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Chapter 1

Introduction

There are many daily life examples related to traffic and the problem of congestion,
which occur whenever a given resource cannot keep up with the rate of arrival of
service requests. Examples of offered resources include Internet bandwidth, the width
of a highway as part of a traffic network, the speed of the central processing unit
(CPU) in a computer, or the working speed of a server at a counter in a supermarket.
A natural way to mitigate the unavoidable congestion issues is to consider a buffer
in which arriving customers/jobs can queue up waiting for service. The study of
phenomena related to congestion relies significantly on the mathematics of Queueing
Theory, and this includes related problems such as the design and optimization of
queueing systems. There is a dual perspective which makes queueing processes appear
as mirror images of so-called risk reserve processes (or better called surplus processes).
These latter describe the dynamics of the surplus process of an insurance portfolio, or
the evolution of assets on the stock market.

The amount of processing time demanded from a CPU is not constant among the
various requested jobs. Even more so, one cannot expect fixed deterministic time
points at which cars arrive at an intersection. Similarly, arrival epochs of accident
claims incurred by an insurance portfolio are subject to hazard and so is their severity.
Thus one is naturally led to consider the input processes in these systems as being
stochastic in nature.

Among the associated key performance measures one can think of are the waiting
time of a typical customer before receiving service, the workload demanded from the
server at any point in time, the queue length etc., and in the set-up of surplus processes
one is typically interested in the ruin probability, the time to ruin and the deficit of the
surplus process at ruin. In view of the above, these performance measures are to be
regarded as random variables or closely related entities, and this leads to considering
the input in the form of a stochastic process.

The mathematical problems that appear in applications coming from queueing
theory and insurance can typically be reduced to the study of the supremum and
infimum functionals of a stochastic process, together with their associated excursion
processes (as excursions away from the minimum). Part of the study of fluctuations is
related to ergodic theorems that specify conditions on the traffic load under which the
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2 Introduction

above extreme functionals converge as time goes to infinity, and respectively conditions
under which the distribution of an excursion length is a probability distribution (which
may be defective). By the theory of fluctuations we mean the study of these problems
and related ones, like the rate of convergence of the above functionals in the ergodic
case. These appear in many related areas of Probability and Statistics, however, from
an applications point of view, the focus in this thesis will be on queueing and risk
reserve processes.

There is a convenient way to talk about queues and risk reserve processes at
the same time without explicitly mentioning any of them. Let (tn)n be a countable
sequence of random points on R (thought of as the time axis), and make correspond to
each point tn a random element Bn of some probability space. We will call the sequence
of tuples {(tn, Bn)}n, a marked point process (allow n ∈ Z). The first chapters are
dedicated to the study of marked point processes with the special feature that the
inter-arrival process is renewal and in the positive flow of time, the current mark size
is allowed to depend on the time until the next arrival epoch. The positive direction
for the time flow corresponds to queueing applications, so that if we denote the inter-
arrivals by An := tn+1 − tn, the sequence {(An, Bn)}n is assumed independent and
identically distributed (i.i.d.). For the setting of risk reserve processes, the direction
in which time flows is reversed so that the current mark size may depend on the time
elapsed since the previous mark epoch. The reason for changing the direction of time
is that, in some cases, queueing and surplus processes can be backwards coupled one
with another in such a way that their key performance measures can be related. And
then the processes are said to be in duality. A special focus will be on the case when
the point process is Poisson with the Lebesgue measure as intensity. Also of special
interest is when the marks are random vectors. It may happen that the distributions
of the vectors of marks may be supported on proper linear subspaces of the embedding
space. In the case of Poisson point processes, this can happen if we merge different
arrival processes that mark only proper subspaces. For example, in queueing terms,
for two servers working in parallel we can have arriving customers that demand service
only from one of the two available servers, but there can also be customers that demand
work from both servers simultaneously. Similarly, an insurer can choose to reinsure
only part of its portfolio; so that some types of incoming risks will not be shared.

About the motivation behind this thesis, there are two main problems investigated
that are overlapping:

1. The study of multidimensional queueing processes and insurance/risk processes.
This is a difficult topic in itself and a significant part of the thesis is dedicated to its
study. The focus will be on calculating the stationary distribution of the maximum
(under various orderings on Rn) of the vector-valued input process, under suitable
stability conditions that ensure these maxima have proper distributions in the limit.
Similarly as in one dimension, from the queueing perspective these are related to the
vector-valued amount of work in the whole system, but the maxima also give various
types of ruin probabilities in the related surplus process (there are several ways in
which ruin can occur, for example it can ultimately happen in all the components of
the surplus process or in just one of them, etc.).

A special class of risk reserve processes is related to the so-called proportional
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reinsurance contracts for which a generic claim (which corresponds to the marks of the
arrival process) is shared by two insurance companies in fixed proportions. A relevant
question in general and for this problem in particular is to understand the asymptotic
behaviour of the ruin probability as a function of the initial capital, for large values of
this capital.

Another special feature in several dimensions is that the marginal processes may
interact with each other. This is the case for the so-called coupled processor model; for
two processors, this is an interacting queueing system in which as soon as a processor
becomes idle (the marginal amount of work hits level 0) it switches to assist the other
processor, if there is any work in the other buffer at this instant.

2. To try to remove, as much as possible, the requirement that the inter-arrival
times and the mark sizes form independent families of random variables. In many
applications arrival patterns are sometimes periodic or they can become bursty from
time to time. Going to the heart of the matter, the question is whether one can study
fluctuations of sums of variables that are neither independent nor stationary and even
more, if, when dealing with such problems, one can forge weapons that are as effective
as the Fourier transform methods that are traditionally used in the study of sums of
independent variables.

These two topics are intertwined: in several dimensions, there are various correla-
tions between the components of the vector-valued processes that are considered as
input. Without having to complicate the model by allowing the marginal systems to
interact, the possibility to have dedicated arrivals into a subset of the components
causes correlations in the dynamics of the whole system and this is already a source
for many difficulties. This is the case for instance when studying networks of queues
or several insurance companies that share risks.

The second problem is relevant on its own. The assumption of renewal arrivals,
which was used systematically by Pollaczek, Lindley, Kendall and many others, is
appealing from a mathematical perspective because, while it generalizes the assumption
of Poisson arrivals, it is still tractable if one uses the analytic theory of Fourier(-Stieltjes)
transforms and the related Laplace-Stieltjes transforms. However, the renewal structure
is broken as soon as one allows the rate of the Poisson process to be time dependent
or even stochastic by itself (as in a Cox process). Even more so, known measurements
of the internet traffic show that the packet sizes (these stand for the successive marks
of the arrival process) are correlated with each other even at large lags (long range
dependence). Both these extensions and their associated fluctuation problems are
intensively studied in the literature; they are broad research topics so we will end
up barely scratching the surface and leaving many contributions unmentioned in the
following sections.

The rest of this chapter is organized as follows: Section 1.1 gives an overview of the
single server queue G/G/1 with various correlation devices in the input process and
the related work in the insurance literature on the Sparre-Andersen insurance model.
Section 1.2 reviews the literature on multivariate queueing systems and contributions
from the related insurance literature. Section 1.3 is an informal introduction to the
topic of duality and prepares the ground for Chapter 2. Finally, Section 1.4 gives an
overview of the thesis and briefly presents its main contributions.



4 Introduction

1.1 Single server queues and Sparre-Andersen
risk reserve processes, with correlations

We begin by introducing the basic queueing system, the single server queue, and
the related risk reserve process. The key performance measures that will be studied
throughout the thesis are also introduced.

We will use Kendall’s notation for queues, so the G/G/1 queueing system takes the
marked point process with renewal arrivals as input which has both the inter-arrivals
An and the marks Bn generally distributed (hence the acronym G). We will also use
the notation GI/G/1 to mean that the sequence of inter-arrival times is renewal and
that the service times are correlated either among themselves or with the inter-arrival
sequence in a way that will always be specified when describing the model. Much of
the literature concerned with obtaining exact results (in terms of transforms or by
direct calculations) assumes the model to have both the service time sequence and
the inter-arrival sequence i.i.d. and independent one from the other. GI/GI/1 is then
usually used as a notation instead, although it is clear at this point that these are
simple (and imprecise) conventions and we will use them like this. There is a single
server that handles the service request Bn of customer n; the server works at constant
rate c > 0. Customers that find the server busy upon arrival queue up in a buffer.
Typically, we are interested in the amount of work waiting in the buffer at any point in
time. We assume that the buffer is initially empty and we denote by Vt the workload
at time t. We take by convention Vt to be left-continuous with right limits, so that
Vtn is the amount of work in the system right before customer n arrives.

It follows from the definition that the embedded workload at arrival epochs Vtn
must be the solution of Lindley’s recursion

Vt

B1

B2

B3

W2 W3
Vt1 = 0

Vt2 Vt3

A1 A2 A3

t

1

Figure 1.1: A path of the single server queue.



1.1. Single server queues 5

Vtn+1
= max(Vtn +Bn − cAn, 0), n = 1, 2, . . . , (1.1)

Vt1 = 0.

The workload process has positive jumps of size Bn at the nth arrival instant and
decreases linearly in between arrival epochs such that level 0 is an impenetrable barrier:
after it hits level 0 (which can only happen by drifting towards it) the process stays
at 0 until the next arrival epoch. Because of this, Vt is usually called the reflected
version of the input process (Vtn is the reflected version of the random walk).

We will also denote by Wn the waiting time of customer n in the buffer, n ≥ 1.
Under the ”first come first served” (FCFS) server policy, Wn = Vtn/c because the
server is working at constant rate (Vtn is sometimes called the virtual waiting time
because of this identity). The above assumptions on the input process imply that
(Vtn)n is a Markov chain on R+ conditioned to start from 0. It can be shown that the
unique solution of Recursion (1.1) is given by

Vtn+1
= Sn − inf

k≤n
Sk, (1.2)

where we denote by (Sn)n the random walk with increments Xk := Bk − cAk, k ≥ 1,
and S0 = 0.

The workload is partitioned into regeneration cycles w.r.t. state 0. The length of
the excursion of Vt above level 0 is the busy period of the server. Other measures
of performance are the idle periods of the server, and the number of customers that
are served during a busy period. The stability issue is whether state 0 is positive
recurrent for the chain (Vtn)n. The idle period between epochs tn and tn+1, n ≥ 1, is
complementary to Wn+1 = Vtn+1

/c:

In+1 := −min(Vtn +Bn − cAn, 0)/c, n ≥ 1. (1.3)

The related surplus process (Rt)t≥0 evolves in the following way: starting with
a level u > 0 (initial capital) Rt drifts linearly upwards at a positive rate (premium
income rate) and at an arrival epoch tn a claim Bn is requested which immediately
decreases the surplus level:

Rt(u) = u+ ct−
n(t)∑
i=1

Bi,

with n(t) the number of arrivals up to time t. We take (Rt)t to have right-continuous
paths with left limits (càdlàg). If we focus on arrival epochs (since ruin can only occur
at these points in time)

Rtn+1(u) = u−
n∑
i=1

(Bi − cAi) = u−
n∑
i=1

Xi, n ≥ 1.
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Rt

B1 B2

B3u

τ(u)
t

A1 A2 A3

1

Figure 1.2: A path of the surplus process.

We define the time to ruin τ ≡ τ(u) of the process Rt(u) as the hitting time of the
negative half-axis

τ(u) = inf{t > 0 ; Rt(u) < 0}. (1.4)

From our perspective, it will turn out to be useful to let the process continue if it
happens to hit state 0, or if started from 0. The ruin probabilities for the finite and
infinite time horizon are

P(τ(u) < tn), n ≥ 1, and P(τ(u) <∞),

with extra conditions needed for the latter to be strictly less than 1. The above ruin
time is closely related to the so-called maximum aggregate loss of the risk reserve
process. For finite horizon this is just

Mn := max(S0, S1, . . . , Sn), (1.5)

for Sn :=
∑n
i=1Xi and S0 = 0. Under suitable conditions which ensure convergence,

the all time maximum aggregate loss is M := limnMn, so that we have directly from
their definitions:

τ(u) ≤ tn ⇔Mn > u; τ(u) <∞⇔M > u.

The second equivalence holds because the sequence (Mn)n is non-decreasing. Finally,
another quantity of interest is the deficit at ruin; this is defined as −Rτ(u)(u).

Queueing models: When studying the single server queue G/G/1, it is usually
assumed that all inter-arrival times and service requirements are independent.

A general approach to allowing correlations between successive inter-arrivals/service
requirements is the class of Markov Arrival processes; see Neuts [90] and Lucantoni [85].
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Phase-type inter-arrivals and Markov-Modulated Poisson arrival processes are con-
tained in this class.

Following Lucantoni [85], a natural way of correlating inter-arrivals with mark sizes
is the Batch Markov Arrival Process (BMAP) and its associated queueing system,
the BMAP/G/1 queue, where the arrival of a batch of size k ≥ 1 causes the request
to process k i.i.d. service components, each having some generally distributed size.
The BMAP/G/1 queue provides a versatile framework to model dependence between
successive inter-arrival times but also dependence between inter-arrival times and
service requirements. In Combé and Boxma [45] the BMAP is also used to study
an M/G/1 queue in which service requirements depend on the previous inter-arrival
times; see Borst et al. [33] for a different approach to the latter form of dependence,
which does not use the MAP machinery.

An important paper regarding dependence between inter-arrival and service re-
quirements is the one by Adan and Kulkarni [2]. They consider a single server queue
with Markov-dependent inter-arrival and service requirements: a service requirement
and subsequent inter-arrival time have a bivariate distribution that depends on an
underlying Markov chain which jumps at customer arrival epochs. The inter-arrival
times in [2] are exponentially distributed, with rate λj when the Markov chain jumps
to state j. See also Constantinescu et al. [48], where a different approach is used to
study similar models for the risk reserve process. The methods used therein are based
on operator theory (Heaviside operational calculus).

It should be observed that the analysis of a GI/G/1 queue with some dependence
structure between a service requirement Bi and the subsequent inter-arrival time Ai
is intrinsically easier than that of a GI/G/1 queue with some dependence structure
between Ai and the next Bi+1. The reason is that Bi and Ai only appear as a difference
in the Lindley recursion (1.1) for the waiting time Wi of the ith arriving customer.
In Chapter 3 we will study the problem of fluctuations of a queue which has matrix
exponential service requirements (see Bladt and Nielsen [29]) that are also correlated
with subsequent inter-arrival times. The working assumption is given in terms of the
Laplace-Stieltjes transform of the vector composed of the inter-arrival time together
with the corresponding service requirement, namely, it is assumed that this is a rational
function in both arguments. The classes of phase-type random vectors known in the
literature as Assaf’s [18] or Kulkarni’s [79] are special instances. This class allows us
to obtain detailed, explicit, results for the steady-state waiting time, workload and idle
period, and even to stochastically compare the waiting time distributions for various
types of correlation.

By focusing on the arrival instants of marks, the study of the waiting time and
idle time distribution in the GI/G/1 queue reduces to the study of a random walk
with increments that have a rational characteristic function and can thus be continued
analytically in the whole plane except for a finite number of poles.

Insurance risk: Having discussed the queueing literature with dependence between
inter-arrival time and service requirement, let us now turn to the insurance risk
literature with dependence between inter-claim time and claim size. In recent years,
this has been a hot topic in risk theory. Albrecher and Boxma [4] derive exact formulas
for the ruin probability in a Cramér-Lundberg model with a threshold-type dependence
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between a claim size and the next inter-claim time. In Albrecher and Boxma [5] a
much more general semi-Markovian risk model is being considered, which bears some
resemblance to the queueing model in Adan and Kulkarni [2]. Kwan and Yang [80]
consider a specific threshold-type dependence of claim size on previous inter-claim time;
in Albrecher et al. [6] this is put in the larger framework of Markov Additive Processes.
Another specific dependence structure between claim size and previous inter-claim time
is treated in Boudreault et al. [34], where it is assumed that the conditional density of a
claim, given the previous inter-arrival is a mixture of two arbitrary probability density
functions. Asymptotic results were obtained in Albrecher and Kantor [7], where the
relation between the dependence structure and the Lundberg exponent is studied. Also
Albrecher and Teugels [8] give asymptotic results for the finite and infinite horizon
ruin probabilities when the current claim size and the previous inter-claim time are
dependent according to an arbitrary copula structure.

1.2 Queueing systems and risk reserve processes
with multiple components

An important part of the thesis is dedicated to the study of multidimensional queueing
systems and the related risk reserve processes. In particular, we look into the possibility
of extending the duality of Siegmund [97] to processes on higher dimensional state
spaces. First, we will focus on queueing models which have a compound Poisson input
process with a negative drift and their dual insurance risk counterparts which take a
similar compound Poisson input with a positive drift. The negative/positive drift is in
terms of the componentwise ordering of Rn.

Queueing models with several queues in parallel and with an arrival process in
which there may be simultaneous arrivals - often called fork-join queues - have many
applications in computer-, communication- and production systems. These are models
where jobs are split among a number of different processors, communication channels
or machines. The servers work in parallel and each has its own dedicated buffer where
jobs wait to be processed. Clearly, the queues in these models are dependent due to
the simultaneous arrivals. In general this makes an exact analysis of the model very
difficult, and by exact analysis is meant the derivation of (Laplace-Stieltjes transforms
for) the distributions of the relevant performance measures. Only in the case of
two queues, exact results are available; see, e.g., Flatto and Hahn [59], Wright [105],
Baccelli [21], De Klein [76] and Cohen [43]. An early paper, classical for the use of
complex functions and singular integrals in queueing theory, is Pollaczek’s [92]. The
above mentioned works rely heavily on advanced complex function theory, including
the theory of boundary value problems. This not only makes the methods involved,
it is often difficult to recognize the stochastic nature of the initial problem in the
manipulations. It comes as no surprise that approximations and asymptotic studies are
more popular than exact methods for these multidimensional models. Given that it is
still imperative to understand fluctuation theory in higher dimensions, a starting point
would be to understand how one can leverage the stochastic nature of the problem to
actually guide the analysis (complex as it may be).

For the model with more than two servers no exact analytical results are available
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in the literature. In this case, bounds and approximations for several performance
measures have been developed, see e.g. Baccelli et al. [22] and Nelson and Tantawi
[88, 89].

Studies of multidimensional risk reserve processes are scarce in the insurance
literature, although results about risk measures related to such models are highly
relevant both from a theoretical and a practitioner’s perspective. Multivariate ruin
problems are relevant because they give insight into the behaviour of risk measures
under various types of correlations between the insurance lines. Like in queueing
theory, it is natural to study insurance risk processes with simultaneous arrivals of
claims in several insurance lines. One example is presented by multiple insurance
lines within the same company which are interacting with each other as they evolve
in time, via, say, coupled income rates. Another typical example is an umbrella
type of insurance model, where a claim occurrence event generates multiple types of
claims which may be correlated, and each type of claim is paid from its corresponding
component, such as car insurance together with health insurance or insurance against
earthquakes. Yet another class of models is related to reinsurance problems, where a
claim is shared between the insurer and one or more reinsurers.

Avram et al. [19, 20] have studied the joint ruin problem for the special case of
proportional reinsurance. In particular, they derive the double Laplace transform with
respect to the two initial reserves of the survival probabilities of the two companies.
One of the key observations in [19, 20] is that, due to the fact that companies divide
claims in some specific proportions, the two-dimensional ruin problem may be viewed
as a one-dimensional crossing problem over a piecewise linear barrier. Badescu et
al. [23] have extended the two-dimensional model of [19, 20] by allowing, next to
the arrivals of claims for which the two insurers divide the claim in some specific
proportions, also extra arrivals of claims which are fully paid by one of the insurers (e.g.,
insurer 1). They show that under some conditions also in this model the previously
mentioned reduction to a one dimensional problem still holds. However, in [23] the
authors do not consider the double Laplace transform with respect to the two initial
reserves of the survival probabilities of the two companies (their main focus is on the
Laplace transform of the time until ruin of at least one insurer).

An early study of multivariate risk measures can be found in the paper of Sundt [101]
about developing multivariate Panjer recursions which are then used to compute the
distribution of the aggregate claim process, assuming simultaneous claim events and
discrete claim sizes. Other approaches are deriving integro-differential equations for
the various measures of risk and then iterating these equations to find numerical
approximations as in Chan et al. [37] and Gong et al. [67], or computing bounds for
the different types of ruin probabilities that can occur in a setting where more than one
insurance line is considered (see Cai and Li [36] who consider multivariate phase-type
claims). It is worth mentioning that very few papers (like Avram et al. [19], Badescu
et al. [23]), analytically determine, e.g., the ruin probability for insurance models with
more than one company (see also [17], Ch. XIII.9 for an overview of this topic).

In an attempt to solve the integro-differential equations that arise from such models,
Chan et al. [37] derive a Riemann-Hilbert boundary value problem for the bivariate
Laplace transform of the joint survival function (see Section 5.5 for details about such
problems arising in the context of risk and queueing theory and Cohen and Boxma [41]
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for an extended analysis of similar models in queueing). However, Chan et al. [37] do
not solve this functional equation. The law of the bivariate risk reserve process usually
considered in the above mentioned works is that of a compound Poisson process with
vector-valued jumps supported on the negative quadrant in R2, conditioned to start at
some positive level, and linearly drifting along a direction vector that belongs to the
positive quadrant. In Chapter 5 a similar functional equation is taken as a departure
point, and it is explained how one can find transforms of ruin related performance
measures via solutions of the above mentioned boundary value problems. It is also
shown that the boundary value problem has an explicit solution in terms of transforms,
if the claim sizes are ordered.

Another line of research in queueing theory regarding queues in parallel is the
study of queueing systems in which the servers interact with each other. A natural
example is the so-called coupled processor model where, given two processors in
parallel, as soon as one of them becomes idle, it switches to process work from the
other buffer, thus strictly improving the performance of the system. A pioneering
paper in this area is Fayolle and Iasnogorodski [55], who consider two parallel M/M/1
queues with independent Poisson arrival processes, and such that the service rate
in one of the queues changes as soon as the other queue becomes idle. This system
is solved for the steady state number of customers in both queues by reducing the
problem to a boundary value problem of a Riemann-Hilbert type. In Cohen and
Boxma [41], this model is generalized by dropping the assumption that the service
requirements are exponentially distributed. It is shown that the problem of determining
the joint workload distribution reduces again to a Riemann-Hilbert boundary value
problem. In Cohen [43], the analysis is further extended for the case when, with
some probability, arriving customers may also request service simultaneously from
both queues. Moreover, the service requirement of a customer is allowed to depend
on whether he finds one of the queues to be empty, the so-called semi-homogeneous
workload process. Both in [41] and [43] the focus is on the transient problem, that is
the study of the time dependent amount of work/queue lengths. A related paper is
Ivanovs and Boxma [71], about a two-dimensional insurance model where capital is
being transferred - if available - from one of the two components, if one has negative
surplus level.

1.3 Duality

There are several connections between single server queueing systems and risk reserve
processes. Such connections were already revealed by Sparre-Andersen [10], [12], [13]
(see also [11] for the introduction of the ruin model related to the GI/GI/1 queueing
system) and then by Lindley [82] and Feller [57]. These relations have sometimes been
called duality.

A famous duality is the one between the classical M/G/1 queue (M stands for
memoryless inter-arrivals; i.e. the arrival process is compound Poisson) and the
classical Cramér-Lundberg model, where the inter-arrival times in both models have
the same exponential distribution while also the service times and claim sizes have
the same general distribution. To be more precise, the distribution of the amount
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of work Vtn at arrival epochs in the queue is related to the ruin probability in the
corresponding surplus process, as defined in Section 1.1 by

P(Vtn > u|V0 = 0) = P(τ(u) ≤ tn), (1.6)

where we took t1 = 0 as the reference time and τ(u) is the exit time of (Rt)t from the
non-negative half-axis. In this way, the reflected version Vt of the input process has 0
as a reflecting barrier, whereas the dual surplus process has the negative half-axis as
an absorbing set.

The input processes which are among the most tractable and that emphasize these
relations in a clear way, are the random walks. By a random walk we will mean in
this thesis the process in discrete time which consists of partial sums of independent
and identically distributed random variables. A more general class is that for which
the sequence of increments is assumed to be stationary only, and then allowing the
increments (Xn)n for n ∈ Z, a stationary version of the workload can be constructed
as in Loynes [83]:

Vtn+1

d
= max(0, Xn, Xn +Xn−1, . . . , Xn + . . .+X0, . . .). (1.7)

Since the sequence (Xn)n is stationary, the same holds for this construction of the

embedded workload sequence: Vtn
d
= Vt1 , for all n ≥ 1. In words, time is reverted

starting from the nth arrival epoch (w.r.t. the queueing time, say), and the horizon is
infinite. If we introduce

Mk := max(0, Xn, Xn +Xn−1, . . . , Xn + . . .+Xn−k+1),

then the right-hand side of (1.7) can be seen as the infinite horizon maximum aggregate
loss (1.5) in a risk reserve process driven by the increments X∗k := Xn−k+1, k ≥ 1. This
means that the kth inter-arrival time and claim size pair is (An−k+1, Bn−k+1) (we will
come back to this coupling in Chapter 2). If we denote with M = limk→∞Mk, the all
time maximum aggregate loss which appears on the right-hand side of (1.7), then M
is directly related to the infinite horizon ruin probability by P(τ(u) <∞) = P(M > u)
(see (1.4) for the definition of τ(u)). Thus using Loynes’ construction, we obtain a
relation between the stationary version of the workload and the infinite horizon ruin
probability. In this case, (1.6) becomes

P(Vt∞ > u) = P(τ <∞|Rt0 = u),

where in this case, Vt∞ stands for the stationary version of the workload embedded at
arrival epochs.

A more general instance of the above duality is studied in Siegmund [97], where
it is shown that for any stochastically monotone Markov process on R, the law of
the process with a reflecting barrier can be put into a relation with the law of the
version of the process which has the same barrier as an absorbing one instead. The
motivation comes from the remark that it is numerically more effective to simulate
hitting probabilities than distributions of reflected processes in equilibrium. These
results are all for the real line and it would be interesting to know if these can be
generalized to higher dimensions. In this generality however, one has to construct in
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a case by case fashion the transition probabilities of the dual process, and this can
become complicated in some cases. See Asmussen [15], [16], Ch. XI.2, for duality
extended to Markov modulated processes as well, and [15] for several open problems.

Another type of duality is obtained by simply changing the sign of the increments
Xn. In terms of the input processes, the inter-arrival times in the queueing system
will correspond to claim sizes in the risk reserve process, and the service requirements
of customers become inter-arrival times for the surplus process. For example, the
standard Cramér-Lundberg model that consists of a Poisson arrival process and i.i.d.
generally distributed claims is obtained from the G/M/1 queueing model (whereas
the previously discussed duality linked it to the M/G/1 queue).

This duality with the G/M/1 queue is useful because it relates performance
measures other than the workload/maximum aggregate loss; for example, the length
of a busy period (the excursion away from the infimum) jointly with the number of
customers served during this period in the single server queue corresponds under this
type of duality to the time to ruin in the risk reserve jointly with the number of claims
paid up to this time. In addition, the length of the idle period during a busy cycle
relates to the deficit at ruin of the risk reserve process: (−Rτ ). This relation was
pointed out already in Prabhu [93] and the references therein; see also Frostig [64] and
Löpker and Perry [84].

1.4 Outline and contributions

The thesis is structured in the following way: In Chapter 2, we extend the duality
relation in the sense of Siegmund [97], as introduced in the first part of the previous
section, to several multidimensional queueing systems with parallel servers with and
without interactions, which will enable us to relate them to risk reserve processes with
multiple branches. The existence of interactions between the servers (the coupled
processor model) is changing the geometry of the absorbing sets of the dual processes.
Key for this type of duality is the possibility to realize the state space as an ordered
vector space.

In Chapter 3 we study the GI/G/1 queue which has the current service time
correlated with the time until the next arrival epoch. At the same time we will consider
the dual Sparre-Andersen insurance model. The focus here will be on calculating the
waiting time distribution and the idle period, which is done under the assumption
that the distribution of the inter-arrivals jointly with the service requirements is
bivariate matrix exponential – see Bladt and Nielsen [29]. By duality, the waiting time
corresponds to the ruin probability of the risk reserve process which has the current
claim size correlated with the time elapsed since the previous arrival epoch. We also
explore the relation between the stationary workload and the stationary waiting time.
It is shown that this relation is analogous to the one that connects the ruin probability
for the delayed risk reserve process and the ruin probability for the ordinary risk reserve
process. By definition, the delayed risk reserve process has the first arrival epoch
distributed as the forward recurrence time of a typical inter-arrival (the renewal arrival
process is started in stationarity). The ordinary risk reserve process has the same
distribution of the first inter-arrival time as the subsequent inter-arrival times (this is a
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version of the risk reserve process conditional on an arrival happening at time 0). The
results obtained give insight into the effect of the correlation between inter-arrivals and
service requirements/claim sizes. It is shown that a negative correlation increases the
waiting time distribution/ruin probability and a positive correlation decreases these
performance measures when compared to independent input. The increase/decrease
are both in the sense of convex ordering (see Stoyan [100], Ch. 1).

In Chapter 4, we continue with the set-up of the random walk with scalar increments
but this time we study it in greater generality. The structure of the increment is still
given as the difference of marginals of a sample from (A,B). Without making any
assumptions on the distribution of the pair (A,B), we obtain integral representations
for the busy period, idle period and workload in the underlying queueing model.
These are obtained by generalising a well known relation that represents functionals of
probability distributions in terms of their characteristic functions (Hewitt’s inversion
formula [69]). Obtaining the above mentioned representations is equivalent to solving
a special kind of Riemann boundary value problem for the imaginary axis (this is
related to what is usually called the Wiener-Hopf factorization in the probability
literature). By virtue of the duality relation described at the end of Section 1.3, the
integral representations are also valid in the context of ruin, because the busy period
corresponds to the time to ruin and the idle period to the deficit at ruin in the dual
risk reserve process. If the two-dimensional Laplace-Stieltjes transform of the pair
(A,B) is a rational function in at least one of its arguments, then the transforms of
these performance measures can be evaluated explicitly, by contour integration.

In Chapter 5, we study a two dimensional queueing system composed of two parallel
processors which receive input according to a compound Poisson arrival process, with
simultaneous arrivals. We show that under ordered service times, the steady state
workload has an explicit form, and moreover a stochastic decomposition holds in
steady state, which can be interpreted probabilistically in terms of the busy periods of
one of the processors (the excursion lengths of the compound Poisson process above its
successive minima). The results are further extended to k processors in parallel. We
also explain how the more general problem, without the ordering assumption, can be
related to the theory of boundary value problems and singular integrals. By virtue of
results from the multivariate duality which is discussed in Section 2.2, the distribution
of the steady state waiting time vector is related to the ruin probability as a function
of the initial vector of starting capital levels in the risk reserve process.

The Poisson arrival assumption is generalized in Chapter 6, allowing for a two-
dimensional renewal arrival process with general inter-arrivals which may also be
coupled with the corresponding two-dimensional mark size. In this way, we extend
the BMAP set-up of Chapter 3 to two dimensions. Using the duality relations from
Chapter 2, the results obtained also give the ruin probability for two-dimensional risk
reserve processes, as a function of two arguments which represent the starting capital
in both marginal risk reserve processes. As a particularly important example, the ruin
probability for proportional reinsurance contracts is obtained.

The asymptotic behaviour of the ruin function for the proportional reinsurance
process is studied in Chapter 7, assuming that the common claim distribution that is
being partitioned belongs to the class of subexponential distributions (long-tailed),
see Foss et al. [60]. This is carried out using only probabilistic methods.
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Chapter 8 is dedicated to the study of two coupled processors. The focus here is
on the stationary workload in the system. It is shown that if the service time vector
is ordered, the amount of work in this model can be related to the amount of work
for two parallel processors without coupling, and thus the stability condition and the
steady-state waiting time follow from the results of Chapter 5. Then the results are
extended to several coupled processors.

Remark. The results of Chapter 3 are published in [24]; Chapters 5, 6, and 8 are
published in [25], [26] and [27], respectively. Chapter 7 is part of an ongoing project
together with Sergey Foss, Zbigniew Palmowski and Tomasz Rolski. Finally, Chapter 4
has not yet been submitted for publication.



Chapter 2

Duality

In Section 1.3 we pointed out that there is a duality relation between single server
queues and risk reserve processes that involves time reversion. In the present chapter
we will build on this (Section 2.1) and we shall explore this type of duality between
queueing systems and risk reserve processes in more depth, with a special focus on
multivariate models. In Section 2.2 we present the standard model for d queues in
parallel with correlated service requirements and show that this model has a dual risk
reserve process that consists of d insurance companies which receive correlated claims.
In Section 2.3 it is proven that there exists a duality relation which connects the two
coupled processors model (an interacting system of queues) to an absorbing process
which has a certain open convex subset of the plane as the absorbing domain. This is
then used to derive stability conditions for the queueing system.

For a random walk (Sn)n, the duality frequently used in this thesis relies on the
fact that the reflected version of Sn (the solution of (1.1)) is the same as the supremum
of the time-reversed walk:

Sn − inf
0≤k≤n

Sk = sup
0≤k≤n

S∗k ,

where S∗k := Sn − Sn−k , for a fixed epoch n > 0 and 0 ≤ k ≤ n. This will be used to
relate the amount of work in a queue to the probability of ruin in a corresponding
risk reserve process, similarly as in (1.6). We will prove this in the more general case
when (Sn)n≥0 is vector-valued, in which case one can still construct a dual risk reserve
process by using geometric arguments.

This type of duality can be argued with the help of a coupling, as in Asmussen [15].
As in Chapter 1, let Xj := Bj − cAj be the increments that determine (Vtj )j via (1.1).
For fixed n ≥ 1 and (X1, . . . , Xn) the sample vector of the increments up to time n,
take the input in the risk reserve process as (X∗1 , . . . , X

∗
n) where X∗j = Xn−j+1, so

that the backwards coupled risk reserve process is given by definition as

Rt∗k+1
(u) = u−

k∑
j=1

X∗j , 0 ≤ k ≤ n, (2.1)

15
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with the time reversed epochs t∗k := tn − tn−k+1 and t1 = 0. This determines the
entire risk reserve process (Rt)t, because in between the arrival epochs t∗k it drifts
linearly upwards at constant rate c. We will investigate this coupling in more detail
and derive some first consequences.

2.1 The embedded workload as a potential loss for
the risk reserve process

The workload process was defined below (1.1) to be right-continuous with left limits.
The dual reserve process (Rt)t is defined by time reversion starting from a fixed
arrival epoch tn of Vt, so that (Rt)t has cádlág paths. The following relation is a
first consequence of the above coupling. It expresses the reserve level in terms of
(differences of) the embedded workload process and the idle periods In, which are
defined in (1.3).

Proposition 2.1.1. For a fixed epoch tn it holds that

Rt∗k+1
(u) = u+

n∑
j=n−k+1

cIj+1 −
n∑

j=n−k+1

(Vtj+1
− Vtj ), 0 ≤ k ≤ n, (2.2)

Proof. The differences of Vtj are related to the backwards accumulated idle period:

Vtn+1
− Vtn−k+1

=

n∑
j=n−k+1

Xj +

n+1∑
j=n−k+2

cIj , 1 ≤ k ≤ n. (2.3)

To show this, notice that it follows at once from (1.1) and (1.3) that

Vtj+1
− Vtj = Xj + cIj+1, j ≥ 1.

Then (2.3) is obtained by summing these differences for n− k + 1 ≤ j ≤ n. Replacing
(2.3) in (2.1) via the coupling X∗j = Xn−j+1 obtains (2.2). The proof is complete.

See Figure 2.1 for a coupled sample path of Vt and Rt with n = 3. For this
trajectory, I2 = 0 because Vt2 > 0.

Consider tk0 to be the last arrival epoch before tn such that Vtk0 = 0 (think in
terms of regeneration cycles for the workload). If nowhere sooner, then k0 = 1 and
with this choice, the backwards accumulated idle period appearing on the right-hand
side of (2.2) is null, hence

Rt∗k0
(u) = u− Vtn+1

. (2.4)

From this follows immediately that for fixed u and a time horizon tn(= t∗n),

{Vtn > u} = {τ(u) ≤ tn}, (2.5)

with τ(u) the time to ruin as defined in Section 1.4. In terms of probabilities, we have

P(Vtn > u |V0 = 0) = P(∃τ(u) ≤ tn : Rτ(u) < 0 |R0 = u). (2.6)
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Figure 2.1: The workload process (left) and the dual risk reserve process (right).

The coupling presented above gives a direct interpretation of the embedded work-
load process in relation to the risk reserve process. Imagine that Rt gives the evolving
price of a risky asset. There is just one investment made into this asset at time t0 and
this is equal to its initial value. Then the identity (2.4) interprets Vtn as the amount
lost through the evolution of the asset’s value up to and including the nth epoch; that
is, by taking u = Vtn , we have

Rt∗k0
(Vtn) = 0 a.s. (2.7)

From epoch t∗k0 onwards, the asset’s value evolves as starting from 0 but in any
case, the initial capital has been lost by time t∗n. Of course, everything is put in a
stochastic perspective: Vtn is to be seen as a sample from the workload distribution
at epoch tn, which is backwards coupled to a sample path of the risk reserve process
(Rt)t up to the fixed time horizon tn.

One of the performance measures traditionally associated to (Rt)t≥0 is the so-called
finite horizon survival function

F sn(u) := P(τ(u) > tn) = P(Vtn ≤ u|V0 = 0).

The last identity follows from (2.6). In the insurance literature, the survival function
is traditionally defined and handled as a function in the classical sense, with u as
the argument. In light of the last term above, it is more convenient to regard this as
a function in the generalized sense, more precisely as the (cumulative) distribution
function of Vtn , as it follows from (2.6). This function is non-decreasing and right-
continuous, hence we can define Lebesgue-Stieltjes integrals w.r.t. it. If we consider
the example of the investment in an asset, then directly from (2.7), the expected loss
incurred by the asset up to time t∗n is given by∫ ∞

0

udP0(Vtn ≤ u) = E0Vtn ,
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where by P0 (E0) we denoted the probability law of (Vt)t (expectation operator)
conditional on V0 = 0. Similarly, the higher moments of the finite horizon loss
distribution are equal to the respective moments of Vtn .

The maximum aggregate loss Mn of the risk reserve process is simply defined as
the running maximum of the partial sums S∗k =

∑k
i=1X

∗
i . We have the following

identity, still using the coupling:

Vtn+1 = Sn −min(S0, S1, ..., Sn) = max(S∗0 , S
∗
1 , ..., S

∗
n) = Mn. (2.8)

This identity is in line with (2.5) because it holds that Mn > u⇔ τ(u) ≤ tn.
Before we move on, it should be emphasized that the above duality is valid only

for fixed, but arbitrary time horizons (the coupling depends on the time horizon). The
paths of the maximum aggregate loss are non-decreasing, whereas this is not true
for the paths of the embedded workload process, hence these two processes cannot
coincide in law.

2.2 Multivariate duality

For random walks with vector-valued increments, it turns out that the ordered vector
space structure of the state space is the essential ingredient for multivariate duality.
However, in higher dimensions the orderings are not total. Those that make Rd into
a partially ordered vector space are in one to one correspondence with the family of
positive cones. These cones will appear in the following sections.

Several queues in parallel with simultaneous arrivals. The results of this
section are valid for Rd, but in order to keep formulae short we will work with d = 2.

There is a single arrival stream of customers that requests service from two servers
that work in parallel, at rates ci, and they are not interacting with each other.

Let the service request vector of customer n be Bn := (B
(1)
n , B

(2)
n ). We will extend the

notations from the previous subsections, so that the increments of the random walk

Sn are Xk := (B
(1)
k − c1Ak, B

(2)
k − c2Ak), with An still denoting the time between the

nth and (n+ 1)th arrival epochs.
The key observation is that, for this queueing system, one can extend the previous

results (2.5)–(2.8) if the canonical ordering of R2 is considered instead. For x :=
(x(1), x(2)), y := (y(1), y(2)) ∈ R2, we can abuse notation and still denote this ordering
using ≤; then we have by definition

x ≤ y ⇔ x(1) ≤ y(1), x(2) ≤ y(2).

Also set

x ∨ y := (max(x(1), y(1)), max(x(2), y(2))),

x ∧ y := (min(x(1), y(1)), min(x(2), y(2))).
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Let Sn :=
∑n
k=1Xk, n ≥ 1 and S0 = 0, the origin of R2. Similarly as for the one

dimensional single server queue, the workload process embedded at arrival epochs is
the reflected version of the random walk given in terms of the Lindley recursion

Vtn+1 = (Vtn +Xn) ∨ 0, (2.9)

and initial condition Vt1 = 0. This process evolves as a random walk which has the
boundary of the non-negative orthant (which is also the positive cone that defines the
canonical ordering) as an impenetrable barrier. The process (Vt)t is then defined as
continuous from the right with left limits. Between arrival epochs the process drifts
linearly along the direction vector c := (c1, c2).

Proposition 2.2.1. The sequence (Vtn)n≥1 satisfies the following identity:

Vtn+1
= Sn −

n∧
k=0

Sk.

Roughly speaking, as soon as one of the components of Sn reaches a new minimum,
the running infimum is updated accordingly and therefore the corresponding component
of Vtn is set to zero.

Proof. Proceed by induction. Assume the identity is valid for Vtn (it trivially holds for
n = 1). The proof follows by exploring all four possibilities, depending on the position

of Vtn +Xn = Sn −
n−1∧
i=0

Si relative to the origin. For example, if Vtn +Xn is in the

second quadrant, that is, if S
(1)
n ≤ min

i≤n−1
S

(1)
i and S

(2)
n ≥ min

i≤n−1
S

(2)
i , then

S(1)
n = min

i≤n
S

(1)
i , and S(2)

n ≥ min
i≤n

S
(2)
i .

On the other hand, Sn −
n∧
i=0

Si = (0, S
(2)
n − min

i≤n
S

(2)
i ), and remark that this is the

same as (Vtn +Xn) ∨ 0. The other cases follow by analogous considerations, which
completes the proof.

Using the same coupling as in the one-dimensional case, X∗k = Xn−k+1 for 1 ≤
k ≤ n and S∗n :=

∑n
k=1X

∗
k , consider the running maximum Mn :=

∨n
i=0 S

∗
i .

Lemma 2.2.1. For all n ≥ 0,

Sn −
n∧
i=0

Si = Mn.

Proof. We can write

Sn −
n∧
i=0

Si = Sn +

n∨
i=0

(−Si) =

n∨
i=0

(Sn − Si) =

n∨
i=0

S∗i .

Here we used the ordered vector space structure. The above are all sample-path
identities because of the coupling. The proof is complete.



20 Duality

To this queueing system there corresponds an insurance risk model that consists
of two insurance lines (or companies) which receive income at fixed rates. Claims are
being simultaneously requested at random epochs from each marginal risk reserve.

