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Abstract

Platform-based Design for High-Performance Mechatronic Sys-
tems

The digital control domain has traditionally relied on the flexibility and scalable
performance of general purpose processors (GPPs) to meet application perfor-
mance demands. For decades, the rapid advances in processor frequency scaling
could easily match the increasing scale and complexity of high-performance dig-
ital control applications. Since several years however, this steady performance
increase has stagnated, up to the point that application demands are rapidly
catching up and control application designers even have to do concessions to yield
feasible timing constraints, both in terms of latency as well as throughput. In
order to meet the timing constraints of next generation control applications, it
is paramount that application and platform form a close union that exploits the
available parallelism effectively and at the right granularity. To this end, platforms
are required that closely match the structure and heterogeneity of the applica-
tion, as well as design methodologies that facilitate this close tailoring by cohe-
sive HW/SW design. This thesis presents a novel heterogeneous multiprocessor
platform, and a platform-based design methodology that facilitates the design of
tailored heterogeneous execution platforms targeting digital control applications.
The thesis discusses the trajectory from the typical application domain model to
implementation on a platform instance, including analysis and synthesis.

Control engineers typically design digital control applications by modeling
them in the z-domain. These untimed declarative models are not suitable for im-
plementation, since they cannot be used to verify timing constraints. Therefore,
we propose to transform such models into dataflow models, which can be used for
both analysis and synthesis. This thesis shows how to go from a z-domain model
to a timed operational dataflow model with a set of timing constraints. The de-
sign flow facilitates application mapping onto instances of a novel FPGA-based
architecture platform presented in this thesis, which consists of several intercon-
nected Application-Specific Instruction-set Processors (ASIPs). All ASIP types
in the template have the same basic architectural features to match the structure
of typical DSP functions, but the datapath of each specific ASIP type is tuned
towards a specific family of DSP functions. The ASIPs synchronize on input
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data-availability according to the (Homogeneous) Synchronous Dataflow seman-
tics. This enables easy application distribution over the platform and provides a
solid basis for timing analysis and synthesis.

Application, mapping and platform instance models can be used for both
synthesis and analysis. The synthesis trajectory generates VHDL code, platform
configuration data and code for the different ASIPs. The analysis trajectory
extracts a timed (acyclic) task graph model from the specifications, which is used
as input for dataflow analysis. We present a novel algorithm that calculates
the worst-case execution timing of tasks in an acyclic task graph given a First-
Come-First-Served scheduling policy on each resource. The analysis takes the
best-case and worst-case execution timing into account to iteratively produce
conservative approximations of the contention experienced by each task. The
outcome is guaranteed to be conservative for any possible controller execution,
and thus provides bounds on e.g. the best-case and worst-case controller latency.

The applicability of this work is demonstrated in a realistic case-study, in
which two complex motion controllers of a lithography machine are mapped onto
our platform template. One of those controllers is a traditional PID controller,
while the other is a next generation state-space controller. The controllers are
interdependent and both have to meet the same latency and throughput con-
straints. We show how to apply our analysis and synthesis flow to this case, and
how to methodically find a suitable platform instance that is able to meet all
timing constraints. The derived platform instance and mapping result in a solu-
tion that, contrary to an 8-core GPP implementation, is able to meet all timing
constraints. This thesis shows that with the presented design methodology and
platform template, it is possible to quickly instantiate and generate efficient plat-
forms, and find application mappings that are able to meet the timing constraints
of next generation control applications.
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Chapter 1

Introduction

The digital revolution has drastically changed the way we experience our everyday
lives. It has made the world a smaller place by connecting billions of people all over
the world, accelerating the global exchange of ideas, information and goods at an
unprecedented scale, and allowing one to speed up the pace of life by automating
many of our everyday tasks. Computing devices were mainly large room-sized
mainframe systems or very expensive enthusiast devices in the 1970s. In the
following decades the size and cost of these devices were reduced to such an extent
that nowadays most people own multiple mobile computing devices, and the world
around us is filled with computers that are deeply embedded in the objects they
control. It is envisioned that in the coming decade all these embedded devices will
be further integrated into an Internet of Things [7], bringing new technologies,
application areas and continuous growth to a market that already has a yearly
world-wide turnover of 300 billion dollars [25].

This large-scale technology revolution has been made possible by continuous
rapid advances in semiconductor technology, which enable chip manufacturers to
put more and more functionality into a single integrated circuit (IC) at lower
cost per transistor. As a result, applications can grow larger and more complex,
encompass more functionality and perform this functionality in a shorter amount
of time. The main research and development effort of semiconductor industry fo-
cuses on down-scaling the size of transistors to enable higher transistor densities,
an increased performance per Watt and a lower cost per transistor. In 1965 Gor-
don Moore, co-founder of Intel, predicted that the transistor density at minimum
cost per transistor will double roughly every 18-24 months [59]. This prediction
was popularized into Moore’s law, and is still in effect today: where a typical IC
in 1971 contained about 2300 transistors, current state-of-the-art IC designs can
contain several billions [63] up to even 20 billion transistors [89].

Transistor size is mainly determined by the quality of and accuracy at which
structures that realize a transistor can be applied to a silicon substrate. This is
usually done by means of a photolithographic process step, in which light patterns
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light source

reticle

reduction optics

silicon wafer

photoresistive coating

Figure 1.1: Principle of photolithography. Patterns are imprinted on a silicon
substrate (wafer) coated with a photosensitive layer by projecting an image onto
it. The image is formed by passing light through a patterned quartz plate (reticle)
and a column of lenses. The reticle pattern is a 4:1 scaled image of an IC layer.

are imprinted on a silicon substrate with a photosensitive coating. The width
and accuracy of the projected image features mainly determines the minimum
transistor size. Hence, Moore’s law is for a great deal driven by advances in
photolithography tools.

1.1 Photolithography
Figure 1.1 shows the principle of photolithography. Light from a light source
passes through a patterned quartz plate called a reticle. The reticle contains a
4:1 scaled image of the IC layer pattern that is to be applied. The image passes
through a reduction lens and is then projected onto a circular silicon substrate
called a wafer. The wafer surface has a photosensitive coating (photoresist) that
hardens when exposed to ultra-violet light. As a result, after exposing the wafer to
the light the image is imprinted on the wafer as a pattern of hardened photoresist.

In subsequent production steps the wafer is developed by rinsing away any
photoresist that has not hardened, prior to chemically etching away the areas of
the wafer toplayer that have no remaining photoresist. Finally, also the hard-
ened coating is removed. To create any subsequent layers, a new metal, oxide or
semiconductor layer is applied to the wafer, as well as a new photoresist coating.
Then, the cycle of exposure and development can be performed again. This can
be repeated for up to 40 times, building up an IC layer by layer.

There exist mainly two variations of the highly complex machines that perform
the lithographic process step in semiconductor factories: wafer steppers and, more
recently, wafer scanners. A wafer stepper fully exposes the complete reticle, such
that the reticle pattern is applied to the full IC area in one step. Wafer scanners on
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beam slit

reticle stage 

lens 

wafer stage

current reticle 
scan movement

current wafer 
scan movement

Figure 1.2: Wafer scanner operation. The light is fed through to a slit, such
that the light stripe that remains is as wide as the reticle but only a fraction of
its length. The IC area is exposed by moving the reticle and wafer in opposite
directions.

the other hand do not expose the whole IC area at once, but instead only expose
a narrow stripe that is as wide as the reticle but only a fraction of its length.
This reduces the complexity and cost of optics and allows for larger IC exposure
areas [81]. Exposure of the full IC area is achieved by scanning, i.e. moving
the reticle and wafer in opposite directions in a synchronized way, as shown in
Figure 1.2. The figure shows the reticle and wafer placed on stages that can be
moved in multiple degrees of freedom (DoF), typically at nanometer accuracy and
with accelerations exceeding 20G [10]. The light stripe on the wafer follows the
distinct step-and-scan pattern. This zig-zag pattern consists of a synchronized
scanning motion (solid arrows) that scans the whole reticle while exposing the
area of one IC on the wafer, and the step motion that returns the reticle to its
initial position while positioning the wafer such that the light stripe is ready for
a scan motion to expose the next IC area (dotted line).

Transistor size and cost strongly depend on the quality of the pattern pro-
jections on the wafer surface. In a wafer scanner this does not only depend on
the quality of the optics, but also on the accuracy of the scanning motion of the
stages and their relative positioning [10]. Current state-of-the-art scanners can
accurately project reticle patterns onto a wafer with a precision of a few nanome-
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Figure 1.3: Typical structure of a mechatronic system. The process controllers
are usually implemented in software, hence, the grey parts can be considered a
mechatronic application.

ters. To achieve smaller transistor feature sizes it is paramount to obtain better
control over the motion of wafer and reticle (and other processes that affect the
operation of the scanner) by means of high-performance control systems.

1.2 Control Systems

Figure 1.3 shows a schematic of a control system consisting of a supervisory
controller, one or more process controllers and a set of sensors and actuators. The
goal of a control system is to perform high-level actions, e.g. apply a patterned
beam of light to the surface of a moving wafer, or to position a wafer to a specific
position under a lens in order to prepare it for the next exposure. It does so
by coordinating a set of subsystems (e.g. wafer stage, reticle stage, light source)
that need to work together to perform the high-level action. To this end, the
supervisory controller translates high-level actions into a set of timed adjustment
commands, which it sends to the different process controllers that control the
relevant physical processes of these subsystems.

The supervisory controller also collects status information from the process
controllers and can change their behaviour. The latter is required to e.g. per-
form different types of motions that are part of the step-and-scan pattern that
a wafer scanner follows during exposure of a wafer. The scan motion must be
very tightly synchronized, accurate and extremely resilient to disturbances, while
the step motion is required to be fast rather than accurate. The correspond-
ing process controller behaviour, i.e. control modes, are set by the supervisory
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Controller
Reference

Actuator

Sensor

Plant

Disturbance

Figure 1.4: Control loop principle. The objective of the control loop is to follow
a reference input as good as possible while rejecting external disturbances.

controller during machine operation by changing algorithmic parameters of the
process controllers.

The process controllers control the dynamic state of a physical process (po-
sition, speed, temperature, fluid level) in the plant. Figure 1.4 shows the basic
structure of a process controller. Its purpose is to alter the behaviour of the
controlled process variable, such that this variable follows a reference input as
good as possible while rejecting external disturbances. To this end, the controller
calculates its output by feedforward, i.e. output adjustment based on knowledge
of the plant dynamics and an estimate of future disturbances or a trajectory to
follow, and by feedback, i.e. output adjustment based on the difference between
its reference input and actual measurements of the process variable through sen-
sors at the plant. An actuator transforms the controller output into a physical
action (e.g. a force) that changes the value of the corresponding process variable
of the plant.

Control systems are typically implemented digitally, since this provides several
advantages (noise sensitivity, accuracy, cost) over their analog counterparts. To
this end, controller implementations employ A/D conversion between the sensors
and the controller input, and D/A conversion between controller output and the
actuators, as shown in Figure 1.3. The AD/DA conversion is typically time-
triggered with a fixed sampling period and a time offset between the A/D and the
D/A trigger. A digital process controller periodically follows a sense-compute-
actuate cycle, in which the controller is triggered by the arrival of new sensor
samples, to which it applies a set of digital signal operations to compute the
controller output, which is subsequently sent to the actuator after DA conversion.

The ability of a process controller to control the dynamic behaviour of a plant
is not only dependent on its functional behaviour and the physical properties of
the plant, but also on the timing with which the control output is applied to the
plant [10, 21]. The sooner the control action can be applied to the plant in reac-
tion to a measurement, the more effective the control action is. Controller timing
is expressed in the sampling frequency, i.e. the rate at which it can process new
input samples, and IO-delay, i.e. the delay between the arrival of an input sample
and the availability of the corresponding output sample. The targeted controller
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performance specified during the design of a control system implicitly sets sample
frequency and IO-delay constraints on its implementation. The underlying exe-
cution platform must in turn be able to execute the controller computations and
data communications in such a way that these constraints are guaranteed to be
met.

1.3 Trends in Wafer Scanner Control

ASML [6] is the world’s leading supplier of wafer scanners and steppers, whose
technology leadership role has set the standards for lithography tools for many
years. The general development of ASML wafer scanners focuses mainly on im-
proving accuracy and productivity. As a result, the minimum feature size of
ASML scanners has steadily decreased from 350 nm in 1994 to less then 20 nm
today. In that same time, the wafer surface area has doubled, and machine
throughput has tripled [10].

Since the introduction of the TWINSCANTM lithography platform in 2000,
ASML scanners feature dual wafer stages that decouple wafer measurement and
exposure by performing these processes in parallel. The resulting improvement
in system throughput has made such systems industry-standard for the 300 mm
wafer market. Immersion lithography is another revolutionary innovation that was
introduced in 2005. It employs a layer of water between the lens and the wafer to
improve optical performance such that feature size can be decreased further. This
layer of water is maintained during the wafer motion under the static lens, hence
its vibrations and volume have to be controlled by additional controllers that are
integrated into the overall control system. Recently, EUV (Extreme Ultra-Violet)
scanners are being introduced to the semiconductor market. These scanners use
a light source that emits light at an extremely short wavelength, typically only a
few nanometers. Due to the different light properties, such systems use reflective
optics and are operated under vacuum conditions which, besides the already ex-
tremely complex EUV light source, considerably raise overall system complexity.

A possible future development is an increase in wafer diameter from 300 mm
to 450 mm [84]. To maintain rigid body behaviour of the corresponding larger 450
mm stages, their stiffness must be increased, which results in significant additional
stage mass. The larger forces required to accelerate these heavy stages in turn
scales up motors and power electronics, as well as power consumption and heat
dissipation. As an alternative, less stiff stages can be used [46]. Such lightweight
stages do not act as a single rigid body under acceleration, but tend to deform
and vibrate. These mostly high-frequent vibrations can actively be suppressed
by over-sensing and over-actuating, i.e. by the addition of control loops in more
degrees of freedom than those of the actual stage. Due to the high-frequent
nature of the non-rigid body vibrations, vibrational suppressors typically require
high sample frequencies. This, in combination with the extra degrees of freedom
to control, results in a significant computational load.
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Besides these specific system innovations, generic developments to achieve
higher scanner accuracy and throughput include improved motion control at
higher wafer and reticle stage accelerations. Reducing feature size generally
requires more disturbances to be rejected. Higher stage accelerations improve
system throughput, but also introduce additional vibrations that need to be sup-
pressed in order to maintain accuracy. As a result, developments in accuracy and
throughput typically increase the number, complexity and sample frequencies of
the process controllers, and requires decreased IO-delays.

Typical implementation platforms for wafer scanners consists of a set of general-
purpose processors (GPPs) connected by a high-bandwidth interconnect and dedi-
cated electronic boards that interface these GPPs with sensors and actuators. For
years, GPP platforms could provide abundant performance due to rapid advances
in processor frequency scaling. Since the stall of processor frequency scaling at
around 2005, the growing computational demands of high-performance digital
control applications are rapidly catching up with available GPP platform perfor-
mance. As a result, the implementation effort required to meet application timing
constraints is increasing, even to such an extent that performance concessions have
to be made to make ends meet.

Trends in the domain of high-performance mechatronic systems can be sum-
marized as follows:
• A rapid increase of complexity and scale of computational demand due to
rising system complexity.

• Increasingly strict application timing requirements as a result of increasing
system accuracy and throughput requirements.

• The use of general-purpose processor platforms for the real-time execution
of digital controllers.

1.4 Next-Generation Wafer Stage Controller
Figure 1.5 shows the task graph of a next-generation wafer stage controller of a
wafer scanner. It consists of a current generation Long-Stroke wafer stage con-
troller that controls the wafer stage movement in 6-DoF at micrometer accuracy
for long ranges, and a concept of a next-generation Short-Stroke wafer stage con-
troller that controls stage movement in 11-DoF at nanometer accuracy for short
ranges. Both controllers operate in tandem to position the wafer under the expo-
sure lens. The Short-Stroke controller is drafted by ASML mechatronics research
as possible implementation candidate of a 450 mm wafer stage controller.

The Long-Stroke controller, comprising the right side of the graph is a classic
PID-type controller (see Chapter 2), and the Short-Stroke controller that com-
prises the left side of the graph is a state-space controller (see Chapter 2) with
integrated non-rigid body vibration suppression. The Long-Stroke controller con-
tains tasks that are mostly sequential, while the Short-Stroke controller contains
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Figure 1.5: Task flow graph of a next-generation wafer stage controller.

mostly tasks with significant data-level parallelism. The required sample fre-
quency and IO-latency for these controllers is 100kHz and 10µs respectively. The
IO-latency includes 6.5µs required to communicate data between IO-boards and
the processors, leaving 3.5µs to calculate an output sample.

When mapping these controllers to a GPP platform consisting of a single high-
end octo-core (Freescale P4080) that is typically used for wafer scanner controllers,
it is not possible to meet these timing requirements. Timing analysis calibrated
with average-case profiling data from actual measurements of most of the con-
stituent tasks, and extrapolated calibrations for tasks for which no measurement
is available, has shown that the best-case achievable sampling frequency and IO-
delay are 20 kHz and 4.4µs respectively. This analysis assumes that the GPP
cores can communicate instantaneously. Even adding a second octo-core proces-
sor to map this controller will not result in sufficient performance. In this dual
octo-core case, larger blocks have been split over multiple cores with zero over-
head, and also the two octo-cores are assumed to communicate instantaneously.
Then, the achievable sampling frequency and IO-delay are 40 kHz and 3.9 µs
respectively.

These numbers reflect a best-case situation calibrated with average-case exe-
cution times. One would like to be able to provide guarantees that the system
is in any case able to meet a certain guaranteed minimum performance, which
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is equal to or better than the application timing constraints. The guaranteed
performance of the two GPP implementations is actually much lower than the
numbers obtained with the timing analysis mention above, making the situation
in fact even worse.

1.5 Problem Statement

The increasing accuracy and throughput requirements for the high-performance
mechatronics systems that drive Moore’s law have skyrocketed the scale, com-
plexity and time-criticality of the digital control applications that control them.
It is getting more and more difficult to meet the strict application timing require-
ments when mapping these control applications to the general-purpose platforms
typically used in this application domain. At some point it will affect product
cost and time-to-market through the required additional development effort, or
product performance will slip due to concessions on mechatronic performance as
an alternative to alleviate the strict application timing constraints.

With the ever tighter timing constraints of digital control applications, the
mismatch between these applications and GPP architectures is becoming more
evident. GPP architectures are optimized for average-case performance, and have
to be able to run any program that can be expressed in a generic high-level
programming language like C. As a result, the GPP architecture is very complex,
contains all kinds of speculative and hierarchical hardware, and its ability to
thoroughly exploit fine grained levels of parallelism is limited. This is in stark
contrast with the requirements of real-time digital control applications. For these
applications a low latency is important rather than average throughput, and the
large fluctuations in execution time that are common with GPP execution have
an adverse effect on control performance [12].

GPP platforms are typically composed by a set of homogeneous GPP pro-
cessors that consist of one or multiple (typically up to 8) homogeneous cores.
The processors are connected by a high-bandwidth interconnect, for which inter-
processor communication latencies in the order of 0.1-1µs are not uncommon.
The cores within a processor are able to communicate with a much lower la-
tency through shared cache memory. Complex digital controllers can consist of
hundreds or even thousands of tasks, typically with considerable task-level par-
allelism. However, the relatively high inter-processor communication latencies of
GPP platforms limit the application mapping freedom, because typical application
partitioning is, out of necessity, based on minimizing inter-processor communica-
tion. As a result, GPP platforms can only exploit a small part of the task-level
parallelism present in the application.

Digital control applications typically consist of a heterogeneous mix of tasks
with different amounts and levels of parallelism, ranging from simple additions
to large matrix calculations or non-linear operations. GPPs are unable to match
the heterogeneous nature of these applications with their one-size-fits-all archi-
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Figure 1.6: Overview of the platform-based design flow.

tecture. For instance, many GPP architectures have hardware support for vector
operations [17] by means of instruction set extensions in each of the GPP cores.
With these extensions, all the available GPP cores have the same limited vector
operation support, typically limited to 128 bit packed data types. As a result,
none of the cores can effectively exploit data-level parallelism for wide vectors.

The difficulty of GPP platforms to meet the strict application latency demands
is further exacerbated by their inefficient synchronization methods. Typical pro-
cessor synchronization in GPP platforms is implemented with trigger signals sent
over the interconnect network [43]. The arrival of these time-triggered synchro-
nization signals is necessarily dimensioned for the worst-case, so with the large
jitter common to GPP execution this can lead to a considerable over-dimensioning.
Also inter-processor and inter-core synchronization in such platforms can result
in wasting valuable processor cycles, as such synchronization is typically imple-
mented by polling mechanisms in software.

The tremendous flexibility and ease of programming of GPPs is one of the ma-
jor reasons that these architectures have become so popular in the digital control
domain. When platform performance was still far exceeding the requirements of
the applications, GPP architectures could easily be programmed by developers
without any specialized platform knowledge or code optimization skills. Now,
with increasingly tight latency constraints, more and more effort needs to be put
in code optimization in order to meet these constraints. As a result, programmers
need to know more low-level architecture details, and hence the ease of program-
ming advantage of GPPs is quickly vanishing.

The lack of predictability of GPP systems makes it very difficult to guaran-
tee that the performance observed with timing analysis will also be met in the
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corresponding implementation. The performance numbers obtained by e.g. pro-
filing the execution of a controller mapped to an execution platform are mapping-
dependent, because the specific mapping determines e.g. the caching behaviour
and contention on shared resources. As a result, model-based evaluation of dif-
ferent design alternatives is only indicative for the actual performance of the
implementation. This performance gap between model and implementation often
results in under- or over-dimensioning of the solution. As argued above, contin-
uing the sole use of GPP platforms is not viable. There is a need for execution
platforms that are better able to meet the ever stricter timing requirements of
high-performance digital control applications. In this thesis, we will investigate
whether heterogeneous platforms tailored to the application domain are capable
of addressing this problem. In addition, the issue of programming and analysis of
such platforms is addressed.

1.6 Contributions
This thesis discusses a platform-based approach for digital control applications,
in particular high-performance mechatronics, in which control applications are
mapped to instances of a heterogeneous platform template. The different elements
that form the corresponding design flow are shown in Figure 1.6. The figure and
the related thesis contributions will be explained in the remainder of this section.

Heterogeneous Platform Architecture Template for High-Performance Mecha-
tronic Systems (Chapter 3)

Starting at the bottom, the box labeledmulti-ASIP @ FPGA denotes the mapping
target of the design flow shown in the figure. In order to be able to meet the strict
timing requirements of modern digital control applications, this thesis presents a
heterogeneous platform template tuned to the digital control domain. It aims to
alleviate the difficulties posed by the use of GPP platforms as target platform
for digital control applications by providing simple processing units (PUs) that
focus on the low-latency execution of control tasks. The PUs are Application-
Specific Instruction-set Processors (ASIPs), tuned towards a specific set of tasks
while still being programmable. The PUs efficiently synchronize according to the
(Homogeneous) Synchronous Dataflow [48] ((H)SDF) semantics. This enables
easy integration of different PUs into a platform instance with little overhead.
The details of this platform are explained in Chapter 3 and have been published
in [23].
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An Application Timing Analysis Method for Systems with Shared Resources
that are Scheduled First-Come-First-Served (Chapter 4)

The proposed architecture template is envisioned as a part of a networked system
that connects it with dedicated sensor and actuator electronics and possibly other
processor boards. As will be explained in Chapter 2, the data samples calculated
by a digital controller have to be present at these time-triggered actuator boards
before their triggering moment, otherwise the plant will be actuated with out-
of-date actuation data. Therefore, it is important that the performance of the
overall system can be analyzed, in order to verify that these timing deadlines can
be met in worst-case. Such analysis is typically done by dataflow analysis.

However, existing dataflow-based timing analysis techniques cannot deal with
shared resources whose access is arbitrated in a First-Come-First-Served (FCFS)
way. Such arbitration is often applied in industry-standard networks. This thesis
presents a scalable analysis technique that can provide conservative timing bounds
on the execution of applications mapped to platforms that have FCFS-arbitrated
shared resources. The application is modeled as a periodically restarted Directed
Acyclic Graph (DAG), where the execution times of tasks are specified as intervals
that denote their best-case and worst-case execution time. The details of this
analysis technique are discussed in Chapter 4 and have been published in [22].

A Platform-Based Design Approach for Mechatronic Systems (Chapter 5)

The use of specialized heterogeneous architectures complicates the task of pro-
gramming and analyzing the execution platform. Tasks can have multiple different
mapping targets that have a completely different datapath, and tasks mapped to
different processing units need to communicate and synchronize. This thesis aims
to mitigate this complexity, by means of a platform-based design-flow.

The platform-based design paradigm [69] raises the level of abstraction of a
system by specifying it in terms of instantiated components from a library and
their relation. The central concept in this paradigm is a platform, which offers an
abstraction that hides the implementation details of lower layers, and consists of a
library of components that can be instantiated and connected together according
to some rules to form a platform instance. At the higher platform level, the
components are represented by abstract models that only reflect the properties of
interest of that particular abstraction level.

In the platform-based design-flow presented in this thesis, both the hardware
and the software are abstracted by a platform. The execution platform is specified
in terms of its processing units and their connection. Similarly, the application
is specified as a graph with nodes corresponding to software tasks and edges cor-
responding to inter-task communication. Together with a mapping model, our
design-flow automatically bridges the implementation gap by generating an HDL
implementation of the platform model together with binary code that configures
and programs the PUs. This corresponds to the boxes labeled Specification, Plat-
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form Synthesis and Code Generation in Figure 1.6.
The abstractions provided by our design-flow enable easy programming of

the heterogeneous platforms which are generated with our design-flow. Also the
design of the execution platform itself is simplified by similar abstractions. The
details of our platform-based design-flow are discussed in Chapter 5.

A Proof-of-Concept with an Industrial Case Study (Chapter 6 )

The final contribution of this thesis is a proof-of-concept that demonstrates the
mapping of the next-generation wafer stage application discussed in Section 1.4
to an instance of the platform template of Chapter 3. With this industrial case
study, we show how to find an efficient platform instance in just a few steps,
that is able to meet both the IO-delay constraint of 3.5 µs and the throughput
constraint of 100 kHz even at worst-case conditions. The details of this case study
are presented in Chapter 6.

