

The spammed code offset method

Citation for published version (APA):
Skoric, B., & Vreede, de, N. (2013). The spammed code offset method. (Cryptology ePrint Archive; Vol.
2013/527). IACR.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e80e64d1-126a-431f-86f8-a9a4a52459f8

The Spammed Code Offset Method

Boris Škorić and Niels de Vreede

Abstract

Helper data schemes are a security primitive used for
privacy-preserving biometric databases and Physical Unclon-
able Functions. One of the oldest known helper data schemes
is the Code Offset Method (COM). We propose an exten-
sion of the COM: the helper data is accompanied by many
instances of fake helper data that are drawn from the same
distribution as the real one. While the adversary has no way
to distinguish between them, the legitimate party has more in-
formation and can see the difference. We use an LDPC code
in order to improve the efficiency of the legitimate party’s
selection procedure.
Our construction provides a new kind of trade-off: more ef-
fective use of the source entropy, at the price of increased
helper data storage. We give a security analysis in terms of
Shannon entropy and order-2 Rényi entropy. We also propose
a variant of our scheme in which the helper data list is not
stored but pseudorandomly generated, changing the trade-off
to source entropy utilization vs. computation effort.

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in a field that can be
characterized as ‘security with noisy data’. In several security
applications it is necessary to reproducibly extract secret data
from noisy measurements on a physical system.
One such application is the privacy-preserving storage of bio-
metric data. Analogously to password hashing, one can store
biometric data in hashed form in order to prevent inside at-
tackers from learning what the enrolled biometric features
look like. Another application is read-proof storage of cryp-
tographic keys using Physical Unclonable Functions (PUFs)
[28, 29, 26, 6, 22].
Storage of keys in nonvolatile digital memory can often be
considered insecure because of the vulnerability to physical
attacks. (For instance, fuses can be optically inspected with
a microscope; flash memory may be removed and read out.)
PUFs provide an alternative way to store keys, namely in ana-
log form, which allows the designer to exploit the inscrutabil-
ity of analog physical behavior. Keys stored in this way are
sometimes referred to as Physically Obfuscated Keys (POKs)
[16].
In both the biometrics and the PUF/POK application, one
faces the problem that some form of error correction has to
be performed, but under the constraint that the redundancy
data, which is considered to be visible to attackers, does not
endanger the secret extracted from the physical measurement.
This problem is solved by a special security primitive, the
Helper Data System (HDS).
A HDS in its most general form is shown in Fig. 1. The
Enroll procedure takes as arguments a measurement X and
(optionally) a random value R. It outputs a secret S and

Helper Data W . The helper data is stored. In the recon-
struction phase, a fresh measurement X ′ is obtained. Typi-
cally X ′ is a noisy version of X, close to X (in terms of e.g.
Euclidean distance or Hamming distance) but not necessarily
identical. The Rec (reconstruction) procedure takes X ′ and
W as input. It outputs Ŝ, an estimate of S. If X ′ is not too
noisy then Ŝ = S.
Two special cases of the general HDS are the Secure Sketch
(SS) and the Fuzzy Extractor (FE) [12].

• The Secure Sketch has S = X (and Ŝ = X̂, an estimator
for X). If X is not uniformly distributed, then S is not
uniform. The SS is suitable for privacy-preserving bio-
metrics, where high entropy of S (given W) is required,
but not uniformity.

• The Fuzzy Extractor has a (nearly) uniform S given W .
The FE is typically used for extracting keys from PUFs
and POKs.

There exists a generic construction to create a FE out of a SS:
hashing the output of the SS using a Universal Hash Function
(UHF) [8, 27, 20].

!"#$%%&

X R

W

S

'($#)*+&

W ,+-&

X'

!

Figure 1: Data flow in a generic Helper Data System.

!"#$%%&

X R
W=

X!Enc(R)

'($#)*+&

W ,+-&

X'

X = W!EncDec(W!X') .&

Figure 2: The Code Offset Method employed as a Secure
Sketch.

1.2 The Code Offset Method

One of the oldest known SS constructions is the Code Offset
Method (COM) [19, 12]. Here X is a binary string, say of
length n, with probability distribution ρ. The construction
uses a linear error-correcting code that encodes k-bit mes-
sages as n-bit codewords. The encoding and decoding oper-
ations are denoted as Enc and Dec respectively. The COM
takes R uniformly drawn from {0, 1}k and

W = X ⊕ Enc(R) ; Ŝ = X̂ = W ⊕ Enc(Dec(W ⊕X ′)). (1)

This is depicted in Fig. 2. If X is uniformly distributed on
{0, 1}n then the scheme is not only a SS but in fact also a
FE; this holds because a uniform X gives rise to helper data

1

W that leaks nothing about R. The formulas for the FE are:
S = R and W = X ⊕ Enc(R); Ŝ = R̂ = Dec(X ′ ⊕W).
Remark: The COM would work equally well if W were to
point from X to the codeword closest to X instead of pointing
to a random codeword. However, finding the nearest code-
word for an arbitrary string is generally a difficult problem.
Thus, the role of the auxiliary variable R in the COM is
merely to circumvent this problem.
Note that for uniform X the W reveals the syndrome of X,
but nothing about R. Hence R can then be used as a cryp-
tographic key. In this paper we study non-uniform X. A
non-uniform X appears naturally, e.g. in the case of Coating
PUFs [28], where Gray-coded capacitance measurements are
concatenated to form X. Typically not all Gray code words
are represented, which leads to non-uniformity.
Similarly, a biometric feature vector is often split up into
near-independent components which each yield a small num-
ber of non-uniform bits.

1.3 Zero Leakage

For some sources X it is possible to define helper data that
reveals nothing about S. This is sometimes called Zero Se-
crecy Leakage (ZSL) helper data. The information contained
in X is split into two independent parts, one of which serves
for error correction, and one for constructing the secret S.
As we saw above, the COM with uniformX has the ZSL prop-
erty. Another example is the quantile partitioning scheme [31]
of Verbitskiy et al. for continuous X, and its generalization
to non-uniform S [10].

1.4 Contributions and outline

In this paper we propose a simple modification of the Code
Offset Method Secure Sketch. The basic idea is to hide the
helper data amid a number (say m − 1) of dummy helper
data instances. All the instances are a priori indistinguishable
from the point of view of the adversary, The legitimate party,
on the other hand, possesses X ′, which allows for efficiently
finding the correct helper data instance. This workload asym-
metry improves the security. For small m, the attacker may
simply try out all possibilities, which leads to an average at-
tack effort of (m + 1)/2 times the original effort. For very
large m this brute force attack is no longer feasible, and the
attacker is forced to ignore the public data; in this way a
new kind of ‘zero leakage’ is achieved, distinct from the ZSL
of Section 1.3, namely public data that reveals practically
nothing about X (as opposed to zero leakage about S).
The concept of ‘spamming’ the attacker in this way is very
general and is applicable whenever there exists an efficient
way of recognizing the correct W using X ′. In this paper we
show how the ‘spamming’ concept can be applied to the Code
Offset Method. Our scheme requires the use of a linear error-
correcting code with low-density parity check matrix (LDPC)
in order to keep the legitimate party’s workload low.
In Section 2 we introduce notation and assumptions. In Sec-
tion 3 we discuss a version of the COM that does not need
the auxiliary variable R. We call it the Syndrome-Only COM.
We analyze its leakage and briefly review the Leftover Hash
Lemma. In Section 4 we present an information-theoretic
analysis of the generic principle of adding fake data. In Sec-
tion 5 we present our new scheme, which we call the Spammed
Code Offset Method (SCOM). Section 6 contains a security

analysis of the SCOM. Memory requirements and search ef-
ficiency are discussed in Section 7. In Section 8 we present
a modified version of the SCOM where all the helper data is
generated by a pseudo-random number generator instead of
being retrieved from storage. We call this version GSCOM
(Generative SCOM). A discussion and conclusions are given
in Section 9.

