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Abstract The concept of reputation is widely used as a
measure of trustworthiness based on ratings frommembers in
a community. The adoption of reputation systems, however,
relies on their ability to capture the actual trustworthiness of a
target. Several reputation models for aggregating trust infor-
mation have been proposed in the literature. The choice of
model has an impact on the reliability of the aggregated trust
information as well as on the procedure used to compute
reputations. Two prominent models are flow-based reputa-
tion (e.g., EigenTrust, PageRank) and subjective logic-based
reputation. Flow-basedmodels provide an automatedmethod
to aggregate trust information, but they are not able to express
the level of uncertainty in the information. In contrast, subjec-
tive logic extends probabilisticmodelswith an explicit notion
of uncertainty, but the calculation of reputation depends on
the structure of the trust network and often requires infor-
mation to be discarded. These are severe drawbacks. In this
work, we observe that the ‘opinion discounting’ operation in
subjective logic has a number of basic problems. We resolve
these problems by providing a new discounting operator that
describes the flow of evidence from one party to another. The
adoption of our discounting rule results in a consistent sub-
jective logic algebra that is entirely based on the handling
of evidence. We show that the new algebra enables the con-
struction of an automated reputation assessment procedure
for arbitrary trust networks, where the calculation no longer
depends on the structure of the network, and does not need
to throw away any information. Thus, we obtain the best of
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both worlds: flow-based reputation and consistent handling
of uncertainties.

Keywords Reputation systems · Evidence theory ·
Subjective logic · Flow-based reputation models

1 Introduction

Advances in ICT and the increasing use of the Internet have
resulted in changes in the way people do everyday things
and interact with each other. Everything people do happens
online, significantly increasing the number of business trans-
actions carried out daily over the Internet.Often, users have to
decide whether to interact with services or users with whom
they have never interacted before. Uncertainty about services
and users’ behavior is often perceived as a risk [2] and, thus,
it can restrain a user from engaging in a transaction with
unknown parties. Therefore, to fully exploit the potential of
online services, platforms and ultimately online communi-
ties, it is necessary to establish and manage trust among the
parties involved in a transaction [11,40,43].

Reputation is widely adopted to build trust among users
in online communities where users do not know each other
beforehand. The basic idea underlying reputation is that a
user’s past experience as well as the experience of other
users influences his decision whether to repeat this inter-
action in the future. Thus, reputation provides an indication
of services’ and users’ trustworthiness based on their past
behavior [36]. When a user has to decide whether to interact
with another party, he can consider its reputation and start the
transaction only if it is trustworthy. Therefore, a reputation
system, which helps managing reputations (e.g., by collect-
ing, distributing and aggregating feedback about services and
users’ behavior), becomes a fundamental component of the
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trust and security architecture of any online service or plat-
form [42].

The application and adoption of reputation systems, how-
ever, rely on their ability to capture the actual trustworthiness
of the parties involved in a transaction [41]. The quality of
a reputation value depends on the amount of information
used for its computation [10,17,27]. A reputation system
should use “sufficient” information. However, it is difficult
to establish the minimum amount of information required to
compute reputation; also, different users may have a differ-
ent perception based on their risk attitude [2]. For instance,
some users may accept to interact with a party which has a
high reputation based on very few past transactions, while
other users might require more evidence of good behavior.
Therefore, a reputation system should provide a level of con-
fidence in the computed reputation, for instance based on
the amount of information used in the computation [15,32].
This additional information will provide deeper insights to
users, helping them decide whether to engage in a transac-
tion or not. In addition, reputation systems should provide an
effective and preferably automated method to aggregate the
available trust information and compute reputations from it.

Reputation systems usually rely on a mathematical model
to aggregate trust information and compute reputation [13].
Several mathematical models for reputation have been pro-
posed in the literature. These models can be classified with
respect to the used mathematical foundations, e.g., summa-
tion and averaging [14], probabilistic models [15,21,28],
flow-based [6,23,25,35], fuzzy metrics [3,38]. As pointed
out in [42], the choice of the type of model has an impact on
the type and amount of trust information as well as on the
procedure used to compute reputation.

Among the others, two prominent reputation models
are the flow-based model and subjective logic (SL) [15].
Flow-based reputation models use Markov chains as the
mathematical foundation. Flow-based models provide an
automated method to aggregate all available trust informa-
tion. However, they are not able to express the level of
confidence in the obtained reputation values. On the other
hand, SL is rooted in the well-known Dempster–Shafer the-
ory [34]. SL provides a mathematical foundation to deal with
opinions and has the natural ability to express uncertainty
explicitly. Intuitively, uncertainty incorporates a margin of
error into reputation calculation due to the (limited) amount
of available trust information. SL uses a consensus oper-
ator ‘⊕’ to fuse independent opinions and a discounting
operator ‘⊗’ to compute trust transitivity. This makes SL
a suitable mathematical framework for handling trust rela-
tions and reputation, especially when limited evidence is
available. However, the consensus operator is rooted in the
theory of evidence, while the discounting operator is based
on a probabilistic interpretation of opinions. The different
nature of these operators leads to a lack of “cooperation”

between them. As a consequence, the calculation of reputa-
tion depends on the shape of the trust network, the graph of
interactions, in which nodes represent the entities in the sys-
tem and edges are labeled with opinions. Depending on the
structure of the trust network, some trust information may
have to be discarded to enable SL-based computations.

