AQ, + Gy ) & Qhy 2nd .
increases with exp Vi)

% THE BASE CURRENT
Figure 3 shows i di ional ¢
of the total recombination within the device. Asg
recambination mechanisms we have taken a Shockley=
Read-Hall process with a constant life time and an Augar
process:

__pn-n’
_—Hro(p+n+2m)+ Calp +n)pm (U]

with ro= 1075 and € « 1.5+ 10 P57 [2), We can
distinguish four components:
1. Recombination in the emitter-zage depletion layer.

I = T exp (ByVia). )

w9
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Fig. 3. Computer si
mechanisms are SRH and Auger processes.
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This companent is of importance only at low injection
levels.

7. Recombination in the lightty doped emitler region of
the stored minocity cacvier charge,

L4 A2 ®

3. Same as sub, 2., but now in the base region,

.’\'A."A—O“". ]

Th

4, Auger vecombination in the #' emitter region,

ifpl,
o= LR Y, im) ®

v

where n,- = effective intringic concentration in the r”
emitter. Qy = effective imputity charge inthe n” emitter,

Quo can be written a5 gN Ly, where the valve of the
eftcative recomizination length Ly oy is determined by the
doping mrofilé of the n* emitter region and the Auger
constant €. The non-idealily factor m is approximately
equal to {, az can be seen from the voltage dependence of
the maxim in Fig. 3. Physically speaking the Auger
component is brought about by i recombination process
with an impurity dependent lifetime{2]. This effect is
enhanced by an increased minolity camier oncentration
du¢ to bundgap natrowing[3, 4],

Surface 1 bination and extra n ion at the
n'n interface (3, 6] arc emitted in the computer simula-
tion; the Jatter hag the same voltage dependence as the
I;-component. This means that this component would alse
incredte with exp (yV,,) at low and medinm injection
levels, but with exp (byV,,) at high injection. This is nol
tound experimentally, sce Fig, 4, In this figure measured

107
1A

L

600 0
=Y (V)

Fik. 8. Mcasurements of I, and £, versus V... The dotted lines are
cotrected for internal shmic voltuge drops, the dashed lines give
the asympietes,
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values of £ and & versug V.. are piotled for one of our
LEC structures. If V., is carracted for ohmic voltage
drops across the serits tesistances we can clearly see that
even under high injection conditions (V,, =700 mv,
I ~exp{yVe)) & =~ exp gV, /1.17 kT).

We conclude from these experiments that recombina-
tion at the n”n interface can be neglected and also that
the lifetimas -, and 7, wre sufficiently high to kesp the
<urrents ; and [, small. Thix leaves the Auger component

L 25 dominant for the base cwerent a1 medium and high

injection levels, dithough the value m = 1,17 indicates that
the other components are still present.

In Fig. 5 the base current density of several LEC
iransistors is compared with that of a typical double
diffuszd transistor. The #° emitters of the LEC and
double diffused transistors were made by the same
process, excepl the one indicated by open squares. It is
obvicus that at medium and high level injection the base
current density of an LEC transistor i% nof smaller than
that of a double diffused one. Other evidence indicating
that the base currents have aoenwal values in LEC
trangistors s that the “Gumemel sumber in the cmitter™,
defined as O, = by e ¥ Gy (G, = Gimme! number in
the base) has values of 1 =3 % 10” sem™. The same values
are found for doubls diffused transistors. It shoutd be

“noted that the J; component {eqn (5)) in some LEC
transistors is very small, which can be ascribed to an
improved fifetime in the emitter-base junclion, In that
case the Auger component, f, is siil] dominant, even at low
injection levels {see Pig. 5, black squarcs).

4 THE CURRENT GAIN Ax
Figure 6 shows a typical example of the current gain
hee (1) Tor two different temperatures, The hm fall-off at
high cutrent is due to high injection (see Fig. 4). From

-
mzo+n LEC

IS

4
1] S
00 400

Fig. 5. Measured values of base current density of séveral LEC
ransistors in comparisan with a double diffused transistor.