2 Notation and attacker model

Random variables are written with capitals, and their real-
izations in lower case. Vectors are in boldface; sets in calli-
graphic font. Concatenation is denoted as ||. The notation
dH(x, y) stands for the Hamming distance between x and y.
The logarithm ‘log’ has base 2. The natural logarithm is ln.
The unit vector ej consists of all zeros, except for a ‘1’ in
position j. The Kronecker delta is written as δx,y.
The Code Offset Method works with a linear code C that has
n-bit code words and k-bit messages. The encoding and de-
coding algorithms associated with this code are denoted as
Enc: {0, 1}k → {0, 1}n and Dec: {0, 1}n → {0, 1}k respec-
tively. The algorithm for computing the syndrome is denoted
as Syn: {0, 1}n → {0, 1}n−k. If the decoder is a syndrome
decoder, then the mapping from a syndrome to a minimal
error pattern is called SDec: {0, 1}n−k → {0, 1}n.
We consider a source (biometric/POK) whose output at en-
rollment is a bit string X ∈ {0, 1}n. The string R in Fig. 2
has length k. The helper data is called W . In the FE setting,
the cryptographic key that is ultimately derived is denoted
as Q ∈ {0, 1}`.
We will use shorthand notation pxw = Pr[X = x,W = w],
pw = Pr[W = w] and px|w = Pr[X = x|W = w], when it does
not cause ambiguity. We define qz = Pr[Syn(X) = z]. The
public data stored in nonvolatile memory is P .
The outcome of the measurement in the reconstruction phase
is denoted as X ′ ∈ {0, 1}n. The X ′ is a noisy version of X,
and in general does not have the same probability distribution
as X. The estimator for the key Q, derived from X ′ and the
public data, is denoted as Q̂.
We will rely on a cryptographic hash function f . Further-
more we will use a Universal Hash Function g(x, a), where
the second argument is public auxiliary randomness.
The Shannon entropy of a random variable X is written as
H(X). Conditional Shannon entropy is denoted as H(X|Y).
The mutual information between X and Y is written as
I(X;Y). The Kullback-Leibler distance from X to Y is
D(X||Y).
The attacker model is summarized as follows. We distinguish
between two scenarios:

1. Biometric database for authentication.
The adversary can read but not manipulate the public
data P . His aim is to learn as much about X as he can.1

2. Secure key storage with a POK.
The adversary has access to the device which contains
the POK. He cannot re-activate the device’s enrollment
mode of operation. The opacity of the POK, and the em-
bedding of the POK in the device, prevent the adversary

1He may exploit this knowledge in various ways: (i) Some part of
X may reveal information about medical conditions. This is a privacy
risk. (ii) Construct a fake biometric in order to pass authentication.
This is a security risk. (iii) Cross-linking of people across different
databases. This is a privacy risk.

2

from reading out Q from the POK. Furthermore, phys-
ical tampering with the POK is unerringly detected by
the device at the reconstruction phase. The public data
P is stored on the device in insecure nonvolatile mem-
ory. The adversary is able to read and to manipulate P .
There is no Public Key Infrastructure that would allow
the device to verify the authenticity of the public data.
The adversary’s main aim is to learn the POK key Q.
A secondary goal is to cause the device to accept a key
other than Q as the correct key.

In both scenarios the adversary is able to discern whether
reconstruction is successful. He also observes the running
time of the reconstruction algorithm. We assume that no
other side channels exist.

3 The Syndrome-Only COM

3.1 Construction

As was mentioned in Section 1, the only role of the auxil-
iary variable R in the COM is to avoid the difficult problem
of finding the codeword closest to X. Here we present an
alternative way of avoiding this problem. This construction
does not need auxiliary random variables, and thereby sig-
nificantly simplifies security analyses (see Sections 3.2, 4 and
6). We present two versions: (1) A version that requires a
syndrome decoder SDec. See e.g. construction 3 in [11]. (2) A
version without such a requirement. Instead, it makes use of
a lookup table that allows arbitrary syndromes to be mapped
to n-bit words in a deterministic way.

Version 2 needs a separate Setup phase. The two versions
have the same enrollment algorithm, but their reconstruction
algorithms differ. We start by presenting version 1. (The
abbreviation SO stands for ‘Syndrome-Only’.)

Algorithm SO1.Enroll

1. Measure X ∈ {0, 1}n.

2. Compute helper data W = SynX.

3. Generate salt ζ. Compute h = f(W ||ζ||X).

4. Publicly store P = (W, ζ, h).

Algorithm SO1.Reconstruct

1. Read P ′ = (W ′, ζ′, h′).

2. Measure X ′ ∈ {0, 1}n.

3. Compute σ = W ′ ⊕ SynX ′.

4. E = SDecσ.

5. X̂ = X ′ ⊕ E.

6. ĥ = f(W ′||ζ′||X̂).

7. Abort with failure if ĥ 6= h′.

We note the following,

• The size of the helper data W is only n − k bits, as
compared to the n bits in the original COM.

• Steps 3 and 4 of SO1.Reconstruct make use of the lin-
earity of the syndrome: σ = W ′ ⊕ SynX ′ = SynX ⊕
SynX ′ = Syn(X ′ ⊕ X). This makes it possible to per-
form the steps prior to decoding without leaving the ‘syn-
drome space’ {0, 1}n−k.

• This construction is compatible with the ‘reverse fuzzy
extractor’ protocol proposed in [30], and similar proto-
cols where the decoding step is outsourced.

• At reconstruction the public data may have been (ma-
liciously) altered, which is why we use the notation P ′,
W ′, ζ′, h′ in step 1 of algorithm SO1.Reconstruct.

• In step 3 of SO1.Enroll, X is hashed together with the
helper data. This way of protecting the helper data
against manipulation was introduced by [7]. Alterna-
tively, one may use a Message Authentication Code with
Key Manipulation Security [9].

Algorithm SO2.Setup

1. For j ∈ {1, . . . , n− k}:
Find Lj ∈ {0, 1}n such that SynLj = ej .

2. Publicly store L = (Lj)
n−k
j=1 .

SO2.Enroll = SO1.Enroll.