The risk reserve process Rt = (R
(1)
t , R

(2)
t ) evolves as

Rt = u+ ct−
n(t)∑
k=1

Bk = u−
n(t)∑
k=1

X∗k , (2.10)

where c = (c1, c2) and u := (u(1), u(2)) is the initial capital, with n(t) the number of
arrivals before time t.

We will be concerned with measuring the event that both risk reserve processes
survive indefinitely, i.e., we aim to determine the survival function

F s(u(1), u(2)) := P(R
(1)
t ≥ 0, ∀t > 0 and R

(2)
t ≥ 0, ∀t > 0 | R0 = (u(1), u(2))),

under some ergodicity conditions that ensure F s is not null. In terms of times to ruin,
F s is related to the first time at least one of the two insurance lines is ruined,

τ∧(u(1), u(2)) = inf{t; min(R
(1)
t , R

(2)
t ) < 0} = τ (1)(u(1)) ∧ τ (2)(u(2)), (2.11)

where τ (i)(u(i)) are the marginal times to ruin, i = 1, 2. In particular,

F s(u(1), u(2)) = 1− P(τ∧(u(1), u(2)) <∞).

We can also define the first time at which both insurance lines are ruined:

τ∨(u(1), u(2)) = τ (1)(u(1)) ∨ τ (2)(u(2)).

It is similarly related to the probability that at least one of the two branches survives
indefinitely,

F sOR(u(1), u(2)) := P(R
(1)
t ≥ 0, ∀t > 0 or R

(2)
t ≥ 0, ∀t > 0 | R0 = (u(1), u(2))),

by

F sOR(u(1), u(2)) = 1− P(τ∨(u(1), u(2)) <∞).

Notice that τ∨ is not the same as inf{t; max(R
(1)
t , R

(2)
t ) < 0}, that is, joint ruin does

not have to happen simultaneously.

The above survival functions are then related by

F sOR(u(1), u(2)) = F s(u(1),∞) + F s(∞, u(2))− F s(u(1), u(2)),

where F s(u(1),∞) and F s(∞, u(2)) are the marginal survival functions. Moreover, we
also have F i,j(u(1), u(2)), the probability that component i survives indefinitely, while
component j ruins, for i, j = 1, 2, i 6= j.

F 1,2(u(1), u(2)) = F s(u(1),∞)− F s(u(1), u(2)),
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and similarly for F 2,1(u(1), u(2)).
In view of the above, it suffices to determine F s(u(1), u(2)) and the marginal survival

functions in order to obtain all the other survival/ruin functions.
Ruin can only occur at arrival epochs, and since arrivals are simultaneous, we have

the following relation for τ∧, the exit time defined in (2.11):

{τ∧(u(1), u(2)) > tn} = {Mn−1 ≤ (u(1), u(2))}. (2.12)

Notice also that τ∧ can now be rewritten in terms of the order relation ’≥’:

τ∧(u(1), u(2)) = inf{tn ;Rtn � 0 |R0 = (u(1), u(2))}.
We can regard the finite horizon survival function

F sn(u(1), u(2)) := P(τ∧(u(1), u(2)) > tn)

as the c.d.f. of a survival measure. Relation (2.12), Lemma 2.2.1 and Proposition 2.2.1
imply that this survival measure is nothing else but the distribution of the reflected
random walk Vtn inside the non-negative quadrant of R2.

Theorem 2.2.1 (Duality). The following identity relates the finite horizon survival
functions of the risk reserve process to the distribution of the embedded workload
process in the associated parallel queueing system:

P(Rti ≥ 0, i = 1, ..., n |R0 = (u(1), u(2))) = P(Vtn ≤ (u(1), u(2)) |V0 = 0). (2.13)

Proof. That Vtn is the reflected version of the random walk follows directly from the
fact that it is the solution of the recursive equation in Proposition 2.2.1. In view of
Lemma 2.2.1 and (2.12), the duality relation (2.13) is also obvious, so this concludes
the proof.

2.3 Siegmund duality for coupled processors models

The purpose of this section is to show that the workload process embedded at arrival
epochs which appears in the study of two interacting queues can be represented as a
special kind of reflected process and this can further be related to a class of random
walks which have certain absorbing sets in the plane. The geometry of these sets is tied
to the special way in which the reflection works for the buffer content of the queueing
system. This relation -which is a direct extension of the Duality Theorem 2.2.1- is
the topic of Theorem 2.3.2, which is also the main result of this subsection. The dual
absorbing processes are killed upon exiting domains which contain the non-negative
quadrant as a subset, so they are allowed to have a negative component before the
exit time (it is not clear if this has a ruin interpretation, see Theorem 2.3.2).

As introduced in Section 1.2, the coupled processor model is a queueing system
consisting of two parallel processors that are switching to process work from the other
buffer instead of entering an idle state (this happens if the other buffer is not empty
already).
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There are operators ∧βα defined in (2.15) that are acting on the (unrestricted)
inventory level and they give a representation for the embedded workload process
(Theorem 2.3.1). It will be shown that one can associate two kinds of absorbing
processes using the related operators defined in (2.15-2.16) and then the embedded
workload distribution can be squeezed in between the survival probabilities of these
dual processes. As in the previous subsection, the ordered vector space structure is
key for duality.

The Lindley recursion for the amount of work at the arrival epoch tn+1 in a system
with coupled processors reads as follows:

V
(1)
tn+1

=

[
V

(1)
tn +B(1)

n − c1An +
c∗2
c2

(V
(2)
tn +B(2)

n − c2An) ∧ 0

]
∨ 0,

V
(2)
tn+1

=

[
V

(2)
tn +B(2)

n − c2An +
c∗1
c1

(V
(1)
tn +B(1)

n − c1An) ∧ 0

]
∨ 0. (2.14)

Here ci is server i speed and c∗i is the working speed when processing from the other
buffer. The system is initially empty. An interpretation for the above recursion is that

1

c2
(V

(2)
tn +B(2)

n − c2An) ∧ 0

is the length of the idle period of the second component (if non-zero and assuming
non-coupled processors), so when multiplied with c∗2, it becomes the total capacity
that server 2 can process from buffer 1 before it receives an arrival of its own.

There is a lot of geometry behind the dynamics of this queueing system. Define
the reflection angles α := arctan c∗1/c1, β := arctan c∗2/c2, and let the (non-negative)
cones Cα and Cβ be as in Figure 2.2. By a cone is meant any subset of the vector
space R2 which is closed under linear combinations with non-negative scalars. We will
take these cones to be closed in the usual topology of R2.

Each cone Cα and Cβ defines an order relation well behaved with the linear structure
of R2 by setting

x ≥α y ⇔ x− y ∈ Cα, x ≥β y ⇔ x− y ∈ Cβ .

Denote the suprema of two vectors x ∨α y (x ∨β y) to be the least upper bound of
x and y w.r.t. the above order relations. Geometrically, x ∨α y is obtained by taking
the intersection of the shifted positive cones (x+ Cα) ∩ (y + Cα). This is still a cone
and its vertex lies precisely at x∨α y. The same construction gives x∨β y, when using
the cone Cβ . Similarly, x ∧α y (x ∧β y) is defined using the negative cone −Cα (−Cβ)
shifted at x and y.

For the duality we need the following operator ∧βα : R2 × R2 → R2,

x ∧βα y :=


x ∧α y, if x1 ≥ y1, x2 ≤ y2

x ∧β y, if x1 ≤ y1, x2 ≥ y2

x ∧α y = x ∧β y, if xi ≤ yi, or xi ≥ yi, i = 1, 2.
(2.15)
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α0

1

(a)

β

0

1

(b)

Figure 2.2: The cones Cα and Cβ .

Define also the operator ∨βα : R2 × R2 → R2,

x ∨βα y :=


x ∨α y, if x1 ≥ y1, x2 ≤ y2

x ∨β y, if x1 ≤ y1, x2 ≥ y2

x ∨α y = x ∨β y, if xi ≤ yi, or xi ≥ yi, i = 1, 2.
(2.16)

∧βα will be used to define the compensator for the workload process (a running
’infimum’ of the input process, see Figure 2.3) below, while ∨αβ will appear in the
running maximum associated to the workload process in Theorem 2.3.1 (Figure 2.4
below); which is the first step towards the duality Theorem 2.3.2. At this point, let us
remark that these operators are not commutative (they are asymmetric). They are
however related one to the other by

− (x ∧βα y) = (−y) ∨βα (−x), (2.17)

and the order in which the vectors appear matters. This is a key relation that follows
at once because of the identity −(x ∧α y) = (−x) ∨α (−y), together with the similar
one for ∧β . Besides the above relation, we have the following properties.

Lemma 2.3.1. The following compatibility relations between the operator ∧βα and the
linear structure on R2 hold

i) z + x ∧βα y = (x+ z) ∧βα (y + z), z ∈ R2,

ii) ω(x ∧βα y) = (ωx) ∧βα (ωy), ω ∈ R+.

The same is valid for ∧βα replaced by ∨βα.

Proof. Notice that the regions of the plane used to define the operators ∧βα, ∨βα in
(2.15), (2.16) are preserved by vector addition and positive scalar multiplication,
hence the proof follows from the fact that the lattice operations ∧α(∨α), ∧β(∨β) are
generated by cones.

Before we give the next result, let us make some conventions related to the lack of
commutativity: when taking the successive infima of the process (Sn)n, we will always
”minimize” to the right, that is by convention set
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x1 ∧βα x2 ∧βα x3 := (x1 ∧βα x2) ∧βα x3,

and we will ”maximize” to the left:

x1 ∨βα x2 ∨βα x3 := x1 ∨βα (x2 ∨βα x3).

These are successively defined for n vectors by iteration, and these conventions are
consistent with (2.17). This convention extends to n vectors when taking their
successive infima and suprema, as in (2.18) below.

As usual, let Sn =
∑n
k=1Xk, X

(i)
k := B

(i)
k − ciAk, i = 1, 2, together with the

backwards coupled walk S∗k . The reason for introducing the above operators is the
following

Theorem 2.3.1. The solution to the Lindley recursion (2.14) can be represented as

Vtn+1
= Sn −

n∧β

α
i=0

Si.

Moreover, the compatibility between order and vector space structure implies the
following relation:

Sn −
n∧β

α
i=0

Si =

n∨β

α
i=0

S∗i . (2.18)

Proof. The first part of the proof is similar to the proof of Proposition 2.2.1. Let us
denote the quadrants of the plane with qI − qIV . The positive quadrant is qI and the
rest are defined based on the trigonometric order. Proceeding by induction, (2.3.1)
holds trivially for Vt1 . Assume the identity to be valid for Vtn . If we denote by

Cn−1 :=

n−1∧β

α
i=0

Si,

then the following cases will be considered, depending on the position of Sn relative
to Cn−1.

Case I: Sn − Cn−1 ∈ qI, and then, by definition, ∧βα ≡ ∧α ≡ ∧β , so that Cn =
Cn−1∧βαSn = Cn−1. Using the induction hypothesis, we can write Sn−Cn = Vtn +Xn,
this vector belonging to the first quadrant, so that it is equal to Vtn+1

by (2.14).
Case II: Sn−Cn−1 ∈ qII. Then Cn−1∧βαSn = Cn−1∧αSn. There are two subcases

to be considered:
Firstly, if Sn − Cn−1 ∈ qII ∩ (−Cα), then Sn ≤α Cn−1 ⇒ Cn−1 ∧α Sn = Sn, so

that Sn −Cn = 0 (see Figure 2.3(a)). On the other hand, by the induction hypothesis,
Sn − Cn−1 = Vtn +Xn and the case we are in dictates{

V
(1)
tn +X

(1)
n ≤ 0,

V
(2)
tn +X

(2)
n + tanα

[
V

(1)
tn +X

(1)
n

]
≤ 0,
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which means that Vtn+1
= Sn − Cn = 0, from (2.14). In words, at epoch tn+1 server

one has been idle long enough to drain the inventory level that buffer two would have
had.

Secondly, if Sn − Cn−1 ∈ qII\(−Cα), then

S(1)
n − C(1)

n = 0, S(2)
n − C(2)

n = S(2)
n − C(2)

n−1 + tanα
[
S(1)
n − C(1)

n−1

]
. (2.19)

The geometric argument for these is in Figure 2.3(b). In the triangle 4SnPQ, the

length of
−−→
PQ is equal to tanα |−→PSn| = tanα [S

(1)
n − C(1)

n−1]. The origin is at Cn−1

and the square is placed on top of Cn. Thus we have the identity S
(2)
n − C(2)

n =

|−−−−→PCn−1| − |
−−→
PQ|. On the other hand, by hypothesis, Sn−1−Cn−1 = Vtn , so the second

identity in (2.19) becomes

S(2)
n − C(2)

n = V
(2)
tn +X(2)

n + tanα
[
V

(1)
tn +X(1)

n

]
≥ 0.

Thus (2.19) is identical with the right-hand side of the recursion (2.14), which means
that also in this case Vtn+1

= Sn − Cn.
The case Sn − Cn−1 ∈ qIII is similar to the first case, whereas the proof for the

case Sn − Cn−1 ∈ qIV is analogous to that for Case II, with the difference that ∧βα
becomes ∧β . This completes the argument for the first part of the theorem.

Using Lemma 2.3.1 together with relation (2.17), gives

Sn −
n∧β

α
i=0

Si = Sn +

0∨β

α
i=n

(−Si) =

0∨β

α
i=n

(Sn − Si) =

n∨β

α
i=0

S∗i .

In the intermediate terms, the supremum runs from i = n down to i = 0, because, as
noted above (2.17), these operators do not commute, so the order in which they are
applied makes a difference (see also the conventions made before the theorem). The
proof is now complete.

The right-hand side of (2.18) defines a ”maximum” process, call it (M̃n)n (here
maximum should be taken in a loose sense because ∨βα is not defined by an order
relation). As in the classical set-up, we will next associate to the process (M̃n)n a
hitting time that will describe the version of the random walk which has an absorbing
barrier. However, in order to have a Siegmund type of duality for the process Vt, we
need to impose a condition on the reflection angles, see Remark 2.3.1 below.

Denote for brevity Cα(x), Cβ(x) the shifted cones at x. Set also Cα,β(x) :=
Cα(x) ∪ Cβ(x), and set Cα,β := Cα,β(0), so that we have

y ≥α x or y ≥β x ⇔ y ∈ Cα,β(x).

Let us call the left-hand side of (2.18) the αβ-reflected version of the random walk
(Sn)n.
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α

Cn−1

Sn

1

(a)

α

Cn−1

Cn
Q

P

Sn

1

(b)

Figure 2.3: Positions of Sn relative to Cn−1 and the construction of infima.

β

0

M̃1 M1

S∗
1

1

(a)

β

M̃1=0 M1

S∗
1

1

(b)

Figure 2.4: The construction of maxima; M̃1 versus M1.
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Remark 2.3.1. The possibility to have an identity between the law of the αβ-reflected
process (Vtn)n and a process with an absorbing domain relies on the validity of the
following equivalence (see also (2.18))

x ∨βα y ∈ −Cα,β ⇔ x, y ∈ −Cα,β ,
for arbitrary vectors x, y ∈ R2. In words, knowing that the running ∨α,β-supremum
belongs to some subset of R2, we must be able to infer on the position of each component
that appears in the supremum. In contrast to the set-up of Section 2.2, where we can
find such an equivalence for the negative cones, see for example (2.12), in the present
set-up this is not always possible anymore. It is easy to see that this equivalence holds
only when α+ β = π/2 (α > 0 or β > 0, otherwise, if α = β = 0 the equivalence holds,
but we are back in the instance from Subsection 2.2).
In more generality, let Ccα,β(u) be the topological closure of the complementary of
Cα,β(u).

If α+ β ≤ π/2, then Ccα,β(u) ⊇ −Cα,β(u), and the following chain of implications
is valid

x ∨βα y ∈ −Cα,β(u)⇒ x, y ∈ −Cα,β(u)⇒ x ∨βα y ∈ Ccα,β(u)⇒ x, y ∈ Ccα,β(u).

If α + β ≥ π/2, then Ccα,β(u) ⊆ −Cα,β(u) and the converse chain holds. These
can be argued directly from definition (2.16), by considering all the cases, based on the
position of y relative to x, just like in the proof of Theorem 2.3.1.

Consider (S
a

n)n, the version of the random walk u − S∗n =: Rt∗n+1
, killed upon

exiting −Ccα,β , and (San)n, the version killed upon exiting Cα,β .

Theorem 2.3.2 (Siegmund Duality). There exists a duality relation between the αβ-
reflected version (Vtn)n of (Sn)n, conditional on Vt1 = x and the laws of the absorbed
random walks (San)n and (S

a

n)n. More precisely, under the condition α+ β ≤ π/2, it
holds for x ≥ 0, n ≥ 1 that

P(Vtn ∈ −Cα,β(u)|Vt1 = x) ≤ P(San ∈ Cα,β(x)|Sa0 = u) ≤
P(Vtn ∈ Ccα,β(u)|Vt1 = x) ≤ P(S

a

n ∈ −Ccα,β(x)|Sa1 = u), u ∈ Cα,β , (2.20)

and if α+β ≥ π/2, the chain of inequalities is reversed and valid whenever u ∈ −Ccα,β
(see Remark 2.3.1).

In particular, if α+ β = π/2, the αβ-reflected version of the random walk has the
same law as the version (San)n ≡ (S

a

n)n, absorbed upon exiting Cα,β ≡ −Ccα,β, (cf.
(2.13)):

P(Vtn ∈ −Cα,β(u)|Vt1 = x) = P(San ∈ Cα,β(x)|Sa0 = u), u ∈ Cα,β . (2.21)

Notice that the event on the right-hand side of (2.21) implies San has not been
killed up to epoch t∗n, that is we have
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P(San ∈ Cα,β(x)|Sa0 = u) = P(Sak ∈ Cα,β , k ≤ n− 1, San ∈ Cα,β(x)|Sa0 = u). (2.22)

Proof of Theorem 2.3.2. The proof is a variation of Theorem 2.3.1. The extra feature
is that the solution of the Lindley recursion was given under the condition Vt1 = 0,
and now we adapt it to the case Vt1 = x. Making use of the operators introduced, we
begin with the remark that recursion (2.14) can be represented as (mind the order in
which the supremum is taken)

Vtn+1
= 0 ∨βα (Vtn +Xn+1).

Iterating this recursion via Lemma 2.3.1 with initial condition Vt1 = x, gives along
the same lines as in the proof of Theorem 2.3.1:

Vtn+1
= 0 ∨βα S∗1 ∨βα S∗2 ∨βα . . . ∨βα (S∗n + x), (2.23)

where Vt1 = x appears in the rightmost term only.
Under the condition α+ β ≤ π/2, the chain of inequalities from Remark 2.3.1 is in

force, and thus we can write using (2.23), for an arbitrary u ∈ Cα,β :

Vtn+1
∈ −Cα,β(u)⇒ S∗k ∈ −Cα,β(u), k ≤ n− 1, S∗n + x ∈ −Cα,β(u),

which is the same as San ∈ Cα,β(x), via (2.22). Finally, (2.20) follows similarly from
the rest of the chain of inequalities from Remark 2.3.1.

The case α+ β ≥ π/2 follows from the second part of Remark 2.3.1, because in
this case we have the converse implications. This completes the proof.

Concluding remarks

Ergodicity. Focus first on the case α+ β ≤ π/2. For the embedded random walk
(u− S∗n)n starting at u ∈ Cα,β , define its first exit time from Cα,β :

τα,β(u) = min{t∗n; S∗n ≯α u, and S∗n ≯β u}.
The second inequality from (2.20) becomes via (2.22), for x = 0, u ∈ Cα,β :

P(Vtn ∈ Ccα,β(u)|Vt1 = 0) ≥ P(Sak ∈ Cα,β , k ≤ n|Sa0 = u) = P(τα,β(u) > t∗n), (2.24)

(cf. (2.13)). Since (Vtn)n is a regenerative process with 0 as regeneration point, Vtn
converges weakly as n→∞ to a proper probability distribution Vt∞ , whenever it has
0 as a positive recurrent state, and then by (2.24), the hitting time τα,β(0) must have
positive probability of never occurring, i.e., (2.24) with u = 0 must read in the limit

P(Vt∞ = 0) ≥ P(τα,β(0) =∞) > 0.
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Thus, a sufficient condition that ensures ergodicity for (Vtn)n is that the mean increment
E(−X1) of San must lie in the topological interior C◦α,β . In words, (San)n must drift
away from its absorbing domain.

That the necessary condition is E(−X1) ∈ Cα,β , follows along the same lines by
using the first inequality from (2.20) (which gives the upper bound on the distribution
function of Vt∞).

For the case α+ β ≥ π/2, the discussion is analogous. One has to redefine τα,β to

be the exit time of S
a

n from the (closed, convex) set −Ccα,β . The chain of inequalities
in (2.20) is reversed so one should use the last inequality that reads in the current
case:

P(Vtn ∈ Ccα,β(u)|Vt1 = x) ≥ P(S
a

n ∈ −Ccα,β(x)|Sa1 = u),

for u ∈ Ccα,β . The same arguments as in the previous case give that the mean drift

E(−X1) of S
a

n must belong to −Ccα,β , and in the current case, this is sufficient to
ensure the queueing system is stable. Remark that in both cases, the domain inside
which the random walk is allowed to evolve before absorbtion is closed and convex.

In Cohen and Boxma [41], the study of the amount of work in the coupled processor
model is reduced to a functional equation in terms of Laplace-Stieltjes transforms, which
is then further related to a boundary value problem of Riemann type. They assume
independent Poisson arrivals with intensities λi and independent service requirements
between the queues. In our case, the arrival streams are merged with common arrival
intensity, say, λ ( λ = λ1 + λ2, hence service requirements are correlated among the
queues, and since a type 1 arrival will demand no work from queue 2, the traffic loads
remain the same). Synchronizing notations - the model description is different, but
equivalent, see [41, p. 288, pp. 294-296] - they have

ρ1 := 1 +
c∗2
c1
≥ 1, ρ2 := 1 +

c∗1
c2
≥ 1,

and further, the natural server rates are normalized to c2 = c1 = 1, so that the
reflection angles in our notation become tanα = ρ2 − 1, tanβ = ρ1 − 1 (the ρi’s in
[41] have a different meaning than the usual load coefficients). It is easy to see that
the ergodicity condition extracted in [41] from the study of the functional equation
reads in our notation

b1 := λEB(1)

(
1− 1

1 + c∗1

)
+
λEB(2)

1 + c∗1
< 1, b2 :=

λEB(1)

1 + c∗2
+λEB(2)

(
1− 1

1 + c∗2

)
< 1,

and is equivalent to the conditions

EX(2)
1 + tanαEX(1)

1 < 0, EX(1)
1 + tanβ EX(2)

1 < 0, (2.25)

which in case α + β ≤ π/2 is the same as E(−X1) ∈ C◦α,β , and it is equivalent to
E(−X1) ∈ Ccα,β for α+ β ≥ π/2. In any case, (2.25) means the mean drift vector must
point into the interior of the intersection of the lower hyperplanes at 0 with direction
vectors (tanα, 1) and respectively (1, tanβ).
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In conclusion, the stability condition for the coupled processor model studied in
Cohen and Boxma [41] is the same as the ergodicity condition for the dual absorbed
process San, as predicted by the duality relation (2.20). The result of Theorem 2.3.2 is
valid under very general assumptions on the arrival process; for example, a semi-Markov
structure for the arrival process preserves this ergodicity condition.

Large deviations. The possibility to infer on the positions of the walks San and S
a

n

based on the position of the all-time maximum M̃∞ is the usual method for analyzing
overflow probabilities, either when increments are light-tailed or heavy-tailed. Assume
for simplicity α+ β = π/2, then under the stability condition (2.25), (2.20) becomes
in the limit

P(Vt∞ /∈ −Cα,β(u)) = P(∃n0; San0
/∈ Cα,β |Sa0 = u),

and the right-hand side is typically the starting point for the study of large deviations.

Simulation. One of the reasons why Siegmund [97] studied such duality relations
is that estimating the hitting probabilities for the absorbed process is more efficient
numerically than the problem of estimating the equilibrium distribution for the
dual reflecting process (this is the usual Markov-Chain-Monte-Carlo scheme, the
efficiency of which depends severely on the mixing properties of the chain). For
α + β = π/2, Theorem 2.3.2 gives a numerical scheme for simulating exactly the
equilibrium distribution of the embedded workload in the system, and it provides
bounds otherwise.



Chapter 3

Single server queues and
Sparre-Andersen risk reserve
processes with correlations

This chapter deals with the study of performance measures related to single server
queues and their dual Sparre-Andersen risk reserve processes which have a form of
dependence between inter-arrival times and service requirements/claim sizes. These
models were introduced and described in Section 1.1. The main contributions of the
current chapter are the following: (i) We provide an exact analysis of the waiting time
distribution in a GI/G/1 queue with correlation between a service requirement B and
the subsequent inter-arrival time A, B and A having a multivariate matrix-exponential
distribution. Via (2.6), the distribution of the waiting time is then immediately related
to the ruin probability of the dual risk reserve process. (ii) We prove that the simple
relation which holds between steady-state workload and waiting time distributions
in the ordinary GI/GI/1 queue remains valid in the case of correlated B and A.
(iii) We consider the dual Sparre-Andersen insurance risk model with correlation
between inter-claim time and subsequent claim size, and in particular we show that
the Takács relation (cf. [63], Corollary 4.5.4) between the ordinary ruin probability
and the delayed ruin probability remains valid; and this is analogous to the relation
between the steady-state waiting time and the workload. (iv) Finally, we show that,
in comparison with the classical set-up with mutually independent sequences (Ak)k≥1

and (Bk)k≥1, positive and negative correlation respectively decreases and increases
the waiting times in the sense of convex ordering. We also illustrate with numerical
results the influence of dependence on the expected values of the waiting times but
also on the 95%-percentiles of the ruin functions (values at risk) - the quantiles of the
ruin function correspond to the values of the waiting time tail, again via (2.6).

The chapter is organized as follows. Section 3.1 contains a detailed model descrip-
tion, which in particular includes a description of the class of bivariate distributions
under consideration. It also presents the waiting time analysis. The relation between
the steady-state waiting time and workload distributions is exposed in Section 3.2.

31
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Section 3.3 is devoted to the dual insurance risk model. In Section 3.4 we consider
several examples of bivariate distributions for (Ak, Bk). For these examples, we present
numerical results on the mean and tail of the waiting time distribution (and, by duality,
on the ruin probability), which exhibit the effect of (positive or negative) correlation
on waiting time and ruin probability, together with stochastic ordering results and by
consequence, ordering between the waiting times.

3.1 Model description and analysis of waiting times

We study a generalization of the classical GI/GI/1 model, where we allow for an
arbitrary correlation between the service requirement of the nth customer and the
inter-arrival time between the nth and (n + 1)th customer. As a key performance
measure in this model, we first consider the waiting time process in an initially empty
system. It follows from Section 1.1 that the waiting time Wn is the same as Vtn , the
embedded workload at epoch tn, up to the factor c−1. In Section 3.2, we show a relation
between the steady-state waiting time (embedded workload) and the steady-state
workload, which is similar to the independent case (Cohen [39]).

Let Bi be the service requirement of the ith customer, Ai the inter-arrival time
between the ith and the (i+ 1)th customer, and c the server’s speed. We assume that
(Ai, Bi) are i.i.d. sequences of random vectors. This implies that the arrival process of
customers is renewal and that the quantities (Bi − cAi) are i.i.d. However, within a
pair, Ai and Bi are dependent, hence the ith service requirement and the subsequent
inter-arrival time are correlated. We denote by (A,B) a generic pair made up of a
service requirement and the subsequent inter-arrival time. In Figure 1.1, the workload
process {Vt, t ≥ 0} and the waiting time process {Wn, n = 1, 2, . . . } are displayed;
here Vt denotes the work in the system at time t, and Wn denotes the waiting time
of the nth arriving customer. These are defined in Section 1.1. It follows from the
relation Wn+1 = c−1Vtn+1

and Recursion (1.1) that the waiting time process satisfies
the Lindley recursion:

Wn+1 = max(Wn + c−1Bn −An, 0).

We assume that both B and A have finite first moments, and then under the stability
condition E(c−1B−A) < 0, Wn converges in distribution to a proper random variable
W and we can write:

W
d
= max

(
W + c−1B −A, 0

)
. (3.1)

The dependence structure: We model the dependence structure using the class
of multivariate matrix-exponential distributions (MVME), which was introduced by
Bladt and Nielsen [29]. This class contains other known classes of distributions with
interesting probabilistic interpretations, like the multivariate phase-type distributions
studied in Assaf et al. [18] and further in Kulkarni [79]. We will further discuss
this class in Section 3.4 where we also give examples which admit a probabilistic
interpretation. Below we cite Definition 4.1 of Bladt and Nielsen [29]:
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Definition 3.1.1. A non-negative random vector (A,B) is said to have a bivari-
ate matrix-exponential distribution if the joint Laplace-Stieltjes transform (LST)

Ee−s1A−s2B is a rational function in (s1, s2), i.e. it can be written as G(s1,s2)
D(s1,s2) , where

G(s1, s2) and D(s1, s2) are polynomial functions in s1 and s2.

As a consequence of this defining property, the transform of the differenceX = c−1B−A
is also a rational function. The distribution of X is called a bilateral matrix exponential

(see Bladt et al. [31], Thm. 3.1). For simplicity, let us denote Ee−sX := f(s)
g(s) . We rewrite

identity (3.1) in terms of Laplace-Stieltjes transforms. After some straightforward
computations, one obtains:

Ee−sW
[
1− Ee−sX

]
= P (W +X ≤ 0)− Ee−s(W+X)1{W+X≤0}. (3.2)

Using the rationality of the transform of X, we can rewrite (3.2):

Ee−sW
g(s)− f(s)

g(s)
= R−(s),

where R−(s) is the function on the right-hand side of (3.2), which is analytic in
Re s < 0 and continuous in Re s ≤ 0. Also, since W ≥ 0 by definition, Ee−sW is
analytic in Re s > 0 and continuous in Re s ≥ 0.

In the next theorem we calculate the Wiener-Hopf factors of the associated random
walk. These factors are the solution to the following boundary value problem:

Given the rational function 1−Ee−sX , find two functions K+(s) and K−(s) with
the following properties:

1. K+(s) is analytic in Re s > 0, K−(s) is analytic in Re s < 0, and both are
continuous up to the imaginary axis.

2. On the imaginary axis, K+(s) and K−(s) satisfy the identity

(1−K+(s))(1−K−(s)) = 1− Ee−sX .

The above factorization is unique and the Wiener-Hopf factors 1−K+(s), 1−K−(s)
can be represented using Spitzer’s identity (Prabhu [94], Ch. 1). For the random walk
with increments Xn, n ≥ 1, K+(s) and K−(s) are the transforms of the first ascending
ladder height and the first descending ladder height, respectively (for a probabilistic
introduction, see Cohen [38]).

Using the Wiener-Hopf factorization, we now obtain the LST of the steady-state
waiting time distribution:

Theorem 3.1.1. For (A,B) having a bivariate matrix exponential distribution, the
LST of the steady state waiting time is given by

Ee−sW =

∏
s̃−j

(1− s
s̃−j

)∏
s−k

(1− s
s−k

)
, (3.3)

where s−k are the zeros of 1− Ee−sX in Re s < 0 and s̃−j are its poles in Re s < 0.
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Proof. Let m+ be the number of zeros of g(s) in Re s ≥ 0. We move these to the
right-hand side of the identity above:

Ee−sW
g(s)− f(s)

g−(s)
= g+(s)R−(s), (3.4)

where g+(s) =
∏m+

k=1(s− s̃+
k ), the product being over the zeros of g with Re s̃+

k ≥ 0;
and g−(s) = g(s)/g+(s). Now the left-hand side of (3.4) is analytic in Re s ≥ 0, the
right-hand side remains analytic in Re s < 0; therefore (3.4) represents a function that
is analytic everywhere (entire).

We use a version of Liouville’s theorem 3.5.2 (see Appendix), which states that an
entire function with asymptotic behavior O(|s|m+) must be a polynomial of degree at
most m+.

Liouville’s theorem implies that the left-hand side of (3.4) is a polynomial P (s) of
degree deg(P ) ≤ deg(g+) = m+. Therefore we can write

Ee−sW =
g−(s)

g(s)− f(s)
P (s), Re s ≥ 0. (3.5)

Since g−(s) has zeros only in Re s < 0, P (s) must have all the zeros of g − f from
Re s ≥ 0 because otherwise Ee−sW would have a pole in Re s ≥ 0 which is not possible.

Now all boils down to showing that g(s)− f(s) and g(s) have the same number of
zeros (i.e. m+) in Re s ≥ 0. Rouché’s theorem 3.5.1 in the Appendix is the right tool
for this, and in Lemma 3.5.1 in the Appendix we show that indeed |g(s)| > |f(s)| in
Re s ≥ 0.

Since P (s) must have these m+ zeros of g(s)−f(s) as its own, and at the same time
deg(P ) ≤ m+ from above, this determines P (s) up to a constant: P (s) = α(g−f)+(s),
where (g − f)+(s) :=

∏
s+k

(s − s+
k ), s+

k being the zeros of (g − f)(s) with Re s ≥ 0

(this also includes the zero at s0 = 0). After replacing P (s) and reducing the factors
in Formula (3.5), we obtain the following formula for Ee−sW :

Ee−sW = α

∏
s̃−j

(s− s̃−j )∏
s−k

(s− s−k )
. (3.6)

Setting s = 0 determines the constant: α =
∏
s−k

(−s−k )/
∏
s̃−j

(−s̃−j ), hence (3.3) follows

and the proof is complete.

Remark 3.1.1. The PASTA property (see Wolff [104]) does not hold, and hence
the distribution of the steady-state workload differs in principle from cW , the steady-
state workload as seen by an arriving customer. In particular, we have P(V = 0) 6=
P(cW = 0). Actually, we find the atom at zero of cW if we take s → ∞ in (3.3),
with the additional remark that the numerator has the same number of factors as the
denominator, which follows from Rouché’s theorem:

P(cW = 0) = α =
∏
s−k

s−k /
∏
s̃−j

s̃−j . (3.7)
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On the other hand, from first principles we have, with ρ := EB
cEA , for the steady-state

probability of an empty system:

P(V = 0) = 1− ρ.

The factorization used in the proof of identity (3.3) can be also used to obtain the
transform EesI of I, the steady state idle period of the system.

Corollary 3.1.1. The transform of the idle period is given by

EesI = 1−
∏
s+k

(s− s+
k )/

∏
s̃+j

(s− s̃+
j ), Re s ≤ 0,

with s+
k being the zeroes of g(s)−f(s)

g(s) in Re s ≥ 0 and s̃+
j its poles in Re s > 0.

Proof. Conditional on W +X ≤ 0, I = −(W +X), so we may write

EesI =
1

P(W +X ≤ 0)
Ees(−W−X)1{W+X≤0}, Re s ≤ 0.

The transform Ees(−W−X)1{W+X≤0} already appears on the right-hand side of (3.2),
hence the transform of the idle period can be rewritten as

EesI = 1− 1

P(W +X ≤ 0)
· Ee−sW · g(s)− f(s)

g(s)
. (3.8)

As in the proof of Theorem 3.1.1, we make use of the factorizations g(s) =
g+(s) · g−(s) and (g − f)(s) = (g − f)+(s) · (g − f)−(s) which were obtained via
Rouché’s theorem. Therefore, using (3.5), (3.6) and (3.7) we may write

EesI = 1− P(W = 0)

P(W +X ≤ 0)
· g−(s)

(g − f)−(s)
· g(s)− f(s)

g(s)
.

Note that the identity in law (3.1) implies P(W = 0) = P(W+X ≤ 0). After cancelling
the factors above, EesI reduces to

EesI = 1−
∏
s+k

(s− s+
k )/

∏
s̃+j

(s− s̃+
j ).

Remark 3.1.2. Alternatively we can use Formula (6.20) in Cohen [39], p. 21, which
makes use of the regenerative structure of the workload process w.r.t. the busy cycles of
the queue. It can be shown that the formula remains valid even in the dependent case.
The connection with (3.8) is then 1

P(W+X≤0) = EN , the mean number of customers

served during a busy cycle.

In the next section we show that similar arguments involving regeneration as the
ones employed in [39], can be extended in our setting to give the relation between the
steady-state workload and waiting time distributions.
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3.2 The steady-state workload

In this section we consider the steady-state workload in the queueing model with
correlation between service requirement B and subsequent inter-arrival time A. We
shall prove that the known relation between the steady-state workload and waiting
time for the single server queue with independent service requirement and inter-arrival
time (Asmussen [16], p. 274, Cohen [39], p. 19-20, or [40], p. 296, 297) remains
valid. For this purpose we adapt the proof in [39], which is based on the fact that
the workload process regenerates at the beginning of each busy cycle. The LST of
the workload and waiting time distributions can then be written as stochastic mean
values of the LST over one full busy cycle.

Theorem 3.2.1. The steady-state workload V and the waiting time W are related in
the following way:

P(V ≤ v) = 1− ρ+ ρP(cW +Bres ≤ v), (3.9)

with ρ = EB
cEA and Bres the marginal distribution of a residual service requirement, viz.,

P(Bres ≤ v) = 1
EB

v∫
0

P(B > u) du.

Remark that only the marginal distribution of the residual service requirement
appears in the above, not the joint distribution of A and B.

Proof. Let 0 be the beginning of a busy period and P be its length. Following Cohen
[39], within this busy period, we may write (cf. Figure 1.1):

Vt = cWn(t) +Bn(t) − c(t− tn(t)),

where Vt is the workload at time t, n(t) is the number of arrivals in [0, t] and tn(t) is
the last arrival epoch before t. The following identities hold path-wise:∫ P

0

e−sVtdt =

∫ P

0

e−s[cWn(t)+Bn(t)−c(t−tn(t))] dt

=
N−1∑
i=1

∫ Ai

0

e−s(cWi+Bi−ct)dt+

∫ AN−I

0

e−s(cWN+BN−ct) dt. (3.10)

Here N is the number of customers served during a busy period. The key observation
is that the following relation holds even when Ai and Bi are dependent:∫ Ai

0

e−s(cWi+Bi−ct)dt = e−s(cWi+Bi)
1

cs
(ecsAi − 1).

There is no expectation taken so integration is carried out as usual, all these being
path-wise identities. Formula (3.10) now becomes
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P∫
0

e−sVt dt =
1

cs

N−1∑
i=1

e−s(cWi+Bi)
[
ecsAi − 1

]
+

1

cs
e−s(cWN+BN )

[
ecs(AN−I) − 1

]

=
1

cs

N−1∑
i=1

[
e−s(cWi+Bi−cAi) −e−s(cWi+Bi)

]
+

1

cs
e−s[cWN+BN−c(AN−I)]

− 1

cs
e−s(cWN+BN ).

We make use of the following identities for the waiting time during a busy period:
For i ≤ N − 1, cWi +Bi − cAi = cWi+1; and cWN +BN − cAN = −cI, hence

P∫
0

e−sVt dt =
1

cs

N−1∑
i=1

(
e−scWi+1 − e−scWi−sBi)+

1

cs

[
1− e−scWN−sBN ]

=
1

cs

N∑
i=1

e−scWi(1− e−sBi). (3.11)

All derivations up to this point are path-wise manipulations, hence insensitive to
correlations between Ai and Bi. Remark that Bn is independent of Wn but also of
the r.v. 1{N≥n}. So if we take expectations in (3.11)

E
P∫

0

e−sVt dt =
1

cs
E
∞∑
n=1

[
e−scWn1{N≥n}(1− e−sBn)

]
= E

( ∞∑
n=1

e−scWn1{N≥n}

)
1− Ee−sB1

cs
,

so that

E
P∫

0

e−sVt dt = E

(
N∑
i=1

e−scWi

)
1− Ee−sB1

cs
. (3.12)

A key remark is that the workload process is still regenerative with respect to the
renewal sequence given by the epochs at which busy periods begin. Under the stability
condition, the mean cycle length EC (C is the length of a regeneration cycle) of the
workload process is finite, hence the stochastic mean value results still hold in this
case (cf. Cohen [39], Thm. 4.1) and we have the identities:

Ee−sV =
1

EC
E

C∫
0

e−sVt dt,
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and

Ee−sW =
1

EN
E

N∑
1

e−sWi .

We can now use these identities together with (3.12) and EC = EP + EI, so we may
write

Ee−sV =

E
P∫
0

e−sVt dt+ EI

EP + EI
=
EN EB
EC

Ee−scW
1− Ee−sB
csEB

+
EI
EC

.

Note that by definition, P =
∑N
i=1 c

−1Bi, with (Bi)i the i.i.d. sequence such that Bi
is the service requirement of the ith customer in a busy cycle. Hence Wald’s identity
gives cEP = EN EB, and using in addition EP

EC = ρ, EI
EC = 1− ρ , we can rewrite the

above as

Ee−sV = ρ
1− Ee−sB
sEB

Ee−scW + (1− ρ), Re s ≥ 0.

This can immediately be inverted to give the desired relation (3.9), which concludes
the proof.

3.3 Duality between the insurance and queueing
processes

It is well known that there are duality relations between the classical GI/GI/1 queue and
the corresponding classical Sparre-Andersen insurance risk model, with independence
between service requirements (respectively claim sizes) and inter-arrival times. In this
case ‘corresponding’ means: the same inter-arrival distributions, and that the service
requirement distribution equals the claim size distribution, the service rate c is the
same as the premium rate. There are two versions of the duality result (cf. Asmussen
and Albrecher [17], p. 45, 161):

(i) Ψ0(u) = P(cW > u), (3.13)

(ii) Ψ(u) = P(V > u). (3.14)

Here P(cW > u) is the tail of the amount of work as seen by an arriving customer
in equilibrium, and P(V > u) is the tail of the steady-state workload in the G/G/1
queue. Ψ0(u) is the ruin probability in the Sparre-Andersen model, when at time
t = 0 the capital is u and a new inter-arrival time begins, i.e., t = 0 is an arrival epoch.
Ψ(u) is the ruin probability when the risk process is started in stationarity, i.e., t = 0
is independent of the process itself. In this case the time elapsed until the first claim
arrives has a residual distribution. We will call Ψ0(u) the ordinary ruin probability
and Ψ(u) the delayed ruin probability. It is also worth to notice that the relations
obtained in this section between Ψ0 and Ψ do not use the bilateral matrix exponential
structure of the increments Xn.
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We pose and answer three questions in this section, for the dependencies under
consideration (between service requirement and subsequent inter-arrival time, respec-
tively between inter-claim time and subsequent claim size):
(1) Does the duality relation (3.13) still hold?
(2) Does the duality relation (3.14) still hold?
(3) Does the relation between steady-state workload and waiting time from Theo-
rem 3.2.1 translate to a relation between delayed ruin probability and ordinary ruin
probability, just as it does in the independent case (cf. p. 69 of Grandell [68])?

