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EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS FOR
SINGULAR NONLOCAL INTERACTION EQUATIONS IN 1D

G. A. BONASCHI, J. A. CARRILLO, M. DI FRANCESCO, AND M. A. PELETIER

Abstract. We prove the equivalence between the notion of Wasserstein gradient flow for a one-
dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and
the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution
of the former is obtained by spatially differentiating the solution of the latter. The proof uses an
intermediate step, namely the L2 gradient flow of the pseudo-inverse distribution function of the
gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation
to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the
repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm
for scalar conservation laws. Finally, we provide a characterization of the sub-differential of the
functional involved in the Wasserstein gradient flow.

1. Introduction

In this paper we construct and discuss connections between two partial differential equations on
the real line. The first equation is the nonlocal interaction equation

(1) ∂tµ = ∂x
(
µ ∂xW∗µ

)
, x ∈ R, t > 0,

where W is either the repulsive or the attractive Newton potential in one space dimension

(2) W (x) = −|x| or W (x) = |x|.

We consider measure solutions on the real line, with a given initial condition µ0 ∈ P2(R), where
P2(R) is the space of probability measures on R with finite second moment. The equation (1) can
be written as a continuity equation ∂tµ+ ∂x(vµ) = 0 with v := −∂xW ∗ µ. The velocity field v(t, x)
can be interpreted as the result of a nonlocal interaction through the potential W , and the equation
(1) itself can be (at least formally) interpreted as the Wasserstein gradient flow of the following
functional defined on P2(R),

W[µ] = 1
2

∫
R×R

W (x− y)dµ(x)dµ(y).

The second equation is the scalar nonlinear conservation law

(3) ∂tF + ∂xg(F ) = 0, x ∈ R, t > 0,

with
g(F ) = F 2 − F or g(F ) = −F 2 + F.
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We consider weak solutions F on the real line, with a given initial condition F0. The connection
between the two equations (1) and (3) is established through the relationship

F (x) = Fµ(x) := µ
(
(−∞, x]

)
.

Formally, if µ is a solution of (1), then F is a solution of (3), and vice versa. This can be recognized
by integrating (1) over (−∞, x] and observing that

∂x(| · |∗µ) = (sign∗µ) = (1− 2F ).
Because of this interpretation of F in terms of µ, we restrict ourselves to solutions F of (3) that are
increasing and bounded.

These two equations have been studied extensively, but in different communities and using different
tools. Equation (1) describes the evolution of a system of interacting particles with an attractive
(W (x) = |x|) or repulsive (W (x) = −|x|) potential, and equations of this type arise in a variety
of physical, chemical, and biological applications; see e.g. [29, 37, 42] and the references therein.
The specific example of the Newtonian potential in two dimensions arises in the Patlak-Keller-Segel
model (see e.g. [40, 31, 30, 8]), where nonlocal transport effects are coupled with linear diffusion.
Combined attractive/repulsive interactions have been studied in [25, 26, 27, 19, 3, 2]. A deeper
study on singular potentials has been performed in [35, 16, 18, 4, 6, 5, 7], see also the recent preprint
[17]. In this paper, we focus on the two cases mentioned above, the attractive and the repulsive
Newtonian potential in one dimension.

Similarly, equation (3) has a long history and a wide range of applications; see e. g. [14] and the
references therein. Up to the unimportant linear term, the nonlinearity g corresponds to the inviscid
convex or concave Burgers equation, or Whitham’s forward or backward equation [44] (depending
on the sign of g).

For both equations, well-posedness strongly depends on the choice of the solution concept. Burgers’
equation (3) admits weak L∞ solutions on R for both choices of g [24, Sec. 3.4], but there are
examples of L∞ initial data which produce more than one solution. In order to single out physically
relevant solutions in the context of gas dynamics, Oleinik [39] and Kružkov [33, 32] formulated
the concept of entropy solution, which can be reached e.g. via a vanishing-viscosity approximation
(see [14]). Different approximations give rise to other types of solutions, with so-called non-classical
shocks [34, 43].

In the case of equation (1), whenW is smooth and satisfies suitable growth bounds, distributional
solutions exist and are unique. This follows as a trivial consequence of the theory in [1], but it
can be easily deduced from minor modifications of the arguments in [23]. For a less regular W , a
distributional definition of a solution may not be meaningful; for instance, whenever W ′ is discon-
tinuous, the product δ(∂xW∗δ) = δW ′ is not well-defined. In this case the theory of Wasserstein
gradient flows [1, 18] provides a solution concept for which existence and uniqueness holds provided
W is λ-convex, i.e. convex up to a quadratic perturbation. Therefore, the case W (x) = |x| can
be easily covered in view of the convexity of W (see [18]); although W (x) = −|x| is neither convex
nor λ-convex, the corresponding functional (see (4) below) is λ-convex in the sense of McCann [36],
see [10, 19], and therefore the abstract Wasserstein gradient flow theory applies.

These well-posedness issues are strongly connected with the behaviour of the equations under time
reversal. In Figure 1 we illustrate this with an example. In the first column, solutions of (1) in the
gradient flow concept are shown, with both attractive and repulsive interaction. In the attractive
case, the two square waves collapse in finite time into Dirac delta functions and then propagate until
they aggregate into a single delta function, which is a stationary solution. For the repulsive case,
however, a single delta function is not stationary: it immediately regularizes into a square wave with
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linearly expanding boundaries. This example shows how the attractive and repulsive evolutions are
not each other’s time reversal.

The corresponding solutions of the Burgers equation are shown in the second column. The initial
aggregation into delta functions translates into the formation of two shocks, which subsequently
aggregate into a single fixed shock. With the opposite sign, the entropy condition disallows the
corresponding time-reversed solution, and a rarefaction wave is formed instead. These features are
not limited to these examples; they occur for very general classes of initial data.

Both the well-posedness subtleties and the non-invariance under time reversal raise questions
about the connection between the two problems. For instance, how does the non-uniqueness in
Burgers’ equation manifest itself after transforming to (1)? What form does an entropy condition
such as Oleinik’s (see Definition 2.15) take for solutions of (1)? Why does the gradient flow theory
provide uniqueness for solutions of (1), without further conditions? And is the unique gradient flow
solution of (1) the same as the entropy solution of (3)?

1.1. Results. In the rest of this paper we address the above questions. Our main results are as
follows.

In Theorem 3.1 we show that the gradient flow solution concept of (1) is equivalent to the entropy
solution concept for (3). We establish this equivalence through a third solution concept, the L2

Wasserstein gradient flow Entropy solution L2 gradient flow

A
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R
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siv

e

Figure 1. Three forms of the same solution, for the gradient flow definition of equa-
tion (1) (left), for the entropy solution of (3) (middle), and the L2 gradient flow (right,
Section 2.2). The top row is for the attractive case, the bottom row for the repulsive
case. The direction of the evolution is indicated by arrows; the vertical arrows in the
left column are Dirac delta functions. Note how the top and bottom evolutions are
not each other’s time reversal
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gradient flow for the pseudo-inverse function X, which is defined in terms of µ and F by
Xµ(s) := inf{x |Fµ(x) > s}, s ∈ (0, 1),

and it maps (0, 1) to the support of µ (see Section 2.2). The content of the theorem is illustrated
graphically in Figure 2.

The proof is achieved by an explicit calculation for the case when µ0 is a sum of delta functions
(and F0 and X0 therefore both piecewise constant); the general case follows using the contractivity
of the semigroup.

This result is the core of this paper: equations (1) and (3) are equivalent, provided one takes the
‘right’ solution concept for both. In the latter we will discuss in detail how the specific aspects of
the gradient flow concept and the entropy solution concept tie together

µ0 F0 X0

F̃t
‖A

X̃t
‖B

µt Ft Xt

define

evolve
into

Figure 2. This figure illustrates the content of Theorem 3.1. For a given initial
datum, expressed in terms of µ0, F0, orX0, the theorem states that the three solutions
at later time t > 0 also are equivalent. Our contribution is the two equivalences A
and B

Let us mention here that the results in [9] already pointed out a link between scalar conservation
laws with monotone data and the L2 gradient flow. Moreover, it is worthwhile recalling that similar
links between gradient flow solutions and entropy solutions have been lately explored in several
contexts, see e.g. [28, 21].

An important difference between the attractive and the repulsive case arises when one tries to
approximate continuum solutions to the Wasserstein gradient flow (1) with a system of interacting
particles. Such a system typically reads as follows

ẋj(t) = − 1
N

N∑
k=1

W ′(xj(t)− xk(t)), j = 1, . . . , N,

and the approximation property is typically stated as

1
N

N∑
j=1

δxj(t) ⇀ µ(t) as N → +∞, for a. e. t > 0,

where the limit is intended in the weak-∗ sense of measures, and µ(t) is the gradient flow solution
to (1). When W is smooth, say C2, the above approximation property is easily recovered as delta
type solutions 1

N

∑N
j=1 δxj(t) turn out to be a special case of gradient flow solutions; such a property

is stated in short by saying that particles remain particles in (1). As we already pointed out before,
such a property may not be satisfied in case of a discontinuous W , since particle solutions may
not be well defined because of the singularity in the self-interaction force term W ′(0). Let us now
focus on our case (2). In the attractive case W (x) = |x| the results in [18] provide a simple answer:
particles remain particles, with the convention that the self-interaction term is neglected. This is not
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surprising, as the force field is attractive, and e. g. two particles are not expected to exert forces
on each other once they have collided. Let us mention that the result in [18] holds in arbitrary
dimension. In the repulsive case, the situation is way less trivial. This is already quite clear from
the time reversal argument above: one single particle subject to the self-repulsive force generates a
squared (continuum) wave, and therefore it is clear that, in general, particles do not remain particles.