Algorithm SO2.Reconstruct

1. Read P ′ = (W ′, ζ′, h′).

2. Measure X ′ ∈ {0, 1}n.

3. Compute V = X ′ ⊕
P
j∈{1,...,n−k}W

′
jLj .

4. E = V ⊕ Enc(Dec(V)).

5. X̂ = X ′ ⊕ E.

6. ĥ = f(W ′||ζ′||X̂).

7. Abort with failure if ĥ 6= h′.

• In SO2.Setup, finding values Lj is not difficult. It re-
quires having the pseudo-inverse of the parity check ma-
trix.

• In SO2.Setup, the choice of Lj is arbitrary, in the same
way that the R in the original COM is arbitrary.

• The size of the table L is merely (n− k)× n bits.

• In step 3 of SO2.Reconstruct, the sum
P
j is understood

to be defined as bitwise XOR.

• L is public. Hence, in case SO2.Reconstruct is imple-
mented on a severely resource-constrained device that
cannot store L, the table lookup and the computation ofP
jW

′
jLj can be outsourced.

• The V in step 3 of SO2.Reconstruct is the analogue of
X ′ ⊕W in the ordinary COM. The V contains a lot of
information about X, so it must not be revealed to other
parties. The decoding of V can be outsourced only if V
is masked first.

• The Dec can be any decoder algorithm.

• An alternative (and security-wise equivalent) enrollment
procedure would be to store

P
j(SynX)jLj ∈ {0, 1}n

instead of SynX as helper data. That would constitute a
deterministic version of the helper data X⊕EncR in the
original COM. All the random choices have been shifted
to the creation of the lookup table in the setup phase,
where they are ‘frozen’ as system parameters.

3

3.2 Analysis of the Syndrome-only COM

The lack of auxiliary variables makes our scheme simpler to
analyze than the original COM. We consider the general case
of a source variable X that is not necessarily uniform.

As mentioned in Section 2, the probability Pr[X = x] is
denoted as px and Pr[SynX = y] as qy. Thus we have
Pr[W = w] = qw.

Lemma 1 In the Syndrome-Only COM we have the follow-
ing probabilities:

pw|x = δw,Syn x pxw = pxδw,Syn x px|w =
pxδw,Syn x

qw
.

Proof: The pw|x follows trivially from the fact that W =
SynX. Multiplication by px yields pxw. Finally px|w is equal
to pxw/qw. �

Lemma 2 In the Syndrome-Only COM it holds that

I(W ;X) = H(SynX), H(W |X) = 0

H(X|W) = H(X)− H(SynX).

Proof: The first two equations immediately follow from W =
SynX. In the last line we write H(X|W) = H(X,W)−H(W)
with H(X,W) = H(X) and H(W) = H(SynX). �
We briefly discuss the required amount of compression in case
one wants to build a Fuzzy Extractor from the Secure Sketch.

In order to obtain a nearly uniform key Q from X, one has to
hash down to a smaller size (say `): Q = g(X,A) ∈ {0, 1}`.
Here A is public auxiliary randomness that serves as a ‘cata-
lyst’ for the UHF g.

Let U be a uniform variable on {0, 1}`. The relation between `
and the uniformity of Q is given by the Leftover Hash Lemma
(LHL) [17] and can be formulated as

` ≤ Lε(X,W) =⇒ Ew[∆(U ;Q|W = w)] ≤ ε (2)

with Lε(X,W) = H2(X|W) + 1− 2 log
1

ε
. (3)

Eq. (2) states that the non-uniformity of Q given W does not
exceed ε as long as X has been sufficiently hashed down. The
` must not exceed the ‘ε-extractable randomness’ Lε. The
notation H2 in (3) stands for the conditional Rényi entropy
of order two and is defined as [13]

H2(X|W) = −2 log T2(X|W)

T2(X|W) = Ew
qP

xp
2
x|w =

X
w

qP
xp

2
xw, (4)

where Ew stands for the expectation value over W . Note
that the ‘penalty’ term 2 log 1

ε
in (3) depends only on ε, i.e.

it depends not on the improvement of the uniformity but on
the final uniformity. Because of this fact, the approach using
UHFs can be quite wasteful.

Remark: Under some conditions [4] the factor 2 in the penalty
term can be replaced by 1. Furthermore, the LHL can be
sharpened somewhat by considering smooth Rényi entropy
[23, 24, 32]. Such details are beyond the scope of the current
paper.

4 Adding fake helper data; general consid-
erations

The concept of hiding data in a large amount of fake data is
very old. However, the application of this principle to helper
data is, to the best of our knowledge, new.

Lemma 3 Let W be helper data. Let W fake
1 , . . . ,W fake

m−1 be
i.i.d. generated fake helper data instances (independent of
W), where m ≥ 1, and where it is not necessarily the case
that the probability distribution of the fake helper data is the
same as for the true helper data. Let Z ∈ {1, . . . ,m} be a
random variable, not necessarily uniform. Let Ω be a vector
constructed from the real and the fake helper data as Ω =
(W fake

1 , . . . ,W fake
Z−1,W,W

fake
Z , . . . ,W fake

m−1). Then

H(X|Ω) = H(X|W) + H(W |Ω)− H(W |XΩ). (5)

If W is a function of X only, then

H(X|Ω) = H(X|W) + H(W |Ω). (6)

Proof: We apply the chain rule to the expression H(XW |Ω)
in two different ways and obtain H(X|Ω) + H(W |XΩ) =
H(W |Ω)+H(X|WΩ). Since the fake helper data are indepen-
dent of X and W we have H(X|WΩ) = H(X|W). This proves
(5). Finally, if W is a function of X only, then H(W |X) = 0
and consequently H(W |XΩ) = 0. �
Remark 1: In this lemma it is clearly advantageous for the
analysis if W is computed from X without auxiliary ran-
domness. In case algorithm SO2 is used, remember that
the lookup table L is not a random variable during enroll-
ment and verification, even if it was created randomly during
Setup.

Remark 2: In (6) we see a nice separation into a term
H(X|W), which is the ‘old’ result for an ordinary helper data
scheme, and the contribution H(W |Ω) that arises from hiding
W in a random position in the list Ω.

The ‘hiding’ term H(W |Ω) can be further broken down as
follows.

Lemma 4 Let W be a function of X only. Let Z and Ω be
defined as in Lemma 3. Then

H(W |Ω) = H(Z)− H(Z|WΩ)| {z }
collision
penalty

− I(Z; Ω)| {z }
distribution

mismatch penalty

. (7)

If Z is drawn uniformly, and the fake helper data have the
same distribution as W , then

H(W |Ω) = logm− H(Z|WΩ). (8)

Proof: Using the chain rule we have H(W |Ω) = H(WZΩ) −
H(Ω) − H(Z|WΩ). Next we expand H(WZΩ) as H(Z) +
H(Ω|Z) + H(W |ZΩ), where H(W |ZΩ) = 0. This yields
H(W |Ω) = H(Z) − H(Z|WΩ) − [H(Ω) − H(Ω|Z)], which is
precisely (7). Next, if the variables W fake

j are distributed
precisely like W , then Ω reveals no information about Z, i.e.
I(Z; Ω) = 0. Finally, if Z is uniform on {1, . . . ,m} then
H(Z) = logm. �
Note that there are two clearly interpretable penalty terms
in (7). The ‘collision penalty’ H(Z|WΩ) increases with m.
It becomes non-negligible when Ω contains so many entries

4

that it becomes likely that there exist entries with the same
value;2 then even knowing W and Ω does not fix Z.

