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Stochastic bounds for order flow times in warehouses with

remotely located order-picking workstations

Dieter Claeys∗, Ivo Adan†, Onno Boxma‡

Abstract

This paper focuses on the mathematical analysis of order flow times in parts-to-picker

warehouses with remotely located order-picking workstations. To this end, a polling system

with a new type of arrival process and service discipline is introduced as a model for

an order-picking workstation. Stochastic bounds are deduced for the cycle time, which

corresponds to the order flow time. These bounds are shown to be adequate and aid

in setting targets for the throughput of the storage area. The paper thus complements

existing literature, which mainly focuses on optimizing the operations in the storage area.

Keywords: warehousing, order-picking workstation, order flow time, polling

system, cycle time, stochastic bounds

1 Introduction

Warehouses currently endure various challenges [1]. In addition to tighter delivery schedules
being requested, the number of stock keeping units (SKUs) has also shot up, a challenge coined
SKU proliferation [2]. Moreover, the order profiles have changed. E-commerce, for instance,
has led to significantly more order requests, albeit of smaller size, i.e., requiring fewer products.

Order picking is one of the most important aspects in warehousing. It is the process of
retrieving products from the warehouse to satisfy customer orders. Other warehouse operations
can be categorized into receiving, putting away, storing and shipping. As compared to these,
order picking is much more expensive [3], highlighting the importance of understanding this
process thoroughly when designing warehouses.

In this paper, we focus on an automated end-of-aisle parts-to-picker order-picking system
with miniloads and remotely located manual workstations [4, 5] (see Figure 1). Such systems
consist of a storage area, a closed-loop conveyor and order-picking workstations. The storage
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area is a collection of miniloads, each being composed of one crane and two parallel racks at
either side of the aisle. The closed-loop conveyor deals with transport between the storage
area and the order-picking workstations, which are each operated by an order picker. An au-
tomated end-of-aisle parts-to-picker order-picking system with miniloads and remotely located
workstations has many advantages, such as being able to retrieve products from several orders
simultaneously, being robust and providing a solution to SKU proliferation [1].

A customer order consists of one or more order lines, each describing the required quantity
of a specific product. For instance, an order can comprise two DDR4 SDRAM modules, one
particular CPU and one specific motherboard. The number of order lines is called the order
size and equals three in the example. When an order is released into the system, the cranes
in the aisle where the products are stored retrieve the corresponding totes (also called bins),
each containing a single SKU, and transfer them to the end of the aisle where they are put
onto the closed-loop conveyor for transport to one of the workstations. At the workstation, the
order picker collects the required number of products from the totes and puts them in a so-
called order tote. The totes with the remaining products are placed back onto the closed-loop
conveyor and are subsequently returned to the storage area.

Figure 1: An automated end-of-aisle parts-to-picker order-picking system with miniloads and
remotely located manual workstations [6]

Literature on end-of-aisle parts-to-picker order-picking systems mainly focuses on operations
in the storage area (also called automatic storage/retrieval system (AS/RS)), especially on
reducing travel times of cranes. Finding an optimal combination between number of racks,
their length and height [3] is an example of this. Storage assignment strategies have also been
investigated for that purpose, as well as batching strategies, where cranes retrieve several totes
simultaneously. The optimal position of an idle crane has also been examined, a topic coined
dwell-point strategies. A comprehensive overview of research on storage area operations is
provided by Roodbergen and Vis [5].

While the storage area has been studied extensively, little attention has been paid to the
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design and performance analysis of order-picking workstations. Andriansyah et al. [7] developed
a new conceptual design for an automated order-picking workstation including a carrousel to
overcome deadlock problems. They also introduced several picking policies for the robot and
evaluated these policies through simulation experiments, revealing that ‘smart’ policies can
increase the throughput significantly. In Andriansyah et al. [6], the performance of a manual
order-picking workstation is assessed through simulation, using the concept Effective Process
Time (EPT), which aggregates all individual components making up the process (picking)
time; EPT simplifies the modeling aspect while yielding accurate results. To the best of our
knowledge, no mathematical analysis has been carried out of a model for a remotely located
workstation, a gap which this paper aims to fill. An analytical approach aids in providing quick
fundamental insights into the performance, which is particularly useful during the design phase
of warehouses.

The major contribution of this paper is the analytic study of an order-picking workstation.
A queueing (polling) model is developed (Section 2) that strikes a balance between capturing
the essential features of an order-picking workstation while allowing to deduce stochastic bounds
for the order flow time (Section 3), which are shown to be accurate for a reasonable range of
mean arrival (retrieval) rates (Section 4). Furthermore, guidelines and insights are provided
that are useful to practitioners. For instance, the bounds are valuable in setting targets for the
desired retrieval rate of totes from the storage area.

2 Model description

This section first discusses the operation of an order-picking workstation (Section 2.1) and then
explains how an order-picking workstation is modelled as a polling system (Section 2.2). The
model is mainly based on that of Andriansyah et al. [6], except for some small adaptations
that allow mathematical analysis without compromising the applicability of the model.

2.1 Order-picking workstation operation

At an order-picking workstation (see Figure 2), totes arrive randomly; totes do not necessarily
arrive in the sequence of release times of orders, i.e., some totes destined for order i+ j might
arrive before some totes of order i. Arriving totes are put at the tail of one of the buffer lanes.
The exact location of a tote - buffer and position within the buffer - is immaterial since the
routing of totes to the buffer lanes is such that whenever a tote is needed, it is within reach of
the picker: this is why several (short) buffers are provided instead of one (long) buffer.