Our desideratum is to have a reputation system which has
the advantages of both flow-based reputation models and SL.
In particular, the goal of this work is to devise the math-
ematical foundation for a flow-based reputation model with
uncertainty.Wemake the following contributions toward this
goal:

– We observe that the discounting rule ‘⊗’ in SL does not
have a natural interpretation in terms of evidence han-
dling. We give examples of counterintuitive behavior of
the ⊗ operation.

– We present a brief inventory of the problems that occur
when one tries to combine SLwith flow-based reputation
metrics.

– We present a simplified justification of the mapping
between evidence and opinions in SL.

– We introduce a new scalar multiplication operation in
SL which corresponds to a multiplication of evidence.
Our scalarmultiplication is consistent with the consensus
operation (which amounts to addition of evidence) and
hence satisfies a distribution law, namely α · (x ⊕ y) =
(α · x) ⊕ (α · y).

– We introduce a new discounting rule �. It represents the
flow of evidence from one party to another. During this
flow, lack of trust in the party from whom evidence is
received is translated into a reduction in the amount of
evidence; this reduction is implemented using our new
scalarmultiplication rule. Our newdiscounting rule satis-
fies x�(y⊕z) = (x�y)⊕(x�z). This right-distribution
property resolves one of the problems of SL.

Our newdiscounting rulemultiplies evidence instead of opin-
ions and is thus fully based on the handling of evidence. In
contrast to the old discounting rule, the new one does not
have associativity. This, however, does not pose a problem
since the flow of evidence has a well-defined direction. The
adoption of our discounting rule results in an opinion algebra
that is entirely centered on the handling of evidence.We refer
to it as Evidence-Based Subjective Logic (EBSL).

We show that EBSL provides a solid foundation for the
development of reputation models able to express the level
of confidence in computed reputations. Moreover, having an
opinion algebra rooted in a single foundation makes it possi-
ble to define an automated procedure to compute reputation
for arbitrary trust networks. We believe that having an auto-
mated procedure is a critical and necessary condition for the
implementation and adoption of reputation systems in online
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services. To demonstrate the applicability of EBSL to the
development of reputation systems, we make the following
contributions:

– We show that replacing SL’s discounting operation ⊗
by the new � solves all the problems that usually occur
when one tries to combines flow-based reputation with
SL, in particular the problemof evidence double counting
and the ensuing necessity to make computations graph-
dependent and to discard information.

– Using EBSL, we construct a simple iterative algorithm
that computes reputation for arbitrary trust networks
without discarding any information. Thus, we achieve
our desideratumof automated computation of flow-based
reputation with uncertainty.

We stress that this is only one out ofmany possible reputation
models that can be constructed on top of EBSL. EBSL can
be used as a foundation for other existing reputation mod-
els, e.g., reputation models based on random walks [9]. The
investigation of these models is an interesting direction for
future work.

The remainder of the paper is organized as follows. The
next section presents an overview of flow-based reputation
models and SL. Section 3 discusses the limitations of SL,
andSect. 4 illustrates these limitationswhen combiningflow-
based reputation and SL. Section 5 revisits SL and introduces
the new EBSL scalar multiplication and discounting opera-
tors. Section 6 presents our flow-based reputationmodel with
uncertainty along with an iterative algorithm that computes
reputation for arbitrary trust networks. Section 7 presents an
evaluation of our approach using both synthetic and real data.
Finally, Sect. 8 discusses related work, and Sect. 9 concludes
the paper providing directions for future work.

2 Preliminaries

In this section, we present an overview of flow-based reputa-
tion models (based on [35]) and of subjective logic (based on
[15]). We also introduce the notation used in the remainder
of the paper.

2.1 Flow-based reputation

Flow-based reputation systems [6,23,25,35] are based on the
notion of transitive trust. Intuitively, if an entity i trusts an
entity j , it would also have some trust in the entities trusted
by j .

Typically, each time user i has a transaction with another
user j , she may rate the transaction as positive, neutral or
negative. In a flow-based reputation model, these ratings are
aggregated in order to obtain aMarkov chain. The reputation

vector (i.e., the vector containing all reputation values) is
computed as the steady-state vector of the Markov chain;
one starts with a vector of initial reputation values and then
repeatedly applies the Markov step until a stable state has
been reached. This corresponds to taking more and more
indirect evidence into account.