The ‘distribution mismatch penalty’ occurs when the fake en-
tries in Ω do not look statistically the same as W ; then some
information about Z can be obtained already from inspect-
ing Ω.

At first sight (6) might seem to contradict the well known
principle ‘conditioning reduces Shannon entropy’. However,
it should be borne in mind that Ω is not just W plus decoys;
Ω results from a Z-dependent function applied to W and the
decoys. This function reduces the leakage from W . Lemmas
3 and 4 will be used for the analysis of the Spammed COM
in Section 6.1.

Lemma 5 Let the helper data W be a function of X only.
Let Z and Ω be defined as in Lemma 3. Let W fake denote an
arbitrary fake entry in Ω. Let πz = Pr[Z = z]. Then

I(Z; Ω) ≤ (1−
mX
z=1

π2
z)
h
D(W ||W fake) +D(W fake||W)

i
.

Proof: See Appendix. �

Note: if Z is uniform then
P
z π

2
z = 1/m.

5 The Spammed Code Offset Method

We first show a naive spamming approach, without efficient
de-spamming at the reconstruction phase. Then we propose
an efficient scheme, in two variants: one in the privacy-
preserving biometrics context, the other in the secure key
storage context. The efficient scheme requires a linear block
code with a low-density parity check (LDPC) matrix [15].
(For background on LDPC codes see e.g. [25, 14].)

We present our SCOM schemes as being derived from the
scheme SO1, for reasons of simplicity and brevity. However,
SO2 can be chosen as the underlying scheme instead. The
security and the storage requirements are analyzed in Sec-
tion 6.

5.1 Naive approach

Algorithm NaiveSCOM.Enroll

1. Measure X ∈ {0, 1}n.

2. Compute helper data W = SynX.

3. For j ∈ {1, . . . ,m−1}: draw W fake
j ∈ {0, 1}n−k from

the distribution of SynX.

4. Uniformly draw Z ∈ {1, . . . ,m}.
5. Construct a vector

Ω = (W fake
1 , · · · ,W fake

z−1 ,W,W
fake
z , · · · ,W fake

m−1).

6. Compute G = f(Ω||X).

7. Store public data P = (Ω, G).

2It is possible to avoid collisions during the construction of Ω. We
will not consider this approach since it has very limited benefit.

Algorithm NaiveSCOM.Reconstruct

1. Read P ′ = (Ω′, G′).

2. Measure X ′ ∈ {0, 1}n.

3. Compute σ = SynX ′.

4. Set L1 = ∅. For j ∈ {1, . . . ,m} do:

(a) Try to compute Ej = SDec(Ω′j ⊕ σ).
(b) If the decoding succeeds then add j to L1.

5. If L1 = ∅ then abort with failure.

6. Set L2 = ∅. For i ∈ L1 do:

(a) X̂i = X ′ ⊕ Ei.
(b) Compute Gi = f(Ω′||X̂i).
(c) If Gi = G′ then add i to the list L2.

7. If |L2| 6= 1 then abort; else X̂ = XL2 .

It is crucial that the adversary cannot ‘see inside’ the hash G.
Note that in step 6 of the enrollment, the hash is computed
over the entire vector Ω. This ensures that any manipulation
of the public data will be detected, be it in the hash, in W or
in the decoys. Note that the fake helper data also play the
role of salt.

In step 3 of the enrollment, an alternative would be to draw
a fake X fake

j from the distribution of X and then compute
Wj = SynX fake

j .

At reconstruction the public data may have been altered,
which is why we use the notation P ′, Ω′, G′ in step 1 of the
reconstruction. A list L1 is made of Ω′ entries that lead to
successful decoding. The whole set L1 has to be taken into
account, since some of the decoys may by chance decode, and
the order of the entries is random. The list of candidates
is further narrowed down to a list L2 of entries whose X̂j
generates the correct hash. If P ′ = P and X ′ ≈ X then
typically there is only one candidate left in L2. If P ′ 6= P or
X ′ is too noisy to be error-corrected, then typically L2 = ∅.
The main idea behind the scheme is that the adversary cannot
distinguish between the true helper data and the decoys. The
legitimate party, on the other hand, knows X ′, which allows
it to make the distinction.

It may happen that the choice of system parameters is
such that NaiveSCOM.Reconstruct has a long running time.
Step 4 contains m decodings, and |L1| hashes are computed
in step 6. The choice of n, k, and m may give rise to a long
list L1. In the schemes below we aim to reduce the running
time of the reconstruction algorithm.

Note that the running time may reveal the length of L1, and
possibly of L2. We do not consider this to be a security leak,
since the |L1| and |L2| reveal only the amount of noise in X ′.

5.2 Secure Sketch for biometrics database

Below we show a more efficient pair of algorithms
(BioSCOM.Enroll, BioSCOM.Verify) in the biometric veri-
fication scenario. The idea behind this scheme is that com-
paring SynX ′ to SynX and the other syndromes allows the
device to heuristically re-order Ω′ in such a way that the
most likely candidates are tried first. Here it is crucial that
the parity check matrix of the code has low density: then a
small Hamming distance between X and X ′ leads to a small
Hamming distance between SynX and SynX ′.

5

Processing Ω′ in order of Hamming distance reduces the num-
ber of decodings and hashes that have to be performed.

Algorithm BioSCOM.Enroll = NaiveSCOM.Enroll

Algorithm BioSCOM.Verify

1. Read P ′ = (Ω′, G′).

2. Measure the fresh biometric X ′ ∈ {0, 1}n.

3. Compute F ′ = SynX ′.

4. For j ∈ {1, . . . ,m} do: dj = dH(F ′,Ω′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort with failure.

9. Try to compute Ej = SDec(F ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = X ′ ⊕ Ej .
11. If G′ 6= f(Ω′||X̂j) then goto 8.

12. Accept.

Remark: There are many alternative ways to organize the
verification. For instance, in step 6 the vector Ω′ does not
have to be physically permuted; permutation of the indices
{1, · · · ,m} is more efficient. Also, steps 4 and 5 can be com-
bined to efficiently create an ordered list while computing the
Hamming distances.

The computational workload of BioSCOM.Verify consists of:
m Hamming distance computations; sorting of Ω′ (time ∝
m if steps 4 and 5 are combined, e.g. with an algorithm
resembling Bucket Sort); a number of decodings and hashes
that depends on the amount of noise in X ′. Note that the
timing side channel reveals only the amount of noise.