In Theorem 4.1 we prove that a discrete approximation scheme for the Wasserstein gradient flow in
the repulsive case can be constructed by exploiting the equivalence of (1) with the scalar conservation
law (3). The appoximating procedure is based on the so-called wave-front-tracking method (WFT)
for conservation laws, see [20, 22, 13]. This method consists mainly of two ingredients: discretization
of initial data (F0 → FN0 ) and piecewise linear interpolation of the flux (g → gN ). The peculiar
characteristic is the discretization of the flux and that the two procedures are intimately related.
This prevents the evolution from immediately regularizing any initial shock into a rarefaction wave.
For the sake of completeness, we show that, for every positive time, the solution given by the WFT
method is an approximation of the original solution. The proof is actually much simpler in our case,
and it does not require the usual machinery used in the general theory for scalar conservation laws.
Then, thanks to the equivalence result, we can rephrase such result into a particle approximation for
the solution of the Wasserstein gradient flow. The final outcome is that, as in the attractive case, the
self-repulsive force has to be neglected in the particle scheme. We point out that our result partially
complements the results in the recent preprint [17], in which a more general multi-dimensional theory
is presented which does not cover the case of Newtonian potentials.

During this work, a purely mathematical problem related to the definition of the Wasserstein sub-
differential of W on singular measures came out, which is strictly related to the time reversal issue
stated above. Collecting together the results from [1, 18, 10], one can prove existence and explicit
characterization of the sub-differential of the functional W in the case of absolutely continuous mea-
sures for both the repulsive and the attractive case, and for concentrated measures in the attractive
case. Unfortunately the same arguments cannot be applied when dealing with concentrated mea-
sures in the repulsive case. To handle this case we must refer to the more general (but less intuitive)
notion of extended sub-differential (Definition 5.2). Our analysis leads to the result in Proposition
5.4, which is an interesting example of extended sub-differential, with a geometrical view as well as
with an explicit characterization. Two main properties are used in the proof: the λ-convexity of the
functional and a closure property of the sub-differential.

The paper is organized as follows. In Section 2, we introduce the three systems, with a particular
attention at the Wasserstein and L2 gradient flows where some results must be proven. For the part
regarding entropy solutions we mainly refer to [24]. Section 3 is devoted to rigorously prove the
equivalence between the three concepts of solution. Section 4 shows the applicability of the particle
approximation. We finally study in Section 5 the the sub-differential of W in detail, and give a
characterization of its minimal element. We conclude with further discussion of the results of this
paper in Section 6.

2. Three concepts of solutions

In this section we give a precise definition of three solution concepts which we will show later on
to be equivalent:

(A) Wasserstein gradient flow solution for (1) (see Subsection 2.1)
(B) Entropy solution for (3) (see Subsection 2.3)
(C) L2 gradient flow for the pseudo-inverse equation obtained from (1) (see Subsection 2.2)
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For each of these notions we shall recall the existence and uniqueness results present in the literature,
and complement them with some qualitative properties. The equivalence among the three notions
will be proven rigorously in Section 3, and is supported here only by formal arguments. We stress
here that the equivalence between (B) and (C) was suggested by the contractivity results in the
Wasserstein distances for scalar conservation laws with monotone data proven in [9]. Our main
contribution here is the link with the nonlocal interaction equation (1) which was not described
before.

2.1. Wasserstein Gradient Flows. Our starting point is that of the Wasserstein gradient flow in
the space of probability measures in the spirit of [1] combined with the recent results from [18, 10, 19].
In what follows, P2(R) is the space of probability measures on R with finite second moment. On the
metric space P2(R) endowed with the 2-Wasserstein distance, we introduce the interaction energy
functional

(4) W[µ] = 1
2

∫
R×R

W (x− y)dµ(x)dµ(y), W (x) = σ|x|, σ ∈ {−1, 1}.

Next we recall the basic ingredients needed to define the notion of Wasserstein gradient flow, see [1].
First we define the push-forward measure. Let ν1 ∈ P2(Rn) and let T : Rn → Rm be a ν1-measurable
map. Then the push-forward measure of ν1 via T , denoted by ν2 = T]ν1 ∈ P2(Rm), is defined
via ν2(A) = ν1(T−1A). For i = 1, 2 we recall the definition of i-th projection πi : R × R → R,
πi(x1, x2) = xi ∈ R. Given two measures µ1, µ2 ∈ P2(R), the 2-Wasserstein distance between µ1 and
µ2 is defined as following

d2
W (µ1, µ2) = min

{∫
R×R
|x− y|2dγ(x, y) | γ ∈ P2(R× R), (πi)]γ = µi, i = 1, 2

}
.

The set of γ ∈ P2(R× R) such that (πi)]γ = µi is called the set of plans between µ1 and µ2, and is
denoted by Γ(µ1, µ2). The set of optimal plans Γ0(µ1, µ2) ⊂ Γ(µ1, µ2) is the set of plans for which
the minimum above is achieved, i.e. γ ∈ Γ0(µ1, µ2) if and only if

d2
W (µ1, µ2) =

∫
R×R
|x− y|2dγ(x, y).

Let µt ∈ AC([0,+∞);P2(R)). The metric derivative of µt (if it exists) is given by

|µ′t|(t) = lim
h→0

dW (µt+h, µt)
|h|

.

The metric derivative of an absolutely continuous curve is almost everywhere well defined, see [1].
Definition 2.1 (Fréchet sub-differential). Let φ : P2(R) → (−∞,+∞] be proper and lower semi
continuous, and let µ ∈ D(φ). We say that v ∈ L2(µ) belongs to the Frechét sub-differential, denoted
by ∂φ(µ), if

φ(µ̃)− φ(µ) ≥ inf
γ∈Γ0(µ,µ̃)

∫
R×R

v(x)(y − x)dγ(x, y) + o(dW (µ, µ̃)).

For µ ∈ P2(R) with ∂φ(µ) 6= ∅ we indicate ∂0φ(µ) the element in ∂φ(µ) with minimal L2(µ)-
norm, which we refer to as the minimal sub-differential of φ at µ. In some cases, this definition of
sub-differential is too restrictive, and it should be replaced by the following one.

An important property needed to deal with Wasserstein gradient flow is λ-geodesic convexity of a
functional. Let us first recall that, for µ, ν ∈ P2(R), the curve [0, 1] 3 t 7→ µt = ((1− t)π1 + tπ2)]γ,
with γ ∈ Γ0(µ, ν), is a constant speed geodesic connecting µ to ν, i. e. it minimizes the action∫ 1

0
|µ′t|2dt, on the set µt ∈ AC([0, 1];P2(R)) with µ0 = µ, µ1 = ν.
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Definition 2.2 (λ-geodesic convexity). Let φ : P2(R) → (0 −∞,+∞] be proper and lower semi-
continuous, and let λ ∈ R. Then, φ is λ-geodesically convex if, for all µ, ν ∈ P2(R), there exists an
optimal plan γ ∈ Γ0(µ, ν) such that

φ(µt) ≤ (1− t)φ(µ) + tφ(ν)− λ

2 t(1− t)d
2
W (µ, ν), for all t ∈ [0, 1],

where µt = ((1− t)π1 + tπ2)]γ.

Let us now turn back to our case, namely that of φ = W in (4). By combining the results in
[18, 19, 10], we obtain the following results. Here all the results are stated in one space dimension.
We stress that the result in the following proposition in the attractive case is also valid in arbitrary
space dimension.

Proposition 2.3. Let W (x) be as in (4). Then, the functional W is geodesically convex. Moreover,
for all µ ∈ P2(R) such that it has no atoms (i.e. µ({x}) = 0 for every x ∈ R), the minimal Frechét
sub-differential ∂0W(µ) is well defined and contains the only element

(5) ∂0W(µ) =
∫
x 6=y

∂xW (x− y)dµ(y) = σ

∫
x 6=y

sign(x− y)dµ(y).

Moreover, in the attractive case the formula (5) is valid for all µ ∈ P2(R).

The proof of the geodesically convexity relies on the representation of probability measures via
pseudo-inverses of their distribution functions, and it will be proposed (in an equivalent form) in
Proposition 2.9 in the next subsection. The characterization of the sub-differential in the general
case of µ ∈ P2(R) is treated in Section 5.

Definition 2.4 (Wasserstein Gradient flow). Let W (x) as in (4) with σ ∈ {−1, 1}. A curve

µt ∈ AC2
loc([0,+∞);P2(R)),

is a gradient flow for the functional W in (4) if there exists vt ∈ L2(µt) such that it satisfies

∂tµt + ∂x(vtµt) = 0 in D′([0,+∞)× R),
vt = −∂0W[µt] for a.e. t > 0.