FE Vb= 2V

e .
. e P
\\lw’c

a 7] Z00 X0 40
—e I, (mA)

e

Fig. & Current gain hen versus collector cument £ &l iwo
different emperatures, for & typical LEC trapsistor,

cqne () and (8) it can be deduced that

..Qﬁ.&(i)’
YA X ) KRR ey

In eqn (% DD, and (n)a ) are tempecature.
dependint;

BT md () o ()

D, T and (m’ e\ =)
where AV, =bandgap difference boetween base and
emitter. From eqns (1), (%), (3} and (3) we can also
deduce that at high injection levels

AQu Bl fmYt
WoTIW.F D, (nw) PR

heg (high inj.) =

If we put also (DD, )~ T, then in both cases the
temperature dependence of the ey can be writtén in the
form

T dhs

R dT T + gAYV kT
L

(3]
With a base dope N, = 10 em™ the values of a are 2.6
for the factor D,/D, and 38 for the factor DD, (7),
wherens (T/hee Ndhzs dT) is slightly positive for Aepm.
aud slightly negative for Arx 2t high injection. From this it
follows that AV, ~80mV, which i3 about the same as
found ebsewhare[g, 9],

5 f BEHAVIOUR
The maximwm fr is mainly determined by the charge
storage in the lightly daped emitter and the base, We can
distinguish between two extreme cases:
1. Low injection conditicns both in emitter and hass.
With the help of eqna (1), (23) and (3) we can wriie down
the delay 7, a5

_ L AQ A0 (W n=lie” W,
AT G‘(N.+ 7 Na.)

(12)

where G, is the Gummel number in the bage (&, =
(W,N, /D, )] and 7 is a measure of the built-in deift field in
the base[10].
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2. High injection conditions in emitter and hase. The
delay is given by

QW 1 W F W H4I DY (1)

which fallows from eqns (1), {2b) and {3) by climinating
Vi and differentiating the chacge with respect to 1.

Ry disregarding the influsnce of the depletion capaci-
tances (expressed by the werm (KTl W0, + C0) for o
moment. we can say (hil, if ro =, the fr falls off with
incrausing qurrent tue o high injection and the fr.., %
determined by the value of 7. If o =" the fr increases
with current, even ander high injection conditions. These
o different kinds of fr behaviour are illkustrated in Fig.
7, which gives a eomputer simulation of (wo selected
examples, Table 1 gives a comparison with meusure-
ments. With W, and W, a few microns, N, and
Ny = 10"=10" ¢ Y, the calculated transit times in Table |
correspond to maximum fr values of 30-100 MHz.

4 SOME ANOMALIFS

Some anomalies may occur if the area of the »' region
in the emilter 15 made smalt with respect W the total
emilter area and a ring of p-type material around the »*
region is present (see Fig. 84), In the first place the p-ring
may act as the ¢ollegtor of a parasific pap ransislor,
made up of the p-ring, the lightly doped emitter uader this
ring as hase and the base region as emitter. In the second
place the lateral resistances in the emitler and base
regions. which in some of our sumples were of the order
of magaitude of Lkl ¢in no longer be neglected.
Muoreover, the [aters| buse resistance may be modojated if
the solleclor-base Junction becomes forward biased, All

o) 1'|J 45170

1ymaiei

T
——Io (b emd)

Fig. 7. Computer simulption of two quits different eumples: of f;
bebaviour. Curve L: W, = 10 um, W, =5 pm, ¥, = 23 10" cm

f-rirg < b

n a)

e

<
[‘ln b}

Fig. #. (a) Cross-section of an LEC trunsistor wi(h u small A

emitter region and a p-type ring aurmundmg the n* region. The

large Mnternl resistan are also indicy {h) Equi cireuit
for the siruclere givan in fa).

these effects are represented by the squivaleat citcuit in
Fig. 8b. Figure Y shows the £ and I, versus V.. for an
LEC transistor with the o * region area 100 times smaller
Thun the total emitter area. The peculiar kink in the
characteristics can be modelled by considering 1wo

107,
I{A)
te
Vop=av
Vok =0V
o
iy m—
¥4
.
rf
79 f / ,-’/
, oo

G
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Fig. 9. Moasueements of J, and J, vs Vi, for an LEC transstor

Ny= 1910 em Y Curve 20 W, -~ 1pm. W,, =5Sum. N, =  withasmall #* aren, The fully druwn lines are (he results of the
1= em ' M= 1S 19" em™? twostransister model.
Table 1.
AnmpBLi auuntity ratriuinbud mosmurad from
with eaqn( and {171} Frmax