We propose that an LDPC code is used with column weight 3,
i.e. three nonzero entries in each column of the parity check
matrix. On the one hand, this allows for good error correction
capabilities. On the other hand, one bit flip in X causes
only 3 bit flips in SynX. Let us model the noise in X ′ as a
binary symmetric channel with bit error rate (BER) β. Then,
roughly speaking3, dH(SynX ′, SynX) is binomial-distributed
with expectation 3nβ and standard deviation 3

p
nβ(1− β).

A W fake can be roughly modeled as a random string of length
n−k. Its Hamming distance to SynX is binomial-distributed
with expectation (n− k)/2 and standard deviation 1

2

√
n− k.

The two distributions can be reliably distinguished if 3nβ lies
sufficiently below (n− k)/2, i.e. k

n
sufficiently below 1− 6β.

Examples are given in Section 7.

5.3 Fuzzy Extractor

Below we present a pair of algorithms (FESCOM.Enroll,
FESCOM.Reconstruct) for use as a Fuzzy Extractor in
the POK scenario. This is a minor modification of
(NaiveSCOM.Enroll, BioSCOM.Verify); the only difference
is the derivation of a key Q from X and auxiliary public ran-
domness A, with the use of the extractor function g.

3We ignore collisions. The given expressions are upper bounds.

Algorithm FESCOM.Enroll

1. Measure the POK output X ∈ {0, 1}n.

2. Generate random A. Compute Q = g(X,A).

3. Compute helper data W = SynX.

4. For j ∈ {1, . . . ,m − 1}: Draw W fake
j ∈ {0, 1}n−k

from the distribution of SynX.

5. Uniformly draw Z ∈ {1, . . . ,m}.
6. Construct a vector

Ω = (W fake
1 , · · · ,W fake

Z−1,W,W
fake
Z , · · · ,W fake

m−1).

7. Compute G = f(Ω||A||X).

8. Store public data P = (Ω, A,G).

Algorithm FESCOM.Reconstruct

1. Read P ′ = (Ω′, A′, G′).

2. Measure the POK output X ′ ∈ {0, 1}n.

3. Compute F ′ = SynX ′.

4. For j ∈ {1, . . . ,m} do: dj = dH(F ′,Ω′j).

5. Make a permutation λ that sorts (dj)
m
j=1 in ascend-

ing order.

6. Let Ω̃ = λ(Ω′).

7. Let j = 0.

8. Increase j. If j = m+ 1 then abort with failure.

9. Try to compute Ej = SDec(F ′ ⊕ Ω̃j).
If the decoding fails then goto 8.

10. X̂j = X ′ ⊕ Ej .
11. If G′ 6= f(Ω′||A′||X̂j) then goto 8.

12. Q̂ = g(X̂j , A
′).

6 Security analysis of the SCOM

We investigate how much information about X is revealed
to the adversary by showing him Ω. In principle we should
be looking at the leakage from the whole public data P , but
there one hits a snag: information-theoretically there is no
such thing as a one-way function. The hash G hides its input
in practice, but information-theoretically speaking G reveals
Z and W to the adversary. The leakage from Ω is a better
way to represent the adversary’s actual workload than the
leakage from Ω and G. In effect, we will model the hash
function as if it is perfectly hiding.
In the biometrics scenario, the relevant quantity to look at
is Shannon entropy. (One might argue that min-entropy is
more important, but since we do not have the stringent re-
quirements that cryptographic keys have to satisfy4, we will
stick to Shannon entropy.) The relevant quantity in the POK
scenario is the Rényi entropy H2, which features in the ε-
extractable randomness (3). We show results for both sce-
narios. In Section 7 we investigate memory requirements.

6.1 Leakage in terms of Shannon entropy

We first present a lemma that allows us to relate the leakage
I(X; Ω) to the collisions in Ω.

4Most biometrics cannot be kept secret, since it is possible to mea-
sure them surreptitiously.

6

Lemma 6 Consider the algorithm BioSCOM.Enroll or FE-
SCOM.Enroll. Let t(W,Ω) denote the number of entries in
Ω equal to W , i.e. t(W,Ω) = |{j : Ωj = W}|. Then

H(X|Ω) = H(X|W) + logm− Ewω log t(w,ω). (9)

Proof: We start from Lemmas 3 and 4, which together give
H(X|Ω) = H(X|W) + logm − H(Z|WΩ). Next we write
H(Z|WΩ) = EwωH(Z|W = w,Ω = ω). The uncertainty
about Z given W = w and Ω = ω is caused by the fact that
there can be multiple occurrences of the string w ∈ {0, 1}n−k
in ω; the number of occurrences is t(w,ω), and each of them
is equally probable from the attacker’s point of view. Hence
H(Z|W = w,Ω = ω) = log t(w,ω). �

Theorem 1 Consider the algorithm BioSCOM.Enroll or
FESCOM.Enroll. The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X|W) + logm− m− 1

ln 2
Ewqw. (10)

Proof: We start from Lemma 6. We write t(w,ω) = 1 +
u(w,ω) and use ln(1 + u) ≤ u. This gives Ewω log t(w,ω) ≤
1

ln 2
Ewωu(w,ω). For given w, the u is binomial-distributed

with parameters m−1 and qw. (See Section 2 for the notation
q.) Thus we have Ewωu(w,ω) = Ew[(m− 1)qw]. �
The probability qw is typically of the order 1/2n−k if X is
not too strangely distributed. Hence the last term in (10) is
a small correction term if m < 2n−k. Eq. (10) confirms the
intuitive idea that the attacker’s effort increases by a factor
≈ m/2. Note that the bound in Theorem 1 is far from tight
at large m. The following result is tighter at large m.

Theorem 2 Consider the algorithm BioSCOM.Enroll or
FESCOM.Enroll. The conditional entropy H(X|Ω) can be
bounded from below as

H(X|Ω) ≥ H(X)− 1

m
· 2n−k − 1

ln 2
. (11)

Proof: As in the proof of Theorem 1, we write t = 1 + u.
Furthermore we split u into its expectation value (at fixed w)
and a deviation: u = (m− 1)qw + δ, where Eδδ = 0. Then

Ewω log t = Ew log[mqw] + Ew log[1 +
1− qw
mqw

]

+Ewδ log(1 +
δ

1 + [m− 1]qw
). (12)

Next we use ln(1 + z) ≤ z twice, and Eδδ = 0, to get

Ewω log t ≤ logm+ Ew log qw +
1

ln 2
Ew

1− qw
mqw

= logm− H(W) +
1

m ln 2
(−1+

X
z

qz
qz

)

= logm− H(W) +
2n−k − 1

m ln 2
. (13)

We substitute (13) into Lemma 6 and use H(X|W)+H(W) =
H(X). �
In the limit m > 2n−k, the 1

m
term in Theorem 2 is a small

correction term; we see that Ω then hardly leaks anything
about X, as we would expect intuitively, since Ω is likely to
contain almost all possible strings of length n− k.