(6)

The existence and uniqueness of gradient flow solutions in the sense of Definition (2.4) can be
formulated in compact form, once again by combining the results in [18, 10].

Theorem 2.5 (Existence and uniqueness of gradient flows [18, 10]). Let W (x) = σ|x| with σ = ±1
and µ0 ∈ P2(R). Then, there exists a unique (global-in-time) gradient flow solution for the functional
W in the sense of Definition (2.4), such that limt→0 dW (µt, µ0) = 0. Moreover, for two given solutions
νt and µt, the following contraction property holds,

(7) dW (νt, µt) ≤ dW (ν0, µ0).

Moreover, for σ = −1, the solution µt is absolutely continuous with respect to the Lebesgue measure
for all t > 0.

Remark 2.6. We could have stated the above definition by requiring ∂0W[µt] to be defined as
in (5). The main result in [10] on the repulsive case implies in particular that µt is absolutely
continuous respect to the Lebesgue measure, for all t > 0 and for every inital µ0. Therefore, the
explicit expression of the sub-differential can be used.
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2.2. L2 gradient flow. Let us consider the Hilbert space L2((0, 1)) with norm ‖ · ‖, and the convex
cone

K :=
{
f ∈ L2((0, 1)) | f is non-decreasing

}
.

For a given µ ∈ P2(R), we define the cumulative distribution function Fµ(x) associated to µ as
Fµ(x) := µ((−∞, x]).

Then, we set Xµ as the pseudo-inverse of the the distribution function Fµ(x).
(8) Xµ(s) := inf{x : Fµ(x) > s} s ∈ (0, 1).
We can invert the above formula, and pass from Xµ to Fµ, as follows

(9) Fµ(x) =
∫ 1

0
χ(−∞,x](Xµ(s))ds = |{Xµ(s) ≤ x}| .

In particular, both Fµ and Xµ are right-continuous and non-decreasing. Now, given a probability
measure µ ∈ P(R) and its pseudo-inverse Xµ we have that

(10)
∫
R
ξ(x)dµ(x) =

∫ 1

0
ξ(Xµ(s))ds,

for every bounded continuous function ξ. Moreover, for µ, ν ∈ P2(R), we can represent the Wasser-
stein distance dW (µ, ν) as

(11) d2
W (µ, ν) =

∫ 1

0

∣∣Xµ(s)−Xν(s)
∣∣2ds ,

and the optimal plan is given by (Xµ(s)⊗Xν(s))#L, where L is the Lebesgue measure on the interval
[0, 1]. These properties prove that there exists a natural isometry between P2(R) and K ⊂ L2([0, 1]),
given by the mapping

P2(R) 3 µ 7→ Xµ ∈ K.

Through this identification it is possible to pose equation (1) as a gradient flow in L2 of a certain
functional. In order to see that, let us first recall the following elementary computation already
present in [35, 10]. Let µt be a gradient flow solution in the sense of Definition 2.4 with no atoms for
all times t ≥ 0. Then, it is straightforward to find the following integro-differential equation satisfied
by Xt := Xµt

(12) ∂tXt(s) = −σ
∫ 1

0
sign(Xt(s)−Xt(z))dz, s ∈ [0, 1], t ≥ 0.

In order to give a meaning to (12) in case Xt has atoms, we have to define W ′ at zero. We assume
henceforth that W ′(0) = 0.

In order to detect a gradient flow structure in L2 for our equation (1), we should write W[µ] in
terms of the pseudo-inverse variable Xµt . However, we have to make sure that the flow remains in
the convex set K. This procedure is reminiscent of [11], see also [9]. Hence, the correct choice for
the functional is the following. For a given X ∈ L2, we set

W (X) = 1
2

∫ 1

0

∫ 1

0
W (X(z)−X(ζ))dζdz,

IK(X) =
{

0 if X ∈ K

+∞ otherwise
,(13)

W (X) = W (X) + IK(X).
(14)
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The functional IK is called the indicator function of K. Since the set K is convex, IK is a convex
functional. We know that, for a given proper and lower semi-continuous functional F on L2((0, 1)),
the sub-differential of F at X ∈ L2([0, 1]) is defined as the set

∂F (X) =
{
Y ∈ L2((0, 1)) | F (Z)−F (X) ≥

∫ 1

0
Y (Z −X) + o(‖Z −X‖), for ‖Z −X‖ → 0

}
.

The sub-differential of the functional IK is characterized in the following proposition, which
collects classical results in convex analysis plus more recent results from Brenier, Gangbo, Natile,
Savaré and Westdickenberg [38, 12]. From now on, for a given element X ∈ L2(0, 1), we use the
notation

(15) ΩX = {s ∈ (0, 1) | X is constant a.e. in a neighborhood of s} ,

and note that ΩX can always be written as a countable union of intervals, i.e. ΩX =
⋃
i Ii.

Proposition 2.7 ([38, 12]). Let X ∈ K, and let ΩX be defined as in (15). Let

NX = {Z ∈ C([0, 1]) | Z ≥ 0 and Z = 0 in [0, 1] \ ΩX} .

For a given Y ∈ L2([0, 1]), let

Y(s) =
∫ s

0
Y (σ)dσ.

Then, we have
Y ∈ ∂IK(X) ⇔ Y ∈ NX .

In particular, if Y ∈ ∂IK(X), then{
Y = 0 a. e. in [0, 1] \ ΩX∫ β
α Y (s)ds = 0 for every connected component (α, β) of ΩX

.

Let us now have a closer look at the functional W . When restricted to K, this functional can
actually be proven to be linear.

Proposition 2.8. Let X ∈ K. Then

W (X) = σ

∫ 1

0
(2z − 1)X(z)dz.

Proof. We compute

W (X) = σ

2

∫ 1

0

∫ 1

0
|X(s)−X(z)|dzds

= σ

2

∫ ∫
X(s)≥X(z)

(X(s)−X(z))dzds− σ

2

∫ ∫
X(s)≤X(z)

(X(s)−X(z))dzds

= σ

∫ ∫
X(s)≥X(z)

(X(s)−X(z))dzds,

where we have used the symmetry of the two terms in the right hand side. Now, since X is non-
decreasing, the set {X(s) ≥ X(z)} can be written as

{X(s) ≥ X(z)} = {s ≥ z} ∪ {s ≤ z ≤ S(s)}, S(s) = sup{z ∈ [0, 1] | X(z) = X(s)},
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and since X(s) = X(z) on {s ≤ z ≤ S(s)}, we have

W (X) = σ

∫ ∫
s≥z

(X(s)−X(z))dzds = σ

[∫ 1

0

∫ s

0
X(s)dzds−

∫ 1

0

∫ 1

z
X(z)dsdz

]
= σ

[∫ 1

0
sX(s)ds−

∫ 1

0
(1− z)X(z)dz

]
= σ

∫ 1

0
X(z)(2z − 1)dz.

�

An immediate consequence of Proposition 2.8 is the following

Proposition 2.9. The functional W is convex on L2([0, 1]).

Proof. LetX0, X1 ∈ L2([0, 1]), and letXt = (1−t)X0+tX1. IfX0 ∈ L2([0, 1])\K, then W (X0) = +∞
and the inequality

W (Xt) ≤ (1− t)W (X0) + tW (X1),
is trivially satisfied. The same holds if X1 ∈ L2([0, 1]) \K. On the other hand, if both X0, X1 ∈ K,
then the above inequality is satisfied, since K is a convex set and W is linear. �

As another consequence of Proposition 2.8, we have the following

Proposition 2.10. Let X ∈ L2([0, 1]). Then, ∂W (X) 6= ∅ if and only if X ∈ K. In that case,
∂W (X) 3 f(·) f(s) := σ(2s− 1), s ∈ (0, 1).

Moreover, if X ∈ K is strictly increasing, then ∂W (X) is single-valued and it therefore consists only
of the f defined above.

Proof. Assume X 6∈ K. Then, IK(X) = +∞. Hence, assuming the existence of Y ∈ ∂W (X) implies

W (Z) + IK(Z)−W (X)−
∫ 1

0
Y (Z −X)ds+ o(‖X − Z‖) ≥ IK(X),

for all Z ∈ L2((0, 1)), i.e. in particular for all Z ∈ K. But in the latter case, the left-hand side is
finite whereas the right-hand side is infinite, which proves that ∂W (X) = ∅.

Let X ∈ K and Z ∈ L2((0, 1)). If Z 6∈ K, then the definition of sub-differential is trivially satisfied.
Assume then Z ∈ K and by Proposition 2.8

W (Z)−W (X) = σ

∫ 1

0
(2s− 1)(Z(s)−X(s))ds.