1.7 Thesis Overview
The remainder of this thesis is organized as follows. The application domain
characteristics and their relation to timing performance are discussed in Chap-
ter 2. Chapter 3 introduces a heterogeneous platform template which targets
high-performance mechatronic applications. A novel analysis technique that takes
into account contention on shared resources is discussed in Chapter 4, followed
by a detailed presentation of our platform-based design flow in Chapter 5. In
Chapter 6, the application case study is systematically mapped to an instance of
the platform template of Chapter 3 using the analysis technique and design flow
of Chapters 4 and 5. Finally, Chapter 7 discusses the main conclusions and future
work.
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Chapter 2

Application

Chapter 1 introduced the basic concepts of a mechatronic system, and explained
that the controller, which forces the state of one or more physical processes of
the system to some desired value, is typically implemented in software. This
chapter defines the scope of such mechatronic applications as considered in this
thesis, shows the important application characteristics, and discusses application
modeling from a mechatronics as well as an embedded systems point of view.

2.1 Application Characteristics

Figure 2.1 shows a mechatronic application as part of a mechatronic system. The
process controllers, which calculate the stimuli required to achieve a certain state
of a physical process under control, are by far the most time- and performance
critical part of the controller. Therefore, in the remainder of this work, we consider
the mechatronic application to encompass these process controllers up to and
including their interaction with the supervisory controller.

The mechatronic application defined as such is shown in grey in Figure 2.1.
Each process controller consists of a reference profile generator that generates a
sequence of setpoints based on (relatively infrequent) adjustment requests received
from the supervisory controller, and a signal processing part that calculates plant
stimuli based on these setpoints, controller state and plant measurements. The
next subsections discuss the important characteristics of the process controllers
and their constituents.

2.1.1 Controller Structure and Execution

The primary building blocks of the application are the digital signal processing
functions, called blocks. Blocks have a strictly local scope, operating only on their
own inputs, possible internal state and (often parameterized) coefficients. Each

15
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Figure 2.1: Typical structure of a mechatronic system. The process controllers
are usually implemented in software, hence, the grey parts can be considered a
mechatronic application.

block receives input values through explicit communication on its input ports
prior to the start of its execution. When a block finishes executing it sends a set
of output samples using explicit communication on its output ports.

Because of the local scope of the DSP blocks and the explicit communication
between them, mechatronic applications are usually represented with a graph
structure, where the vertices correspond to signal processing blocks and the edges
correspond to block communication. The structure of connected blocks offers a
natural application partition for exploitation of task-level parallelism.

Block execution is strictly periodic, i.e. new input samples that arrive at
equidistant time instances trigger the process controller to execute. Typically,
in an implementation this triggering is time-based, by a trigger signal that arrives
at the controller just after the worst-case arrival time of input data. After getting
triggered, the controller typically executes it constituent blocks in a fixed order
that is determined at compile-time.

In this work, the application is assumed to be single rate, which means that
all the blocks in the application run at the same sample frequency, and thus
all consume and produce samples at the same rate. Then, each triggering of the
controller results in all of its constituent blocks to be executed exactly once. Also,
all blocks must have finished their execution before a new input sample arrives,
since, as will be explained in the next section (in particular Figure 2.2), pipelining
does not improve control performance significantly.

Digital controllers typically consist of a heterogeneous mix of DSP blocks,
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Figure 2.2: Achievable bandwidth as a function of the sample frequency fs and
output delay τio. Courtesy of M.M.J. van de Wal, ASML.

with a widely varying level of data-level parallelism ranging from simple signal
summation blocks to cascaded filters, and to state-space blocks with state matrices
of several tens of thousands of elements. Section 2.6 shows some typical control
blocks.

2.1.2 Timing and Performance

The process controllers calculate plant stimuli such that the plant property under
control tracks the generated reference values as best as possible, while rejecting
any unwanted external or internal disturbances. An important metric that ex-
presses the ability to do so in terms of frequency response is system bandwidth,
i.e. the highest frequency at which a system is able to have its output track a
sinusoïdal input in a satisfactory manner [21]. The achievable bandwidth not only
depends on the functional behaviour of the digital controller, but also on timing
properties like sample frequency and IO-delay.

The sample frequency is the frequency at which new sensor input data becomes
available for processing. Since all signal processing functions need to be executed
before the next sample arrives, the sample frequency imposes a timing constraint
for the execution of all the signal processing functions. The IO-delay is the delay
between the arrival of input sensor data and the availability of output actuator
data. This delay imparts a separate timing constraint on a subset of the signal
processing functions, i.e. the signal processing functions that contribute directly
to the output.

Figure 2.2 shows a typical plot of the achievable bandwidth as a function of
sample frequency and delay. It shows that the achievable bandwidth is increasing
when the sample frequency increases, but the performance gain is rapidly decreas-
ing at higher I/O delays, implying that application pipelining is not very useful to
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gain control performance. This relation between realizable control performance
and application timing constraints imposes a fundamental trade-off between con-
trol performance and the performance requirements on the underlying execution
platform.

2.1.3 Application Optimization

The top left of Figure 2.3 shows an example DSP network consisting of 6 blocks.
Blocks A,B,C and E, colored grey, are denoted ‘critical’, since they contribute
to the output samples of the controller and are therefore also contributing to the
IO-delay. To minimize overall IO-delay of the controller, the execution of these
critical blocks has priority over that of the non-critical blocks, i.e. they show up
early in a block execution schedule, as shown in the top right of Figure 2.3.

To further optimize the IO-delay of an application, critical blocks can be split
into two sub-blocks denoted ‘pre’ and ‘post’. The ‘pre’-block contains all the
computations that are not directly dependent on the inputs of the original block
(e.g. state-updating operations), while the ‘post’ contains only computations that
are directly dependent on the inputs of the original block and on the results of
the ‘pre’ block. This is shown in the bottom left of Figure 2.3.

The ‘pre’ block can be executed prior to the arrival of new input, so when the
new input arrives only a minimal amount of computation needs to be performed
to calculate the block output. This can greatly reduce the IO-delay compared to
the execution of the original blocks, as shown in the bottom right of Figure 2.3.
Due to the overhead and possible extra data communication associated with block
splitting, the combined execution time of the ‘pre’ and ‘post’ block is usually larger
than that of the original block.

When critical blocks are split in this way, the ‘pre’ blocks are executed before
the triggering of the controller, i.e. when input sample n arrives, the ‘pre’ that
is required to compute output sample n has already been executed during the
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Figure 2.4: Physical vs. logical sample.

controller triggering caused by input sample n − 1. This is shown in Figure 2.4,
which shows the executed blocks of multiple samples with the ‘post’ blocks shaded
in grey. The figure shows the distinction between the so-called logical sample, and
the physical sample. The logical sample consists of all the blocks that are related
to a particular input sample, and the physical sample consists of all blocks that
are executed as a result of a controller triggering. The start of the physical
sample is marked by the arrival of new input data. The ‘post‘ blocks, which
contribute to the IO-delay, are executed first, followed by non-critical and ‘pre’
blocks. Hence, in the physical sample, the ‘post’ and ‘pre’ terminology might look
contradictory, because there the ‘post’ blocks are executed before the ‘pre’ blocks.
However, from a logical sample perspective, which starts at the execution of the
‘pre’ blocks, followed by the ‘post’ and the non-critical blocks, the terminology is
more intuitive.

2.2 Mechatronic Application Model
A mechatronic system is typically modeled as a network of connected blocks
whose behaviour is expressed as a transfer function in the s-domain. Since the
time-domain interactions between systems and signals are quite complex, analysis
in the s-domain provides the necessary abstractions to reason about the dynamic
behaviour of larger and more complex systems. The complex interactions in the
time domain transform into simple algebraic relations in the s-domain, providing
a comprehensible means to calculate the overall system response of composite
structures like e.g. feedback loops or the summation of different signal paths in a
system [21, 30].

Even though most controllers are implemented digitally, typically both con-
troller and plant are modeled and designed in the continuous s-domain, due to the
multitude of well-known design techniques in that domain. When the controller
model is tuned such that a satisfactory dynamic plant performance is achieved,
the effects of digitization are taken into account, as shown in Figure 2.5. Each
controller block in the continuous s-domain model is approximated by its discrete
counterpart in the z-domain, e.g. by using a bilinear approximation [21]:

H(z) = H(s)|s= 2
Ts

z−1
z+1

(2.1)

The substitution in Equation 2.1 accounts for the effect of synchronously sam-
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pling the controller inputs with a sample period Ts. In an implementation, the
controller output samples are converted to a continuous signal by a DAC by pass-
ing them through a sample and hold circuit. To represent the effects of this hold
circuit, a block with the appropriate transfer function is added to the model (e.g.
1−e−sTs

s for a zero-order hold).

2.3 Modeling Distributed Execution
A discrete-time controller model in the z-domain, like the one on the right of
Figure 2.5, specifies how to calculate the ordered sequence u[0], ..., u[k − 1], u[k]
corresponding to output u, given the ordered input sequence y[0], ..., y[k− 1], y[k]
corresponding to input y. The controller periodically receives input samples from
the ADC, which trigger the controller to execute its blocks. When the required
blocks have been executed, the controller sends an output sample to the DAC.
Both ADC and DAC are time-triggered, i.e. every kTs seconds the ADC sends a
new sample to the controller, and after some time offset φ, the DAC converts the
last received controller output sample to a continuous signal and sends it to the
actuators every kTs + φ seconds. Due to the periodic sampling of the inputs and
outputs of the controller, the sequence relations specified by the z-model impose
strict timing constraints on the execution of its constituent blocks.

Figure 2.6 shows an example of digital controller timing in its z-domain model
and its implementation. In the z-domain model, shown in the top left of the
figure, the operations required to calculate the output of each block are assumed
to execute in zero-time. In an implementation however, when the controller is
mapped to a (distributed) execution platform, both the execution of blocks and
their communication take a non-zero amount of time. This is shown at the top
right of the figure, where execution delay is represented by the bars in the figure.
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Figure 2.6: Execution timing of a digital controller. The z-domain model (top
left) assumes that blocks execute instantaneously. In an implementation, block
execution takes a non-zero amount of time (top right). Violation of IO-delay or
sample time constraints is a violation of model semantics (bottom left and right).

The grey shading of these bars corresponds to the grey shading of Figure 2.4,
denoting the ’post’, non-critical and ’pre’ blocks of the physical sample. In the
controller implementation, some fixed offset φ is used as a trigger for the DAC,
so the output samples are effectuated at the plant every kTs + φ seconds.

To respect model semantics (and the corresponding dynamic performance), all
transfer function calculations contributing to the k-th output sample (represented
by the light grey bars in the figure) must therefore be completed before kTs + φ,
since otherwise the (k − 1)-th output is used by the DAC instead. This IO-delay
constraint violation is shown in the bottom left of Figure 2.6. Also, the controller
must complete the calculations of its complete set of blocks (light-grey + dark-
grey bars in the figure) within one sample period Ts to be able to keep up with
the arrival rate of the inputs. The bottom right of Figure 2.6 shows a sample time
constraint violation, which delays the start of the calculations of the next sample.

Due to its lack of timing semantics, the z-domain controller model is not suited
for timing verification of its future implementation. For this purpose, a model is
needed in which the execution times of the transfer blocks are explicitly modeled,
with an operational semantics that enable timing analysis of their distributed exe-
cution, like the Synchronous Data Flow (SDF [48, 72, 74]) model of computation.

Table 2.1 shows a comparison of model properties in the z-domain and the
SDF domain. A z-domain model has a purely declarative semantics that relates an
ordered stream of input samples to an ordered stream of output samples (based on
the initial states of blocks). Only the relative ordering between input and output
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Table 2.1: Comparison of z-domain and SDF model properties.

Property z-domain SDF
Declarative semantics 3 7
Operational semantics 7 3

Timed 7 3
Ordered streams 3 7

Timing constraints 3 7

samples is specified, there is no notion of time and thus no assumptions on the
sampling moment, execution times or communication delays. The model has
implicit timing constraints on the production and consumption of samples. Not
meeting these timing constraints means that outdated samples are used, which is
a violation of the model semantics.

The SDF domain on the other hand has an operational semantics. It explicitly
models when to start and finish the firing of actors, the consumption of time
and the transfer of (symbolic) data through the model. SDF does not make
assumptions on token ordering: conceptually an actor can be firing concurrently
an unbounded number of times, and any of these firings may complete earlier
than the upper bound provided by its execution time. A firing that is started
later might therefore produce its tokens earlier than a firing that started earlier,
so the order of tokens produced at the output of an actor is not related to the
order in which tokens are consumed at its input. SDF has no notion of timing
constraints; not meeting a timing constraint is not a violation of model semantics.

We propose to use the timed Synchronous Data Flow (SDF [48]) semantics to
model and analyze the timing of (distributed) controller executions, as shown in
Figure 2.7. The z-domain model (shown in the left of the figure), which assumes
execution times to be zero, is transformed into an SDF graph (Figure 2.7, middle)
that explicitly models the execution time required to compute the output of each
transfer block in the z-model. The periodic controller sampling can be represented
by a source actor and sink actor actor with a self-edge and an execution time Ts

(Figure 2.7, right). The original timing constraints associated with the z-model
can be translated in throughput constraints on the SDF graph, and verified with
throughput analysis techniques. Alternatively, the token timestamps of the source
and sink actor can be compared to directly verify the end-to-end timing properties
of the model.

With SDF analysis, it can be verified that sample times and IO-delay con-
straints will be met in a future implementation. The next section explains the
transformation from z-domain model to SDF model in more detail.
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2.4 Model Transformation
In order to analyze the execution timing of the transfer network model, each
transfer block is transformed into one or more SDF actors that model its individual
execution. For timing analysis, the computational delay of a transfer function
block can be represented by a single actor, since in an implementation, it will
be atomically executed as a single block of code. For synthesis purposes, a more
fine-grained transformation could be used (see Section 2.5). The computational
delay of each block depends on the type of processor it is mapped to, and on a
finer scale even to which specific instructions its operations are mapped to on that
processor. The specific delay values can be calibrated by profiling data or, on a
predictable architecture, derived from program code. To preserve token ordering
and prevent auto-concurrency, each SDF actor representing a transfer function
block gets a self-edge with an initial token.

Each dependency in the z-domain model is substituted for an equivalent edge
in the SDF model that connects the substitutes of its source and sink block. For
each transfer function block, the number of initial tokens on the outputs of its
SDF model substitute is determined by calculating the number of samples it takes
from its input signals before it first starts contributing to its output signals. This
can be directly derived from the transfer function of a block. A Single-Input-
Single-Output (SISO) discrete transfer function can be expressed as a quotient of
polynomials of the following form:

H(z) = p0 + p1z + · · ·+ puz
u

q0 + q1z + · · ·+ qvzv
, (2.2)

with u, v ∈ N and u ≤ v. Dividing by the highest order denominator z-term qvz
v

with qv 6= 0 results in a polynomial fraction of the form:

H(z) = b0 + b1z
−1 + · · ·+ bmz

−m

1 + a1z−1 + · · ·+ anz−n
, (2.3)
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with m = −(u− v) and n = −v. The denominator of (2.3) has a zeroth-order z-
term, so the corresponding difference equation u[k]+a1u[k−1]+· · ·+anu[k−n] =
b0y[k] + b1y[k − 1] + · · · + bmy[k −m], has a term u[k]. Any d-th order term in
the numerator corresponds to a term y[k − d] in the difference equation. So
the lowest order term in the numerator polynomial with a non-zero coefficient,
dmin = min{d | bd 6= 0}, reflects the least delayed input sample that contributes
to the current output u[k]. Since the dmin first output samples can be calculated
without any input having arrived, the output of the corresponding SDF actor will
get imin initial tokens.

For a Multiple-Input Multiple-Output (MIMO) block, each input-output pair
can be characterized as a SISO transfer function. The transfer matrix for a MIMO
block with i inputs and j outputs is given by

HMIMO(z) =


H11 H12 · · · H1i

H21 H22 · · · H2i

...
...

...
...

Hj1 Hj2 · · · Hji

 (2.4)

where Hvw denotes the SISO transfer function that specifies the relation between
output v and input w.

The number of initial tokens at the outputs of a MIMO block can be different
for each output. Each block output is now related to a row vector of transfer
functions that define its relation to each of the block inputs. The number of
samples that the output leads relative to a particular input, corresponds to the
lowest order z-term in the corresponding row entry. The number of initial tokens
to be placed on an output is then the minimum of the number of samples in the
corresponding row of HMIMO.

Note that the placement of initial tokens on edges in the model in this manner
allows for timing and schedulability analysis, but is not suited for distributed
synthesis. The reason for this is that the tokens represent an ordering relation. In
an analysis approach as sketched in this section, the actors only represent time;
they abstract from any behaviour. For a synthesis approach, the actors represent
behaviour as well, so then the placement of a token in an outgoing edge of an
actor means that its actual behaviour is changed.
We have shown a simple transformation with which an untimed z-domain model
can be transformed to an SDF model that represents its execution timing. As
discussed in Section 2.1, digital controllers typically do not have iteration over-
lap, and we assume them to be single-rate controllers. It is therefore sufficient to
analyze only a single iteration of the SDF graph, which then reduces to a peri-
odically re-started Directed Acyclic Graph (DAG). In the subsequent chapters of
this work, we will represent the timing of digital controllers by DAGs that follow
Homogeneous SDF semantics. Section 5.5 will discuss in more detail how to dec-
orate such an application DAG in order to be able analyze its execution timing
when mapped to a particular execution platform.
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Example 2.1
Consider the discrete transfer function network in the figure below.

H(z)

G(z)
G(z) =

( 1 1
1.5z−1+0.25

1+0.5z−1 1

)
H(z) = 0.2z−2+0.6z−1

0.2z−1+1

G
Τex,G

H
Τex,H

The two transfer blocks G(z) and H(z) each have an SDF actor that represents
their execution time (Tex,G and Tex,H ), and all dependencies in the transfer
network are present in the SDF model as well. Both G and H have a self-edge
with initial token to prevent auto-concurrency. The outputs of G have no initial
tokens, since the minimum lowest order z-terms of the numerator polynomials
in both columns of G(z) is zero. For H(z) the lowest order numerator z-term
is 1, so H(z) has a single initial token on its output. The corresponding SDF
model is shown on the right of the figure.

Example 2.2
Consider the filter structure at the left of Figure 2.8. Assume its transfer
function H(z) is given by (2.3), with m = n = 2 and coefficients a1, a2, b0, b1, b2
non-zero. To reduce the IO-delay of this filter, it can be split up into two blocks
(see Figure 2.3), one block H1(z) consisting of the grey parts of the figure, and
one block H2(z) consisting of the white parts of the figure. Upon arrival of new
input, only H1 needs to be executed at the moment that new input is available,
while H2(z) can be executed after the time-critical computations of H1(z) have
been completed. The structures of the two separate blocks are shown at the
right of Figure 2.8. Their transfer functions are given by:

H1(z) =
(
b1 b0 b0
0 1 1

)
and H2(z) =

(
b1z
−1 + b2z

−2

−a1z
−1 − a2z

−2

)
.

The corresponding SDF models of the single block filter and its split equivalent
are shown in Figure 2.9. For the single-block filter, the lowest non-zero order
of z in the denominator of its transfer function is 0, since coefficient b0 is non-
zero, so its output channel gets no initial tokens. For the y output of H1, the
minimum z-order in the first row of H1(z) is 0. For out_H1 the minimum
order in the second row of H1 is also 0. So, both outputs of the post-calc block
do not get any initial tokens.

The transfer function corresponding to the first output out1_H2 of H2 has
a 2nd order as well as a 1st order term. Since the lowest order is decisive, the
corresponding channel gets a single token. The same holds for out2_H2 , so its
channel will also get a single token.
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Figure 2.8: Second order filter structure of Ex. 2.2 (left) and its equivalent split
into two separate blocks (right) to optimize its IO-delay.
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Figure 2.9: SDF models of the filter structures of Figure 2.8.

2.5 Analysis vs Code Generation

Section 2.4 showed a model transformation with which a discrete transfer network
model expressed in z is transformed in an SDF model that can be used for timing
analysis of the execution of this transfer network. To this end, a coarse-grained
single-actor model suffices to represent a transfer block. With a finer-grained
transformation into an SDF model that explicitly models the internal structure
of the transfer block, the model can be used for code synthesis and optimization.
Instead of the transfer block as a whole, its structural representation is trans-
formed. Figure 2.10 shows an example of such a fine-grained transformation. On
the left, it shows the standard Direct Form II representation [21] of the transfer
function of Eq. 2.3. The resulting SDF model, shown on the right of the figure,
is obtained by instantiating a single actor for each operator block in the struc-
tural model, and putting an initial token in each output of a z−1 block. Actors
connected to an input get a self-edge with an initial token, which is sufficient to
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Figure 2.10: Structural representation [21] of the transfer function of Eq. 2.3
(left) and a fine-grained SDF model that could be used for e.g. re-timing or code
synthesis.

prevent auto-concurrency for the complete substitution model.
The resulting graph can be used to perform graph retiming [93], in order to try

e.g. to maximize the number of calculations that can be performed independent
of the current input sample to reduce IO delay. The same graph can also be
used to explore distributed implementations, to e.g. find cuts through the graph
that represents the complete z-domain network, in order to find optimal groups
of operations to map to a specific computational unit. The graph cuts can then
be used as input for the subsequent code generation steps.

2.6 Typical Control Blocks
This section discusses typical control blocks found in mechatronic controllers.

2.6.1 PID-controllers

A PID controller combines a proportional, derivative and integral action together.
Given an error input signal e(t), a PID controller computes output signal u(t) by
summing its three distinctive terms:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kdė(t)

= K(e(t) + 1
Ti

∫ t

0
e(τ)dτ + Tdė(t)),

(2.5)

where K = Kp, Ki = K/Ti and Kd = KTd.
With Euler’s backward method assuming a sampling period Ts, a derivative

can be approximated by ẋ(t) ≈ x(tk)−x(tk−1)
Ts

. Applying this approximation to the
three individual terms of Equation 2.5 and applying the z-transform yields:
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U(z)
E(z) = Kp

(
1 + Ts

Ti

z

z − 1 + Td

Ts

z − 1
z

)
(2.6)

Usually, the derivative term is followed by a low-pass filter to make it less noisy.
Alternatively, the complete PID output can be followed by a low-pass filter. The
integrator output and PID output are usually connected to a saturator (see next
section).

2.6.2 Filters

The general transfer function of an n-th order filter is given by Equation 2.2.
They are typically constructed by cascading first- and second order filters:

H(z) = g

M∏
m=1

(1− zmz
−1)

N∏
n=1

(1− pnz−1)
= gzN−M

M∏
m=1

(z − zm)

N∏
n=1

(z − pn)
(2.7)

2.6.3 Non-linear blocks

Saturation and threshold

Saturation and thresholding are two common non-linear operations. They can
be used to prevent signal accumulation (integrator anti-windup), to constrain an
input or output. Given an input signal i(t), a low saturation limit L− and an
upper saturation limit L+, the saturator output o(t) is given by:

o(t) =

 L− if i(t) ≤ L−
L+ if i(t) ≥ L+

i(t) otherwise
(2.8)

With symmetric saturation, the lower saturation limit L− and the upper sat-
uration limit L+ are equal. Similarly, given an input signal i(t) and a threshold
limit L, the threshold output o(t) is given by:

o(t) =
{

0 if − L ≤ i(t) ≤ L
i(t) otherwise (2.9)

Thresholding usually only occurs in a symmetric way.

Variable gain

A variable gain is a non-linear operation that changes its gain based on the value
of some input signal. Given an input in, parameters L and E, and a function
F (in), the output out is given by:
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out(t) = in(t) + F (in(t)) · in(t) (2.10)

For a saturating variable gain, function F (in(t)) is defined as:

F (in(t)) =
{

E(t) if |in(t)| ≤ L
E(t)·L
|in(t)| otherwise (2.11)

A dead-zone variable gain is realized by:

F (in) =
{

0 if |in| ≤ L
−E(t)·L
|in(t)| + E(t) otherwise (2.12)

Non-linear compensations

Typically, non-linear dynamics due to e.g. electromagnetic or centrifugal forces
are linearized by bilinear interpolation from a lookup table.

2.6.4 State-space representations

The behaviour of a dynamic system can be expressed by a set of difference equa-
tions. In a state-space representation, these equations are ordered as a set of first-
order difference equations in the vector-valued state of the system. Given state
vector X = [x0, x1, . . . xn−1], excitations by input vector U = [u0, u1, . . . um−1]
result in a change of the state vector and the output vector Y = [y0, y1, . . . yp−1]
of the system. This is expressed in the following matrix-vector equations:

X[k + 1] = AX[k] + BU [k]
Y [k] = CX[k] + DU [k]

(2.13)

For an n-th order system, state vector X has n elements. The change of
the state vector due to input excitation and the current value of the state is
characterized by the n × n system matrix A and the n × m input matrix B.
Correspondingly, the system output response to state and input is characterized
by the p× n output matrix C and the p×m direct transmission matrix D.

The matrices in a state-space system are sparse. Depending on the particu-
lar canonical form used, the matrices have a different structure of non-zero ele-
ments [21]. Any system expressed by a set of transfer functions can be character-
ized by a state-space representation as well. Design techniques operating directly
on the state-space representation are generally applicable, but are particularly
useful for MIMO systems.
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2.6.5 δ-domain representation
For systems with high sample rates, the z-operator suffers from numerical issues
due to the finite word length of variables [57]. To alleviate such inaccuracies
and round-off errors, the δ-operator can be used instead of the z-operator. The
delta-operator is defined as:

δ = z − 1
Ts

, (2.14)

with Ts the sampling time.

2.7 Summary
This chapter discussed the main application characteristics of high-performance
digital control applications. We explained the typical structure of a digital con-
trol system, en discuss the relation between control performance and application
execution timing.

Digital controllers are typically modeled in the z-domain. This is an untimed
declarative specification, which is not directly suited for performance analysis. In
this chapter, we showed how such specifications can be transformed into a dataflow
model with timed operational semantics. Such models can be used in performance
analysis, and can be synthesized into an implementation that meets the worst-case
performance found with this analysis, as shown in subsequent chapters.

Furthermore, this chapter discussed common operations found in digital con-
trol applications. The execution platform presented in Chapter 3 is tuned towards
efficient execution of these operations.



Chapter 3

Heterogeneous Multi-ASIP
Platform

This chapter introduces an FPGA-based heterogeneous multiprocessor platform
template targeting digital control applications. Section 3.1 motivates the choice of
the top-level architecture and implementation technology for the platform tem-
plate. An overview of the template is discussed in Section 3.2, followed by a
detailed explanation of its architectural elements in Section 3.3. Section 3.4 dis-
cusses related work, and the chapter concludes with an outlook and a summary
in ections 3.5 and 3.6. The case study presented in Chapter 6 maps the con-
troller application discussed in Section 1.4 to instances of the platform template
discussed in this chapter.