6.2 Leakage in terms of Rényi entropy

We present a bound on H2(X|Ω) that is useful for large m.
We observe that for the adversary each entry in ω is equally
likely to be the correct one. Thus, his knowledge about x can
be parametrized as a probability distribution that is condi-
tioned on each of the entries ωj with equal probability 1/m.
(Remember that the fake helper data are drawn from the
same distribution as SynX). This gives

px|ω =
1

m

mX
j=1

px|ωj
. (14)

Based on (14) we obtain the following result.

Theorem 3 Consider the algorithm BioSCOM.Enroll or
FESCOM.Enroll. The conditional Rényi entropy H2(X|Ω)
can be bounded from below as

H2(X|Ω) ≥ H2(X)− 1

m ln 2

"
Ew
P
x p

2
x|wP

x p
2
x

− 1

#
. (15)

Proof:

H2(X|Ω) = −2 log Eω

qP
xp

2
x|ω (16)

≥ −2 log
q

Eω

P
xp

2
x|ω (17)

= − log Eω

X
x

1

m2

X̀
a,b=1

px|ωapx|ωb
(18)

= − log
1

m2

X
x

24X
a

Eωp
2
x|ωa

+
X

a,b:a6=b

Eωpx|ωapx|ωb

35 (19)

= − log
X
x

»
1

m
Ewp2

x|w + [1− 1

m
]p2
x

–
(20)

= − log

"
(
X
x

p2
x)(1 +

Ew
P
x p

2
x|w−

P
x p

2
x

m
P
x p

2
x

)

#
(21)

= H2(X)− log(1 +
Ew
P
x p

2
x|w −

P
x p

2
x

m
P
x p

2
x

). (22)

In (17) we used Jensen’s inequality. In (18) we substituted
(14). Finally (15) is obtained from (22) by using log(1 +z) =
ln(1 + z)/ ln 2 ≤ z/ ln 2. �
Remark: If X is not too far from uniform, then the 1

m
-term

in Theorem 3 is of order 2n−k/m, i.e. the same order of
magnitude as the 1

m
-term in Theorem 2.

When spammed helper data Ω is used instead of W , the
entropy H2(X|W) in the extractable randomness formula (3)
can be replaced by the (much) larger number H2(X|Ω).

7 Numerical examples

In the biometrics scenario, a large amount of storage space is
available per enrolled person, since the public data P is usu-
ally stored in a dedicated database. Blowing up the database
by a large factor could be feasible. Furthermore, the original
W is a short string to start with.
In the POK scenario, the public data is usually stored on the
device that contains the POK. This device has to be cheap;
hence nonvolatile memory may become an issue.

7

In the examples below we consider a Binary Symmetric Chan-
nel (BSC) with bit error rate (BER) β.

Example 1. Consider a uniform biometric X with n = 127
and β = 2.2%. (Such a low BER can be obtained by pre-
processing, e.g. reliable component selection). We look at
the NaiveSCOM scheme employing a BCH code (n, k, t) =
(127, 50, 13), i.e. the code can correct 13 errors, which at the
given BER corresponds to a decoding error probability of less
than 10−6. For m = 1 the security is H(X|Ω) = k = 50 bits.
In order to gain δ bits of security we need m ≈ 2δ+1, which
requires a storage space of 2δ+1(n− k) = 2δ−5.7KB. One MB
available per enrolled user would allow for δ = 15.7. Efficient
syndrome decoders exist for BCH codes [11].

Example 2: POK storing a symmetric key. Consider a non-
uniform X with n = 816 and β = 4.0%, whose distribution
is such that SynX is approximately uniform. We look at the
FESCOM scheme employing an LDPC code with the follow-
ing parameters [21]: column weight 3; rate 1/2 (k = 408).
The decoding error probability5 is around 10−5. In order
to achieve δ extra bits of security, the required storage is
2δ+1(n− k) bits ≈ 2δ−3.3KB.

The column weight of the parity check matrix is 3, which
means that each bit flip in X ′ causes 3 bit flips in SynX ′.
We have dH(SynX ′, SynX) ≤ 3 · dH(X ′, X). The expected
number of bit flips in X ′ is 32.6, with a standard deviation
of 5.6, which translates to less than 97.8 and 16.8 respectively
in SynX ′.

The Hamming distance between SynX (or SynX ′) and a ran-
domly generated 408-bit string, on the other hand, is on av-
erage 204 bits with a standard deviation of 10.1.

We may consider using a threshold of ≈ 161 bit flips in the
syndrome to distinguish between the real helper data and the
fakes. The probability Pr[dH(SynX ′, SynX) > 161] is less
than 1.6 · 10−4, while The probability that a random 408-bit
string is removed from SynX (or SynX ′) by fewer than 161
bit flips is 1 · 10−5. Hence, even if Ω has of order 105 entries,
the correct helper data clearly stands out to the legitimate
user.

Example 3: POK storing an RSA prime. Similar to Exam-

ple 2. n = 8000; k = 4000; β = 5.4%; storage 2δ−0.03KB. The
number of bit flips in SynX ′ has average ≤ 1296 and standard
deviation ≤ 60.6, whereas a random 4000-bit string has av-
erage Hamming distance 2000 with standard deviation 31.6.
We have Pr[dH(random string, SynX) ≤ 1850] = 1 ·10−6 and
Pr[dH(SynX ′, SynX) > 1590] ≤ 1 · 10−6, again a clear sepa-
ration between the real entry and the fake ones.

8 Generative SCOM

The list Ω can grow very large if one wishes to reduce a
significant part of the leakage I(W ;X). Below we present
a method for generating Ω on the fly. This changes the
security↔storage tradeoff into a security↔processing trade-
off. Given the existence of Pseudo-Random Number Gen-
erators (PRNGs) that output more than one byte per clock
cycle [1, 2], it can be faster to generate Ω than to fetch it
from nonvolatile memory.

5In the literature on LDPC codes, the performance is often given
for the Additive White Gaussian Noise channel. For this channel, soft
information is available, and up to 6% BER can be tolerated with the
given decoding failure probability of 10−5. We translate this (some-
what loosely) to β = 4.0% on the BSC.

8.1 Construction

The construction relies on a fast PRNG γ that generates
(n − k)-bit strings, given a seed S. The i’th string derived
from S is denoted as γi(S) ∈ {0, 1}n−k. The verification algo-
rithm uses thresholds θ0, . . . , θN on the Hamming distance to
distinguish between likely candidates (small dH) and unlikely
candidates (large dH). Unlikely candidates are postponed.
The thresholds satisfy θ0 = 0 and θ0 < θ1 < · · · < θN . The
length m is considered to be a fixed system parameter.

Algorithm GenSCOM.Enroll

1. Measure X ∈ {0, 1}n.

2. Compute W = SynX.

3. Uniformly draw Z ∈ {1, . . . ,m}.
4. Uniformly draw a seed S.

5. Compute the mask B = W ⊕ γZ(S).

6. Compute G = f(S||B||X).

7. Store public data P = (S,B,G).

Algorithm GenSCOM.Verify

1. Set Auth=False.

2. Read P ′ = (S′, B′, G′).

3. Measure X ′ ∈ {0, 1}n.

4. Compute F = B′ ⊕ SynX ′.

5. For r = 1 to N

6. For i = 1 to m

(a) ∆i = F ⊕ γi(S′).
(b) If HammWeight(∆i) /∈ {θr−1, . . . , θr − 1}

then Next i.
(c) Try to compute Ei = SDec∆i.