Finally, assume that X ∈ K is strictly increasing. Suppose that there exists g ∈ ∂W (X) with
g 6= f on an interval I ⊂ (0, 1). Let us assume without restriction that g > f on I. Since X is
strictly increasing, there exists a X̄ ∈ K with X̄ = X on [0, 1] \ I and X̄ > X on I. Therefore, we
have ∫ 1

0
g(s)(X̄ −X)ds =

∫
I
g(s)(X̄ −X)ds >

∫
I
f(s)(X̄ −X)ds

=
∫ 1

0
f(s)(X̄ −X)ds = W (X̄)−W (X),

where the last step follows by Proposition 2.8. Therefore, we have found an element X̄ ∈ L2((0, 1))
such that

W (X̄)−W (X) <
∫ 1

0
g(s)(X̄ −X)ds,

and this contradicts the fact that g ∈ ∂W (X). Therefore, f is the only element in ∂W (X). �
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We now state the definition of gradient flow solution in L2 for our problem.

Definition 2.11 (L2 gradient flow). Let W (x) = σ|x| with σ ∈ {−1, 1}. An absolutely continuous
curve Xt ∈ L2 is an L2 gradient flow for the functional W defined in (13) if it satisfies the differential
inclusion
(16) −∂tXt ∈ ∂W (Xt).

As W is a convex functional on a Hilbert space, the classical theory of Brezis [15] can be applied
to prove existence of a unique solution to (16).

Theorem 2.12 (Existence and uniqueness of L2 gradient flow). Let W (x) = σ|x| with σ ∈ {−1, 1}
and let X0 ∈ K. Then, there exists a unique gradient flow solution Xt in the sense of Definition 2.11
with initial condition X0. Moreover, for two solutions X0,t and X1,t to (16), the following contraction
property holds
(17) ‖X0,t −X1,t‖ ≤ ‖X0,0 −X1,0‖,
for all t ≥ 0. Moreover, for σ = −1, the solution Xt is strictly increasing.

As a byproduct of the theory in [15], the minimal selection of the sub-differential ∂W is achieved in
the differential inclusion (16) at a.e. time. Since ∂W (X) is a convex set, it admits a unique element
of minimal norm, that we call the minimal sub-differential of W at X, and we denote by ∂0W (X).
We characterize the minimal sub-differential in both the attractive and the repulsive case in the
following theorem. As the sub-differential is single valued in case X is strictly increasing, clearly
we shall restrict to the case X ∈ K such that ΩX 6= ∅. It must be noticed that the mathematical
structure coincide perfectly with the Wasserstein framework, a strong sign revealing the equivalence.

Theorem 2.13. Let X ∈ K and let W be as in (13). Let ΩX =
⋃
j∈J Ij with J possibly empty,

where Ij = (αj , βj) are ordered disjoint intervals. If σ = −1, then

∂0W (X)(s) = −2s+ 1, for all s ∈ [0, 1].
If σ = 1, then

(18) ∂0W (X)(s) =
{

2s− 1 if s ∈ [0, 1] \ ΩX

αj + βj − 1 if s ∈ Ij
.

The reader may be surprised of the term αj + βj − 1 that appears in the sub-differential when
σ = 1. In fact that term can be seen as 1

2(2αj−1)+ 1
2(2βj−1), i.e. the average of the sub-differential

evaluated at the two extrema of the interval.

Proof. Let σ = −1. By additivity of the sub-differential, all the elements Y ∈ ∂W (X) are of the
form

Y (s) = −2s+ 1 + Z(s),
with Z ∈ L2([0, 1]) such that

Z(s) =
∫ s

0
Z(σ)dσ,

satisfies Z ≥ 0 and Z = 0 in [0, 1] \ ΩX . Now, let us compute

‖Y ‖2L2 =
∫ 1

0
(−2s+ 1 + Z(s))2ds =

∫ 1

0
(−2s+ 1)2ds+

∫ 1

0
Z(s)2ds+ 2

∫ 1

0
(−2s+ 1)Z(s)ds

=
∫ 1

0
(−2s+ 1)2ds+

∫ 1

0
Z(s)2ds+ [(−2s+ 1)Z(s)]s=1

s=0 + 4
∫ 1

0
Z(s)ds.
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Now, since s = 0 and s = 1 are not elements in ΩX , clearly we have Z(0) = Z(1) = 0. Therefore, the
boundary term above vanishes. All the other terms are non-negative, and therefore the minimum of
‖Y ‖2L2 is achieved with Z ≡ 0.

Assume now σ = 1. Let us first check that ∂0W (X) defined in (18) belongs to ∂W (X). We have
to check that

W (X̃)−W (X) ≥
∫ 1

0
∂0W (X)(s)(X̃(s)−X(s))ds.

Since the above inequality is trivially satisfied if X̃ 6∈ K, we can assume X̃ ∈ K and use Proposition
2.8. We first assume X̃ ∈ C1. We have to check∫ 1

0
(2s− 1)(X̃(s)−X(s))ds ≥

∫ 1

0
∂0W (X)(s)(X̃(s)−X(s))ds,

which, in view of (18), is equivalent to

(19)
∞∑
j=1

∫ βj

αj

gj(s)(X̃(s)− xj)ds ≥ 0,

where xi ≡ X|Ij , and defining yj = αj + βj − 1
gj(s) := 2s− 1− yj , for s ∈ (αj , βj).

In order to prove (19), we first observe that

Gj(s) :=
∫ s

αj

gj(σ)dσ, for s ∈ (αj , βj),

satisfies Gj(s) ≤ 0 on Ij and Gj(αj) = Gj(βj) = 0. Hence, since X̃ ∈ C1, we can integrate by parts
to obtain ∫ βj

αj

gj(s)(X̃(s)− xj)ds =
[
Gj(s)(X̃(s)− xj)

]s=βj

s=αj

−
∫
Ij

Gj(s)X̃ ′(s)ds

= −
∫
Ij

Gj(s)X̃ ′(s)ds ≥ 0,

since X̃ ′ ≥ 0. The general case X̃ ∈ K can be easily obtained by approximation.
Now we have to check the minimality condition. As in the case σ = −1, we know that all the

elements Y ∈ ∂W (X) are of the form
Y (s) = 2s− 1 + Z(s),

with the same conditions on Z as in case σ = −1. Then, using the property of Z in proposition 2.7,
we get

‖Y ‖2L2 =
∫

[0,1]\ΩX

(2s− 1 + Z(s))2ds+
∫

ΩX

(2s− 1 + Z(s))2ds

=
∫

[0,1]\ΩX

(2s− 1)2ds+
∫

ΩX

(2s− 1 + Z(s))2ds.

Therefore, in order to achieve the minimal selection, we have to minimize∫
ΩX

(2s− 1 + Z(s))2ds,

on the set of Z ∈ L2([0, 1]) such that

Z(s) =
∫ s

0
Z(σ)dσ,



EQUIVALENCE OF GRADIENT FLOWS AND ENTROPY SOLUTIONS 13

satisfies Z ≥ 0 and Z = 0 in [0, 1] \ ΩX . Notice in particular that Z has to satisfy the constraint∫
Ij
Z(s)ds = 0. Therefore, the minimal selection for

∫
Ij

(2s − 1 + Z(s))2ds should be sought in
the class

∫
Ij

(2s − 1 + Z(s))ds = yj(βj − αj). The previous equality holds because of the following
formula: yj = 1

βj−αj

∫
Ij

(2s− 1)ds. A direct argument in the minimization of the L2 norm gives that
the minimizer should be constant on Ij , with the constant being given by yj . This gives

Z(s) = yj − 2s+ 1 on Ij ,

and the assertion is proven. �

The result in Theorem 2.13 allows to provide an explicit formula for the unique gradient flow
solution provided in Theorem 2.12 in the repulsive case, and a more refined formula for the time
derivative ∂tXt in the attractive case. The proof is an elementary consequence of Theorem 2.13, and
is therefore omitted.

Theorem 2.14. Let X0 ∈ K. If σ = −1, then, the unique gradient flow solution Xt in the sense of
Definition 2.11 with initial condition X0 satisfies
(20) Xt(s) = X0(s) + t(2s− 1),
for all s ∈ [0, 1] and t ≥ 0. If σ = 1, given

ΩXt =
+∞⋃
j=1

(αj(t), βj(t)),

then Xt satisfies

(21) −∂tXt(s) =
{

2s− 1 if s ∈ [0, 1] \ ΩXt

αj(t) + βj(t)− 1 if s ∈ (αj(t), βj(t))
.

2.3. Entropy solutions. We now turn our attention to the cumulative distribution variable

F (x, t) := µt((−∞, x]) =
∫ x

−∞
dµt(y),

where µt is a Wasserstein gradient flow in the sense of Definition 2.4. Assume for simplicity that
µt = ρL, and that ρ(·, t) is compactly supported. Then,

∂tF =
∫ x

−∞
∂tρt(x)dx = σFx

∫ +∞

−∞
sign(x− y)ρ(y, t)dy

= σFx

(∫ x

−∞
ρ(y, t)dy −

∫ +∞

x
ρ(y, t)dy

)
= σFx (2F (x, t)− 1) = σ∂x(F 2 − F ),

hence F satisfies the scalar conservation law
(22) ∂tF + ∂xg(F ) = 0 with g(F ) = σF (1− F ) and σ ∈ {−1, 1}.
As shock waves (discontinuities) may appear in finite time, a concept of weak solution is needed.
As more than one weak solution may arise with the same initial condition, the concept of entropy
solution [39] is needed, in order to select admissible shock waves.