In order to restrict the number of picking errors, the order picker handles one order at a time.
This means that when the order picker is processing an order with order size N (stochastic), he
consecutively picks from each of the N associated totes the required number of products and
puts them into the active order tote. When the order picker has dealt with all order lines of an
order, he carries out some completion work, which accounts for packing, putting the order tote
on another conveyor, scanning the barcodes of the new order, et cetera [6]. Afterwards, the
order picker starts picking another order and a new order is released into the system, meaning
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Figure 2: Operation of an order-picking workstation [6]

that totes destined for this new order start arriving. At most K orders can simultaneously be
active, i.e., released into the system and not yet completed; K is called the line capacity. This
is to avoid deadlocks of the closed-loop conveyor due to full buffer lanes. It is possible that the
order picker is handling an order while none of the remaining totes for that order are available
yet at the workstation. In this case, the picker waits until one of these totes has arrived, even if
totes for other orders are already present. Although this policy might be somewhat inefficient,
its simplicity leads to fewer picking errors.

2.2 Polling model of workstation

An order-picking workstation is modelled as a polling system (see Figure 3), a queueing system
with a single server that cyclically serves K queues, serving customers at those queues according
to a particular service discipline (see e.g. [8, 9]):

Figure 3: Polling model for an order-picking workstation

• The single server corresponds to the order picker, and customers represent totes containing
a single SKU.
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• K queues (Q1, . . . , QK) correspond to K consecutive orders. Hence, a queue in the polling
system does not necessarily model a buffer lane in the order-picking workstation. In fact,
in the polling system, arriving totes are sorted based on the released customer orders and
placed accordingly into virtual queues Q1, . . . , QK . A tote is placed in a specific queue,
say queue i, simply because its SKU is requested by the jK + i-th released order into the
system for some j ≥ 0. This fictitious ordering, however, does not affect the behaviour
of the workstation, due to the picking policy and because the order picker can reach and
thus pick each tote whenever needed.

• In each queue, totes arrive randomly. As soon as all N totes of an order have arrived,
the arrival process at the associated queue is turned off. When the server leaves that
queue, this arrival process is immediately switched on again, reflecting that a new order
is released into the order-picking system. The latter means that we assume that always
new orders are available to be released into the system. In other words, we focus on the
maximum throughput capability of the order-picking workstation. Note that the on-off
feature of the arrival processes does not occur in the model of Andriansyah et al. [6].
However, the combination of K queues and the particular on-off arrival process captures
that at most K orders can simultaneously be active, avoiding deadlocks of the closed-loop
conveyor.

• When the server arrives at a queue, he will serve exactly as many customers as the order
size N before proceeding to the next queue: when the queue becomes empty before N
customers have been served, the server becomes idle and waits for more customers to arrive,
even if other queues are not empty. Serving a customer thus corresponds to handling an
order line, i.e., picking the required number of products from a tote, and visiting a queue
represents carrying out a complete order.

• After having finished the last order line of an order, the server moves on to the next
queue where it will process another order. This requires a switching time, constituting the
completion time of the order.

The results in this paper hold under the following assumptions:

• As long as not all N totes of an order have arrived, its associated totes arrive according
to a Poisson process with parameter λ, referred to as arrival rate, or retrieval rate. This
assumption is reasonable since totes come from random locations in a large warehouse
processing many orders simultaneously.

• The service times of consecutive customers are independent and identically distributed
(IID), with generic random variable B, density b(·), and Laplace-Stieltjes transform (LST)
B̃(·). This corresponds to the concept EPT [6], incorporating all individual processes such
as raw pick time, picker availability and picking errors.

• The consecutive switching times are IID with common random variable C, density c(·),
and LST C̃(·).

• The consecutive order sizes are IID with common random variable N ; N has a finite
support of size M < ∞, i.e., its probability generating function (PGF) is a polynomial:
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N(z) =
∑M

w=1 P[N = w] zw. This is a natural assumption in the context of e-commerce,
where order sizes are generally small. In addition, large orders are split into smaller
suborders in practice.

• As all processes and distributions are independent of the queue number, the queues are
symmetric. This is realistic, since totes from a new order are placed in a specific (virtual)
queue, say queue i, simply because it is the jK + i-th order released into the system (for
some j ≥ 0).

In contrast with the mainstream papers on polling systems, the objective of this paper is to
examine the steady-state delay D of an order, coined order flow time, and not the delay of
a random tote (customer). The order flow time D is a natural performance measure for the
order-picking process under investigation. As a new order is released into the system when
another order has been completed, the order flow time is defined as the time between two
consecutive server departures from the same queue. Hence, it corresponds to the cycle time in
polling systems.

Remark 1. The order flow time is different from that studied by Andriansyah et al. who defined
it as the time between the arrival of the first tote in the workstation and the departure of the last
product tote of the order [6]. Note that it is premature to state that the order flow time is the
sum of the order flow time defined by Andriansyah et al. [6] plus an independent exponentially
distributed time, exactly because the arrival process can be switched off in the present paper to
avoid blocking of the closed-loop conveyor.

Remark 2. The order flow time is strongly related to the maximum throughput of an order-
picking workstation, which is defined as the line capacity K divided by the mean cycle time
E [D]. Hence, a lower (upper) bound for the mean order flow time immediately yields an upper
(lower) bound for the maximum throughput.

Remark 3. The policy of serving exactly N customers during a visit has recently also been
studied by Boxma et al. [10]. The model in this paper differs in two aspects. First, Boxma
et al. [10] assume that the length of the intervisit period is independent of the length of the
preceding visit period. Secondly, the on-off feature of the arrival process is not incorporated by
Boxma et al. The papers also differ in the obtained performance measures; whereas Boxma et
al. deduce the PGF of the system occupancy at various time epochs and the LST of the delay
of a customer, this paper is devoted to the delay of a random order, i.e., the order flow time.