If the decoding fails then Next i.
(d) X̂i = X ′ ⊕ Ei.
(e) If f(m||S′||B′||X̂i) = G′ then set Auth=True.

7. Next i.

8. If Auth=False then Next r.

9. Return Auth.

• In GenSCOM.Verify, the mask B′ is added to SynX ′ in
step 4 for efficiency reasons. (The alternative would be
to add the mask inside the i-loop.)

• The full i-loop is completed even after the correct entry
is found. This is done in order to thwart timing side
channel attacks. The timing reveals only the number of
completed r-rounds, and the total number of decodings
and hashings of fake entries; i.e. the amount of noise is
revealed.

• We have shown only the scheme for the biometrics sce-
nario. It can be trivially adapted to the POK scenario.

• The distribution of dH(W fake, SynX ′) is practically the
same as the distribution of dH(W fake, SynX) as discussed
in Section 5.2. Hence the same analysis applies.

8.2 Security analysis of GenSCOM

In the GenSCOM scheme, the role of the list Ω is taken by
the generated sequence Ωgen = (B ⊕ γi(S))mi=1, with Ωgen

Z =

8

SynX. The quantity of interest for the security is H(X|SB),
since S and B are stored as public data.

Lemma 7 Consider GenSCOM.enroll. It holds that

H(X|SB) = H(X|Ωgen). (23)

Proof: We have H(X|BS) = H(X|ΩgenS) since Ωgen,S to-
gether contain the same information as B,S. Finally we note
that if Ωgen is already known, then S reveals no extra infor-
mation about X. �

Theorem 4 Consider GenSCOM.Enroll. Let U ∈ {0, 1}n−k
be a uniform random variable. Then

H(X|SB) ≥ H(X|W) + logm− m− 1

2n−k ln 2

−(1− 1

m
)
h
D(W ||U) +D(U ||W)

i
. (24)

Proof: We start from Lemma 7 and use Lemma 4, replacing
Ω→ Ωgen. We have H(Z) = logm. For the collision penalty
we get H(Z|WΩgen) = Ewω log(1 + u) ≤ Ewωu/ ln 2 just as
in the proof of Theorem 1. Now, however, the entries are
uniformly generated instead of having distribution qw. This
gives Ewωu = (m − 1)/2n−k. Finally, for the distribution
mismatch penalty I(Z; Ωgen) we use Lemma 5 with W fake =
U and uniform Z. �
Note: the expression D(W ||U) +D(U ||W) can be written asP
w(2k−n − qw) log 1

qw
.

8.3 GenSCOM alternatives

If we are unlucky, GenSCOM.Verify makes multiple passes
through the whole list Ω. As an alternative algorithm,
one could temporarily store unlikely candidates before try-
ing them. A greedy algorithm would work e.g. as follows:

1. Store candidates whose Hamming weight is lower than a
threshold, in ascending order, until the buffer is full.

2. For the most promising candidate, do the decoding and,
if applicable, the hashing step. If the candidate fails then
go back to 1.

It is possible to reduce the running time while still retaining
resistance against the timing side channel: The order in which
the Ω entries are generated by the PRNG may be randomized
to some extent. Then it is no longer necessary to complete
the full i-loop. This approach requires storing multiple seeds.
Note that all the SCOM algorithms are easy to parallelize.

9 Discussion / related work

We have proposed the Spammed Code Offset Method, in
which the adversary gets spammed with bogus helper data.
For small spam factor m, the security is increased by roughly
logm bits. While the workload of the adversary is increased
by a factor m/2, the workload of the legitimate party stays
manageable: only few decodings and hashings are needed.
This is achieved by using Hamming distance in syndrome
space as a fast candidate selection criterion, where the use of
an LDPC code makes sure that a small distance between X
and X ′ translates to a small distance in syndrome space; in
case of an LDPC code with column weight 3, there are no
more than 3 bit flips in SynX per bit flip in X.

The SCOM works best if the fake helper data has the same
distribution as the real one. Compared to other helper
data schemes, this requires more precise knowledge of the
source X. If the distributions are not the same, then the en-
tropy of W suffers a distribution mismatch penalty I(Z; Ω)
(Lemma 4).

The SCOM provides a new kind of trade-off: a more effective
use of source entropy is achieved at the price of storage or
computation effort at reconstruction. This is especially in-
teresting in applications where the source entropy is limited.

In the POK scenario it depends on various system parameters
whether it makes sense to use the SCOM. If the available
storage/CPU resources in the device are limited and there is
ample entropy in X, then the ordinary COM suffices.

In the biometrics case it is especially important to eliminate
the leakage I(X;W), since the entropy of X is usually rather
low and has to be maximally exploited. Fortunately it is
easier to meet the memory requirements in this scenario.

The timing side channel does not leak information about the
location Z. NaiveSCOM.Reconstruct parses the whole list;
In BioSCOM, FESCOM and GenSCOM the timing reveals
only the amount of noise in X ′.

The idea of adding fake entries is not new in the context
of noisy data, but to the best of our knowledge we are the
first to apply it in helper data space. In [5] fake fingerprint
minutiae are added to the stored template. A comparison
in plaintext decides if a fresh fingerprint matches a sufficient
number of stored minutiae. The ‘Fuzzy Vault’ scheme [18]
adds a large amount of ‘chaff’ points to (e.g. biometric) data
points contained in X. Our scheme differs significantly in
two ways: (i) The amount of chaff in the Fuzzy Vault is
necessarily large and does not allow for a security vs. storage
trade-off at small amounts of storage; (ii) The Fuzzy Vault
simultaneously hides the measurement X and a secret key.

The use of LDPC codes in the context of biometrics is not
new. They have good error-correcting properties and easy
to implement decoders. Furthermore, the belief propagation
in the decoder lends itself to handling input bits of unequal
reliability [33]. LDPC codes have also been proposed as a
noise-tolerant hash function [3]. To the best of our knowledge,
the SCOM is the first scheme that uses an LDPC code to filter
out decoy entries.

As future work we mention experiments with various
LDPC codes. Another interesting issue to look at is the
cross-linkability between biometric templates in different
databases. We remark that the process of recognizing which
part of the data is ‘real’ is closely related to biometric iden-
tification: the fakes can be thought of as the biometrics of
other people. When m is large, it becomes much harder for
an adversary to decide if templates in different databases be-
long to the same person, since the decoys are likely to cause
false matches.

Acknowledgements
We thank Ruud Pellikaan, Ludo Tolhuizen, Joep de Groot
and Jean-Paul Linnartz for useful discussions. We thank the
anonymous reviewers for their comments. Part of this work
was funded by the European project INFSO-ICT-284833
(PUFFIN).

9

Appendix: Proof of Lemma 5

We introduce shorthand notation ϕw = Pr[W fake = w].