" . -
»n ?,[ 1.8 x o L] Low=tufixy
E16 b 3.2 b
LA} ‘h 1.8 e
(24 T ba b
LECE g 1.0
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trangistors in parallel, one of which has a large (latersl)
cmitter series resistance of t k) This means that for
Vy ®750mV only the region under the n* emifter s
active in this LEC structure. The base currents of the two
transk in parallel are d to be Auger recombina-
tion currents with 2 non-ideality factor m of 1.22. When a
negative voltage 15 applied to the p-ring, the prp transistor
becomes active: the p-ring (its collector) draws a large
cierent, which must be supplied vin the bags. Thig gives
an extrm voltage drop across the large lateral bage
resistance, Uy inereasing the V. The resulta on the
(L. V.. ) characieristice are shown in Fig. 10. [1 is cbvious
that alao the ks is influenced by the voitage of the p rmg
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n'n bartier in the emitter hns the same reflecring
properiies as the 7~ emitier of & conventicnal double
diffused trangistor. The lightly doped region offers no
advantags in this respect, However, LEC structures may
help to keep the recombination in the emitterdbase
depletion layer low. The cut-off frequency Fr is relativaly
tow due to the cxtra charge storage in the Lightly doped
emitter layer, The behaviour of fr versus /. depends on
the tatio of the delay fimes at low and high injection
levels. Finally, LEC transigtors with p-rings and email £ *
amitters show aome anomalies in their characteristios
(kinks and negative resislance ranges).

A ko wiach

-The authors wish to express their gratitude

If the pring is Avating (1, = 0) its ial ig i
0 by the coll base junction in forward bias:
when this forward bisg is reduced, the p-ring potential
beeomes slightly more negative. This influence is suffi-
cimt for the existence of s repion with negative resistance
in the (L, V. )-characteristics (se¢ Fig. 11), provided Vs,
is kept constant.

7, CONCLUSIONS

From the forcgoing the following ¢onclusioms ean be
drawn. Auger recombination m the a* region of the
- emitter dominates the bass ctrvent at medium and high
injection levels. The base current density in LEC
structures i the Same 52 in double diffused ones and the

mq’h-ﬂv—ﬂ.s -1 j—j —-'3_._
Tty - /'/";""
EIEZ =

A
:n// mw_

—= Y (V)

Fig. 1. Measurements of L vs V,, for an LEC transistor with
p-ring. showing the influcnee of the pring potentisl on the
chamcteristics,

“5%

4 —
L {m&) I —1Te =Vt

Q
—aVop

Fig. 11, Hegative resistance phenomena with V,, = constant and
floating pring. The p-ring potentinl varics between —170 and
mV¥,
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AFFENDIX
“The charge, stored in the nenteal base cegion, is

ad --qn.w. (14)

#e is the minority carrier concentration at the edge of the
depletion layer:
m(m, + M= atexpiyVi). s
Solving this quadratic equation tor r, and substituting into the
expression for 4Gk gives ean (1),
From the current equations for J, and f, and the cherge
neittrality condition we tan derive for the minonity carrier gradient
in the lightly doped emitter region:

g,"_'ﬂf_%)f_

oY)

Forp & M, (V,, <400mV)is (dp/dz) >0, becanse both L and J,
are negalive. For p » N(V,, > T00mV) is (dp/dz)<0 and in
between 18 (dp fdx) =0, In that case we can write AQ. = 4p, W,
atd po(p, + Nob= 7 et {yVe ). Eliination of p, leads to can
(2a), For p» N, we can write (dp/dx)={J, j2¢D,) or for the
deerenss in £RTICT concentration:

LW
Ap-ﬁ.

The stored charge AQ, then is

(o
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L1 | I
a0, = W, {n. o (i ﬂv’,.) _EM] " and from this
1
From egn (3} it follows that %ﬁ=%ﬁ%w (% )«V,,,). m
5, TP e V)
A +40, Substitution of 4p wlG €an (18) gives eyn (2hy.
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SUMMARY

The investigations and publications in this thesis concern the electrical behaviour of
bipolar transistors in relationship to such process and material dependent

quantities as the profile of the impurities and the mobility and lifetime of the
carriers. These quantities appear in Poisson's equation and the continuity equations
for the holes and electrons, which povern the electrical behaviour. This is discussed
in chapter 1. Because these differential equations are nonlinear, rigorous solutions
require numerical methods. This offets the opportunity to take into account
realistic data about the doping profile, mobilities and lifetimes and results in an
accurate description of the electrical behaviour in quantitative terms.

In 1964 Gummel published a numerical method for solving the one-dimensional
equations (see chapter 2). In order to be able to deal also with two-dimensional
trangistor structures, we have developed a numerical method, which is presented in
the first two publications reprinted in chapter 5. Non-uniform current density dis-
tributions, such as current crowding due to lateral voltage drop {(see chapter 2), or
spreading effects in very small devices, can be studied in this way. When the results
. of these calculations are compared with the results of experiments, the behaviour
of the collector current as a function of the applied voltages agrees rather well; the
description of the base current, on the other hand, is very unsatisfactory.