3 Analysis of the polling system

The polling system under investigation differs from traditional polling systems, not only because
the arrival process can be switched off, but also because the service discipline is peculiar: during
a visit of a queue, the server processes exactly N customers, even if that entails that the server is
idle for some time while other queues are not empty. Unfortunately, this service discipline does
not satisfy the so-called branching property, making it very unlikely that the joint queue length
distribution can be determined exactly [11, 12]. Note that this service discipline is similar to
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the k-limited service policy, where the server continues serving a particular queue until either
a predefined number of k customers is served or until the queue becomes empty, whichever
occurs first. Our service discipline can be considered as an N -limited service policy with the
extra feature that the server serves exactly N customers and N is random. Polling models with
k-limited services also do not satisfy the branching property, making them notoriously hard to
analyse; only in a few special two-queue cases an exact analysis has turned out to be feasible,
see e.g. [13, 14, 15, 16, 17].

Although the polling model under investigation does not satisfy the branching property,
expressions for the cycle time will be established, representing the flow time of an order. Due
to the symmetry of the queues, the distribution of the cycle time does not depend on its starting
point, allowing us, without loss of generality, to study cycles that start when the server ends
visiting Q1.

We first relate cycle and visit time to intervisit time (Section 3.1) and after that, we compute
the distribution of the intervisit time, both for the two-queue case (Section 3.2) and for the
case of an arbitrary number of queues (Section 3.3). As will become clear, the approach for the
former case cannot be applied to an arbitrary number of queues, exactly because the polling
system is of non-branching type. Therefore, stochastic bounds will be established in Section
3.3.

3.1 Relation between cycle, visit and intervisit time

Focussing on Q1, we define:

• Vn: n-th visit time, the length of the period between the server arriving at Q1 and the
server leaving Q1, switching (completion) time included.

• In: n-th intervisit time, i.e., length of period between end of n-th visit and start of n+1-th
visit of Q1.

• Dn: n-th cycle time, i.e., Dn , In−1 + Vn, representing the flow time of the n-th order
processed at Q1.

These definitions immediately lead to

D̃(s) , lim
n→∞

E
[

e−sDn
]

= lim
n→∞

E
[

e−s(In−1+Vn)
]

= lim
n→∞

∫

∞

0

e−sx
E
[

e−sVn |In−1 = x
]

dP[In−1 ≤ x] . (1)

We now deduce an expression for E
[

e−sVn |In−1 = x
]

. Define Xn as the number of customers
present at Q1 when the server arrives at Q1 for the n-th time. Due to the particular on-off
arrival process, this is also equal to the number of arrivals at Q1 during the n− 1-th intervisit
period. As In−1 influences Vn only through Xn, we obtain, after defining Nn as the size of the
n-th order at Q1,

E
[

e−sVn|In−1 = x
]

=
M
∑

w=1

P[Nn = w]
w−1
∑

k=0

e−λx (λx)
k

k!
E
[

e−sVn|Xn = k,Nn = w
]
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+

M
∑

w=1

P[Nn = w]

[

1−

w−1
∑

k=0

e−λx (λx)
k

k!

]

E
[

e−sVn |Xn = Nn = w
]

. (2)

Expression (2) takes into account that P[Xn = Nn|In−1 = x] equals the probability of a Poisson
process with rate λ generating at least Nn arrivals in an interval of length x. Obviously,

E
[

e−sVn|Xn = Nn = w
]

= B̃(s)wC̃(s) . (3)

On the other hand, when Xn < Nn, the server might become idle during the visit. In order to
deal with this complicating behaviour, the visit time is divided into four parts:

Vn = Tn +Wn +Bn + Cn , (4)

whereby Tn is the length of the period starting at the instant the server arrives for the n-th
time at Q1 until all Nn customers have arrived, Wn is the waiting time of that Nn-th customer,
Bn is the service time of that customer and Cn is the switching time at the end of the n-th
visit of Q1. Note that Bn and Cn are mutually independent and also independent of Tn and
Wn. Hence, translating (4) into LSTs and conditioning on Xn and Nn yields

E
[

e−sVn |Xn = k,Nn = w
]

= B̃(s)C̃(s)E
[

e−s(Tn+Wn)|Xn = k,Nn = w
]

. (5)

To find the last factor at the RHS of (5), we examine the closed cyclic queueing network with
2 queues (Q̂1 and Q̂2) presented in Figure 4. Service times in Q̂1 are generally distributed with

general

service
times
B̃(.)

Q̂1

exponential

service
times
rate λ

Q̂2

F

Figure 4: The cyclic queueing network system with F circulating customers

LST B̃(·) and service times in Q̂2 are exponentially distributed with rate λ. The closed network
contains F customers. Formula (2.22) of [18] provides an expression for

E

[

e−sAme−θŴm |Z0 = k
]

,

with Am the time until the m-th arrival at Q̂1 since a randomly chosen service completion epoch
in Q̂1, denoted by τ , Ŵm the waiting time (i.e., time spent in Q̂1, service time excluded) of
the m-th customer arriving at Q̂1 after epoch τ and Z0 the number of customers present at Q̂1

immediately after epoch τ . Although the cyclic queueing network is different from the polling
system, the following observations are essential to determine E

[

e−s(Tn+Wn)|Xn = k,Nn = w
]

:
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• Taking epoch τ as time origin, as long as the (F −Z0)-th customer has not yet arrived at
Q̂1, Q̂1 is fed by a Poisson arrival process with rate λ. In the polling system, as long as
the Nn-th customer has not yet arrived, Q1 is fed by a Poisson arrival process with rate λ.

• In the polling system, the arrival process is turned off upon the arrival of the Nn-th
customer, whereas this is not necessarily the case in the cyclic model. However, due to
the FCFS scheduling discipline, the arrival process after the arrival of the Nn-th customer
does not affect the waiting time of that customer.

• A service completion at Q̂1 means that the service of an other customer in Q̂1 can com-
mence. In the polling system, when the server arrives at Q1, it can initiate service of a
customer in that queue. Hence, in both systems, service initiation opportunities arise.