Definition 2.15 (Entropy solution). Let g be as in (22), and let F0 ∈ L∞(R) be a non-decreasing
function. A function F ∈ L∞([0,+∞)×R) is called entropy solution if it is a solution of the following
initial value problem

(23)
{
∂tF + ∂xg(F ) = 0 in D′((0,+∞)× R)
F = F0 on R× (t = 0)

,
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and if, in the case σ = 1 (i.e. g convex), it satisfies the Oleinik condition:

(24) F (x+ z, t)− F (x, t) ≤ C

t
z,

for some constant C ≥ 0 and a.e. x ∈ R, z, t > 0.

Notice that no Oleinik condition [39] is needed if σ = 1, as decreasing (non entropic) jumps are
excluded a-priori since our solutions are non decreasing. The existence and uniqueness of an entropy
solution to (23) is guaranteed by the classical result in [39], see also [32].

Theorem 2.16 (Existence and uniqueness of L∞ entropy solutions). Let g be as in (22), and let
F0 ∈ L∞(R) non-decreasing. Then, there exists a unique entropy solution in the sense of Definition
2.15 with initial condition F0. Moreover, let F0, F1 ∈ L∞(R) with F0 − F1 ∈ L1(R). Then, the
two entropy solutions F0(·, t) and F1(·, t) with initial conditions F0 and F1 respectively satisfy the
contraction property
(25) ‖F1(·, t)− F2(·, t)‖L1(R) ≤ ‖F1(·, 0)− F2(·, 0)‖L1(R).

The contraction result of Theorem 2.16 was originally proven in [33], and is well explained also in
[41, Proposition 2.3.6].

Remark 2.17. Clearly, when F0 is the cumulative distribution of a probability measure F0(x) =
Fµ0(x) =

∫ x
−∞ dµ0(x), then F0 is non-decreasing on R. It can be proven by means of classical results

on the Burgers equation that F (·, t) is non decreasing for all times t ≥ 0. More precisely, one can
express the unique entropy solution via the Lax-Oleinik formula, cf. e.g. [24, Section 3.4.2], and use
the monotonicity of g′ to prove the assertion. Since we will obtain the same property as a by-product
of our results, we skip the details at this stage.

For future use, we recall the notion of Riemann problem for (22). A Riemann problem is an initial
value problem (23) with initial condition

(26) F0(x) =
{
FL if x < 0
FR if x > 0

,

with FL < FR. The solution to the Riemann problem in this case depends on the sign of σ. If σ = 1,
then the flux g is concave, therefore increasing shocks are admissible. On the other hand, if σ = −1,
then the flux g is convex, and increasing shock are not admissible, and the initial discontinuity in
the Riemann problem is solved by a rarefaction wave. More precisely, the solution to (26) in the
case σ = 1 is given by

F (x, t) =
{
FL if x < (1− (FR + FL))t
FR if x > (1− (FR + FL))t

.

We recall that the speed of propagation of the shock wave between FL and FR is obtained via the
Rankine-Hugoniot condition

(27) ẋ(t) = g(FL)− g(FR)
FL − FR

.

In the case σ = −1, the solution is given by

F (x, t) =


FL if x < (−1 + 2FL)t
x+t
2t if (−1 + 2FL)t < x < (−1 + 2FR)t
FR if x > (−1 + 2FR)t

.
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3. Equivalence of the three notions of solutions

The following theorem is the main result of this paper.

Theorem 3.1 (Equivalence of the three solutions.). Let W (x) = σ|x| with σ ∈ {−1, 1}. Let µ0 ∈
P2(R). Let F0(x) = µ0((−∞, x]) and let X0 be the pseudo-inverse of F0. Let g be defined as in (22).
Let µt ∈ AC([0,+∞))→ P2(R) be any curve. Then, the following are equivalent:
(C1) The curve µt is the unique gradient flow solution in the sense of Definition 2.4 with initial

condition µ0.
(C2) The curve F (·, t) = µt((−∞, x]) is the unique entropy solution in the sense of Definition 2.15

with initial condition F0.
(C3) The curve Xt(s) = inf{x|F (x, t) > s} is the unique L2 gradient flow in the sense of Defini-

tion 2.11 with initial condition X0.

Proof. Step 1 - Finite combination of delta measures.
The proof is divided in two parts. In the first one we prove the equivalence only for initial

conditions involving finite sum of delta measures, considering the attractive and the repulsive case
separately. Then we prove the equivalence for any initial condition with an approximation argument.

We first consider the class of initial conditions

(28) µ0 =
N∑
j=1

mjδxj , 1 =
N∑
j=1

mj .

Let us set M0 = 0 and Mj =
∑j
k=1mk, for j = 1, . . . , N . In particular, we have MN = 1. We easily

get (see the example in Figure 3)

F0 =
N∑
j=1

mjχ[xj ,+∞), X0 =
N∑
j=1

xjχ(Mj−1,Mj).

0 1 s

X0(s)

xi

x

F0(x)

1

xi

Figure 3. X0 and F0 corresponding to a concentrated µ0

We now distinguish between the attractive and the repulsive case.
Attractive case. In the case σ = 1, we claim that the unique L2 gradient flow solution in the sense

of definition 2.11 with initial condition X0 is given by

X(s, t) = x1(t)χ[0,m1) +
N−1∑
j=2

xj(t)χ[Mj−1,Mj) + xN (t)χ[MN−1,1],
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with the xj ’s solving the particle system

ẋj(t) = −
∑

k: xj(t) 6=xk(t)
mjsign(xj(t)− xk(t)),

with the convention that sign(0) = 0, so particles can collide and stick together. The proof of the
claim is contained in Theorem 2.14, checking that the velocity of the particles is ẋj = 1−αj−βj . Now,
let F (x, t) =

∫ 1
0 X(−∞,x](X(s, t))ds. In [18, Remark 2.10] it is proven that the curve of probability

measures µt = ∂xF (x, t) is the unique Wasserstein gradient flow solution with initial condition µ0
in the sense of Definition 2.4. It remains to prove that F (·, t) is an entropy solution with initial
condition F0 in the sense of Definition 2.15. Let us first observe that in this case

F (x, t) = µt((−∞, x]) =
N∑
j=1

mjχ[xj(t),+∞).

Hence, we only need to prove that all the shocks in F are admissible and that they satisfy the
Rankine-Hugoniot condition (27). To see this, let us compute

ẋj(t) = 1−M−j (t)−M+
j (t),

M−j (t) :=
∑

xk(t)<xj(t)
mk, M+

j (t) :=
∑

xk(t)≤xj(t)
mk.

Clearly, the above identity yields

ẋj(t) = 1− F (xj(t)−, t)− F (xj(t)+, t) = g(F (xj(t)−, t))− g(F (xj(t)+, t))
F (xj(t)−, t)− F (xj(t)+, t) ,

which satisfies (27). The shocks are all admissible since they are increasing and g is concave.
Repulsive case. The proof in this case is more involved, since the initial Dirac delta singularities

are ‘smoothed’ out immediately after t = 0. On the other hand, in this case we have the following
explicit formula for the L2 gradient flow solution (see Theorem 2.14)

(29) X(s, t) = X0(s) + t(2s− 1).

It is clear that X(·, t) has at most N points of discontinuity. Let us set, as in (9),

F (x, t) =
∫ 1

0
χ(−∞,x](X(s, t))ds.

Let us first prove that F is a weak solution to the scalar conservation law (22). We have to prove
that F (x, t) solves, for all φ ∈ C∞c ([0,+∞)× R),

(30)
∫
R
F0φ0dx+

∫ +∞

0

∫
R

[
Fφt + (F 2 − F )φx

]
dxdt = 0.

Let us set J(t) = {x ∈ R | X(z, t) 6= x, for all z ∈ [0, 1]}, namely J(t) is the complement of the
image of X(·, t). Since X(·, t) has a finite number of jumps, J(t) is the union of a finite number of
disjoint open intervals. It is easily seen that F is constant along each connected component of J(t).
Now, let x ∈ (R \ J(t))◦. We have

(31) ∂xF (x, t) = (∂sX)−1 (F (x, t)) = 1
2t ,

because X(·, t) is monotonic increasing on a small neighborhood of x. Therefore, µ(·, t) := ∂F
∂x (·, t)

is absolutely continuous for all t > 0 on each component of (R \ J(t))◦. Moreover, in a small
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σ = 1

0 1/2 1 s

Xt(s)

xi

x

Ft(x)

1

xi

σ = −1

0 1/2 1 s

Xt(s)

xi

x

Ft(x)

1

xi

Figure 4. Profile of Ft and Xt at 0 = t0 < t1 < t2 (t0 thick, t1 dashdotted, t2 dotted)

neighborhood of x ∈ (R \ J(t))◦ we have

(32) 0 = d

dt
X(F (x, t), t) = ∂tX(F (x, t), t) + ∂sX(F (x, t), t)∂tF (x, t).

Finally, let us notice that F (·, t) is absolutely continuous on R, and therefore it is differentiable
w.r.t. x almost everywhere, with µ(·, t) := ∂xF (·, t) being a probability measure (see Figure 4 for
the difference between attractive and repulsive case).