In modern bipolar transistors the base current is usually determined by the minority
carrier injection into the emitter. Bxperiments and caleulations, discussed in chap-
ter 3 and 4, show that, as a result of the high impurity concentration in the emitter,
this injection is strongly affected by two phenomena. First, the minority carrier life-
time decreases strongly at higher impurity concentrations. In recent publications of
lifetime measurements in siticon this is ascribed to Auger recombination (see chap-
ter 1, fig. 1.8). Secondly, the pn-product increases strongly at higher impurity
concentrations (.. 70 times at an impurity concentration of 2.3 » 108 cm™®),

Chapter 3 describes in detail how the pn-product in the base region was determined
by using the transistor itself as a measuring vehicle. Measurements and caleulations
indicate that the pn-product at higher impurity concentrations is exponentially
related (ag it i2 in the case of pure silicon) with a quantity that can be interpreted as
the bandgap extrapolated towards zero degree Kelvin. An increase in pn-product
corresponds to a decrease in bandgap. Although bandgap narrowing has been
discussed in the literature for many years, quite considerable discrepancies exist
between different theoretical caloulations and disagreement also exists with optical
absorption measurements. From our measurements of the pn-product it follows
that bandgap narrowing is larger and starts at lower impurity concentrations than
is derived from the optical absorption measurements. The reason for this is not yet
clearly known (see the discussion at the end of chapter 3). The measurements

of both effects can be characterized by simple analytical approximations.
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We developed a one-dimensional numerical transistor program including these
effects, and that has 2 pumber of improvements in the algorithm (chapter 2). From
the calculated recombination it appears rather unexpectedly that, apart {rom the
well-known recombination maximum in the emitter-base jurction, a sccond and
often more important peak in the recombination appears in the heavily doped
region of the emitter. This is caused by the interaction of the above-mentioned
phenomena; on the one hand the strong reduction in lifetime and on the other hand
the relatively large and only gradually decreasing minority carrier concentration.

It is not possible to discriminate between cach of these effects from urrent gain
measurements alone. Our computer simulations do not only describe well these
current gain measurements, but agree also with all kinds of other experiments, such
as the measurement of the base current at low emitter-base forward voltages, the
decrease of current gain when small layers of emitter material are etched away, the
current gain characteristics as a function of temperature, etc., If alternative models
for the lifetime and bandgap narrowing are substituted in these simulations, the
results do not agree with all of these measurements at the same time.

Using the detailed output data of these caleulations, analytical approximations for
the base current are discussed in chapter 4 and applied for different emitter
structures, e.g, the LEC transistor, which has an extra, low-doped region in the
emitter.

The results described in this thesis are not only important for the analysis of
bipolar transistors but are also directly applicable in the analysis of many other
silicon devices.
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SAMENVATTING

De onderzoekingen en publicaties die in dit proefschrift worden bespraken hebben
tot doel een beter inzicht te geven in het electrisch gedrag van bipolaire transistoren
en hoe dit samenhangt met proces- en materiaalafhankelijke grootheden, zoals het
concentratieprofiel van de verontreinigingsatomen en de beweeglijkheid en levens.
duur van de ladingsdragers. Deze grootheden komen voor in de vergelijking van
Poisson en de beide continuiteitsvergelijkingen voor de gaten en electronen, die het
electrisch gedrag beheersen. Dit wordt besproken in hoofdstuk 1. Aangezien deze
differentiaalvergelijkingen niet-lineair zijn, zijn voor het verkrijgen van nauwkeurige
oplossingen numerieke methoden vereist. Dit biedt tevens de mogelijkheid experi-
mentele gegevens over het concentratieprofiel van de verontreinigingsatomen en de
beweeglijkheid en levensduur van de ladingsdragers, zonder vereenvoudigingen, in
rekening te brengen. Hierdoor wordt een zo goed mogelijk quantitatief beeld van
het slectrisch gedrag verkregen.