As a consequence, the polling and the cyclic system can be related as follows:

E
[

e−s(Tn+Wn)|Xn = k,Nn = w
]

= E

[

e−s(Aw−k+Ŵw−k)|Z0 = k
]

, 0 ≤ k ≤ w − 1 . (6)

The combination of (5) and (6) with Formula (2.22) from [18] produces

E
[

e−sVn |Xn = k,Nn = w
]

= B̃(s)wC̃(s)

[

1−
s

λ+ s

w−k−1
∑

j=0

B̃(s)−k−j

j
∑

i=0

(

λ

λ+ s

)i
k + i

k + j

∫

∞

0

e−(s+λ)t (λt)
j−i

(j − i)!
dB(k+j)∗(t)

]

, k < w , (7)

where B(k+j)∗ denotes the (k+ j)-fold convolution of B. For k = j = 0, the sum over i is equal
to 1 by convention. Throughout this section, we tacitly define each sum over i equal to 1 if
k = j = 0. Substituting (3) and (7) into (2) yields:

E
[

e−sVn|In−1 = x
]

=N(B̃(s))C̃(s)

−
s

λ+ s
C̃(s)

M−1
∑

k=0

e−λx (λx)
k

k!

M−k−1
∑

j=0

B̃(s)−k−j

{

M
∑

w=k+1+j

P[N = w] B̃(s)w

}

j
∑

i=0

(

λ

λ+ s

)i
k + i

k + j

∫

∞

0

e−(s+λ)t (λt)
j−i

(j − i)!
dB(k+j)∗(t) . (8)

Remark 4. In case of exponentially distributed service times, i.e., B̃(s) = µ/(µ + s), the
integral in (8) can be evaluated explicitly:

∫

∞

0

e−(s+λ)t (λt)
j−i

(j − i)!
dB(k+j)∗(t) =

(

2j + k − i− 1

j − i

)

µj+kλj−i

(s+ λ+ µ)2j+k−i
.

The combination of (1) and (8) and letting n → ∞ leads to the LST of the steady-state
cycle time D:

D̃(s) =N(B̃(s))C̃(s)Ĩ(s)
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−
s

λ+ s
C̃(s)

M−1
∑

k=0

∫

∞

0

e−(s+λ)x (λx)
k

k!
dP[I ≤ x]

M−k−1
∑

j=0

B̃(s)−k−j

{

M
∑

w=k+1+j

P[N = w] B̃(s)w

}

j
∑

i=0

(

λ

λ+ s

)i
k + i

k + j

∫

∞

0

e−(s+λ)t (λt)
j−i

(j − i)!
dB(k+j)∗(t) , (9)

where I denotes the length of a random intervisit period of Q1, with corresponding LST Ĩ(·).
The mean cycle time is obtained from (9) by applying the moment generating property of LSTs:

E [D] =E [N ]E [B] + E [C] + E [I]

+
1

λ

M−1
∑

k=0

∫

∞

0

e−λx (λx)
k

k!
dP[I ≤ x]

M−k−1
∑

j=0

P[N ≥ k + 1 + j]

j
∑

i=0

k + i

k + j

∫

∞

0

e−λt (λt)
j−i

(j − i)!
dB(k+j)∗(t) . (10)

The calculation of both integrals in (10) can be avoided by observing that the first integral
represents the probability that k customers arrive during a random intervisit period and the
second corresponds to the probability that j − i customers arrive during k + j consecutive
service periods. As a result, (10) can be rewritten in terms of finite sums of derivatives:

E [D] =E [N ]E [B] + E [C] + E [I]

+
1

λ

M−1
∑

k=0

1

k!

dk

dzk
Ĩ(λ(1− z))

∣

∣

∣

∣

z=0

M−1
∑

j=k

P[N ≥ j + 1]

j−k
∑

i=0

j − i

j

1

i!

di

dzi
B̃j(λ(1− z))

∣

∣

∣

∣

z=0

.

(11)

The first three terms in (11) correspond to the parts of the cycle time that always occur: N
service periods, a switching and an intervisit period. The last term represents the mean idle
time during a visit: the average time 1/λ that an idle server has to wait for a customer to arrive
multiplied by the average number of times the server becomes idle during a visit.
Note that from (11) (or from (10)), it can be observed that

E [D] ∼ E [N ]E [B] + E [C] + E [I] ,

as λ → ∞, expressing that the server is never idle when customers arrive sufficiently fast.
For use later on, note that, once the distribution of In−1 is known, the LST of the visit time
can be deduced from (8):

Ṽ (s) , lim
n→∞

E
[

e−sVn
]

=

∫

∞

0

lim
n→∞

E
[

e−sVn |In−1 = x
]

dP[In−1 ≤ x] . (12)
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Substitution of (8) into (12), interpreting integrals as probabilities, and manipulating summa-
tion indices gives:

Ṽ (s) =N(B̃(s))C̃(s)

−
s

λ + s
C̃(s)

M−1
∑

k=0

1

k!

dk

dzk
Ĩ(λ(1− z))

∣

∣

∣

∣

z=0

M−1
∑

j=k

B̃(s)−j

{

M
∑

w=j+1

P[N = w] B̃(s)w

}

(

λ

λ + s

)j−k

j−k
∑

i=0

j − i

j

1

i!

di

dzi
B̃j((s+ λ)(1− z))

∣

∣

∣

∣

z=0

. (13)

3.2 Distribution of intervisit time in case of two queues

Now that the cycle time (and also the visit time) has been expressed in terms of the intervisit
time, the remaining challenge is to determine the distribution of the intervisit time. To set our
mind, we first consider the case of two queues (i.e., K = 2) and then continue with an arbitrary
number of queues in Section 3.3. Define:

• V
(k)
n : length of n-th visit period of Qk.

• I
(k)
n : length of n-th intervisit period of Qk.

• N
(k)
n : size of n-th order at Qk.