Then, for each φ ∈ C∞c we have∫ +∞

0

∫
R

(∂xφ)(F 2 − F )dxdt = −
∫ +∞

0

∫
R
φ(2F − 1)Fxdxdt = −

∫ +∞

0

∫
R
φ(2F − 1)dµdt

= −
∫ +∞

0

∫ 1

0
φ(X(s, t))(2s− 1)dsdt = −

∫ +∞

0

∫ 1

0
φ(X(s, t), t)∂tXdsdt

= −
∫ +∞

0

∫
J(t)c

φ(x, t) ∂tX|s=F (x,t) ∂xFdxdt,

where we use (29). Now, using (31) and (32), we obtain

−
∫ +∞

0

∫
J(t)c

φ(x, t) ∂tX|s=F (x,t) ∂xFdxdt

=
∫ +∞

0

∫
J(t)c

φ(x, t)∂tF ∂sX|s=F (x,t) ∂xFdxdt =
∫ +∞

0

∫
J(t)c

φ(x, t)∂tFdxdt

=
∫ +∞

0

∫
R
φ(x, t)∂tFdxdt = −

∫
R
φ0(x)F0(x)dx−

∫ +∞

0

∫
R

(∂tφ)Fdxdt,

which proves the assertion (30).
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We next prove that F (x, t) satisfies the Oleinik condition (24). Given any 0 ≤ s1 < s2 ≤ 1 we
have that

(33) X(s2, t)−X(s1, t) = X(s2, 0)−X(s1, 0) + 2t(s2 − s1) =⇒ (s2 − s1) ≤ X(s2, t)−X(s1, t)
2t .

From the definition of F in terms of his pseudo-inverse (9) we obtain that

F (x+ z, t)− F (x, t) =
∫ 1

0
X(x,x+z](X(s, t))ds = |{x < X(s, t) ≤ x+ z}| = s∗2 − s∗1,

where {
s∗2 = sup {s|X(s, t) ∈ (x, x+ z]}
s∗1 = inf {s|X(s, t) ∈ (x, x+ z]}

.

Using (33) we deduce

F (x+ z, t)− F (x, t) = s∗2 − s∗1 ≤
X(s∗2, t)−X(s∗1, t)

2t ≤ x+ z − x
2t = z

2t .

and then the Oleinik condition (24) is satisfied.
We now prove that µ(x, t) = ∂F

∂x is the solution of (1) satisfying (6). Let us first see that µ(x, t) is
a weak measure solution of the continuity equation with the velocity field v(x, t) = 2F − 1. With
Φ(x, t) ∈ C∞c ([0,+∞]× R), by direct integration by parts we obtain∫ +∞

0

∫
R

(∂xΦ (2F − 1) + ∂tΦ) dµdt+
∫
R

Φ0dµ0

=
∫ +∞

0

∫
R

(∂xΦ (2F − 1) + ∂tΦ) ∂xFdxdt+
∫
R

Φ0∂xF0dx

=
∫ +∞

0

∫
R
∂xΦ ∂x(F 2 − F )dxdt+

∫ +∞

0

∫
R
∂tΦ ∂xFdxdt+

∫
R

Φ0∂xF0dx

=−
∫ +∞

0

∫
R
∂2
xΦ (F 2 − F )dxdt−

∫ +∞

0

∫
R
∂t∂xΦFdxdt−

∫
R
∂xΦ0 F0dx.

Now, choosing φ = −∂xΦ, (30) implies that the previous equation is equal to∫ +∞

0

∫
R
∂xφ (F 2 − F )dxdt+

∫ +∞

0

∫
R
∂tφFdxdt+

∫
R
φ0F0dx = 0,

and so µ(x, t) is a weak solution. The second condition (6) comes straightforwardly:

v(x, t) = (2F − 1) =
∫
x 6=y

sign(x− y)dµ(y, t) = −∂0W[µ].

Step 2. General initial measure
Let µ0 ∈ P2(R) be a general initial condition. Define F0(x) := µ0((−∞, x]), and let X0 be the

pseudo-inverse of F0. We then denote by µt the unique Wasserstein gradient flow solution to (1) with
initial condition µ0, by F̃ (·, t) the unique entropy solution to (22), and by X̃t the unique L2 gradient
flow solution of (16). As usual we set F (x, t) = µt((−∞, x]) and by Xt ∈ L2(0, 1) the pseudo-inverse
of F (·, t). We need to prove that F = F̃ and X = X̃. Let µN0 ∈ P2(R) be a linear combination of
Dirac Delta as in Step 1, such that dW (µN0 , µ0) → 0 as N → +∞. Let us recall the definition of
1-Wasserstein distance between ν1, ν2 ∈ P2(R)

(34) dW,1(ν1, ν2) = inf
{∫

R×R
|x− y|dγ(x, y), γ ∈ Γ(ν1, ν2)

}
= ‖F1 − F2‖L1(R) ,
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with Fi(x) = νi((−∞, x]). For ν1, ν2 ∈ P2(R) it is immediately seen that dW,1(ν1, ν2) ≤ dW (ν1, ν2).
Let FN0 (x) = µN0 ((−∞, x]) and FN (·, t) be the unique entropy solution to (22) with initial condition
FN0 . Let XN

0 be the pseudo-inverse of FN0 and let XN
t be the unique L2 gradient flow solution to

(16) with initial condition XN
0 . Due to (7), we have for all t ≥ 0

‖F (t)− FN (t)‖L1 = dW,1(µ(t), µN (t)) ≤ dW (µ(t), µN (t)) ≤ dW (µ0, µ
N
0 ) → 0 as N → +∞.

Moreover, from the L1 contraction (25) in theorem 2.16 we get

‖F̃ (t)− FN (t)‖L1 ≤ ‖F0 − FN0 ‖L1 → 0 as N → +∞.

By uniqueness of the limit, F̃ ≡ F for all t ≥ 0. Similarly, from the definition of dW (11) and the
dW contraction (7) in theorem 2.5, we get

‖Xt −XN
t ‖L2 = dW (µt, µNt ) ≤ dW (µ0, µ

N
0 ) → 0 as N → +∞.

Finally, from (17) we get

‖X̃t −XN
t ‖L2 ≤ ‖X0 −XN

0 ‖L2 = dW (µ0, µ
N
0 ) → 0 as N → +∞,

and the assertion follows. �

4. Particle approximation

A clear distinction between the attractive case σ = 1 and the repulsive case σ = −1 is that the
former case allows for atomic measure solutions as a special case of gradient flow solutions, whereas
this is not possible in the latter case. More precisely, in the attractive case, assuming

(35) µ0 =
N∑
j=1

mjδxj ,

as in Step 1 of Theorem 3.1, if the vector (xj(t))Nj=1 is the (unique) solution to the particle system

ẋj(t) = −
N∑
k=1

mksign(xj(t)− xk(t)), (sign(0) = 0),

then, as we proved in Theorem 3.1, the empirical measure µt =
∑N
j=1mjδxj(t) is the unique gradient

flow of W with σ = 1 with initial condition µ0. By the stability property (7) then allows any gradient
flow solution µt to be approximated by the empirical measure of a finite number of particles, uniformly
in time. Note that the approximating empirical measures are exact solutions of the same problem.

On the other hand, in the repulsive case σ = −1 the proof of Theorem 3.1 shows that the unique
gradient flow µt of W with initial condition µ0 as in (35) is the x-derivative of a continuous piecewise
linear function F (·, t) consisting of N rarefaction waves. Hence µt is absolutely continuous with
respect to the Lebesgue measure. Therefore, in the repulsive case the approximation of an arbitrary
gradient flow solution by a finite number of moving deltas is not as simple as in the attractive case.
In the next theorem we provide a solution to such problem, which was recently addressed also in
[17] for a class of singular interaction potentials in many space dimensions. In our specific case, it
turns out that the particle approximation for (1) is equivalent to the convergence of the so called
wave front tracking scheme for the scalar conservation law (22), see [20, 22, 13].
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In order to state the result we introduce some notation. For a given initial probability measure
µ0 ∈ P(R) and a fixed positive integer N , we define inductively the finite sequence {XN

j }Nj=1 as

(36)

X
N
1 = inf

{
x ∈ R : µ0((−∞, x)) > 1

2N

}
XN
j+1 = inf

{
x ∈ R : µ0([XN

j , x)) > 1
N

} j = 1, . . . , N − 1.

Roughly speaking, we have divided the support of µ0 into N sets on which µ0 has equal mass 1/N ,
and chosen the position XN

j to be an intermediate point of that interval. Such a construction could
be much easier in the case of µ0 with bounded support (e.g. by assigning the position of each
particle on the edge of each mass portion), but we choose this construction to include initial data
with unbounded support. Next, we define the empirical measure

µN0 =
N∑
j=1

1
N
δXN

j
.

We define the cumulative distribution function of µN0 as

FN0 =
N∑
j=1

1
N
χ[XN

j ,+∞).

We now introduce the approximated flux

gN (F ) =
N∑
j=1

N

[
g

(
j

N

)
− g

(
j − 1
N

)](
F − j − 1

N

)
χ[ j

N
, j−1

N
)(F ).