The answer to question (1) is immediately seen to be positive, as shown in Asmussen
and Albrecher [17] p. 45, because this relation uses only the random walk structure of
the risk/queueing process embedded at arrival epochs, which is preserved in the model
we study (Bi and Ai only appear in the random walk via the difference Bi − cAi).
The Laplace transform of the ruin probability now immediately follows from the
waiting time LST in Theorem 3.1.1, by observing that the relation Ψ0(u) = P(cW > u)
becomes in terms of transforms: Ψ∗0(s) = 1

s

(
1− Ee−scW

)
. Hence we have:

Corollary 3.3.1. The Laplace transform of Ψ0(u), Ψ∗0(s) :=
∫∞

0
e−suΨ0(u) du equals

Ψ∗0(s) =
1

s

1−
∏
s̃−j

(1− cs
s̃−j

)∏
s−k

(1− cs
s−k

)

 .
This result was also obtained in Constantinescu et al. [48], using operator theory.
We shall prove that the answer to question (3) is also affirmative. In combination

with the duality relation (3.13), this implies that the answer to question (2) is also
affirmative: the duality relation (3.14) still holds in the dependent case.

For the purpose of studying the relation between the ordinary and the delayed
ruin functions below, we assume that the pair (A,B) has a joint density, fA,B(r, z).
Let φ0(u) := 1−Ψ0(u) and φ(u) := 1−Ψ(u) be the survival functions for the ordinary
risk process and for its stationary version, respectively. In addition, denote by u the
initial capital, and let α := 1

EA be the arrival rate of claims.

Theorem 3.3.1. The relation between the survival functions for the two versions of
the ruin process is

φ(u) = φ(0) +
α

c

∞∫
v=0

u∫
w=0

φ0(u− w)

∞∫
z=w

fA,B(v, z) dz dw dv.

Let us make some remarks about this formula before proving it.

Remark 3.3.1. In the stationary version of the ruin process, the first claim arrival
happens after a time distributed as the residual inter-arrival time. Because of the
correlation between claim sizes and their inter-arrival times, the claim size that
corresponds to the residual arrival time will have a distinguished distribution; therefore
let us denote the first pair by (Ares, B∗). Regarding the density function, it can be
shown that (see Lemma 3.5.3)



40 Single server queues

fAres,B∗(r, z) = α

∞∫
v=r

fA,B(v, z) dv. (3.15)

Remark 3.3.2. The double integral that appears in the last term from Theorem 3.3.1
above: ∞∫

v=0

∞∫
z=w

fA,B(v, z) dz dv

equals the marginal tail of a claim size, P(B > w). If we replace this in the relation
from Theorem 3.3.1, we obtain the same formula as in Grandell [68] p. 69:

φ(u) = φ(0) +
αEB
c

u∫
w=0

φ0(u− w)
P(B > w)

EB
dw. (3.16)

This is also known as Takács’ formula (see [63], Corollary 4.5.4). (3.16) shows that
only the marginal residual service requirement appears in this relation between φ(·)
and φ0(·), even if we have the correlation between a pair (A,B).

By using the fact that φ(u), φ0(u) → 1 as u → ∞, together with dominated
convergence, to argue that it is allowed to interchange limit and integration, one can
easily show that φ(0) = 1− αEB

c . Now observe that Relation (3.16) between delayed
and ordinary survival function is the precise counterpart/equivalent of relation (3.9)
between the workload and waiting time distributions.

Proof of Theorem 3.3.1. We follow the derivation that Grandell [68] (p. 69, see also p.
5) has given for the case when A and B are independent. Starting with the stationary
risk process, we condition on the arrival time of the first claim, together with its size:

φ(w) =

∞∫
r=0

w+cr∫
z=0

φ0(w + cr − z)fAres,B∗(r, z) dz dr.

Using (3.15) we obtain:

φ(w) = α

∞∫
r=0

∞∫
v=r

w+cr∫
z=0

φ0(w + cr − z)fA,B(v, z) dz dv dr.

By changing the order of integration between variables v and r, we have:

φ(w) = α

∞∫
v=0

v∫
r=0

w+cr∫
z=0

fA,B(v, z)φ0(w + cr − z) dz dr dv.

We use the change of variable x := w + cr:

φ(w) =
α

c

∞∫
v=0

w+cv∫
x=w

x∫
z=0

fA,B(v, z)φ0(x− z) dz dxdv. (3.17)



3.4. Examples and numerical results 41

Let us take the derivative of φ(w). In Lemma 3.5.2 in the Appendix we argue that
this is allowed.

φ′(w) =
α

c

∞∫
v=0

 w+cv∫
z=0

fA,B(v, z)φ0(w + cv − z)dz −
w∫

z=0

fA,B(v, z)φ0(w − z)dz

dv

=
α

c
φ0(w)− α

c

∞∫
v=0

w∫
z=0

fA,B(v, z)φ0(w − z) dz dv.

Here we replaced the first term in the right-hand side by virtue of the renewal equation
for the ordinary survival probability. We can now integrate w between 0 and u:

φ(u)− φ(0) =
α

c

u∫
w=0

φ0(w) dw − α

c

u∫
w=0

∞∫
v=0

w∫
z=0

φ0(w − z) fA,B(v, z) dz dv dw. (3.18)

Let us focus on the last term from (3.18), to be called L. Integration over v yields,
with fB(·) the density of the service requirement B:

L =
α

c

u∫
w=0

w∫
z=0

φ0(w − z)fB(z)dz dw. (3.19)

Partial integration gives:

L =
α

c

u∫
w=0

φ0(0)P(B ≤ w) dw +
α

c

∫ u

w=0

∫ w

z=0

P(B ≤ z)φ′0(w − z) dz dw

=
α

c

u∫
w=0

φ0(0)P(B ≤ w) dw +
α

c

∫ u

z=0

P(B ≤ z)
∫ u

w=z

φ′0(w − z) dw dz

=
α

c

∫ u

w=0

φ0(0)P(B ≤ w) dw +
α

c

∫ u

z=0

P(B ≤ z)[φ0(u− z)− φ0(0)] dz

=
α

c

∫ u

z=0

P(B ≤ z)φ0(u− z) dz. (3.20)

Substitution of (3.20) in (3.18) gives (3.16) and thus the result of the theorem.

3.4 Examples and numerical results

In this section we present examples of dependence structures which are tractable
and have a probabilistic interpretation. We also numerically illustrate the effect of
correlations on the waiting time distribution/ruin probability. Throughout the section
we take for simplicity c = 1.
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A comprehensive survey of multivariate matrix-exponential distributions (MVME)
can be found in Bladt and Nielsen [29]. As a special subclass of these, Kulkarni [79]
introduced multivariate phase-type (MPH) distributions (see also Assaf et al. [18]). In
the bivariate case, these are defined as follows: Consider a continuous-time Markov
chain J(t) with finite state space S, with an absorbing state ∆, and generator matrix

Q =

(
Q −Q1
0 0

)
together with a reward matrix (r

(k)
x )x,k, r

(k)
x ≥ 0 for x ∈ S\{∆}, k = 1, 2. Assume

that as long as the chain is in state x, we earn at rate vector rx = (r
(1)
x , r

(2)
x ). We look

at the bivariate distribution of the random vector (Z1, Z2), where the marginals of
this vector are defined to be the total accumulated rewards until absorption:

Zk =

∫ ζ

0

r
(k)
J(t)dt,

with ζ the time to absorption. Remark that Zk can be rewritten as

Zk =

κ∑
i=1

r
(k)
Ji
Hi, k = 1, 2, (3.21)

κ being the number of jumps until absorption of the embedded discrete-time Markov
chain Ji and Hi the holding time in state Ji. The Hi’s are independent exponentials
with rates −QJiJi . The dependence structure between Z1 and Z2 is thus given by
the underlying continuous-time Markov chain J(t). That this is indeed a subclass of
MVME, follows from [29], Theorem 4.1.

As a special case of Kulkarni’s bivariate-phase type distributions, one can obtain a
fairly large class of distributions by a partial decoupling of the bivariate phase-type:

For the discrete-time Markov chain Ji, and for a fixed i, let H
(1)
i , H

(2)
i be independent,

having exponential distributions with rates λJi and µJi , respectively. Without loss of

generality we can consider r
(k)
Ji

= 1, k = 1, 2 and set

A =

κ∑
i=1

H
(1)
i , B =

κ∑
i=1

H
(2)
i .

The difference with Formula (3.21) is that now the dependence structure is given
only by the common underlying discrete-time Markov chain Ji. Furthermore, if we

assume the jump rates to be the same in each state, i.e. H
(1)
i ∼ exp(λ), H

(2)
i ∼ exp(µ),

then the number of jumps κ before absorption is a sufficient statistic for the joint
distribution of (A,B). More precisely, conditional on κ, A and B are independent
Erlang(κ, λ), Erlang(κ, µ) respectively.

Remark 3.4.1. This dependence structure can be realized as in the description of
Kulkarni’s class. More precisely, we obtain the partial decoupling by doubling all states
of the underlying Markov Process: replace each transient state x with x1, x2 and allow
only the corresponding component of (A,B) to increase while in state xi (formally, put
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r
(1)
x1 = r

(1)
x , r

(1)
x2 = 0 and similarly r

(2)
x1 = 0, r

(2)
x2 = r

(2)
x ). Extend the transition matrix

of the Markov Chain such that after visiting state x1, it always jumps to state x2 and
thereafter jumps according to the original transition matrix.

If we denote by α the initial distribution of (Jn)n, by T the transient component
of its transition matrix, and by t the vector of exit probabilities, then by conditioning
on κ we obtain the following result as a probabilistic alternative to Theorem 3.2 in
Bladt and Nielsen [29]:

Lemma 3.4.1. The following are valid for the random vector (A,B):

a) The Laplace-Stieltjes transform of (A,B) is:

Ee−s1A−s2B = α′
[

(λ+ s1)(µ+ s2)

λµ
I − T

]−1

t.

b) The transform Ee−sX of the difference (B − A), is a rational function of the

form f(s)
g(s) , with f and g polynomial functions such that deg(f) < deg(g).

Proof. see Appendix A.

Examples: 1. Kibble and Moran’s bivariate Gamma distribution (Kotz et al. [78])
can be realized as above. Consider the state space {1, ...,m,∆}. Assume the Markov
Chain (Jn)n starts in 1 and jumps from i to i+ 1 w.p. p or stays in state i w.p. 1− p.

Furthermore, assume the same rates for the holding times in every state: H
(1)
n ∼exp(λ),

H
(2)
n ∼exp(µ), for λ, µ > 0. Hence this distribution is the m−fold convolution of

Kibble and Moran’s bivariate exponential with itself (cf. [78]), where this bivariate
exponential distribution can be represented as

(Erlang(κ, λ), Erlang(κ, µ)) ,

with κ having a geometric distribution. In the insurance risk setting, the analysis for
this example has been done in Ambagaspitiya [9] and in Constantinescu et al. [48]
using operator theory (see also Albrecher and Teugels [8]). The Laplace transform of
the ordinary ruin probability Ψ0(u) is given by

Ψ∗0(s) =
1

s

[
1− (1− s

b )m∏
sk

(1− s
sk

)

]
,

with b the pole of order m of 1− Ee−sX such that Re b < 0.
2. Cheriyan and Ramabhadran’s bivariate Gamma is another example of Kulkarni’s

bivariate phase-type. This was also analyzed in Ambagaspitiya [9] in the insurance
risk setting.

For non-negative integers m0,m1,m2, consider the state space S = {1, ...,m0 +
m1 +m2,∆}, with the set of transient states partitioned as: S\{∆} = S0∪S1∪S2 with
S0 = {1, ...,m0}, S1 = {m0 + 1, ...,m0 +m1}, S2 = {m0 +m1 + 1, ...,m0 +m1 +m2}.
The chain starts in state 1 and jumps from state i to i+ 1. The jump rates are βk
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while in state x ∈ Sk, k ∈ {0, 1, 2}. The reward rates in state x are r
(1)
x = r

(2)
x = 1

for x ∈ S0; r
(1)
x = 1, r

(2)
x = 0 for x ∈ S1, and r

(1)
x = 0, r

(2)
x = 1 for x ∈ S2. Then the

bivariate total accumulated reward has a distribution of the form

(A,B)
d
= (Z0 + Z1, Z0 + Z2),

where Zk are mutually independent ∼Erlang(mk, βk), k ∈ {0, 1, 2}.
3. In the class of MVME, it is possible to achieve negative correlation as well.

Consider κ to be a discrete random variable with finite support: κ ∈ {1, ..., k}, for k
some fixed positive integer. Negative correlation can be achieved if we consider the
following mixture of Erlang distributions:

(A,B)−
d
= (Erlang(κ, λ), Erlang(k − κ+ 1, µ)) .

For more examples of negatively correlated phase-type distributions, we refer to [30].

Stochastic ordering results. We compare the tails of the waiting times for the
mixed Erlang distributions in the following scenarios: the negatively correlated one
from Example 3 versus the positively correlated case

(A,B)+
d
= (Erlang(κ, λ), Erlang(κ, µ)) ,

and the corresponding independent pair obtained by sampling twice from the distribu-
tion of κ; i.e. for κ1 and κ2 i.i.d. copies of κ.

(A,B)0
d
= (Erlang(κ1, λ), Erlang(κ2, µ)) .

Here κ is taken to have finite support, as in Example 3 above.
Denote respectively by D−, D+ and D0, the differences A − B in the three

scenarios above. In Theorem 3.4.1 below we show that under a mild assumption on the
distribution of κ, there exists convex ordering between the random variables D+, D0

and D−. For two r.v.’s X and Y , X �cx Y means, by definition, that for an arbitrary
convex function ϕ(x),

Eϕ(X) ≤ Eϕ(Y ). (3.22)

For more about the notion of convex order and other related stochastic orderings,
we refer the reader to [100], Ch. 1. Before we give the result, let us recall a useful
criterion (cf. [100], Prop. 1.5.1):

Proposition 3.4.1 (Karlin and Novikoff’s cut criterion). For X, Y r.v.’s with c.d.f.’s
FX and FY respectively, and finite first moments, assume that EX = EY , and that
there exists an x0 such that FX(x) ≤ FY (x), for x ≤ x0 and FX(x) ≥ FY (x) for
x ≥ x0. Then X �cx Y .

Theorem 3.4.1. With the above definitions and notations, it holds that

D+ �cx D0. (3.23)
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Moreover, if κ has a symmetric distribution, κ
d
= k + 1− κ, then we also have

D0 �cx D−. (3.24)

Proof. Let Cλi and Cµj respectively be Erlang(i, λ) and Erlang(j, µ) distributed random
variables independent of each other, for i = 1, . . . , k; also denote πi := P(κ = i).

We will first prove icx ordering, i.e., the functional inequality (3.22) is restricted
to increasing convex functions ϕ. This together with the fact that the expected values
of D−, D+ and D0 are the same implies cx ordering (see [100], Thm. 1.3.1, p. 9).

Take ϕ to be any convex and increasing function. Firstly, we prove (3.23), that is,
we must show that Eϕ(D+) ≤ Eϕ(D0), or equivalently,

k∑
i=1

πiEϕ(Cλi − Cµi ) ≤
k∑
i=1

k∑
j=1

πiπjEϕ(Cλi − Cµj ).

Let us put for simplicity ϕ(i, j) := Eϕ(Cλi − Cµj ), so we can rewrite the above as∑
i

πiϕ(i, i) ≤
∑
i

∑
j

πiπjϕ(i, j). (3.25)

Note that (3.25) is an association type of inequality, similar to Cebishev’s inequality
(see [14], Lemma 2.3 and the references therein). Using that the π′js form a probability
distribution, we can further rewrite (3.25)∑

i

∑
j

πiπjϕ(i, i) ≤
∑
i

∑
j

πiπjϕ(i, j)

⇔
∑
i

∑
j>i

πiπj [ϕ(i, i)− ϕ(i, j)] ≤
∑
m

∑
l<m

πmπl[ϕ(m, l)− ϕ(m,m)]. (3.26)

Remark that there is an equal number of terms on the two sides of (3.26) because
we sum over indices that lie respectively above and below the main diagonal of the
tableaux (ϕ(i, j))i,j . We are done as soon as we show that the inequality holds for a one-
to-one correspondence between these indices; more precisely, for the correspondence
(i, j)↔ (j, i), j > i, we will prove that

ϕ(i, i)− ϕ(i, j) ≤ ϕ(j, i)− ϕ(j, j), (3.27)

that is, (3.26) holds term by term, and remark that the coefficients πiπj and πjπi
cancel against each other. Put u := j − i and denote

γ(x) := Eϕ(x+ Cλi − Cµj ).

Obviously, γ(x) is increasing and convex, because ϕ is. Consider the decomposition of
Cµj and Cλj as sums of independent r.v.’s Cµj := Cµi + Cµu , and Cλj := Cλi + Cλu with

Cµu , Cλu Erlang distributed of order u and rates µ and λ, respectively. By conditioning
on Cλu and Cµu , we can write

ϕ(j, i) = E{E[ϕ(y + Cλi − Cµi − x+ x)|Cλu = y, Cµu = x]} ⇔
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ϕ(j, i) = E{E[γ(y + x)|Cλu = y, Cµu = x]} = Eγ(Cλu + Cµu ).

Similarly, we obtain ϕ(i, i) = Eγ(Cµu ) and ϕ(j, j) = Eγ(Cλu ), so that (3.27) becomes

Eγ(Cµu ) + Eγ(Cλu ) ≤ Eγ(Cλu + Cµu ) + γ(0). (3.28)

All boils down to proving (3.28). In order to achieve this, let U be a r.v. with
a Bernoulli(1/2) distribution and let cµ 6= cλ be two arbitrary positive constants.
Consider the following r.v.’s

Z1 := (cλ + cµ)U, Z2 := cλU + cµ(1− U).

We have the following identities in distribution

Z1
d
=

1

2
[δ0 + δcλ+cµ ], Z2

d
=

1

2
[δcλ + δcµ ],

with δx being the Dirac measure at x. Now it follows easily from the cut criterion in
Proposition 3.4.1 above that Z2 �cx Z1. Hence, in particular, we can choose γ(x) as a
test function to obtain

Eγ(cλU + cµ(1− U)) ≤ Eγ(cλU + cµU).

Because U is a Bernoulli(1/2), the inequality above becomes

γ(cλ) + γ(cµ) ≤ γ(cλ + cµ) + γ(0).

Finally, taking the double mixture over cλ and cµ according to the distributions of Cλu
and Cµu respectively, shows that (3.28) is true, and this proves (3.23).

Now, for inequality (3.24) we have to prove that Eϕ(D0) ≤ Eϕ(D−), that is,
keeping the same notation as in (3.25),∑

i

∑
j

πiπjϕ(i, j) ≤
∑
i

∑
j

πiπjϕ(i, k + 1− i),

and upon regrouping terms it becomes

∑
i

∑
j: j<k+1−i

πiπj [ϕ(i, j)−ϕ(i, k+1−i)]≤
∑
m

∑
l: l>k+1−m

πmπl[ϕ(m, k+1−m)−ϕ(m, l)].

This is the analogue of (3.26). Again, it suffices to prove the term by term inequalities
similar to (3.27). The symmetry axis in this case is the second diagonal of the tableaux.
This means that the correspondence is (i, j)↔ (k + 1− j, k + 1− i), so the analogue
of (3.27) that we prove is, for i, j fixed, j < k + 1− i,

ϕ(i, j)− ϕ(i, k + 1− i) ≤ ϕ(k + 1− j, j)− ϕ(k + 1− j, k + 1− i). (3.29)

In (3.29) we dropped the coefficients πiπj and πk+1−iπk+1−j because these are equal
since κ is assumed to have a symmetric distribution. If we set u = (k + 1− i)− j =
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(k + 1− j)− i, from this point on the analysis is essentially the same. Consider the
analogue of γ,

η(x) := Eϕ
(
x+ Cλi − Cµk+1−i

)
,

then (3.29) becomes

Eη(Cµu )− η(0) ≤ Eη(Cλu + Cµu )− Eη(Cλu ).

This is precisely (3.28) with γ(x) replaced by η(x), and since ϕ was taken to be an
arbitrary increasing convex function, the proof is complete.

Remark 3.4.2. The requirement for κ to have a symmetric distribution may be too
strong in general. Some assumption on the distribution of κ is necessary but only for

the ordering D0 �cx D−. For example, if we let k = 2 and κ
d
= δ1 (Dirac mass in

1) then D0 is the difference of two independent Erlang-1, whereas D− is an Erlang-1
minus an Erlang-2 so D− is cx-dominated in this case.

The above proof of the inequality between D+ and D0 does not require the finiteness
of the support of κ; κ discrete phase type is also a possible case in which the sums
that appear in the proof become series. There are no convergence problems and we
are allowed to change summation order as well, due to probabilistic interpretations.
There are restrictions if we look for negative correlation when κ has infinite support.
More about the possibility for realizing such correlations can be found in Bladt and
Nielsen [30] on negatively correlated exponentials.

Proposition 3.4.2. Let W−, W0, and W+, be the steady-state waiting times, that
correspond to the increments of the random walk distributed as −D−, −D0, and −D+,
respectively. Then we have convex ordering between the waiting times in the three
scenarios

W+ �cx W0 �cx W−.

Proof. From the definition of convex ordering, D+ �cx D0 is the same as −D+ �cx
−D0, and similarly D0 �cx D− is the same as −D0 �cx −D−. Therefore the external
monotonicity result from Daley and Stoyan [100] (Thm. 5.2.1, p. 80) implies that the
steady state workloads are convex ordered in the three scenarios, according to the
increments of the random walk. This can also be seen in the numerical tables and the
plots below.

In Table 3.1 we vary the load coefficient ρ and we keep the mixing distribution
κ uniform on {1, ..., 5} (i.e., k = 5). In Table 3.2 below, we keep ρ fixed, say ρ = .5,
and we vary k. The tables contain the mean waiting times, their atoms at zero and
q, the 95% quantile of the survival function/waiting time (i.e., q is the value of the
initial capital for which P(W ≤ q) = φ0(q) = .95). The plots of the tails of the ruin
functions are in Figure 3.1 and Figure 3.2 below.
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(d) ρ = .75, k = 5
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(e) ρ = .95, k = 5

Figure 3.1: P(W > u) = Ψ0(u).
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ρ EW+ EW0 EW− P(W+ = 0) P(W0 = 0) P(W− = 0) q+ q0 q−
.05 0.01 0.07 0.15 0.988 0.96 0.95 0 0 0
.25 0.12 0.47 0.88 0.90 0.82 0.76 0.85 3.54 5.72
.5 0.62 1.50 2.48 0.70 0.59 0.52 3.74 7.54 11.1
.75 2.48 4.77 7.15 0.39 0.32 0.27 10.14 17.81 25.5
.95 18.4 31.4 44.48 0.08 0.066 0.056 58.26 97.89 137.5

Table 3.1: Mean waiting times, atoms at 0 and 95% percentiles for k = 5 and various values of ρ.

k EW+ EW0 EW− P(W+ = 0) P(W0 = 0) P(W− = 0) q+ q0 q−
2 0.86 1.11 1.36 0.57 0.54 0.51 4.36 5.31 6.25
4 0.68 1.37 2.11 0.67 0.58 0.52 3.93 6.78 9.48
7 0.51 1.78 3.22 0.75 0.61 0.53 3.39 9.09 14.35
14 0.31 2.79 5.82 0.85 0.64 0.540 2.33 14.58 25.74

Table 3.2: Mean waiting times, atoms at 0 and 95% percentiles for ρ = .5 and various values of k.
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(c) ρ = .5, k = 7
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Figure 3.2: P(W > u) = Ψ0(u).

3.5 Appendix A

Theorem 3.5.1 (Rouché, [102], p. 116). If two functions g(s) and f(s) are analytic
inside and on a closed contour C, and |g(s)| > |f(s)| on C, then g(s) and g(s)− f(s)
have the same number of zeros inside C.

Theorem 3.5.2 (Liouville, [102], p. 85). If f(s) is analytic for all finite values of s,
and as |s| → ∞,

f(s) = O(|s|m),

then f(s) is a polynomial of order ≤ m.

We can now formulate and prove the following lemma.

Lemma 3.5.1. Let f(s) and g(s) be the numerator and the denominator of

Ee−s(c−1B−A). Then g(s)− f(s) and g(s) have the same number of zeros in Re s ≥ 0.

Proof. Via Rouché’s theorem, we first prove that |g(s)| > |f(s)| on a suitably chosen
contour in the complex plane. The fact that f(0) = g(0) and that the transform is
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rational (so it is also analytic on a strip in Re s < 0) suggests that we consider the
following contour made up from the extended semi-circle

Cε := {R(cosϕ+ i sinϕ); ϕ ∈ [−π/2− arccos ε, π/2 + arccos ε]} ,

together with the vertical line segment S :=
{
−ε+ iω; |ω| ∈

[
0, R
√

1− ε2
]}
.

We show that |g(s)| > |f(s)| on this contour, for ε sufficiently small.

First on Cε:
∣∣∣ f(Reiϕ)
g(Reiϕ)

∣∣∣ ≤ Ee−R cosϕ(c−1B−A) → P(c−1B −A = 0) as R→∞.

We can assume P(A = c−1B) < 1, else there is nothing to prove. This means

| f(Reiϕ)
g(Reiϕ) | < 1 for R sufficiently large.

In order to prove the inequality on the line segment S, we use the stability condition:

E(A− c−1B) = d
ds
f(s)
g(s) |s=0 > 0. So for ε sufficiently small, f(−ε)

g(−ε) <
f(0)
g(0) = 1. Then on

S we have:∣∣∣∣f(−ε+ iω)

g(−ε+ iω)

∣∣∣∣ = |Ee−(−ε+iω)(c−1B−A)| ≤ Eeε(c−1B−A)|e−iω(c−1B−A)| = f(−ε)
g(−ε) < 1.

Hence |f(s)| < |g(s)| on the whole contour. These being polynomials, Rouché’s
theorem 3.5.1 ensures that g and g − f have the same number of zeros inside Cε, and
since ε was arbitrarily small, this also holds on ∩ε>0C◦ε = {s; Re s ≥ 0}∩{s; |s| ≤ R},
where C◦ε is the interior of Cε. Finally, letting R→∞, proves the assertion.

Proof of Lemma 3.4.1. a) We can write the joint Laplace-Stieltjes transform by
conditioning on κ:

Ee−s1A−s2B =

∞∑
n=1

P(κ = n)

(
λ

λ+ s1

)n(
µ

µ+ s2

)n
.

If we set z = λ
λ+s1

µ
µ+s2

, we can recognize the probability generating function of κ at

z, call it Pκ(z).
κ has a discrete phase-type distribution with representation (α, T ) (Neuts [90]),

such that I − T is non-singular (here I is the identity matrix), and the probability
vector α is supported on the transient states. Thus

P(κ = n) = α′Tn−1t

for n ≥ 1, t = (I − T )1, P (κ = 0) = 0. If we now focus on this generating function,
we have the following (Asmussen [16] Prop. 4.1, p. 83):

Pκ(z) = α′(z−1I − T )−1t,

and we have proved part a).
b) To see why Ee−sX = Pκ( λ

λ−s
µ
µ+s ) is a rational function, rewrite the inverse :

(z−1I − T )−1 =
1

det(z−1I − T )
(z−1I − T )∗.

Remark that the denominator det(z−1I − T ) is a polynomial of order |S| − 1 (the
number of transient states) in z−1, because z−1 appears only on the diagonal of the
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matrix (z−1I−T ). (z−1I−T )∗ is the algebraic complement of (z−1I−T ) (also known
as matrix of cofactors). Its entries are of the form (−1)i+j det(Mij), where Mij is the
matrix obtained by deleting row i and column j of (z−1I − T ). These are polynomials
in z−1 of order < |S| − 1 (because of the deleted rows and columns in the entries, the
degree of the determinants of these sub-blocks as polynomials in z−1 is always smaller
than the dimension of the matrix T ) and hence so is the bilinear form α′(z−1I − T )∗t,
which is the numerator of Pκ(z).

Lemma 3.5.2. φ(w) in (3.17) is differentiable.

Proof. Let hw(v) :=
w+cv∫
x=w

x∫
z=0

fA,B(v, z)φ0(x− z) dz dx. Using the triangle inequality,

we have the following upper bound

|hw+ε(v)−hw(v)| ≤
w+ε∫
w

x∫
0

fA,B(v, z)φ0(x−z) dz dx+

w+cv+ε∫
w+cv

x∫
0

fA,B(v, z)φ0(x−z) dz dx.

Let us denote by I and II the first and the second term that appear above, respectively.
If we use the fact that φ0(x) ≤ 1, we find the upper bounds on I and II:

I ≤
w+ε∫
x=w

w+ε∫
z=0

fA,B(v, z) dz dx = ε

w+ε∫
z=0

fA,B(v, z) dz,

and similarly,

II ≤ ε
w+cv+ε∫
z=0

fA,B(v, z) dz.

So if we denote Dε(v) := hw+ε(v)−hw(v)
ε ,

|Dε(v)| ≤
w+ε∫
z=0

fA,B(v, z) dz +

w+cv+ε∫
z=0

fA,B(v, z) dz ≤ 2fA(v),

and clearly the upper bound is integrable as a function of v. By virtue of dominated
convergence

φ′(w) = lim
ε→0

∞∫
v=0

Dε(v) dv =

∞∫
v=0

lim
ε→0

Dε(v) dv =

∞∫
v=0

∂

∂w
hw(v) dv.

Lemma 3.5.3. Under the conditions from Remark 3.3.1, the density of the pair
(Ares, B∗) is

f(Ares,B∗)(r, z) = α

∞∫
v=r

f(A,B)(v, z) dv.
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Proof. Consider the augmented pair (Ã, B∗) which by definition has density

f(Ã,B∗)(v, z) := αvfA,B(v, z),

where α acts as the normalizing factor: 1
α = EA =

∫
z

∫
v
vfA,B(v, z) dv dz. Let U be a

standard uniform r.v., independent of both A and B. Then (Ares, B∗)
d
= ((1−U)Ã, B∗),

therefore conditional on Ã, Ares is uniformly distributed over the interval [0, Ã], so we
may write in terms of density functions

f(Ares,B∗)(v, z) =

∞∫
r=v

1

r
f(Ã,B∗)(r, z) dr = α

∞∫
r=v

f(A,B)(r, z) dr.

The proof is complete.





Chapter 4

Integral representations for
one-dimensional random
walks

A usual assumption in the theory of fluctuations of random walks as they appear in,
e.g., queueing or insurance applications, is that the increment of the random walk
can be represented as the difference of two independent random variables. In the
context of queueing theory, random walks with increments which do not have this
property appear as embedded at arrival epochs of customers in a GI/G/1 queue in
which the service requirement of the current customer is correlated with the time until
the next arrival. In risk reserve processes that appear in insurance, the independence
assumption is violated when the current claim size depends on the time elapsed since
the previous arrival, and hence on the premium gained meanwhile. A useful relation
between the queueing system and the risk reserve model is given via the duality
relation described at the end of Section 1.3.

The purpose of the present chapter is to show how much can be done for random
walks which do not satisfy this independence assumption, regarding their maxima (as
in the waiting time/maximum aggregate loss), their minima (idle periods/deficit at
ruin) and their excursions (related to busy periods/time to ruin).

From a queueing perspective, it turns out that the busy period is a more sensitive
issue to study than the idle period or the waiting time, as it appears from the proof of
Theorem 4.2.1 below. For this purpose, we present a generalization of an inversion
formula for characteristic functions/Fourier-Stieltjes transforms due to Hewitt [69],
which in turn is an extension of P. Lévy’s inversion formula. All these results are
essentially variations on the Dirichlet integral for complex-valued functions of bounded
variation.

From a stochastic point of view, the information contained by the increments of
the random walk is sufficient to infer about the extreme statistics; and since successive
increments are independent, the usual form of Hewitt’s inversion formula is sufficient
to obtain the integral representations; this is how it was used originally by Spitzer
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[99] to derive the Laplace-Stieltjes transform of the maxima of partial sums. He also
related these transforms to the Wiener-Hopf problem (see in addition Cohen [40],
Ch. II.5, for the relation with the Wiener-Hopf equation as it appears in Probability
Theory). For the derivation of the length of an excursion above the starting level,
there is more information needed, namely, that given by the partial sums

∑n
i=1Bi

together with the partial sums of the embedded random walk Sn =
∑n
i Bi−

∑n
i Ai. It

is possible to derive the excursion lengths still using Hewitt’s formula when the Ai’s
are independent of the Bi’s, and this was carried out in Kingman [74]. It is shown in
the present chapter that if one extends Hewitt’s inversion formula, a similar derivation
is possible for the case when there is arbitrary correlation inside the vectors (Ai, Bi),
which means the random walk Sn can have generally distributed increments.

Hewitt’s approach was to find a most general inversion identity for Laplace-Stieltjes
transforms with a view on Harmonic Analysis; this is much more than we need for
our purposes. Instead of trying to find a most general instance of inversion, the focus
in the present chapter is to obtain a sufficiently broad result to apply to the kind of
random walks that appear in the study of workload/insurance related problems. One
can only hope then that the result itself will find applications in other related areas of
probability and statistics.

In the queueing literature, Conolly obtained (the transform of) the busy period
together with the number of customers served in an Erlang queue with independent
exponential inter-arrivals [46], and he obtained continued fraction expansions for the
Erlang queue with state dependent parameters of both the exponential inter-arrivals
and the service times in [47]. Conolly’s results from [46] were then extended to general
independent inter-arrivals and service times in Finch [58] and in Kingman [74].

The time to ruin has been studied in the insurance literature by deriving recursion
formulae, typically obtained by discretising the claim sizes. For example, Dickson and
Waters [50] present various approximation methods for its numerical computation.
Studying the time to ruin is analytically the same as inferring on the busy period,
by virtue of the alternative form of duality, see the end of Section 1.3. Another
good reference is Prabhu [93] §3, who obtained an integral equation for the time to
ruin starting from a positive capital u, in the Cramer-Lundberg risk reserve model;
Borovkov and Dickson [32] obtain series representations for the distribution of the time
to ruin in the Sparre-Andersen risk reserve model with exponentially distributed claims
and general renewal inter-arrivals. Besides these results, there exists a significant
amount of literature on the Gerber-Shiu functions which contain the time to ruin as
a special case. We will come back to the problem of analyzing the time to ruin in
Section 4.4.

The chapter is organized in the following way: In Section 4.1, we extend Hewitt’s
inversion formula to allow for probability distribution functions on R2 which do not
have a product form (see Remark 4.1.1). One of the ingredients of the proof consists
of having a precise meaning for the conditional distribution of B given A; this is
settled as a preliminary. The approach used for studying fluctuations of random walks
involves obtaining integral representations for the above-mentioned quantities. The
busy period, idle period, transient workload, and the related insurance functionals can
still be determined in the form of a Cauchy integral, once Theorem 4.1.1 is combined
with a version of Spitzer-Baxter’s identity (Proposition 4.2.1), and this is carried out
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in detail in Section 4.2 for the correlated GI/G/1 queue and the Sparre-Andersen risk
reserve process. Roughly speaking, all the transforms of the relevant performance
measures are obtained by reading the inversion formula in Theorem 4.1.1 from right
to left. The combination of Spitzer-Baxter’s identity with Hewitt’s inversion has been
used by Kingman [74] to determine busy periods when inter-arrivals are independent
from service requirements.

Having obtained a Cauchy integral representation for the busy period, one can
then evaluate it when the transform of the generic pair (B,A) is a rational function in
the argument that corresponds to the service requirement B (Section 4.3). Finally, we
point out in Section 4.4 how one can obtain the distribution of the time to ruin in the
dual risk setting, when starting with a non-negative initial capital.

4.1 On Hewitt’s inversion formula

The starting point is P. Lévy’s inversion formula which gives a precise form to the
well known assertion that a characteristic function uniquely determines a probability
measure φ on the real line:

lim
T→∞

1

2πi

iT∫
−iT


∞∫
−∞

eξxφ(dx)

 e−ξa − e−ξb
ξ

dξ =
1

2
φ((a, b)) +

1

2
φ((a, b]).

Thus the value φ((a, b]) :=
∫
χ(a,b](u)φ(du) can be recovered, χ(a,b] being the indicator

function of the interval (a, b]. Hewitt’s formula extends this result to recover directly
functionals of the form

φ(f) :=
1

2

∫
[f(u+) + f(u−)]φ(du),

for functions f of bounded variation; if f is also continuous, then the integral above
becomes

∫
f(u)φ(du).

The inversion formula in the form given by Lévy is further generalized to higher
dimensions and some other topological groups in Hewitt [69]. It is not however the
purpose of the current chapter to explore the possibility of a most general form for it.
Such an attempt may not even yield satisfactory results, as was already pointed out
in [69].

We will generalize the above in Theorem 4.1.1 to probability measures on R2

related to the random vector (B,A). The probabilistic structure is never really lost,
the conditional distribution of B given A appears throughout the proof of Theorem
4.1.1 disguised as the conditional kernel q(u, y), which is defined below as a ”partial”
Radon-Nikodým derivative.

4.1.1 Preliminaries

We say that f : R→ C is of bounded variation if both its real and imaginary parts
are of bounded variation; this is the same as |f | being of bounded variation because
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all norms are equivalent on C. We will also work with (complex-valued) measures on
the Borel subsets of R2, which are of finite total variation. For such a measure φ, we
will denote by |φ| the total variation measure of φ, and with ‖φ‖ its total variation.
This will suffice for our purposes, but this set-up is fully detailed and generalized in
[69], and the references therein.

Let (B,A) be a random vector on some probability space, having an arbitrary
probability distribution. Denote by P the probability measure and by H the joint c.d.f.
of (B,A):

H(x, y) = P(B ≤ x, A ≤ y).

The correlation device for the increment of the random walk is given by this distribution,
not necessarily having a product form, and its Fourier-Stieltjes transform

h(s1, s2) := Ee−s1B−s2A =

∫
e−s1x−s2yH(dx, dy).

In general this is convergent only for Re s1 = 0, Re s2 = 0, but if (B,A) is supported
on the non-negative quadrant in R2, then h can be continued analytically to Re s1 ≥
0, Re s2 ≥ 0. The characteristic function of the increment A−B will also be relevant:

h(ξ,−ξ) =

∫
eξx dP(A−B ≤ x), Re ξ = 0.

Let λ be the probability measure associated with the random vector (B,A), and ν
be the marginal measure associated with B,

λ(U × V) := P(B ∈ U , A ∈ V), ν(U) := λ(U × R), U ,V ∈ B(R),

with B(R) the family of Borel sets on the line. The notation H(du, y) will be used to
suggest that we are integrating w.r.t. the measure λy(U) := λ(U × (−∞, y]). We will
work with a version of the conditional cumulative distribution function (c.d.f.) of A
given B and this is made precise below.

It clearly holds that λy(U) ≤ ν(U), in particular λy � ν, so let

q(u, y) :=
dλy
dν

(u)

be its Radon-Nikodým derivative. Heuristically, q(u, y) is to be regarded as q(u, y) =
P(A ≤ y |B ∈ du), and we have the disintegration identity∫

U
H(du, y) ≡ H(U , y) ≡

∫
U
q(u, y) ν(du),

with any of the terms above meaning P(A ≤ y, B ∈ U). We will be working with a
regular version of q, which exists by virtue of the separability of R, see for instance
Kallenberg [72] Thm. 5.3, p. 84. Further, we have more than just regularity for this
kernel, the same result gives that q(u, y) is regularly monotone as a function in the
argument y, i.e., q(u, y) is non-decreasing in y outside a set of ν−measure zero which
does not depend on y.
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These considerations are quite intuitive because of the probabilistic nature of the
measure associated with H. It turns out, however, that we will have to consider
instances of the inversion theorem for the slightly more general case of complex valued
functions H which are also of bounded variation, and for this purpose we will show
below that H(du, x) can be given a meaning in an analogous way.

Confusing H with its associated complex-valued measure, see Hewitt [69], we can
reduce it to a monotonically increasing function, by splitting into real and imaginary
parts and using the Jordan decomposition

ReH ≡ (ReH)+ − (ReH)−,

for the signed measure ReH, and similarly for ImH. Setting ν±(U) := (ReH)±(U ×
R), it holds with the similar notation as in the probabilistic case that (ReH)±y � ν±,
so we can define again the Radon-Nikodým derivatives

q+
1 (u, y) :=

d(ReH)+
y

dν+
(u), q−1 (u, y) :=

d(ReH)−y
dν−

(u),

and similarly for ImH. Now we can reconstruct H(du, y) in an obvious way, using
the linearity of the Radon-Nikodým derivative.

Alternatively, we could have used the total variation measures:

|ReHy|(U) ≤ |ReH|(U × R)

and thusReHy � ν, but a simple argument relying on the Hahn-Jordan decomposition
shows that this construction yields the same result for H(du, x).

Moreover, the monotone regularity property from the probabilistic instance extends
to q(u, y) being of bounded variation in y outside a set of ν-measure zero which does
not depend on y. This property will be useful in the proof of the next result.

Theorem 4.1.1 (Generalized Hewitt inversion). Let H be a totally bounded
(complex-valued) measure on R2, and let f : R→ C be a function of bounded variation
which is also absolutely integrable (w.r.t. the Lebesgue measure). Then the following
Cauchy principal value can be represented as a Lebesgue-Stieltjes integral:

lim
T→∞

1

2πi

iT∫
−iT


∞∫
−∞

∞∫
−∞

eξ(u−y)H(du,y)f(y)dy

dξ

=
1

2

∞∫
−∞

{f(u+)H(du, u+) + f(u−)H(du, u−)} .

f need not be integrable w.r.t. H(du, u). If one of the sides above converges, so does
the other one.

Remark 4.1.1. If H is of the form H1H2, the double integral inside the Cauchy
principal value factorizes into the Fourier-Stieltjes transform of H1 and the Fourier
transform of f(y)H2(y), this function being again absolutely integrable and of bounded
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variation. Thus the above reduces to the inversion formula in Hewitt [69], Thm.
(3.1.1):

lim
T→∞

1

2πi

iT∫
−iT


∞∫
−∞

eξuH1(du)



∞∫
−∞

e−ξyg(y) dy

dξ =
1

2

∞∫
−∞

[g(u+)+g(u−)]H1(du),

with g(y) = f(y)H2(y).

Proof of Theorem 4.1.1. For fixed u, change the variable x := u−y, so that the double
integral inside the Cauchy principal value becomes

∞∫
−∞

∞∫
−∞

eξ(u−y)H(du, y)f(y) dy =

∞∫
−∞

∞∫
−∞

eξxH(du, u− x)f(u− x) dx.