Crucial is the observation that the visit of one queue coincides with the intervisit of the other
queue:

I(1)n = V (2)
n , (14)

and

I(2)n = V
(1)
n+1 . (15)

This leads to the following iterative algorithm: start with an initial assessment of the distri-
bution of I

(1)
0 (e.g., assume that I

(1)
0 equals the sum of N IID service times and 1 switching

time); then use (13) to assess the distribution of V
(1)
1 . Due to (15), this distribution equals the

distribution of I
(2)
0 . Using (13), the distribution of V

(2)
1 is obtained and thus, owing to (14),

the distribution of I
(1)
1 . Keep on iterating until the distributions converge.

We do not investigate whether this algorithm converges, because in this two queue case, there

is a better alternative to find the cycle time: limn→∞ P

[

X
(k)
n = i, N

(k)
n = w

]

can be determined,

with X
(k)
n the number of customers present in Qk at the beginning of the n-th visit of Qk. Given

X
(k)
n and N

(k)
n , V

(k)
n is deduced via (3) if X

(k)
n = N

(k)
n and via (7) if X

(k)
n < N

(k)
n . In addition,

P
[

X(2)
n = i(2)n , N (2)

n = w(2)
n |V (1)

n = t
]

=







P

[

N = w
(2)
n

]

e−λt (λt)
i
(2)
n

i
(2)
n !

if i
(2)
n < w

(2)
n

P

[

N = w
(2)
n

] [

1−
∑w

(2)
n −1

k=0 e−λt (λt)
k

k!

]

if i
(2)
n = w

(2)
n
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and P

[

X
(1)
n+1 = i

(1)
n+1, N

(1)
n+1 = w

(1)
n+1|V

(2)
n = t

]

can be established analogously. Hence, by apply-

ing the law of total probability, the one-step transition probabilities of the Markov chains
{(X

(k)
n , N

(k)
n );n ≥ 1} can be computed. As these chains are irreducible, aperiodic and positive

recurrent due to the finite state space, the one-step transition probabilities can be used, in

combination with the normalization condition, to compute limn→∞ P

[

(X
(k)
n , N

(k)
n ) = (i, w)

]

.

Finally, the cycle time is obtained from these joint distributions:

D̃(s) =

M
∑

w=1

w
∑

i=0

lim
n→∞

P

[

X
(2)
n−1 = i, N

(2)
n−1 = w

]

E

[

e−s(I
(1)
n−1+V

(1)
n )|X

(2)
n−1 = i, N

(2)
n−1 = w

]

=
M
∑

w=1

w
∑

i=0

lim
n→∞

P

[

X
(2)
n−1 = i, N

(2)
n−1 = w

]

∫

∞

0

e−sx lim
n→∞

E

[

e−sV
(1)
n |I

(1)
n−1 = x

]

dP
[

V
(2)
n−1 ≤ x|X

(2)
n−1 = i, N

(2)
n−1 = w

]

,

where the expectation is given by (8) and the last probability is found by inverting expression
(3) numerically if i = w or expression (7) in the other case. We do not provide further details,
as we have now set our mind to move on to an arbitrary number of queues.

3.3 Stochastic bounds for intervisit time and cycle time

In order to find the distribution of the intervisit time of Q1 in case of an arbitrary number K of
queues, we should, as in the two-queue case, for each Qj , j = 2, . . . , K, compute the distribution
of the number of customers present when the server starts visiting that queue. However, this
is infeasible for polling systems in which the service policy does not satisfy the branching
property. Therefore, in the remainder, we establish stochastic bounds for the intervisit time
and consequently, for the cycle time.

The following two relations are our starting point:

I(1)n = V (2)
n + V (3)

n + . . .+ V (K)
n , (16)

V (i)
n ≥

N
(i)
n

∑

k=1

B(k,i)
n + C(i)

n , i = 1, . . . , K , (17)

with B
(k,i)
n the service time of the k-th customer during the n-th visit of Qi and C

(i)
n the

switching time at the end of the n-th visit of Qi. Relation (16) expresses that an intervisit of
Q1 consists of consecutive visits of Q2, . . . , QK and inequality (17) formulates that any visit of
a queue comprises at least N services and a switching period. Equality occurs in (17) if and
only if the server never becomes idle during the n-th visit of Qi. Combination of (16) and (17)
yields

I(1)n ≥ I(1)n ,

K
∑

i=2





N
(i)
n

∑

k=1

B(k,i)
n + C(i)

n



 , (18)
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(henceforth, lower and upper bounds of a random variable X will be denoted by X and X
respectively).

The next step is to translate (18) into a stochastic bound for the visit time of Q1 and
the cycle time. Therefore, we introduce a new system which is identical to the system under
investigation, with the only exception that each intervisit time I

(1)
n of Q1 is replaced by its

smaller counterpart I(1)n . For this new system, the length of the n-th visit period of Q1 is

denoted by V
(1)

n and the n-th cycle time by Dn. Theorem 1 gives the following stochastic
bounds:

Theorem 1.

P
[

V (1)
n ≥ x

]

≤ P

[

V
(1)

n ≥ x
]

, n ≥ 1 . (19)

P[Dn ≥ x] ≥ P[Dn ≥ x] , n ≥ 1 . (20)

Proof. Let P
(j,i)
n be the j-th customer served during the n-th visit of Qi and define A

(j,i)
n as the

interarrival time of P
(j,i)
n . The interarrival time should be defined carefully due to the on-off

feature of the arrival process; for j ≥ 2, A
(j,i)
n is the time between the arrival epochs of P

(j−1,i)
n

and P
(j,i)
n , whereas A

(1,i)
n is the time between the start of the n − 1-th intervisit of Qi and the

arrival epoch of P
(1,i)
n .