3.1 Motivation

General purpose processors (GPPs) are in widespread use as execution platform
for digital control applications, as they provide abundant performance, flexibility
and programmability. With processor frequency scaling reaching its limits sev-
eral years ago, application performance demand is rapidly catching up with the
offered GPP performance, even to such an extent that GPP platforms will not
be able to provide sufficient performance for next generations of digital control
applications [82].

GPPs are optimized for average performance of generic applications, at the
cost of tremendous complexity, unpredictability and inefficiency. Due to their
generic instruction sets, GPPs are unable to closely match the heterogeneity found
in digital control applications. Their architectures contain optimizations like hi-
erarchical memories, branch prediction and out-of-order execution, which greatly
improve average processor performance, but not worst-case performance, which is
needed in real-time applications. Branch mispredictions and cache misses cause

31
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Figure 3.1: Instruction count breakdown for GPP execution of several control
blocks.

jitter, which actually has an adverse effect on control performance [12].
Figure 3.1 exemplifies some of this GPP execution overhead by showing an

instruction count breakdown of several digital control blocks from an industrial
design library. The C-implementation of these blocks has been assembled into
PowerPC assembly, and the instructions have been labeled according to their
contribution to the actual functionality. Floating point instructions required to
realize the core functionality of the blocks are labeled computation. Load and store
instructions that load or store variables are labeled load/store. Loads and stores
that are part of a function call, integer arithmetic for address calculation and
other instructions are labeled overhead. On average, only 11% of the instructions
contribute to the actual floating point calculations in the considered blocks.

With specialized architectures, the amount of data movement overhead can
be greatly reduced, and calculations can be performed more efficiently with ex-
tensive parallelization and a close match between hardware and algorithm. How-
ever, the reduced programmability due to specialization impairs flexibility, since
these architectures are less able to deal with changing or expanding application
functionality. Figure 3.2 shows a performance-programmability trade-off of the
GPP architecture and several other architectures. Specialized architectures, like
Application-Specific Integrated Circuits (ASICs), can easily improve the execu-
tion platform performance by two orders of magnitude [31]. However, the superior
performance offered by ASICs comes at the cost of programmability, as they are
specifically tuned towards a narrow range of applications. Less specialized archi-
tectures like Application-Specific Instruction set Processors (ASIPs), offer a good
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Figure 3.2: Programmability vs performance trade-off.

trade-off between performance and programmability [41]. In contrast to ASICs,
ASIPs have an instruction set tuned towards a class of applications, giving them
the flexibility to better deal with changing or expanded application functionality.

Both ASICs and ASIPs are typically implemented in hardwired silicon. The
associated high manufacturing costs render designs in this technology only feasi-
ble for high volume markets. Due to their architecture specialization, ASICs, and
to a lesser extent ASIPs, often target application domains that are too narrow
to be cost-effective using hardwired silicon technology. Also, the design and im-
plementation process in hardwired silicon takes months, and includes significant
corporate risk. Therefore, reconfigurable hardware such as FPGA technology, is
an interesting alternative, despite showing about an order of magnitude lower
performance compared to its hardwired counterpart [45, 87].

A common FPGA approach taken by e.g. MathWorks [53] is to implement the
application directly in FPGA hardware, comparable to an ASIC design mapped to
reconfigurable FPGA fabric. As this basically realizes a spatial mapping in FPGA
with a limited extent of time-multiplexing (as opposed to a time-multiplexed
mapping with limited spatial-multiplexing as used in GPPs), such an approach
lacks scalability and flexibility, since small changes in the application will require
a complete re-run of the time-consuming FPGA mapping flow.

A programmable ASIP architecture in FPGA shows better resource re-use,
and allows decoupling of the compilation flow from the FPGA mapping flow. This
offers a more scalable and flexible solution compared to direct spatial mappings,
at the cost of performance. An FPGA-based multiprocessor platform consisting of
multiple different ASIPs can match both heterogeneity and task-level parallelism
present in digital control applications, and still allows the platform the be tuned
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Figure 3.3: Execution platform template.

towards the target application at design time. Since a multi-ASIP in FPGA
approach seems to offer a good balance between flexibility, programmability and
scalable performance, we have chosen this architectural concept as the basis of
the execution platform presented in this chapter.

To reduce the complexity of composing a tailored platform and to facilitate
design-reuse, we employ the platform-based design paradigm [69] to our hardware
and software architecture. In the platform based design paradigm, the platform
(HW + SW) is presented to a designer at a higher level of abstraction. A platform
consist of a set of abstract component types that can be instantiated and inte-
grated into a larger component or system. Different platform designs comprise
different compositions of these components.

To facilitate platform-based design, this chapter presents a platform template
that consists of processing units (PUs) connected together in a systematic way.
The internals of the PUs are mostly fixed, except for a tuning space that allows to
select different memory and datapath dimensions, and some limited instruction
set specializations. PUs are connected together by a network with a uniform com-
munication protocol. The PUs enforce a dataflow model of computation onto the
platform, which enables also the application to be presented in a similar abstract
way. This chapter discusses the internal structure of our platform template in de-
tail. The different HW and SW abstractions presented to a designer are discussed
in Chapter 5.

3.2 Platform Template

The platform template presented in this chapter aims to provide improved real-
time performance by employing architecture specializations that reduce the huge
overhead associated with GPP execution, and by enabling instantiation of tailored
platforms consisting of a composition of differently specialized cores. Figure 3.3
shows the heterogeneous multi-ASIP platform template. It consists of a set of
different parameterizable ASIP processing units (PUs), connected by a packet-
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switched network composed of one or more parameterizable switches. Different
ASIP types have different architecture specializations, that allow them to e.g.
exploit data-level parallelism, or provide direct hardware support for specific op-
erations. The composition of several of these PUs into a multiprocessor allows
the platform to exploit task-level parallelism as well. The platform template tar-
gets digital control applications, and offers a good balance between flexibility,
programmability and scalable performance by means of the following features:

• Tuned ASIP processing units. The internal structure of each PU type is
closely matched to that of typical Simulink blocks. The datapath of different
PU types is tuned towards different families of digital control blocks. This
better match between application and platform results in better worst-case
performance and jitter reduction.

• Dataflow task synchronization. Tasks mapped to PUs synchronize
on data availability according to the Homogeneous Synchronous Dataflow
(HSDF) model of computation. This enforces a clear execution semantics,
and since the graph is application can be modeled by a Directed Acyclic
Graph without iteration overlap (see the application model discussed in
Chapter 2), it is also well analyzable (see Chapter 4).

• Low-latency interconnect. Since we aim at a distributed approach,
where control applications are mapped to a set of PUs, it is crucial to
have a good mechanism for fast inter-PU communication. To this end, our
platform employs a low-latency packet-switched network with static routing
to connect different PUs together in any structural composition.

• FPGA-based template. Mapping to FPGA technology allows design-
time reconfiguration. By defining a platform template, parameterizable PUs
can be instantiated from a set of design library elements and connected
together into a platform instance. In this way, the execution platform can be
composed in a reconfigurable way, similar to how digital control applications
are composed in Simulink. This enables a close tailoring of application and
platform.

The use of programmable cores in FPGA ensures that changes in applica-
tion can be handled in software to a large extent, while keeping the hardware
unchanged. This is particularly useful in case time-consuming certification is
required upon hardware changes. Only major application changes require instan-
tiation of extra or different types of cores. The common dataflow interface shared
among PUs allows easy integration of new ASIP types into the design library.

With the different specialized processing units and the composable switched
interconnect in the template, platform instances can be constructed that are able
to closely match the structure, granularity and heterogeneity of a wide range
of different control applications. The following subsections present the differ-
ent elements that constitute the template in more detail. First, the the generic
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Figure 3.4: Common internal structure of the processing units in our template.

processing unit structure is explained in Section 3.2.1, followed by the synchro-
nization mechanism in Section 3.2.2 and the interconnect that is used to connect
PUs together in Section 3.2.3. Finally, the architecture of the different PUs in
our current design library are discussed in Section 3.3.

3.2.1 Processing Unit Structure

The primary entities mapped to the PUs in the platform template, called tasks,
have a one-to-one correspondence with Simulink blocks (like PID blocks, filters,
etc.). To enable fast execution of tasks, the internal PU structure matches that
of a Simulink block.

Figure 3.4 shows the general structure of the PUs that are part of the platform
template. To reduce data movement overhead, the PUs have a flat distributed
memory layout consisting of three separate memories. Each PU has a dedicated
input memory connected to a real-time interconnect interface, a parameter mem-
ory which can be updated independently, and a state/temporary memory for the
internal variables that are used by a block. Note that these are separate logical
memories; to reduce resource requirements, in a physical implementation, any of
these logical memories can be mapped together to a single physical memory (e.g.
map the state and temporaries memories to the same physical memory).

The three separate memories decouple communication from computation, i.e.,
an ASIP can perform computations on data stored in its parameter and state
memory while new input data is received (provided that the physical memory
mapping provides sufficient ports to facilitate this concurrency). In addition, they
provide the processor with a large memory bandwidth enabling low-latency data
access. Both aspects enable a fast execution of tasks which is key for meeting the
timing constraints. The PUs use direct addressing, i.e. instructions contain the
complete operand addresses. This complicates processor runtime-reconfiguration,
and the wider instruction results in a larger memory footprint, however, direct
addressing avoids lots of address calculation overhead, in time and in resources,
since the address calculations are performed at compile-time by the code generator
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(see Section 5.4).
The controller and datapath are unique for each ASIP type, and specialized for

execution of a family of control blocks. In principle, a PU can have a datapath of
any data width, and can be fixed-point, integer, floating point, or mixed. However,
in our current set of processing units, we only employ single-precision floating
point datapaths, since this provides sufficient accuracy and dynamic range for a
wide range of applications. The different PU architectures currently available as
instantiable element in the template are explained in Section 3.3.

3.2.2 Processing Unit Synchronization

To ensure the easy integration of heterogeneous units into the platform and to
keep a clear distributed execution semantics, PUs need to follow a consistent task
synchronization semantics. Kahn Process Networks (KPNs) are widely used to
model streaming multi-media and digital signal processing applications. In the
KPN model of computation, tasks synchronize on the availability of input data
arriving through one or more communication channels. However, since actors
produce and consume a run-time decided number of tokens, the execution of
KPNs requires run-time buffer management and scheduling [26], which can be
costly to implement in software as well as in hardware. In the Synchronous
Dataflow (SDF, [48]) model of computation, tasks also synchronize on input data
availability, but in SDF tasks consume a fixed compile-time known number of
tokens. At the cost of expressiveness, this restriction makes SDF an analytically
tractable model of computation, and its semantics are efficiently implementable
in either hardware or software.

Chapter 2 showed that the typical digital control applications can be modeled
as SDF graphs, and thus do not need the more expressive KPN model of compu-
tation. Therefore, SDF is chosen as the model of computation to be enforced onto
the architecture template and the applications running on it. Since digital control
applications are typically not pipelined, we can assume unpipelined homogeneous
(all channels produce and/or consume the same number of data tokens) SDF,
implying that starting a task always consumes all available input tokens. This
significantly simplifies the implementation of the synchronization mechanism, as
a simple count of the total number of available input tokens for each task suffices.
Since a software implementation will inevitably result in considerable overhead
when tasks are small, we have chosen to implement synchronization in hardware.

Figure 3.5 shows the synchronization unit. Data from the RT network is passed
through the Real-Time (RT) network interface to the synchronization unit. The
data format received from the NI is shown on the top left of the figure. Besides
the data payload, it contains addressing fields that relate the data to the task it
belongs to (tID) and which specific input of that task is targeted (iID). Each task
has a tID that is unique on the PU it is mapped to. The tID and iID fields are
used as write address to store the payload data in the PU input memory.

The tID field is also used to index a lookup memory to lookup execution
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Figure 3.5: Hardware synchronization mechanism enforcing HSDF semantics
onto tasks running on a PU.

precondition information (middle left of Figure 3.5) for the corresponding task,
consisting of the address of the first instruction of the target task (tAddr), its
number of inputs (intotal), and the number of inputs it still needs before being
eligible for execution (inleft). Task input data arrives either externally from the
interconnect or internally from a write-back bus. When new input arrives, inleft is
decremented for the corresponding task. If inleft reaches zero, the task’s program
counter tAddr is sent to the Execution Queue, and inleft is reset to intotal . This
implements a first-come-first-serve task scheduler. A static order scheduler can
be implemented with a minor adjustment; the lookup memory then contains an
ordered sequence of task program counters, with a valid bit for each entry. When
a task has all its inputs available, its valid bit is set; program execution blocks
on a missing valid bit. The size of the Execution Queue is dimensioned to the
worst-case number of tasks mapped to the corresponding PU.

3.2.3 Interconnect

PUs send and receive data through their real-time interface, which connects to
a low-latency packet-switched network. This network can be used to realize any
hierarchical composition of PUs, allowing a designer to exploit the specific com-
munication patterns of the application. The routing tables of each switch are
configurable at design-time and are fixed at run-time. In this way, different parts
of the network can be kept separated, to minimize contention. Each switch can
be configured to use a First-Come-First-Served (FCFS) scheduling policy, or a
Fixed-Priority scheduling policy where the priorities are based on the switch port
number. Currently, our analysis method only supports FCFS-scheduling.

To minimize communication overhead, most PUs have support for implicit
data sending in their instruction set. Instead of executing an explicit commu-
nication instruction, a PU can select a remote target in its normal (arithmetic)
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instructions by setting specific bits in the output operand address. These bits
result in the creation of a network packet, whose data payload is filled with the
output operand. The network ID of the receiving PU, and the task ID and input
ID of the receiving task, which are encoded in the instruction, are set as address-
ing fields of the packet. The PU then pushes the data packet into a switch input
buffer, where it is further handled by the switch hardware.

A separate configuration interface handles the uploading of parameters and
initialization of PUs. Since this interface uses only uni-directional traffic, from
a single host acting as master to the PUs acting as slaves, this interface is im-
plemented as a memory mapped bus. At run-time, this interface can be used to
change parameter values without affecting the real-time inter-PU communication.

3.3 Processing Units
The PU design library that is part of the platform template currently consists of
three different ASIP types, whose instruction sets match with common operations
found in control tasks (see Chapter 2).

3.3.1 Scalar Processing Unit
The Scalar Processing Unit (SPU) is a basic signal processing unit intended for
tasks that have a mostly sequential structure, and (non-linear) tasks that require
comparison-based operations.

To facilitate efficient saturation operations, the SPU has a clipsym instruction
that performs symmetric saturation with a single instruction that loads operands,
performs the operation and stores back the result or sends it to a remote desti-
nation PU. The instruction has two source operands A and B, with A acting as
input and B acting as comparison limit. The result of the instruction is Y = A if
|A| < B, or Y = sign(A) ·B if |A| ≤ B.

Example 3.1 shows different implementations of asymmetric clipping targeting
a GPP and the SPU.
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Example 3.1
Asymmetric saturation is typically implemented by the following C-code:
void asym_sat ( float low_limit, float high_limit, float *const

signal_ptr)
{

if UNLIKELY((*signal_ptr) > high_limit){

*signal_ptr = high_limit;
}
else if UNLIKELY((*signal_ptr) < low_limit){

*signal_ptr = low_limit;
}

}

The corresponding PowerPC assembly code is given below. The actual in-
structions required to perform saturation are shown in boldface, the other
instructions can be considered overhead.
// Setup and clean up stack frame
01 stwu r1,-48(r1) 05 stfs f2,28(r31) 30 lwz r11,0(r1)
02 stw r31,44(r1) 06 stw r3,32(r31) 31 lwz r31,-4(r11)
03 mr r31,r1 32 mr r1,r11
04 stfs f1,24(r31) 33 blr
// Saturation function body
07 lwz r9,32(r31) 15 stfs f0,0(r9) 23 lwz r9,32(r31)
08 lfs f13,0(r9) 16 b 30 24 lfs f0,24(r31)
09 lfs f0,28(r31) 17 lwz r9,32(r31) 25 stfs f0,0(r9)
10 fcmpu cr7,f13,f0 18 lfs f13,0(r9) 26 b 30
11 bgt- cr7,13 19 lfs f0,24(r31) 27 lwz r9,36(r31)
12 b 17 20 fcmpu cr7,f13,f0 28 li r0,0
13 lwz r9,32(r31) 21 blt- cr7,23 29 stw r0,0(r9)
14 lfs f0,28(r31) 22 b 27

The SPU can execute such asymmetric saturation in two instructions:
00 0 load low_limit
01 0 clip_asym signal_in high_limit signal_out

The first instruction loads the lower clipping limit to a special-purpose register.
The second instruction performs the actual clipping by comparing the input to
the lower and higher limit concurrently.

Asymmetric clipping operates on two different limits. Due to the required third
source operand, asymmetric clipping requires two instructions, since one source
operand has to be moved to a special purpose register. To this end, the lower
saturation limit operand must be moved to this special purpose register with a
load instruction prior to executing a clipasym instruction. Similarly, the SPU can
perform symmetric thresholding by executing a single thressym instruction. The
variable gain discussed in section 2.6 can also be implemented using the clipsym
instruction, as shown in Example 3.2.
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Example 3.2
The dead-zone variable gain operation is defined as:

out =
{

in if |in| ≤ L
in + E · in − E·L·in

|in| otherwise , where in
|in| = sign(in).

On the SPU, this operation can be implemented using the clipsym instruction.
The following SPU pseudo-assembly implements the dead-zone variable gain.

00 t0 = clipsym(in, L)
01 t0 = sub(in, t0)
02 t0 = mult(t0, E)
03 out = add(t0, in)

First, clipsym realizes t0 =
{

in if |in| ≤ L
sign(in) · L otherwise . Subsequently sub-

tracting this term from in, results in t0 =
{

0 if |in| ≤ L
in − sign(in) · L otherwise .

By multiplying with E and finally adding in, the dead-zone variable gain is re-
alized. A saturating variable gain is implemented by omitting the subtraction.

Consider the saturation and thresholding operations discussed in Section 2.6.
Typically, on a GPP platform, these operations are implemented using if-then-
else expressions. These expressions not only suffer branching overhead in terms
of potential pipeline stall cycles, but also the number of (sequential) GPP oper-
ations required to execute the simple saturation operation is already quite large.
Example 3.1 shows a typical C-implementation of a saturation function and its
corresponding PowerPC assembly code. The number of instructions to execute
this function will vary between 19 and 24, depending on the branch taken. The
saturation operation itself requires two comparisons and four branches, the other
instructions can be considered overhead.

The complete instruction set of the SPU is summarized in Table 3.1. Besides
the special-purpose instructions that implement symmetric and asymmetric satu-
ration and thresholding, it supports the common add, sub and mult instructions.
The multinv instruction is used in coordinate transformations where some specific
inputs are negated. The hardware overhead of this instruction is minimal, since
negation in floating-point representation is performed by simply inverting the sign
bit. The single-instruction multiplication and negation prevents the necessity to
implement such operations with two dependent instructions.

The copy instruction provides efficient multi-destination communication. To
minimize communication overhead, external communication is explicitly encoded
in the operand addresses (see Section 3.2.3). Specific bits in a destination operand
address trigger the network interface unit to send the data to the network. When
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Table 3.1: SPU instruction set.

Instruction Operation
clear Y Y = 0
copy Y Y = PREV
add A B Y Y = A+B
sub A B Y Y = A−B
mult A B Y Y = A ·B
multinv A B Y Y = A · −B
load A L = A
clipsym A B Y Y = A if |A| ≤ B

Y = sign(in) ·B otherwise
clipasym A B Y Y = A if A < B and if A > L

Y = B if A > B
Y = L if A < L

thressym A B Y Y = 0 if |A| < B
Y = A otherwise

thresasym A B Y Y = 0 if L < A < B
Y = A otherwise

tasks need to send the same data to different destinations, the copy instruction
sends the previous ALU output, stored in special purpose register PREV , to a
different destination specified in the Y operand.

The micro-architecture that implements this instruction set is shown in Fig-
ure 3.6. The local distributed memories (the input memory is considered part of
the real-time network interface here), configuration interface and real-time net-
work interface that all processing units have in common are shown on the left. The
SPU-specific datapath is shown on the right. It comprises an 8-stage pipelined
single-precision floating point unit with an adder, a multiplier and two comparison
units, and dedicated special-purpose registers L and PREV . The floating-point
functional units are generated as FPGA vendor-specific IP cores that are con-
figured with deep pipelines in order to support high frequencies (targeting 200
MHz). The register labeled FW in the middle of the figure (connected to the
data buses) is used for forwarding when an instruction uses the output operand
of a previous instruction as one of its input operands.

Figure 3.7 shows the 64-bit SPU instruction format. SPU instructions have
three 16-bit operand addresses, followed by three 4-bit instruction fields stall,
opcode and cid. The operand addresses consist of a 2-bit selection to select which
of the local distributed memories to target, and a 14-bit memory address. The
Y-operand address can target a location on a different PU. Since the selection
bits and remote address do not fit in the 16-bit addrY field, the cid field is used
to store the first 4 bits of the remote address when a remote PU is targeted.

The SPU has a pipelined floating point datapath, whose intermediate results
cannot be forwarded because they are incompatible in between pipeline stages
(only in the last stage the results are combined into a valid floating point number).
Therefore, hazard detection is required to stall the pipeline in case of data hazards.
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Figure 3.6: Micro-architecture of the Scalar Processing Unit.

opcode stallcid addrA addr B addrYs
015314751556063

Figure 3.7: SPU instruction format.

Since the SPU is implemented in FPGA-technology, the floating point pipeline is
typically 5 (multiply) to 8 (add) stages deep for a 200Mhz target design [3]. For
designs targeting higher frequencies, the pipeline depth can even go up to 14 for a
floating point adder. This considerable pipeline depth makes a hardware hazard
detection unit very expensive, so a software solution has been implemented. To
this end, the SPU pipeline can be stalled for up-to 15 clock cycles by setting the
4-bit stall instruction field.

The shallow, directly addressed distributed memory structure, specialized in-
structions and explicit communication of the SPU enable it to efficiently exe-
cute common sequential blocks like PID controllers and sum blocks, as well as
comparison-based non-linear blocks like saturation and input-dependent gain. For
example, the execution of the saturation function of Example 3.1 is realized by
executing a loadasym followed by a clipasym instruction, which load, compare, set
and send the data. Similarly, the SPU executes a two-input sum block and sends
its output with just a single add instruction, while otherwise it would require 17
GPP instructions to realize the same functionality.
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Figure 3.8: Vector Processing Unit block diagram.

3.3.2 Vector Processing Unit

The VPU is a basic signal processing unit for state-space calculations, filter state
updates and coordinate transformations (see Section 2.6). There is ample data-
level parallelism in these kinds of operations, which can be exploited by providing
wide vector instructions.

Figure 3.8 shows the micro-architecture of a VPU with 4-way vector support
(vpuWidth = 4). The left side of the figure shows the real-time network interface,
configuration interface and synchronization unit (with input memory), which are
common for all processing units. The distributed memories of the VPU are im-
plemented as vector memories, as wide as the VPU issue width. A read access on
these memories reads a whole vector of vpuWidth elements. A write access can
either write a whole vector, or a single element on a specific location in a vector.
The VPU also has a dedicated scalar memory, which is used for e.g. shifting new
data samples into or out of a vector that implements a delay line.

The VPU-specific datapath, shown in the right of the figure, consists of a
vector add-shift unit and an in-product unit. The in-product unit utilizes an
optimized adder tree using folding, where the floating point is only aligned once
for the whole vector, and the rounding is only done at the end of the tree.

Table 3.2 shows the instruction set realized by the VPU implementation. The
add, inprod and inprodoffset instructions use the in-product unit. The inprod
calculates the in-product of two vectors. The sum instruction adds the elements
of a vector by calculating the in-product of the A-operand and a vector with
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Table 3.2: Vector Processing Unit instruction set.

Instruction Operation
r sum B Y Y =

∑vpuWidth−1
i=0 bi

r inprod A B Y Y = A ·B
r inprodoffset A B Y Y =

∑vpuWidth−1
i=0 ai · bi,

with bvpuWidth−1 = 1
r shift Asc B Ysc B = shift(Asc → B→ Ysc) (1)

r shiftadd Asc B Ysc B = B + shift(Asc → B→ Ysc)
r clear B B = 0
r loop incA incB incY Execute next instr. r + 1 times,

while updating operand addr.:
&A = &A+ incA
&B = &B + incB
&Y = &Y + incY

(1) Subscript sc denotes an operand from scalar memory.

opcode repeatinc Addr. A Addr. B Addr. Ys
0193347555963

Figure 3.9: Vector Processing Unit instruction format.

all entries set to 1. The inprodoffset instruction is another variant of the inprod
instruction that calculates the in-product of a (vpuWidth - 1)-wide vector, and
adds an offset. To this end, two vectors A and B are loaded, where the last
element of A contains the offset to be added. By setting the last element of B to
‘1’, the in-product with offset is realized.

Two vector shift operations are supported, one for the z-domain and one for
the δ-domain [57]. The shift instruction can be used to implement a delay line,
i.e. a cascade of multiple z−1 operations. It shifts the elements in a vector one
position from lower index to higher index. On the lower index side, a scalar value
Asc from the scalar memory can be shifted in. Similarly, the vector element with
the highest index is shifted out, and can be stored in the scalar memory. The
shiftadd operation, adds a vector to its shifted version. This implements a cascade
of multiple δ−1 operations.

The loop instruction executes the next instruction r + 1 times and increments
the element indices of the source and destination operands of that instruction
independently based on the incA, incB and incC operands (which are inter-
preted as immediate). This provides hardware loop support without branching
and exit testing overhead, similar to zero-overhead looping techniques seen in
DSP-processors [19].

The VPU instruction format is shown in Figure 3.9. The 14-bit A and B source
operand addresses target a whole vector, the 20-bit Y destination operand address
targets a specific element in a vector. The Y -operand is a concatenated vector
address and element index. The opcode and s fields, like in the SPU instructions,
specify which operation to execute and indicate that the instruction is the last of
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the task (see Section 3.3.1).
An 8-bit repeat instruction field and three inc bits form an explicit second

level of hardware looping support which can be used in conjunction with the
explicit loop-instruction. The repeat field specifies the number of times the current
instruction is to be repeated (corresponding to the r in front of the operations in
Table 3.2). During repetition of the instruction, the operand addresses A, B and
C can be incremented by 1 by setting the corresponding bit in the inc field. For
Y this means that the next element is addressed, and for A and B this means
that the next vector of vpuWidth elements is loaded. The combination of an
explicit repeat instruction field with fixed-size element increments and an explicit
loop instruction with variable element increments provides a powerful two-level
hardware loop support mechanism, enabling fast iteration through vectors and
matrices. This prevents extensive software looping overhead and is much more
memory-efficient compared to e.g. loop unrolling.