We can bound

∫
dx

∣∣∣∣∫ H(du, u− x)f(u− x)

∣∣∣∣ ≤ ∫ dx

∫
|f(u− x)| |H|(du,∞) = ‖H‖

∫
|f(v)|dv,

hence
∫
H(du, u− x)f(u− x) is absolutely integrable in x because f is. We can now

change the order of integration in the Cauchy principal value, which becomes after
integrating over ξ:

lim
T→∞

∫∫
1

2πi

iT∫
−iT

eξx dξ H(du, u−x)f(x)dx= lim
T→∞

∫
sinTx

πx
dx

∫
H(du, u−x)f(u−x).

(4.1)
At this point, disintegrate the kernel H(du, u− x) = q(u, u− x) ν(du), so that, by

the Radon-Nikodým Theorem, we can rewrite the right-hand side in (4.1) as

lim
T→∞

∫
ν(du)

{∫
sinTx

πx
q(u, u− x)f(u− x) dx

}
. (4.2)

The main remark is that q(u, u− x)f(u− x) is of bounded variation as a function in
x for ν-almost all u, but regularity is the key, as can be seen from the following:

Let {xi}i∈I be some ordered sequence determined by the edges of an interval
partition of R. Since f is assumed of bounded variation, it can be reduced to a real
valued and monotonically increasing function, again by splitting it into its real and
imaginary parts and making use of Jordan’s decomposition. Similarly, q(u, ·) can be
reduced to a regularly non-decreasing function. Then we can write by exploiting the
monotonicity of both q(u, ·) and f :

m∑
i=1

[q(u, u− xi)f(u− xi)−q(u, u− xi+1)f(u− xi+1)]
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≤
∞∑
i=1

q(u, u− xi)[f(u− xi)− f(u− xi+1)]

≤ q(u,∞)

m∑
i=1

[f(u− xi)− f(u− xi+1)], u /∈ Q,

where, by virtue of the regularity of q, Q is a ν−negligible set, outside which q(u, ·) is
monotone.

Notice that in the upper bound the arguments of q do not depend anymore on the
partition {xi}i. Even more so, q(u,∞) = 1 ν−a.e. by definition. Since by regularity,
Q does not depend on the sequence (xi)i, we can take the supremum over all such
sequences and using that f is of bounded variation, gives that also q(u, u− x)f(u− x)
is of bounded variation for ν−almost all u.

We have arrived at the following limit:

lim
T→∞

∞∫
−∞

sinTx

πx
ϕ(u, x) dx =

1

2
[ϕ(u, 0+) + ϕ(u, 0−)],

for fixed u and ϕ(u, x) := q(u, u− x)f(u− x). This identity is known as Dirichlet’s
integral. The integrability condition for the left-hand side that assures the limit exists
is that ϕ(u, ·) be of bounded variation. As seen from the above, this assumption is only
slightly more general than Dirichlet’s original condition of monotonicity for ϕ(u, ·).
See Doetsch [51] Ch. 24, or Titchmarsh [102] §13.2 (the condition is also known as
Jordan’s test). The limit equals what is usually called the normalized function in the
origin.

The proof will be complete as soon as we show that the limit in T can be taken
inside the ν(du) integral (4.2). Reduce f again to a non-negative and monotonically
increasing function. Using the second mean value theorem for ϕ(u, x) which is now
decreasing in x, for some β > 0, we can find α > 0 such that∣∣∣∣∣∣

β∫
0

ϕ(u, x)
sinTx

x
dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ϕ(u, 0)

α∫
0

sinTx

x
dx

∣∣∣∣∣∣ < ϕ(u, 0)

π∫
0

sinx

x
dx.

The final upper bound is obtained by a change of variable x→ x/T . This is the same
argument as given in Hewitt [69], and it is clearly sufficient to allow the interchanging
of limit and integration in (4.2); this together with the fact that Dirichlet’s integral
identity holds for ν-almost all u, completes the proof.

4.2 The GI/G/1 queue with correlations

Having laid down the inversion result in the previous section, let us start with the
study of the special queueing system GI/G/1 briefly described in the introduction.

It is assumed that the law of the random walk {Sn}n≥0
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Sn = S0 +

n∑
i=1

(Bi −Ai)

is the law P conditional on S0 = 0. Also set bn =
∑n
i=1Bi and an =

∑n
i=1Ai.

Let N be a random variable which is distributed as the number of customers served
during a busy cycle of the server. Then (assuming unit server speed) bN , aN , −SN
stand for the length of the busy period, that of the busy cycle and respectively the
idle time of the server.

In queueing terms, one can think of the pair (B,A) as the service time of a generic
customer together with the time until the arrival of the next customer in a GI/G/1
queueing system - which can be always normalized to unit server speed without losing
generality. In terms of insurance and risk theory, this pair can be interpreted as the
time elapsed (and hence the premium B gained) since the last claim incurred together
with the amount A claimed through an insurance policy. Then, conditional on starting
with 0 initial capital, bN is the time to ruin (after normalizing the risk reserve process
in order to have unit income rate), aN is the total amount claimed until ruin (including
the claim that causes it) and −SN is the deficit at ruin.

The representation given below was obtained in Wendel [103] §4 as an algebraic
identity, slightly more general than Spitzer’s identity, who originally obtained in [99]
the representation for the LST of the successive maxima of the partial sums (Sn)n (see
also Baxter and Donsker [28] for a similar derivation that holds for Lévy processes).
Theorem 1 and Identity (9) in Kingman [74] are much closer to our purposes. For the
sake of completeness, we cite the relevant result in the following proposition

Proposition 4.2.1 (Spitzer, Wendel, Baxter). With the above notations, it holds that

E{zNe−s1bN−s2SN } = 1− exp

{
−
∞∑
n=1

zn

n
E[e−s1bn−s2Sn1{Sn<0}]

}
, (4.3)

which holds for Re s1 ≥ 0, Re s2 ≤ 0, |z| ≤ 1.

In Kingman [74], this identity is obtained by ’killing’ inside the Spitzer-Wendel
identity, i.e. in the three-dimensional space where (an, bn, Sn)n is evolving, replace
the reflecting hyperplane at x3 = 0 with an absorbing hyperplane. This is formally
carried out in [74] by replacing the projection operator used by Wendel [103] with an
absorption operator.

We will use Theorem 4.1.1 in conjunction with the version of Spitzer’s identity
from Proposition 4.2.1 to obtain integral representations for the transforms of the
busy period, idle period and the number of customers served during a busy period.

Throughout the rest of this chapter, we will use the dashed integral sign as a
replacement for the cumbersome limit

lim
T→∞

iT∫
−iT

≡ −
i∞∫
−i∞

.
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Theorem 4.2.1. We have the following integral representations for P := bN , I :=
−SN , valid whenever Re s > 0, |z| < 1:

E{zNe−sP } = 1− exp

 1

2πi
−
i∞∫
−i∞

dξ

s− ξ {log[1− zh(ξ, 0)]− log[1− zh(ξ, s− ξ)]}

 ,

(4.4)

E{zNe−sI} = 1− exp

 1

2πi
−
i∞∫
−i∞

dξ

s+ ξ
log[1− zh(ξ,−ξ)]

 . (4.5)

Here log is the principal branch, that has the cut taken along the negative real axis
between 0 and ∞, so that it admits the power series representation

log
1

1− r =

∞∑
n=1

rn

n
, |r| < 1.

Proof. Below we will use an integration by parts argument and for this reason it will
be convenient to introduce the function G(u, x) = P(B ≤ u,A > x). We can write by
integrating over the possible values of bn:

P(bn < an) =

∞∫
0

G∗n(dx, x) and P(bn ≤ an) =

∞∫
0

G∗n(dx, x−)

where G∗n(x, y) := P(bn ≤ x, an > y), is the n-fold convolution of G with itself and
G∗n(dx, y) is the associated integral kernel, as described in Section 4.1,

G∗n(dx, y) ≡ P(bn ∈ dx, an > y), G∗n(dx, y−) ≡ P(bn ∈ dx, an ≥ y).

Let us begin with (4.4), which means we start with (4.3) for s2 = 0 and s1 = s.
The first step is to represent the expected value inside the series in (4.3):

1

2
E[e−sbn(1{Sn≤0} + 1{Sn<0})] =

∞∫
0

e−sx[
1

2
G∗n(dx, x−) +

1

2
G∗n(dx, x+)]. (4.6)

Define the following z-harmonic measure associated to G(dx,dy) = −H(dx,dy):

H∗z (dx, dy) =

∞∑
n=1

zn

n
G∗n(dx, dy),

so that, in particular,

H∗z (dx, y) =

∞∑
n=1

zn

n
G∗n(dx, y). (4.7)
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H∗z is a complex valued measure proper (i.e. it has finite total variation) for |z| < 1,
since we have

||H∗z || ≤
∑
n=1

|z|n
n

= log
1

1− |z| ;

moreover, its LST equals∫
e−s1x−s2yH∗z (dx,dy) =

∞∑
n=1

zn

n
hn(s1, s2), (4.8)

where the interchanging of the integral with the series is allowed because of absolute
integrability:

∫∫
|e−s1x−s2y| |H∗z |(dx, dy) ≤

∞∑
n=1

|z|n
n

∫∫
G∗n(dx, dy) = log

1

1− |z| .

Now let us use Theorem 4.1.1 for f(y) = e−syχ[0,∞)(y), Re s > 0, which means we
can write via (4.6) and (4.7):

∞∑
n=1

zn

n
E[e−sbn(1{Sn≤0} + 1{Sn<0})] =

1

2πi
−
i∞∫
−i∞


∞∫

0

∞∫
0

eξx−(s+ξ)yH∗z (dx, y) dy

 dξ.

(4.9)
Assume for simplicity that P(A = B) = 0 (i.e. P(Sn = 0) is null for all n). This

assumption is not essential, see for example the discussion in Cohen [40], p. 284. Then
the normalized indicator function 1

2 (1{Sn≤0} + 1{Sn<0}) that appears on the left-hand
side of (4.6) simplifies to 1{Sn<0}. Since H∗z (dx, y) is of bounded variation in y, we
can use the integration by parts formula for Lebesgue-Stieltjes integrals, so that (4.9)
becomes

1

2πi
−
i∞∫
−i∞

dξ

s+ ξ


∞∫

0

eξx

H∗z (dx, 0−) +

∞∫
y=0

e−(s+ξ)yH∗z (dx, dy)


=

1

2πi
−
i∞∫
−i∞

dξ

s+ ξ

[ ∞∑
n=1

zn

n
hn(−ξ, 0)−

∞∑
n=1

zn

n
hn(−ξ, s+ ξ)

]
, (4.10)

where we used (4.8) and the identity G(x, 0−) = P(B ≤ x). Changing the variable
ξ → −ξ, the exponent in (4.3) can be rewritten via (4.10), for Re s > 0, |z| < 1:

−
∞∑
n=1

zn

n
E[e−sbn1{Sn<0}] =

1

2πi
−
i∞∫
−i∞

dξ

s− ξ {log[1− zh(ξ, 0)]− log[1− zh(ξ, s− ξ)]} .

(4.11)
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Thus (4.4) follows from these considerations and Spitzer’s identity (4.2.1).

For the integral representation (4.5), the extension of Hewitt’s formula is not
needed. The starting point is (4.3) with s1 = 0, s2 = −s, Re s > 0, together with the
identity

EesSn1{Sn<0} =
1

2

0+∫
−∞

esxdP(Sn ≤ x) +
1

2

0−∫
−∞

esxdP(Sn ≤ x)

valid because P(S1 = 0) = 0. Similarly as above, set F (x) = P(S1 ≤ x) and introduce

F ∗z (dx) :=

∞∑
n=1

zn

n
F ∗n(dx). (4.12)

Use the inversion formula in Remark 4.1.1 with g(y) = esyχ(−∞,0](y), Re s > 0, so
that we can write similarly as for (4.9)-(4.10):

∞∑
n=1

zn

n
EesSn1{Sn<0} =

1

2πi
−
i∞∫
−i∞


∞∫
−∞

eξxF ∗z (dx)




0∫
−∞

e(s−ξ)y dy

 dξ

=
1

2πi
−
i∞∫
−i∞

dξ

s− ξ
∞∑
n=1

zn

n
hn(−ξ, ξ)

=− 1

2πi
−
i∞∫
−i∞

dξ

s+ ξ
log[1− zh(ξ,−ξ)], Re s > 0, (4.13)

after the change of variable ξ → −ξ.
Once (4.13) is replaced into (4.3), it immediately yields (4.5). The proof is complete.

Remark 4.2.1. If B is independent of A, then h(s1, s2) is the product of the marginal
transforms and the integral representation (4.4) reduces to that from Kingman [74],
Thm. 4 (see also Cohen [40], p. 304 for (4.5)).

Remark 4.2.2. The integral representations (4.4) and (4.5) hold under very general
conditions (there are no regularity assumptions of the distribution of (B,A), these
can even be discrete random variables, in which case the LSTs become generating
functions). The reason is that these representations are given for the interior of their
convergence domains (Re s>0, |z|<1). If we want to take any of the arguments to
their respective boundary, we have to require extra conditions to ensure convergence.
For example, when letting s converge towards the imaginary axis, there is a singularity
appearing, because the factor 1/(ξ − s) gains a simple pole located at ξ=s.

It turns out one can give a definite meaning to these integrals, for Re s= 0, if
they are regarded as singular integrals w.r.t. the Cauchy kernel 1/(ξ − s). Then one
considers the Cauchy principal value obtained by removing a circle of arbitrarily small
radius around the singularity s and then taking its radius to 0. Now we are dealing
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with a double principal value: first one coming from the pole at s of the Riemann
integral along the segment L := [−iT, iT ] (T large enough, so that s ∈ L) and the
second one obtained by letting T → ∞. A standard condition (see Gakhov [65],
Muskhelishvili [87]) that ensures the first principal value converges is that the density
functions ϕ1(ξ) := log[1−h(ξ,−ξ)], ϕ2(s, ξ) := log[1−h(ξ, s−ξ)] are Hölder continuous
along the imaginary axis, with some positive indices. The Hölder continuity of ϕ1(ξ) is
fairly close to Spitzer’s [98] integrability condition, which requires (upon taking s→ 0)
that (1− h(ξ,−ξ))/ξ be integrable in a neighbourhood of s=0 on the imaginary axis.

4.2.1 The number of arrivals during an excursion

Further along the lines of Remark 4.2.2, we will use the doubly dashed integral sign to
denote the double Cauchy principal value. The choice for the branch of log is essential
for the definiteness of the first principal value. It turns out to be convenient to work
with a branch of log which has the cut between 0 and ∞ taken inside the negative
half-plane (the same principal branch as the one used in Theorem 4.2.1), so we have
by definition,

1

2πi
−
∫
L

ϕ(ξ)

ξ − sdξ := −1

2
ϕ(s)+

ϕ(s)

2πi
[log(iT −s)− log(−iT −s)]+ 1

2πi

∫
L

ϕ(ξ)− ϕ(s)

ξ − s dξ.

(4.14)
The integral on the right is well defined as a Riemann integral as soon as ϕ(s)
is Hölder continuous along the line L. By choice of logarithm, the argument of
log(iT − s)− log(−iT − s) equals πi for all T . This means that the first two terms
cancel in the limit T →∞, and the above definition becomes

1

2πi
=

i∞∫
−i∞

ϕ(ξ)

ξ − sdξ =
1

2πi
−
i∞∫
−i∞

ϕ(ξ)− ϕ(s)

ξ − s dξ. (4.15)

Formula (4.14) differs slightly from the definition given in Mushkelishvili [87], p.
27 or Gakhov [65], p. 16, because therein the cut of the logarithm is taken in the
opposite half-plane. To be more precise, in our case, Cauchy’s integral representation
reads:

−
i∞∫
−i∞

dξ

ξ − s =

 2πi, s ∈ L+,
0, s ∈ L−,
0, s ∈ L.

The first two values are the well known Cauchy integral identities; the third one is
the Cauchy principal value for this specific choice of log (use (4.15) with ϕ ≡ 1).

It helps to think about the Riemann sphere as the one point compactification
of the complex plane so that the imaginary axis is closed into a large circle on the
sphere. Then all of the conventions above are specifying a means of integrating on the
large circle of the sphere, the integrands being extended by continuity at infinity; the
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interior of the imaginary axis is by definition the left hemisphere and the exterior is
the right hemisphere. Define

Φ(s) = −
i∞∫
−i∞

ϕ(ξ)

ξ − sdξ, s ∈ C,

and the integral is defined in the sense of (4.15), when Re s = 0. If we denote by
Φ−(s) the limit as s approaches the imaginary axis from its exterior, and by Φ+(s),
the limit taken from the interior, then the Plemelj–Sokhotski formulae (cf. Gakhov
[65], p. 25) become with the above conventions:

Φ−(s) = Φ(s), Φ+(s) = Φ(s) + ϕ(s), Re s = 0. (4.16)

Now we can calculate the limit as s approaches the imaginary axis from its exterior in
(4.4), and from its interior in (4.5), using (4.16). Still denoting the interior limit with
Φ+(s), (4.5) becomes for |z| < 1 and as s tends to the imaginary axis:

Φ+(s) = 1− [1− zh(−s, s)] exp

 1

2πi
=

i∞∫
−i∞

dξ

ξ + s
log[1− zh(ξ,−ξ)]

 . (4.17)

Before we give the limiting values of (4.4), we point out how one can simplify it.
Consider the first integral in the exponent of (4.4):

Ψ(η) := − 1

2πi
−
i∞∫
−i∞

dξ

ξ − η log[1− zh(ξ, 0)], Re η > 0.

The key remark is that h(ξ, 0) = Ee−ξB is analytic for Re ξ > 0 and this implies that
the density log[1− zh(ξ, 0)] is again analytic for Re ξ > 0. Since the integrand has a
simple pole in the positive half-plane located at η = ξ, it follows at once from Cauchy’s
Theorem applied to the imaginary axis that Ψ(η) equals

Ψ(η) = log[1− zh(η, 0)],

for any Re η > 0. This can be seen by closing the segment [−iT, iT ] with the half
circle spanning between its endpoints inside the positive half-plane. The contour
integral thus obtained equals log[1 − zh(s, 0)] for T large enough, so that the pole
η = ξ lies inside the contour (remark that because of the conventions on the interior of
the imaginary axis, this contour is traversed in the clockwise direction). Finally, the
contribution along the half-circle tends to 0 as T →∞ because the integrand behaves
as o(|ξ|−1) along the half-circle.

Having settled the first term in the exponent of (4.4), we can use the Plemelj–
Sokhotski’s formula (the continuity of the exterior limit from (4.16)) for the other
term, to obtain the identity



68 Integral representations

Φ−(s) = 1−exp

log[1− zh(s, 0)] +
1

2πi
=

i∞∫
−i∞

dξ

ξ − s log[1− zh(ξ, s− ξ)]

 , Re s = 0,

(4.18)
hence we can rewrite (4.18) as

Φ−(s) = 1− [1− zh(s, 0)] exp

 1

2πi
=

i∞∫
−i∞

dξ

ξ − s log[1− zh(ξ, s− ξ)]

 , Re s = 0.

(4.19)
In particular, for s = 0, the two limits (4.17) and (4.19) agree and these must then

coincide with the generating function of N . The following has been proven

Proposition 4.2.2. With the above notations and conventions, it holds for |z| < 1:

EzN = 1− (1− z) exp

 1

2πi
−
i∞∫
−i∞

dξ

ξ
log

1− zh(ξ,−ξ)
1− z

 .

4.3 Examples

In this section we point out that the integral representation (4.4) can be explicitly
evaluated under the assumption that the transform of the generic pair (B,A) is a
rational function in the argument that corresponds to the service requirement B.

Assume that for all s2, the joint LST h(s1, s2) is a rational function in the argument
s1, which can be represented as

h(s1, s2) =
h1(s1, s2)

h2(s1, s2)
, (4.20)

where hi(·, s2) are polynomial functions. Moreover we will assume that for Re s ≥ 0,
h(ξ, s− ξ) has a finite number of poles in the negative half-plane as a function in the
argument ξ (h(ξ, s− ξ) is already meromorphic in this region, because of the previous
assumption). This is an algorithmically friendly assumption, which will also give a
representation for the busy period transform in terms of a finite number of factors.

We may still assume without losing generality that P(B − A = 0) = 0, which
implies h(s1, s2) → 0, as s1 → ∞, Re s1 > 0, and the convergence is uniform in s2,
for Re s2 ≥ 0. In particular, we have for any Re s2 ≥ 0, deg h1(·, s2) < deg h2(·, s2).

Before we proceed with the analysis, let us point out some ways of creating
correlation between the inter-arrivals and the corresponding service times.

Example 1 (Threshold dependence) This is one of the simplest ways of making B
depend on the size of A: for a fixed threshold l > 0, B ∼ B1 on the event A ≤ l and
B ∼ B2 otherwise; with Bi independent of A and having rational transforms fi(s1),
i = 1, 2; thus
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h(s1, s2) = f1(s1)a1(s2) + f2(s1)a2(s2),

a1(s2) =

l∫
y=0

e−s2y dP(A ≤ y), a2(s2) =

∞∫
y=l+

e−s2y dP(A ≤ y),

so that a1(s1) is an entire function and a2(s2) is analytic for Re s2 > 0. This
construction can be naturally extended to k thresholds, giving

h(s1, s2) =

k∑
i=1

fi(s1)ai(s2),

with ai(s2) entire functions, i < k, and ak(s2) analytic for Re s2 > 0.

Example 2 (Markov Modulation) This is similar to the class of examples given in
Lemma 3.4.1,

(A,B) =

κ∑
i=1

(Ai, Bi),

with κ the number of jumps until absorbtion of a finite state Markov chain. The
difference is that the component A1 is now allowed to be generally distributed with
g0(s2) = Ee−s2A1 , and B1 has a rational transform of the form f1(s1)/f2(s1). With
the same notations for the transition structure of the absorbing Markov chain as in
Section 3.4, the transform of (A,B) is

h(s1, s2) = α′
[

f2(s1)

f1(s1)g0(s2)
I − T

]−1

t.

Both these examples are of the form assumed by (4.20) (see the proof of Lemma 3.4.1,
for the second example).

Remark that h2(·, s2) can only have zeroes with negative real part, because of the
regularity domain of h(·, s2). With these assumptions, the exponent in (4.4) becomes

1

2πi
−
i∞∫
−i∞

dξ

s− ξ log
h2(ξ, 0)− zh1(ξ, 0)

h2(ξ, 0)
− 1

2πi
−
i∞∫
−i∞

dξ

s− ξ log[1− zh(ξ, s− ξ)]. (4.21)

For the principal branch of the logarithm which has the cut taken along the negative
real axis, the single valued functions log[1 − zh(ξ, 0)] and log[1 − zh(ξ, s − ξ)] are
holomorphic, for ξ lying in a neighbourhood of infinity, Re ξ < 0. The reason is that for
such values of ξ, |zh(ξ, 0)| < 1, |zh(ξ, s−ξ)| < 1, and then a simple geometric argument
shows that both 1− zh(ξ, 0) and 1− zh(ξ, s− ξ) lie in the positive half-plane. With
this choice of the cut, the evaluation of the integrals (4.21) becomes an application of
the theorem of residues. Before we can evaluate (4.21), the zeroes and poles of the
arguments of the logarithm must be localized. The following lemma will also be useful
later on.
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Lemma 4.3.1. The functions h2(ξ, s − ξ) and h2(ξ, s − ξ) − zh1(ξ, s − ξ) have the
same number n ≡ n(s) of zeroes in the negative half of the complex ξ-plane, either
when |z| < 1, Re s ≥ 0, or |z| ≤ 1, Re s > 0.

Assuming Re s ≥ 0 and EB, EA <∞, then under the extra ergodicity condition
EB < EA, the functions h2(ξ, s − ξ) and h2(ξ, s − ξ) − h1(ξ, s − ξ) have the same
number m ≡ m(s) of zeroes with negative real part.

Proof. The statements will follow from Rouché’s theorem (cf. Titchmarsh [102], p.
116) as soon as we show that these functions are analytic in the interior of some
suitably chosen contours and on their boundary it holds that

|h2(ξ, s− ξ)| > |zh1(ξ, s− ξ)|, |h2(ξ,−ξ)| > |h1(ξ,−ξ)|. (4.22)

Fix R > 0 and consider the contour C consisting of the segment of the imaginary
axis between −iR and iR together with the semicircle with radius R that spans in
the negative half-plane. For the segment of the imaginary axis, we have the following
bounds

|zh(ξ, s− ξ)| = |z||Ee−ξB−(s−ξ)A| ≤ |z|E|e−ξB−(s−ξ)A| ≤ |z|Ee−(Re s)A, Re ξ = 0.
(4.23)

For the bound on the half-circle, consider the following representation for h(s1, s2):

h(s1, s2) =
a1(s2)sn−1

1 + a2(s2)sn−2
1 + . . .+ an(s2)

b1(s2)sn1 + b2(s2)sn−1
1 . . .+ bn+1(s2)

,

where n ≡ n(s2) (remark that for the examples presented above, the denominator
does not depend on s2, hence neither does the degree n). The functions ai(s2) can be
taken to be bounded for Re s2 ≥ 0, because it holds that |h(1, s2)| → 0 as s2 → ∞.
Moreover, we can assume b1(s2) ≡ 1, for Re s2 ≥ 0, after normalizing the fraction.
For fixed s2, let ξi(s2) be the zeroes (all with negative real part) of h2(s1, s2); when
bounding the above representation of h(s1, s2), use the triangle inequality for the
numerator and use the inequality |z1 − z2| ≥ ||z1| − |z2|| for the denominator:

|h2(s1, s2)| =
∣∣∣∣∣
n∏
i=1

(s1 − ξi(s2))

∣∣∣∣∣ ≥
∣∣∣∣∣
n∏
i=1

(|s1| − |ξi(s2)|)
∣∣∣∣∣ ,

the right-hand side being a polynomial function in |s1| of the same degree as h2(s1, s2).
Thus we have the upper bound

|h(ξ, s− ξ)| ≤ |a1(s− ξ)| |ξ|n−1 + |a2(s− ξ)| |ξ|n−2 + . . .

|∏n
i=1(|ξ| − |ξi(s− ξ)|)|

.

Then it follows from the facts that deg h1(ξ, s− ξ) < deg h2(ξ, s− ξ) and that the
ai are bounded, that

|h(ξ, s− ξ)| = o(|ξ|−1), |ξ| = R→∞, Re s ≥ 0, (4.24)

for ξ running along the half-circle that closes the contour C.
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From the bounds (4.23) and (4.24), it follows that |zh1(ξ, s− ξ)| < |h2(ξ, s− ξ)|
when ξ is on C, for R large enough, either if |z| < 1, Re s ≥ 0, or if |z| ≤ 1, Re s > 0.
This yields the first part of the lemma, via Rouché’s theorem.

For the second part, consider the contour Cε made up from the segment that runs
in parallel to the imaginary axis and lying to its left at distance ε, together with the
arc of the circle with radius R spanning in the negative half-plane between the edges
of this segment.

It is essential that h(ξ,−ξ) is meromorphic in Re ξ < 0 (see the discussion below
(4.20)). Since it has isolated poles, we can find ε > 0, such that h(ξ,−ξ) is holomorphic
in the thin strip −2ε < Re ξ < 0. Then the left derivative of the function h(ξ,−ξ)
exists at 0 and we have by hypothesis,

lim
ξ→0

Re ξ<0

d

dξ
h(ξ,−ξ) = EA− EB > 0,

in particular, h(Re ξ,−Re ξ) < h(0, 0) = 1. We can now bound for Re s ≥ 0 and ξ
lying on the segment of Cε:

|h(ξ, s− ξ)| ≤ E|e−ξB−sA+ξA| ≤ h(Re ξ,−Re ξ) < 1.

The bound for ξ lying on the arc component of Cε follows in the same way as (4.24).
By virtue of Rouché’s theorem, the proof is complete.

Remark 4.3.1. It follows in a similar way as for the first part of Lemma 4.3.1 that
the polynomials h2(ξ, 0) and h2(ξ, 0)− zh1(ξ, 0) have the same number of zeroes with
negative real part, |z| < 1. But since h2(ξ, 0) has only such zeroes and deg h2(·, 0) >
deg h1(·, 0), the same holds for h2(ξ, 0)− zh1(ξ, 0).

The idea for evaluating (4.21) is to use the theorem of residues for the contour
integrals along Cε while arguing that the contributions from the integrals along the
half-circle vanish as the radius R→∞. Focus on the contour integral of the second
term in (4.21) taken along the semi-circle component, say Sε, of Cε. For R large enough
Sε will be contained in the interior of a domain where h(ξ, s− ξ) is holomorphic, and
in addition, |zh(ξ, s− ξ)| ≤ 1, hence the position vector 1− zh(ξ, s− ξ) has positive
real part when the argument ξ runs along Sε, which means log[1 − zh(ξ, s − ξ)] is
holomorphic in a neighbourhood around the arc Sε. In conclusion, we can integrate
by parts:

∫
Sε

dξ

s− ξ log[1− zh(ξ, s− ξ)] = − log(s− ξ) log[1− zh(ξ, s− ξ)]
∣∣∣∣−ε+iR
−ε−iR

+

∫
Sε

log(s− ξ) d

dξ
log[1− zh(ξ, s− ξ)]dξ.

For large R, |h(ξ, s− ξ)| → 0, which means | log[1− zh(ξ, s− ξ)]| ∼ |zh(ξ, s− ξ)|, so
the first term on the right behaves in absolute value as

∼ | log(ξ − s)| |zh(ξ, s− ξ)| ∼ |z log(ξ − s)| |ξ|−1,
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and the integrand on the left-hand side behaves as |ξ|−2. Thus we have

∫
Sε

log(ξ − s) d

dξ
log[1− zh(ξ, s− ξ)]dξ → 0, |ξ| → ∞, Re ξ < 0. (4.25)

The same arguments that led to (4.25) apply to the function log[1− zh(ξ, 0)], and
similarly we have∫

Sε
log(ξ − s) d

dξ
log[1− zh(ξ, 0)]dξ → 0, |ξ| → ∞, Re ξ < 0. (4.26)

Now we are ready to calculate the contour integrals (4.21). Fix s, Re s > 0 and
consider the integrals (4.21) taken along the contour Cε described in the proof of
Lemma 4.3.1. ε is taken sufficiently small such that no poles of the integrands are
lying between the segment and the imaginary axis, irrespective of R (this can be found
since there are finitely many poles in the negative half-plane). The integrals in (4.21)
can be approximated from the interior of the negative half-plane using the contours
Cε, for arbitrarily large R and small ε. Splitting the integrals along Cε based on the
factors inside the logarithm and integrating by parts in each term, the expression in
(4.21) becomes

1

2πi

∫
Cε

log(s− ξ)
d
dξ [h2(ξ, 0)− zh1(ξ, 0)]

h2(ξ, 0)− zh1(ξ, 0)
dξ − 1

2πi

∫
Cε

log(s− ξ)
d
dξ h2(ξ, 0)

h2(ξ, 0)
dξ

+
1

2πi

∫
Cε

log(s−ξ)
d
dξ h2(ξ, s−ξ)
h2(ξ, s−ξ) dξ− 1

2πi

∫
Cε

log(s−ξ)
d
dξ [h2(ξ, s−ξ)−zh1(ξ, s−ξ)]
h2(ξ, s−ξ)−zh1(ξ, s−ξ) dξ.

By (4.25) and (4.26), the total contribution from the integrals along the semi-
circle Sε vanishes as R→∞. Moreover, the branch of log was chosen such that the
factors log(s− ξ) are analytic for Re ξ < 0. Then the integrands have simple poles
located at the zeroes of their denominators in the negative half of the complex plane.
So if we denote by ξi(s), ξi(z, s), i = 1, ..., n, the zeroes with negative real part of
h2(ξ, s− ξ), respectively h2(ξ, s− ξ)− zh1(ξ, s− ξ) (see Lemma 4.3.1) and with ηj ,
ηj(z), j = 1, ...,m the zeroes (all having negative real part) of h2(ξ, 0), respectively
h2(ξ, 0)− zh1(ξ, 0), the integral in (4.21) is equal to

log

m∏
j=1

[s− ηj(z)]
n∏
i=1

[s− ξi(s)]
m∏
j=1

[s− ηj ]
n∏
i=1

[s− ξi(z, s)]
= log

[h2(s, 0)− zh1(s, 0)]
n∏
i=1

[s− ξi(s)]

h2(s, 0)
n∏
i=1

[s− ξi(z, s)]
,

after letting R→∞ and ε→ 0. Remark also that the degree n is a (piecewise constant)
function of the argument s (Lemma 4.3.1). In conclusion, we have
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E{zNe−sP } = 1−
[h2(s, 0)− zh1(s, 0)]

n∏
i=1

[s− ξi(s)]

h2(s, 0)
n∏
i=1

[s− ξi(z, s)]
. (4.27)

The calculations that led to (4.27) can be repeated for z = 1 and Re s ≥ 0. The
contour of integration is the same as Cε, and the second part of Lemma 4.3.1 must
be used to conclude about the number of zeroes under the condition EA > EB. This
condition is necessary for stability (P has a proper probability distribution, which
must be verified when taking z = 1, s = 0). The conclusion is that we are allowed to
formally replace z = 1 in (4.27), which becomes

Ee−sP = 1−
[h2(s, 0)− h1(s, 0)]

n∏
i=1

[s− ξi(s)]

h2(s, 0)
n∏
i=1

[s− ξi(1, s)]
, (4.28)

with the remark that P has indeed a proper probability distribution.
Finally, it is possible to derive the transform of the idle period using a similar

contour integral; and the methods of this section equally apply to the symmetric case
of the joint transform h(s1, s2) being a rational function in the argument s2, for each
fixed s1, Re s1 ≥ 0.

4.4 The time to ruin when starting at a positive
level

We conclude this chapter with a derivation of the length of an excursion above level 0,
when the random walk is started at a positive level u. From an insurance perspective,
this is the time to ruin τ(u) when starting with initial capital u. τ(u) is a more
insightful performance measure than the ruin probability. From the perspective of a
risk reserve process, B stands for a generic inter-claim time and A for a generic claim
size (see the description at the end of Section 1.3). As in the rest of this chapter, the
elements B and A in a pair (B,A) can also be correlated with each other.

Using renewal arguments, we point out that it is possible to represent τ(u) in the
form of a double transform:

G(s1, s2) :=

∫∫
e−s1u−s2vdP(τ(u) ≤ v).

We will argue that the right-hand side is actually a double Stieltjes integral (the
integrator P(τ(u) ≤ v) turns out to be a function of bounded variation in both
arguments, as it is non-decreasing in v, for fixed u, and non-increasing in u, for fixed
v).

From a probabilistic perspective, G(s1, s2) represents the LST of the time to ruin
given that it starts with a random initial capital having an exponential distribution
(with positive rate s1), independently of everything else.
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We show in (4.30) that G(s1, s2) can be represented in terms of the double transform
of the time to ruin and the deficit at ruin when starting without any capital.

The key idea for calculating G is to exploit the regenerative structure of the
descending ladder process: starting at level u, there is an excursion above u (which
is distributed as P ), followed by a descending ladder height (undershoot) of size
distributed as I, which brings the reserve closer to ruin. From this point on, the
process regenerates so we are interested in the number of jumps N−(u) required to
bring the surplus in the negative for the first time. This discrete random variable then
defines the compound sum of N−(u) i.i.d. copies Pk of P , and this is the actual time
to ruin (with the remark that N−(u) is in general not independent of the components
Pk):

τ(u)
d
=

N−(u)∑
k=1

Pk.

N−(u) is the first index such that
∑N−(u)
k=1 Ik > u. And since the increments are

non-negative a.s., we have the identity of events

{N−(u) > n} = {I1 + . . .+ In ≤ u}.
We can write

P(N−(u) = n,
n∑
k=1

Pk ≤ v) = P(
n−1∑
k=1

Ik ≤ u,
n∑
k=1

Ik > u,
n∑
k=1

Pk ≤ v)

= P(
n−1∑
k=1

Ik ≤ u,
n∑
k=1

Pk ≤ v)− P(
n∑
k=1

Ik ≤ u,
n∑
k=1

Pk ≤ v);

(4.29)

the final decomposition holds because {∑n
k=1 Ik ≤ u} ⊂ {

∑n−1
k=1 Ik ≤ u}.

In relation to the first term on the RHS of (4.29), remark that Pn is independent of
both Pk and Ik, k < n, because of the regenerative structure of the excursion process.
Moreover, the left-hand side is a function of bounded variation in both arguments u
and v, because of the right-hand side, which is the difference of two functions that are
non-decreasing both in u and v. In conclusion, if we denote the LST of the left-hand
side with

Gn(s1, s2) =

∫∫
e−s1u−s2vdP(N−(u) = n, τ(u) ≤ v),

then, by virtue of the regenerative structure of the excursion/ladder height process,
(4.29) gives

Gn(s1, s2) = [ψ(0, s2)− ψ(s1, s2)]ψ(s1, s2)n−1, n ≥ 1,

where ψ(s1, s2) := Ee−s1I−s2P , with I and P defined in Theorem 4.2.1. I stands for
the deficit at ruin and P for the time to ruin, both for the risk reserve process without
any initial capital (P = τ(0)). Summing over n ≥ 1, gives
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G(s1, s2) =

∫∫
e−s1u−s2vdP(τ(u) ≤ v) =

ψ(0, s2)− ψ(s1, s2)

1− ψ(s1, s2)
. (4.30)

A simple instance for which G(s1, s2) can be calculated explicitly, is if we assume
the generic claim size A to follow an exponential distribution, independently from the
inter-claim time; then under the condition EA > EB, the undershoot I will be again
exponential with the same parameter, and independent of the excursion length, all
this because of the memoryless property. In this case, (4.30) becomes:

G(s1, s2) = Ee−s2P
s1

s1 + µ(1− Ee−s2P )
,

with A and thus I ∼ exp(µ). The transform of the excursion length P is known, see
Cohen [40], p. 250 (the corresponding queueing model is the M/G/1 queue). Finally,
it is possible to numerically invert G(s1, s2), using a similar inversion scheme as in
Chapter 6, to obtain for fixed u the c.d.f. of τ(u).

Some concluding remarks.
1. The problem with identity (4.30) is that the quantity ψ(s1, s2) is in general

quite difficult to obtain. First of all, even though Spitzer’s identity (4.3) is general
enough to represent ψ(s1, s2) in terms of the LST h(s1, s2) of (B,A), the inversion
theorem 4.1.1 is not sufficient to obtain a Cauchy principal value out of h(s1, s2) (we
would need a two-dimensional version of it which should apply to functions f(u, v)
of bounded variation, more general than the indicator functions for which higher
dimensional versions are available in Hewitt [69]). These results are needed if one tries
to replicate the proof of Theorem 4.2.1.

But even if we would be able to obtain integral representations for this joint
transform, the real problem would still lie ahead of us. The reason is that lifting
the theorem of residues we used in Section 4.3 to higher dimensions is a serious
complex-analytic problem. To give the reader a basic idea, the poles and zeroes of
meromorphic functions of a single variable are isolated points in C, but already for
meromorphic functions of two complex variables, the poles and zeroes become curves
of a complex argument, related to the so-called residue currents, see for instance Coleff
and Herrera [44]. These currents can be quite complicated to handle in general, and
are still an active area of research in Analysis.

2. We conclude this chapter with a final remark about the stability condition
EA > EB, used for the derivation of P in Section 4.3. In the dual ruin set-up, this
condition implies negative safety loading, which means that P and implicitly the time
to ruin τ(u) have a proper probability distribution: P(τ(u) <∞) = 1. Thus, it would
be useful for applications related to ruin, to also obtain the formula analogous to (4.28)
under the opposite stability assumption EA < EB (under this condition, the excursion
length P above a fixed level has a defective distribution and the distribution of the
deficit at ruin has an atom at 0, the size of this atom being precisely the defect of P :
P(I = 0) = 1− P(P <∞). For this purpose, notice that the integral representations
obtained in Theorem 4.2.1 do not assume any stability condition (a close inspection of
the proof of the first part in Lemma 4.3.1 and the contour integral used thereafter
shows that (4.27) is always valid when the discount factor z lies in the interior of the
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unit disc: |z| < 1). The technical problem thus reduces to either being able to use an
extended version of Rouché’s theorem for the case when the inequalities (4.22) are
relaxed to weak inequalities along the contour of integration, or to argue that the
limit z → 1 is allowed from within the unit disk in (4.27) (and then the precise limit
must depend on the relation between EA and EB). For the study of problems related
to queue lengths and their associated generating functions, extensions of Rouché’s
theorem have been obtained in Adan et al. [3], and Klimenok [77], the latter being
based on the generalized principle of the argument from Gakhov et al. [66].



Chapter 5

Queues and risk processes
with multivariate Poisson
input

This chapter is devoted to the study of a two-dimensional queueing system composed
of two parallel processors which receive input according to a compound Poisson arrival
process with simultaneous arrivals. Moreover, the duality relation from Section 2.2
allows us to relate the workload process of the queueing system to the joint surplus
process of two insurance companies that share risks using a proportional reinsurance
contract. The chapter is organized as follows: In Section 5.1 we describe the model
in detail. Section 5.2 is dedicated to the analysis of the 2-dimensional queueing
model with ordered service times. After introducing the assumptions, we derive the
Laplace-Stieltjes transform of the joint stationary workloads in the two queues and
present a decomposition theorem for the stationary workload in the two queues. In
Section 5.4 we extend the results of Section 5.2 to the k-dimensional queueing model.
Section 5.3 is dedicated to relations to other models. We present connections with
tandem and priority queues, but also with a reinsurance problem with proportional
claim sizes. In Section 5.5 we discuss the case of a general two-dimensional service
time (or claim size) distribution. We indicate that the two-dimensional workload
problem has been solved in the queueing literature. The solution is very complicated;
our ordered service times case is a degenerate case, but a case which has the advantage
of a much more explicit solution which offers more probabilistic insight – and a case
that can be generalized to higher dimensions.

Among the main contributions of this chapter, we mention an explicit result for
the transform of the joint workload (respectively, of the joint survival probability)
and its extension to the k-dimensional model. In addition, we mention the workload
decomposition result. It seems to be new in this setting, although similar results –
under the assumption of independent inputs – were obtained for parallel queues (cf.
Kella [73]).

77
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5.1 Model description

We consider a k-dimensional risk process in which claims arrive simultaneously in
the k branches, according to a Poisson process with rate λ. The claim sizes in the k

insurance lines are independent, identically distributed random vectors (B
(1)
n , ..., B

(k)
n ),

n ≥ 1. In the sequel we denote with (B(1), ..., B(k)) a random vector with the same

distribution as (B
(1)
1 , ..., B

(k)
1 ).

For the nth arriving claim vector, denote by An the time elapsed since the arrival
of the previous claim vector, so that the An are independent and have an identical
exponential distribution with parameter λ.