00 1F

gN (F )

x

FN0 (x)

1

Figure 5. A pictorial view of the approximated problem with N = 4

Figure 5 illustrates the construction of gN . Notice that gN is piecewise linear and convex on [0, 1].
We now define the approximating distribution FN (x, t) as the unique L∞ solution to

(37) ∂tF
N + ∂xg

N (FN ) = 0,

with initial condition FN0 . Let µN be the x-derivative in the sense of distributions of the solution
FN (x, t) of (37).

The solution FN to (37) consists of exactly N shocks, with constant velocities defined by the
Rankine-Hugoniot condition

(38) ẋj(t) = λj :=
g
(
j
N

)
− g

(
j−1
N

)
1
N

= (j − 1)
N

− (N − j)
N

,
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and with initial positions xj(0) = XN
j , as was first observed in [13, Section 6]. We have then the

explicit formula for the shock curves

xj(t) = XN
j +

[(j − 1)
N

− (N − j)
N

]
t,

and the explicit formula for the solution FN is given by

FN (x, t) =
N−1∑
j=1

χ[xj(t),xj+1(t))(x) j
N

+ χ[xN (t),+∞)(x).

In the evolution of xj(t) the shocks do not cross each other, since λj < λk if j < k. Also note that
all the shocks have the same size in the jump, namely 1/N . This is consistent with the fact that no
shocks will appear in the continuum limit, as the flux is convex. Moreover, the formula (38) shows
that each discontinuity xj is driven by a positive drift (j − 1)/N , which can be interpreted as a
repulsive force against the j− 1 particles on its left, and a negative drift (N − j)/N , which accounts
for a repulsive force against the N − j particles on its right. Note that we introduced an ordering
between the particles; consider for example the situation where the starting point is a single shock.
At time t = 0 there is no notion of particles on the left/right but still the evolution, according to
the Rankine-Hugoniot condition, prescribes a velocity λj to the j-th particle.

In the next Theorem we prove that the empirical measure µN (t) converges in the 2-Wasserstein
distance to the solution µ to the repulsive gradient flow. In the landscape of conservation laws, this is
equivalent to prove that FN (t) converges in some sense to the cumulative distribution F (x, t) of µ(t)
(convergence in L1 of FN means convergence in the 1-Wasserstein distance of µN to µ). One way
to perform this task could then be using the same strategy of [20, 22, 13], which relies on providing
BV estimates on FN . However, in our case we have explicit formulas for µN (t) and µ(t), so the
convergence can be checked directly.

Theorem 4.1 (Particle approximation in the repulsive case). Let µ0 ∈ P2(R), and let µ(x, t) be the
unique gradient flow solution of W with σ = −1 with initial datum µ0. For each N , let µN be the
empirical measure

µN (t) =
N∑
j=1

1
N
δxN

j (t),

with xNj satisfying

(39) ẋNj (t) = 1
N

∑
k 6=j

sign(xNj (t)− xNk (t)) = 2j − 1−N
N

, xNj (0) = XN
j , j = 1, · · · , N,

where XN
j is defined in (36). Then, for all t ≥ 0, we have

lim
N→∞

dW (µN (t), µ(t)) = 0.

Proof. From a direct computation with pseudo inverses, we can easily check that the pseudo inverse
variable XN related to the empirical measure µN can be written as

XN (s, t) = XN
0 + fN (s)t,

with fN (s) = 2j−1−N
N for s ∈ [ j−1

N , jN ). Moreover, we recall that the pseudo inverse X related to µ
can be written as

X(s, t) = X0 + (2s− 1)t.
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Therefore, we obtain that

d2
W (µ(t), µN (t)) = ‖X(t)−XN (t)‖2L2 =

∫ 1

0

(
X0 + (2s− 1)t−XN

0 − fN (s)t
)2
ds

=
∫ 1

0

(
X0 −XN

0

)2
ds+ 2t

∫ 1

0

(
X0 −XN

0

) (
2s− 1− fN (s)

)
ds+

∫ 1

0

(
2s− 1− fN (s)

)2
ds.

Combining the previous equality with the bound |2s− 1− fN (s)| ≤ 1
N and with the convergence of

XN
0 to X0 we conclude the proof. �

Remark 4.2. In our construction we chose a specific way to approximate the initial datum via a
combination of deltas, namely by placing the particle at the mid-mass-point (the ‘mass median’) in
each interval. It can be easily checked that such construction is not necessary, and the convergence
result works for more general approximation procedures for the initial datum.

5. The characterization of the sub-differential of W

Here we analyse the sub-differential of the functional W in the repulsive case, namely with σ = −1.
Let us remark here that this task is completely solved in the attractive case in view of the results in
[18]. We will extensively use that

(40) W[µ] = 1
2

∫
R×R
|x− y|dµ(x)dµ(y) =

∫ 1

0
Xµ(s)(2s− 1)ds.

From Proposition 2.3 we have that, if we deal with a measure µ with no atoms, then the sub-
differential is characterized as follows

(41) ∂0W(µ) = −
∫
x 6=y

sign(x− y)dµ(y) =: k(x).

In the case that µ has concentrated mass, then the sub-differential is empty, as proven in the following

Theorem 5.1. Let µ ∈ P2(R) and W (x) = −|x|. If there exists x ∈ R such that µ({x}) > 0 then
∂W(µ) = ∅. Conversely, if µ({x}) = 0 for all x, then ∂0W, the element of minimal norm, is

∂0W(µ) = −
∫
x 6=y

sign(x− y) dµ(y).

Proof. The proof of the second statement can be found in [10, Proposition 4.3.3]. We now prove
the first statement. Assume that there exists x ∈ R such that µ({x}) = a > 0. Then there exist
0 ≤ r1 < r2 ≤ 1 such that r2 = r1 + a, Xµ(s) ≡ x for every s ∈ [r1, r2]. We take r2 to be maximal
and r1 minimal, i.e.,
(42) for all δ > 0, Xµ(r2 + δ) > Xµ(r2−) and Xµ(r1 − δ) < Xµ(r1+).

Assume that ∂W(µ) is not empty; let k ∈ L2(µ) be any element of ∂W. For every measure
ν ∈ P2(R), we have

W[ν]−W[µ]−
∫
R×R

k(x)(y − x) dγ(x, y) =
∫ 1

0
(Xν(s)−Xµ(s)) (1− 2s− k(Xµ(s))) ds ,(43)

since γ is the optimal plan as in (11) taking into account (40).
We will arrive to a contradiction by constructing sequences of νε, converging to µ in dW as ε→ 0,

leading to conditions on k that cannot be satisfied.
Given ε > 0 and 0 < η < a we define

δε := inf {θ ≥ 0|Xµ(r2 + θ) ≥ x+ ε} .
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It follows from (42) that δε → 0 as ε→ 0 with 0 ≤ δε < 1. Define ν by setting Xν as follows:

Xν(s) :=
{
x+ ε if s ∈ [r2 − η, r2 + δε]
Xµ(s) otherwise.

By the definition of δε, this Xν is increasing and therefore ν is well-defined. Although ν depends on
ε, we do not indicate this to alleviate the notation. We calculate

d2
W (µ, ν) =

∫ 1

0
|Xµ(s)−Xν(s)|2 ds =

∫ r2+δε

r2−η
|Xµ(s)−Xν(s)|2 ds,

implying that d2
W (µ, ν) ∈ [ε2η, ε2(η + 1)]. Therefore, from (43) we deduce that

W[ν]−W[µ]−
∫
R×R

k(x)(y − x) dγ(x, y)

=
∫ r2

r2−η
ε (1− 2s− k(x)) ds+

∫ r2+δε

r2
(x+ ε−Xµ(s)) (1− 2s− k(Xµ(s))) ds.

We estimate the last term by∫ r2+δε

r2
|x+ ε−Xµ(s)| |1− 2s− k(Xµ(s))| ds ≤ ε

∫ r2+δε

r2
|1− 2s− k(Xµ(s))| ds

≤ εδε + ε

∫ r2+δε

r2
|k(Xµ(s))|ds ≤ ε

(
δε +

√
δε‖k‖L2(µ)

)
.

In order for k to satisfy (44), it is therefore necessary that∫ r2

r2−η
(1− 2s− k(x)) ds = η(1 + η − 2r2 − k(x)) ≥ δε +

√
δε‖k‖L2(µ),

which implies k(x) ≤ 1− 2r2 + η. Note that this inequality applies for each choice of 0 < η < a, and
therefore we find that k(x) ≤ 1−2r2. By repeating the argument for a similar interval [r1− δ̃ε, r1 +η]
we find a similar bound on k(x) from below. Together these inequalities read 1−2r1 ≤ k(x) ≤ 1−2r2.
Since r2 > r1, it is impossible to satisfy both inequalities simultaneously, and we therefore find a
contradiction. �

5.1. Extended sub-differential. Let us recall the notion of extended subdifferential, more details
can be found in [1, Chapter 10]. We define the set of optimal 3-plans Γ0(µ, µ3), for µ ∈ P2(R× R)
and µ3 ∈ P2(R), as follows: γ ∈ Γ0(µ, µ3) if and only if (π1,3)]γ ∈ Γ0((π1)]µ, µ3). Here π1,3 is the
projection of R× R× R onto the first and third components.