Typical tasks mapped to the VPU are tasks with data-level parallelism, like the
multiplication of an M×N matrix with an N×1 vector (MATM×N ). Example 3.3
compares the execution of MAT6×6 on a PowerPC GPP and a VPU.

Example 3.3
The PowerPC assembly code below implements matrix-vector multiplication
(that is part of e.g. the state-space calculations of Section 2.6) for an M×N
matrix and an N×1 vector with M = N = 6.

PowerPC assembly (Single row-vector in-product)
01 lwz r9,24(r31) 14 lwz r9,24(r31) 28 lwz r9,24(r31)
02 lwz r9,12(r9) 15 lwz r9,20(r9) 29 lwz r9,28(r9)
03 lfs f13,0(r9) 16 lfs f13,0(r9) 30 lfs f13,0(r9)
04 lwz r9,8(r31) 17 lwz r9,8(r31) 31 lwz r9,8(r31)
05 lfs f0,4(r9) 18 lfs f0,12(r9) 32 lfs f0,20(r9)
06 fmuls f12,f13,f0 19 fmuls f0,f13,f0 33 fmuls f0,f13,f0
07 lwz r9,24(r31) 20 fadds f12,f12,f0 34 fadds f12,f12,f0
08 lwz r9,16(r9) 21 lwz r9,24(r31) 35 lwz r9,24(r31)
09 lfs f13,0(r9) 22 lwz r9,24(r9) 36 lwz r9,32(r9)
10 lwz r9,8(r31) 23 lfs f13,0(r9) 37 lfs f13,0(r9)
11 lfs f0,8(r9) 24 lwz r9,8(r31) 38 lwz r9,8(r31)
12 fmuls f0,f13,f0 25 lfs f0,16(r9) 39 lfs f0,24(r9)
13 fadds f12,f12,f0 26 fmuls f0,f13,f0 40 fmuls f0,f13,f0

27 fmuls f0,f13,f0 41 fadds f0,f12,f0
42 lwz r9,24(r31)
43 stfs f0,36(r9)

Like the PowerPC clipping implementation in Example 3.1, the actual number
of floating-point arithmetic instructions is only a fraction of the total number of
instructions. Typical GPP architectures can only process a few floating-point
operations concurrently.
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VPU assembly and memory layout
The vector-ALU and adder-tree of the VPU provide acceleration for these
in-product operations. A VPU of at least 6 elements wide can perform this
operation with a single instruction:

5 inprod m+ in out+

m[0]

m[5]

..
.

in[0] out[0]

Parameter memory Input memory (Remote) input memory

vpuWidth ≥ 6

vpuWidth ≥ 6
vpuWidth ≥ 6

+

+
+ + + ++

When executing an M×N matrix-vector multiplication with a VPU that is less
than N elements wide, additional temporary storage and sum instructions are
required to sum the intermediate partial in-products:

00 5 loop 2 0 1
01 1 inprod m[0]+ in[0]+ t[0]+
02 1 loop 0 3 1
03 2 sum t[0]+ out[0]+

m[0]

m[11]

..
.

in[0] out[0]

Parameter memory Input/State memory (Remote) input memory

in[1]

t[0]

..
.

t[5]

+

+
+ +

+

+

+

vpuWidth = 3

vpuWidth = 3

vpuWidth = 3

In general, execution of a MATM×N block on a GPP with completely unrolled
loops requires 7(M · N) + M instructions (excluding stack setup and cleanup
instructions); (2N−1)·M mult and sum instructions, and 5(N+2)·M instructions
to move the data to and from memory. The PowerPC instructions to process a
single matrix row-vector in-product are shown in the top of the figure. For the
complete matrix-vector in-product, this instruction sequence has to be repeated
M times, totalling to 258 instructions for this particular case (excluding stack
management). The VPU can execute the same calculation with 6 instructions.

A VPU with a vpuWidth of N (or larger than N) can retrieve a matrix row
operand and an input vector operand, calculate their in-product en store the re-
sult as an entry in an output vector in a single instruction. In the middle of
Example 3.3, the execution of the same block on a VPU with an issue width of 6
is shown. The matrix coefficients are stored as 6 vector parameters of width 6 in
the parameter memory. The input and output vectors are available as single vec-
tors in the (remote) input memory. Executing the complete MAT6×6 block then
requires a single inprod instruction that is repeated M-1 times. An operand
followed by a + denotes that the corresponding inc-bit for that operand is set.
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The inprod m+ in out+ instruction is repeated 5 times, where at each invo-
cation the incremented m yields the next row of the matrix, and the incremented
out yields the next element in the out-vector. The MAT6×6 is executed in 6
instruction on a VPU with an vpuWidth of at least 6.

Due to timing, area and memory constraints, it is not always possible to use
a VPU as wide as the vectors to be processed. If the issue width of a VPU is
smaller than N , it can only partially process a row-vector in-product with each
inprod instruction, so additional add instructions are required to form the final
in-product elements from the intermediate results. In general, the number of VPU
instructions needed to execute a MATM×N block on a VPU of size vpuWidth isM
if vpuWidth ≥ N , orMdN/vpuWidthe+MddN/vpuWidthe/vpuWidthe otherwise.

The execution of the MAT6×6 block on a VPU with vpuWidth = 3 is shown
at the bottom of Example 3.3. Now, the matrix coefficients are stored as 12 vector
parameters of width 3 in the parameter memory, where consecutive even and odd
vector addresses contain the first and second half of a matrix row respectively.
Similarly, the input is stored as two consecutive 3-wide vectors in the input mem-
ory. A complete row-vector in-product is calculated by adding the in-products of
the first and second semi-rows and two semi-vectors.

The two intermediates of a complete row-vector in-product are obtained with
a single inprod m[0]+ in[0]+ t[0]+ instruction, with its repeat field set
to 1. The inprod instruction is then repeated once, incrementing m, in and
t by one to access the second half of a row of m, the second half of the input
vector, and the next element in an intermediate result vector of t. By preceding
this instruction with a 5 loop 2 0 1 instruction, the once-repeated inprod
instruction is executed 6 times, where each loop-repetition increments m by 2
(thus starting at the even vector addresses of m, containing the first semi-rows of
the matrix), and t by 1, starting at the next intermediate result vector.

After executing the 12 inprod instructions, the first two entries in each of the
6 t intermediate vectors contain the in-product result of a semi-row and a semi-
vector. With the 2 sum t[0]+ out[0]+ instruction, these intermediate entry
pairs are added to yield the final row-vector in-product result, which is repeated
twice. The preceding 1 loop 0 3 1 executes this sequence twice, producing
the 6 final in-product results and placing them in the two output vectors.

With a VPU of width 3, the MAT6×6 is executed in 20 cycles. Alternatively,
the small loop overhead of the two explicit loop instructions can be avoided by
unrolling the two outer loops. Then, the same block can be executed in 18 cycles,
by means of 6 inprod instructions which are each repeated once, and two add
instructions that are each repeated twice. In this way, a reduction in execution
time is traded for increased code size.

3.3.3 Lookup Unit

The Lookup Unit (LU) is a processing unit intended for tasks that require exten-
sive address calculations, like non-linear estimation through lookup, interpolation
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opcodefp addrA addrB addrY
0112335395195

addrAint addrBint addrYintaddrCint opcodeintstalls
63758791

Figure 3.11: Lookup Unit instruction format.

and cyclic buffers. To this end, it has a dual integer and floating point datapath,
organized as a dual issue-slot VLIW processor.

Figure 3.10 shows the micro-architecture of the LU. The configuration interface
and real-time interface common to all processing units are shown on the left side
of the figure. The LU has two sets of distributed memories. A parameter / state
/ temporary memory used for floating point calculations is mapped to one physical
memory (Float Mem). Another parameter/state/temporary memory, used for
integer calculations, is mapped to a second physical memory (Int Mem). A third
physical memory is used as a lookup memory (Lookup Buffer), which contains
floating-point lookup data (e.g. approximations of non-linear functions).

The LU has two ALUs, one for integer calculations, and one for floating point
calculations. The integer ALU consists of a set of comparison units, an adder and
a multiplier, which can be used to calculate addresses to indirectly address the
Lookup Buffer (LB). The floating point ALU consists of an adder, a multiplier and
a floating point to integer converter. It can access data from floating point memory
(for temporaries, state and parameters), the input memory, or from the Lookup
Buffer. The floating point datapath can be used to e.g. perform interpolation on
values obtained by lookup.

The LU instruction set, is shown in Table 3.3. The integer instruction set has
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Table 3.3: Lookup Unit instruction set.

Integer Operations
Instruction Operation
add A B Y Y = A+B
sub A B Y Y = A−B
mult A B Y Y = A ·B
clip A B C Y Y = min(max(A,B), C)
wrap A B C Y Y = B if A > C

Y = C if A < B
Y = A otherwise

wrapinc A B C Y Y = A+ 1 if A < C
Y = B otherwise

Floating Point Operations
fclear Yfp Y = 0
fadd A′ B′ Y Y = A′ +B′ (1)

fsub A′ B′ Y Y = A′ −B′
fmult A′ B′ Y Y = A′ ·B′
fconv A′ B Y U [&B] = (int)(A) (2)

Y = A− (int)(A)
write A Cint LB[Cint] = A (2)

write2 A B Cint Bint LB[Cint] = A
LB[Bint] = B

writeout A′ B Y Out[&B,&Y ] = A′ (3)

(1) A′ = A if msb(&Cint) = 0, else A′ = LB[Cint]
B′ = B if msb(&Bint) = 0, else B′ = LB[Bint]

(2) LB = Lookup Buffer, U = Uint Memory
(3) &B and &Y together contain the remote dest.addr.

add, sub and mult instructions to implement linear addressing modes, as well as
several wrap-instructions to facilitate increasing and decreasing circular addressing
modes. Besides the common add, sub and mult operations, the floating point
datapath can also perform float to uint conversion and read/write data from/to
the Lookup Buffer.

The floating point instruction set contains, next to the common add, sub and
mult instructions, an fconv instruction that converts and rounds a floating point
number to an unsigned integer number. The write (write2 ) instruction writes a
(two) floating point value into the Lookup Buffer. The writeout instruction sends
a data value from the Lookup Buffer or the floating point memory to another
processing element. Note that this deviates from the general explicit data-sending
employed in the ASIPs. To constrain memory usage, the LU memories are more
shallow, and instruction operand addresses are smaller to constrain the instruction
memory size. These operand addresses are too small to contain a complete output
address, so communication is implemented as an implicit instruction in this unit.

Figure 3.11 shows the LU instruction format. The 96-bit wide VLIW instruc-
tions consist of a 3-operand floating point instruction and a 4-operand integer
instruction. A floating point instruction has three 12-bit operand addresses and
a 4-bit opcode. An integer instruction contains four 12-bit operand addresses and
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a 4-bit opcode. A 3-bit stall field and a stop bit implement pipeline stalling and
speed up task switching (Section 3.3.1).

3.4 Related Work

The mismatch between GPP platform performance and the performance require-
ments of real-time (control) applications is widely understood, and many different
approaches have been reported to address this problem. The works in [77, 49, 71]
aim to improve the time-predictability of GPP architectures in order to provide
better best-case and worst-case performance guarantees. In [77], the sources that
result in bad GPP timing predictability are identified and architectural changes
are proposed, while in [49] and [71] concrete time-predictable processor architec-
tures are proposed. The main focus is on a single-core GPP-based architecture
with predictable caches, memory access and pipeline behaviour.

Our architecture supports a similar philosophy, but besides providing timing-
guarantees our main focus is to improve worst-case performance. This is achieved
by architecture specialization, reducing complexity and providing a scalable dis-
tributed platform. Even though the proposed predictable architectures in [77, 49,
71] greatly reduce jitter and can be accurately modeled and analyzed, they are
still single-core general-purpose architectures. As a consequence, they suffer from
overhead due to address calculations and cannot thoroughly exploit the different
levels of parallelism and heterogeneity present in digital control applications.

Other approaches rely on application-specific architectures [92, 50, 67, 13, 58],
mostly targeting FPGA technology. In these approaches, the operations of the
control algorithm are implemented directly in FPGA, i.e. a spatial layout of the
corresponding data flow graph at operator level with some amount of resource
sharing controlled by a FSM. Even though some approaches employ floating-point
logic ([67]), typically a fixed-point representation is used because floating-point
logic is expensive in terms of FPGA logic and delay. To this end, the dynamic
range of the variables in the control algorithm is analyzed and an appropriate
fixed-point representation is chosen (e.g. in [50]). The approach in [13] further
reduces FPGA resource utilization by employing distributed arithmetic which
enables LUT-based multiplication.

Despite the steady growth of gate count and other logic on modern FPGA
devices, these application specific architectures are only applicable to small to
medium sized control applications due to the limited amount of resource sharing.
Even though architectures implemented in FPGA are reconfigurable, the reconfig-
uration is very slow because upon application changes the complex placement and
routing steps have to be performed again. In our particular industrial case the
allowed configuration time is constrained to the order of a few minutes, because
part of the functionality is decided at boot time of the machine. Finally, due to
the lack of abstraction, direct FPGA implementation requires specific skills that
are usually not the expertise of control application designers. However, the work
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in [60] shows that the advent of High-Level Synthesis tools into the digital control
domain can significantly alleviate this issue.

More generic architectures for digital control are proposed in [38, 14, 88, 68].
These ASIP architectures focus on one or more MAC units with some memory
for inputs and coefficients, supporting a limited instruction set with which PID
and state-space controllers in the z or δ domain can be implemented. The ar-
chitecture in [38] consists of one or more MACs connected to an input buffer, a
coefficient array and an output buffer. The MACs operate on 30-bit fixed-point
state variables and 11-bit floating-point coefficients, and are organized in three
architectural variants: a single MAC, up to 4 parallel MACs and a larger set of
MACs organized in an SIMD way. Similarly, the low cost architecture in [14] con-
sists of a single MAC that operates on 27-bit fixed-point state variables and 11-bit
floating-point coefficients stored in a 4-port register file that can be supplied with
new input data from I/O devices or new coefficients from a data ROM. The work
in [68] integrates a single-MAC architecture onto a System-on-Chip design includ-
ing a GPP and peripherals. The high-speed low-cost architecture proposed in [88]
employs Σ∆ modulation to obtain 1-bit input signals. The inputs are multiplied
with 24-bit fixed-point coefficients. The limited instruction set implements few
other operations that e.g. read/write data from/to memory or IO.

Our platform targets the same type of calculations as these ASIP architectures.
Contrary to these approaches, we use a pipelined 32-bit floating-point datapath in
our ASIPs, and the accumulation operation is performed by an adder tree instead
of a MAC. The presented architectures employ only a single ASIP architecture
specialized for a specific type of calculation. Contrary to the interconnected ASIPs
in our platform, these architectures are therefore unable to exploit the available
task-level parallelism, and cannot deal with the heterogeneity found in modern
control applications.

Heterogeneous MPSoC platforms are popular architectures for real-time em-
bedded applications. The FPGA-based architecture templates proposed in [32,
61, 20] offer a mix of GPPs and special-purpose hardware connected by dedicated
FIFO buffers. The different cores synchronize in a distributed way according to
specific dataflow variants. The architecture proposed in [51] targets software-
defined radio applications. It connects several fixed-point vector DSPs, floating-
point scalar DSPs, global memory through two crossbar-based NoCs. Synchro-
nization and scheduling is performed at runtime by a single PU that enforces SDF
semantics in a centralized way. Upon the enabling of a task, inputs are copied
from global memory to the local memory of the target PU, and copied back when
the task execution completes. Such heterogeneous multiprocessors are able to
deal with heterogeneity and can exploit several levels of parallelism. However,
the target applications for these architectures are more throughput-oriented, con-
trary to the more latency-dominated digital control domain (see [10]). As a result,
they can afford software-based synchronization protocols that result in overhead
and communication latencies that are unacceptable for high-performance control
applications. The centralized approach in [51] not only results in synchronization
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overhead, the copying of data to and from PUs can result in lots of contention
on the interconnect. Similar to this approach, our platform employs a combi-
nation of specialized vector, scalar and other PUs and synchronizes according to
dataflow semantics. However, synchronization in our platform is done at PU-level
in hardware with the more restricted HSDF synchronization semantics, and our
PUs have a distributed local memory system.

3.5 Outlook

The platform architecture presented in this chapter focuses on the signal process-
ing part of the control application operating in a single controller configuration.
In complex systems like e.g. a wafer scanner, a controller can have multiple config-
urations (control-modes), which are changed at runtime by synchronously setting
new parameter values for all constituent controller tasks. To this end, the tasks
are to be provided with new parameter values, which are loaded during the course
of multiple samples, while the tasks keep operating on their previous parameter
values. When all tasks have loaded their new parameters, tasks switch to their
new parameters simultaneously, i.e. a double buffering approach similar to that
in display rendering is used. Future work could focus on the integration of this
functionality into the platform.

In a follow-up study [80], we have shown that the current architecture is capa-
ble of supporting such functionality by adding configuration logic with a DDR3
interface for parameter storage. The configuration logic is connected to the con-
figuration bus of a multi-ASIP platform instance. The proof of concept showed
that the platform can change its configuration, however, the single configuration
bus is proving to be a performance bottleneck for the run-time reconfiguration.
Therefore, future maturation of the platform should involve upgrading this con-
figuration interface such that its bandwidth is sufficient to load large sets of new
parameter values within the required number of samples. Also, the follow-up
study in [80] considered a hybrid GPP-and-FPGA solution, to mitigate the com-
plexity of the interaction between supervisory control and process controllers.
Further investigation could focus on supporting the full interaction interface of
the supervisor on the FPGA platform, including e.g. status monitoring.

Currently, PU instruction operand addresses comprise the full memory address
of the associated variables. As a result, operands can be immediately fetched
from memory, but it limits the amount of addressable memory space due to the
limited size of instructions. It also complicates runtime controller reconfiguration,
since parameter addresses are hard-coded in the instructions. In the current
incarnation of the platform, tasks that have multiple parameter sets need to be
instantiated twice, with the parameter addresses of the two tasks linked to two
different parameter memory spaces to support double buffering. This is quite
memory-inefficient, since both the required parameter and instruction memory
for each task is doubled. Therefore, modification of the architecture to employ
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indirect addressing rather than direct addressing would be a logical step. To
this end, for each task a context register could be kept, which contains the base
addresses of the different logical memory spaces for that task. Memory addresses
can then be constructed either by concatenation or addition of the base addresses
and the address offsets specified in instruction operands.

Another focus for follow-up study could be improving the floating point unit
latency. An FP addition takes 8 cycles, so there is a significant performance
penalty for sequential instructions. The VPU has an even larger latency (de-
pending on its issue width) due to the addertree that is connected to its parallel
multipliers. Compared to tasks mapped to a SPU, for tasks mapped to the VPU
it is typically easier to hide (part of) this latency due to the high amount of paral-
lelism present in these tasks. Therefore, the marginal performance improvement
realized by adding forwarding to all the FPUs and addertree of a VPU is unlikely
to weigh up to the added complexity and logic. For the SPU however, the poten-
tial performance gain is much higher due to the sequential nature of typical tasks
mapped to it, and since it only has a single FPU the amount additional logic is
relatively low compared to adding forwarding to the VPU FPU units.

3.6 Summary
This chapter presented a heterogeneous execution platform template targeting
high-performance digital control applications. The choice of an FPGA-based tem-
plate of interconnected ASIP processors was motivated, and the main components
with which platform instances can be constructed were discussed. In particular,
the generic architecture optimizations and the dataflow synchronization between
the different processing units were discussed, and how this contributes to an effi-
cient execution of digital control applications.

The main ASIP processing units that are part of our design library were dis-
cussed in detail, with focus on their particular datapaths and instruction sets.
Several examples showed the execution of typical operations discussed in Chap-
ter 2 on these ASIPs. Finally, the chapter related the presented platform to other
platforms described in literature.



Chapter 4

Analysis

The previous chapters discussed the main characteristics of digital control appli-
cations and presented a heterogeneous multi-ASIP platform template on which
these applications can be mapped. This chapter presents a timing analysis tech-
nique with which the performance of these mapped applications can be predicted.
Chapter 2 showed that applications in the digital control domain can typically be
modeled as periodically restarted Directed Acyclic Task Graphs (DAGs). In our
analysis, these DAGs are assumed to follow the semantics of Homogeneous Syn-
chronous Data Flow (HSDF, [48]). The HSDF model of computation is commonly
used in performance analysis and synthesis of e.g. Multi-Processor Systems-On-
Chip. With SDF analysis, the impact of mapping and scheduling on application
timing and platform memory requirements can be analyzed.

However, there exist no SDF-based analysis techniques that can analyze the ex-
ecution timing of tasks mapped to shared First-Come-First-Served (FCFS) sched-
uled resources. Parts of our platform, e.g. the switches that form the Real-Time
network between PUs, employ FCFS arbitration. Also, many (interconnect) net-
works in modern embedded systems, like e.g. FlexRay [52] and RapidIO [24],
employ FCFS scheduling. These types of networks are typically used to connect
multiple processor boards (including e.g. boards that house an FPGA with a
multi-ASIP platform running on it) that form a computational platform.

This chapter presents a scalable analysis technique that can analyze the tim-
ing of DAGs consisting of tasks with varying execution times mapped to shared
resources under a FCFS scheduling policy. In this approach, timing is expressed
in intervals (Section 4.1), which denote the best-case and the worst-case timing
properties of tasks. These intervals are propagated through the nodes in the
graph taking into account the contention (Section 4.2). By taking into account
the best-case timing as well as the worst-case timing, the contention on the shared
resources can be estimated (Section 4.3). Scalability is ensured by using a con-
servative approximation (Section 4.3.1) on the interval bounds of the tasks. An
iteration-based approach is then used to obtain conservative bounds on the timing
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Table 4.1: Interval operations.

Operation Definition
i1 + i2 [L(i1) + L(i2), U(i1) + U(i2)], i1, i2 ∈ I
i1 − i2 [L(i1)− L(i2), U(i1)− U(i2)], i1, i2 ∈ I, L(i1) ≥ L(i2), U(i1) ≥ U(i2)
max V [maxi∈V L(i),maxi∈V U(i)],V ⊆ I, V 6= ∅, V is finite
∪V [mini∈V L(i),maxi∈V U(i)], V ⊆ I, V 6= ∅, V is finite

of a DAG application model (Section 4.4). We evaluate the analysis method by
applying it to an industrial-scale application model in Section 4.5. Related work
in Section 4.6 is followed by an outlook in Section 4.7, and the chapter concludes
with a summary in Section 4.8.

4.1 Timing Properties
The analysis presented in this chapter assumes a given Directed Acyclic Task
Graph (DAG) G, with a set of tasks T and a set of dependencies D. Chapter 2
discussed how digital control applications can be modeled by such DAGs. The
tasks in T are allowed to have variation on their execution time, so the execution
timing of G will also vary at different executions of the graph. To capture this
variation, the timing properties of G are expressed in intervals.

Definition 1. (Interval) I is the set of closed intervals defined by I = {[a, b]
a, b ∈ N, b ≥ a}. Intervals are ordered according to a subset ordering, i.e. (I,⊆) is
a partially ordered set. The lower bound L of an interval is given by L([a, b]) = a,
the upper bound U is given by U([a, b]) = b.

Table 4.1 defines some basic operations on intervals. With each task t ∈ T an
execution interval E(t) = [a, b] is associated, denoting that any execution of t will
require at least a, and at most b time units. Each execution of t can require a
different amount of time, but the required time is always within these interval
bounds. G is bound to a set of resources R, which can be either private or
shared. Resources in R are assumed to employ a First-Come-First-Served (FCFS)
scheduling policy, where tasks are queued for execution based on the time they
are enabled. An interval-timed DAG is then defined as follows:

Definition 2. (Interval-timed DAG) An interval-timed DAG is a quadruple
(T,D,M,E) consisting of a finite set of tasks T , and a finite set of dependencies
D ⊆ T × T . Tasks in T are mapped to a set of FCFS-scheduled resources R,
according to the function M : T → R, which maps each task in T to exactly one
resource r ∈ R. Labeling function E : T → I assigns to each task t ∈ T an
execution interval E(t) that bounds the duration of an execution of t.

Figure 4.1 shows an example interval-timed DAG G1 with five tasks t1 · · · t5
and six dependencies d1 · · · d6, bound to two resources r1 and r2. Resource map-
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E(t1) =[1, 2]

E(t2) =[3, 6]

E(t3) =[7, 12]

E(t4) =[5, 6]

E(t5) =[7, 9]

d1

d2

d3

d4

d5

d6

Figure 4.1: Example interval-timed DAG G1.

ping M is denoted by task grey shading, and the execution interval labeling E is
shown next to the task vertices.

In a concrete execution, interval-timed DAG G is labeled with an execution
time labeling function Ec, which assigns to each task t ∈ T an execution time
Ec(t) for which L(E(t)) ≤ Ec(t) ≤ U(E(t)) holds. Due to the variation in task
execution times and the FCFS-scheduling of the resources that G is mapped to, G
can have many different concrete executions. Any concrete execution time labeling
Ec on G uniquely determines (up to non-determinism) the exact execution order
of all the constituent tasks in G.

The execution timing properties of G should reflect the properties for any
execution of G, and are therefore expressed in intervals as well, with the following
additional task labelings:

• C : T → I maps tasks to their completion interval bounds, i.e. C(t) is the
interval at which task t will finish its execution.

• En : T → I maps tasks to their enabled interval bounds.

• B : T → I maps tasks to a busy interval. The busy interval of a task
reflects the delay between its enabling and its completion time, including
both waiting time as a result of contention, and its execution time.1

The goal of timing analysis on G is to find conservative bounds on these
labeling intervals, such that the concrete timing properties C c(t), Enc(t) and
Bc(t) of any possible concrete execution of G are within these interval bounds for
any t ∈ T . The busy interval B(t) of some task t is considered to be conservative
if both En(t) and C(t) are conservative bounds for any concrete execution. The
relations between the different timing interval labelings are discussed in the next
section.