In 1964 publiceerde Gummel een methode waarmee de vergelijkingen, zij het een-
dimengionaal, numeriek kunnen worden opgelost (zie hoofdstuk 2). Teneinde ook

- tweedimensionale berckeningen aan transistoren uit te kunnen voeren hebben we
een numerieke methode ontwikkeld, die wordt beschreven in de eerste twee publi-
caties van hoofdstuk 5. Hiermee kunnen niet-uniforme stroomdichtheidsverdeiin-
gen, zoals bijv. stroomverdringing tengevolge van laterale spanningsverschillen (zie
hoofdstuk 2), of spreidingseffecten in zeer kleine devices worden onderzocht. Wan-
neer we de resultaten van deze numerieke berekeningen vergelijken met experimen-
ten, dan blijkt in het algemeen, dat het gedrag van de collectorstroom als funetie
van de aangelegde spanningen goed overeenstemt, terwiil daarentegen het gedrag
van de basisstroom alfeen met behulp van allerlei, experimenteel niet verifieerbare,
aannamen is te verklaren en dan nog slechts gebrekkig.

In moderne bipolaire transistoren wordt de basisstroom: meestal bepaald door in-
jectie van minderheidsladingsdragers in de emitter. Experimenten en berekeningen,
besproken in de hoofdstukken 3 en 4, tonen aan dat hierbij, als gevolg van de hoge
concentratic van verontreinigingsatomen in de emitter, twee effecten cen belang-
rijke rol spelen. In de eerste plaats neemt de levensduur van de minderheidsladings-
dragers bij hogere concentraties van verontreinigingsatomen sterk af, In racente
publicaties van levensdyurmetingen in silicium wordt dit toegeschreven aan Auge-
recombinatie (zie hoofdstuk 1, fig. 1.8). Ten tweede blijkt bii hoge concentraties
het pr-product aanzienlijk toe t¢ nemen (bijv. 70 maal bij een concentratie van
2.3+ 10Y ¢m®),

In hoefdstuk 3 wordt uitvoerig niteengezet hoe wij er in geslaagd zijn het pn-pro-
duct in de transistor zelf, met name in het basisgebied, te bepalen voor een aantal
transistoren met verschillende concentraties van verontreinigingsatomen in de basis.
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Metingen en berekeningen tonen aan dat het pn-product ook bij hoge concentraties
van verontreinigingsatomen {geheel analoog aan het geval van zuiver silicium) expo-
netieel perelateerd is aan cen grootheid die geinterpretecrd kan worden als de naar
nul graden Kelvin geéxtrapoleerde bandafstand, Een toenama van het pn-product
komt dan overeen met een afname van de bandafstand. Hoewel bandvernauwing
reeds jarenlang onderwerp van discussie in de literatuur is, bestaan er grote verschil-
len tussen berekeningen onderling, terwil optische absorptiemetingen er niet mee
overcenstemmen. Uit onze metingen van het pn-product volgt dat de bandver-
nauwing veel proter is en bij lagere concentratics begint dan uit optische absorptie-
metingen kan worden afgeleid. Een duidelijke verklaring hiervoor is nog niet
gevonden {zie de discussic aan het ¢ind van hoofdstuk 3). Beide gemeten effecten
kunnen worden gekarakteriseerd door eenvoudige analytische benaderingen.

We hebben een cendimensionaal numeriek transistorprogramma ontwikkeld (hoofd-
stuk 2), waarin deze effecten zijn meegenormen en dat een aantal belangrijke verbe-
teringen in de oplosmethode bevat, Uit de berekeningen blijkt tamelijk onverwacht
dat de recombinatie, behalve het bekende maximum in de emitter-basis-junctie, een
tweede en meestal veel belangrijker recombinatiepiek kan vertonen in het ladings-

- neutrale gedeelte van de emitter. Dit is het gevolg van beide effecten tezamen: de
sterke afname van de levensduur enerzijds en de relatief hoge concentratie en gelei-
delijke afval van de minderheidsladingsdragers anderzijds. Het is nict mogelijk om,
alleen op grond van het verloop van de stroomversterking als functie van de collec-
torstroom, beide effecten te onderscheiden. Onze computerzimulaties blijken niet
alleen dit verloop goed te beschrijven maar ook overeen te stemmen met allerlei
andere experimenten, zoals de meting van de basisstroom bijj lage emitterbasis-
spanningen, de afname van de stroomversterking bij wegetsen van dunne laagjes
émitter-materiaal, de stroomversterking als functie van de temperatuur, ete.. Indien
echtet in deze berekeningen andere modellen voor de levensduur en de bandver-
nauwing als functie van de verontreinigingsconcentratie worden gekozen, zijn de
resultaten niet goed in overeenstemming met al deze metingen tezamen.