Using similar notations as in Chapter 1, let R
(i)
t , i = 1, ..., k be k risk reserve

processes with initial capital levels u(i), premium rates ci and the same arrival instants
t∗n, n ≥ 1. We have An = t∗n+1 − t∗n and t∗1 = 0 (no delay). Then

R
(i)
t = u(i) +

n(t)∑
j=1

(ciAj −B(i)
j ) + ci

(
t− t∗n(t)

)
, (5.1)

where n(t) is the number of arrivals before t (the first claim occurs at epoch t∗2). Let

τ (i)(u(i)) = inf{t > 0 : R
(i)
t < 0} be the marginal times to ruin.

In connection with the ruin process, we consider k parallel M/G/1 queues with
simultaneous (coupled) arrivals and correlated service requirements. As in the ruin
setting, An are the inter arrival times of customers in the k queues and the vector
(B(1), ..., B(k)) denotes the generic service requirements. The speed of server i is
denoted by ci, meaning that server i handles ci units of work per time unit, i = 1, . . . , k.

Furthermore we denote by ρi := λE(B(i)) the load of queue i, i = 1, ..., k and we
assume that ρi < ci, to ensure that all queues can handle the offered traffic. These
conditions imply positive safety loading in the ruin setting.

From the queueing perspective, the input process in this queueing system is again
multivariate compound Poisson; this is because the Poisson process of arrival epochs
is reversible. The vector of marks has the same distribution as the vector of claims
and marks corresponding to different arrival epochs are i.i.d. vectors.

Let (V
(1)
t , ..., V

(k)
t ) be the workload vector at time t in the system or, if we consider

the nth arrival epoch, this is the workload vector (V
(1)
tn , . . . , V

(k)
tn ) seen by the customers

of the nth batch arrival. Remark that, as in Section 1.1, V
(i)
tn = ciW

(i)
n , with W

(i)
n the

waiting time of the nth arrival in queue i. Under the stability conditions above, the

vectors (V
(1)
t , ..., V

(k)
t ) and (V

(1)
tn , ..., V

(k)
tn ) converge in distribution to the steady-state

joint workload at arbitrary epochs and at arrival epochs, respectively. Due to the
PASTA property (Poisson Arrivals See Time Averages), these vectors are equal in

distribution. Similarly, the vector (W
(1)
n , . . . ,W

(k)
n ) converges in distribution to the

steady state waiting time. We denote the Laplace-Stieltjes transform (LST) of the
steady-state workload vector:

ψ(s1, s2, ..., sk) := E(e−s1V
(1)−s2V (2)−...−skV (k)

).

The multivariate duality result of Section 2.2 is still in force, however, since we are
dealing here with a Lévy process as input, we have a lot of extra structure at hand,
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and we can obtain more than if we would exploit only the embedded random walk
structure. The embedded random walk approach will be fully exploited in the next
chapter, where we study a more general model driven by a semi-Markov process.

5.2 The analysis of the two-dimensional problem

In this section we derive the transform of the joint steady state workload process
of the two-dimensional queueing model with simultaneous arrivals, as introduced in
Section 5.1. We also present a probabilistic interpretation of the quantities involved
in the formula of the joint workload. The results are of immediate relevance for the
corresponding insurance problem, via the duality outlined in Section 2.2.

Before we start with the analysis, we make the following simplifying assumption.
Assumption 1. All premium rates, respectively all service speeds, are 1, viz.,
c1 = · · · = ck = 1.
The following observation shows that this assumption is not restrictive. If we divide
all terms in the righthand side of (5.1) by ci, we arrive at a new risk model with initial
capital u(i)/ci and claim size B(i)/ci and unit premium rates.

Remark 5.2.1. For the study of survival functions, we can normalize the risk reserve
processes by their respective income rates. The survival function is preserved, with the
starting capital scaled accordingly. To be more precise, let

R̃
(i)
t = u(i)/ci + t−

n(t)∑
k=1

B
(i)
k /ci, i = 1, 2.

Since R
(i)
t ≥ 0⇔ R̃

(i)
t ≥ 0, for τ̃∧, τ∧ the exit times (2.11) of R̃t respectively Rt from

the non-negative quadrant, we have the relation

τ̃∧(u(1), u(2)) = τ∧(c1u
(1), c2u

(2))

and then also F̃ s(u(1), u(2)) = F s(c1u
(1), c2u

(2)), with F̃ s the survival function of the
scaled process.

This means that for our purposes it suffices to study the process Rt and the
associated survival functions F s(u(1), u(2)) assuming unit income rates and properly
scaled claim size vectors; and this is what we will do from now on.

Similarly, in the corresponding queueing model the service times at queue i are
also divided by ci and the service speeds are equal to 1. This will not change the nth

waiting time W
(i)
n at queue i, but the workload V

(i)
n at the nth arrival epoch is divided

by ci. Hence the multivariate duality relation from Theorem 2.2.1 is preserved.
The LST of the joint service time/claim size vector is denoted by

φ(s1, s2) := E(e−s1B
(1)−s2B(2)

).

Our key assumption is the following:
Assumption 2. P(B(1) ≥ B(2)) = 1. In view of the above discussion, in case the
speeds are ci, our assumption would be P(B(1)/c1 ≥ B(2)/c2) = 1.
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Remark 5.2.2. This model allows for a dedicated Poisson arrival stream into queue 1.
Merging this separate arrival process with the simultaneous arrival process at queue 1,
the distribution of B(2) will have an atom in 0, which is the probability that a dedicated
Poisson arrival happens instead of a simultaneous one (see Badescu et al. [23] for a
reinsurance model with both dedicated and simultaneous arrivals). This modification
preserves the ordering assumption.

We are interested in the joint stationary distribution of the amount of work in the
two queues

ψ(s1, s2) := E(e−s1V
(1)−s2V (2)

).

This can be obtained by considering the Lindley recursion for the embedded
workload process (1.1)

(V
(1)
tn+1

, V
(2)
tn+1

) = (max(V
(1)
tn +B(1)

n −An, 0),max(V
(2)
tn +B(2)

n −An, 0)).

Or, for the LST

ψn(s1, s2) = E
(
e−s1V

(1)
tn
−s2V (2)

tn

)
, n = 1, 2, . . . ,

this gives after straightforward calculations

ψn+1(s1, s2) = λ
λ−s1−s2 (φ(s1, s2)ψn(s1, s2)− φ(s1, λ− s1)ψn(s1, λ− s1))

+ λ
λ−s1 (φ(s1, λ− s1)ψn(s1, λ− s1)− φ(λ, 0)ψn(λ, 0))

+ φ(λ, 0)ψn(λ, 0). (5.2)

Under the stability condition ρ1 < 1, ψ(s1, s2) := limn→∞ ψn(s1, s2) exists and(
1− λφ(s1,s2)

λ−s1−s2

)
ψ(s1, s2) =

(
λ

λ−s1 −
λ

λ−s1−s2

)
φ(s1, λ− s1)ψ(s1, λ− s1)

+
(

1− λ
λ−s1

)
φ(λ, 0)ψ(λ, 0). (5.3)

If we let A denote a generic inter-arrival time, then due to the PASTA property,

φ(λ, 0)ψ(λ, 0) = P(V (1) +B(1) ≤ A) = P(V (1) = 0) = 1− ρ1. (5.4)

This is the probability that queue 1 is empty at an arbitrary time instant.

On the regularity domains of ψ(s1, s2) and φ(s1, s2): We remark that, because of
the ordering P(B(1) ≥ B(2)) = 1, we can rewrite the transform of the joint service
times as:

φ(s1, s2) = Ee−s1(B(1)−B(2))−(s1+s2)B(2)

=: φ̃(s1, s1 + s2),

and this function is always regular in Re s1 > 0, Re (s1 + s2) > 0. If we consider
(B(1), B(2)) subject to B(1) ≥ B(2) a.s., φ(s1, s2) may not be regular beyond this
domain. More precisely, if B(2) has a heavy-tailed distribution, this implies that B(1)
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is also heavy tailed because of the dependence structure. In this case φ(s1, s2) cannot
be extended beyond Re s1 ≥ 0, Re (s1 + s2) ≥ 0. Similar considerations hold for
ψ(s1, s2) because we must also have P(V (1) ≥ V (2)) = 1.

It can be shown using Rouché’s Theorem that for every s1 with Re s1 > 0 there
exists a unique s2 = s2(s1) with Re s2(s1) > Re (−s1), that satisfies the identity
λφ(s1, s2) = λ− (s1 + s2). Moreover the function: s1 → s2(s1) (which is in this case
well defined) is analytic in Re s1 > 0. For the proof of this, see Lemma 5.6.1 in the
Appendix B of this chapter.

Hence the pair (s1, s2(s1)) is a zero of
(

1− λφ(s1,s2)
λ−s1−s2

)
in (5.3), which is in the

regularity domain of ψ(s1, s2). Then the righthand side of (5.3) is also zero, i.e.

λs2(s1)φ(s1, λ− s1)ψ(s1, λ− s1) = −s1(λ− s2(s1)− s1)φ(λ, 0)ψ(λ, 0). (5.5)

If we substitute this in (5.3) and use (5.4), we obtain

ψ(s1, s2) = (1− ρ1)
s1

s1 + s2 − λ(1− φ(s1, s2))
· s2(s1)− s2

s2(s1)
. (5.6)

The interpretation of the Rouché zero s2(s1). Assume that a customer that
starts a busy period BP (2) in queue 2 demands work x in queue 2 and work x + y
in queue 1. During the service time of this customer in the second queue, there are
Poisson(λx) arriving customers, all of these generating independent busy sub-periods
with the same distribution as BP (2) in queue 2. So if we denote with U the extra
work in the first queue, at the end of a busy period in the second queue, and with
U∗(s1) its Laplace-Stieltjes transform, we have the identity:

U∗(s1) =

∫ ∞
x=0

∫ ∞
y=0

e−s1y
∞∑
k=0

(λx)k

k!
e−λx[U∗(s1)]k dP(B(1) −B(2) ≤ y,B(2) ≤ x).

The powers of U∗(s1) correspond to the extra work contributions at the end of the
busy sub-periods started during the service time of the first customer in the busy
period BP (2). We can rewrite the above identity as:

U∗(s1) = φ̃(s1, λ[1− U∗(s1)]) = φ(s1, λ[1− U∗(s1)]− s1). (5.7)

Comparing this with the equation satisfied by s2(s1), in terms of φ̃(s1, s1 + s2), we
have: {

λφ̃(s1, s1 + s2(s1)) = λ− (s1 + s2(s1)),

λφ̃(s1, λ[1− U∗(s1)]) = λU∗(s1).

We may assume w.l.o.g. that P(B(1) > B(2)) > 0, otherwise the two queues are a.s.
identical, which is not interesting. Then it follows that the real part of λ(1− U∗(s1))
is positive, and we must have s1 + s2(s1) = λ(1− U∗(s1)) because s2(s1) is unique in
the region Re (s1 + s2) > 0. We have thus proved:
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Proposition 5.2.1. The relation between s2(s1) and the transform of the extra
workload in queue 1 at the end of a busy period in the shortest queue is

λU∗(s1) = λ− (s1 + s2(s1)). (5.8)

The transform of the joint workload in the two systems becomes

ψ(s1, s2) = (1− ρ1)
s1 + s2 − λ(1− U∗(s1))

s1 + s2 − λ(1− φ(s1, s2))
· s1

s1 − λ(1− U∗(s1))
.

The workload decomposition. Based on Proposition 5.2.1, we show that the
steady-state workload decomposes into an independent sum of a modified workload
and an additional term, which represents the steady-state workload in a classical
M/G/1 queue.

We start the joint workload process and let it run until the end of each busy period
in the queue with the smallest workload. At this random time instant, we remove the
extra content in queue 1, which has the largest workload of the two. Let us denote
this modified joint workload process as (Ṽ (1), V (2)). Then at the arrival instants of
customers in the two queues, the following recurrence relation holds:

(Ṽ
(1)
tn+1

, V
(2)
tn+1

) =

{
(Ṽ

(1)
tn +B

(1)
n −An, V (2)

tn +B
(2)
n −An), if An < V

(2)
tn +B

(2)
n ,

(0, 0), if An ≥ V (2)
tn +B

(2)
n .

Remark that marginally, the shortest queue evolves unchanged. If we have ergodicity,
then in steady state the above recurrence becomes:

(Ṽ (1), V (2))
d
=

{
(Ṽ (1) +B(1) −A, V (2) +B(2) −A), if A < V (2) +B(2),
(0, 0), if A ≥ V (2) +B(2).

Here and in the following,
d
= denotes equality in distribution. In terms of LST’s,

we obtain the following functional equation for ψ̃(s1, s2) := Ee−s1Ṽ (1)−s2V (2)

:

(1− λφ(s1, s2)

λ− s1 − s2
)ψ̃(s1, s2) = (1− ρ2)− λ

λ− s1 − s2
ψ̃(s1, λ− s1)φ(s1, λ− s1),

where 1− ρ2 = P(V (2) = 0).

Now follows a similar analysis as for ψ(s1, s2). We already know from the Rouché

problem that s2(s1) is a zero of (1− λφ(s1,s2)
λ−s1−s2 ). We also have Ṽ (1) ≥ V (2) a.s. (even if

we take out the extra workload at the largest queue at the end of each busy period,
Ṽ (1) is still at least as large as V (2)), therefore (s1, s2(s1)) is in the regularity domain
of ψ̃(s1, s2) and therefore, at the point (s1, s2(s1)), the right-hand side of the above
identity is equal to zero:
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ψ̃(s1, λ− s1)φ(s1, λ− s1) = (1− ρ2)
λ− s1 − s2(s1)

λ
.

Substituting back in the original identity, yields:

ψ̃(s1, s2) = (1− ρ2)
s1 + s2 − λ(1− φ(s1, s2(s1)))

s1 + s2 − λ(1− φ(s1, s2))
. (5.9)

This is a 2-dimensional Pollaczek-Khinchine type of representation. From an
analytic point of view, the role of the numerator is to cancel the unique pole of the
denominator in the region Re (s1 + s2) > 0.

Substitute s2(s1) from Proposition 5.2.1 and ψ̃ from (5.9) into (5.6):

ψ(s1, s2) =
1− ρ1

1− ρ2

s1

s1 − λ[1− U∗(s1)]
ψ̃(s1, s2). (5.10)

We can now state the main result:

Theorem 5.2.1 (Work decomposition). In steady state, we have the following repre-
sentation of the joint workload at the two queues as an independent sum:

(V (1), V (2))
d
= (Ṽ (1), V (2)) + (V (1),1, 0),

where V (1),1 is the workload in an independent, virtual M/G/1 queue with arrival rate
λ and service requirements distributed as U , the extra workload at the end of a busy
period BP (2) in the shortest queue.

Proof. It suffices to remark that the factor

1− ρ1

1− ρ2

s1

s1 − λ[1− U∗(s1)]
= Ee−s1V

(1),1

in (5.10) is the Pollaczek-Khinchine formula for the transform of the workload in the
virtual M/G/1 queue with service time that has the same distribution as U . This
virtual queue is obtained by contracting the busy periods in the initial shortest queue,
so that an arrival in the virtual queue happens at the end of this busy period and the
inter arrival time is then the idle period in the initial queue, and so is exponentially
distributed. To see that indeed 1−ρ1

1−ρ2 is the atom of V (1),1 at 0, differentiate the

identity for U∗(s1) in (5.7):

E(U) = − d

ds1
φ(s1, λ(1− U∗(s1))− s1)|s1=0 = E(B(1) −B(2)) + λEB(2)E(U),

so that 1− λE(U) = 1−ρ1
1−ρ2 .

5.3 Relation with other models

In this section we point out how the results of the previous section are related to
results for a risk model with proportional reinsurance, a particular tandem fluid model
and to a particular priority queue. We start by showing that (5.6) generalizes a result
obtained in Avram et al. [19], for the risk setting.
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The case of proportional reinsurance. In [19] the joint risk reserve process
(R(1), R(2)) is of the form: R(i)(t) = u(i) + cit/δi − S(t). Here S(t) is a common
Compound Poisson input process with generic claim sizes B and ci are the premium
rates. The claims are being divided in fixed proportions δi, respectively.

To bring this closer to our setting in Section 5.2, normalize the income rates: i.e.
we consider ( 1

p1
R(1), 1

p2
R(2)) with pi = ci

δi
. The assumption in [19] is that p1 > p2,

which means that, in our notation, the claim sizes are B(1) := 1
p1
B < 1

p2
B =: B(2).

Remark that the inequality between the B(i)’s is reversed here (which means the role
of the arguments in our transforms is interchanged, especially the Rouché zero).

Let us recall the main formula in Avram et al. [19] (Formula (23)):

ψ∗R(1),R(2)(p, q) =
κ2(0+)′

p(κ1(p+ q)− q(p1 − p2))

q + p− q+(q(p1 − p2))

q − q+(q(p1 − p2))
, (5.11)

where ψ∗R(1),R(2)(p, q) denotes the Laplace transform of the infinite horizon survival
function:

ψ∗R(1),R(2)(p, q) =

∫ ∞
0−

e−pu
(1)−qu(2)

F s(u(1), u(2)) du(1) du(2).

The relation between the ruin times of (R(1), R(2)) and ( 1
p1
R(1), 1

p2
R(2)) is

τ 1
p1
R(1), 1

p2
R(2)(u1, u2) = τR(1),R(2)(p1u1, p2u2).

Hence the relation to our coordinates is s1 = p1p, s2 = p2q. From this, the relation
between the LT of the survival functions become after a change of variables:

ψ∗ 1
p1
R(1), 1

p2
R(2)(s1, s2) =

1

p1p2
ψ∗R(1),R(2)(p, q). (5.12)

• κi(α) is the Laplace exponent of the Compound Poisson process with drift pi
per unit time. This means

κi(α) = piα− λ(1− Ee−αB).

Because of the linear dependence between the B(i)’s, their LST has the form

Ee−s1B(1)−s2B(2)

= φ(s1, s2) =: φB(1)(s1 + p1
p2
s2).

• q+(q) is the largest root of the equation κ1(α) = q. Then q+(q(p1 − p2)) solves:

p1α− λ(1− Ee−αp1B(1)

) = q(p1 − p2).

Remark that if we set α = p+ q, the above becomes:

p1p+ p2q − λ(1− φB(1)(p1p+ p1q)) = 0,

or, written in the (s1, s2)-coordinates, this becomes the equation satisfied by
s1(s2) (s1 and s2 are now interchanged). Hence the relation between the zeroes
in the two notations is: s1(s2) = p1(α− q) = p1[q+(q(p1 − p2))− q].



5.3. Relation with other models 85

The constant κ(0+)′ = p2 − λEB(2) = p2(1 − ρ2) is the probability that the
queueing system is empty in steady state (now the second queue has a higher
workload).

In conclusion, using the relation between the Laplace integral transform and the
Laplace-Stieltjes transform:

ψ∗R(1),R(2)(s1, s2) =
1

s1s2
ψ(s1, s2), (5.13)

(5.11) written via (5.12) and (5.13) in the (s1, s2) coordinates becomes Formula (5.6):

ψ(s2, s1) =
s1(1− ρ2)

s1 + s2 − λ(1− φB(1)(s1 + p1
p2
s2))

· s1 − s1(s2)

−s1(s2)
,

with the arguments s1 and s2 interchanged.

Relation with work on tandem fluid queues. We now show that the workload
model with ordered service times is equivalent with a particular tandem fluid queue.
That is a model of two queues in series, in which the outflow from the first queue is a
fluid, i.e., there is continuous outflow when the server is working (instead of customers
leaving one by one). Such tandem fluid queues have been studied by various authors,
see in particular Kella [73]. Consider the following two-station tandem fluid network
with independent compound Poisson input at the two stations (with arrival rate λi
and Laplace-Stieltjes transform of the service times B∗i (·), i = 1, 2). Then Theorem
4.1 of Kella [73] gives the Laplace-Stieltjes transform of the steady-state fluid levels
W1 and W2 in the two nodes:

ψW (α1, α2) = E
(
e−α1W1−α2W2

)
=

(1− ρ1 − ρ2)α2

φ1(α1)− φ1(η̂2(α2))
· α1 − η̂2(α2)

α2 − η̂2(α2)
, (5.14)

with

• ρi = λiE(Bi),

• φ1(α1) = α1 − η1(α1),

• ηi(αi) = λi(1−B∗i (αi)),

• η̂2(α2) the solution of φ1(η̂2(α2)) = η2(α2).

Alternatively, the last relation can also be formulated as: η̂2(α2) is the solution of

λ1B
∗
1(η̂2(α2)) + λ2B

∗
2(α2) = λ1 + λ2 − η̂2(α2).

This system is related to our model with arrival rate λ = λ1 +λ2 and Laplace-Stieltjes
transform of service requirements

φ(s1, s2) =
λ1

λ1 + λ2
B∗1(s1 + s2) +

λ2

λ1 + λ2
B∗2(s1).
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l
B(2)

B(1)−B(2)

1

Figure 5.1: Tandem fluid queue

The corresponding notation is: B1
d
= B(2) and B2

d
= B(1) −B(2). Here W1 in the

tandem model corresponds to the workload in the smallest queue in our model and
W1 +W2 in the tandem model corresponds to the workload in the largest queue in
our model. So we have

ψ(s1, s2) = E
(
e−s1V1−s2V2

)
= E

(
e−s1(W1+W2)−s2W1

)
= ψW (s1 + s2, s1)

=
(1− ρ1 − ρ2)s1

s1 + s2 − λ1(1−B∗1(s1 + s2))− λ2(1−B∗2(s1))
· s1 + s2 − η̂2(s1)

s1 − η̂2(s1)
.

Now remark that

• The total traffic offered to the largest queue is ρ1 + ρ2, so indeed the factor
1− ρ1 − ρ2 in [73] corresponds to the factor 1− ρ1 in (5.6);

• λ(1− φ(s1, s2)) = λ1(1−B∗1(s1 + s2)) + λ2(1−B∗2(s1));

• λφ(s1, s2(s1)) = λ1B
∗
1(s1 + s2(s1)) + λ2B

∗
2(s1) = λ1 + λ2 − (s1 + s2(s1)), so

indeed η̂2(s1) corresponds to our s1 + s2(s1).

We conclude that (5.6) coincides with Theorem 4.1 of Kella [73] in the case of
independent compound Poisson input. Kella’s result is more general in the sense that
he has Lévy input instead of compound Poisson input. Our result is more general in
the sense that we have dependent compound Poisson input.

Relation with work on priority queues. As was already noticed in Kella [73],
but also in several other places in the literature, the tandem fluid network described
above is also related to a priority queue with preemptive resume priorities. Hence
the same holds for our workload model. Consider the following model with two types
of customers where customers of type-i arrive according to a Poisson process with
rate λi having service times with Laplace-Stieltjes transform B∗i (·), i = 1, 2. Assume
furthermore that customers of type-1 have preemptive resume priority over customers
of type-2. If we denote by Y1 and Y2 the steady-state workloads in the two queues, then
Y1 and Y2 are related to W1 and W2 in the tandem fluid network. The Laplace-Stieltjes
transform of the steady-state workloads in the two queues satisfies

ψY (s1, s2) = E
(
e−s1Y1−s2Y2

)
= E

(
e−s1W1−s2W2

)
= E

(
e−s1V2−s2(V1−V2)

)
= ψV (s2, s1 − s2)
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where again in our model we have to take arrival rate λ = λ1 +λ2 and Laplace-Stieltjes
transform of service requirements

φ(s1, s2) =
λ1

λ1 + λ2
B∗1(s1 + s2) +

λ2

λ1 + λ2
B∗2(s1).

We conclude that (5.6) also gives the Laplace-Stieltjes transform of a priority queue.
Again our result is more general in the sense that we have dependent compound Poisson
input (i.e., we can have arrivals of customers who have both low and high priority
work).

5.4 The k-dimensional problem

In this section we consider the k-queue system with simultaneous arrivals. We give
the transform for the steady-state joint workload and we show that the decomposition
in Theorem 5.2.1 extends to this case if we preserve the ordering between the service
requirements/claim sizes. We use an iterative argument and for this purpose, the
decomposition in Section 5.2 will be the starting point; the iteration step is essentially
done with the help of Lemma 5.4.1 below as a work conservation identity.

We thus consider k parallel M/G/1 queues, numbered 1 to k, respectively, with
simultaneous (coupled) arrivals and correlated service requirements. We use the same
notations as in Section 5.1. The LST of the service time/claim size vector is denoted
by

φ(s1, . . . , sk) := E(e−s1B
(1)−···−skB(k)

).

The essential assumption in the model extends Assumption 2 for the 2-dimensional
problem:

P(B(1) ≥ B(2) ≥ · · · ≥ B(k)) = 1.

Furthermore we denote by ρi := λEB(i), i = 1, . . . , k, the load of queue i and we
assume that ρ1 < 1 (hence ρi < 1, ∀i), to assure that all queues can handle the offered
work.

Remark 5.4.1. Like in the two-dimensional case (cf. Remark 5.2.2), this model
allows for a separate Poisson arrival stream into queue 1. Merging this separate arrival
process with the simultaneous arrival process, the distribution of (B(2), . . . , B(k)) will
have an atom in (0,. . . ,0), which is the probability that a dedicated Poisson arrival
happens instead of a simultaneous one.

The Laplace-Stieltjes transform of (V (1), . . . , V (k)). The k-dimensional Lindley

recursion holds for the random variables (V
(1)
tn , . . . , V

(k)
tn ) :

(V
(1)
tn+1

, . . . , V
(k)
tn+1

) = (max(V
(1)
tn +B(1)

n −An, 0), . . . ,max(V
(k)
tn +B(k)

n −An, 0)).
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For ψn(s1, . . . , sk) := E
(
e−s1V

(1)
tn
−...−skV (k)

tn

)
, n ≥ 1, the Lindley recursion gives

after straightforward calculations:

ψn+1(s1, . . . , sk) =

k∑
j=1

λ

λ−∑j
i=1 si

[
φ(j)(s1, . . . , sj)ψ

(j)
n (s1, . . . , sj)

− φ(j−1)(s1, . . . , sj−1)ψ(j−1)
n (s1, . . . , sj−1)

]
+ φ(0)ψ(0)

n (5.15)

where we used the following notation for simplicity: ψ
(k)
n (s1, . . . , sk) := ψn(s1, . . . , sk)

with ψ
(0)
n := ψn(λ, 0, . . . , 0), and

ψ(j)
n (s1, . . . , sj) := ψn(s1, . . . , sj , λ−

j∑
i=1

si, 0, . . . , 0︸ ︷︷ ︸
k−j−1 arguments

), for 1 ≤ j ≤ k − 1.

φ(j)(s1, . . . , sj) is analogously defined for j = 0, . . . , k. By taking n→∞ in (5.15), we
obtain for ψ(s1, . . . , sk) := limn→∞ ψn(s1, . . . , sk),(

1− λφ(s1,...,sk)

λ−∑k
i=1 si

)
ψ(s1, . . . , sk) =

k−1∑
j=0

(
λ

λ−∑j
i=1 si

− λ

λ−∑j+1
i=1 si

)
· φ(j)(s1, . . . , sj)ψ

(j)(s1, . . . , sj), (5.16)

with ψ(j) := lim
n→∞

ψ(j)
n ; and φ(0)ψ(0) = P(V (1) +B(1) ≤ A) = 1− ρ1.

Formula (5.16) has a simple recursive structure, and we can rewrite it as:

(
1− λφ(s1,...,sk)

λ−∑k
i=1 si

)
ψ(s1, . . . , sk) =

(
λ

λ−∑k−1
i=1 si

− λ
λ−∑k

i=1 si

)
φ(k−1)(s1, . . . , sk−1)·

ψ(k−1)(s1, . . . , sk−1) +
(

1− λφ(s1,...,sk−1,0)

λ−∑k−1
i=1 si

)
ψ(s1, . . . , sk−1, 0).

(5.17)

Denote by Cj :=
(

1− λφ(s1,...,sj ,0,...,0)

λ−∑j
i=1 si

)
ψ(s1, . . . , sj , 0, . . . , 0), and remark that

ψ(s1, . . . , sj , 0, . . . , 0) is the transform of the workload in the j-dimensional system
obtained by ignoring the last (k − j) queues, j = 1, . . . , k.

Proposition 5.4.1. The LST of the steady-state workload in the k ≥ 3 systems is
given by:

ψ(s1, . . . , sk) =
(1− ρk)(Sk − sk)∑k

i=1 si − λ(1− φ(s1, . . . , sk))

k−1∏
j=2

1− ρj
1− ρj+1

Sj − sj
Sj+1

· 1− ρ1

1− ρ2

s1

S2
,

(5.18)
with Sj = Sj(s1, ..., sj−1) the unique solution of the equation

λφ(s1, . . . , sj , 0, . . . , 0) = λ−
j∑
i=1

si,
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with Re (s1 + · · ·+ sj−1 + Sj(s1, . . . , sj−1)) > 0, for all j = 2, . . . , k.

Proof. The key remark is that sk is not among the arguments of the functions ψ(j)

that appear in the righthand side of (5.16) or (5.17). Similarly as in Section 5.2,
Rouché’s theorem (Lemma 5.6.1) applied to s1 replaced by s1 + · · · + sk−1 and s2

replaced by sk, yields the existence of a unique solution Sk = Sk(s1, . . . , sk−1) of the
equation

λφ(s1, . . . , sk) = λ−
k∑
i=1

si,

such that Sk(s1, . . . , sk−1) +
∑k−1
i=1 si has positive real part. Hence the hyper-surface

given by Sk = Sk(s1, . . . , sk−1) is contained in the regularity domain of ψ(s1, . . . , sk),
and then the righthand side of (5.17) must be zero. This gives the following relation
for ψ(k−1)(s1, . . . ,sk−1):

(φ(k−1) · ψ(k−1))(s1, . . . , sk−1) =
(λ−∑k−1

i=1 si)φ(s1, . . . , sk−1, Sk)

Sk
Ck−1.

By substituting back into Equation (5.17), we obtain the recursion

Ck =
λ−∑k−1

i=1 si

λ−∑k
i=1 si

· Sk − sk
Sk

Ck−1

with initial condition C2 = −(1− ρ1) s1
λ−s1−s2

S2−s2
S2

, which follows from (5.6). From
this, we obtain (5.18), after rearranging the factors. The proof is complete.

Interpretation of the Rouché zero. It is worthwhile to change the coordinates:
(s1, s2, . . . , sk)→ (s1, s2, . . . , sk−1,

∑k
i=1 si). We can rewrite

φ(s1, . . . , sk) = Ee−s1(B(1)−B(k))−...−sk−1(B(k−1)−B(k))−(
∑k
i=1 si)B

(k)

Let us denote it by φ̃(s1, . . . , sk−1,
∑k
i=1 si). This is the transform of the extra

service time (relative to the shortest queue) in the first k − 1 queues, together with
the shortest one. It turns out there is a connection between Sk(s1, . . . , sk−1) and the
joint extra work in systems 1 to k − 1 at the end of a busy period in system k. Let
us denote this extra work by (U1, U2, . . . , Uk−1), with LST U∗k (s1, . . . , sk−1), and let
F (x1, x2, . . . , xk) be the c.d.f. of (B(1) − B(k), . . . , B(k−1) − B(k), B(k)). Then by a
similar argument as the one leading to (5.7), U∗k (s1, . . . , sk−1) satisfies the identity

U∗k (s1, . . . , sk−1) =

∫
e
−
k−1∑
i=1

sixi
∞∑
n=0

(λxk)n

n!
e−λxk [U∗k (s1, . . . , sk−1)]nF (dx1 . . . dxk)

= φ̃(s1, . . . , sk−1, λ[1− U∗k (s1, . . . , sk−1)]). (5.19)

Comparing this with the identity for the Rouché zero,

λ− (s1 + · · ·+ sk−1 + Sk) = λφ̃(s1, . . . , sk−1, s1 + · · ·+ sk−1 + Sk),
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gives the relation analogous to (5.8):

λU∗k (s1, . . . , sk−1) = λ− (s1 + · · ·+ sk−1 + Sk), (5.20)

which follows because the Rouché zero is unique.
Let us fix our attention on the case k = 3 for the moment. Then identity (5.18)

becomes

ψ(s1, s2, s3) =
(1− ρ3)(S3 − s3)

s1 + s2 + s3 − λ[1− φ(s1, s2, s3)]
· 1− ρ2

1− ρ3

S2 − s2

S3
· 1− ρ1

1− ρ2

s1

S2
. (5.21)

U(1),2

U(1),1

U(1),1

U(2),1 U(2),1

U(2),1
U(2),1

V(1)

V(2)

V(3)

Ũ(1),2

U(1),1

U(1),1

Figure 5.2: Work in the original system (left) and in the virtual system (right)

Work conservation. We would like to give a probabilistic interpretation of (5.21).
In order to achieve this, we start by considering the joint extra work in queues 1
and 2 at the end of a busy period in queue 3. This has LST U∗3 (s1, s2) as input
in a 2-dimensional system with simultaneous Poisson arrivals, which is obtained by
contracting the busy cycles in queue 3. We call this the 2-dimensional virtual system.
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Remark that the inter-arrival times in the virtual system are precisely the idle periods
in queue 3.

For this construction, the key observation is that the steady-state extra work in the
virtual queue 1 at the end of the busy period in the virtual queue 2 is the same as the
extra work in the initial queue 1 at the end of the busy period in the original queue 2.
In analytic form, let Ũ∗2 (s1) be the LST of the extra work in the virtual system and
U∗2 (s1) be the LST of the extra work in the original system, see Figure 5.2.

Lemma 5.4.1.
Ũ∗2 (s1) = U∗2 (s1).

Proof. We begin by remarking that the extra work (U (1),1, U (2),1) in the first 2 queues
at the end of a busy period in queue 3 satisfies the a.s. inequality U (1),1 ≥ U (2),1.
Since this is the input in the virtual system, from Proposition 5.2.1, Ũ∗2 (s1) satisfies
the identity (5.7) with U∗3 (s1, s2) instead of φ(s1, s2):

U∗3 (s1, λ[1− Ũ∗2 (s1)]− s1) = Ũ∗2 (s1). (5.22)

At the same time, via (5.19), U∗3 (s1, s2) satisfies

φ(s1, s2, λ(1− U∗3 (s1, s2))− s1 − s2) = U∗3 (s1, s2).

If we substitute this fixed point identity in (5.22) above, we have

φ(s1, λ(1− Ũ∗2 (s1))− s1, 0) = Ũ∗2 (s1).

On the other hand, this is also the identity (5.7) satisfied by U∗2 (s1), in the 2-dimensional
system obtained by ignoring the last queue. Hence, from the uniqueness of Rouché’s
zero, Ũ∗2 (s1) = U∗2 (s1) (See Figure 5.2). This completes the proof.
We can rewrite (19) using (21):

ψ(s1, s2, s3) = (1− ρ3)
s1 + s2 + s3 − λ(1− U∗3 (s1, s2))

s1 + s2 + s3 − λ(1− φ(s1, s2, s3))

· 1− ρ2

1− ρ3

s1 + s2 − λ(1− U∗2 (s1))

s1 + s2 − λ(1− U∗3 (s1, s2))
· 1− ρ1

1− ρ2

s1

s1 − λ(1− Ũ∗2 (s1))
. (5.23)

Remark that the atom 1−ρ1
1−ρ2 above is the conditional probability that queue 1 is

empty, given that queue 2 is empty; and similarly for 1−ρ2
1−ρ3 . In addition, the last factor

in (5.23) is the Pollaczek-Khinchine representation for an M/G/1 queue with service
times having LST Ũ∗2 (s1). Now we are ready to give the main result of this section.

Theorem 5.4.1. In steady state, the joint workload distribution decomposes as an
independent sum:

(V (1), V (2), V (3))
d
= (Ṽ (1),1, Ṽ (2),1, V (3)) + (Ṽ (1),2, V (2),2, 0) + (V (1),3, 0, 0).

The first term in the sum represents the steady-state distribution of the modified joint
workload process obtained by removing the extra work in the first two queues at the
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end of a busy period in the third queue. The second term is the workload in the first
two queues obtained by removing the extra work in the first queue at the end of a busy
cycle in the second queue. Finally the third term represents the workload in the virtual
M/G/1 queue with input distributed as the extra work in queue 1, at the end of a busy
period in queue 2.

Proof. Consider the modified work process that evolves in steady state as

(Ṽ (1),1, Ṽ (2),1, V (3))
d
=
(
Ṽ (1),1 +B(1) −A, Ṽ (2),1 +B(2) −A, V (3) +B(3) −A

)
,

if A < V (3) +B(3); and (Ṽ (1),1, Ṽ (2),1, V (3)) = (0, 0, 0), else.
By similar computations as the ones leading to Formula (5.9), we obtain

ψ̃(s1, s2, s3) = (1− ρ3)
s1 + s2 + s3 − λ(1− U∗3 (s1, s2))

s1 + s2 + s3 − λ(1− φ(s1, s2, s3))
.

This is the first factor in (5.23). For the second one, consider the following modified
virtual workload process that evolves in steady state as

(Ṽ (1),2, V (2),2, 0)
d
=


(
Ṽ (1),2 + U (1),1 −A, V (2),2 + U (2),1 −A, 0

)
,

if A < V (2),2 + U (2),1,
(0, 0, 0), if A ≥ V (2),2 + U (2),1,

with (U (1),1, U (2),1) the extra work vector in the first two queues at the end of a busy
period in queue 3. Here we remove the excess workload in the virtual queue 1 at the
end of the busy period in the virtual queue 2, which by Lemma 5.4.1 is the same as in
the original system. In terms of LST’s , this becomes

ψ̃1(s1, s2) =
1− ρ1

1− ρ2

s1 + s2 − λ(1− U∗2 (s1))

s1 + s2 − λ(1− U∗3 (s1, s2))
.

Finally, the third factor in (5.23) is the Pollaczek-Khinchine representation of the
steady-state workload in the M/G/1 queue with service time distributed as the extra
work in queue 1 at the end of a busy period in queue 2. This completes the proof.

These considerations can be iterated now for the general k-dimensional system.

Corollary 5.4.1. The steady-state joint workload in the k systems decomposes into
the independent sum

(V (1), . . . , V (k))
d
= (Ṽ (1),1, . . . , Ṽ (k−1),1, V (k)) + (Ṽ (1),2, . . . , Ṽ (k−2),2, V (k−1),2, 0)

+ · · ·+ (Ṽ (1),k−1, V (2),k−1, 0, . . . , 0) + (V (1),k, 0, . . . , 0),

where the jth term in the sum satisfies the identity in distribution (j=2,. . . ,k):

(Ṽ (1),j ,Ṽ (2),j , . . . , Ṽ (k−j),j , V (k−j+1),j , 0, . . . , 0)
d
=
(
Ṽ (1),j + U (1),j−1 −A,
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Ṽ (2),j + U (2),j−1 −A, . . . , V (k−j+1),j −B(k−j+1) −A, 0, . . . , 0
)
,

if A ≤ V (k−j+1),j −B(k−j+1),

and (0, . . . , 0) else. U (i),j is the extra workload in queue i at the end of a busy period
in queue (k − j + 1), for i > k − j + 1.

5.5 The general two-dimensional workload/reinsur-
ance problem

In this section we consider the general two-dimensional workload problem: pairs of
customers arrive simultaneously at two parallel queues Q1 and Q2 according to a

Poisson(λ) process, the nth pair requiring service times (B
(1)
n , B

(2)
n ) with LST φ(s1, s2).

We are interested in the steady-state workload vector (V (1), V (2)) with LST ψ(s1, s2).
By the duality that is exposed in Section 2.2, ψ(s1, s2) is also the Laplace transform
(w.r.t. u(1) and u(2)) of the probability that both portfolios of an insurance company

with simultaneous claims (B
(1)
n , B

(2)
n ), with initial capital u(1) and u(2), will survive.

In Section 5.2 we have determined ψ(s1, s2) for the special case that P(B(1) ≥
B(2)) = 1. We now show how the general case – B

(1)
n and B

(2)
n having an arbitrary

joint distribution – has been solved in the literature (with the solution of that special
case emerging as a degenerate solution). We shall successively discuss the contributions
of Baccelli [21], De Klein [76] and Cohen [43], who have treated the two-dimensional
workload problem with simultaneous arrivals in increasing generality. Starting point in
all those three studies is the following functional equation for ψ(s1, s2), which is derived
by studying the 2-dimensional Markovian workload process during an infinitesimal
amount of time ∆t:

K(s1, s2)ψ(s1, s2) = s2ψ1(s1) + s1ψ2(s2), Re s1, s2 ≥ 0. (5.24)

Here the so-called kernel K(s1, s2) is given by:

K(s1, s2) := s1 + s2 − λ(1− φ(s1, s2)), (5.25)

and

ψ1(s1) := E[e−s1V
(1)

(V (2) = 0)], ψ2(s2) := E[e−s2V
(2)

(V (1) = 0)], (5.26)

with (·) denoting an indicator function.

Remark 5.5.1. In the special case of Section 5.2, with P(B(1) ≥ B(2)) = 1, one
has ψ2(s2) ≡ P(V (1) = 0), because V (2) cannot be positive when V (1) = 0. It then
remains to find ψ1(s1). This is done by observing (cf. Appendix B) that, for all s1

with Re s1 > 0, there is a unique zero s2(s1) of the kernel, with Re s2(s1) > Re (−s1).
This immediately yields that ψ1(s1) = − s1

s2(s1)P(V (1) = 0), which is readily seen to be

in agreement with (5.6).
Equation (5.3), which was obtained by studying the workloads at arrival epochs

(i.e., the waiting times; by PASTA they have the same distribution as the steady-state
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workloads), looks slightly different from (5.24), but using (5.5) it is readily seen that
they are equivalent.

Globally speaking, the essential steps in [21, 76, 43] are the following.
Step 1: find a suitable set of zeroes (ŝ1, ŝ2), with Re ŝ1 ≥ 0, Re ŝ2 ≥ 0, of the
kernel K(s1, s2), i.e., K(ŝ1, ŝ2) = 0. Because ψ(s1, s2) is regular for all (s1, s2) with
Re s1, s2 ≥ 0, one must have for all these zeroes:

ŝ2ψ1(ŝ1) = −ŝ1ψ2(ŝ2). (5.27)

It is further observed that ψ1(s1) is regular for Re s1 > 0, continuous for Re s1 ≥ 0,
and that ψ2(s2) is regular for Re s2 > 0, continuous for Re s2 ≥ 0.
Step 2: formulate a boundary value problem for ψ1(s1) and ψ2(s2). There are various
types of boundary value problems, like the Riemann and the Wiener-Hopf boundary
value problems. Typically, they ask to determine two functions P1(·) and P2(·), which
satisfy a relation on a particular boundary B̂, while P1(·) is regular in the interior B̂+

and P2(·) is regular in the exterior B̂−. B̂ could be the unit circle (Riemann boundary
value problem), or the imaginary axis (Wiener-Hopf boundary value problem; B̂+ now
is the left-half plane). We refer to Gakhov [65] and Mushkelishvili [87] for excellent
expositions of such boundary value problems and their variants, like the boundary
value problem with a shift. The latter occurs in the approach of De Klein [76], see
below.
Step 3: solve the boundary value problem for ψ1(·) and ψ2(·) with boundary B̂. If B̂ is
a smooth closed contour that is not a circle, the use of a conformal mapping from B̂
to the unit circle C is required to arrive at a Riemann boundary value problem for
the unit circle, the solution of which can be found in [65, 87]. Thus one obtains ψ1(s1)
and ψ2(s2) inside certain regions; subsequently, one may use analytic continuation to
find them in Re s1, s2 ≥ 0. Finally, ψ(s1, s2) follows from (5.24).