Definition 5.2 (Extended Fréchet sub-differential). Let φ : P2(R) → (−∞,+∞] be proper and
lower semi-continuous, and let µ ∈ D(φ). We say that γ ∈ P2(R × R) belongs to the extended
Frechét sub-differential ∂φ(µ) if (π1)]γ = µ and

(44) φ(µ̃)− φ(µ) ≥ inf
µ∈Γ0(γ,µ̃)

∫
R×R×R

x2(x3 − x1)dµ(x1, x2, x3) + o(dW (µ, µ̃)).

Assume (i ⊗ T )#µ ∈ Γ0(µ, µ̃), with µ̃ = T#µ, which means that T is an optimal map between µ
and µ̃. Then, for each element k of the Fréchet sub-differential we can construct an element of the
extended sub-differential through the formula µ = (i ⊗ k ⊗ T )#µ. In [1, Chapter 10] the authors
prove the existence of an element of the extended sub-differential for a wide class of functionals called
‘regular’ functionals. Such element may be not an element of the standard sub-differential, which
may indeed be empty as in the present case.
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Let γ ∈ ∂φ(µ) be a plan γ ∈ P2(R× R) such that π1
#γ = µ and

W(ν)−W(µ) ≥ inf
µ∈Γ0(γ,ν)

∫
R3
x2(x3 − x1)dµ+ o

(
dW (µ, ν)

)
.

For γ ∈ P2(R× R) we need to define

|γ|2j :=
∫
R2
|xj |2dγ(x1, x2), j = 1, 2.

It is important to notice that, when µ is absolutely continuous w.r.t. the Lebesgue measure, then
k ∈ L2(µ) belongs to the Fréchet sub-differential ∂W(µ) if and only if

γ = (i⊗ k)#µ ∈ ∂W(µ),

in fact Γ0(γ, ν) is known in this case and it contains the unique element µ = (i ⊗ k ⊗ tνµ)#µ, for a
more detailed discussion we refer to [1, Chapter 10].

We will characterize the sub-differential using the following closure property [1, Lemma 10.3.8]:

Lemma 5.3 (Closure of the sub-differential). Let φh : P2(R) → (−∞,+∞] be λ-geodesically func-
tionals which Γ(dW )-converge to φ as h→∞. If

γh ∈ ∂φh(µh), µh → µ in P2(R), µ ∈ D(φ),
sup
h
|γh|2 < +∞, γh → γ in P2(R× R),

then γ ∈ ∂φ(µ)

The functional W has been proven in Proposition 2.3 to be 0-geodesically convex, so we can use
this lemma with the sequence φh := W which Γ-converges to itself. In the following we will use that
a measure µ0 can always be written as µ0 = ν +

∑
i∈I miδxi with ν({x}) = 0 for every x ∈ R for a

index set I finite or countable. We define αi and βi := αi +mi such that Xµ0 = xi on (αi, βi). We
can now state the following:

Proposition 5.4. Given the functional W and a measure P2(R) 3 µ0 = ν +
∑
i∈I miδxi, for some

finite or countable I and with ν({x}) = 0 for every x ∈ R, then, defining ∆i = [2αi − 1, 2βi − 1],
X∆i

the characteristic function of the interval ∆i and k0(x) := 2F0(x)− 1, the plan

(45) γ(x, y) =
∑
i

1
2δxi ⊗ X∆i

+ (i⊗ k0)#ν,

is the unique element of minimal norm in ∂W(µ0).

Proof. Let µt be the Wasserstein gradient flow solution of W(µ) with σ = −1 starting from µ0; µt is
absolutely continuous for t > 0 as we remarked in Section 4. By Theorem 5.1, for t > 0 the extended
sub-differential is therefore

(46) γt = (i⊗ kt)#µt with kt(x) = 2Ft(x)− 1,

writing Ft for the cumulative distribution function of µt as above. We apply Lemma 5.3 to the
sequences µt and γt as t→ 0.

First note that for every test function φ ∈ Cb(R2), by the absolute continuity of µt (see Theo-
rem 2.5) and the property that F (X(s)) = s when the corresponding µ is absolutely continuous, we
have that ∫

R2
φ(x, y) dγt =

∫
R
φ(x, 2Ft(x)− 1) dµt =

∫ 1

0
φ(Xt(s), 2s− 1) ds.
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x

µ(x, t)

x0

γ(x, y, t)
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y

1
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Figure 6. A pictorial view of γ for δx0 (thick line t = 0, dashed t1, dotted t2 with
t2 > t1 > 0)

We define γ through the limit of this expression as t → 0, i.e. so that, taking the limit for t → 0,
which we can calculate explicitly by,∫

R2
φ(x, y)dγ := lim

t→0

∫ 1

0
φ(Xt(s), 2s− 1)ds =

∫ 1

0
φ(X0(s), 2s− 1)ds.

First note that γt → γ not only narrowly on R×R—by construction—but also in the Wasserstein
metric on R × R, i.e. in P2(R × R), since the second moments of γt also converge (see Figure 6 for
an illustration).

Next we characterize γ in the following way. Set ΩX :=
⋃
i∈I(αi, βi) and then set Y := [0, 1] \ΩX .

Writing ∫ 1

0
φ(X0(s), 2s− 1) ds =

∫
ΩX

φ(X0(s), 2s− 1) ds+
∫
Y
φ(X0(s), 2s− 1) ds,

the second term can be written as∫
Y
φ(X0(s), 2s− 1) ds =

∫
R
φ(x, y) d(i⊗ k0)#ν, with k0(x) = 2F0(x)− 1,

and the first as∫
ΩX

φ(X0(s), 2s− 1) ds =
∑
i∈I

∫ F0(xi)

F0(xi)−mi

φ(xi, 2s− 1) ds

=
∑
i

1
2

∫ 2F0(xi)−1

2F0(xi)−2mi−1
φ(xi, s′) ds′ =

∑
i

∫
R
φ(x, y) d

(1
2δxi ⊗ X∆i

)
.

Therefore
γ =

∑
i

1
2δxi ⊗ X∆i

+ (i⊗ k0)#ν.

We can directly calculate the norm of γ

|γ|22 =
∫ 1

0
(2s− 1)2ds = 1

3 .

It is easy to check by using (46) that |∂W|2(µt) = 1
3 . Since the slope is non increasing along solutions

we conclude that |∂W|2(µ0) ≥ 1
3 proving the minimality of γ. �
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Remark 5.5. We have that the concept of extended sub-differential is absolutely needed in the
repulsive case when dealing with Dirac delta functions. Moreover we just proved that D(∂W) is the
whole P2(R).

6. Discussion

The results of this paper create a connection between two systems that are individually well-studied
but are often considered completely separate: the entropy-solution interpretation of conservation laws
on one hand and the metric-space gradient flows on the other. For both systems, smooth solutions are
unique and reversible in time, but for non-smooth solutions both the uniqueness and the reversibility
break down—and these two issues are strongly connected through the concept of information loss.

It is intriguing to see that the gradient-flow concept singles out the same solution as the Oleinik-
Kružkov entropy condition, thereby distinguishing the solution from other types with ‘non-classical’
shocks. When dealing with the attractive case, the Rankine-Hugoniot condition uniquely charac-
terizes shocks by our choice of increasing initial conditions. But in the repulsive case non-entropic
shocks can occur, and we recover uniqueness with the Oleinik entropy condition. The non-uniqueness
for the conservation law is translated into non-uniqueness for (1), in a one-to-one correspondence,
where persistence vs. spreading of a shock translates into persistence vs. spreading of a Dirac delta
function.

The question naturally arises how the gradient-flow concept embodies the same selection criterion
as the entropy condition. Or, to phrase it differently, since both solution concepts lead to non-
reversibility in time, how does this non-reversibility arise? One way to see this is the fact that both
solution concepts contain a specific inequality. In the Burgers equation the inequality is explicitly
given in the definition (see (24)); in the gradient-flow solution the inequality lies in the fact that
solutions are curves of steepest descent. Since forward-time and backward-time evolutions differ by
the sign of the functional, the condition of steepest descent distinguishes between the two.

In the case of the gradient-flow concept, the non-reversibility seems tightly connected to the Fréchet
sub-differential and the metric slope at any given time. In the attractive case and for purely atomic
initial data, the metric slope has a decreasing jump at each collision time between two particles.
This is how the irreversibility shows in the system and it is determined by the element of minimal
norm in the Fréchet sub-differential. In the repulsive case, the Fréchet sub-differential for an initial
data with concentrated mass is empty, and thus the system chooses the velocity distribution for
the concentrated mass with uniform probability on the admissible velocity range. This is expressed
mathematically by the explicit formula of the element of minimal norm in the extended subdifferential
given in Proposition 5.4.

Finally, let us remark that this equivalence is very specific for the attractive/repulsive Newtonian
potentials in one dimension, since by integrating the nonlocal equation (1), we usually get a nonlocal
conservation law except for W (x) = ±|x|. In other words, the flux of the conservation law can only
be expressed as an explicit function of the cumulative distribution function for these two specific
cases.
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