1Note that the busy interval B is not a response interval, but an algebraic term that, given
a best-case (worst-case) enabling of a task, denotes the delay that results in a best-case (worst-
case) completion of that task. The worst-case response time of t, i.e. its maximum delay, is not
necessarily in B(t); it is bounded by [L(C(t))− U(En(t)), U(C(t))− L(En(t))].
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4.2 Timing Model

A task in a DAG G is enabled when all its predecessors have completed their
execution. Without loss of generality, tasks without inputs are assumed to be
enabled at [0, 0]. The relation between the enabled interval of a task t ∈ T of G
and its completion interval is:

En(t) =
{

[0, 0] if pred(t) = ∅
max

t′∈pred(t)
C(t′) otherwise , (4.1)

where pred(t) = {t′ ∈ T | (t′, t) ∈ D} denotes the set of predecessors of t.

When t is enabled, it enters the execution queue of the resource it is mapped
to, where it needs to wait on the completion of all tasks that were queued earlier.
Eventually, t exits the execution queue of its resource and starts executing. Com-
pletion of t then occurs after some time in E(t). During execution of t, no other
task can claim the resource on which t is executing (i.e. there is no preemption).
The busy interval B(t) of task t is the period between its enabling and its com-
pletion, and thus includes both the time that t spends waiting in the execution
queue (which depends on the contention) as well as the time that t is executing.
The completion interval of any task t ∈ T in terms of its busy interval is then
given by:

C(t) = En(t) +B(t). (4.2)

If B is given, e.g. when there is no contention, the timing of a DAG is cal-
culated by propagating the completion- and enabled intervals of Equations 4.1
and 4.2 through the nodes of the graph in topological order, similar to (Ho-
mogeneous) SDF-analysis techniques lifted to an interval-timed domain. DAG
G1 in Figure 4.1 is an example of such a DAG where tasks do not contend
for resource access. The dependencies in G1 enforce a unique execution order
(t1 → t2 and t3 → t4 → t5) in any concrete execution, i.e. the tasks in G1 exe-
cute according to a Fixed-Order (FO) schedule. The only tasks that are enabled
at the same time are t2 and t3, but they cannot contend because they are mapped
to different resources. Due to the FO-schedule, any task t will never have to wait
on completion of some other task t′ still executing on its resource, so it can start
executing immediately when it is enabled, so B(t) = E(t) for all t ∈ T .

The timing intervals of G1, shown in Table 4.2, can then be computed as
follows. Initially, only task t1 is enabled at En(t1 ) = [0 , 0 ], since it is the only task
that has no predecessors. Execution of t1 completes at [0, 0] + [1, 2] and enables
tasks t2 and t3 at [1, 2], since both have only a single incoming dependency on t1.
Subsequently, executions of t2 and t3 complete at C(t2) = [1, 2] + [3, 6] = [4, 8]
and C(t3) = [1, 2] + [7, 12] = [8, 14] respectively. Completion of t3 enables task
t4, which has multiple incoming dependencies, so En(t4 ) = max {C(t2), C(t3)} =
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Table 4.2: Execution timing labels of non-contended DAG G1.

Task En C B
t1 [0,0] [1,2] [1,2]
t2 [1,2] [4,8] [3,6]
t3 [1,2] [8,14] [7,12]
t4 [8,14] [13,20] [5,6]
t5 [13,20] [20,29] [7,9]

t1

t2

t3

t4

E(t1) =[1,1]

E(t2) =[2,5]

E(t3) =[4,6]

E(t4) =[3,9]

t5

t6

t7

E(t5) =[2,4]

E(t6) =[9,12]

E(t7) =[3,5]

Figure 4.2: Example DAG G2 with contention on the white resource.

max {[4, 8], [8, 14]} = [8, 14]. Completion of t4 at [8, 14] + [5, 6] = [13, 20] enables
t5 at [13, 20], which finally completes at [20, 29].

For DAGs with contention, B is not given but needs to be computed. Since
tasks are queued for execution based on their concrete enabling time, the addi-
tional task delay in B due to contention can be estimated by analyzing the relation
between enabled intervals of different tasks on the same resource. These enabled
intervals in turn depend on B. A natural approach to deal with this recursive
dependency is to use a fixed-point iteration, where DAG timing is analyzed by
iterating on B, starting with a B assuming no contention. In each iteration more
contention is taken into account, until a fixed-point is reached. The required con-
tention model that estimates contention given the enabled intervals of the DAG
is explained in the next section.

4.3 Contention Model

Figure 4.2 shows another DAG G2, consisting of seven tasks t1 · · · t7 mapped to
three resources p1(white), p2(light grey) and p3(dark grey). G2 has insufficient
dependencies between the tasks on resource p1 to enforce a FO-schedule. As a
result, some tasks on that resource will contend for resource access.

Due to the dependency between tasks t1 and t4, t1 will always complete before
t4 is enabled, so they do not contend for resource access. Also, t2, t3 and t4
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do not contend, since they are mapped to different resources. For these tasks,
B(t) = E(t) holds. Initially, task t1 is the only enabled task, at [0, 0]. Completion
of t1 at [1, 1] enables t2, t3 and t4, which then complete at [3, 6], [4, 7] and [4, 10]
respectively. Now, tasks t5, t6 and t7 are enabled at [3, 6], [5, 7] and [4, 10]. These
tasks suffer from contention, so their busy interval is to be determined.

Figure 4.3 shows a Gantt-chart representation of four different concrete exe-
cutions of G2. In the figure, task names are followed by a bracketed number that
denotes the concrete execution time for that task. In all executions, t1 is the first
task to execute, followed by concurrent execution of t2, t3 and t4 on the three
different resources. The concrete completion times of these tasks determine the
execution order and busy times of tasks t5, t6 and t7. In the concrete execution
at the top of the figure, t3 is the first of the three concurrently executing tasks
to complete its execution, enabling t6. At the moment that t6 is enabled, task
t4 is still executing on the white resource, so t6 needs to wait for completion of
t4 before it can start executing. Completion of task t2 occurs after t3 and before
t4, enabling t5. At the moment that t5 is enabled, t4 is still executing on the
same resource, and t6 is already queued for execution. So t5 needs to wait for
the completion of both tasks before it can start executing. Task t7 is the last of
the three concurrent tasks to finish, enabling t7. Similarly, t7 needs to wait for
completion of t4, t5 and t6 before it can start executing.

The second concrete execution shown in the figure results in the same exe-
cution order, but with a different timing. Now, when t6 is enabled, task t4 is
just completed, so t6 can immediately start executing. Despite contention, in this
particular execution t6 does not need to wait. The Gantt charts of the bottom
two concrete executions of G2 in the figure show two other possible execution
orders as a result of different concrete enabling times of the contending tasks. In
these executions, t6 is either enabled after t7 or after t5 and t7, so in these cases
t6 needs to wait on the completion of these earlier queued tasks.

These four concrete executions exemplify how contention in the interval do-
main affects concrete execution timing. In general, the following observations on
resource contention can be made:

• Predecessor completion is not a sufficient precondition for the start of the
execution of a contending task; completion of any other tasks that precede
it in its execution queue is required as well.

• A task that is enabled strictly before some other task precedes it in any
concrete execution. For example, in G2, t4 is enabled strictly before t5 and
t6, so in any concrete execution of G2, t4 precedes these tasks.

• A task that has an enabled interval that overlaps with that of another
task mapped to the same resource will precede it in some executions, while
in other executions it can be the other way around (assuming they are
independent). For example, the enabled interval of task t6 of G2 overlaps
with those of t5 and t7. In the first two concrete executions of Figure 4.3,
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Figure 4.3: Gantt-chart showing four different concrete executions of G2.

t6 precedes t5 and t7, while in the bottom two concrete executions, t6 is
preceded by one or more of the other contenders.

For tasks with overlapping enabled intervals both the queueing order as well
as the timing of these tasks can be different in different concrete executions. This
not only affects the contending tasks under consideration, but also all tasks that
depend on them and other tasks mapped to the same resource that have not been
executed or queued yet. The tightest interval bounds are acquired by analyzing
the timing effects of all these different queueing orders, e.g. by means of state-
space exploration. In such an exact approach, each possible queueing order can
be modeled as a separate child DAG which is derived from the original DAG
by adding dependencies to enforce a particular execution order. The enabled
intervals of contending tasks in the original graph can be updated in the child
graph according to the choice of execution order that is enforced in that particular
child graph. This is shown for G2 in Figure 4.4.

In G2, there are three contending tasks t5, t6 and t7 that are enabled at
[3, 6], [5, 7] and [4, 10] (shown in the top of the figure). The six child graphs that
can be constructed from the original graph are shown on the bottom left and
the updated enabled intervals for each child graph are shown in the table on the
bottom right. The execution order enforced in a particular child graph is modeled
by the additional black-colored dependencies in the figure. In the first child graph
(a), this enforced execution order is t5 → t6 → t7. Since t6 precedes t7 in this
graph, the latter cannot be enabled earlier than t = 5, so En(t7 ) = [5 , 7 ]. In the
second child graph (b), the execution order is fixed to t5 → t7 → t6. Since t7
precedes t6, it can only be enabled in [4, 7], since t6 is never enabled later than
t = 7. Any later enabling of t7 would not result in the execution order of this
particular child graph, so that case is modeled in one (or more) of the other child
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Figure 4.4: Different execution orders of the three contending tasks in G2.

graphs. For the other child graphs (c)-(f), similar updates to the enabled intervals
can be derived.

The child graphs in Figure 4.4 are contention-free, since the contention of
the original graph has been resolved by assuming a particular execution order
of the contenders in each of the child graphs. However, besides the complexity
of generating these child graphs for more complex DAGs, the analysis time and
resource utilization of such an approach show factorial growth in the number of
overlapping tasks in the DAG, rendering an exact analysis intractable already
for relatively small DAGs. To ensure scalability of the timing analysis, instead of
exactly analyzing all different task execution orders, we approximate the best-case
and worst-case completion time of tasks given their enabled intervals, and then
combine these into a single closed interval that provides conservative bounds for
any concrete execution of the graph. This is shown in the next section.

4.3.1 Approximation

Given an initial B, the enabled intervals of the tasks in the DAG can be calculated
by evaluating Equations 4.1 and 4.2 on tasks in the graph in topological order.
If the enabled intervals of all tasks are known, the completion interval of a task
t can be conservatively approximated by analyzing the possible delay caused by
tasks mapped to the same resource that can be queued in the execution queue
before the enabling of t.

Tasks mapped to the same resource as t that are enabled strictly earlier than
t precede t in all concrete executions. The same holds for tasks mapped to the
same resource as t on which t is dependent. This dependency can be either direct,
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Figure 4.5: Two similar DAGs, with (left) and without (right) an indirect depen-
dency between t3 and t4. The dependency relations between the direct predecessors
of t3 and t4 determines the occurrence of an indirect dependency.

i.e. there exists a directed subset of the set of dependencies D of graph G that
directly connects t′ and t, or indirect. An indirect dependency between t and t′ is
a direct dependency relation between the predecessors of t and t′ that results in
t′ to be enabled before t in any concrete execution, even though there is no direct
dependency between t and t′. This is shown in Figure 4.5. The dependencies in
the left DAG are such that the tasks in pred(t4 ) are dependent on all tasks in
pred(t3 ). Therefore, upon the last completion of the tasks in pred(t3 ), at least
one task in pred(t4 ) has not completed yet, so t3 will precede t4 in any concrete
execution. In the right DAG, there is at least one task in pred(t3 ) on which at
least one task of pred(t4 ) is not dependent. Here, t3 is not necessarily queued
before t4 in all concrete executions, since a late completion of t0 can result in t4
to be queued before t3.

When there is a direct dependency from t′ to t, t′ does not contribute to the de-
lay of t, since it always completes before t is enabled. Tasks with a strictly smaller
enabled interval and tasks on which t is indirectly dependent can contribute to
the delay of t, since in all concrete executions t needs to wait on completion of
these tasks prior to starting its execution. This affects both the best-case as well
as the worst-case delay estimation of t. Tasks mapped to the same resource as
t with an enabled interval overlapping with that of t will precede t in only some
concrete executions. These tasks only affect the worst-case delay estimation of t.

Let ee(t) denote the set of tasks which are independent of t, mapped to the
same resource and enabled strictly earlier than t, either based on a strictly smaller
enabled interval, or because of an indirect dependency. Similarly, oe(t) denotes
all tasks which are independent of t, mapped to the same resource, whose enabled
interval overlaps with that of t and which are not in ee(t).

The completion interval of t is approximated by considering a best-case as
well as a worst-case concrete execution scenario. These two scenarios lead to a
conservative best-case and a worst-case concrete completion time for t, which are
used as upper and lower bounds for the completion interval of t.
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Figure 4.6: Best-case and worst-case completion scenarios for t6 of G2.

The earliest possible completion of t occurs when it is enabled as early as
possible, and the start of its execution is delayed as little as possible. This occurs
when t is enabled at L(En(t)), all tasks in ee(t) complete as soon as possible,
and all tasks in oe(t) (except for t itself, which executes at its best-case execution
time) are enabled after t. So, in best-case, t can start executing after its best-case
enabling and the best-case completion of the last completing task in ee(t).

The latest possible completion of t occurs when it is enabled as late as possible,
and the start of its execution is delayed as much as possible. Given t’s worst-case
enabling, t is delayed most if all tasks in ee(t) complete at the upper bound of
their completion interval, and all tasks in oe(t) execute at the upper bound of
their execution interval, while they are enabled just before t.

Both completion scenarios are shown in Figure 4.6 for task t6 in G2. In G2,
ee(t6 ) = (t1, t4) and oe(t) = (t5, t6, t7). The best-case completion of t6, shown
in the left of the figure, occurs when t6 is enabled at 5, the other tasks in oe(t6 )
are enabled after t6, and tasks in ee(t6) complete as soon as possible. The last
completing task in ee(t6) is t4, which completes at 4 in the best-case. Since the
best case enabling of t6 is at 5, it is not delayed by any task in ee(t6), so the
best-case completion of t6 is at L(En(t6 )) + L(E(t6)) = 5 + 9 = 14.

The worst case completion of t6, shown in the right of Figure 4.6, occurs when
t6 is enabled at 7, t4 completes at 10, and tasks t5 and t7 are enabled just before
the enabling of t6 and execute at the upper bound of their execution interval. The
last completion in ee(t6 ) is at 10 (i.e. U(C(t4))), so the worst-case completion of
t6 is at U(C((t4)) + U(E(t5)) + U(E(t7)) + U(E(t6)) = 10 + 4 + 5 + 12 = 31.

The conservatively approximated upper and lower bound on completion of t6
are combined into a single completion interval C(t6) = [14, 31].

This approximation needs to be refined to prevent counting contributions to
the delay of a contending task multiple times. Consider the partial DAG and a rep-
resentation of its execution queue in Figure 4.7. It consists of 3 independent tasks
t1, t2 and t3 mapped to the same resource. The enabled interval of t1 overlaps with
that of t2 and t3, and t2 is enabled strictly before t3. According to the aforemen-
tioned completion time estimation, U(C(t2)) = U(En(t2))+U(E(t2))+U(E(t1)).
Task t3 must wait for completion of t2 before it can start its execution, and
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Figure 4.7: Example of part of a DAG where the execution time of t1 is con-
tributing twice to the completion time of t3.

can be preceded by t1, so then U(C(t3)) = U(C (t2)) + U(E(t3)) + U(E(t1)).
However, since U(E(t1)) is already taken into account in U(C(t2)), it is ac-
counted for twice in U(C(t3)) (case 1 in the figure). To correct this, in the
estimation of U(C(t3)), only the execution time of tasks in oe(t3 ) that are not
in oe(t2 ) are to be added (case 2a in the figure). However, if U(En(t3))) is
such that U(C(t2)) − U(En(t2)) ≤ U(E(t1)), not adding t1 would lead to an
estimate that is not conservative, so in that case U(C(t2)) is estimated with
U(En(t2)) + U(E(t1)) + U(E(t2)) + U(E(t3)) (case 2b in the figure). So in gen-
eral, the corrected worst-case completion time estimate is the maximum of case
2a and 2b in the Figure 4.7.

With this refined contention model, the completion interval of a task t given
some B is then given by:

C(B)(t) = max (ξ, ζ), where

ξ = En(B)(t′) +B(t′) +
( ∑

t′′∈oe(t)\oe(t′)
E(t′′)

)
∪ E(t)

with t′ the last completing task in ee(t)

ζ = En(B)(t) +
( ∑

t′′∈oe(t)
E(t′′)

)
∪ E(t).

(4.3)

So now, assuming an initial busy interval labeling B, with Equations 4.1
and 4.2 an enabled interval labeling En can be calculated. Based on these en-
abled intervals, with Equation 4.3 the completion interval of each task can be
computed, and by subtracting the corresponding enabled intervals, a new B la-
beling is obtained. This new B labeling captures contention as seen by the current
En labeling, and can then again be used to calculate new enabled and completion
intervals. This fixed-point iteration on B is explained in the next section.
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4.4 Fixed-point Iteration
This section formulates an iteration on busy intervals, and proves that with this
iteration a fixed point will always be found in a finite number of steps. First, a
partial ordering on the interval labelings of Section 4.1 is defined.

Definition 3. (Poset on IT ) Define relation v ⊆ IT × IT as follows. For
l1, l2 ∈ IT let l1 v l2 if and only if l1(t) ⊆ l2(t) for all t ∈ T . It is easy to verify
that (IT ,v) is a poset.

The iteration will compute busy intervals for each task taking into account the
contention on the shared resources. To this end we will define a finite complete
lattice on the mappings from tasks to busy intervals. This lattice is contained in
poset (IT ,v) and is defined by explicitly defining a bottom and top element. The
bottom element represents the case in which tasks do not contend, while the top
element assumes maximal contention.

Definition 4. (Finite busy interval lattice in IT ) We define bottom ⊥ ∈ IT

and top > ∈ IT by ⊥(t) = E(t) and >(t) = (
∑
{t′∈T |M(t′)=M(t)}E(t′)) ∪ E(t) for

all t ∈ T . The set BL ⊆ IT is defined as BL = {B : T → I | ⊥ v B v >}. It is
easy to prove that (BL,v) is a finite lattice.

Any B ∈ BL maps tasks in T to their busy interval. Given a busy interval
labeling Bi ∈ BL, a new busy interval labeling Bi+1 ∈ BL can be computed by
the following progressive function FB : BL → BL:

Bi+1(t) =
(
C(Bi)(t)− En(Bi)(t)

)
∪Bi(t), (4.4)

where i1−i2 = [L(i1)−L(i2), U(i1)−U(i2)] for all i1, i2 ∈ I with L(i1) ≥ L(i2)
and U(i1) ≥ U(i2). Given Bi, with Equations 4.1 and 4.2, En(Bi) is computed.
Then, C(Bi) can be computed with Equation 4.3, taking into account the con-
tention based on En(Bi). A new busy interval is then obtained by calculating
C(Bi) − En(Bi) and taking the union with Bi to ensure progressiveness, which
is required to guarantee convergence.

Starting with an initial B(t) = E(t) for all t ∈ T (⊥ of BL), with Equation 4.4,
lattice BL is traversed from the bottom upwards. At each iteration, busy intervals
can grow by taking more contention into account, until a fixed-point is reached.
The following theorem shows that the fixed-point algorithm converges in a finite
number of iterations.

Theorem 1. FB has a fixed-point in BL given by FIX FB = t{Fn
B(⊥) | n ≥ 0},

and there is an m ∈ N such that Fm
B (⊥) = FIX F .

Proof. Trivially, B v FB(B) holds, since FB(B) is constructed by taking the
union with B. Since BL is a lattice, and thus a chain-complete partial order, with
the Bourbaki-Witt theorem [9, 86], FB has a fixed-point. Since B̂ is finite, this
fixed-point will be reached in a finite number of steps.
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4.4.1 Fixed-point Properties
Now that the fixed-point iteration is established, two important properties can
be derived. First, the following theorem shows that any fixed-point of FB is
conservative.

Theorem 2. If B is not conservative, then it is not a fixed-point of FB.

Proof. Assume that B is not conservative in the ith iteration. Then there exists
a first faulty task tf with either a faulty concrete completion time Cc(tf ) >
U(C(Bi)(tf )) or a faulty concrete enabled time Enc(tf ) > U(En(Bi)(tf )). Since
it is the first faulty task, the concrete execution of all earlier tasks are within
their respective intervals. Since Enc(tf ) is derived from completion times of
predecessors which are within their intervals, Enc(tf ) ≤ U(En(Bi)(tf )). Hence,
Cc(tf ) > U(C(Bi)(tf )). We show that this will be fixed in the i + 1th iteration
such that Cc(tf ) ≤ U(C(Bi+1)(tf )). Referring to Equation 4.4, we distinguish two
cases in the concrete execution. The first case is when some tasks in ee(Bi)(tf ) are
still executing after Enc(tf ). In the concrete execution, there is a last completing
task in ee(Bi)(tf ) followed, without any gaps, by a sequence of zero or more tasks
that are not in ee(Bi)(tf ) that ends with the execution of tf . Since Enc(tf ) ≤
U(En(Bi)(tf )), these tasks are included in eo(Bi)(tf )) in the evaluation of ξ
given in Equation 4.4. Hence for this case Cc(tf ) ≤ U(C(Bi)(tf )). The second
case is when tf is enabled after completion of all tasks in ee(Bi)(tf ). In the
concrete execution, there are tasks not in ee(Bi)(tf ) and enabled earlier, ending
with tf . These tasks are included in eo(Bi)(tf )) in the evaluation of ζ given
in Equation 4.4. The remaining execution of these tasks is added to Enc(tf )
which is also within its interval bounds. This leads to Cc(tf ) ≤ U(C(Bi)(tf ))
in both the cases. Since Cc(tf ) > U(C(Bi)(tf )), transitively U(C(Bi)(tf )) ≤
U(C(Bi+1)(tf )). Thus, Bi is not a fix-point of FB .

Finally, Theorem 3 provides bounds on the fixed-point found by the algorithm.

Theorem 3. For some DAG G = (T,D) and t ∈ T , let Bbounds(t) be de-
fined by [L(E(t), U(

∑
t′∈indep(t)

E(t′))], with indep(t) = {t′ ∈ T | M(t′) = M(t) ∧

{(t, t′), (t′, t)} ∩DTC = ∅} and GTC = (T,DTC ) the transitive closure of G. If
B(t) is bounded by Bbounds(t), then FB(B) is bounded by Bbounds(t) as well.

Proof. L(FB(B)(t)) = L(E(t)) holds trivially due to the union operation in the
definition of B in Equation 4.4. The upper bound considers two cases. First case
is when U(ξ)>U(ζ) and U(FB(B)(t)) = U (En(B)(t′) +B(t′))− U (En(B)(t)) +

U

( ∑
t′′∈{eo(B)(t)\eo(B)(t′)}

E(t′′)
)

where t′ is the last completing task in ee(B)(t).

The term U(En(B)(t′) + B(t′)) − U(En(B)(t)) is only computed using tasks in
indep(t). This is because U(En(B)(t′)) is derived from tasks that t′ depends
on, and U(B(t′)) is derived from tasks not in U(En(B)(t′)) but in eo(B)(t′).
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Hence, U(En(B)(t′) + B(t′)) is not computed using duplicates of the execution
time of any task. U(En(B)(t)) is computed using all tasks having a depen-
dency to t. As a result, the difference U(En(B)(t′) + B(t′)) − U(En(B)(t)) is
not computed using any tasks with dependencies to t. It is also not computed
using any tasks dependent on t since those have not been enabled yet to con-
tribute to any of the three constituent terms. Tasks in eo(B)(t) can neither have
a dependency to t since they are completed before U(En(B)(t)), or have de-
pendencies from t since those are enabled only after the completion of t. The

term U

( ∑
t′′∈{eo(B)(t)\eo(B)(t′)}

E(t′′)
)

adds tasks that are in eo(B)(t) but not in

eo(B)(t′) thus avoiding duplicates. Therefore, U(FB(B)(t)) is computed using
tasks in indep(t), without duplicates. In other words U(FB(B)(t)) is bounded
by U(Bbounds(t)). The second case is when U(ξ)<U(ζ) and U(FB(B)(t) =

U

( ∑
t′′∈eo(B)(t)

E(t′′)
)

since U (En(B)(t)− En(B)(t)) = 0 . As already explained,

tasks in eo(B)(t) are in indep(t), so also in this case U(FB(B)(t)) is bounded by
U(Bbounds(t)).

4.5 Experimental Evaluation

To show the scalability of the analysis approach presented in this chapter, we
apply it to a large-scale industrial analysis problem, and compare the analysis
results with results obtained by a static worst-case analysis. The application is
from the same application domain as the case application discussed in Section 1.4,
mapped to a multi-processor multi-core GPP platform. The analyzed DAG is a 6
degree of freedom digital control application that controls an imaging subsystem
in a commercial wafer scanner. It consists of 2285 tasks mapped to a platform with
three octo-core GPP processors, where the 8th core on each processor is reserved
for other processing purposes. The model is calibrated with time measurements
obtained by measuring block execution timing in isolation on the machine. Our
analysis approach is used to estimate the contention on the shared cache.

The application DAG contains a set of dependencies that enforces a fixed-
order schedule on each processor resource. Additionally, the DAG has lots of
dependencies between tasks mapped to different cores. To model core-to-core
(c2c) communications, which occur through shared L3 cache, 5377 c2c tasks are
automatically added to the DAG and mapped to 3 (FCFS) resources, one for
each processor. Each c2c task has an assumed execution interval of [5, 5]ns. The
decorated DAG is analyzed using our interval analysis, and compared to static
analysis that does not use enabled intervals to estimate contention dynamically.
To this end, we use a best-case and a worst-case static analysis.

In both cases, for each task the interference of other tasks is estimated, which is
then used as a measure to scale up the busy interval of that task correspondingly.



CHAPTER 4. ANALYSIS 69

0 10 20 30 40 50 60 70 80 90 100 110 120
Maximum makespan (µs)

p1.1
p1.2
p1.3
p1.4
p1.5
p1.6
p1.7
p2.1
p2.2
p2.3
p2.4
p2.5
p2.6
p2.7
p3.1
p3.2
p3.3
p3.4
p3.5
p3.6
p3.7

P
ro

ce
ss

in
g
 U

n
it

Static, no contention
Interval analysis
Static, worst-case est.

Figure 4.8: Makespans of a DAG modeling an industrial-sized control application
in a wafer scanner, mapped to 3 octo-core processors.

When all tasks have been scaled, their resource binding is removed. By doing so,
their busy intervals remain fixed, since there can be no further interference with
other tasks. After scaling and re-mapping its tasks, the DAG can be analyzed
with the interval analysis algorithm of Section 4.4, which then reduces to a single
iteration of max-plus operations on the tasks in topological order. For best-case
analysis, where no contention is assumed, each task t ∈ T is initialized with
B(t) = E(t) and its resource binding is removed. For worst-case analysis, tasks
are assumed to be interfering if interference can not be ruled out by the direct or
indirect dependency relations between tasks.