Our proof is based on classical coupling arguments, see e.g. Chapter 9 of [19]. We show that

V
(1)
n ≤ V

(1)

n and Dn ≥ Dn ∀n ≥ 1, for all realisations of input sequences {N
(1)
n }, {A

(j,1)
n },

{B
(j,1)
n }, {C

(1)
n }, {I

(1)
n } and {I(1)n }, yielding (19) and (20). Note that the actual input sequences

are in fact {N
(i)
n }, {A

(j,i)
n }, {B

(j,i)
n }, {C

(i)
n } and that the above input sequences can be expressed

in terms of the actual input sequences, while this is not necessarily possible in the other direc-
tion. However, for the cycle times and visit times of Q1, the input sequences {N

(1)
n }, {A

(j,1)
n },

{B
(j,1)
n }, {C

(1)
n }, {I

(1)
n } and {I(1)n } provide enough information. As the new system only differs

from the original through the intervisit times I
(1)
n being replaced by their smaller counterpart

I(1)n , we have that {N
(1)
n }, {A

(j,1)
n }, {B

(j,1)
n } and {C

(1)
n } are identical in both systems.

The n-th visit period of Q1 can be divided into N
(1)
n services, 1 switching period and possibly

some idle periods, producing

V (1)
n =

N
(1)
n

∑

j=1

B(j,1)
n + C(1)

n +G(1)
n ,

with G
(1)
n the total idle time during the n-th visit of Q1. For fixed N

(1)
n , A

(1,1)
n , . . . , A

(N
(1)
n ,1)

n

and B
(1,1)
n , . . . , B

(N
(1)
n −1,1)

n , G
(1)
n is a non-increasing function of I

(1)
n−1. This holds for all input

sequences, proving (19).

To prove (20), we relate the n-th cycle time with the input sequences and with W
(N

(1)
n )

n ,

whereby W
(j)
n represents the waiting time of P

(j,1)
n (see Figure 5 for an illustration):

Dn =

N
(1)
n

∑

j=1

A(j,1)
n +W (N

(1)
n )

n +B(N
(1)
n ,1)

n + C(1)
n . (21)
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W
(N

(1)
n )

n can be calculated recursively via the following Lindley equations:

W (j)
n =

(

W (j−1)
n +B(j−1,1)

n − A(j,1)
n

)+
, 2 ≤ j ≤ N (1)

n , (22)

W (1)
n =

(

I
(1)
n−1 −A(1,1)

n

)+

, (23)

with (·)+ , max(·, 0). From (23), we observe that W
(1)
n ≥ W (1)

n , with W (j)
n the waiting time of

P
(j,1)
n in the new system. Consequently, (22) yields W

(N
(1)
n )

n ≥ W (N
(1)
n )

n , which, in combination
with (21), proves (20).

Dn

start

intervisit

1 2 m− 1 m m+ 1 N
(1)
n

... ...

I
(1)
n−1 V

(1)
n

start

visit

A
(1,1)
n A

(2,1)
n A

(m,1)
n A

(m+1,1)
n

...
W

(N
(1)
n

)
n B

(N
(1)
n

,1)
n C

(1)
n

Figure 5: Illustration of relation (21)

As (20) holds for all n, we have obtained a stochastic lower bound for a random cycle time.

This lower bound is computed by replacing Ĩ(s) by
[

N(B̃(s))C̃(s)
]K−1

in expression (9) for

D̃(s), which boils down to assuming that the server never becomes idle during an intervisit.
The stochastic lower bound can immediately be translated into a lower bound for the mean

value:

E [D] =

∫

∞

0

P[D ≥ x] dx ≥

∫

∞

0

P[D ≥ x] dx = E [D] ,

where D , limn→∞Dn. Hence, substitution of Ĩ(s) by [N(B̃(s))C̃(s)]K−1 in (11) yields

E [D] ≥E [N ]KE [B] +KE [C]

+
1

λ

M−1
∑

k=0

1

k!

dk

dzk

[

N(B̃(λ(1− z)))C̃(λ(1− z))
]K−1

∣

∣

∣

∣

z=0

M−1
∑

j=k

P[j + 1 ≤ N ≤ M]

j−k
∑

i=0

j − i

j

1

i!

di

dzi
B̃j(λ(1− z))

∣

∣

∣

∣

z=0

. (24)
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In the remainder, we deduce an upper bound. The key idea is to apply the previous reasoning
to the visit times of Q2, . . . , QK , i.e., assuming for each Qi, i = 2, . . . , K, that when the server
arrives, it did not have to wait during the preceding intervisit. Application of Theorem 1 then
produces

P
[

V (i)
n ≥ x

]

≤ P

[

V
(i)

n ≥ x
]

.

Repeating this for every queue i, it can be proved by using the same coupling argument as in
Theorem 1 that

P
[

I(1)n ≥ x
]

= P
[

V (2)
n + . . .+ V (K)

n ≥ x
]

≤ P

[

V
(2)

n + . . .+ V
(K)

n ≥ x
]

. (25)

and that replacing I
(1)
n by V

(2)

n + . . .+ V
(K)

n yields an upper bound for Dn.

However, upper bound (25) is difficult to compute, because the V
(i)

n ’s are dependent: V
(i)

n

and V
(i+1)

n both depend on the order sizes, service and completion times during the (n− 1)-th
visit of Qi+2, . . . , QK and the n-th visit of Q1, . . . Qi. The upper bound is only easily computable
in case of two queues and in case of deterministic order sizes in combination with deterministic
service and completion times. We thus seek for another upper bound, that does not suffer from
this issue.

We start from the following lower bound for X
(i)
n :

X(i)
n ≥ X(i)

n ,

where X(i)
n represents the number of customers that arrived in Qi during the service periods

and switching period of the (n− 1)-th visit of Qi+1 (thus, arrivals during possibly idle periods
during the visit period of Qi+1 and during visits of queues other than Qi+1 are excluded) for
i = 2, . . . , K − 1; X(K)

n represents the number of customers that have accumulated in QK

during the service periods and switching period during the n-th visit of Q1. Crucial here is that
X(2)

n , . . . , X(K)
n are independent.