Remark 5.5.2. Application of the boundary value method in queueing theory was
pioneered by Fayolle and Iasnogorodski in [55]. They used this method to analyze
the joint queue length process in two coupled processors, viz., two M/M/1 queues
which operate at unit speeds when the other queue is not empty, but at different speeds
when the other queue is empty. The method was subsequently developed in [41] for
a large class of two-dimensional random walks; various queueing applications were
also discussed in [41]. See [42] for a survey of the method in queueing theory, and see
[56, 43] for two monographs which have further developed the theory of two-dimensional
random walks. Part IV of [43] explores the analysis of k-dimensional random walks
with k > 2. Results for k > 2 are very limited, and it seems fair to conclude that the
boundary value method is, apart from a few special cases, restricted to two-dimensional
random walks.

Remark 5.5.3. We strongly believe that the boundary value method also has a large
potential in the analysis of two-dimensional risk models. Due to the duality between the
reinsurance model and the 2-queue model with simultaneous arrivals, the publications
of Baccelli [21], DeKlein [76], Cohen [43] are of immediate relevance to the reinsurance
problem. These publications seem unknown in the insurance community (see, e.g.,
Chan et al. [37], who pose the two-dimensional risk problem and stop at Equation
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(5.24) (where [21, 76, 43] begin). They have remained largely unnoticed even in the
queueing community, perhaps because of their complexity and because [21] and [76]
did not appear in the open literature. For these reasons, we now successively expose
the approaches in [21], [76] and [43] at some length.

The approach of Baccelli [21]
Baccelli [21] restricts himself to the case of exchangeable (B(1), B(2)), i.e., P(B(1) <
x,B(2) < y) = P(B(1) < y,B(2) < x), or equivalently, φ(s1, s2) = φ(s2, s1). We briefly
review the three steps mentioned above.
Step 1 in [21] is as follows. Consider zero pairs (ŝ1, ŝ2) = (g + iu, g − iu) of kernel
K(s1, s2), with u ∈ R and with g = g(u) the unique zero in Re g ≥ 0 of

2g = λ(1− φ(g + iu, g − iu)).

Using the exchangeability, it can be shown that this unique zero is real and non-
negative, while g(−u) = g(u), u ∈ R.
Step 2. Consider the arc Â = {s1 : s1 = g(u) + iu, u ∈ R}, with g(u) the zero
defined above. This is a smooth arc, located in the right half-plane. Baccelli finds a
conformal mapping p(·) of the interior C+ of the unit circle C onto Â+, the ‘interior’
of Â located on the right of Â, and a conformal mapping q(·) of C−, the exterior of
the unit circle, onto Â+; their limits on C are denoted by p+(z) and q−(z), which
are each other’s complex conjugates because of the exchangeability. Noticing that
p+(−1) = q−(−1) = 0, he multiplies both sides of (5.27) with 1+z. This yields (divide
both sides of (5.27) by ŝ1ŝ2):

(1 + z)
ψ1(p+(z))

p+(z)
= −(1 + z)

ψ2(q−(z))

q−(z)
, |z| = 1. (5.28)

Because of the regularity properties of the conformal mappings and of ψ1(s1) and
ψ2(s2), Re s1, s2 > 0, one now arrives at a simple boundary value problem: we have
(5.28) for |z| = 1, while the left-hand side of (5.28) is regular for |z| < 1, and the
right-hand side is regular for |z| > 1.
Step 3. The solution of this problem immediately follows from Liouville’s theorem, cf.
[102] p. 85:

ψ1(p(z)) =
γ + δz

1 + z
p(z), |z| < 1, ψ2(q(z)) =

γ + δz

1 + z
q(z), |z| > 1.

Baccelli [21] shows that γ = −δ, and determines the remaining unknown constant
δ by normalization. Having thus determined ψ1(s1) for s1 ∈ Â+, he uses analytic
continuation to obtain ψ1(s1) in the whole right half-plane; similarly for ψ2(s2). Finally,
substitution in (5.24) determines ψ(s1, s2).

The approach of De Klein [76]
De Klein [76], pp. 119-168, studies the general case of an arbitrary joint distribution
of B(1) and B(2).
Step 1 in [76] is as follows. He considers the same zero pairs as Baccelli (also suggesting
another set of zero pairs on p. 132). g(u) is no longer necessarily real, but for all real
u there still is a unique zero g(u).
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Step 2. De Klein subsequently considers the simple, smooth arcs Â1 = {s1 : s1 =
g(u) + iu, u ∈ R} and Â2 = {s2 : s2 = g(u) − iu, u ∈ R} in the right half-plane.
Notice that Â1 and Â2 are each other’s complex conjugates in the exchangeable case
of Baccelli, but not in De Klein’s more general case. De Klein now uses the (unique)
one-to-one mapping s2 = ω2(s1) from Â1 onto Â2 (with inverse ω1(s2)) determined by
the fact that, ∀s1 ∈ Â1, (s1, ω2(s1)) is a zero pair of the kernel. Similarly, ∀s2 ∈ Â2,
(ω1(s2), s2) is a zero pair. Hence the following must hold:

ψ1(ω1(s2)) = −ω1(s2)

s2
ψ2(s2), s2 ∈ Â2. (5.29)

In addition, one has the regularity properties of the functions ψ1(·) and ψ2(·) which
were listed below (5.27). Determination of functions ψ1(·) and ψ2(·) with these
regularity properties and satisfying (5.29) is a so-called shift problem, a boundary
value problem with a shift (cf. Sections 17 and 18 of [65]).
Step 3. Gakhov [65] mentions two methods to solve such problems: (i) reduce the
problem to a Fredholm integral equation of the second kind, and (ii) reduce the
problem to an ordinary Riemann boundary value problem, by means of conformal
mappings. De Klein [76] explores the first method in Section II.4.2 and the second
in Section II.4.3. We concentrate on the first method. De Klein first translates the
shift problem to one on a finite smooth closed contour, via the conformal mapping
ζ(z) = 1−z

1+z (with inverse z(ζ) = 1−ζ
1+ζ ) that maps Âi onto smooth closed contours Ti,

i = 1, 2; he then applies Gakhov’s first method. He obtains the following Fredholm
integral equation of the second kind for an unknown function G1(·) – which up to a
constant equals log{ψ1(z(·))}:

G1(p1) =
1

2πi

∫
T1

G1(v1)[
1

v1 − p1
− ν′2(v1)

ν2(v1)− ν2(p1)
− 1

v1 − c1
]dv1 +H1(p1), p1 ∈ T1,

(5.30)
with H1(·) some known function, c1 some point in the interior of T1, and for ν2(v1)
= ζ(ω2(z(v1))), v1 ∈ T1. After having solved the integral equation (which can be done
numerically in an efficient way, as shown by De Klein), one obtains ψ1(s1) for s1 ∈ T1,
and then ψ2(s2) for s2 ∈ T2 via (5.27). The regularity of ψ1(s1) in the interior T+

1

subsequently allows one to obtain ψ1(s1), s1 ∈ T+
1 , as a Cauchy integral; similarly for

ψ2(s2), s2 ∈ T+
2 . By analytic continuation, ψ1(s1) and ψ2(s2) are then also uniquely

determined in Re s1 ≥ 0 and Re s2 ≥ 0, respectively. Finally, ψ(s1, s2) again follows
from (5.24).

De Klein also explores Gakhov’s second method to treat the shift problem. However,
this reduction to a Riemann boundary value problem requires a conformal mapping
that itself must be determined by solving another Fredholm integral equation of the
second kind. In Chapter II.6 he extensively investigates the numerical solution of both
integral equations by means of the Nystrom or quadrature method. He obtains, a.o.,
accurate results for the mean sojourn time of a customer pair, viz., the time until both
customers of a pair have left the system.

The approach of Cohen [43]
Cohen [43], Part III, considers a very general class of two-dimensional workload

processes. Basically, he combines the model with simultaneous arrivals and the coupled
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processors model. The two servers have speeds r1 and r2 if they are both non-idle,
and speeds r(1) and r(2) when the other server is idle. Furthermore, he also allows the
possibility of different joint service requirement distributions if a customer pair arrives
when at least one of the servers is idle. Finally, he explicitly allows single arrivals
next to simultaneous arrivals (cf. also [23]). Much of Part III of [43] is devoted to a
detailed study of the ergodicity conditions and of the so-called hitting point process
and hitting point identity of the workload process, hitting point referring to the first
entrance point of one of the axes.

In Chapter III.4 he determines the steady-state joint workload distribution for
a variety of cases. For us, the most relevant cases are treated in Sections III.4.9
and III.4.10. Section III.4.9 treats the model of De Klein [76]. The same zero
pairs are used (Step 1), and the same smooth closed contours T1 and T2; Cohen
subsequently uses Gakhov’s second method to arrive at a Riemann boundary value
problem (Step 2). That boundary value problem actually is so simple that it can be
solved straightforwardly by applying Liouville’s theorem, cf. Baccelli’s method above
(Step 3); however, a conformal mapping is required, which is obtained as the solution
of another Fredholm integral equation of the second kind. A nice feature in Section
III.4.9 is that ψ1(s) and ψ2(t), after normalization, are expressed as LST’s of waiting
time or workload distributions of special M/G/1 queues (which are related to hitting
points).

Section III.4.10 treats the model of De Klein with the additional feature that there
is coupling of the servers, of a rather special form: r1

r(1)
+ r2

r(2)
= 1. This does not

change the kernel K(s, t) (which only refers to the interior of the state space, with
both servers active), so the same zero pairs and contours can still be used. However,
it does change the right-hand side of (5.24), and hence a slightly different Riemann
boundary value problem must be solved.

Remark 5.5.4. It should be observed that Baccelli [21], De Klein [76] and Cohen
[43] all also solve the more complicated transient problem, of determining the joint
time-dependent distribution of the two workloads.

5.6 Appendix B

Lemma 5.6.1 (Rouché zero). For every s1 with Re s1 > 0 there exists a unique
s2 = s2(s1) with Re s2(s1) > Re (−s1), that satisfies the identity

λφ(s1, s2) = λ− (s1 + s2).

Moreover the function: s1 → s2(s1) is analytic in Re s1 > 0.

Proof. For fixed s1 with Re s1 > 0, let f(s1 + s2) := λ− (s1 + s2). Consider in the
right half-plane the contour C made up from the semicircle with center at −s1 and
radius R > 2λ together with the line segment I := {−s1 + iw|w ∈ [−R,R]}. We show
that on this contour |λφ(s1, s2)| < |f(s1 + s2)|. We can bound |φ(s1, s2)| by

λ |φ(s1, s2)| = λ|φ̃(s1, s1 + s2)| ≤ λEe−Re s1(B(1)−B(2))−Re (s2+s1)B(2)

< λ.
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This holds everywhere in the domain of φ(s1, s2) if B(1) −B(2) has positive mass on
(0,∞).

Now we bound |f(s1 + s2)|. When (s1 + s2) is on the semicircle (i.e |s1 + s2| = R >
2λ), apply the triangle inequality to the triangle with vertices at 0, λ, s1 + s2, to find
|λ−s1−s2| > λ. When (s1 +s2) ∈ I, by a similar argument we obtain |λ−s1−s2| ≥ λ,
with equality only when s1 + s2 = 0. Hence on the contour C, |f(s1 + s2)| ≥ λ. We
can now use Rouché’s theorem to conclude that the equation λφ(s1, s2) = λ− (s1 + s2)
has a unique solution s2(s1) inside C, because the polynomial f(s1 + s2) has only one
zero inside C, at λ. Letting R→∞, proves the assertion.



Chapter 6

Two parallel insurance lines
with simultaneous arrivals

As mentioned in the introductory Section 1.2, in the existing risk and insurance
literature, there are not many approaches towards analyzing multidimensional models.

The approach we take in this chapter combines ideas from Chapters 3 and 5. In
Section 6.2 we derive a functional equation for the survival function related to a
2-dimensional risk reserve process, but unlike in Chapter 5, we do not assume that
the claim intervals are exponentially distributed. A semi-Markov structure is assumed
for the arrival process which is in many respects a two-dimensional (vector-valued)
version of the BMAP structure of Chapter 3. To be more precise, we assume the claim
size vector to be correlated with the time elapsed since the previous arrival. Such a
correlation is quite natural; e.g., a claim event that generates very large claims could
be subjected to additional administrative/regulatory delays. The type of correlation
between the inter-arrival time and the vector of claim sizes is an extension to two
dimensions of the dependence structure studied in Chapter 3 for the generalized Sparre-
Andersen model. It involves making a rationality assumption regarding the trivariate
LST of inter-arrival time and claim size vector (Assumption 6.1.1), which extends
the case where the vector with the aforementioned components has a multivariate
phase type distribution (MPH). In addition, we also make the assumption that the
claim sizes are a.s. ordered (Assumption 6.1.2). Under these assumptions, we obtain
our main result: An explicit expression for the (LST of the) two-dimensional survival
function, for a large class of vectors of interclaim times and claim amounts of both
risk reserves. For example, this is the case if we consider proportional reinsurance.

The chapter is organized in the following way. In Section 6.1 we describe the model
in detail and present the main assumptions we will be working with.

For a start, an essential ingredient is the multivariate duality relation from Theorem
2.2.1. This relation makes it clear that determining the survival function is equivalent
to determining the two-dimensional waiting time distribution in a dual two-queue
two-server queueing model with simultaneous arrivals of customers at both queues.
With the help of the embedded random walk/queueing process we derive, in Section
6.2, a stochastic recursion for the LST of the finite horizon survival function. In Section

99



100 Parallel insurance lines

6.3 we resolve the stationary version of this stochastic recursion, (6.8). The key tool
used is a one-parameter Wiener-Hopf factorization of the bivariate kernel appearing in
(6.8). More precisely, the Wiener-Hopf factors will depend on one parameter, which is
the first argument of that bivariate kernel; see Proposition 6.3.1 in Section 6.3. The
main result, Theorem 6.3.1, gives the LST of the survival function, or equivalently
the stationary distribution of the waiting time/reflected random walk inside the non-
negative quadrant (see also Theorem 2.2.1). In Section 6.4, we give an asymptotic
decomposition result for the joint LST of the waiting time, which can be written as
a product, with one of the factors being the transform of the waiting time in the
first queue conditional that the other queue is empty. This is an extension of the
decomposition result obtained in (5.10), Chapter 5.

In Section 6.5 we explain how to calculate the transform obtained in Theorem
6.3.1 for some examples, and we numerically calculate the ruin functions/waiting
time distributions using an efficient inversion algorithm of den Iseger [70] - which is
about using the Gauss quadrature method to discretize the LST and then apply the
inversion scheme of Abate and Whitt [1]. Finally, we also point out that the numerical
results suggest that the ruin functions appear to be stochastically ordered for various
types of correlations between inter-arrival times and claim sizes, a positive correlation
apparently leading to smaller ruin probabilities.

6.1 Model description

Let us begin with the general assumptions on the two risk reserves. These are started
with non-negative initial capital (u(1), u(2)); as long as there are no arrivals, the
surplus levels increase linearly with positive rates (c1, c2). At the nth claim arrival

epoch, claim sizes B
(1)
n and B

(2)
n are respectively requested from each component.

The time between the (n − 1)th and nth claim arrival is denoted by An. The

sequence {(An, B(1)
n , B

(2)
n )}n≥1, is assumed to be an i.i.d. sequence, but within a triple,

(An, B
(1)
n , B

(2)
n ) are allowed to be correlated. We will use A, B(1), B(2) respectively

for the generic inter-arrival time and claim sizes. In the above-described very general
set-up, the following assumption will allow us to explicitly determine the ruin/survival
probabilities by using Wiener-Hopf factorization:

Assumption 6.1.1 (On the joint transform of A, B(1), B(2)). The triple trans-
form

H(q0, q1, q2) := Ee−q0A−q1B
(1)−q2B(2)

(6.1)

is a rational function in qi, i.e. it has representation G(q0,q1,q2)
L(q0,q1,q2) such that G(q0, q1, q2)

and L(q0, q1, q2) are polynomials in the variables qi, i = 0, 1, 2.

G(q0, q1, q2) and L(q0, q1, q2) must satisfy some conditions, because their ratio is a
transform, such as,

lim
|q0|→∞,Re q0>0

H(q0, q1, q2) = E[e−q1B
(1)−q2B(2)

1{A=0}].



6.1. Model description 101

We can assume without loss of generality that A > 0 a.s. Because of the above
limit, this means the degree of G as a polynomial in q0, Gq1,q2(q0), is strictly less than
the degree of L as a polynomial in q0: Lq1,q2(q0), for all q1 and q2.

Remark 6.1.1. The class of rational multivariate Laplace-Stieltjes transforms contains
the class of LSTs of multivariate Phase-Type distributions (MPH); see Bladt and
Nielsen [29], where the rational transform class is called multivariate matrix-exponential
(MME). All of the well-known classes of multivariate Phase-Type distributions are
MME. Actually, all the examples we will present are MPH distributions with a specific
correlation structure which are a special case of Kulkarni’s MPH* class [79]. There is
no point in restricting ourselves to any of these subclasses. We will fully exploit the
algebraic representation of rational functions in order to derive explicitly the transforms
of the two-dimensional survival/ruin functions.

The risk reserve process Rt = (R
(1)
t , R

(2)
t ) is defined in (2.10). The associated types

of survival measures and the related ruin functions are defined in Section 2.2. This
chapter is mainly concerned with measuring the event that both risk reserve processes
survive indefinitely, i.e., we aim to determine the survival function F s(u(1), u(2)), or
equivalently, the ruin function τ∧(u(1), u(2)), as defined by (2.11).

In this model, the two reserves are correlated due to simultaneous claim arrivals
and due to correlations that may exist in the claim size vector (B(1), B(2)).

From this point on we scale the risk reserve process by the income rates in each
component (see Remark 5.2.1). The main idea is to exploit the fact that the embedded
process at arrival epochs of claims is a random walk in the plane with increments

(An−B(1)
n /c1, An−B(2)

n /c2), conditioned on starting at (u(1), u(2)). The different ways
in which the risk reserve process can be ruined correspond to the possible positions of
the random walk

Rtn+1
:= u−

n∑
i=1

Xi, Xn = (B(1)
n /c1 −An, B(2)

n /c2 −An), (6.2)

at the time of exit from the non-negative quadrant.
This is a difficult model to analyze in full generality; in particular, it is more general

than the two-dimensional ruin process described in Chan et al. [37] and in Chapter 5.
However, in the case that the claims in the first insurance line are larger than those in
the second, we are able to determine the two-dimensional survival function.

Assumption 6.1.2 (Ordering assumption). For a generic claim event (B(1), B(2)):

B(1)/c1 ≥ B(2)/c2 a.s. (6.3)

A special, important example for this ordering assumption is the case when there is
a single arrival process such that the common claim is partitioned into fixed proportions
(α, 1 − α), and we can always take w.l.o.g. α ∈ [1/2, 1] (α may even be a random
variable with this interval as support). This special case then significantly generalizes
the setting in Avram et al. [19], where it is assumed that the common arrival process
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is compound Poisson (and in particular the inter-arrival times are independent of the
claim sizes).

One can go a step further and assume there is a dedicated renewal-arrival stream
of claims into the line which pays the greater share, say α. This is in line with the
assumption in Badescu et al. [23] of a dedicated Poissonian stream of claims, and
extends it, once we combine it with Assumption 6.1.1. Clearly this is not a proportional
reinsurance problem anymore. From a mathematical perspective, the analysis is more
insightful than if one would just assume proportionality.

We take the following approach: using the duality arguments (Section 2.2), we
derive a recursive equation for the survival function (Section 6.2). Using complex
function theory, and under Assumptions 6.1.1 and 6.1.2, we solve the functional
equation that corresponds to the stochastic recursion in terms of survival function
LSTs (Section 6.3).

6.2 A functional equation

In this section we will consider the Laplace-Stieltjes transform of the survival function
F sn(u(1),u(2)). Theorem 2.2.1 and the usual relation between the waiting time vector
and the embedded workload vector Wn = Vtn (we assumed unit income/service rates,
see Remark 5.2.1) implies that this equals the transform of the bivariate waiting time
for the nth customer:

Ee−s1W
(1)
n −s2W (2)

n =

∫
e−s1u

(1)−s2u(2)

dF sn(u(1), u(2)), Re si ≥ 0, i = 1, 2. (6.4)

Our main goal in this section is to obtain a recursion between the LSTs of

(W
(1)
n+1,W

(2)
n+1) and (W

(1)
n ,W

(2)
n ) using Lindley’s recursion (2.9). But first we point

out a sample-path relation between the risk reserve process and the reflected random
walk which will be useful in the next section (the relation in Theorem 2.2.1 holds in
distribution only). The event that any of the risk reserves is running at the maximum
is the same as the event that the corresponding component of the reflected random
walk is at 0.

Lemma 6.2.1. For Sn =
∑n
i=1Xi, n ≥ 1, it holds

{W (i)
n+1 = 0} = {R(i)

tn+1
= u(i) + max(0,−S(i)

1 , ...,−S(i)
n )}, i = 1, 2.

Proof. R
(i)
tn+1

= u(i) − S(i)
n and notice the following equivalence:

S(i)
n −min(0, S

(i)
1 , . . . , S(i)

n ) = 0⇔ −S(i)
n = max(0,−S(i)

1 , . . . ,−S(i)
n ).

The statement now follows from Proposition 2.2.1.

Remark 6.2.1. The event {W (i)
n = 0} does not depend on the initial capital. The

event on the RHS in Lemma 6.2.1 above does not restrict the risk reserve process to

staying above 0; equivalently W
(i)
n on the LHS is not restricted to staying below level

u(i). This is in line with (2.13) in Theorem 2.2.1.
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Below we point out how one can obtain a recursive equation for the LST of the
survival function F sn(u(1), u(2)) in the general case without the ordering assumption.
In Section 6.3 we solve this equation for the case when the risks are ordered. The
Lindley recursion (2.9) becomes in terms of LSTs:

Ee−s1W
(1)
n+1−s2W

(2)
n+1 = Ee−s1(W (1)

n +X(1)
n )+−s2(W (2)

n +X(2)
n )+ ,

with (x)+ = max(x, 0). Hence, with 1{E} the indicator function of event E,

Ee−s1W
(1)
n+1−s2W

(2)
n+1 =E

[
e−s1(W (1)

n +X(1)
n )−s2(W (2)

n +X(2)
n )1{−X(1)

n <W
(1)
n ,−X(2)

n <W
(2)
n }

]
+ E

[
e−s1(W (1)

n +X(1)
n )1{−X(1)

n <W
(1)
n ,−X(2)

n ≥W (2)
n }

]
+ E

[
e−s2(W (2)

n +X(2)
n )1{−X(1)

n ≥W (1)
n ,−X(2)

n <W
(2)
n }

]
+ P(−X(1)

n ≥W (1)
n ,−X(2)

n ≥W (2)
n ). (6.5)

In view of (6.4), the left-hand side of (6.5) represents the LST of the survival
measure F sn+1. Below we also interpret each of the four terms in the righthand side in
terms of transforms of survival measures.
Term 1: In terms of excursions away from the maximum of the surplus process (Lemma
6.2.1), the first term on the RHS represents the transform of the survival measure in
the event that both risk reserves are during an excursion below the running maximum
at time tn+1,

Ee−s1W
(1)
n+1−s2W

(2)
n+11{W (1)

n+1>0,W
(2)
n+1>0} =∫

e−s1u
(1)−s2u(2)

1{Rtn+1
<

∨
k=0,...,n

Rtk}dF
s
n+1(u(1), u(2)).

Above we used that on the event {W (i)
n+1 > 0}, it holds that W

(i)
n +X

(i)
n = W

(i)
n+1.

Terms 2 and 3: These can be translated in terms of survival functions using (6.4)
again:

Ee−s1W
(1)
n+11{W (1)

n+1>0,W
(2)
n+1=0} =

∞∫
0+

e−s1u
(1)

1{R(1)
tn+1

< max
k=0,...,n

R
(1)
tk

;R
(2)
tn+1

≥ max
k=0,...,n

R
(2)
tk
}dF

s
n+1(u(1), 0),

Ee−s2W
(2)
n+11{W (1)

n+1=0,W
(2)
n+1>0} =

∞∫
0+

e−s2u
(2)

1{R(1)
tn+1

≥ max
k=0,...,n

R
(1)
tk

;R
(2)
tn+1

< max
k=0,...,n

R
(2)
tk
}dF

s
n+1(0, u(2)),
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are ’boundary’ transforms. The survival measure that corresponds to F sn can have
positive mass on the axes of the non-negative quadrant, if nowhere else, at least
F sn(0, 0) = P(Wn = 0 |W0 = 0) is positive, i.e., it has an atom in the origin.
Term 4: This is the probability that both risk reserves are surviving and running at a
maximum, which by Lemma 6.2.1 and Theorem 2.2.1 is F sn+1(0, 0).

From an analytic point of view it is more convenient to rewrite (6.5) as a recursion.
After adding and subtracting appropriate terms, one obtains,

Ee−s1W
(1)
n+1−s2W

(2)
n+1 =

Ee−s1X
(1)
n −s2X(2)

n Ee−s1W
(1)
n −s2W (2)

n

+ E
{
e−s1(W (1)

n +X(1)
n )[1− e−s2(W (2)

n +X(2)
n )]1{W (1)

n+1>0,W
(2)
n+1=0}

}
+ E

{
e−s2(W (2)

n +X(2)
n )[1− e−s1(W (1)

n +X(1)
n )]1{W (1)

n+1=0,W
(2)
n+1>0}

}
+ E

{
[1− e−s1(W (1)

n +X(1)
n )−s2(W (2)

n +X(2)
n )]1{W (1)

n+1=0,W
(2)
n+1=0}

}
.

(6.6)

Above we used that the increment Xn is independent of Wn. Under the assumption
that the vector Wn has a limit in distribution, W , as n→∞, (6.6) becomes

K(s1, s2)Ee−s1W
(1)−s2W (2)

=

E
{
e−s1(W (1)+X(1))[1−e−s2(W (2)+X(2))]1{W (1)>−X(1),W (2)≤−X(2)}

}
+ E

{
e−s2(W (2)+X(2))[1−e−s1(W (1)+X(1))]1{W (1)≤−X(1),W (2)>−X(2)}

}
+ E

{
[1−e−s1(W (1)+X(1))−s2(W (2)+X(2))]1{W (1)≤−X(1),W (2)≤−X(2)}

}
, (6.7)

with ”kernel” K(s1, s2) := 1− Ee−s1X(1)−s2X(2)

and Re si = 0, i = 1, 2.

Remark 6.2.2. From Lemma 2.2.1, W has the same distribution as the all-time
supremum M := lim

n→∞
Mn; and Mn being a sequence of non-decreasing random vectors

w.r.t. the componentwise order ’≤’, the limit always exists a.s., although it may have
a defective distribution. In the next section we give a sufficient condition for M to
have a proper distribution under the assumption that risks are ordered.

6.3 Wiener-Hopf analysis of the stochastic recur-
sion

In this section we resolve the functional equation (6.7) under the Assumptions 6.1.1
and 6.1.2, i.e., we find the LST of the infinite horizon survival function:

F s = lim
n→∞

F sn,
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the limit being considered in distribution. Theorem 2.2.1 together with a limit
argument shows that this weak limit is the same as the c.d.f. of the stationary version
of the waiting time process (Wn)n≥0.

The section is divided into three subsections. Subsection 6.3.1 prepares the
ground, by making a key observation about the functional equation (6.7), introducing
some notation and discussing the stability condition. Subsection 6.3.2 expresses the
two-dimensional LST ψ(s1, s2) of F s in a one-dimensional unknown function C(s1)
(Proposition 6.3.1). That function is determined in Subsection 6.3.3, yielding our main
result: Theorem 6.3.1.

6.3.1 Preparations

Introduce the extra claim amount δn := B
(1)
n /c1 −B(2)

n /c2 = X
(1)
n −X(2)

n , so that the

increments of the random walk Sn can be represented as Xn = (X
(2)
n + δn, X

(2)
n ).

We first make the following key observation: The ordering assumption (6.3) implies

that when R
(1)
tn is at a maximum, necessarily R

(2)
tn is at a maximum. Via Lemma 6.2.1,

this corresponds to the fact that the events

{W (1)
n ≤ −X(1)

n , W (2)
n > −X(2)

n } = {W (1)
n+1 = 0,W

(2)
n+1 > 0}

are null for all n ≥ 0. This means that the third term on the RHS of (6.6) is null and
hence the second term on the RHS of (6.7) vanishes as well, so that after regrouping
terms, (6.7) can be rewritten as

K(s1, s2)ψ(s1, s2) = −ψ1(s1, s2) + ψ2(s1) + P(W (1) +X(1) ≤ 0), (6.8)

where

ψ1(s1, s2) = Ee−s1(W (1)+X(2)+δ)−s2(W (2)+X(2))1{−X(2)≥W (2)},

ψ2(s1) = Ee−s1(W (1)+X(2)+δ)1{W (1)+δ>−X(2)≥W (2)}.

Consider the following function:

K̃(s1, z) := 1− Ee−s1δ−zX(2)

, Re s1 ≥ 0, Re z = 0.

This is related to K(s1, s2) that appears in (6.7) through the change of coordinates:
K̃(s1, z) = K(s1, z − s1). In addition, remark that for fixed z, K̃(s1, z) is indeed
analytic in Re s1 > 0 because δ ≥ 0 a.s. Now let us change the coordinates: (s1, s2)→
(s1, s1 + s2) =: (s1, z). Denote ψ̃(s1, z) := ψ(s1, z − s1), and similarly for ψ̃1(s1, z) :=
ψ1(s1, z − s1). Then ψ1(s1, s2) becomes

ψ1(s1, s2) = E
[
e−s1(W (1)−W (2)+δ)−z(W (2)+X(2))1{−X(2)≥W (2)}

]
=: ψ̃1(s1, z),

and therefore (6.8) can be rewritten as

K̃(s1, z)ψ̃(s1, z) = −ψ̃1(s1, z) + ψ2(s1) + P(−X(1) ≥W (1)). (6.9)
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Running example: One of the simplest examples (cf. Example 3 of Section 3.4)
that we will use throughout is obtained when taking the joint distribution of (A, δ,B(2))
to be such that conditional on a random variable κ, these A, δ and B(2) are independent
and have Erlang distributions of order κ and rates respectively λ, µδ and µ. To keep
things as simple as possible, we choose P(κ = 1) = P(κ = 2) = 1

2 and rates λ = 1,
µδ = 3, µ = 2; we also choose the income rates c1 and c2 to be equal to 1.

The kernel K̃(s1, z) has the following simple form:

K̃(s1, z) = 1− 3(3 + s1)(1− z)(2 + z) + 18

(3 + s1)2(1− z)2(2 + z)2
. (6.10)

From a specific example like this it becomes clear that the coefficients of the numerator,
for example, as a polynomial in z are themselves polynomials in s1 and vice versa.

We are now ready to formulate a Wiener-Hopf boundary value problem in variable
z. For fixed s1, Re s1 > 0, ψ̃1(s1, z) is analytic in Re z < 0 (by analytic continuation),
while ψ̃(s1, z) is analytic (by analytic continuation) in Re z > 0. These statements
follow easily from the probabilistic nature of these functions. In particular, notice

that ψ̃(s1, z) = Ee−s1(W (1)−W (2))−zW (2)

. On the event {W (2) < −X(2)}, the random

variable e−z(W
(2)+X(2)) is uniformly bounded in Re z ≤ 0, hence the analyticity of

ψ̃1(s1, z) follows by an application of Lebesgue’s dominated convergence theorem.

The approach we take in order to solve (6.9) uses a Wiener-Hopf factorization with
a parameter. More precisely, for each fixed s1, Re s1 > 0, we will factorize the bivariate
kernel K̃(s1, z) = K̃s1(z) that appears in (6.9) into K̃s1(z) = K̃+

s1(z)K̃−s1(z), such that

K̃+
s1(z) can be analytically continued in Re z > 0 and K̃−s1(z) can be analytically

continued in Re z < 0. The Wiener-Hopf factorization that solves (6.9) is discussed in
the next subsection. Finally, once we resolve (6.9), the solution to (6.8) follows by
reverting to the original coordinate system (s1, s2).

Remark 6.3.1. A reason why we prefer the notation using the argument s1 as a
subscript K̃±s1(z) for these factors is that they are in general obtained by pasting
together different branches of multi-valued complex functions in s1 using analytic
continuation. More precisely, since K̃(s1, z) is a rational function, the 1-parameter
Wiener-Hopf factors may have branch cuts in Re s1 > 0 (discontinuities) as functions
of the argument s1; then as it follows from Proposition 6.3.1 below, we must choose
the values of the zeroes of the kernel that have positive real part for Re s1 > 0 and
glue them together (using analytic continuation). Because of this, the 1-parameter
Wiener-Hopf factors K̃+

s1(z) and K̃−s1(z) are not functions of s1 in the real sense. This
will also be the case with the zeroes of the kernel from Example 2 in Section 6.5.

Finally, a word about conditions under which the limiting distribution of the two-

dimensional waiting time process {W (1)
n ,W

(2)
n }n=1,2,... exists, or equivalently, under

which indefinite survival of both risk reserves has a positive probability. It will turn
out from the analysis below that a necessary condition for the existence of a proper
limit in distribution W is ρ1 := EB(1)/(c1EA) < 1. This is easy to interpret in
our case, because it is sufficient to ensure positive safety loading for line 1 which
receives always larger claims - we then automatically have positive safety loading for
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the second insurance line. The safety loading condition for the second risk reserve
process ρ2 := EB(2)/(c2EA) < 1 will be necessary for the Wiener-Hopf factorization
to hold. The two Wiener-Hopf factors will be initially determined up to a certain
unknown ’boundary’ function C(s1) that appears in Equation (6.11) below; we further
determine this boundary function by noting that the marginal risk reserve process

R
(1)
t behaves as a (one-dimensional) generalized Sparre-Andersen risk reserve process

with dependence between inter-arrival times and subsequent claim sizes, for which the
analysis of the survival function is available in Chapter 3. At this point the safety
loading condition ρ1 < 1 becomes necessary.

6.3.2 A Wiener-Hopf factorization

In this subsection we determine the double transform ψ̃(s1, z) up to a – yet – unknown
single argument function C(s1). In the next subsection we will determine this function,
which turns out to be related to the first insurance line only.

Proposition 6.3.1 (Wiener-Hopf factorization with a parameter). Under As-
sumption 6.1.1 the double LST ψ̃(s1, z) is of the form

ψ̃(s1, z) = Ee−s1(W (1)−W (2))−zW (2)

= C(s1) K̃+
s1(z)−1. (6.11)

C(s1) is a yet to be determined analytic function, Re s1 > 0. For fixed Re s1 > 0,
K̃+
s1(z) is analytic for Re z > 0, continuous up to the boundary and it factorizes

K̃(s1, z) into

K̃(s1, z) = K̃+
s1(z) K̃−s1(z),

such that K̃−s1(z) is analytic for Re z < 0 and continuous up to the boundary.

Proof. Under the above Assumption 6.1.1, the triple transform of A, B(1)/c1, B(2)/c2
is
H(q0, q1/c1, q2/c2) and the kernel is K̃(s1, z) = 1−H(−z, s1/c1, (z − s1)/c2) which is

also a rational function with representation K̃(s1, z) := 1− f(s1,z)
g(s1,z)

. The assumption

that A > 0 a.s. implies that the degree of fs1(z) is strictly less than the degree of
gs1(z) as polynomial functions in the argument z (see the discussion in Remark 6.3.1).
Now the functional equation (6.9) becomes

g(s1, z)− f(s1, z)

g(s1, z)
ψ̃(s1, z) = −ψ̃1(s1, z) + ψ2(s1) + P(W (1) +X(1) ≤ 0). (6.12)

The first step is to factorize the kernel into two factors with respect to the z
variable and regroup (6.12) into an analytic function in Re z > 0 on the LHS and an
analytic function in Re z < 0 on the RHS. Once we have this representation, we can
use Liouville’s Theorem to determine both sides of (6.12) up to the function C(s1) .

Remove all the poles with non-negative real part from the LHS of (6.12). We keep
for now s1 fixed with Re s1 ≥ 0, and denote by
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g−s1(z) :=
∏

i:Re zi(s1)<0

(z − zi(s1)),

where zi(s1) are zeroes of g(s1, z) = gs1(z); also put g+
s1(z) :=

gs1 (z)

g−s1 (z)
, so that we

have the factorization gs1(z) = g+
s1(z) g−s1(z). Upon multiplying both sides of (6.12)

by g+
s1(z), the LHS becomes analytic for all Re z > 0 and continuous up to the

imaginary axis. Similarly, the RHS is analytic for all Re z < 0 and continuous for
Re z ≤ 0. Since these two coincide for Re z = 0, they are analytic continuations

of each other, in particular
gs1 (z)−fs1 (z)

g−s1 (z)
ψ̃s1(z) is an entire function in z. Because

deg fs1(z) ≤ deg gs1(z), asymptotically

gs1(z)− fs1(z)

g−s1(z)
ψ̃s1(z) = O(zm+(s1)),

where m+(s1) := deg g+
s1(z). By virtue of Liouville’s theorem ([102], p. 85),

ψ̃s1(z) =
g−s1(z)

gs1(z)− fs1(z)
Ps1(z), (6.13)

where (for fixed s1 ≥ 0), Ps1(z) is a polynomial in z with degPs1(z) ≤ m+(s1). From
(6.13) it follows immediately that Ps1(z) must have all the zeroes with non-negative
real part of the denominator gs1(z)− fs1(z). Now a key part in the argument is the
fact that the denominator gs1(z)− fs1(z) has the same number of zeroes in Re z ≥ 0
as g+

s1(z). The proof of this statement is deferred to the Appendix in Proposition
6.6.1. Thus we have degPs1(z) ≥ m+. Together with the upper bound on the degree
of Ps1(z), this implies degPs1(z) = m+; moreover, this determines Ps1(z) up to a
constant factor (the constant being relative to z !)

Ps1(z) = C(s1)
∏

i:Re vi(s1)≥0

(z − vi(s1)),

where vi(s1) are zeroes of gs1(z)− fs1(z). Upon replacing the above in (6.13), we have
found the one-parameter positive Wiener-Hopf factor

K̃+
s1(z) =

∏
i:Re vi(s1)<0

(z − vi(s1))

g−s1(z)
. (6.14)

And in particular the above also determines K̃−s1(z):

K̃−s1(z) =
K̃(s1, z)

K̃+
s1(z)

,

and the proof is complete.
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Running example: For fixed s1, we can carry out the factorization for the kernel
(6.10) in the running example. Below we give the zeroes of the numerator

v1(s1) =
−s1−3−

√
3
√

(s1+3)(1+3s1)

2(3+s1)
, v2(s1) =

−s1−3+
√

3
√

(s1+3)(3s1+1)

2(3+s1)
,

v3(s1) =
−s1 − 3−

√
(s1+3)(3s1+13)

2(3+s1)
, v4(s1) =

−s1 − 3 +
√

(s1+3)(3s1+13)

2(3+s1)
.

The radicals above are defined when the cut in the complex plane is taken along
the negative half of the real axis and the complex arguments are measured from −π to
π. This convention determines the so-called principal value of the square root function.
The negative real half-axis will be a discontinuity line for the square root function

√
z

as a function of a complex variable because as the argument z approaches the negative
real half-axis,

(z− − z0)1/2 = eiπ(z+ − z0)1/2,

where z0 lies on the negative real half-axis, that is, Re z0 < 0 and Imz0 = 0; z±

denotes the limit of z towards z0 from respectively above and below the real axis. We
will call such lines of discontinuity branch cuts. The branch points of v1 (and v2) are
−3 and −1/3. The branch cuts are then the curves generated by the equations

arg(s1 + 3) + arg(1 + 3s1) = ±π.

It is a problem of plane geometry to see that these branch cuts are constituted by
the line segment joining the two branch points, together with the perpendicular line
on this segment that passes through its mid-point. The situation is similar for v3(s1)
and v4(s1).

By inspecting the zeroes of the numerator for Re s1 > 0, exactly v1(s1) and v3(s1)
are negative, where by positive/negative values of complex numbers we will always
refer to their real parts. There are as many negative zeroes in the denominator, which
is already confirmed by Proposition 6.6.1. Moreover, the branch cuts of neither v1 nor
v3 are located in the right half-plane, which means these zeroes are regular functions
for positive values of s1.

Having isolated the negative zeroes, the one-parameter positive Wiener-Hopf factor
from (6.14) is

K̃+
s1(z) =

(z − −s1−3−
√

3
√

(s1+3)(1+3s1)

2(s1+3) )(z − −s1−3−
√

(s1+3)(3s1+13)

2(s1+3) )

(z + 2)2
. (6.15)

Remark 6.3.2. Interestingly, K̃+
s1 is not a rational function anymore in the argument

s1 (however, in this example it is meromorphic in the argument s1, for Re s1 > 0). A
queueing theoretic explanation of this remark can be found by comparing the double
transform (6.16) obtained below with the decomposition results for a particular case of
the present model in Chapter 5. For the process with Markov arrivals studied therein,
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the stationary waiting time stochastically decomposes into two components, one of
which is related to the extra busy period length in the longest queue and it is well
known that busy periods in general do not have rational transforms (already in the
case of an M/M/1 system, the busy period has a non-rational transform).

Moreover, it is easy to see that the marginal factor K̃+
s1(s2)|s1=0 is a rational

function. From this and (6.16) below follows that the marginal transform ψ(0, s2) is a
rational function. Also, ψ(s1, 0) is a rational function because for s2 = 0 the factor K̃+

s1
cancels against itself in (6.16). The rationality of the marginal transforms is clear from
their queueing interpretation because these are the transforms of the univariate survival
functions/waiting times for the two insurance lines/queueing systems in isolation (see
the discussion in Cohen [40] p. 325 and the references therein).

6.3.3 The main result

We are now ready to formulate and prove the main result.