Figure 4.8 shows the maximum makespan (the worst-case completion of the
last scheduled task) for each core, obtained our by interval analysis, static analysis
neglecting contention, and static analysis assuming worst-case contention. The
model is analyzed in less than 10 seconds. The analysis results show that, on
average, the worst-case makespan calculated with interval analysis is 46% lower
compared to static worst-case analysis. On average, the makespans obtained with
our analysis are 40.2% above the makespans where no contention is assumed. Part
of this difference is caused by contention and part by over-estimation; exactly in
which proportion is not easy to pinpoint. This experiment shows that our analysis
can easily handle large-scale models in the order of thousands of contending tasks,
and shows a significant improvement in the provided worst-case bounds compared
to static worst-case analysis.
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4.6 Related Work

SDF analysis is a well-known approach in the design and analysis of distributed
real-time systems. SDF is commonly used in static timing analysis, where tasks
are annotated with fixed execution times [72]. Many approaches focus on through-
put analysis, either by computing the Maximum Cycle Mean [15] with structural
analysis of the graph or by computing the time between the occurrence of equiv-
alent token distributions through analysis of the dynamic execution state of the
graph [28, 74]. The analysis technique in [27] computes the minimum achievable
latency between any two actors in an SDF graph, in terms of their related firings,
i.e. a destination actor firing that consumes at least one token of a specific firing
of a source actor. However, these approaches are unable to model shared resources
that employ runtime arbitration.

In [91], a resource-aware extension of SDF analysis is used in a design-space
exploration technique to dimension multiprocessor systems. Shared resource ac-
cesses are explicitly modeled, and their impact is analyzed by considering the
state-space of the different executions of an SDF graph. Even with fixed execution
times, heuristics are needed to prevent a state-space explosion. The work in [85]
considers HSDF graphs that are mapped to shared resources arbitrated by run-
time arbiters in the class of latency-rate (LR) servers (e.g. Round-Robin, TDM
and priority-based with rate controller). Actors scheduled by these starvation-free
LR-servers are modeled as two vertices that model the access rate and latency.
These approaches cannot analyze graphs consisting of actors with varying execu-
tion times that are scheduled on shared FCFS resources.

Real-Time Calculus (RTC) [76] models event streams by arrival curves, which
bound the minimum and maximum number of events seen in a stream for any
time window of some size (i.e. characterization in the time-interval domain).
The event streams are related to service curves that denote the minimum and
maximum amount of service available on a resource for any window of time. The
resulting output streams are propagated to subsequent tasks. Since the RTC
arrival curves are defined over any time window, information about absolute time
is lost. Therefore, it cannot distinguish absolute time offsets in streams, resulting
in pessimistic bounds when merging e.g. two strictly periodic streams that have
a phase shift relative to each other [83]. Also, RTC assumes arrival curves are
given. In our approach it is sufficient to know the minimum and maximum task
execution times.

The SymTA/s approach [36] combines concepts from RTC and real-time
scheduling [79] to calculate the worst-case response times of tasks. Task activa-
tions are characterized by a period and an enabling jitter. With local schedul-
ing analysis (Round-Robin, TDM, Rate-Monotonic Scheduling), the worst-case
response times of tasks are calculated. To this end, the maximum possible inter-
ference experienced by a task is determined based on the maximum number of
activations of interfering tasks within the response time of a task. The results are
propagated to subsequent system components in order to perform a system-level
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analysis. In [70], the accuracy of this work is improved by taking into account the
effect of pipelined processing and bursty event arrivals.

Similar to [76], these approaches use enabling characterization in the time-
interval domain, and hence suffer from the same inaccuracy problems due to
stream correlations that are not taken into account. Our approach also calculates
response time bounds based on best-case and worst-case task interference, how-
ever, contrary to [36] we use interference estimates based on task enabling in the
time-domain. This allows more accurate analysis of FCFS-scheduled resources.

The approach in [34] provides HSDF analysis for run-time schedulers that
are not in the class of starvation-free schedulers. Similar to [36], task timing
characterization comprises a period and enabling jitter, which are used to calculate
task response times by analyzing the best-case and worst-case interference that
tasks can experience. With the calculated response times, best-case and worst-
case schedules are computed with which the enabling jitter is re-computed. The
approach iterates until response times do not increase anymore. The resulting
analysis flow broadens the scope of dataflow analysis to include non-starvation-
free schedulers. In [33], this work is further extended with support for multi-rate
dataflow graphs of any topology, including cyclic dependencies.

The FCFS scheduling we consider is within the class of starvation-free sched-
ulers considered in [34], however, their response time calculation based on the
maximum number of interfering activations in the time-interval domain is not
suitable for FCFS scheduling, because FCFS interference depends on the enabling
of tasks in absolute time. If these absolute timings are not known, the interference
that a FCFS scheduled task experiences can only be calculated by assuming that
all other tasks mapped to the same resource that have no dependency relation to
this task are interfering. We employ a similar fixed-point iteration on response
times, which enables analysis of systems with cyclic resource dependencies, but
we consider best-case and worst-case task enabling bounds in absolute time.

Analysis methods based on model checking tools, like the popular UPPAAL [47]
tool, use Timed-Automata (TA) [4] to verify timing properties [35]. The execu-
tion state-space of these TA is exhaustively searched to e.g. find worst-case timing
properties. This results in very accurate bounds, but model checking inherently
suffers from state-space explosion. Different approaches focus on heuristics and
model-reductions to limit the state-space. In [90], UPPAAL is used to analyze the
timing of a RapidIO network. By applying heuristics, somewhat larger models
can be handled at the cost of accuracy, but analysis of the full system model under
high traffic load is not possible without reverting to simulation techniques. The
work of [29] combines model checking with Real-Time Calculus. Scalability of the
TA-analysis is improved by abstracting part of the system under consideration
into a single arrival curve.
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4.7 Outlook
The current analysis is limited to Homogeneous Dataflow. An interesting devel-
opment would be to extend the analysis to support full SDF semantics. This
would require a more elaborate estimation of task interference (see Section 4.3),
where possible multiple firings of interfering tasks are taken into account. To this
end, the production intervals of individual tokens need to be tracked, in order to
estimate different enabling intervals for different firings of the same task.

Another direction for further development of the analysis flow could be back-
pressure modeling. Currently, the analysis can take into account the delay due to
contention on shared resources, but not the additional delay due to back-pressure.
Even though we can detect the occurrence of back-pressure (see Section 5.5.1),
it would be interesting to extend the current analysis technique to also take into
account this kind of delay.

4.8 Summary
This chapter presented a timing analysis technique with which the worst-case
timing of an application mapped to a heterogeneous multiprocessor platform can
be analyzed. The application is modeled by a Directed Acyclic Graph (DAG) with
vertices that represent tasks and edges that represent data dependencies. Tasks
are assigned an execution interval that expresses the best-case and worst-case
bounds on their execution time. The DAG is assumed to be statically mapped to
a platform consisting of resources that employ First-Come-First-Served (FCFS)
arbitration, and follows HSDF execution semantics without any iteration overlap.

The chapter showed how to find task timing intervals that conservatively
bound the task execution timing of any concrete execution of the modeled ap-
plication. The iterative approach that was used is explained in detail, together
with its main abstractions that improve scalability. Proofs showed that the iter-
ation will converge on a fix-point if one exists, and that the task timing intervals
found at that fix-point will be conservative for any possible execution of the graph.
Finally, we related this analysis technique to techniques described in literature.



Chapter 5

Design Flow

This chapter discusses the details of the design flow introduced in Chapter 1 (see
Figure 1.6). With an application, platform and mapping specification as inputs,
the flow generates dataflow models with which the performance of an application
mapping is analyzed, and it synthesizes the input models into a corresponding
implementation that is able to meet the observed performance. A short overview
is presented in Section 5.1, followed by the platform, mapping and application
specification in Section 5.2. The steps that synthesize these abstract specifica-
tions into an RTL-level platform implementation and binary application code are
discussed in Sections 5.3 and 5.4. Section 5.5 shows how to extract a timing model
from a system specification and how to use it to obtain conservative timing esti-
mates. After a discussion on related work in Section 5.6, the chapter concludes
with an outlook and summary in Sections 5.7 and 5.8.

5.1 Methodology

The application domain, execution platform and timing analysis technique dis-
cussed in Chapters 2, 3 and 4 form the pillars of the design flow introduced in
Chapter 1. For clarity, an overview of the design flow is shown again in Figure 5.1.

The box labeled specification shows the input for the design flow, consisting
of a specification of the platform, application and mapping instances, and a set
of timing constraints. These specifications can be automatically implemented, as
shown in the two leftmost boxes labeled platform synthesis and code generation, or
analyzed as shown in the middle box labeled analysis. The performance numbers
found by timing analysis can be checked against the specified timing constraints,
and can then be used to change the platform and/or mapping in order to search
the design-space for a satisfactory solution. This is shown in the box labeled DSE.

The synthesis flow generates an FPGA implementation of the input specifica-
tions. To this end, it provides a hardware synthesis trajectory that generates HDL
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Figure 5.1: Overview of the design flow introduced in Chapter 1.

code of the platform, and a software synthesis trajectory that generates applica-
tion binaries that run on the generated ASIP PUs together with configuration
code to initialize them. The generated HDL can be synthesized into an FPGA
bitstream by commercial FPGA vendor tools. The binary code is uploaded to
the FPGA via a configuration interface that is connected to the memories and
synchronization hardware of the PUs in the platform.

The analysis flow transforms the input specifications into a task graph that
models the application bound to the specified platform instance, modeling both
the computational delays on the PUs and the communication delays induced by
the interconnect. The execution timing of this model can be analyzed using the
timing analysis technique of Chapter 4, which takes into account additional con-
tention delay on shared resources that employ FCFS arbitration. The task execu-
tion timings found by the analysis provide worst-case bounds that are guaranteed
to be met by the synthesized implementation of the specification.

The DSE trajectory is currently mostly a manual process. Platform instances
and mappings are chosen by hand, and task scheduling is either denoted implicitly
in the mapping specification, or FCFS scheduling is performed at runtime. Auto-
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mated scheduling approaches like the one in [2], which uses a due-date heuristic
to schedule control applications onto a homogeneous multi-core multi-processor
platform, can be applied to our platform as well, provided that the task bindings
are fixed and known to the scheduler. If task bindings are not a-priori known, the
approach of [2] needs extension to support heterogeneity before it can be used to
schedule tasks on our platform.

The design flow is used in a case study that maps two digital control appli-
cations to instances of our multi-ASIP platform (see Chapter 6). The presented
mapping approach iteratively selects platform instances with a smaller resource
footprint while timing constraints can be met. These systematic steps, guided
by simple heuristics, are amenable for automation. Together with the aforemen-
tioned automated scheduling technique, this could form the basis for an automated
design-space exploration that, given an application specification, aims to find an
efficient platform instance and mapping.

5.2 Specification

Following the Y-chart modeling paradigm [42], the input for the design flow of
Figure 5.1 consists of a separate platform, application and mapping specification.
The orthogonal input specifications of the Y-chart approach enable separation of
concerns, allowing the designer to more efficiently explore and understand the im-
pact of changes of either of the input models on the overall performance. Besides
these three inputs, a set of timing constraints on the application is also part of the
specification. The next subsections discuss the input specifications of the design
flow in detail.

5.2.1 Platform Metamodel

Platforms can be instantiated by specifying their composition and dimensions in
terms of the platform building blocks. These building blocks and their attributes
are defined in a platform metamodel, which is shown in Figure 5.2.

The toplevel entity in the metamodel hierarchy is the platform, which consists
of platform resources and connections that connect them together. Each platform
resource can have ports, which act as an attachment point for a connection that
relates the two connected ports. A platform resource can be either a communica-
tion resource or a computation resource. Memories are assumed to be part of the
processing units, hence there are no explicit memory resources.

Communication resources are resources that provide facilities for communi-
cation. These resources do no execute code, and serve as communication pass-
through devices. To this end, a communication resource has forwarding rules,
that relate ports for routing and arbitration purposes.

At this moment, switch is the only specialization of communication resource,
which comprises a simple switch unit that arbitrates its inputs to forward a single
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packet each clock cycle, and buffers the inputs which where not selected for output
forwarding due to output contention. With the schedulingPolicy attribute, the
switch arbitration can be set to FCFS or fixed-priority. The number of ports and
buffer sizes can be set with the nPorts, inBufSize and outBufSize attributes.

Computation resources are resources that perform computations or conversion
between internal and external communication. Application tasks can be mapped
to these units, and hence they are the communication endpoints. Therefore,
each computation resource has a networkID attribute, which is used to route
packets through the platform interconnect. Since each computation resource has
a dataflow synchronization unit (see Chapter 3) that triggers the execution of
tasks mapped to it, it has attributes maxInputs and maxTasks that configure the
addressing bits for this mechanism. Furthermore, since it executes code, it has
an instruction memory, whose size is specified with the iMemSize attribute.

Even though computation resources have the same logical memory layout, in
each specialization these memories can be mapped to different physical memories.
The sizes and types of these physical memories are specified by corresponding
attributes of these specializations. Currently, there are 4 specializations: the
rioIF and the three ASIP types discussed in Chapter 3 (i.e. SPU, VPU and LU).
The rioIF specialization converts between interconnect packets and RIO-packets,
and provides an interface to a RIO network external to the platform instance
via an implicit task running on this unit. The other specializations correspond
to different ASIP types that execute signal processing tasks. They can have
attributes for specific architectural features, like the issueWidth that sets the
vector size for a VPU unit, and typeIS that selects whether or not a VPU also
has a shiftadd unit besides its default inproduct unit.

5.2.2 Application and Mapping Specification

Figure 5.3 shows the application meta-model. An application instance consists of
tasks and connections. Tasks have attributes that denote their name and type.
The name attribute is unique to the task instance, and the type attribute matches
an entry of a task implementation library (see Section 5.3). Tasks have zero or
more inputs and zero or more outputs, through which they can communicate data
if they are related by a connection. A connection relates a single task output to
one or more task inputs.

A mapping specification relates tasks in an application specification to a com-
putation resources in the platform specification. To this end, the simple meta-
model shown in Figure 5.4 is used. A mapping consist of bindings, that relate
exactly one task from the application model to exactly one computation resource
from the platform model. The order in which the bindings of tasks to PUs are
specified can be used to set fixed-order task schedules on these PUs.

Figure 5.5 shows an example application mapped to a platform instance, and
the corresponding application and mapping models. The platform instance con-
sists of two SPU PUs and a rioIF PU connected by a switch.
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Figure 5.3: Application meta-model.
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Figure 5.4: Mapping meta-model.

5.3 Platform Synthesis

With the metamodel discussed in Section 5.2.1, model instances can be created
that specify a platform in terms of its connected building blocks. Such a platform
model instance can be transformed into a corresponding VHDL [1, 5] implementa-
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Application model
Task T0; Task T1; Task T2;
Task T3; Task S; Task A;
connect S out0 T0 in0;
connect S out1 T0 in1;
connect T0 out T1 in0;
connect T0 out T2 in0;
connect T1 out0 T2 in1;
connect T1 out1 T3 in2;
connect T2 out0 T3 in0;
connect T2 out1 T3 in1;
connect T3 out A in0;

Mapping model
spu0 {T0; T2};
spu1 {T1; T3};
io {S; A};

Figure 5.5: Example application graph mapped to a platform instance (left). The
application contains four tasks T0 · · ·T3 that interact with sensors represented by
S and an actuator represented by A. Task input- and output names are denoted
outside the task vertices, and vertex grey shading denotes task binding. The cor-
responding application and mapping models are shown on the right. Task names,
except for S and A, match the names of their corresponding assembly templates.

tion by the platform generator, as shown in the left of Figure 5.1. The generated
VHDL implementation can be synthesized into an FPGA bit-file by generic vendor
FPGA synthesis tools.

To transform a platform specification to a corresponding VHDL implementa-
tion, the platform generator performs the following transformation steps:

1. Model parsing. The platform specification is parsed and transformed into
a datastructure consisting of a pair of lists containing the connections and
the platform resources with their attributes.

2. Component instantiation. The platform resource list is traversed, and a
model-to-text transformation is performed for each platform resource. The
transformation generates VHDL code that instantiates a component, in-
cluding the component generic map that is generated based on the values of
the corresponding platform resource attributes from the platform instance
model. The component port list is left blank, since it will be created in a
subsequent transformation step. The types of each instantiated component
matches an entry of a library of VHDL implementations of the platform
resource types (switch, ASIP types, etcetera) defined in the metamodel (see
previous section).

3. Component connection. After instantiation of all components, the plat-
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form connection list is traversed. For each connection, a model-to-text trans-
formation is applied that generates VHDL code that specifies the component
port maps of the two components that the model connection connects. Also,
corresponding signal declarations are generated.

4. Top-level VHDL file creation. The platform generator creates a toplevel
VHDL file. First, the toplevel entity declaration is created, with the rele-
vant external platform connections (memory-mapped configuration bus and
optional external interfaces). Then, the toplevel architecture declaration is
created with the signals that connect different components. Finally, all com-
ponent instantiations with their generic maps and port maps are created.

5. Switch configuration. Finally, the routing tables for the interconnect
switches are generated based on the forwarding rules specified in the plat-
form model instance. For each switch a mif -file is generated that contains
the data for the (static) switch routing table. The generated files are used
by FPGA synthesis tools to initialize memory blocks.

The Eclipse Modeling Framework (EMF, [73]) is used to implement the meta-
model defined in the previous section and the HDL code generator. In EMF, a
metamodel can be defined in the Ecore-format, which is an UML-like class dia-
gram with classifiers and their associations. Given an Ecore specification, EMF
can automatically generate model code and editor code in Java.

The generated model code consists of a Java-class for each classifier in the
Ecore diagram, with corresponding attributes and get() and set() accessors to
these attributes. User code can be added to the generated code to implement
additional functionality. User code (in Java) is added to implement the model to
text transformations discussed earlier in this section.

The generated editor code can be loaded as an Eclipse environment plugin,
where it implements a tree-like user interface to create model instances, with
property views on the tree elements to edit their attributes. The plugin also
provides facilities for model persistence and validation (w.r.t. conformance with
the metamodel). Loading a model instance in Eclipse returns a reference to the
toplevel model entity, a Platform in our case, which is then used to traverse the
model elements to implement the five transformation steps explained earlier.

The metamodel and corresponding HDL code generation can be easily ex-
tended. For instance, the addition of a new ASIP type involves, after creating a
parameterized VHDL implementation of the ASIP once, the following steps:

1. Addition of a new class in the Ecore diagram for the ASIP type. The class
has a specialization relation with the platform resource class. Type-specific
attributes are added to the class if needed (e.g. to specify the sizes of the
physical memories present in the ASIP type).

2. Model code extension. The model code (Java) of the new classifier is ex-
tended with a function that performs the model-to-text transformation of



CHAPTER 5. DESIGN FLOW 81

the classifier attributes.

The same steps are required for the addition of a new communication resource
specialization. All other model transformation code that implements model-to-
text transformations or code that controls model traversal remains unchanged.

The aim of the current implementation of the design flow is mainly to pro-
vide a proof of concept. Therefore, we have chosen to implement the platform
synthesis in a pragmatic way by employing direct low-level model-to-text trans-
formation in Java. Alternatively, the synthesis can be performed at a higher level
of abstraction by standardized model-to-text formalisms implemented by tools
like Acceleo [18], which are well integrated in the Eclipse environment. Also, due
to the experimental state of the tools, no consistency checks on static semantics of
input models have been implemented yet (that also holds for the code generator
described in Section 5.4). These checks, that verify that e.g. certain attributes
or relations are properly set in the input model, can be formalized by specifying
a set of verification rules in the Object Constraint Language (OCL, [64]).

5.4 Code Generation
The design flow presented in this chapter constitutes two separate synthesis flows.
The hardware synthesis flow, discussed in Section 5.3, consists of the elements in
the box labeled platform synthesis in Figure 5.1. It generates platform HDL code
based on a platform model. The software synthesis flow, consisting of the elements
in the box labeled code generation in Figure 5.1. It generates the binary code that
runs on the computational resources of the generated platform, and configuration
code that e.g. initializes the dataflow synchronization units of these resources.

Both flows are similar, in the sense that they rely on the instantiation and
configuration of pre-fabricated implementation templates to realize the imple-
mentation of the overall application or platform. This concept is known from the
platform-based design paradigm [69]. Just like the platform generator, the code
generator has access to an implementation library which it can use to instantiate
and connect application elements. This application design library contains, for
each task that can be instantiated, an assembly implementation for any of the
PU types to which that particular task can be mapped to. The code generator
assembles and links instances of these implementations in order to generate binary
code for the PUs.

To this end it requires a task implementation library, an application speci-
fication, and a mapping specification as input. The code generator transforms
these input specifications into binary PU code and platform configuration code
as follows:

1. Model parsing. The platform, application and mapping specifications are
parsed and transformed into a data structure processorMap that maps each
computation resource to a list of tasks mapped to it. Also, based on the
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connections in the application specification, a data structure connectionMap
that maps each task output to a list of connected task inputs is created.

2. Assembly template instantiation. For each processorMap entry, the list
of tasks mapped to that processor entry is retrieved. Each task in the list
is assembled and partially linked. To this end, based on the type attribute
of a task and the specific specialization of the computation resource, the
corresponding task assembly template is loaded from the implementation
library. The code generator assigns a task ID that is unique to the resource
it is mapped to. This ID is used in conjunction with the processor network
ID to address and synchronize task communication. After assigning the
task ID, the assembly code of the task is converted to binary code, and its
input, state, parameter and temporary memory addresses can be assigned.
A data structure inAddrMap is created, that maps task input names to
input addresses.

3. Output address assignment. After all tasks have been assigned an ID
and input addresses for their input variables, the output variable addresses
that refer to those inputs are assigned. To this end, the code generator
updates the binary code and inserts output addresses based on inAddrMap,
the destination task ID and the network ID of the destination processor. If
a task has an output that is connected to multiple inputs, the corresponding
instruction is copied, where each copy has an output address corresponding
to the input it is connected to.

4. Configuration data generation. Finally, the configuration data for the
platform is generated. This comprises instruction memory and parameter
memory initialization for each PU in the platform, and initialization data
for the dataflow synchronization units. The configuration data is organized
into a stream of data that is to be put on the configuration bus of the FPGA
that implements the platform.

Example 5.1 shows the generation of code for a small example application.

Example 5.1
Consider the application graph and platform instance below, where grey shad-
ing denotes task binding and the dashed edge denotes a scheduling edge.
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Assume T0 is implemented by the following SPU assembly code:
input in0, in1;
output out0, out1, out2;
param p0,p1;
temp t0, t1;
0 multinv in0, in0, t0;
7 mult in1, in1, t1;
0 clipsym t0, p0, out0;
0 clipsym t1, p1, out1;

This example will show how code is generated for T0. To this end, the instan-
tiated assembly template that belongs to T0’s implementation on an SPU-type
processing unit is transformed into binary code.

The SPU has separate input, state/temp and parameter memories, which
are selected by the two highest bits of the 16 bits addresses in the instruction.
Their base addresses are 0x0, 0x4000 and 0x8000 respectively. Output variables
have a base address of 0x0 for internal targets, and 0x8000 for remote targets.
Input addresses are composed of a 5 bits task ID and a 3 bits input number.
The opcodes for mult, multinv and clipsym are 0xB, 0x3 and 0xD respectively.

Since T0 is the first (and only) task on spu0, it will be assigned task ID 0
and its variables are assigned the first free entries in their respective memories.
As a result, the inputs in0 and in1 are assigned address 0x0 and 0x1 respec-
tively, and the parameters p0 and p1 are assigned address 0x8000 and 0x8001.
Temporaries are assigned addresses from the top of the temp/state memory
downwards, since their addresses can be reused by any task mapped to spu0.
Hence, t0 and t1 are assigned addresses 0x7FFF and 0x7FFE. The opcodes
and the stall cycles are known from the assembly, and all internal addresses
have been assigned, so at this point the first two instructions can be converted
to binary. Using Figure 3.7, their binary values will be 0xB0000000007FFF and
0x37000100017FFE. The other two instructions require the input addresses of
spu1 to be known, lest their Y-operands can be set.

Similarly, on spu1, tasks T1 and T2 are assigned task IDs 0 and 1 respec-
tively. Their inputs are assigned address 0x0 and 0x8 respectively. The other
address assignments for spu1 are irrelevant for this example.

Now that all input addresses of all tasks have been assigned, the clipsym
instructions on spu0 can be converted to binary. The Y-operand contains the
remote input address and 4 bits of the remote nID. The cid field contains
the remaining four bits of the remote nID. The first clipsym then transforms
into 0xD07FFF80008108. Similarly, the last clipsym, which gets its stop-bit set
since it is the last instruction of the task, transforms into 0x10007FFE80010100.
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5.5 Analysis

The analysis trajectory that is part of the design flow, consists of the elements
in the third box in Figure 5.1, labeled Analysis. The model generator extracts
a Directed Acyclic Task Graph (DAG) model from the application specification.
With additional input from the platform and mapping specifications, this unbound
and untimed graph can be transformed into a timed and bound graph that models
the execution timing of the application mapped to the platform instance. The
bound graph can be analyzed by the timing analyzer, which applies the analysis
technique of Chapter 4 to obtain worst-case time bounds of all tasks in the graph
taking into account any contention on shared resources.

5.5.1 Modeling Execution Timing

Initially, the model generator transforms the application specification into a DAG.
To this end, each task in the application specification results in a task node in
the DAG, and each connection in the specification results in a dependency in
the DAG. Contrary to connections, which relate task outputs to task inputs, the
dependencies in the DAG relate source tasks to destination tasks. The resulting
DAG is untimed and unbound.

The mapping specification provides task binding information. When tasks are
bound to a resource, an execution time can be assigned to them based on a library
of task execution times. This timing library can be directly derived from the task
implementation library used by the code generator. With additional platform
information, the graph can be transformed to model the execution time of the
application running on the specified platform instance. The next subsections
explain this transformation in detail.

Task Execution Timing

The execution time of a task running on a particular processing unit (PU) depends
on the number of instructions to be executed for that task and the pipeline length
of the PU it is mapped to. All PUs available in our platform template are pipelined
and fetch a single instruction per clock cycle. Therefore, the execution timing of
a task consists of a delay df that corresponds to the fetching of all instructions of
a task, and a delay dp that corresponds to the propagation of the last instruction
of that task through the execution pipeline of the PU. When all instructions of
a task have been fetched, the instruction fetching of a different task can already
start, i.e. for two tasks t1 and t2 executed on the same resource, df of t2 can
overlap with dp of t1, provided that t1 and t2 are independent. If not, t2 can start
only after all instructions of t1 that produce data that t2 consumes have been
propagated through the execution pipeline.