Uitgaande van de gedetailleerde gegevens van deze berekeningen worden in hoofd-
stuk 4 analytische benaderingen voor het gedrag van de basisstroom beschreven ¢n
toegepast op verschillende emitterstructuren, o.a. de LEC transistor, waarbij het
emittergebied, behalve het normale gebied met een hoge concentratie van veront-
reinigingsatomen, tevens een gebied hevat met lage concentratie.

De resultaten die in dit proefschrift worden beschreven zijn niet alleen van belang
voor bipolaire transistoren maar ook direct toepasbaar bij de analyse van vele ande-
re siticium devices,
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Bij injectic van minderheidsladingsdragers in zwaargedoteerd silicium, zoals bijv.
gateninjectic in cen ntp diode, bevinden zich de meeste geinjecteerde ladingsdragers
it cen dun gebied grenzend aan de junctie, Gewaoonlijk wordt aangenomen dat bui-
ten deve “acticve™ laag het aantal minderheidsladingsdragers 20 klein is, dat het
vrijwel geen bijdrage geeft tot de totale recombinatiestroom. In veel gevailen is deze
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Kannam heeft waargenomen dat de stroomversterking van bipolaire siliciem transis-
loren toeneemt na een warmtebehandeling gedurende 16 uur ap 800 °C in een stik-
stof omgeving. 14ij schrijft dit toe aan een vermindering van de roosterspanning in
het met fosforatomen gedotecrde emitterpebied. Dit effect kan echter eenvoudiger
worden verklaard met de door Aiken én Schwettmann onder soortgelijke omstan-
digheden aangetoonde diffusie van fosfor in het gebied van de emitter-basisjunctie,
waardoor een deel van de basisdotering wordt gecompenseerd.
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De temperatourathankelijkheid van het clectrisch gedrag van MOS-stuurcircuits met
cen “resistive gate” van polykristallijn silicium als centrale stuurelectrode kan wor-
den geregeld door de keuze van de soortelijke weerstand van het polykristallijn sili-
clum,
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Bij veldberekeningen van discontinuiteiten in golfpijpen wordr veelal gebruik ge-




maakt van de momenten-methode. Hierbij wordt het veld ter weerszijden van de
discontinuiteit benaderd door een eindig aantal discrete modi die terplaatse van de
discontinuiteit aan elkaar worden gepast. Hocewel deze methode voor gesloten golf-
pijpen zeer bruikbaar kan zijn, is zij in principe niet geschikt voor berekeningen zan
discontinuiteiten in open diétectrische golfpeleiders.
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Omdat Grimbergen, bij de verklaring van zijn [V-metingen aan silicium dioden, ver-
onderstelt dat de diffusieconstante vande electronen in p-type silicium ecn constan
te waarde van 10 om?®/sec heeft, onderschat hij de grootte van het pn-product bij
hoge verontreinigingsconcentraties in het p-type gebied.
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De verschuiving van de spectrale verdcling van de recombinaticstraling dic optreed:
bij hoge concentraties gat-electronparen in silicium en germanium, wordt dourgaans
toegeschreven aan een verlaging van de bandafstand. Tn hoeverre dit verschijnsel
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Bij veel beschouwingen over “pn junction-devices™ kan het begrip depleticlaag beter
worden vervangen door ruhmteladingslaag.
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De methode die Lewandowski voorstelt om de tockomstige dichtheidsverdeling van
een bepaald consumenten-artikel te voorspellen op grond van de huidige verdeling
ervan voor verschillende typen van huishoudens, is aunvechtbaar,
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Roosterfouten in lonenkristallen zijn er tendele voor verantwourdelijk, dat de expe-
rimenteel bepaalde capaciteit aan het grensvlak kristal/electrotiet-oplossing veel lager
is dan volgt uit herekeningen gebaseerd op de electrische dubbellaagtheorie van
Gouy en Chapman.
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In teksthoeken aver geintegreerde schakelingen wordt vaak de vertragingstijd van
TTL poorten vnjuist berekend,
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De ICRU beveelt cen bol met een diameter van 30 cim aan als model voor het men.
selijk lichaam en definieert de index van de geabsorbeerde stralingsdosis als volgt:
“The absorbed dose index at a point is the maximum absorbed dose within a 30 cm
diameter sphere centered at this point and consisting of material equivalent to soft
tissue with a density of 1 g/em®.”

D¢ hier gedefinicerde grootheid maakt het mogelijk dat de dosisbelasting in een
punt van het lichaam wordt bepaald door de dosis in denkbeeldige anatomische

structuren buiten het lichaam.
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