Theorem 6.3.1. Under the safety loading condition for the riskier line 1, ρ1 < 1, the
infinite horizon survival function F s(u(1), u(2)) is a (proper) probability distribution
function with support the non-negative quadrant in R2, and its LST is given by

ψ(s1, s2) =

∫
e−s1u

(1)−s2u(2)

dF s(u(1), u(2)) =
K+
pr(0)

K+
pr(s1)

K̃+
s1(s1)

K̃+
s1(s1 + s2)

, (6.16)

for Re si ≥ 0, i = 1, 2. K̃+
s1(z) is given in (6.14) and here is evaluated at z = s1

and at z = s1 + s2. K+
pr(s1) is the positive Wiener-Hopf factor of the projected

one-dimensional kernel K̃(s1, s1) = K(s1, 0), i.e., the unique function analytic in
Re s1 > 0, continuous in Re s1 ≥ 0 that factorizes K(s1, 0) into

K(s1, 0) = K+
pr(s1)K−pr(s1),

with K−pr(s1) analytic in Re s1 < 0 and continuous in Re s1 ≤ 0 (see for instance
Prabhu [94], Thm. 7 p. 55). Under Assumption 6.1.1 it is of the form (see also
Theorem 3.1.1)

K+
pr(s1) =

∏
j(s1 − ṽ−j )∏
j(s1 − v−j )

, (6.17)

with ṽ−j the negative zeroes of K(s1, 0) and v−j its negative poles.

Proof. Our starting-point is (6.11), and our goal is to determine the one yet unknown
function C(s1) in that formula. The idea is that, since C(s1) stays the same irrespective
of the value of z, we are free to choose any z. Since by definition, K̃+

s1(z) is analytic
for all Re z > 0 and continuous in Re z ≥ 0, take z = s1:

ψ̃(s1, s1) = Ee−s1W
(1)

= C(s1)[K̃+
s1(s1)]−1. (6.18)
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We can determine C(s1) from (6.18), because ψ̃(s1, s1) = ψ(s1, 0) = Ee−s1W (1)

is
the steady-state waiting time transform in the marginal G/G/1 queue with dependence
between inter-arrival times and service requirements, which has been determined in
Chapter 3. This chapter was devoted to an analysis of a one-dimensional risk/queueing
model that amounts to the present model with B(2) ≡ 0. The kernel of the functional
identity for this marginal queue with generic service requirement B(1) and correlated
inter-arrival time A is K̃(s1, s1); the corresponding Rouché problem is to prove that
g(s1, s1) and g(s1, s1)− f(s1, s1) have the same number of non-negative zeroes. This
has been carried out in Lemma 3.5.1. Formula (3.3) reads in the current notation

ψ̃(s1, s1) = Ee−s1W
(1)

= K+
pr(0)[K+

pr(s1)]−1, (6.19)

with K+
pr(s1) the positive Wiener-Hopf factor of the projected kernel K(s1, 0):

K+
pr(s1) =

∏
j(s1 − ṽ−j )∏
j(s1 − v−j )

,

such that ṽ−j are the negative zeroes of K(s1, 0) and v−j its negative poles, and the

normalizing constant K+
pr(0) is equal to the atom at 0 of W (1):

P(W (1) = 0) =
∏
k

(−v−k )/
∏
j

(−ṽ−j ).

Formula (6.19) together with (6.18) now determine C(s1):

C(s1) = K+
pr(0) [K+

pr(s1)]−1 K̃+
s1(s1), (6.20)

and with this we obtain the transform of the joint waiting time distribution, or
equivalently of the survival function F s(u(1), u(2)), from (6.11), upon switching back
to the original coordinates. The proof is complete.

Remark 6.3.3. An important remark is that the factors in (6.16), K̃+
s1(s1) and

K+
pr(s1), as defined in Proposition 6.3.1 and in Theorem 6.3.1, are not the same. One

can already compare (6.15) with (6.27) for Example 1 in the following section.
More precisely, the operations of taking the projection and carrying out the factorization
do not commute with each other, in contrast with the one-dimensional Fluctuation
Theory of random walks. See also Section 13 in Kingman [75].
K̃+
s1(s1) is defined by first carrying out the one-parameter Wiener-Hopf factorization

for K̃(s1, z) and then projecting the positive factor onto the main diagonal of the
2-dimensional complex space: z = s1.
On the other hand, K+

pr(s1) is obtained by first projecting K̃(s1, z) onto the main
diagonal z = s1 and then carrying out the Wiener-Hopf factorization for the projected
kernel K̃(s1, s1) = K(s1, 0).

Remark 6.3.4. The LST in (6.16) has a product form. It can be shown that the
bivariate LST of the reflected random walk decomposes in a similar way as in Theorem
5.2.1, where one of the factors is related to a modified workload process.
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6.4 A probabilistic decomposition

By the duality arguments of Section 2.2, Formula (6.16) also provides an expression
for the LST of the two-dimensional waiting time distribution in the dual queueing
model with simultaneous arrivals and with generic input vector (A,B(1), B(2)). In the
queueing setting, Formula (6.16) allows for an interesting decomposition/interpretation.
In particular, the constant C(s1) has a probabilistic interpretation that makes it the
key to finding the other two unknown functionals ψ̃1(s1, z) and ψ2(s1). If we let z →∞
through the positive half-plane in (6.11) we see that, by dominated convergence,

C(s1) = E[e−s1W
(1)

1{W (2)=0}] =

∞∫
0−

e−s1u
(1)

dF s(u(1), 0).

This holds because by Proposition 6.6.1, the limit of (6.14) as |z| → ∞ is equal to 1.
On the other hand, from the definition of ψ2(s1), we see that the last two terms in
the RHS of (6.12) add up to

ψ2(s1) + P(W (1) +X(1) ≤ 0) = E[e−s1(W
(1)+X(1))

+

1{W (2)=0}].

Taking into account that W (1) d
= (W (1) +X(1))+, we have

C(s1) = ψ2(s1) + P(W (1) +X(1) ≤ 0). (6.21)

Motivated by the decomposition result for the case with exponential inter-arrivals
in Chapter 5, let us consider the following modified waiting time process in equilibrium:

(W
(1)
∗ ,W (2))

d
=

{
(W

(1)
∗ +X(1),W (2) +X(2)), if W (2) +X(2) > 0

(0, 0), if W (2) +X(2) ≤ 0.

Marginally W (2) evolves unchanged. Denote by η(s1, s2) = Ee−s1W (1)
∗ −s2W (2)

, the
joint transform of the modified waiting time. Roughly speaking, as soon as the second
component of the reflected version of the random walk attempts to exit the positive
half-line (and is thus set to 0), the other component is also set to 0.

To the above distributional identity corresponds the functional equation in terms
of LST’s:

K̃(s1, s1 + s2) η(s1, s2) = −η1(s1, s2) + P(W (2) +X(2) ≤ 0), (6.22)

with η1(s1, s2) := E[e−s1(W (1)
∗ +X(1))−s2(W (2)+X(2))1{W (2)+X(2)≤0}].

Since the kernel is the same as in (6.8), we can use a similar approach as in
Proposition 6.3.1 in order to analyze (6.22). We already have the kernel factorization
in the z argument, for fixed s1. Therefore upon passing to the usual coordinates (s1, z),
and applying Liouville’s theorem, we get for η̃(s1, z) := η(s1, z − s1):

η̃(s1, z) =
g−s1(z)

gs1(z)− fs1(z)
P ∗s1(z), (6.23)
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using the same notation as in Proposition 6.3.1 and with P ∗s1(z) another polynomial to
be determined. Again, Proposition 6.6.1 determines P ∗s1(z) up to a constant C∗(s1):

P ∗s1(z) = C∗(s1)
∏

Re vi(s1)≥0

(z − vi(s1)),

where vi(s1) are the same zeroes of gs1(z)− fs1(z). In relation to Ps1(z), we can thus
write

P ∗s1(z) =
C∗(s1)

C(s1)
Ps1(z).

C∗(s1) is a priori a function of s1. However, it turns out that it is constant: C∗(s1) =
P(W (2) + X(2) ≤ 0). To see this, replace P ∗s1(z) in (6.23) to obtain the analogue of
(6.11):

η̃(s1, z) = C∗(s1)
g−s1(z)∏

Re vi(s1)<0

(z − vi(s1))
. (6.24)

Taking z →∞, Re z > 0 in (6.24),

C∗(s1) = E
[
e−s1W

(1)
∗ 1{W (2)=0}

]
= E1{W (1)

∗ =0,W (2)=0} = P(W (2) +X(2) ≤ 0).

The last two identities follow because in this modified process W
(1)
∗ is 0 as soon as

W (2) becomes 0. To conclude so far, we obtain the relation between ψ̃(s1, z) and
η̃(s1, z), by comparing (6.24) to (6.16):

ψ̃(s1, z) =
C(s1)

P(W (2) = 0)
η̃(s1, z),

which holds because W (2) is the stationary version of the waiting time, thus we have

the stationary Lindley identity [W (2) +X(2)]+
d
= W (2). It follows from (6.21) that

C(s1)/P(W (2) = 0) = E[e−s1W
(1) |W (2) = 0] =

1

F s(∞, 0)

∞∫
0−

e−s1u
(1)

dF s(u(1), 0),

and we find the following LST decomposition:

ψ̃(s1, z) = E[e−s1W
(1) |W (2) = 0] η̃(s1, z). (6.25)

Compare this to the decomposition (5.10) obtained for the two-dimensional com-
pound Poisson input process in Chapter 5.
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6.5 Examples and numerical inversion

In the previous sections we dealt with some theoretical aspects related to obtaining
the transform of the survival function. It turns out that additional insight can be
obtained by applying the previous results to some specific examples. Our aims in this
section are:

(i) to provide examples for which the Laplace-Stieltjes transforms of the survival
measures can be calculated, based on the general results obtained in the previous
section.

(ii) to explain the various analytic challenges that appear when one tries to
determine the Laplace-Stieltjes transform of the survival measure for some specific
classes of distributions for the input (A, δ,B(2)).

(iii) numerical inversion of the bivariate Laplace-Stieltjes transform in (6.16) and
the comparison between the risks for various possible correlations between the claim

sizes (B
(1)
n , B

(2)
n ) and inter-arrival times An.

We begin by explaining the inversion algorithm and how we applied it. However,
in order to obtain the input for the algorithm, we need to follow the steps in Section
6.3 and construct the Wiener-Hopf factors. It turns out that this presents a challenge
because of the branch cuts (discontinuities) that the zeroes of the kernel might have
in the right half-plane of the complex s1-plane. The running example from Section
6.3.1 can thus be considered a simple instance of the inversion algorithm.

Numerical inversion For the purpose of inverting (6.16), consider the Laplace
transform of the bivariate tail probability of the waiting time. By a straight-forward
integration by parts, this can be related to the Laplace-Stieltjes transform of the
waiting time/survival function:

∫∫
e−s1u1−s2u2 P(W (1)>u1,W

(2)>u2) du1du2 =
1−ψ(s1, 0)−ψ(0, s2)+ψ(s1, s2)

s1s2
.

(6.26)

The key remark is that under mild conditions, this transform is continuous up to
the boundary of the non-negative quadrant, as opposed to the Laplace transform of
the survival function:∫∫

e−s1u1−s2u2 P(W (1)≤u1,W
(2)≤u2) du1du2

which has by definition a singularity at (s1, s2) = (0, 0). It is easy to see that for
example

lim
s1→0

Re s1>0

1

s1s2
[1− ψ(s1, 0)− ψ(0, s2) + ψ(s1, s2)] =

1

s2

[
∂ψ

∂s1
(0, s2)− ∂ψ

∂s1
(0, 0)

]
,

and even further
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lim
s1,s2→0

Re s1,s2>0

1

s1s2
[1− ψ(s1, 0)− ψ(0, s2) + ψ(s1, s2)] =

∂2ψ

∂s1∂s2
(0, 0),

and it is clear that this mixed derivative is equal to E[W (1)W (2)], which is the same
as the left-hand side of (6.26) evaluated at s1 =s2 =0. The partial derivatives on the
right-hand side above must be considered as limits from the interior of the positive
quadrant. The Laplace transform of the ruin function is continuous up to the boundary
given that the above partial derivatives exist.

The main point of the above discussion is that we may now use the standard
form of the multidimensional inversion algorithm developed in [70], for which it is
essential that the Laplace transform is regular and continuous up to the boundary of
the positive quadrant. The above trick of passing to tail probabilities thus frees one
from considering modifications of the inversion algorithm for non-smooth functions
(see [70]). Once the tail probability/ruin function has been obtained, the survival
function follows from an identity similar to (6.26):

P(W (1)>x1,W
(2)>x2) = 1−P(W (1)≤x1)−P(W (2)≤x2) +P(W (1)≤x1, W

(2)≤x2),

for any x1, x2 ≥ 0.
There are no regularity problems with the transforms we will be working with

throughout this section because they are all meromorphic in both arguments for
positive real values (in some cases they are constructed from branches of various locally
meromorphic functions via analytic continuation – see Example 2 below).

Above we discussed how to consider the input for the inversion algorithm; some
remarks are also needed about the output. This is an m1×m2 matrix, that represents
the values of the ruin function P(τ∨(·, ·) <∞) on a grid: the entry (k, l), k ≤ m1 − 1,
l ≤ m2 − 1 stands for

P(τ∨((k − 1)∆1, (l − 1)∆2) <∞) = P(W (1) > (k − 1)∆1,W
(2) > (l − 1)∆2),

where ∆i are division sizes. The values of the inverted transform are plotted in the
figures below for various examples.

Example 1. This is the running example that started at (6.10). We have calculated
the one-parameter Wiener-Hopf factor for this example in (6.15). For the LST of the
survival function we need also the positive Wiener-Hopf factor of the projected kernel:

K̃(s1, s1) = K(s1, 0) =
−9s1 − 35s2

1 − s3
1 + 18s4

1 + 8s5
1 + s6

1

(−1 + s1)2(2 + s1)2(3 + s1)2
.

The numerator can be factorized as s1(s2
1 + 4s1 + 1)(s3

1 + 4s2
1 + s1− 9) where the order

2 polynomial further factorizes as

s2
1 + 4s1 + 1 = (s1 + 2−

√
3)(s1 + 2 +

√
3)

and the zeroes of the factor s3
1 + 4s2

1 + s1 − 9 are
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v0 := −4

3
+

1

3 3
√

2

(
151− 9

√
173
)1/3

+
1

3 3
√

2

(
151 + 9

√
173
)1/3

,

v1 := −4

3
− 1

6 3
√

2
(1 + i

√
3)
(

151− 9
√

173
)1/3

− 1

6 3
√

2
(1− i

√
3)
(

151 + 9
√

173
)1/3

,

v2 = −4

3
− 1

6 3
√

2
(1−i

√
3)
(

151− 9
√

173
)1/3
− 1

6 3
√

2
(1+i

√
3)
(

151 + 9
√

173
)1/3

, with v2 = v̄1.

The positive Wiener-Hopf factor of the projected kernel becomes, cf. (6.17),

K+
pr(s1) =

(s2
1 + 4s1 + 1)(s1 − v1)(s1 − v̄1)

(s1 + 2)2(s1 + 3)2
. (6.27)

(6.15) and (6.27) are the necessary components for constructing the LST of the survival
function in this example, as given by (6.16). The atom at (0, 0) is

P(W (1) = 0,W (2) = 0) = P(W (1) = 0) = K+
pr(0) =

|v1|2
36
≈ 0.204.

Here we used the ordering between W (1) and W (2). Below is given the final formula
for the transform of the survival function in the original coordinates:

ψ(s1, s2) =
[(s1 + 3)(2s1 + 1) +

√
(3s1 + 9)(1 + 3s1)]

[(s1 + 3)(2s1 + 2s2 + 1) +
√

(3s1 + 9)(1 + 3s1)]
·

[(s1 + 3)(2s1 + 1) +
√

(s1 + 3)(3s1 + 13)]

[(s1 + 3)(2s1 + 2s2 + 1)+
√

(s1 + 3)(3s1 + 13)]

|v1|2(s1 + s2 + 2)2(s1 + 3)2

36(s2
1 + 4s1 + 1)(s1 − v1)(s1 − v̄1)

.

(6.28)

Remark 6.5.1.
√
s1 + 3 cannot be simplified above. When choosing a branch for the

square root as a function of a complex variable, one has in general for a 6= b:√
(z − a)(z − b) 6=

√
z − a

√
z − b.

The marginal transforms are

ψ(s1, 0) =
|v1|2
36

(2 + s1)2(3 + s1)2

(s2
1 + 4s1 + 1)(s1 − v1)(s1 − v̄1)

,

ψ(0, s2) =
(3 +

√
39)(s2 + 2)2

4(6s2 + 3 +
√

39)(s2 + 1)
.

The atom at zero of W (2) is approximately 0.575. We have carried out the numerical
inversion for the transform in Example 1: the division size is chosen ∆1 = ∆2 = .1 and
the grid size is m1 = m2 = 26. An important performance measure is the 5% quantile
curve of the tail probability – the two-dimensional version of the 5% quantile. This is
the (not necessarily continuous in general) curve that contains all (u1, u2), such that
P(W (1)>u1,W

(2)>u2) ≥ .05 and P(W (1)>u1+,W (2)>u2+) ≤ .05. To put it simply,
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the ruin function P(τ∨(·, ·) <∞) (see Formula (2.11) and Remark 5.2.1) is less than
5% whenever it is evaluated at a point which lies outside the region bounded by this
curve in the non-negative quadrant. This, together with several other quantile curves,
is displayed in Figure 6.1 below.

Finally, as a verification, we estimated the ruin function using simulation. Upon
choosing suitable bin sizes that account for the atom at (0, 0) of (W (1),W (2)), the
uniform distance between the output of the inversion algorithm and the simulated ruin
function is of the order of 10−3. If we denote with R(x1, x2) = P(τ∨(x1, x2) <∞), the
joint ruin function, the simulation comparison is in Table 6.1.

(x1, x2) (0, 0) (2,0) (2,2) (4, 0) (4, 2) (4, 4) (6, 0) (6, 2) (6, 4) (6,6)

R̂(x1, x2) .423 .297 .060 .180 .050 .008 .107 .034 .007 .001
R(x1, x2) .424 .301 .060 .184 .050 .008 .110 .035 .007 .001

Table 6.1: Comparison between the simulated ruin function (R̂) and the inverted function (R) for
various values of the initial capital (x1, x2).

0 1 2 3 4 5
W H2L0

1

2

3

4

5

W H1L

5% q-curve

10% q-curve

15% q-curve

25% q-curve

Figure 6.1: 25%, 15%, 10%, and respectively 5%-quantile curves for the ruin function in Example 1.
The abscissa corresponds to the values at risk in the second insurance line/the marginal tail of W (2).

Remark 6.5.2. The quantile curve plots in Figure 6.1 contain lines which below the
main diagonal are straight. This is a consequence of the ordering assumption on the
claims (and implicitly on the waiting times) since we can write for x1 ≤ x2

P(W (1) > x1,W
(2) > x2) = P(W (2) > x2),

because W (2) > x2 implies W (1) > x1 for all x1 ≤ x2.

Example 2. The parameters are the same as in Example 1, except now the order is
n = 3. The kernel is
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K̃(s1, z)=1− 72

(3 + s1)3(1− z)3(2 + z)3
− 12

(3 + s1)2(1− z)2(2 + z)2

− 2

(3 + s1)(1− z)(2 + z)
.

Below we list the zeroes of the numerator. The radicals are again defined when the
cut is taken along the negative half of the real axis.

v1(s1) =
−(s1 + 3)2 −

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 + 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v2(s1) =
−(s1 + 3)2 +

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 + 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v3(s1) =
−(s1 + 3)2 −

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 − 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v4(s1) =
−(s1 + 3)2 +

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 − 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v5(s1) =
−(s1 + 3)−

√
3
√

(s1 + 3)(1 + 3s1)

2(s1 + 3)
, v6(s1) =

−(s1 + 3) +
√

3
√

(s1 + 3)(1 + 3s1)

2(s1 + 3)
.

The above formulae cannot be simplified (Remark 6.5.1). In addition,
√
−(3 + s1)2

is discontinuous (its discontinuity line is Ims1 = 0) and it contributes towards the
discontinuities of the zeroes vi(s1), i = 1, 4.

It is not clear a priori which one of the four zeroes to choose when constructing
the one-parameter factor K̃s1(z) from (6.14) because, in contrast to Example 1, the
branch cuts of v1(s1) up to v4(s1) cross inside the right half-plane, and the zeroes
vi(s1) jump from positive to negative real values when the argument passes between
the regions bounded by the cuts in Re s1 > 0.

The key observation is that v1(s1) is an analytic continuation of v2(s1), and v3(s1)
is an analytic continuation for v4(s1). In order to obtain K̃s1(z), one has to glue
together (using analytic continuation) the negative branches of v1(s1) and v2(s1) on
the one hand, and of v3(s1) and v4(s1) on the other, for Re s1>0. v5(s1) is negative
for any Re s1>0 so it will always enter the formula for K+

s1(·) as opposed to v6(s1)
which is positive and doesn’t play any role. Moreover the branch cuts of v1(s1) up to
v4(s1) partition the complex half-plane in 4 regions symmetric around the real axis
and the cuts are pairwise parallel lines at angles ±π/4. To be more precise, we have
to use the 3 different branches of K̃+

s1(z):

K̃1,3
s1 (z) =

(z−v1(s1))(z−v3(s1))(z−v5(s1))

(z + 1)3
,

K̃2,3
s1 (z) =

(z−v2(s1))(z−v3(s1))(z−v5(s1))

(z + 1)3
,
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K̃2,4
s1 (v) =

(z − v2(s1))(z − v4(s1))(z − v5(s1))

(z + 1)3
. (6.29)

The branches C1,3(s1), C2,3(s1) and C2,4(s1) are obtained similarly because from
(6.20), these are related to the corresponding branches of K̃+

s1(z) by setting z= s1;
the branch cuts and the partition of the complex plane are therefore the same. Since
both C(·) and K+

s1(·) enter Formula (6.16), the expression for the LST of the survival
function/joint waiting time (see Theorem 2.2.1) is obtained by patching together
(via analytic continuation) the positive branches (in the s1-plane) of the generalized
Wiener-Hopf factors from Proposition 6.3.1 and Theorem 6.3.1.

In Figure 6.2 below we plot a section in the three branches of the real part of the
LST of the survival measure in Example 2. More precisely consider the section

ζ(y) := Reψ(iy, 14 + iy) (6.30)

that runs along the imaginary axis in the first argument s1 (the argument that
generates the discontinuities). From this figure it becomes apparent how the three
different branches of ζ(y) are continuations of each other: the central branch belongs to
Reψ1,3(iy, 14+iy) (the blue curve). This is continued by the branchReψ2,3(iy, 14+iy)
(the dashed red curve) which in turn is continued by Reψ2,4(iy, 14 + iy) (the orange
curve segment) towards the ends of the plot.

ΖHyL

-4 -2 2 4

-0.4

-0.2

0.2

0.4

0.6

Figure 6.2: The plot of the three branches of the section ζ(y) from (6.30).

We numerically inverted the expression obtained for the transform ψ(s1, s2) using
den Iseger’s algorithm [70]. Again, the division size is ∆ = .1 and the grid size is
26 in both directions. In Figure 6.3(a) the plot of the ruin function P(τ∧(·, ·) < ∞)
is presented (see Formula (2.11) and Remark 5.2.1) or equivalently the tail of the
equilibrium distribution for the bivariate waiting time (W (1),W (2)) (Theorem 2.2.1)
in Example 2. We can write in general

P(W (1) > 0,W (2) > 0) = 1− P(W (1) = 0)− P(W (2) = 0) + P(W (1) = 0,W (2) = 0),
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and because of the ordering, P(W (1) = 0,W (2) = 0) = P(W (1) = 0). And then
the value at (0, 0) of the joint ruin function is P(W (2) > 0), which in this example
approximately equates 0.37.

Finally, in Figure 6.3(b) we present various quantile curves for the ruin function/sta-
tionary tail of the waiting time.

(a) The joint ruin function /the bivariate tail of the
waiting time from Example 2.

2 4 6 8 10
W H2L

2

4

6

8

10

W H1L

(b) 25%, 15%, 10%, 5%, and 1%-quantile
curves for the ruin function in Example 2.

Figure 6.3: Numerical results for the risk reserve process in Example 2: (a) ruin function and (b)
quantile curves.
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(d) 5% quantile curves

Figure 6.4: Comparison of risks. Dashed curves correspond to decoupled input.
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Comparison of risks. In Figure 6.4 we compare the results for quantile curves
of the ruin function of Example 1 with the quantile curves of the ruin function for
the case where the input is decoupled. By this we mean we take three samples κ1,
κ2 and κ3 from a uniform distribution on {1, 2} and define the random variables

Adec =
∑κ1

i=1Ai, δdec =
∑κ2

i=1 δi, B
(2)
dec =

∑κ3

i=1B
(2)
i , where (Ai)i≤n, (B

(2)
i )i≤n, and

(δi)i≤n are mutually independent sequences of exponential random variables with rates
λ, µ and µδ respectively. In this case the inter-arrival time becomes independent of

the claim size vector, while marginally Adec, B
(2)
dec and B

(1)
dec have the same distribution

as in Example 1. The kernel for this instance is

K̃(s1, z) =

(
9

2(3 + s1)2
+

3

2(3 + s1)

)(
1

2(1− z)2
+

1

2(1− z)

)(
2

(2 + z)2
+

1

2 + z

)
.

The zeroes of the numerator as a polynomial in z are already too complicated to
present here. This instance is similar to Example 2 in terms of the analytic behaviour
of these zeroes.

The main point is that, similarly to the ordering result obtained in Section 3.4,
numerical data suggests that the ruin functions corresponding to positively correlated
input on the one hand, and the ruin functions for decoupled input on the other are
stochastically ordered (Figure 6.4).

Example 3 (proportional reinsurance) This is the case with proportional claims.
There is a common arrival process such that the inter-arrival time An is correlated with
the claim size Bn, and αBn is deducted from the first insurance line and (1− α)Bn
from the second.

We take κ ∼ Uniform{1, 2, 3}, λ = µ = 1, α = 3/4 and unit income rates. For the
purpose of comparing risks, we will consider three instances for the random vector
(A,B):

positive correlation: (A,B)pos∼( Erlang(κ, λ), Erlang(κ, µ)),

independence: (A,B)0∼(Erlang(κ1, λ), Erlang(κ2, µ)), with κ1, κ2 two copies of κ.

negative correlation: (A,B)neg ∼ (Erlang(κ, λ), Erlang(4− κ, µ)).

The kernels corresponding to these instances are

K̃pos(s1, z) =
1

3(1− z)(1 + s1/2 + z/4)
+

1

3(1− z)2(1 + s1/2 + z/4)2

+
1

3(1− z)3(1 + s1/2 + z/4)3
,

K̃0(s1, z) =

(
1

3(1− z)
+

1

3(1− z)2
+

1

3(1− z)3

)(
1

3(1 + s1/2 + z/4)
+

1

3(1 + s1/2 + z/4)2

+
1

3(1 + s1/2 + z/4)3

)
,
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K̃neg(s1, z) =
1

3(1− z)(1 + s1/2 + z/4)3
+

1

3(1− z)2(1 + s1/2 + z/4)2

+
1

3(1− z)3(1 + s1/2 + z/4)
.

These functions stand for Ee−[s1(2α−1)+z(1−α)]B+zA under the three couplings. The
correlations between the variables A and B can also be read directly from the shapes
of these transforms. Numerical illustrations are in Figure 6.5.

(a)

0 1 2 3 4 5 6
W H2L0

2

4

6

8

10

12

W H1L

(b)

Figure 6.5: Bivariate tail (left) and respectively 10%, 5%, and 3% quantile curves (right) for
proportional reinsurance with negative correlation.

Comparison of risks In the table below we present various points at which a
specific ruin probability is achieved. Given a fixed value for the ruin probability,
any starting capital (x1, x2) lying on the respective quantile curve will achieve it.
Interestingly, the risks are ordered between the various types of correlations (see also
Figure 6.6). Let us denote by R(x1, x2) = P(τ∨(x1, x2) < ∞), the probability that
eventually, both lines are ruined. Then for the three types of correlation we give
the values of the function R in Table 6.2. Positive correlation gives the lowest ruin
probabilities for any starting capital considered.

(x1, x2) (0, 0) (2.4,0) (4.8,0) (4.8, .4) (6.4, .4) (6.4, .8) (9,.4) (9, .8)
Rneg(x1, x2) .2388 .1995 .1309 .0862 .0648 .0402 .0397 .0253
R0(x1, x2) .1922 .1516 .0896 .0536 .0375 .0214 .0203 .0120
Rpos(x1, x2) .1381 .0979 .0486 .0237 .0148 .0070 .0065 .0033

Table 6.2: Comparison between the joint ruin functions Rneg, R0 and Rpos respectively, for the
various types of correlation.

Conclusions

The working assumptions of rationality and ordering for the trivariate input made
up from the generic claim vector together with the preceding inter-arrival time, allow
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Figure 6.6: Comparison of risks for proportional reinsurance.
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one to obtain detailed numerical results for the joint ruin probability as a function
of the initial risk reserves. Our numerical results suggest that when comparing ruin
functions that correspond to various correlation structures between claim intervals and
claim sizes, positive correlation among these cause lower values of the ruin probability
compared to zero correlation, and even more so, when compared to negative correlation.

By using the relations described in Section 2.2, one can recover the other types of
ruin or survival functions, where the numerical inversion of the marginal transforms,
when needed, can be carried out using the one-dimensional inversion algorithm.

6.6 Appendix C

Proposition 6.6.1 (On the zeroes of the kernel 1−K̃(s1, z)). For each s1, Re s1 ≥ 0,
g(s1, z)− f(s1, z) and g(s1, z) have the same number of zeroes in Re z ≥ 0.

Proof. We show that g(s1, z) dominates f(s1, z) on a suitably chosen contour in the
complex z-plane. From this the claim in the proposition will follow via Rouché’s
theorem [102], p. 116. Consider the contour which is made up from the extended arc:

Cε :=
{
reiϕ; ϕ ∈ [−π/2− arccos ε, π/2 + arccos ε]

}
,

together with the line segment

I :=
{
−ε+ iω; |ω| ∈

[
0, r
√

1− ε2
]}

.

The rationality of the transform ensures that K̃(s1, z) can be analytically continued on
a thin strip: Re z < 0, |Re z| < ε. We first consider the contour Cε. On the one hand
we have the triangle inequality for f : |f(s1, z)| ≤ f̄(|s1|, |z|), where f̄ is a polynomial
with the same degree as f . On the other hand, if we represent gs1(z) for fixed s1 as
gs1(z) = am(s1)

∏
i(z − ξi(s1)), with ξi(s1) its zeroes and am(s1) the coefficient of zm,

m = m(s1) = deg gs1(z), then the same triangle inequality gives a lower bound for
|g(s1, z)|:

|g(s1, z)| = |am(s1)|
∏
i

|z − ξi(s1)| ≥ |am(s1)|
∏
i

(|z| − |ξi(s1)|) =: ḡ(s1, |z|),

with the remark that ḡs1(|z|) has the same degree as gs1(z).

Now we can bound for r sufficiently large, such that the interior of Cε ∪ I contains
all the zeroes of ḡs1(|z|) and z ∈ Cε:∣∣∣∣f(s1, z)

g(s1, z)

∣∣∣∣ ≤ f̄(|s1|, |z|)
ḡ(s1, |z|)

→ 0, as r →∞.

Convergence holds because the degree of the numerator is strictly less than that of
the denominator, by Assumption 6.1.1. This establishes the bound |g(s1, z)| > |f(s1, z)|
on Cε, for r large enough.
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For the segment I, we use the safety loading condition for the second(!) line:

c2EA− EB(2) > 0. That is, we start with the fact d
dz

f(0,z)
g(0,z) |z=0 = c2EA− EB(2) > 0.

So for ε > 0 sufficiently small, f(0,−ε)
g(0,−ε) <

f(0,0)
g(0,0) = 1. Then we can write for z ∈ I:

∣∣∣∣f(s1, ε+ iω)

g(s1, ε+ iω)

∣∣∣∣ ≤ E(|e−s1δ| · |e−ε(A−B(2))| · |e−iω(A−B(2))|
)

≤ Ee−ε(A−B(2)) =
f(0,−ε)
g(0,−ε) < 1.

Above we used the rough bound |e−s1δ| ≤ 1. This completes the proof.
Notice that the key role in the proof is played by ρ2 < 1 and not ρ1 < 1 (ρ2 < ρ1).





Chapter 7

Proportional reinsurance with
subexponential claims

In this chapter, we will study the asymptotic behaviour of the ruin probability for
a large initial capital for a proportional reinsurance contract. This problem can be
formulated as the first crossing probability of the process of aggregate claims above
a non-linear barrier. A detailed description of the problem is given in Section 7.1;
the main result and its probabilistic interpretation is given in Section 7.2. The ’one
large jump that causes ruin’ heuristic is shown to be asymptotically valid as the initial
capital grows arbitrarily large along a ray in the plane. The proofs and the technical
results are found in Section 7.3.

This is part of an ongoing project with Sergey Foss, Zbigniew Palmowski and
Tomasz Rolski, and the contents of this chapter are slightly related to an unpublished
manuscript of S. Foss, T. Rolski and S. Zachary [62].

7.1 Introduction

Palmowski and Pistorius [91] studied boundary crossing probabilities of a stochastic
process with regularly varying increments. This study was motivated by ruin proba-
bilities of two insurance companies with proportional claims (see Avram et al. [20])
and the steady state distribution of a tandem queue with two servers (see Lieshout
and Mandjes [86]). In this paper we generalize this result to the case of a strongly
subexponential distribution of increments. We define

St =

n(t)∑
k=1

Bk (7.1)

for n(t) a renewal process with i.i.d. inter-arrival times Ak, and the claims Bk are
i.i.d. random variables independent of n(t), with the distribution function F (x). Let
the barriers b1, b2 be given by

b1(t) = b1(t;x1) = x1 + p1t, b2(t) = b2(t;x2) = x2 + p2t,

127
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where xi = u(i)/δi, pi = ci/δi, with δi being the specific proportion used to split a
claim B, δ1 + δ2 = 1, so that risk reserve i receives claim sizes distributed as δiB,
i = 1, 2. We assume that

p1 > p2, p2 > EB/EA, (7.2)

for generic A and B. We will consider the following boundary crossing probabilities:

ψ∧(x1, x2) = P(∃t ≥ 0 : St > (x1 + p1t) ∧ (x2 + p2t)),

ψ∨(x1, x2) = P(∃t ≥ 0 : St > (x1 + p1t) ∨ (x2 + p2t)),

where x ∨ y = max{x, y} and x ∧ y = min{x, y}.
The ψ∧(x1, x2) describes the ruin probability of at least one insurance company,

and ψ∨(x1, x2) corresponds to the eventual ruin of both insurance companies. The
first assumption in (7.2) means that the second company receives less premium per
amount paid out and the second one is the stability condition under which the surplus
levels of both insurance companies tend to infinity. The solutions of the ”degenerate
two-dimensional” ruin problems strongly depend on the position of the vector of
premium rates p = (p1, p2). Namely, if the initial capital levels satisfy x2 ≤ x1, the
two lines do not intersect, hence the ”∧−” and the ”∨−”ruin always happen for
the second and first company respectively. In this case the asymptotics follow from
one-dimensional ruin theory – see e.g. Rolski et al. [96]. Therefore we focus here on
the opposite case, when x1 < x2.

In this chapter, we derive the exact first order asymptotics of these ruin probabilities
if x1, x2 tend to infinity along a ray in the positive quadrant (i.e. x1/x2 = a < 1 is
constant) if the claims follow a subexponential distribution. We model the claims by
subexponential distributions since many catastrophic events like earthquakes, storms,
terrorist attacks etc. are modelled by them. Insurance companies use e.g. the
Lognormal distribution (which is subexponential) to model car claims – see Foss et al.
[60], Rolski et al. [96] or Embrechts et al. [53] for further background.

The chapter is organized as follows. In the next section we present the main results
which will be proved in Section 7.3.

7.2 Main results

In order to state our results we start with recalling some notions. We assume that
inter-arrival times (Ak)k are light-tailed, that is E exp{θA} <∞ for some θ > 0 and
generic A. Moreover, we assume that the distribution F of a generic claim B ≥ 0
belongs to the class S of subexponential distribution functions, where a distribution
function G ∈ S if and only if G(x) > 0 for all x and

lim
x→∞

G∗2(x)/G(x) = 2 (7.3)

(where G∗2 is the convolution of G with itself). Here G denotes the tail distribution
given by G(x) = 1 − G(x). The above means that asymptotically, the only way in
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which a sum of two independent copies from G can be large is that precisely one of
them is large. Since these are independent copies, any one of them is equally likely to
be the large one, hence the limit above, having a combinatorial flavor. This limit can
be extended by induction to the n-fold convolution, and then the limit becomes n, see
Foss et al. [60], Cor. 3.20.

We further assume throughout that F ∈ S∗, the class of strong subexponential
distributions. A distribution function G on R belongs to the class S∗ if G(x) > 0 for
all x, and ∫ x

0

G(x− y)G(y) dy ∼ 2mGG(x), as x→∞, (7.4)

where we denote f(x) ∼ g(x) to mean limx→∞ f(x)/g(x) = 1. The constant mG

represents

mG =

∫ ∞
0

G(x) dx.

It is known that the property G ∈ S∗ depends only on the tail of G. Further, if G ∈ S∗
then G ∈ S and also Gs ∈ S∗, where

Gs(x) = min

(
1,

∫ ∞
x

G(t) dt

)
is the integrated, or second-tail, distribution function determined by G; see Foss et al.
[60] §3.4 for details.

Theorem 7.2.1. We have, for a < 1:

ψ∧(aK,K) ∼ H(K), (7.5)

ψ∨(aK,K) ∼ U(K), (7.6)

as K →∞, where

H(K) =

∞∫
0

F (min{aK + t(p1EA− EB),K + t(p2EA− EB)})dt,

U(K) =

∞∫
0

F (max{aK + t(p1EA− EB),K + t(p2EA− EB)})dt.

7.3 Proof of the main result

Before we give the formal proof, we owe some explanations. Identities (7.5) and (7.6)
can be explained by the ’single large jump’ principle, that is, for large values of the
starting capital, the most likely way in which the corresponding type of ruin can
happen is through a single large claim that makes the aggregate claims process Sn
jump directly above the corresponding barrier. Up to the time of ruin, the risk reserve
process behaves in a typical way - looked at on a large scale, component i drifts
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Figure 7.1: A path of the aggregate claims process. The upper (dashed) barrier is b1(t) ∨ b2(t).

upwards at rate piEA− EB > 0, i = 1, 2 - that is, the risk reserve processes receive
proportions of claims of a size that is relatively close to their mean, compared to the
claim that causes ruin.

Up to this point, the heuristic is the same as in the one-dimensional exit problem
of a random walk with heavy-tailed increments above a linear barrier. But there is an
additional key insight that appears also in a formal way in the proof: asymptotically in
K, the large jump will always happen after the process of inter-arrivals

∑n
k=1Ak had

stabilized around its mean drift (by the law of large numbers). Formally, with the help
of Lemma 7.3.1, we show that there exists a rate function ε(K)→ 0 sufficiently slowly,
as K → ∞, such that the residual terms I1(K, ε(K)) and I0(K, ε(K)) that appear
in (7.9) and (7.12) are asymptotically negligible w.r.t. H(K) as K →∞. Below we
review some results about heavy-tailed distributions, which will be used in the proof.

A known property of a long-tailed distribution F with
∫∞

0
F (y)dy < ∞, is that

F s is long-tailed again and it holds that (see Foss et al. [60], Lemma 2.26)

F (x) = o(F
s
(x)), as x→∞. (7.7)

By a long-tailed distribution function F , it is meant one such that F (x) > 0, for all x,
and, for any fixed y > 0,

lim
x→∞

F (x+ y)

F (x)
= 1.

All of the heavy-tailed distributions that typically appear in practice are also long
tailed. Since F s is long-tailed, it admits an insensitivity function h which is by
definition such that

lim
x→∞

F
s
(x+ h(x))

F
s
(x)

= 1, (7.8)

and h(x) → ∞ as x → ∞ sufficiently slowly. The rate at which the insensitivity
function h tends to infinity depends on how heavy the tail of F s is. For such an h we
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can strengthen the asymptotic behaviour (7.7) to

h(x)F (x) = o(F
s
(x)),

and this will be a useful consequence for our purposes, see (7.14) and (7.16).

Proof of Theorem 7.2.1. Let Sn =
∑n
k=1Bk and S̃n := Sn − nEB be the centered

random walk. Denote by

N∗ε = inf{n : ∀k ≥ n, tk ∈ [(EA− ε)k, (EA+ ε)k]}

for some ε > 0, to be the first time the random walk tn =
∑n
k=1Ak will stabilize

around its mean. By the strong law of large numbers (SLLN), we have N∗ε <∞ a.s.
and we can bound

I2 ≤ ψ∧(aK,K) ≤ I1 + I2, (7.9)

where

I1 := P(∃n ≤ N∗ε : S̃n > min{aK + p1tn − nEB,K + p2tn − nEB})
I2 := P(∃n > N∗ε : S̃n > min{aK + p1tn − nEB,K + p2tn − nEB})

We will show below that I1 = o(H(K)) and I2 ∼ H(K), as K →∞. Observe that, by
the definition of N∗ε ,

I2 ≤ P(∃n ≥ 0 : S̃n > min{aK+p1(EA−ε)n−nEB,K+p2(EA−ε)n−nEB}). (7.10)

If we denote with g(n) := min{aK+p1(EA− ε)n−nEB,K+p2(EA− ε)n−nEB}
that appears inside the upper bound in (7.10), then we will have for some positive c

g(n+ 1) ≥ g(n) + c,

and if we take ε > 0 sufficiently small, we can choose 0 < c < p2EA− EB − p2ε, and
such that it does not depend on ε. From the main result of Foss et al. [61], the upper
bound in (7.10) is asymptotically equivalent to:

(1+ δc(K))

∞∫
0

F (min{aK+(p1EA−EB−p1ε)t,K+(p2EA−EB−p2ε)t})dt, (7.11)

with δc(K)→ 0 as K →∞. This establishes the asymptotic behaviour of the upper
bound of I2. Now we turn to the lower bound on I2.

I2 ≥ P(∃n ≥ 0 : S̃n > min{aK + p1(EA+ ε)n− nEB,K + p2(EA+ ε)n− nEB})
− P(∃n ≤ N∗ε : S̃n > min{aK + p1(EA+ ε)n− nEB,K + p2(EA+ ε)n− nEB}).