To transform an untimed task graph into a timed graph that models the
execution timing resulting from tasks bound to PUs, each task in the untimed
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(a) Untimed task t1. (b) Two timed actors representing the execution
timing of t1 when it is bound to a resource.

Figure 5.6: When transforming an untimed task graph into a timed graph that
models the execution timing of tasks bound to PUs, each untimed task in (a)
is substituted for two timed actors tf and tp (b) that represent the instruction
fetching and pipeline delays of that task. These actors get assigned execution
intervals df and dp respectively. Grey shades denotes resource binding (white
tasks are not bound to a resource).

graph can be substituted with two dependent actors tf and tp, which are assigned
an execution time corresponding to delays df and dp respectively. Since df of
different tasks mapped to the same resource can not overlap, while df and dp

of these tasks can potentially overlap, actor tf remains bound to a resource in
the timed model and actor tp is not bound to any resource. This is shown in
Figure 5.6.

The execution delays df and dp can be derived from the specifications of Sec-
tion 5.2 and the task implementation library used by the code generator (discussed
in Section 5.4). The task implementation library contains for each application
task a corresponding assembly implementation for any of the PU types it can
be mapped to. Because the PUs do not support conditional branches, and the
number of loop iterations and stall cycles are explicitly specified in the assembly
code (see Chapter 3), the exact number of executed instructions when running a
task on a particular resource is statically known. Therefore, if task t is bound to
a resource r, the execution delay df of substitute task tf can be directly derived
from the assembly code corresponding to the implementation of t on a resource
r, provided that the cycle time of that resource is known. The execution delay dp

for substitute task tp can be derived from the cycle time and number of pipeline
stages of r, which are specified in the platform specification.

The analysis technique of Chapter 4 operates on task execution time intervals,
which specify both the best-case and worst-case execution time of a task, or their
conservative estimates. For a pipeline delay task tp, the best-case and worst-
case execution time are always the same, i.e. its execution interval is given by
[dp, dp]. However, this is not the case for an instruction fetch task tf . Any
communicated output from tf could potentially enable some dependent task, even
though tf has not completed executing yet. Therefore, a lower bound on the best-
case completion time of tf is the moment at which it produces its first output.
Accordingly, tf is assigned a best-case execution time df,min that corresponds to
the delay between the first instruction of the application task modeled by tf and
the first instruction of this task that writes to an output variable, independent
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(a) Initial untimed graph. (b) Timed graph that models the timing of tasks in (a) bound to
PUs.

(c) An additional dependency models a fixed-
order schedule t2 → t3 on the mid-grey resource.

(d) Two additional tasks c1a and c1p model the communication de-
lay between t1 and t2. Accordingly, tasks c2a and c2p model the
communication delay between t1 and t3 respectively.

Figure 5.7: Transformation of an untimed task graph into a timed graph that
models the execution timing of an application mapped to a platform instance. Grey
shades denote resource binding (white tasks are unbound).

whether that output is mapped to a remote task or not. The worst-case execution
time df,max of tf is the delay between the first and the last instruction of the
application task modeled by tf .

Figure 5.7 shows the steps that transform an initially untimed application task
graph (Figure 5.7(a)) into a timed graph that models the execution timing of the
application mapped to a platform instance (Figure 5.7(d)), and the modeling of
PU-bindings is shown in Figure 5.7(b). The other steps are explained in the next
subsections.

Static Order Schedules

When multiple tasks are bound to the same processing unit, their execution order
can be enforced by a static order schedule. These static order processor schedules
can be modeled by adding dependencies between tasks mapped to the same pro-
cessing unit, as shown in Figure 5.7(c). Here, the static-order schedule t2 → t3 is
modeled by adding a dependency between t2f and t3f .
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Static-order schedules can be specified in the mapping specification, where the
order of appearance of tasks denotes the execution order. This can be done either
manually, or by automated scheduling techniques like the one in [2]. Alternatively,
the implicit execution order of the mapping specification can be ignored, to let the
PU hardware perform task scheduling. In that case, the tasks are executed in a
First-Come-First-Served order, and no additional scheduling edges are generated
in the analysis model.

Task Communication

Tasks bound to the same PU communicate directly through shared memory. The
corresponding delay is already modeled in the task execution time. Tasks that are
bound to different PUs (denoted as remote tasks) communicate via the intercon-
nect network that connects the different PUs. In such a case, a source task injects
its output value as a packet into the interconnect network, where it arrives at the
destination task after one or more hops through the interconnected switches. At
each hop, the packet competes for switch output access with possibly other arriv-
ing packets. Currently, our switches employ FCFS arbitration. After arbitration,
a packet is either forwarded to an output, or buffered at the switch input if other
packets are granted access first. Each switch is pipelined, so after arbitration
a packet has to traverse several pipeline stages before appearing at the switch
output, while the switch can already process other access requests. Similar to
modeling task execution timing, the execution timing of a packet passing a switch
can be modeled by two tasks ta and tp, where ta is bound to the switch resource
and models the switch access of the packet, and tp is not bound to any resource,
depends on ta, and models the packet traversing the switch pipeline.

To model communication delay over the interconnect, the edges in a task
graph that connect remote tasks are substituted by a cascade of these ta and tp
substitute pairs, one pair for each network hop between the source and destination
PUs. Figure 5.7(d) shows the transformed graph that models the communication
between remote tasks t1 and t2 and between remote tasks t1 and t3, assuming a
single switch connects the light-grey and mid-grey resource.

Interconnect switches in our platform template use programmable routing ta-
bles that are specified in the platform specification, so the packet routes between
PUs are statically known. Hence, the number of cascaded substitute pairs for
each edge between remote tasks is known at compile time. Also, the access de-
lay, clock cycle time and number of pipeline stages of each switch are known at
compile time, which can be used to determine the execution times of tasks ta
and tp for each substitute pair. For tasks ta and tp, the lower bound is equal to
the upper bound of their respective execution time intervals, since switch access
latency and switch pipeline delay do not vary.

Networks that have switches with a finite amount of buffer space can exhibit
a phenomenon called back-pressure. This occurs when the input buffer of some
switch in the network is full. The switch is then unable to accept new data from
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the blocked input, so packets in the network that are routed through this blocked
input pile up until the blocking input buffer has sufficient space again. Our timing
analysis approach is able to take into account the delay due to contention on the
network, but not the additional delay caused by back-pressure. Therefore, our
analysis is conservative under assumption of the absence of any back-pressure.

With our analysis, it is possible to analyze whether switch buffers are suf-
ficiently large to guarantee that no back-pressure will occur. By counting the
number of potentially simultaneously enabled tasks at any moment in time for
each switch resource and comparing the maximum count of each switch to its
buffer size, the possible occurrence of back-pressure can be detected. To this end,
one use two sorted queues QBC and QWC containing the best-case and worst-
case enabling times of tasks mapped to a switch. The heads of both queues are
checked, popping the lowest value from either one of the queues. For each value
popped from QBC , a counter is increased, and for each value popped from QBC ,
the counter is decreased. The maximum observed counter value for should then
be lesser than or equal to the buffer size of the corresponding switch to guarantee
that this particular switch is not causing back-pressure. If this does not hold, ei-
ther an alternative mapping and scheduling should be selected, buffer sizes should
be increased, or an alternative static network routing should be selected in order
to prevent the occurrence of back-pressure.

5.5.2 Timing Analysis

Given the bound and interval-timed DAG that is constructed based on the appli-
cation, mapping and platform specifications, the timing analyzer (see Figure 5.1)
analyzes the execution timing of this graph, taking into account any possible
contention on both communication and computation resources.

As a result of the analysis, each task in the graph is labeled with an enabling
interval and a completion interval, which conservatively bound the enabling and
completion of that task. These worst-case completion times can be checked against
timing constraints on the IO-delay and makespan of the original application.

The assumption in this analysis is that there is no back-pressure in the in-
terconnect network. The occurrence of back-pressure can be detected with our
analysis (see Section 5.5.1). Subsequently, either an alternative mapping or sched-
ule can be chosen, or buffer sizes of some switches can be increased in order to
prevent back-pressure.

5.6 Related Work

Simulink [56] is the de-facto design tool for (digital) control applications. It
provides a rich library of instantiable and configurable components, and a rigid
simulation framework with which many different functional aspects of a design
can be tuned and verified. Simulink also provides tools to automatically transform
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its model instances into a (partial) implementation. HDL Coder [55] generates
VHDL or Verilog HDL code from a Simulink model. The generated HDL code
constitutes a spatial mapping of the transformed block onto FPGA logic, with
parameterizable area/speed optimization. Simulink Coder [54] generates C-code
from a Simulink model, which can be executed with or without a real-time oper-
ating system on an embedded target. The generated code is single-processor code,
and thus requires further integration when used in a multiprocessor environment.
Simulink lacks a clear distributed semantics as well as timing analysis and verifi-
cation tools, which are essential in the design of resource-efficient implementations
that will always meet timing constraints.

Many academic approaches focus on drawing non-functional properties like
timing early into the design flow. One such approach [16] presents SysWeaver, an
automated model-driven environment that enables analysis and multi-node code
generation for signal processing applications. Here, a Simulink model that serves
as functional input for SysWeaver is enhanced with non-functional properties,
according to which multi-node code is generated by gluing together code generated
by Simulink Coder.

Our design flow follows the same ideology regarding the use of Simulink models
as starting point, and adding timing verification and deployment to the functional
model in order to synthesize a distributed implementation. Both approaches rely
on dataflow timing analysis to provide mapping and and timing verification. How-
ever, where SysWeaver provides software synthesis targeting general purpose plat-
forms only, our approach also provides hardware synthesis, and targets instances
of specialized platforms in FPGA. Finally, SysWeaver implements synchroniza-
tion in software, while our approach suffers less overhead by employing hardware
synchronization.

Several other approaches enforce the synchronous distributed semantics of (a
discrete subset of) Simulink applications by mapping them to a Time-Triggered
Architecture (TTA) [43]. Such architectures rely on the availability of a single
global clock, that is typically distributed over a network that connects the differ-
ent computational nodes. In [65], time-triggered semantics are added to Simulink
models by executing them on virtual machines that implement the time-triggered
task execution and timed network transfers. In [11], a Simulink model is trans-
formed into a SCADE/Lustre model prior to mapping it to a TTA platform. An
MPSoC-based approach that uses a TTA-like synchronization is presented in [66].
Cores start executing after receiving a global heartbeat signal. After executing
all computational tasks, the different PUs can communication over the NoC. The
communicated data is available at the destination after the next heartbeat. The
work in [37] makes the TTA paradigm explicitly visible to the programmer by
means of a TTA-oriented programming language, while [49] takes this approach
a step further by employing a timing-aware programming language, operating
system and processor architecture to map distributed real-time applications.

In our approach, tasks synchronize on the availability of their input data.
This results in less overhead compared to the TTA approach, since TTA has to
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dimension its triggering for worst-case arrival of data. Also, it may be difficult
to synchronize a global clock. Typical TTA platforms consist of general-purpose
processors or DSPs connected by some network with a protocol that supports
TTA. Our platform provides much more specialization in its processing units, and
an interconnect with a much lower latency, giving our approach a big advantage
for large-scale low-latency applications such as motion controllers in lithography
machines. The approach of [49] reduces jitter partially by delaying execution
paths or enforcing round-robin thread-interleaved pipelining without bypassing,
whereas in our approach we achieve predictability by employing large register
files and omitting conditional execution from the PU instruction sets. We allow
unpredictability in the interconnect, and take that into account in our analysis.

There exist many academic design flows that focus on the distributed mapping
of (real-time) streaming applications to (heterogeneous) Multi-Processor System-
on-Chips (MPSoCs). The design flow presented in [39] combines the analysis
and exploration facilities of the SDF3 [75] dataflow analysis tool set with the
MAMPS [44] multi-application system synthesis flow. The result is a platform-
based design framework that provides automated DSE, throughput and buffer
size analysis, and synthesis of homogeneous MPSoC platforms. MAMPSx [20]
extends this design flow by adding heterogeneity and a flexible C-HEAP based
communication assist that decouples communication and computation.

While the model of computation used in MAPSx is similar to that used in our
flow, the analysis techniques in SDF3 and MAMPSx are throughput-oriented.
Since latency is not the main optimization goal for MAMPSx, it can afford to
employ a high-level C-HEAP based synchronization approach, where node to node
communication latencies exceeding 2µs [20] are not uncommon. Furthermore, the
analysis techniques in SDF3 cannot deal with contention on shared resources with
FCFS scheduling, while we can compute bounds on such contention. Finally, the
MAMPSx platform template differs from ours, targeting a combination of general-
purpose processing and fully specialized processing with hardware IPs, while our
template targets a heterogeneous mix of specialized but programmable cores.

Daedalus [78, 62] is a platform-based design framework similar to MAMPS,
that enables automated system-level design-space exploration and synthesis tar-
geting heterogeneous MPSoCs in FPGA. A Kahn Process Network [40] specifi-
cation is used as application input for the design flow, either specified directly
or automatically transformed from a sequential C-program (with restrictions)by
the KPNgen tool. The SESAME architecture exploration tool automatically gen-
erates a platform and mapping specification based on this input specification.
DaedalusRT [8], a hard real-time adaptation of Daedalus, trades the automated
DSE for a platform dimensioning approach based on automated schedulability
analysis. To this end, a Cyclo-static SDF model is derived from the KPN speci-
fication in order to perform this analysis. With ESPAM, a Daedalus(RT) system
specification can be automatically synthesized into an RTL implementation tar-
geting FPGA. Synthesized platforms consist of programmable cores connected to
hardware IP blocks, which communicate through FIFO-buffers in shared memory
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such that the application respects the Kahn process synchronization semantics.
Our design flow operates on application input that follows the (H)SDF model

of computation, which is less expressive but better analyzable compared to KPN.
As a result, with HSDF it is possible to calculate processor schedules at com-
pile time whereas KPN requires run-time mechanisms for synchronization and
scheduling. Since DaedalusRT uses a CSDF model in its analysis, it is able to
calculate processor schedules at compile time. Both Daedalus and DaedalusRT
rely on software implementation of their synchronization mechanisms, whereas
our approach performs synchronization in hardware and (optionally) static-order
scheduling in software. The synthesis flows of both approaches are very similar,
they both rely on the instantiation and connection of library components to com-
pose a platform instance expressed in VHDL. The employed platform templates
are quite different, however. Our platform instances are compositions of differ-
ent specialized programmable cores, whereas Daedalus(RT) maps to a template
consisting of programmable general-purpose cores and hardware IP co-processors.

SystemCoDesigner [32] is another platform-based design methodology that
provides automatic design-space exploration, performance evaluation and system
synthesis. The input for the flow is an actor-oriented application specification,
expressed in SysteMoc, a synthesizable subset of SystemC. The behaviour of the
application actors is controlled by Finite State Machines, with which the (H)SDF,
CSDF and KPN models of computation are realized. The flow can perform au-
tomated DSE to find a Pareto front in terms of latency, throughput and resource
footprint. The performance feedback used for this DSE comes from analytical
models for resource utilization, and simulation for latency and throughput. Sys-
temCoDesigner supports automated mapping to a platform template consisting
of Microblaze processors and hardware IP blocks, connected by an interconnect
that supports FIFO communication (either a buffer or a bus with synchronization
at source and sink nodes).

SystemCoDesigner has a very expressive input MoC which also supports the
HSDF MoC that serves as input for our flow. However, contrary to our efficient
hardware task synchronization, SystemCoDesigner implements task synchroniza-
tion in software. SystemCoDesigner relies on simulation to get timing performance
feedback in its DSE, which is more time-consuming compared to our analytical
approach. Also, simulation is unlikely to cover all possible executions of the sim-
ulated model. Finally, the platform template used by SystemCoDesigner differs
from the one used in our approach. SystemCoDesigner employs either generic
RISC processors or fully specialized hardware blocks, while our template consists
of ASIPs that are in between those two specialization extremes.

5.7 Outlook

In this prototype version of our design flow, a purely structural application spec-
ification is used with an implicit correspondence to a behavioral specification re-
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siding in an implementation library. This behavioral task specification comprises
a hand-made assembly template for each PU type to which the task type can be
mapped to. In a further maturation step, these templates should be generated
directly or indirectly from a Simulink application.

Generating these ASIP assembly templates from e.g. C-code generated with
Simulink Coder [54] is difficult, since the generated C-code can already contain
implicit architecture-specific assumptions. For example, a clipping operation is
typically expressed as an if-then-else construction in C, even though such an opera-
tion does not necessarily have to be implemented with branches. For a compiler or
translation tool, it is very hard to recognize and resolve such implicit assumptions.
Therefore, the input for such a translation should be the Simulink model itself,
or an implementation-independent high-level DSL. Future work could encompass
this automation trajectory and the design of a implementation-independent DSL
that allows for efficient compilation to different ASIP types.

Another improvement point is the automation of the design-space exploration
part of the flow. Currently, the exploration steps and processor scheduling are
performed by hand. In the next chapter, we present several systematic steps that
could be used as foundation for an automatic mapping flow. Future work could
focus on finding and comparing different heuristics to find an efficient platform
instance and mapping given an application specification and timing constraints.

5.8 Summary

This chapter discussed the design flow, briefly introduced in Chapter 1, which
maps application instances onto the platform presented in Chapter 3. Following
the Y-chart approach, the design flow uses three separate input specifications that
model the application, platform and mapping. A set of timing constraints on the
application is part of the input specification as well.

The different input specifications were explained in detail, as well as the hard-
ware and software synthesis steps that synthesize them into an implementation.
The hardware synthesis flow uses a structural platform specification and parame-
terized behavioral RTL-specifications of the different structural elements to gener-
ate a complete platform implementation on RTL-level, which can be mapped onto
FPGA technology by commercial FPGA tools. Similarly, the software synthesis
flow generates binary code by instantiating and connecting assembly implemen-
tations of tasks according to the structural specification of the application.

The design flow provides an analysis trajectory, that generates a timed Di-
rected Acyclic Task Graph that models the execution timing of the corresponding
input specifications. The generated model can be analyzed using the analysis
technique of Chapter 4, taking into account contention on shared resources. The
resulting execution timings provide worst-case bounds, that are guaranteed to be
met by the synthesized implementation, provided that the interconnect network
does not suffer back-pressure. The occurrence of back-pressure can be detected
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with our analysis techniques.
Performance numbers obtained with timing analysis can be checked against

the timing constraints that are part of the input. Based on this comparison, the
platform or mapping specification can be adapted in order to perform a structured
design space exploration that aims to find a satisfactory solution in terms of timing
performance and resource footprint. These steps are currently still performed
manually. Chapter 6 and related work provide an outlook on automation of this
part of the design flow.



94 SECTION 5.8. SUMMARY



Chapter 6

Case Study

This chapter presents a case study in which the industrial control application dis-
cussed in Chapter 1 is mapped to an instance of the platform template presented
in Chapter 3 using the design flow from Chapter 5. The goal of this case study
is to, given an application task graph and a set of timing constraints, find an
efficient platform instance and mapping that meet all application timing require-
ments. To this end, platform instances and task bindings are selected, and the
task graph is transformed to reflect these bindings and the corresponding timings.
Subsequently, the resulting task graph is analyzed with the technique discussed
in Chapter 4 to verify its timing. Following a simple set of heuristics, an effi-
cient platform instance and mapping that are able to meet application timing
constraints are found in a systematic way.

The next section shows the application task graph and the timing constraints
that are the input for this case study. Section 6.2 gives an overview of the mapping
approach, followed by the concrete mapping and platform selection process in
Section 6.3. The chapter concludes with a discussion on the results in Section 6.4
and a summary in Section 6.5.

6.1 Application Task Graph

Figure 6.1 shows the task graph of the case application introduced in Chapter 1.
The graph consists of 145 tasks, ranging from simple additions to large state-
space blocks with more than 200 states. It models the signal processing part of
two connected 6 DoF motion controllers that control the positioning of wafers in
a wafer scanner. The left side of the graph is formed by tasks belonging to the
Long-Stroke (LS) controller, and the right side of the graph consists of Short-
Stroke (SS) controller tasks. The grey nodes in the graph denote the interaction
points with the plant and supervisory controller. The task graph is provided
with sensor input samples through node S. Reference input samples, generated

95
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Figure 6.1: Task graph model of the case application.

Table 6.1: Timing constraints on the task graph of Figure 6.1.

Task Type Completion time
all tasks throughput 10µs
mat8x6 latency 3.5µs

mat13x11 latency 3.5µs

by a setpoint generator, enter the graph through the ref nodes, and actuator
output samples leave the graph through node A. The S, ref and A nodes are not
part of the application considered in this case, but are shown to emphasize the
top-to-bottom flow in the acyclic task graph.

6.1.1 Timing Constraints

Table 6.1 shows the timing constraints on the execution of the task graph of
Figure 6.1. The application is intended to run at 100kHz, so assuming single-rate
execution starting at time instant 0, there is a completion time constraint of 10µs
on each task in the graph. The IO-delay is constrained to 10µs. Assuming a total
delay of 6.5µs for sensing, actuation and moving the data between FPGA and
IO-boards, the controller is required to calculate an output sample within 3.5µs.
Hence, tasks mat8x6 and mat13x11 have a completion time constraint of 3.5µs.
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6.2 Approach

The decision problem of finding an optimal mapping and scheduling of a given
task graph onto a given platform instance without a-priori binding information
is known to be NP-complete [2]. In this case study however, both the platform
instance and the task bindings are not a-priori known, and are part of the opti-
mization problem. Now, the decision problem complicates to finding a mapping,
task scheduling and platform instance that will require a minimal resource foot-
print while resulting in a minimal IO-delay and maximum throughput.

Due to the high complexity of this decision problem, we will not follow an
analytic approach to find a minimal platform instance and application mapping,
but instead we use heuristics to find a platform instance that is efficient in terms of
the number and size of processing units. Such an approach can not be guaranteed
to find an optimal solution, but shows better scalability in terms of the number
of exploration steps. The steps taken in our approach are systematic and follow
simple heuristics, so the process is amenable for automation.

In order to find a suitable platform instance and mapping, we start with
a platform instance that is unconstrained in terms of FPGA resources. This
allows the selection of a platform instance, mapping and processor schedules that
enable the exploitation of all task-level and data-level parallelism present in the
application. In subsequent steps, based on timing analysis and the structure of
the task graph, this platform instance will be reduced by trading timing slack
for increased resource sharing. To this end, processor schedules of processing
units of the same type are merged if that does not violate a timing constraint.
Consequently, processing units with an empty binding are then removed from the
platform instance.

At each step, when task bindings and processor schedules have been selected,
a dataflow model that models the execution timing of the bound task graph is
constructed (see Section 5.5). With dataflow analysis, the starting times and
completion times of the tasks can be computed and visualized in a Gantt-chart.
In the first few steps, the task communication delay will be ignored. The reason
to do so is twofold: since the starting point is a maximally parallel platform
with hundreds of PUs, the huge amount of network communication in the first
few platform instances will not at all be representative for the amount of network
communication in the final solution. Secondly, the design space for an interconnect
network that connects hundreds of PUs is huge. The effort of selecting a network
is huge, while the resulting network delay will not provide any additional insight
that is useful for the next iteration of platform selection. Therefore, we will
first reduce the computational resource footprint of the platform using traditional
dataflow analysis. When a suitable platform is found that cannot be reduced any
further, an interconnect network is added. Finally, with the interval analysis
technique presented in Chapter 4, the worst-case timing of the selected platform
and mapping can be verified against the set of timing constraints.

The approach of reducing a maximally parallel platform has the advantage
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that the process requires only steps that merge processor schedules, and that sub-
sequent timing analysis provides direct feedback on the feasibility of a mapping
decision. If in some step the choice to bind a task to a specific PU results in the
violation of a timing constraint, it is immediately clear that any further explo-
ration based on this mapping choice cannot result in a feasible solution. Only
a single backtracking step prunes that part of the search space, and returns the
search process to a feasible solution in terms of timing. From there, the search
for a feasible solution with lower resource requirements can be continued.

Since the opposite approach, where a minimal platform is expanded until
the timing constraints are met, starts from an infeasible solution, it lacks direct
feedback on the eventual timing feasibility during intermediate steps. Such an
approach would therefore need to move tasks from a shared resource to a new
resource until the timing constraints are met. Subsequently, excess resources can
be removed by trying to merge task bindings again. The number of steps required
to find a feasible solution would therefore larger for such an approach.

6.3 Platform and Mapping Exploration

Initially, a platform instance with unlimited resources is assumed, as explained
in Section 6.2. With this platform, a mapping can be chosen that maximally
exploits the available task-level and data-level parallelism, by mapping each task
to a private instance of its best mapping target in terms of execution time. If
there is a tie on minimum execution time in the selection of a mapping target,
the PU type with the lowest resource footprint is chosen.

After binding each task of the task graph of Figure 6.1 to a resource and
selecting a static-order schedule for each resource (best-effort, by hand), the graph
is transformed and analyzed with the techniques explained in Section 5.5 and
Chapter 4. Task execution times are calculated from their corresponding assembly
code, assuming a 200Mhz FPGA design. Figure 6.2 shows a Gantt-chart of the
execution timing of this initial mapping.

The vertical axis shows the instantiated resources (without annotation) and
the horizontal axis denotes time. Each bar represents the instruction fetching
period of a single task, and grey shading denotes the type of resource the corre-
sponding task is bound to (see Section 5.5.1). For clarity, only the timing bars
of the instruction fetching part of the execution time are shown, the pipeline de-
lay bars are omitted. The initial mapping uses 7 LU-type PUs (dark grey), 112
SPU-type PUs (white) and 26 VPU-type PUs with issue widths between 8 and
64 (light grey).

The two encircled bars near the bottom of the figure correspond to the two
tasks with a latency constraint on their completion, mat8x6 (top) and mat13x11
(bottom). With this mapping, they complete well within their budgets of 1.490µs
and 1.620µs respectively. The application makespan is dominated by the exe-
cution of 4 specific tasks near the bottom, which correspond to the state-space
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Figure 6.2: Gantt chart showing the execution timing of the initial mapping.

precalculation tasks of the SS controller. The last state-space precalculation task
completes at 6.115µs, which is also well within its budget of 10µs.