I(Z; Ω) = −Ezω log
Pr[Ω = ω] Pr[Z = z]

Pr[Ω = ω, Z = z]

= −Ezω log
Pr[Ω = ω]

Pr[Ω = ω|Z = z]

= −Ezω log Ea
Pr[Ω = ω|Z = a]

Pr[Ω = ω|Z = z]

= −Ezω log Ea
qωaϕωz

qωzϕωa

(25)

≤ −EzωEa log
qωaϕωz

qωzϕωa

(26)

= −Ez
X
a6=z

πa
X
ωz

qωz

X
ωa

ϕωa log
qωaϕωz

qωzϕωa

(27)

= −Ez
X
a6=z

πa[
X
ωz

qωz log
ϕωz

qωz

+
X
ωa

ϕωa log
qωa

ϕωa

]

= Ez
X
a6=z

πa[D(W ||W fake) +D(W fake||W)] (28)

= Ez(1− πz)[D(W ||W fake) +D(W fake||W)]. (29)

In (25) we used the fact that in Pr[Ω = ω|Z = z] and
Pr[Ω = ω|Z = a] all the components ` 6= a, z have Pr[Ω` =
ω] = Pr[W fake = ω] = ϕω, which leads to cancellation in
the fraction. In (26) we used Jensen’s inequality to write
log Ea ≤ Ea log. In (27) we wrote out Eω, using the fact that
only the components ωz and ωa are relevant, and that ωz is
the actual helper data W while ωa is fake. In (28) we used
the definition of the KL distance.

References

[1] http://gjrand.sourceforge.net/.

[2] http://www.digicortex.net/node/22.

[3] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, and
D. Schipani. On fuzzy syndrome hashing with LDPC coding.
In Int. Symposium on Applied Sciences in Biomedical and
Communication Technologies, pages 24:1–24:5. ACM, 2011.

[4] B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-
X. Standaert, and Y. Yu. Leftover Hash Lemma, revisited. In
CRYPTO, volume 6841 of LNCS, pages 1–20. Springer, 2011.

[5] C. Barral. Biometrics & Security: Combining Fingerprints,

Smart Cards and Cryptography. PhD thesis, École Polytech-
nique Fédérale de Lausanne‘, 2010.

[6] C. Böhm and M. Hofer. Physical Unclonable Functions in
Theory and Practice. Springer, 2013.

[7] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. Smith. Se-
cure remote authentication using biometric data. In Eurocrypt
2005, volume 3494 of LNCS, pages 147–163. Springer-Verlag,
2005.

[8] J.L. Carter and M.N. Wegman. Universal classes of hash func-
tions. Journal of Computer and System Sciences, 18(2):143–
154, 1979.

[9] R. Cramer, Y. Dodis, S. Fehr, C. Padró, and D. Wichs. De-
tection of algebraic manipulation with applications to robust
secret sharing and fuzzy extractors. In EUROCRYPT 2008,
volume 4965 of LNCS, pages 471–488, 2008.

[10] J.A. de Groot, B. Škorić, N. de Vreede, and J.-P. Linnartz. In-
formation leakage of continuous-source Zero Secrecy Leakage
Helper Data Schemes. http://eprint.iacr.org/2012/566,
2012.

[11] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy
Extractors: how to generate strong keys from biometrics and
other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[12] Y. Dodis, M. Reyzin, and A. Smith. Fuzzy Extractors: How
to generate strong keys from biometrics and other noisy data.
In Eurocrypt 2004, volume 3027 of LNCS, pages 523–540.
Springer-Verlag, 2004.

[13] S. Fehr and S. Berens. The conditional Rényi entropy, 2013.

[14] M. Franceschini, G. Ferrari, and R. Raheli. LDPC Coded
Modulations. Springer, 2009.

[15] R.G. Gallager. Low-Density Parity Check Codes. Monograph.
MIT., 1963.

[16] B. Gassend. Physical Random Functions. Master’s thesis,
Massachusetts Institute of Technology, 2003.

[17] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Con-
struction of pseudorandom generator from any one-way func-
tion. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[18] A. Juels and M. Sudan. A fuzzy vault scheme. In IEEE In-
ternational Symposium on Information Theory (ISIT) 2002,
page 408. IEEE Press.

[19] A. Juels and M. Wattenberg. A fuzzy commitment scheme.
In ACM Conference on Computer and Communications Se-
curity (CCS) 1999, pages 28–36, 1999.

[20] J.-P. Kaps, K. Yüksel, and B. Sunar. Energy scalable uni-
versal hashing. IEEE Trans. Computers, 54(12):1484–1495,
2005.

[21] D. MacKay. Gallager code resources. http://wol.ra.phy.
cam.ac.uk/mackay/CodesFiles.html.

[22] R. Maes. Physically Unclonable Functions: Constructions,
Properties and Applications. Springer, 2013.

[23] R. Renner and S. Wolf. Smooth Rényi entropy and appli-
cations. In IEEE International Symposium on Information
Theory (ISIT) 2004, page 233, 2004.

[24] R. Renner and S. Wolf. Simple and tight bounds for infor-
mation reconciliation and privacy amplification. In Asiacrypt
2005, volume 3788 of LNCS, pages 199–216. Springer-Verlag,
2005.

[25] T. Richardson and R. Urbanke. Modern Coding Theory. Cam-
bridge University Press, 2008.

[26] A.-R. Sadeghi and D. Naccache, editors. Towards hardware-
intrinsic security. Springer, 2010.

[27] D.R. Stinson. Universal hashing and authentication codes.
Designs, Codes, and Cryptography, 4:369–380, 1994.

[28] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, R. Ver-
haegh, and R. Wolters. Read-proof hardware from protec-
tive coatings. In Cryptographic Hardware and Embedded Sys-
tems (CHES) 2006, volume 4249 of LNCS, pages 369–383.
Springer-Verlag, 2006.

[29] P. Tuyls, B. Škorić, and T. Kevenaar. Security with Noisy
Data: Private Biometrics, Secure Key Storage and Anti-
Counterfeiting. Springer, London, 2007.

[30] A. van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-
R. Sadeghi, I. Verbauwhede, and C. Wachsmann. Reverse
Fuzzy Extractors: enabling lightweight mutual authentication
for PUF-enabled RFIDs. In Financial Cryptography and Data
Security, volume 7397 of LNCS, pages 374–389, 2012.

[31] E.A. Verbitskiy, P. Tuyls, C. Obi, B. Schoenmakers, and

B. Škorić. Key extraction from general nondiscrete signals.
IEEE Transactions on Information Forensics and Security,
5(2):269–279, 2010.

[32] B. Škorić, C. Obi, E.A. Verbitskiy, and B. Schoenmakers.
Sharp lower bounds on the extractable randomness from non-
uniform sources. Information and Computation, 209:1184–
1196, 2011.

[33] Y. Wang, S. Rane, and A. Vetro. Leveraging reliable bits:
ECC design considerations for practical secure biometric sys-
tems. In Workshop on Information Forensics and Security,
pages 71–75. IEEE, 2009.

10