By using the same coupling argument as in Theorem 1, it can be proved that

P[Dn ≥ x] ≤ P
[

Dn ≥ x
]

,

with Dn the cycle time whose LST is obtained by replacing Ĩ(s) by V (s)K−1 in (9), whereby
V (s) is found by replacing Ĩ(s) in Formula (13) for Ṽ (s) by N(B̃(s))C̃(s).

This stochastic upper bound yields an upper bound for the mean cycle time:

E [D] ≤E [N ]E [B] + E [C] + (K − 1)E
[

V
]

+
1

λ

M−1
∑

k=0

1

k!

dk

dzk
V

K−1
(λ(1− z))

∣

∣

∣

∣

z=0

M−1
∑

j=k

P[j + 1 ≤ N ≤ M]

j−k
∑

i=0

j − i

j

1

i!

di

dzi
B̃j(λ(1− z))

∣

∣

∣

∣

z=0

, (26)
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with (cf. (13))

V (s) =N(B̃(s))C̃(s)

−
s

λ+ s
C̃(s)

M−1
∑

k=0

1

k!

dk

dzk
N(B̃(λ(1− z)))C̃(λ(1− z))

∣

∣

∣

∣

z=0

M−1
∑

j=k

B̃(s)−j

{

M
∑

w=j+1

P[N = w] B̃(s)w

}

(

λ

λ+ s

)j−k

j−k
∑

i=0

j − i

j

1

i!

di

dzi
B̃j((s+ λ)(1− z))

∣

∣

∣

∣

z=0

]

. (27)

Expressions (26)-(27) are easy to implement as they contain only finite sums, and neither
integrals nor convolutions. Note that, in the two-queue case, upper bound (26) is the same as

the upper bound obtained by applying upper bound (25) for I
(1)
n .

Remark 5. Since the upper bound follows from excluding all possible arrivals (in Qi) during
K− 2 visits (of Qi+2, . . . , QK and Q1, . . . , Qi−1) to avoid complicating dependencies, it is likely
to become inaccurate for large K. This will be confirmed and discussed in Section 4. When the
picking and completion times have strictly positive lower bounds, i.e.,

bmin , inf{x ∈ R : b(x) > 0} > 0 ,

cmin , inf{x ∈ R : c(x) > 0} > 0 ,

a modified, more accurate, upper bound can be developed for K > 2, by including during each
of the K − 2 visits possible arrivals during the first bmin time units of the picking time of the
first order line and the first cmin time units of the completion time. Hence, the more accurate
approximation is found by replacing N(B̃(λ(1 − z)))C̃(λ(1 − z)) by N(B̃(λ(1 − z)))C̃(λ(1 −
z))eλ(bmin+cmin)(z−1)(K−2) in (27).

4 Evaluation of bounds and discussion

In this section, we examine the accuracy of the bounds for the order flow time and provide
some insights and guidelines that are useful to practitioners. The bounds as well as simulated
values of the actual flow times are depicted versus the retrieval rate λ for three special cases:
exponential picking (service) and completion (switching) times (Figure 6), i.e.,

B̃(s) =
µ

µ+ s
, E [B] =

1

µ
,

C̃(s) =
α

α + s
, E [C] =

1

α
,
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deterministic picking and completion times (Figure 7), i.e.,

B̃(s) = e−sβ , E [B] = β ,

C̃(s) = e−sζ , E [C] = ζ ,

and shifted exponential picking and completion times (Figure 8):

B̃(s) = e−sβ µ

µ+ s
, E [B] = β +

1

µ
,

C̃(s) = e−sζ α

α + s
, E [C] = ζ +

1

α
.
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Figure 6: Lower (solid lines) and upper (dashed lines) bounds as well as simulated values (dots)
of the average flow time E [D] versus retrieval rate λ; exponential picking times (µ = 1/3),
exponential completion times (α = 1/5)

In the left part of Figures 6-8, curves are depicted for several values of the line capacity K,
while the distribution of the order size N is

P[N = w] =























1/2 if w = 1
3/16 if w = 2
2/16 if w = 3
2/16 if w = 4
1/16 if w = 5

(28)

On the other hand, K is kept constant equal to 5 in the right parts, whereas different deter-
ministic order sizes N are considered. In case of deterministic service and completion times
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bounds as well as simulated values (dots) of the average flow time E [D] versus retrieval rate λ;
deterministic picking times (β = 3), deterministic completion times (ζ = 5)
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Figure 8: Lower (solid lines), upper (dashed lines), and modified upper (dot-dashed lines)
bounds as well as simulated values (dots) of the average flow time E [D] versus retrieval rate
λ; shifted exponential picking times (β = 1, µ = 1/2), shifted exponential completion times
(ζ = 3, α = 1/2)

(bmin = 3, cmin = 5) and in case of shifted exponential service and completion times (bmin = 1,
cmin = 3), the modified upper bound is applicable and therefore also depicted (Figures 7-8).

Figures 6-8 show that the bounds differ significantly for very small retrieval rate λ and
that the difference rapidly decreases for increasing λ. Although the bounds are not accurate
for very small λ, Figures 6-8 reveal that the flow times are unacceptably long in that case,
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Figure 9: Relative differences between bounds (i.e., (upper bound-lower bound)/upper bound)
versus retrieval rate λ; exponential picking times (µ = 1/3), exponential completion times
(α = 1/5)

implying that λ should not be too small in practice. Figures 6-8 also illustrate that the lower
and upper bounds virtually coincide when λ is large enough and that the values of the bounds
become insensitive to the exact distribution of the picking and completion times. This can be
understood by examining Formulas (24) and (26)-(27) for the bounds, uncovering that both the
upper and lower bounds converge to K(E [N ]E [B] + E [C]) as λ → ∞. Hence, for large λ, the
distributions of the picking and completion times only play a role through their first moments
and the flow time only consists of picking and completion times, i.e., no idle times occur.