6.3.1 Merging Critical Task Bindings

Performance analysis on the mapping chosen in the previous sections shows that
there is considerable slack in the completion time of mat8x6 and mat13x11. This
slack will be used to reduce the resource footprint of the current platform instance,
by increasing the amount of resource sharing. To this end, first the critical tasks
will be redeployed to a smaller set of resources where possible, as long as it does
not violate any latency constraints. Then, the remaining IO-delay slack and/or
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Figure 6.3: Critical tasks in the task graph model. Critical LS tasks are colored
light grey, and critical SS tasks are colored dark grey. The uncolored tasks are
non-critical.

remaining throughput slack can be used to redeploy the non-critical tasks to a
smaller set of resources.

Since the sets of critical tasks of the LS and SS controller have little overlap,
the redeployment will be done first for the LS controller, and then for the SS
controller. Starting at the LS sink task mat8x6 of the application graph, all tasks
that belong to the LS that are reachable by only traversing backwards through
incoming dependencies are critical for IO-delay, and thus eligible for redeployment
in this merging step. Figure 6.3 shows the critical LS tasks (light grey) and critical
SS tasks (dark grey).

PU schedules with critical LS tasks that run on the same PU type are merged
when possible, removing any PU with an empty schedule from the platform in-
stance. Figure 6.4 shows the task execution timing after merging the critical
LS schedules. The makespan and IO-delay of the SS have not changed, but the
completion time of mat8x6 has been almost doubled to 2.950µs. The resource
requirements have been reduced to 2 LU (-5), 62 SPU (-50), 13 VPU8 (-3), 6
VPU16 (-0) and 4 VPU64 (-0) processing units.

Similarly, merging the task bindings of the critical SS tasks results in the exe-
cution timing shown in Figure 6.5. Now, the makespan has increased to 6.395µs,
because the state-space postcalculation tasks and the three cvg tasks have been
sequentialized by redeployment, so that the state-space precalculation task that
dominates the application makespan is started later. The completion of mat13x11
has increased to 2.030µs while the completion time of mat8x6 remains unchanged.
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Figure 6.4: Execution timing after merging the task bindings of critical LS tasks.

Figure 6.5: Execution timing after merging the task bindings of critical SS tasks.

The resource footprint after this merging step has been reduced to 2 LU (-0), 9
SPU (-53), 13 VPU8 (-0), 1 VPU16 (-5) and 4 VUE64 (-0) units.

The processor schedules with critical tasks have been merged for the LS and
the SS controller separately. In the next step, the critical schedules of both the
LS and the SS are merged where possible. At this point, the only critical PU
schedules that can be merged without violating the latency constraints are the
two LU schedules (top two resources in Figure 6.5). Figure 6.6 shows the execution
timing after redeploying the task running at the bottom LU to the the top LU,
where it is executed at the end of the schedule.
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Figure 6.6: Execution timing after merging the task bindings of critical LS and
SS tasks.

Figure 6.7: Execution timing after merging the task bindings of non-critical
tasks.

The IO-delay tasks mat8x6 and mat13x11 now complete at 2.950µs and
2.885µs respectively, and the last completing task completes at 6.395µs. The
resource footprint has reduced to 1 LU (-1), 9 SPU (-0), 13 VPU8 (-0), 1 VPU16
(-0) and 4 VPU64 (-0) units.

6.3.2 Merging Non-critical Task Bindings

Now that all critical tasks have been sequentialized where possible, the non-critical
tasks are redeployed. Non-critical tasks can be appended at the end of schedules
with critical tasks until the throughput constraint is violated, or they can be
scheduled in possible timing gaps before critical tasks. Figure 6.7 shows the
execution timing after redeploying the non-critical tasks where possible.

The resource requirements have reduced to 1 LU (-0), 2 SPU (-7), 1 VPU8
(-12), 1 VPU16 (-0) and 4 VPU64 (-0) units, and the completion times of the last
completing task and the two IO-delay sink tasks remain unchanged at 6.395µs,
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Figure 6.8: Execution timing after reducing the issue width of vector processing
units.

2.950µs and 2.885µs respectively. No schedules can be merged anymore. However,
there is still sufficient timing slack to further reduce the resource footprint.

6.3.3 Final Merging Steps

At this point, all schedules mapped to the same resource type have been merged
where possible. It is not possible to merge any schedules on resources of the
same type any more, since that would either violate the IO-delay constraints (if
the SPU schedules were merged), or the throughput constraint (if any of the
VPU64 schedules were merged). There is still 3.605µs slack time between the last
completing task and the throughput constraint, and also the IO-delay is still well
within budget. Therefore, this remaining timing slack is used to reduce the issue
width of vector units where possible.

There is sufficient slack for the four VPU64 units (bottom 4 vector-type re-
sources in Figure 6.7) to be reduced to four VPU32 units. Also, the VPU16
(second vector-type resource in Figure 6.7) can be reduced to a VPU8. The
resulting execution timing is shown in Figure 6.8.

As a result of reducing the issue widths of these vector units, the resource
footprint has reduced to 1LU (-0), 2 SPU (-0), 2 VPU8 (+1), 0 VPU16 (-1),
4 VPU32 (+4) and 0 VPU64 (-4) units, at the cost of an increased maximum
makespan and IO-delay of 9.050µs, 3.495µs and 3.065µs respectively. Note that
the IO-delay of mat8x6 is now extremely close to the deadline of 3.500µs, while
we do not yet include additional delays due to inter-processor communication. So
even though this current solution likely is an infeasible solution if the exploration
would stop at this point, we still allow this step since we know that in the imme-
diate subsequent step the IO-delay of mat8x6 will be reduced by parallelization
of several sequential tasks that contribute to its delay.

The reduction of the VPU16 into a VPU8 presents a new candidate for sched-
ule merging. However, it is not possible to completely merge the schedules of
the two remaining VPU8 units, since this would result in mat8x6 violating its
completion time constraint. The tasks executing at the beginning the two VPU8
schedules form a sequential bottleneck that prevent a full merging. The other
tasks mapped to these units are executing at disjunct time periods, and can thus
be redeployed without timing impact. Also, there is a significant idle period on
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Figure 6.9: Execution timing after parallelizing some critical tasks by redeploy-
ing them to existing vector units which are wider than required.

each of the four VPU32 units prior to the start of the statespace precalculations.
Therefore, in the last resource reduction step, the first four tasks in the sched-

ule of the bottom VPU8 of Figure 6.8, are redeployed to the four VPU32 units.
This is inefficient in terms of memory, since now a full 32-wide vector is used for
each originally 8-wide vector. However, the tasks that are moved are not very
memory-intensive, and this redeployment allows for the remaining tasks in the
VPU8 schedule to be merged with the other VPU8 schedule. The resulting re-
moval of a complete VPU8 unit compensates the inefficient memory use of the
four tasks moved to the VPU32 units.

The execution timing resulting from this final resource reduction steps is shown
in Figure 6.9. The resource footprint has been reduced to 1 LU (-0), 2 SPU (-0), 1
VPU8 (-1) and 4 VPU32 (-0) units, and the resulting makespan and IO-delays are
8.440µs, 3.105µs and 3.065µs respectively. Even though all tasks still complete
well within budget, it is not possible to reduce the current platform instance any
further by merging schedules.

6.3.4 Adding Communication Delay

Now that the platform instance is reduced as much as possible, the inter-task
communication is taken into account. To this end, an interconnect network is
created by connecting the processing units together by one or more switches.
Since the platform is reduced to only 8 processing units, and the application
consists of two controllers that are loosely coupled, an interconnect consisting of
2 switches is chosen, and connected as shown in Figure 6.10.

More generally, an interconnect network can be composed by applying some
heuristics that e.g. tries to reduce the number of hops per data transfer while
trying to keep the load on the switches low. To this end, PUs that communicate
frequently are connected to the same switch, with a parameterized upper limit
on the number of connected PUs per switch. The resulting disconnected clusters
can then be connected by connecting the most frequently communicating clusters
to the same switch, again applying an upper limit to the number of connected
clusters. This can be repeated until all clusters are connected, forming a tree-like
hierarchical network with most traffic concentrated at the leaves of the tree.

The left switch is connected to processing units that mostly have LS tasks
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Figure 6.10: Final platform instance with two interconnect switches.

deployed on them, and the right switch is connected to processing units that
execute SS tasks. In this way, most communication can occur in a single hop, and
the interference between LS and SS communication remains limited.

The additional delay due to task communication can now be modeled by sub-
stituting communication edges between tasks mapped to different processing units
with a two-actor model that represents the switch access time and switch pipeline
delay for each traversed switch, as explained in Section 5.5.1. Applying the anal-
ysis method, which was explained in Chapter 4, on the resulting model shows
that the worst-case maximum makespan and IO-delays are 8.695µs, 3.275µs and
3.235µs respectively. Taking into account the communication delay raises the
makespan by 3% and the completion times of the IO-delay tasks by approxi-
mately 5.5%. Hence, the assumption that communication time is small compared
to the computation time, based on which we decided to neglect communication
delay until the very last step, proved to be valid for this case.

6.3.5 Results Overview

Table 6.2 summarizes the resource requirements and execution timings resulting
from the different mapping steps followed in this section. With the presented plat-
form reduction process, starting with a maximally parallel platform, a resource-
efficient platform instance and mapping are found with which the application can
be executed well within its timing budgets. The final platform instance obtained
by following a set of simple heuristics cannot be reduced any further by applying
more resource sharing, since merging the schedules of any of the current process-
ing units would result in the violation of a timing constraint. So for this particular
application case and its constraints a platform with minimal resource footprint is
found, however, this is of course not generally the case.

As shown in Section 1.4, the performance requirements of this case application
can not be met by typical GPP platforms used in industry. Even in a best-case
estimation where communication and contention are neglected, the same applica-
tion running on a dual octo-core GPP processor can not meet its requirements.
At best, using an overly optimistic estimation, a sample frequency of 40 kHz and
an IO-delay of 3.949 µs can be achieved.

Step 8 in Table 6.2 shows the worst-case achievable performance on the corre-
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Table 6.2: Resource requirements and their corresponding performance for the
mapping steps shown in Section 6.3.

Step Resources Completion time [µs]
spu vpu lu all mat8x6 mat13x11

1. initial 112 26 7 6.115 1.490 1.620
2. merge LS critical 62 23 2 6.115 2.950 1.620
3. merge SS critical 9 18 2 6.395 2.950 2.030
4. merge critical 9 18 2 6.395 2.950 2.885
5. merge non-critical 2 6 2 6.395 2.950 2.885
6. reduce vector widths 2 6 1 9.050 3.495 3.065
7. final redeployment 2 5 1 8.440 3.105 3.065
8. add communication 2 5 1 8.695 3.275 3.235
Timing Constraint [µs] - - - 10.000 3.500 3.500

sponding platform instance selected from our platform template. The implemen-
tation is guaranteed to meet the observed performance, since worst-case behaviour
including contention is taken into account. With the final selected platform in-
stance, the IO-delay constraint of 3.500 µs is easily met, with a time slack of 0.225
µs or more. The control application can be executed at the intended 100 kHz,
while the last completing task even has a time slack of 2.305 µs with respect to
its deadline.

This case study shows that with our platform template it is possible to instan-
tiate platforms that are able to meet the strict low-latency performance require-
ments of industrial high-performance controllers, without doing any concessions
on the mechatronic performance of the application. We have shown that, given
the application model and its performance requirements, we can find an efficient
platform instance in a few simple steps.

6.4 Outlook
Since the exploration steps followed in Section 6.3 are simple, and the approach
to reduce a maximally parallel mapping ensures direct feedback on the impact of
redeployment choices, the presented systematic approach is amenable for automa-
tion. The assumption that the timing contribution of communication is relatively
small compared to the computation time is valid for this case application. The
last two rows in Table 6.2 show that the worst-case completion time difference
between a mapping that does not take communication into account and one that
does so is less than 0.3µs for the three tasks that determine throughput and
IO-delay.

The choice to take communication into account only at the last step does
not result in an infeasible solution in this last step. Not taking into account
communication delays in the early reduction steps simplifies platform selection,
since the interconnect structure does not have to be instantiated. However, it
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Figure 6.11: Memory layout of two tasks that use a different vector width mapped
to the same vector processor. Vectors v1, v2 and v3 belong to some task t1, and
their width is equal to the vector width of the vector memory. Vectors v4 and
v5 belong to some task t2, and their width is only half the width of the memory.
Segmented memory access allows packing of vectors smaller than the memory
size (shown on the right), which prevents inefficient memory utilization due to
zero-padding when only line-accesses are allowed (shown on the left).

does require sufficient remaining time slack after the final merging step in order
to still meet the timing requirements when finally the communication delay is
added. If in the last step it turns out that the added communication delay results
in a timing constraint violation, it is hard to determine which part of the visited
design space to prune in order to return to a point that is likely to eventually
result in a feasible platform. On the other hand, keeping too much slack will
result in an overly conservative platform reduction. Finding a good rule of thumb
for the amount of time slack to keep is therefore an important factor in the search
for a feasible and efficient solution.

Especially the last few steps of the platform reduction show several aspects
that give rise to considerations for the future development of the hardware plat-
form:

• Pre-emption support. First, consider the execution timing shown in
Figure 6.9. The top vector unit (a VPU8) has a few relatively short tasks
mapped to it, and is otherwise mostly idling. The two critical tasks at the
beginning of its schedule can be redeployed to the VPU32 that has an idle
period at the start of its schedule. Also, the non-critical tasks mapped to
the VPU8 can be redeployed to all four VPU32 units, where they can be
appended at the end of the schedules. However, the remaining critical tasks
on the VPU8 unit cannot be redeployed, since their enabling and deadline
are coinciding with the long execution period of the statespace precalcula-
tion tasks on each of the VPU32 units. These precalculation tasks running
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on the VPU32 cannot be postponed until after the completion of these crit-
ical VPU8 tasks, since that would result in violation of the throughput
constraint.
By adding preemption support to the VPU hardware, the precalculation
tasks on the VPU32 can be interrupted to execute the critical tasks orig-
inally mapped to the VPU8. Consequently, all tasks of the VPU8 can be
redeployed to the four VPU32 units, and the VPU8 unit can then be re-
moved from the platform instance. This can be realized with a simple static
priority-based preemption system, where critical tasks get a higher priority
than the non-critical tasks. The processing units employ FCFS schedul-
ing, so with priority based preemption, a VPU can run a critical schedule
in conjunction with a separate non-critical schedule. However, the interval
analysis technique of Chapter 4 cannot handle preemption yet.

• Segmented vector memory access. The vector units now have a fixed
granularity, i.e. they only support data widths that are equal to their issue
width at instantiation. There are multiple occasions in this case study
where a task that runs optimally on a 8-wide vector unit is redeployed to
a wider vector unit like a VPU32. Besides the additional pipeline delay of
2 cycles for each doubling of the vector issue width, the execution time of
the redeployed task will remain the same. However, where each vector was
8 wide in the original task, now a 32-wide vector is used. Since the other 24
entries of the vector remain unused, such redeployments are very memory
inefficient.
For a more efficient mapping of these smaller tasks, it could be beneficial to
have support for segmented vector memory access, i.e. to allow the vector
memory of wide vector units to be accessed in segments of e.g. 8 entries. In
this way, a wide vector memory line can be shared by multiple smaller tasks,
as shown in Figure 6.11. This can be achieved by using a bitmask on the
write enable of the vector memory, and a bypass from one of the last stages
of the addertree to allow each segment to calculate an 8-wide inproduct
separately. For vector units that support the shiftadd-instructions, the shift
unit needs to be changed such that it can also handle one separate shiftadd-
instruction per segment, or alternatively, the shift unit could be made less
wide than the issue width of the vector unit. In such a case, only tasks
that are mapped to a specific segment can use the shiftadd-instructions.
This saves a lot of resources, since typically tasks that require shiftadd-
instructions are used for updating the state of filters or PID-controllers,
and are therefore not very wide.

• Exploiting subword parallelism on vector units. One step further
would be to enable the parallel execution of multiple smaller tasks on a
wide vector unit, similar to the exploitation of subword-level parallelism
in e.g. Intel SSE instructions on x86 platforms. Full subword parallelism
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support would be too complex to fit into the current architecture and its
instruction format. However, a restricted form which allows the parallel
execution of multiple instances of the same task type could be both beneficial
and feasible. Since these instances have, except for operand values, exactly
the same instruction sequence, it is possible to execute them in an SIMD-
way.

6.5 Summary
In this chapter, a given task graph that models the industrial control application
discussed in Chapter 1 was mapped to an instance of the platform discussed in
Chapter 3. Given two latency constraints and a throughput constraint, a suitable
platform instance was to be found. Assuming a platform with infinite resources
as a starting point, each task in the task graph was mapped to a private instance
of its best mapping target in terms of execution time. This maximally parallel
mapping was then subjected to resource sharing as long as the timing constraints
are met. In a few structured steps, the resource requirements of the platform
instance were reduced as much as possible by merging the schedules of processing
units of the same type, and reducing the width of vector units where possible.
The communication delay was ignored until the last step.

The platform instance that was found after the last resource sharing steps
consists of 2 SPU, 1 VPU8, 4 VPU32 and 1 LU units, connected together by two
switches. In the worst case, taking possible communication contention into ac-
count, the last task in the graph will complete within 8.695µs. The two tasks that
are sink nodes of the critical path of the application complete within 3.275µs and
3.235µs. The deadlines for these tasks were 10µs, 3.5µs and 3.5µs respectively.

The mapping choices made in the last steps of the platform reduction, and
the execution timing of the final mapping showed that, with some architecture
changes, there was room for further improvement and a more efficient mapping.
These architecture changes include static priority-based preemption, segmented
memory access and restricted sub-word parallelism support for wide vector units.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The enormous momentum of the digital revolution can only be maintained if the
semiconductor industry is able to keep up with the fast development pace set by
Moore’s law. To this end, it is paramount that the developments in photolithogra-
phy technology consistently provide the industry with better IC fabrication tools
that enable a steady shrink of transistor size. This requires more sophisticated
controllers that can better control the physical processes in these IC machines,
which already operate at nanometer scale accuracy at accelerations in the order
of tens of G’s.

One of the problematic trends in the development of these controllers is the
growing scale and complexity of the control applications that implement them, es-
pecially in combination with the increasingly strict real-time requirements on their
execution. Two important metrics in this context are sampling rate (i.e. applica-
tion throughput) and IO-delay (i.e. the latency of the execution of a subset of the
application that is more performance-critical). Chapter 1 argued that the current
trend of using general-purpose hardware to execute these applications is likely not
a viable solution for future high-performance control applications. With a case
application that represents a candidate next-generation high-performance digital
controller from industry, we showed by a calibrated timing analysis that it is not
possible to meet the target 100 kHz sampling frequency and 10 µs IO-delay. As
an alternative approach, we have investigated whether a heterogeneous platform
tailored to the application domain is better able to address these strict real-time
performance requirements, and we have addressed the issue of programming such
an architecuture.

Chapter 2 discussed the main characteristics of digital control applications.
Even though the execution timing of such applications is paramount for their
functional performance, they are typically expressed as untimed declarative mod-
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els (in the z-domain). We have argued that typical digital controllers can be
modeled by a Directed Acyclic Graph without iteration overlap that follows Ho-
mogeneous Synchronous Data Flow semantics. The placement of initial tokens
in the HSDF graph can be derived from the z-domain model and actors can be
assigned an execution time based on the piece of atomically executed code they
represent. The timed operational semantics of the HSDF model extracted from
the untimed controller model allow one to reason on distributed controller exe-
cution, and to analyze the timing of its distributed execution. Furthermore, this
model can also be used as input specification for code generation when imple-
menting the corresponding controller.

An HSDF graph modeling a digital controller can subsequently be mapped to
an instance of the heterogeneous platform template presented in Chapter 3. The
presented platform is tailored to high-performance digital control applications, fa-
cilitating low-latency execution of typical controller tasks. The template consists
of a set of ASIP processing units that are connected by a low-latency interconnect.
The processing units all have the same flat distributed memory architecture, and
are efficiently synchronized in hardware according to the HSDF semantics. Differ-
ent processing unit types are tuned towards different application task types, with
a limited specialization compared to e.g. ASICs in order to maintain flexibility.

Chapter 4 presented an analysis technique that calculates the worst-case per-
formance of a DAG mapped to a set of connected resources that employ First-
Come-First-Served arbitration. The input for the analysis is a DAG with tasks
that are labeled with an execution interval denoting their best-case and worst-case
execution time, and a set of task bindings that associate each task in the graph
to a resource. The analysis takes into account the contention on shared resources
by employing an iterative approach that is guaranteed to find a fix-point on the
timing intervals of the graph. The result of the analysis is a set of timing intervals
that conservatively bound the timing of each task in the DAG. With this analysis
we can calculate the worst-case timing of a digital controller mapped to instances
of our platform.

With the platform-based design-flow presented in Chapter 5 we automatically
generate analysis models from a set of models that specify the application, plat-
form and mapping. After analysis has shown that a chosen platform instance and
mapping will yield satisfactory results, the input models can be automatically
synthesized into an implementation that is guaranteed to be able to meet the
worst-case performance found with the analysis. The platform model is automat-
ically synthesized into an RTL implementation, and application and configuration
code is generated from the application and mapping models. The high abstraction
level of the input models, their corresponding implementation gap being covered
by automated synthesis, and the conservative worst-case analysis enables exten-
sive tailoring of platform and application.

This is exemplified in Chapter 6, which discusses a manual design-space ex-
ploration that maps the industrial application case of Chapter 1 to an instance of
the platform of Chapter 3 using the design flow of Chapter 5. With the followed
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approach, an over-dimensioned platform that enables full application parallelism
is reduced into an efficient platform instance that is able to meet the application
timing constraints. The presented steps are simple and systematic, and hence
amenable for automation.

This thesis has shown that a platform-based approach that enables easy map-
ping of digital controllers to instances of a heterogeneous platform template is
a promising direction for future digital controllers. The combination of multiple
specialized processing units that can communicate with very low-latency enables
a good exploitation of the available task-level and data-level parallelism. The use
of an FPGA-based template allows the platform to be tailored to the application,
and the conservative worst-case analysis and automated implementation offered
by the supporting design-flow ensure that the performance constraints are met in
any possible execution of the controller.

7.2 Future Work

Besides the recommendations for future work discussed in the chapter outlook
sections, we identify several more generic directions for future work:

• Currently, our approach only supports single-rate controllers, i.e. all con-
trollers mapped to a platform instance run at the same sampling frequency.
However, some controllers are less time-critical than others (e.g. the Long-
Stroke could be executed at a lower sampling rate than the Short-Stroke).
Support for multi-rate control could improve the flexibility and resource effi-
ciency of our approach. A follow-up study could investigate how to support
multi-rate control, and how to model and analyze it. As mentioned in the
outlook of Chapter 4, one possible future research direction for our analysis
technique is to extend it with support for full SDF semantics. In line with
this direction, future research could focus on the question how SDF can be
used to model, analyze and execute multi-rate controllers.
With the current HSDF synchronization semantics, the hardware used to
synchronize PUs only needs to keep track of the total number of received
tokens for each task mapped to a PU in order to determine which tasks
are enabled. With support for multi-rate controllers, the production and
consumption rates can be different for each actor channel. Hence, to de-
termine which tasks are enabled, the number of received tokens on each
channel should be tracked separately instead. To do so for all synchroniza-
tion units on all PUs would require considerably more logic and memory.
Alternatively, restrictions like mapping tasks with different rates only to
some designated PUs with more elaborate synchronization support could
reduce additional hardware costs. However, this would reduce flexibility
and could negatively affect performance. An in-depth exploration of such
trade-offs could be another direction for future research.
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• The case study of Chapter 6 showed that priority-based pre-emption support
could be useful to e.g. start the execution of a non-critical task in the idle
time of some resource that has some critical tasks mapped to it that have
not been processed yet. Currently, non-critical tasks are scheduled at the
end of the fixed-order processor schedules, so that they cannot hinder the
critical tasks, which are scheduled at the beginning of the schedule. If
critical tasks could pre-empt any non-critical tasks, some non-critical tasks
could be scheduled earlier and be executed in the idle time periods between
consecutively scheduled critical tasks.
Support for pre-emption requires changes both the hardware and the anal-
ysis method. The performance analysis should be extended to take into
account the timing effects of mixed FCFS and priority-based scheduling.
To this end, the contention model of Section 4.3 should be adopted to take
into account the interference tasks can experience by getting pre-empted
by high-priority tasks. Existing work [34] provides a good basis for further
exploration in such a direction.
Assuming two priority levels (critical and non-critical), extending the plat-
form of Chapter 3 with support for fixed-priority pre-emption requires an
additional execution queue for the high-priority tasks, logic that handles
the queue selection and interruption, and a register to store the current
instruction address of an interrupted low-priority task. The interruption
itself simply encompasses storing the instruction address of the interrupted
task and loading an enabled task from the high-priority execution queue.
When no high-priority tasks is available in the high-priority tasks queue,
an interrupted low-priority task can be either resumed or started from the
low-priority queue.

• The application case used throughout this thesis consists of two controllers
that are heterogeneous and compute-intensive. Even though these con-
trollers are some of the most performance-critical controllers in a lithography
machine, there are many more interesting candidate-controllers for our ap-
proach. For example, the FlexRayTMprogrammable illumination technology
in ASML lithography machines handles pupil-shaping of the light-beam by
controlling an array of thousands of individually adjustable micro-mirrors.
Such a controller consists of a large set of very similar mirror controllers. An
interesting follow-up to this work would be to perform a case-study similar
to the one in Chapter 6, targeting this particular controller.
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Glossary

ADC analog-to-digital converter
ALU arithmetic and logic unit
ASIC application-specific integrated circuit
ASIP application-specific instruction set processor
CSDF cyclo-static dataflow
DAC digital-to-analog converter
DoF degrees of freedom
DSP digital signal processor
FCFS first-come first-served
FIFO first-in first-out
FO fixed-order
FPGA field-programmable gate array
FSM finite state machine
GPP general purpose processor
HSDFG homogeneous synchronous dataflow graph
HW hardware
IC integrated circuit
IP intellectual property
KPN Kahn process network
LU lookup unit
LUT lookup table
MAC multiply-accumulate
MIMO multiple-input multiple-output
MIMD multiple-instruction multiple-data
MoC model of computation
MP-SoC multi-processor system-on-chip
NI network interface
NoC network-on-chip
PBD platform-based design
PID proportional integral derivative
PU processing unit
RIO rapidIO
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RT real-time
SDF synchronous dataflow
SDFG synchronous dataflow graph
SIMD single-instruction multiple-data
SPU scalar processing unit
SS state-space
SW software
TDMA time-division multiple-access
TTA time-triggered architecture
VLIW very long instruction word
VPU vector processing unit
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