(7.12)

We denote the second increment on the RHS of the above inequality by I0. We will
show below that this together with I1 is asymptotically negligible o(H(K)) as K →∞.
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Using again the main result in Foss et al. [61], gives the asymptotic behaviour of the
first term on the RHS of (7.12):

(1−δc(aK))

∞∫
0

F (min{aK+(p1EA−EB+p1ε)t,K+(p2EA−EB+p2ε)t})dt. (7.13)

We will prove now that for sufficiently small ε > 0,

I1 = P(∃n ≤ N∗ε : S̃n > min{aK + p1tn − nEB,K + p2tn − nEB})

and

I0 = P(∃n ≤ N∗ε : S̃n > min{aK + p1(EA+ ε)n− nEB,K + p2(EA+ ε)n− nEB})

are asymptotically negligible.
Since F s ∈ S∗, a useful characterization of long-tailed distribution functions yields

the existence of a non decreasing function h : R+ → R+ such that h(x) → ∞ as
x→∞ and (7.8) holds. An immediate consequence of this insensitivity property is
that (see Foss et al. [60], Lemmae 2.19, 2.25),

h(x)F (x) = o(F s(x)). (7.14)

Since N∗ε is independent of Sn, we have the following upper bound for both I0 and
I1 (see [60], Thm. 3.37, Cor. 3.20):

I0, I1 ≤ P(∃n ≤ N∗ε : Sn > aK) ∼ EN∗ε F (aK), (7.15)

once we show that EN∗ε < ∞ for any ε > 0. The latter statement follows from
Cramér’s Large Deviations Principle (LDP) for the light-tailed sequence {Ak}k≥1,
which has the good rate function Λ∗(x):

P(|t̃l| ≥ εl) ≤ 2e−l infx≥ε Λ∗(x),

with t̃l :=
∑l
i=1Ai − lEA, so that we can write

P(N∗ε > k) ≤
∑
l≥k
P(|t̃l| ≥ εl) ≤

∑
l≥k

2e−I(ε)l ≤ Cεe−I(ε)k,

with I(ε) := infx≥ε Λ∗(x), and Cε is some positive constant that depends on ε. See
Cramér’s Theorem 2.2.3 and the subsequent Remark c) in Dembo and Zeitouni [49],
p. 27. For the arguments below, it is essential that EN∗ε explodes as ε tends to 0.

Define f(x) := EN∗1/x; by construction, f is non-decreasing and f(x) → ∞ as

x → ∞. We show in Lemma 7.3.1 that there exists a non-negative function f∗(y),
such that f∗(y)→∞ as y →∞ and

f ◦ f∗(y) ≤ y, for all y > 0.

With this construction, take ε = 1/f∗(h(K)), so that we have by the definitions of f∗

and of h that
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EN∗ε = f ◦ f∗ ◦ h(K) ≤ h(K),

and from (7.15), with this choice for ε, the asymptotic behaviour of the upper bound
on I1(K) and I0(K) is

EN∗ε F (aK) ≤ h(K)F (aK) = o(F s(aK)) = o(H(K)), (7.16)

by virtue of (7.14). This completes the argument for the asymptotic behaviour of
I1(K) and I0(K).

All that is left is a limit argument for taking ε→ 0. Let us denote the integrated
tails that appear in (7.11) and (7.13)

H−ε(K) :=

∞∫
0

F (min{aK + (p1EA− EB − p1ε)t,K + (p2EA− EB − p2ε)t})dt,

Hε(K) :=

∞∫
0

F (min{aK + (p1EA− EB + p1ε)t,K + (p2EA− EB + p2ε)t})dt.

(7.17)

It follows from Lemma 7.3.2 below that both Hε(K)/H(K) and H−ε(K)/H(K)
converge to 1 as K →∞. The proof of (7.5) is complete because we can now write for
ε small, using (7.10), (7.11), (7.13) and (7.16):

(1− δc(aK))
Hε(K)

H(K)
− o(1) ≤ ψ∧(K)

H(K)
≤ (1 + δc(aK))

H−ε(K)

H(K)
+ o(1), K →∞,

and with the choice ε(K) = 1/f∗(h(K)).
The proof of (7.6) follows along exactly the same lines. The only place where the

shape of the barrier is used is Lemma 7.3.2. But also in this case, it can be shown that
the corresponding functionals U−ε, Uε are proportional to U , and the proportionality
constants tend to 1 as ε→ 0. This completes the proof.

Lemma 7.3.1. Let f : R+ → R+ be a non-decreasing function such that f(x)→∞
as x → ∞. Then there exists a non-decreasing function f∗ : R+ → R+ such that
f∗(y)→∞ as y →∞ and

f ◦ f∗(y) ≤ y, for all y > 0.

Proof of Lemma 7.3.1. There are several possible choices for f∗. A natural one is
the following: let f+ be the right-continuous version of f . Since f is non-decreasing,
f(x) ≤ f+(x). For a fixed y, set

f∗(y) := sup{x; f+(x) ≤ y}.

We have by construction that
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f+ ◦ f∗(y) ≤ y.
Since f is non-decreasing, we can write

f ◦ f∗(y) ≤ f+ ◦ f∗(y) ≤ y. (7.18)

The monotonicity of f∗ together with f∗(y)→∞ as y →∞ follow from its definition
and the assumption f(x) → ∞. Thus f∗ is constructed as the right-inverse of f+,
and this is the mirror-image construction of the well known quantile function (the left
inverse) of a non-decreasing and right-continuous function – a c.d.f. (see Embrechts
and Hofert [52] for the analogue of (7.18)). The proof is complete.

Lemma 7.3.2. With the notations and definitions from the proof of Theorem 7.2.1,
the functions Hε(K), H(K) and H−ε(K) are proportional for any K > 0 and ε > 0:

Hε(K) =
m1

mε,1
H(K).

H−ε(K) =
m1

m−ε,1
H(K).

Here we denoted by mi := piEA− EB and m±ε,i := pi(EA± ε)− EB.

Proof of Lemma 7.3.2.

Define T := (1−a)K
m1−m2

the (unique) crossing epoch of lines aK +m1t and K +m2t
and let

T±ε :=
(1− a)K

(m±ε,1 −m±ε,2)

be the (unique) epochs at which the lines aK + p1(EA± ε)t− tEB and K + p2(EA±
ε)t− tEB cross.

There are several key relations that these crossing times satisfy, and they are easy
to check:

mε,1Tε = m1T, mε,2Tε = m2T,
m1

mε,1
=

m2

mε,2
. (7.19)

Similar relations hold for T−ε and m−ε,i. Using the above definitions, we can write

H(K) =
1

m1

aK+m1T∫
aK

F (u)du+
1

m2

∞∫
K+m2T

F (u)du,

Hε(K) =
1

mε,1

aK+mε,1Tε∫
aK

F (u)du+
1

mε,2

∞∫
K+mε,2Tε

F (u)du,

H−ε(K) =
1

m−ε,1

aK+m−ε,1T−ε∫
aK

F (u)du+
1

m−ε,2

∞∫
K+m−ε,2T−ε

F (u)du.
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Above we partitioned the integrated tails based on the crossing times of the barriers
and we changed the variables of integration in each term. We did this in order to be
better able to compare the three integrated tails.

From (7.19), the integration ends are termwise identical for H(K) and Hε(K).
Moreover, using the last identity in (7.19), H(K) and Hε(K) are proportional:

Hε(K) =
m1

mε,1
H(K).

It follows in the same way as for Hε that

H−ε(K) =
m1

m−ε,1
H(K).

The proof is complete.





Chapter 8

A coupled processor model
with simultaneous arrivals

In this chapter we study a coupled processor model which receives service requirements
at both queues simultaneously. We assume that the service requirement at, say, station
1 is always greater than the service requirement from station 2. Moreover, when server
2 is idle, it switches to process work from the first queue, if there is any. As described
in Section 1.2, for the models introduced by Fayolle and Iasnogorodski [55] and Cohen
and Boxma [41], the server i rate is ri when processing from buffer i and r∗j when
processing from buffer j, i = 1, 2, j 6= i, so that during an idle period of server i, the
other server works at speed rj + r∗j (the notation we use is different than the one used
in [41], but equivalent). By studying the dynamics of this system during infinitesimal
time intervals, it is possible to derive a functional equation for the transform of the
joint amount of work. This analysis was carried out in Cohen [43]. The steady-state
version of the functional equation for the workload vector (V (1), V (2)) from [43, p. 186,
(1.10)] reads, using our notation:

K(s1, s2)ψ(s1, s2) = (r2s2−r∗1s1)ψ1(s1)+(r1s1−r∗2s2)ψ2(s2)+(r∗1s1+r∗2s2)ψ0, (8.1)

with ψ(s1, s2) the Laplace-Stieltjes transform (LST) of the stationary amount of work
in the system and with the unknown boundary functions

ψi(si) = E[e−siV
(i)

(V (j) = 0)], i 6= j ∈ {1, 2}, ψ0 = P(V (1) = V (2) = 0).

The function K(s1, s2) is the so-called Poisson kernel. For φ(s1, s2) the joint transform
of a generic service time vector,

K(s1, s2) = r1s1 + r2s2 − λ[1− φ(s1, s2)].

Actually, in Cohen [43] the functional equation of the time dependent workload is
given. The stationary version above is obtained by multiplying the functional equation

137
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[43, p. 186, (1.10)] with the discount factor of the Laplace-Stieltjes transform over
time, and then taking the discount factor to 0, while keeping it positive (this is by
virtue of Abel’s theorem).

The analysis in the above mentioned works relies heavily on the theory of complex
functions which makes it highly non-trivial, and in addition, it is difficult to recognize
the probabilistic nature of the initial problem.

We will show in Section 8.2 that under the additional ordering assumption between
the claims, it is possible to relate the coupled processor model to a parallel queueing
system without coupling. Then the transform of the amount of work in the coupled
system follows from that obtained in the decoupled parallel system, by using Formula
(5.6). This gives an explicit representation for the steady-state amount of work in the
coupled system (Section 8.3), which can be extended to multiple coupled queues by
making suitable assumptions on the coupling rates (Section 8.4).

8.1 Model description

We consider two parallel M/G/1 queues, with simultaneous arrivals and correlated
service requirements. The arrival process is a Poisson process with rate λ. We
will denote by An the time elapsed between arrival epochs n and n + 1, n ≥ 1.
The service requirements at the two queues of successive customers are independent,

identically distributed random vectors (B
(1)
n , B

(2)
n ), n ≥ 1. In the sequel we denote with

(B(1), B(2)) a random vector with the same distribution as the vectors (B
(1)
n , B

(2)
n ), n ≥

1. The joint Laplace-Stieltjes transform of this vector is

φ(s1, s2) := E(e−s1B
(1)−s2B(2)

).

We will work with the processing rates of server i, when working in buffer j 6= i
for a three dimensional system in Section 8.4. For this reason, let us change the rates
notation and set c1 and c2 for the servers’ processing rates from their respective buffer
and cji , i 6= j for the processing rate of server i in buffer j. An essential assumption in
the model is that, after normalizing the system with the server rates, with probability
one, each customer has a bigger service requirement in queue 1 than in queue 2, i.e.,

P(B(1)/c1 ≥ B(2)/c2) = 1.

The processors are coupled in the sense that as soon as server 2 becomes idle, it
switches its capacity to serving work from buffer 1 so that it works at rate c12 when
processing from buffer 1. Because of the ordering assumption, server 1 will never
become idle while server 2 is busy, so there is no need for server 2 to help server 1.
We are interested in the joint stationary distribution of the amount of work in the two
queues. Let us still denote with V (1) the stationary amount of work in queue 1 and
with V (2) the stationary amount of work in queue 2.

Our aim is to study such an interacting queueing system under the above assumption
of ordered service times. In particular we want to find an expression for the Laplace-
Stieltjes transform of the joint stationary amount of work.
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8.2 Recursive equations for the amount of work in
the coupled system

In this section we will derive stochastic recursive equations for the joint amount of
work in the system.

With V
(i)
tn the amount of work in queue i as seen by customer n upon arrival, we

assume that at time 0 the first customer arrives in an empty system. Then we have

the following recursion for the random variables (V
(1)
tn , V

(2)
tn ), n ≥ 1, which is a special

case of Lindley’s recursion for the coupled processor model (2.14):

(V
(1)
t1 ,V

(2)
t1 ) = (0, 0),

V
(1)
tn+1

=

[
(V

(1)
tn +B(1)

n − c1An) ∨ 0 +
c12
c2

(V
(2)
tn +B(2)

n − c2An) ∧ 0

]
∨ 0, (8.2)

V
(2)
tn+1

= (V
(2)
tn +B(2)

n − c2An) ∨ 0.

The second queue evolves without the assistance of the first queue because of the
ordering assumption. Remark that

− 1

c2
[(V

(2)
tn +B(2)

n − c2An) ∧ 0]

is the amount of time that server 2 has been idle between the arrival epochs tn and

tn+1 (cf. (1.3)). Then the second term in the recursion of V
(1)
tn+1

is minus the amount

of work server 2 processes at rate c12 from buffer 1 during his idle period (if it has an
idle period).

This extra term appears because the servers are coupled. It is useful to compare
this with the recursion for a system without coupling between the servers. Consider
two parallel queues simultaneously receiving service requirements distributed as the
vector (B̃(1), B̃(2)). The servers are not coupled anymore and server 1 always works at

speed c̃1, while server 2 always works at speed c̃2. Let (Ṽ
(1)
tn , Ṽ

(2)
tn ) be the amount of

work at arrival epochs in such a system, then the following recursion holds

(Ṽ
(1)
t1 , Ṽ

(2)
t1 ) = (0, 0),

Ṽ
(1)
tn+1

= (Ṽ
(1)
tn + B̃(1)

n − c̃1Ãn) ∨ 0, (8.3)

Ṽ
(2)
tn+1

= (Ṽ
(2)
tn + B̃(2)

n − c̃2Ãn) ∨ 0,

with Ãn the inter-arrival time between customer n and n + 1. This is Lindley’s
recursion because both queues evolve in isolation as one-dimensional systems. Notice
that, marginally, queue 2 evolves as if there was no coupling in (8.2).

We are ready to give the main result of this section which connects the amount
of work in the coupled system to a workload process in a system without coupling
between the servers. For further usage we will denote by system (C) the coupled
system and by system (D), the system without coupling.
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Proposition 8.2.1. Let (V
(1)
tn , V

(2)
tn )n≥1 be the workload process at arrival epochs in

system (C). Then the process (V
(1)
tn +

c12
c2
V

(2)
tn , V

(2)
tn )n≥1 is the workload process in a

system of type (D) with generic input of the form (B(1) +
c12
c2
B(2), B(2)), where the

servers have speed (c1 + c12, c2) and do not interact with each other.

We will show that (V
(1)
tn +

c12
c2
V

(2)
tn , V

(2)
tn ) has the same distribution as (Ṽ

(1)
tn , Ṽ

(2)
tn ),

the solution to the recursive system (8.3), by using a probabilistic coupling between
systems (C) and (D), that is we will let the two systems evolve on the same probability

space given by the sequences (An)n≥1 and (B
(1)
n , B

(2)
n )n≥1. The choice for the input

variables in system (D) is the following:

Ãn := An, (B̃(1)
n , B̃(2)

n ) := (B(1)
n +

c12
c2
B(2)
n , B(2)

n ),

c̃1 := c1 + c12, c̃2 := c2. (8.4)

To be more precise, start both systems empty at time t1 = 0. At the nth arrival

epoch tn, system (C) receives input (B
(1)
n , B

(2)
n ) whereas system (D) receives input

(B
(1)
n +

c12
c2
B

(2)
n , B

(2)
n ). Let us focus on system (D). The key idea is to partition the

amount of work at queue 1 in system (D) into V
(1)
t and

c12
c2
V

(2)
t , then during the busy

periods of server 2, distribute the total capacity per time unit c1 + c12 of server 1 in

the following way: c1 is dedicated to processing V
(1)
t while c12 is used to process the

remaining
c12
c2
V

(2)
t . In this way, during the busy periods of server 2, the amount of

work in queue one of system (C) and the work in the c1-dedicated component of queue
one in system (D) evolve in the same way.

As soon as queue 2 becomes empty (which now happens at the same moment in
system (C) as in system (D) because the second queue evolves unchanged between the

two systems), in both systems (C) and (D), server 1 will process work V
(1)
t at speed

c1 + c12. Another remark is that due to the ordering between the service requirements,
queue 2 will always become idle before queue 1 in any of the systems (C) or (D) (see
also Remark 8.2.1 below).

We give below the formal proof of Proposition 8.2.1. The idea of the proof is to

verify that V
(1)
tn +

c12
c2
V

(2)
tn satisfies (8.3) with the input variables from (8.4).

Proof of Proposition 8.2.1. First remark that we can drop the maximum w.r.t. 0 in
the first term of recursion (8.2):

V
(1)
tn+1

=

[
V

(1)
tn +B(1)

n − c1An +
c12
c2

(V
(2)
tn +B(2)

n − c2An) ∧ 0

]
∨ 0, (8.5)

the reason being that the other term is either 0 or negative as pointed out below (8.2),
so it can only decrease the term between the square brackets in the recursion of the
coupled queue 1.

Adding the term
c12
c2
V

(2)
tn+1

=
c12
c2

(V
(2)
tn +B

(2)
n − c2An) ∨ 0 to both sides of (8.5) gives



8.3. The transform of the equilibrium amount of work at arrival epochs 141

V
(1)
tn+1

+
c12
c2
V

(2)
tn+1

=

[
V

(1)
tn +B(1)

n − c1An +
c12
c2

(V
(2)
tn +B(2)

n − c2An)

]
∨ c

1
2

c2
(V

(2)
tn +B(2)

n − c2An) ∨ 0.

We used the fact that the operator ∨ is distributive w.r.t. addition and the obvious
decomposition (x ∧ 0) + (x ∨ 0) = x.

There are two possible cases:

In the event that V
(1)
tn +B

(1)
n − c1An > 0, the RHS above is of the form a ∨ b ∨ 0,

with a > b, hence b can be removed. In the end we can rewrite the above as

V
(1)
tn+1

+
c12
c2
V

(2)
tn+1

=

(
V

(1)
tn +

c12
c2
V

(2)
tn +B(1)

n +
c12
c2
B(2)
n − (c1 + c12)An

)
∨ 0.

This is the desired Lindley recursion for V
(1)
tn +

c12
c2
V

(2)
tn .

In the event that V
(1)
tn + B

(1)
n − c1An < 0, queue 1 would empty at epoch tn+1

without any additional help, so that V
(1)
tn+1

= 0. Then by the ordering assumption,

V
(2)
tn+1

= 0 as well, and the above identity is trivially satisfied. The proof is complete and
it shows that the ordering between the normalized claims is an essential assumption.

Remark 8.2.1. Notice that the normalized input in the related system (D) remains
ordered:

B
(1)
n +

c12
c2
B

(2)
n

c1 + c12
=
c1
B(1)
n

c1
+ c12

B(2)
n

c2

c1 + c12
≥ B

(2)
n

c2
,

because by assumption, B
(1)
n /c1 ≥ B(2)

n /c2.

8.3 The transform of the equilibrium amount of
work at arrival epochs

In Chapter 5 has been shown how to calculate the Laplace-Stieltjes transform of the
joint, stationary amount of work in a system of type (D) under the same ordering
assumption (Chapter 5, Formula (5.6)). Thus, by inverting the correspondence from
Proposition 8.2.1, and using Remark 8.2.1, we can recover without any additional
effort the joint transform of (V (1), V (2)), the steady-state amounts of work in the
coupled system. Moreover, because of Poisson arrivals, we have the PASTA property,
which means that in equilibrium, the amount of work is the same as the workload seen
by an arriving customer.

The inverse relation from Proposition 8.2.1 is
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(V (1), V (2)) = (Ṽ (1) − c12
c2
Ṽ (2), Ṽ (2)). (8.6)

If we denote by

ψ(C)(s1, s2) := E(e−s1V
(1)−s2V (2)

), ψ(D)(s1, s2) := E(e−s1Ṽ
(1)−s2Ṽ (2)

),

the LST of the equilibrium amount of work in system (C) and respectively system
(D), then via (8.6), the relation between the LSTs becomes:

ψ(C)(s1, s2) = ψ(D)(s1, s2 − s1c
1
2/c2). (8.7)

Remark 8.3.1. Equation (8.1) can be adapted to describe the stationary workload
(Ṽ (1), Ṽ (2)) in the decoupled system by setting the coupling rates r∗ equal to 0. The
kernel K(s1, s2) has to be modified as well to

K(D)(s1, s2) = (c1 + c12)s1 + c2s2 − λ[1− φ(s1, s2 + s1c
1
2/c2)]

because server 1 receives the extra input c12/c2B
(2) and always works at speed c1 + c12.

Then (8.1) becomes

K(D)(s1, s2)ψ(D)(s1, s2) = c2s2ψ(D),1(s1) + (c1 + c12)s1ψ(D),0, (8.8)

since by the ordering relation from Remark 8.2.1, ψ(D),2(s2) is constant and equal to
ψ(D),0:

ψ(D),2(s2) = E[e−s2Ṽ
(2)

(Ṽ (1) = 0)] = P(Ṽ (1) = Ṽ (2) = 0) =: ψ(D),0.

On the other hand, the kernel for the coupled system (C) is

K(C)(s1, s2) = c1s1 + c2s2 − λ[1− φ(s1, s2)].

The equation that has to be satisfied by ψ(C)(s1, s2) now reads (with ψ(C),2(s2) ≡ ψ(C),0,
again because of the ordering)

K(C)(s1, s2)ψ(C)(s1, s2) = (c2s2 − c12s1)ψ(C),1(s1) + (c1 + c12)s1ψ(C),0 (8.9)

with the key remark that the two boundary functions ψ(D),1(s1) and ψ(C),1(s1) are
identical (Proposition 8.2.1):

E[e−s1Ṽ
(1)

(Ṽ (2) = 0)] ≡ E[e−s1V
(1)

(V (2) = 0)]

and the same holds for ψ(C),0 and ψ(D),0.

Now it is easy to check that if ψ(D)(s1, s2) is the solution of (8.8), then ψ(D)(s1, s2−
s1c

1
2/c2) as in (8.7) is the solution of (8.9), and conversely, if ψ(C)(s1, s2) is the solution
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of (8.9) then ψ(C)(s1, s2 + c12/c2s1) is the solution of (8.8). In particular, it follows
from Chapter 5 that the amount of work in system (C) is ergodic under the condition

lim
s1→0

s1>0

∂

∂s1
K(D)(s1, 0) > 0⇔ E(B(1)) + c12/c2E(B(2)) < (c1 + c12)E(A). (8.10)

This simply means that the first queue in system (D) is capable to handle the amount
of input per time unit while working at speed (c1 + c12) and this is sufficient to ensure
that the entire system is stable, because of the ordering assumption. It may happen
that E(B(1)) > c1E(A), i.e. that queue 1 of system (C) would be supercritical if it
were to work only on its own. Inequality (8.10) together with Remark 8.2.1, implies
E(B(2)) < c2E(A), thus queue 2 is ergodic and during its (non-degenerate) idle periods
it is capable to maintain queue 1 stable because of the coupling.

Using the relation between ψ(C)(s1, s2) and ψ(D)(s1, s2) we obtain

Theorem 8.3.1. Under the stability condition (8.10), with ρ̃1 := λE(B̃(1))/(c12 + c1),
the joint transform of the stationary amount of work in a system of type (C) is

ψ(C)(s1, s2) = (1− ρ̃1)
(c1 + c12)s1

c1s1 + c2s2 − λ[1− φ(s1, s2)]
· c2S2(s1)− c2s2 + s1c

1
2

c2S2(s1)
. (8.11)

For each fixed s1 with Re s1 > 0, S2(s1) is the zero of the equation

K(C)(s1, S2(s1) + s1c
1
2/c2) = 0,

that is unique in the positive half of the complex plane.

Proof. The derivation for the decoupled system is known (c.f. Chapter 5, Formula
(5.6)). It is easy to adapt the analysis in Section 5.2 to give the transform of the
workload when the servers’ speeds are not normalized. The joint transform of the
stationary amount of work in the decoupled system becomes

ψ(D)(s1, s2) = (1− ρ̃1)
c̃1s1

c̃1s1 + c̃2s2 − λ[1− φ(D)(s1, s2)]
· c̃2S2(s1)− c̃2s2

c̃2S2(s1)
, (8.12)

with φ(D)(s1, s2) the joint LST of the generic input

φ(D)(s1, s2) = E(e−s1B̃
(1)−s2B̃(2)

).

The stability condition for this system is ρ̃1 < 1, and for each fixed s1 with Re s1 > 0,
S2(s1) is the zero of the equation

K(D)(s1, s2) = c̃1s1 + c̃2s2 − λ[1− φ(D)(s1, s2)] = 0, (8.13)

that is unique in the positive half of the complex plane.
We have the analogous relation to (8.7):
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φ(s1, s2) = φ(D)(s1, s2 − s1c
1
2/c2). (8.14)

Combining (8.7), (8.12) and (8.14) we obtain

ψ(C)(s1, s2) = (1− ρ̃1)
(c1 + c12)s1

c1s1 + c2s2 − λ[1− φ(s1, s2)]
· c2S2(s1)− c2s2 + s1c

1
2

c2S2(s1)
.

The kernel identity K(D)(s1, s2) = K(C)(s1, s2 + s1c
1
2/c2) (see Remark 8.3.1) to-

gether with (8.13) gives that S2(s1) is then the unique zero with positive real part
of

K(C)(s1, s2 + s1c
1
2/c2) = 0.

This yields the desired result and the proof is complete.

8.4 The k-dimensional model

In this section we consider multiple coupled servers in parallel which receive simul-
taneous requirements. It is shown that also in this case, the coupled system can be
reduced to a decoupled system, upon modifying the input. However for three servers
we have to specify in addition how to divide the extra service capacity of an idle server
over the other queues. This was trivial for two servers since one can only assist the
other during its idle periods. With such specifications in place, the formal idea of the
proof for the k dimensional system is analogous to the case k = 3, and it relies on the
result for two coupled queues. Thus, we can work with k = 3, to keep formulae still
accessible, without losing generality.

We extend the ordering assumption between the service requirements to

P(B(1)/c1 ≥ B(2)/c2 ≥ B(3)/c3) = 1.

In addition, while server 3 is idle and server 2 is busy, we denote by c13 and c23 the
processing rate of server 3 into buffers 1 and 2 respectively. If also server 2 becomes
idle, we denote by c12 the processing rate of server 2 into buffer 1 during its idle time,
and moreover, server 3 contributes an extra rate ĉ13 into buffer 1, so that the total
contribution from server 3 becomes c13 + ĉ13, while server 2 is idle.

In addition, we assume that c13/c1 ≤ c23/c2 in order to ensure that the amount of
work in queue 1 remains above the amount of work in queue 2, at all times. Because
of this assumption, the amount of work in the system is again ordered:

P(V (1)/c1 ≥ V (2)/c2 ≥ V (3)/c3) = 1.

The Lindley type recursion for queue 2 is similar to (8.5). In the sequel, we will
derive the recursion for queue 1. Because of the coupling, the idle period of queue
2 plays a role in the dynamics of queue 1 so for this reason (and to keep notations
short) we introduce

J (2)
n := (c23 + c2)−1[V

(2)
n−1 +B

(2)
n−1 − c2An−1 + c23/c3 (V

(3)
n−1 +B

(3)
n−1 − c3An−1) ∧ 0],
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J (3)
n := c−1

3 (V
(3)
n−1 +B

(3)
n−1 − c3An−1).

−(J
(2)
n ∧ 0) is the idle period in queue 2 right before epoch n, and it follows from (8.2)

that

(c23 + c2)J (2)
n ∨ 0 = V (2)

n . (8.15)

Also −(J
(3)
n ∧ 0) is the idle period in queue 3. The fact that −(J

(2)
n ∧ 0) is an idle

period is again a consequence of the ordering, because if server 2 is idle then server 3
must also be idle and hence coupled to queue 2. We can combine the terms above
into the identity

J (2)
n = (c23 + c2)−1(V

(2)
n−1 +B

(2)
n−1 − c2An−1 + c23J

(3)
n ∧ 0). (8.16)

Now we can write the stochastic recursion for the amount of work in queue 1 at
arrival epoch n+ 1:

V
(1)
n+1 = [V (1)

n +B(1)
n − c1An + (c12 + ĉ13)J

(2)
n+1 ∧ 0 + c13J

(3)
n+1 ∧ 0] ∨ 0. (8.17)

In addition, −[(c12 + ĉ13)J
(2)
n+1 ∧ 0] is the extra amount of work that server 2 and server

3 are capable of processing while working coupled to server 1 during the idle period

of server 2. Similarly, −(c13J
(3)
n+1 ∧ 0) is the amount of work that can be processed by

server 3 while coupled directly to server 1.

Proposition 8.4.1. Let (V
(1)
n , V

(2)
n , V

(3)
n ) be the amount of work at epoch n in the

coupled system (C), then the following process defined for n ≥ 1

Ṽ (1)
n := V (1)

n + c∗2/c2V
(2)
n + c∗3/c3V

(3)
n , (8.18)

Ṽ (2)
n := V (2)

n + c23/c3V
(3)
n ,

Ṽ (3)
n := V (3)

n ,

with

c∗2 :=
c12 + ĉ13
c2 + c23

c2, c∗3 :=
c12 + ĉ13
c2 + c23

c23 + c13,

represents the amount of work at epoch n in a queueing system without coupling
between the servers. The service rates are c̃1 := c1 + c∗2 + c∗3 = c1 + c12 + c13 + ĉ13 for
server 1, c̃2 := c2 + c23 for server 2 and c̃3 := c3 for server 3. The input in the three

queues at epoch n is B̃
(1)
n := B

(1)
n + c∗2/c2B

(2)
n + c∗3/c3B

(3)
n , B̃

(2)
n := B

(2)
n + c23/c3B

(3)
n

and B̃
(3)
n := B

(3)
n respectively.

By a similar coupling argument as in the case k = 2, assume that all queues start
empty and that the arrival epochs are the same as in the coupled system. Server 1
processes at rate c̃1 = c1 + c12 + c13 + ĉ13, server 2 at rate c̃2 = c2 + c23, and server 3 at

the same rate c3. Queue 3 evolves again unchanged. Using a bit of algebra, Ṽ
(1)
n from

(8.18) can be rewritten as
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Ṽ (1)
n = V (1)

n +
c12 + ĉ13
c2 + c23

(V (2)
n − c2

V
(3)
n

c3
) + (c12 + c13 + ĉ13)

V
(3)
n

c3
.

Focus on the ends of the successive busy periods in the three queues. The first
one to empty is queue 3. Up to the moment the third queue is empty, partition the
work in queue 2 as in Section 8.3. Actually queue 2 together with queue 3 make up
precisely the two-dimensional system studied in Section 8.3.

The service rate in queue 1 can be partitioned in the following way: c1 is dedicated

to processing type V
(1)
t work, and (c12 + c13 + ĉ13) is dedicated to processing the work

(c12 +c13 + ĉ13)V
(3)
t /c3. Remark that V

(2)
t −c2V (3)

t /c3 is a.s. non-negative due to ordering.

The remainder of Ṽ
(1)
n is waiting in the buffer up to the moment queue 3 empties. At

this point in time, work V
(2)
t − c2V (3)

t /c3 is still left in buffer 2, and it is processed at
rate c2 + c23, whereas in buffer 1 the amount left equals

V
(1)
t − c1

V
(3)
t

c3
+
c12 + ĉ13
c2 + c23

(V
(2)
t − c2

V
(3)
t

c3
).

From this point on, partition server 1 capacity in the following way: dedicate rate

(c1+c13) to process work V
(1)
t −c1V (3)

t /c3, and rate (c12+ĉ13) to process work
c12+ĉ13
c2+c23

(V
(2)
t −

c2V
(3)
t /c3). In this way, at the moment queue 2 empties, there is still work left in

queue 1, that is

V
(1)
t − c1

V
(3)
t

c3
− c1 + c13
c2 + c23

(V
(2)
t − c2

V
(3)
t

c3
),

and this is processed at speed c1 + c12 + ĉ13 + c13 as long as there is no new arrival.

Proof of Proposition 8.4.1. The idea is to add successively the terms (c12 + c23)J
(2)
n+1 ∨ 0

and c∗3J
(3)
n+1 ∨ 0 = c∗3/c3V

(3)
n+1 to the recursion in (8.17) in order to compensate for the

minima with 0 in the first bracket.
First add the term (c12 + ĉ13)J

(2)
n+1 ∨ 0 = c∗2/c2V

(2)
n+1 to both sides of (8.17). Making

use of (8.15) for the left-hand side and of (8.16) for the right-hand side, (8.17) becomes
after rearranging terms

V
(1)
n+1+

c∗2
c2
V

(2)
n+1 =[

V (1)
n +B(1)

n −c1An+
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3
c3

(V (3)
n +B(3)

n −c3An) ∧ 0

]
∨
[
c∗2
c2

(V (2)
n +B(2)

n −c2An)+
c∗3 − c13
c3

(V (3)
n +B(3)

n −c3An) ∨ 0

]
∨ 0. (8.19)

Now add the term c∗3J
(3)
n+1 ∨ 0, which is the same as c∗3/c3V

(3)
n+1, by Lindley’s

recursion. After regrouping terms, (8.19) becomes
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V
(1)
n+1+

c∗2
c2
V

(2)
n+1 +

c∗3
c3
V

(3)
n+1 =[

V (1)
n +B(1)

n − c1An +
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3
c3

(V (3)
n +B(3)

n − c3An)

]
∨
[
c∗2
c2

(V (2)
n +B(2)

n − c2An) +
c∗3 − c13
c3

(V (3)
n +B(3)

n − c3An)

+
c13
c3

(V (3)
n +B(3)

n − c3An) ∨ 0

]
∨ c
∗
3

c3
(V (3)
n +B(3)

n − c3An) ∨ 0. (8.20)

We show now that the two middle terms that appear in the maximum sequence above
are always dominated by either one of the extremal terms. There are three cases to
be considered. If

V (3)
n +B(3)

n − c3An > 0

then by the ordering assumption, V
(2)
n +B

(2)
n − c2An and V

(1)
n +B

(1)
n − c1An are also

positive, and it is easy to see that the first term on the right-hand side is the largest
one.

The alternative is

V (3)
n +B(3)

n − c3An < 0,

and there are two sub-cases to be considered: if

−c
1
3

c3
(V (3)
n +B(3)

n − c3An) < V (1)
n +B(1)

n − c1An,

then the first term dominates the second one on the right-hand side of (8.20) and the
third term is negative by assumption, so one can ignore the intermediate terms again.

The other subcase is when

−c
1
3

c3
(V (3)
n +B(3)

n − c3An) > V (1)
n +B(1)

n − c1An,

thus the first term on the right-hand side of (8.20) is smaller than the second term.
We show that this second term is now negative: the above inequality means that
queue 3 is able to empty queue 1 at epoch n+ 1 without the help of queue 2, so as
a consequence of the ordering assumptions, then queue 3 will also empty queue 2 at

epoch n+ 1: V
(2)
n+1 = 0, and it is easy to see using the definitions of c∗2 and c∗3 and the

recursion (8.5) for the two coupled queues, that this latter fact is equivalent to the
second term being negative.

In conclusion the intermediate terms on the right-hand side of (8.20) can be ignored,
and this gives after rearranging terms

Ṽ
(1)
n+1 = {Ṽ (1)

n + B̃(1)
n − c̃1An} ∨ 0.
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By ignoring queue 1, it follows at once from Proposition 8.2.1 that Ṽ
(2)
n satisfies the

corresponding Lindley recursion, and since queue 3 evolves unchanged, the proof is
complete.

As in Section 8.2, if we denote by ψ(C) and ψ(D) the transforms of the amount
of work in the coupled and respectively, in the related decoupled system, then the
relation analogous to (8.7) is

ψ(C)(s1, s2, s3) = ψ(D)(s1, s2 −
c∗2
c2
s1, s3 −

c23
c3
s2 −

c∗3
c3
s1),

and it is easy to see that the input in the decoupled system remains ordered, which
means, in principle, one can determine ψ(C) from the relation above using the available
expression for ψ(D) obtained in Chapter 5 (Section 5.2, Formulae (5.6) and (5.10)).

8.5 Conclusions and final remarks

We have pointed out a relation between a coupled processor model and two parallel
queues without coupling, under the assumption of ordered input. This relation was
further used to derive the joint Laplace-Stieltjes transform of the amount of work in
equilibrium.

We have also derived the relation explicitly for the case of three coupled processors.
This can be used in principle to determine the joint transform of the equilibrium
amount of work by using the expression derived in Proposition 5.4.1 for the queueing
system with the processors not coupled.

Relation with two coupled queues in tandem There is also a relation between
the coupled processor model with two queues described above and two tandem queues
which are coupled. The relation is similar to the one between the systems without
coupling, which was pointed out for Lévy input in Kella [73] (see also Section 5.3).

Consider two queues working in tandem, and having a compound Poisson arrival

process which at epoch tn brings work B
(2)
n in the first queue and work B

(1)
n −B(2)

n in
the second queue. Both queues work at unit speed and the output from queue 1 flows
into queue 2. The queues are also coupled, which means that as soon as queue 1 is
empty it switches its capacity to help queue 2, so that the processing rate of queue 2
doubles during the idle periods of queue 1. The assumption of equal rates seems to be
necessary to have this model related to the coupled processor model studied in the
previous sections.

Since the amount of work does not depend on the server’s policy, one can assume
that the amount of fluid coming from server 1 is processed with priority over the
accumulated exogenous input into buffer 2. Then the point of the assumption of equal
rates is that server 2 finishes processing the fluid at the same instant that server 1
becomes idle. For this reason, the amount of work in queue 1 together with the total
amount of work in the tandem system taken as a whole is the same as the workload
vector in the coupled system (C).
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As a final remark, we mention that the number of jobs waiting to be served in a
tandem queueing system with coupled processors but without simultaneous arrivals
has been studied in Resing and Örmeci [95] related to data transfer in cable networks.
The focus is on the number of jobs at two stations which receive a Poisson input at
only the first station (no exogenous arrivals) and the server distributes its capacity
among the queues while both are non-empty and it switches full capacity to one queue
when the other has no jobs to be served, hence the system behaves as a coupled
processor model. The functional equation is solved by relating it to a Riemann-Hilbert
boundary-value problem, and in van Leeuwaarden and Resing [81] it is also pointed
out how to derive performance measures as the mean delay at one station, based on
its solutions.
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dence between interarrival and service times. Stochastic Models 9, 341–371.

[34] M. Boudreault, H. Cossette, D. Landriault and E. Marceau (2006) On a risk
model with dependence between interclaim arrivals and claim sizes. Scand. Actuar.
J. 5, 265–285.

[35] O.J. Boxma and D. Perry (2001) A queueing model with dependence between
service and interarrival times. European J. Oper. Res. 128, 611–624.

[36] J. Cai and H. Li (2005) Multivariate risk model of phase type. Insurance:
Mathematics and Economics 36, 137–152.

[37] W.-S. Chan, H. Yang and L. Zhang (2003) Some results on ruin probabilities
in a two-dimensional risk model. Insurance: Mathematics and Economics 32,
345–358.

[38] J.W. Cohen (1975) The Wiener-Hopf technique in applied probability. In:
Perspectives in Probability and Statistics, ed. J.Gani, 145–156, Academic Press,
London.

[39] J.W. Cohen (1976) On Regenerative Processes in Queueing Theory. Springer-
Verlag, New York.

[40] J.W. Cohen (1982) The Single Server Queue. North-Holland, Amsterdam.

[41] J.W. Cohen and O. J. Boxma (1983) Boundary Value Problems in Queueing
System Analysis. North-Holland, Amsterdam.

[42] J.W. Cohen (1988) Boundary value problems in queueing theory. Queueing
Systems 3, 97–128.



154 Bibliography

[43] J.W. Cohen (1992) Analysis of Random Walks. IOS Press, Amsterdam, the
Netherlands.

[44] N.R. Coleff and M.E. Herrera (1978) Les courants résiduels associés à une forme
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Summary

Queues and Risk Models

The research in this thesis is at the boundary between Queueing Theory and
Insurance Risk. Queueing Theory appears for example from the need to analyze the
operations in an electronic device; it is also very much related to the mathematics
of networks. Networks of queues appear in many real life applications such as traffic
networks or the internet. On the other hand, Insurance and Risk theory applies to
almost any financial reserve, be it the fluctuating capital of an insurance company
or the evolving value of an asset. Related areas are also Credit Risk and derivatives.
These topics are studied in the thesis in a unified way, using the probabilistic theory of
random walks and the related fluctuation theory of stochastic processes, and combining
various probabilistic and analytic methods.

A recurrent theme of the thesis are the duality relations between queues and risk
reserve processes. The second chapter is dedicated to the question whether a so-called
’reflected’ process (like the amount of work that has to be processed in a queueing
system) can be related to a dual process with absorbtion (as defined by a reserve
process stopped upon becoming ruined). This question is particularly interesting in
several dimensions, for queues with many servers, respectively for a group of insurance
companies that share risks. Such duality relations have quite some applications: First
of all, it might help us to use results from Queueing Theory to obtain results in
Insurance Risk, or vice versa. Furthermore, duality relations can be used to study the
problem of stability for queueing systems, they are an essential ingredient in the study
of large deviations and the related asymptotic problems, and they can also provide
efficient simulation methods (Chapter 2).

From a different mathematical perspective, the range of problems studied can
be grouped into two overlapping categories. Firstly, the fluctuation theory for one-
dimensional systems is revisited, but this time by allowing the input processes that
feed such systems to have various correlations (Chapters 3 and 4). For example, we
allow correlations between inter-arrivals and service times in a single server queue, and
correlations between inter-arrival times of claims and claim sizes in a reserve process
consisting of a single insurance line. This can severely complicate any kind of exact
analysis. Nevertheless, it is shown that key performance measures of queueing systems
with particular correlations can be derived in terms of Laplace transforms. These
correspond, by duality, to the performance measures of the related risk reserve. We
also reveal the impact that the various kinds of correlations have on the amount of
time a customer has to wait in the queue (and also on the survival function associated
to the reserve process). This insight is given in terms of convex ordering and is relevant
for the modelling, design and optimization of such systems.



Secondly, the analysis of fluctuations of multidimensional queueing systems and the
related risk reserve processes is another contribution. The fact that we managed to
give explicit formulae for a multidimensional system is a breakthrough; in particular,
in the Insurance Risk literature there were hardly any known results. Key performance
measures can be derived using probabilistic interpretations of the quantities that arise
from the complex analysis, even more so, one can use the probabilistic insight to
guide the analysis (Chapters 5, 6, and 8). In addition, multidimensional systems with
interacting components are analyzed in Chapters 2 and 8. In the queueing literature,
a special example is the so-called coupled processor model.

The asymptotic behaviour of the steady state waiting time of customers in a queueing
network is important for design and optimization purposes. The dual problem is to
understand the rate at which the ruin probability of an insurance company decreases
when the initial capital grows indefinitely. This is particularly important for tuning
the capital requirements of the company against the severity of requested claims. In
Chapter 7, we give results that specify these asymptotic regimes for the so-called
reinsurance contracts under very general assumptions on the distributions of the
requested claims (subexponentiality). The rate depends on the frequency of arrivals,
but especially on the distribution of the requested claims.
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