Remark 6. Note that the analysis of the order flow time is partially based on a relation with
the cyclic queueing network system depicted in Figure 4. In [20], it is shown that the average
cycle time in the cyclic system, defined as the time between consecutive departures of the same
customer from the same queue, tends to FE [B] for F large enough and E [B] > λ−1, which
is called “influence of the slowest server". In our model, λ → ∞ implies E [B] > λ−1 and
E [C] > λ−1. The cycle times in the slightly related systems (set F = KE [N ] and assume that
a fraction of 1/E [N ] customers receives an additional service of length C in Q̂1) thus exhibit
similar asymptotic behaviour. This can be understood intuitively by letting the end of an order
completion correspond to “firing a token" (of the last order line of the next order processed
in Q1) from Q̂1 to Q̂2 (customers in the cyclic network system thus represent tokens in this
regard). The newly released order is satisfied the next time the same token is fired from Q̂1 to
Q̂2.

Figures 6-8 reveal that the order flow time is increasing in K and N , as expected. In addition,
N only slightly affects the accuracy of the bounds, whereas increasing K has a detrimental effect
on the accuracy of the upper bound; this is further illustrated in Figure 9, which shows the
relative difference of the bounds in case of exponential service and completion times.
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Figures 6-8 illustrate that, for K = 2, the bounds are tight even for quite small λ and that
the upper bound is slightly better than the lower bound. The latter can be understood by
examining the key features of the bounds. The lower bound underestimates the intervisit time
of Q1 by assuming that it contains no idle periods and compensates this partially by a longer
visit time of Q1. The upper bound overestimates the intervisit time of Q1 by overestimating
the total idle time during the intervisit and compensates this partially by an underestimation
of the length of the following visit period of Q1. The overestimation of the idle times during
the intervisit, though, is minor as it takes into account the number of tote arrivals in Q2 during
the services and completion of the preceding visit of Q1.

For K larger than 2, the bounds differ more for small λ, mainly because the upper bound
becomes less accurate. The reason is that to assess the total idle time during a visit of some
Qi (i > 2) (note that this is part of the intervisit time of Q1), the number of totes present at
Qi upon the arrival of the picker at that queue is assessed. This is underestimated by taking
into account the number of arrivals in Qi during the services and completion of the visit of
Qi+1 during the preceding cycle, thus not only ignoring the idle periods during that visit, but
also ignoring the picking and completion times during the visits of the other K − 2 queues.
This explains why the upper bound is excellent for K = 2 and becomes worse for larger K.
Note, however, that K should not be too large in practice in order to avoid deadlocks of the
closed-loop conveyor and that the modified upper bound leads to a considerably better accuracy
than the original upper bound. Nevertheless, we advise practitioners to use the lower bound to
assess the flow time, as this bound is much more accurate (except for K = 2) than the upper
bound and, in general1, more accurate than the modified upper bound. In addition, the lower
bound is easier to compute because it only requires calculation of derivatives of B̃j(λ(1 − z))
and N(B̃(λ(1− z)))K−1C̃(λ(1− z))K−1, which, in many occasions, can be expressed explicitly.
For instance, in case of exponential service and completion times, it holds:

di

dzi
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∣

∣

∣
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,

and

dk

dzk

[

N(B̃(λ(1− z)))C̃(λ(1− z))
]K−1

∣

∣

∣

∣

z=0

=
M
∑

w=1

P[N = w]
k

∑

i=0

(

k

i

)

(w(K − 1) + i− 1)!

(w(K − 1)− 1)!

(

µ

µ+ λ

)w(K−1)(
λ

µ+ λ

)i

(K + k − i− 2)!
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λ
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.

Figures 6-8 clearly indicate that the performance of warehouse systems can be improved
considerably by speeding up the retrieval process of totes from the storage area. It should,
however, also be noticed that the performance improvement becomes gradually less pronounced,

1Note that in Figure 7, the modified upper bound is exceptionally accurate, because of the deterministic

service and completion times.
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and eventually becomes negligible. As expediting the retrieval process corresponds to significant
investments in e.g. faster cranes and conveyor belts, a cost-benefit analysis is required. This
is where the bounds play a role: they clearly show the effect of a particular retrieval rate. For
instance, Figures 6-8 illustrate that from λ = 0.2 onwards, the performance cannot be improved
considerably by investing in the retrieval process. In conclusion, we advise practitioners to plot
the lower bound versus the retrieval rate as this will prove to be valuable when designing the
storage area cost effectively: it aids in setting targets for the throughput of the storage area.

5 Conclusions

In this paper, stochastic bounds have been established for the order flow time in parts-to-picker
order-picking systems with remotely located manual workstations. The lower bound is more
accurate than the upper bound, except when the line capacity equals two, and it is easy to
compute. Therefore, we advise practitioners to plot the lower bound of the order flow time
versus the retrieval rate of totes from the storage area when designing a parts-to-picker order-
picking system with remotely located manual workstations. This procedure shows that the
order flow time decreases for increasing retrieval rate, and, more importantly, it indicates from
which retrieval rate onwards the order flow time cannot be improved considerably, providing a
useful tool to set targets for the retrieval rate. As such, we believe that the results from this
paper are complementary to those of existing literature, which mainly focuses on operations in
the storage area.

Besides its contribution to warehousing management science, this paper also contributes to
the field of queueing theory: a polling system with a new type of arrival process and service
discipline has been analysed. Although this polling system does not satisfy the branching
property, useful stochastic bounds for the cycle time have been deduced.

There are several opportunities for future research. For instance, the distribution of the
total queue length (i.e., the aggregation of the number of totes in all virtual queues) is of in-
terest as it can help to determine the number of actual buffer lanes and their sizes required
to achieve a certain target deadlock rate of the closed-loop conveyor. Another possibility is to
deduce stochastic bounds for the variance of the order flow time, which could be carried out
along the same lines as in this paper.
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