Below, we present the metric proposed in [35] (with
slightly modified notation) as an example of a flow-based
reputation system.

Example 1 Let A be a matrix containing aggregated ratings
for n users. It has zero diagonal (i.e., Aii = 0). The matrix
element Ai j (with i �= j) represents the aggregated ratings
given to j by i . Let s ∈ [0, 1]n , with s �= 0, be a ‘starting
vector’ containing starting values assigned to all users. Let
α ∈ [0, 1] be a weight parameter for the importance of indi-
rect versus direct evidence. The reputation vector r ∈ [0, 1]n
is defined as a function of α, s and A by the following equa-
tion:

rx = (1 − α)sx + α

n∑

y=1

ry
�
Ayx (1)

where � = ∑n
z=1 rz .

Equation (1) can be read as follows. To determine the
reputation of user x we first take into account the direct infor-
mation about x . From this, we can compute sx , the reputation
initially assigned to x if no further information is available.
However, additional information may be available, namely
the aggregated ratings in A. The weight of direct versus indi-
rect information is accounted for by the parameter α. If no
direct information about x is available, the reputation of x can
be computed as rx = ∑

y(ry/�)Ayx , i.e., a weighted aver-
age of the reputation values Ayx with weights equal to the
normalized reputations. Adding the two contributions, with
weights α and 1− α, yields (1): a weighted average over all
available information.

The equation for solving the unknown r contains r. A
solution is obtained by repeatedly substituting (1) into itself
until a stable state has been reached. This is the steady state
of theMarkov chain. It was shown in [35] that Eq. (1) always
has a solution and that the solution is unique.

Intuitively, A can be seen as an adjacency matrix of a trust
network where nodes represent entities and edges represent
the direct trust that entities have in other entities based on
direct experience. Based on the results presented in [35],
Eq. (1) can be applied to assess reputation for arbitrary trust
networks.

2.2 Subjective logic

Subjective logic (SL) is a trust algebra based on Bayesian
theory and Boolean logic that explicitly models uncertainty
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and belief ownership. In the remainder of this section, we
provide an overview of SL based on [15].

The central concept in SL is the three-component opinion.

Definition 1 (Opinion and opinion space) [15]An opinion x
about some proposition P is a tuple x = (xb, xd, xu), where
xb represents the belief that P is provable (belief ), xd the
belief that P is disprovable (disbelief ), and xu the belief
that P is neither provable nor disprovable (uncertainty). The
components of x satisfy xb + xd + xu = 1. The space of
opinions is denoted as Ω and is defined as Ω = {(b, d, u) ∈
[0, 1]3 | b + d + u = 1}.

An opinion x with xb + xd < 1 can be seen as an
incomplete probability distribution. In order to enable the
computation of expectation values, SL extends the three-
component opinionwith a fourth parameter ‘a’ called relative
atomicity, with a ∈ [0, 1]. The probability expectation is
E(x) = xb + xua. In this paper, we will omit the relative
atomicity from our notation, because in our context (trust
networks) it is not modified by any of the computations on
opinions. In more complicated situations, however, the rela-
tive atomicity is modified in nontrivial ways.

Opinions are based on evidence. Evidence can be repre-
sented as a pair of nonnegative finite numbers (p, n), where
p is the amount of evidence supporting the proposition, and
n the amount that contradicts the proposition. The notation
e = p+n is used to denote the total amount of evidence about
the proposition. There is a one-to-one mapping between an
opinion x ∈ Ω and the evidence (p, n) on which it is based,

(xb, xd, xu) = (p, n, 2)

p + n + 2
; (p, n) = 2(xb, xd)

xu
. (2)

The bijection (2) holds for any value of the atomicity a. It
has its origin in an analysis of the a posteriori probability
distribution (Beta function distribution) of the biases which
underlie the generation of evidence [15]. This distribution is
given by

ρ(t |p, n, a) = t−1+p+2a(1 − t)−1+n+2(1−a)

B(p + 2a, n + 2 − 2a)
, (3)

where t is the probability that proposition P is true, and
B(·, ·) is the Beta function. The opinion x = (p,n,2)

p+n+2 is based
on the vague knowledge (3) about t . The left part of (2)
holds because the thus constructed opinion x has the same
expectation as (3).

Intuitively, the amount of positive and negative evidence
about a proposition determines the belief and the disbelief in
the proposition, respectively. Increasing the total amount of
evidence (e) reduces the uncertainty. Note that there is a fun-
damental difference between an opinion where a proposition
is equally provable and disprovable and one where we have

complete uncertainty about the proposition. For instance,
opinion (0, 0, 1) indicates that there is no evidence either
supporting or contradicting the proposition, i.e., n = p = 0,
whereas opinion (0.5, 0.5, 0) indicates that n = p = ∞.

We use the notation p(x)
def= 2 xb

xu
to denote the amount

of supporting evidence underlying opinion x , and likewise

n(x)
def= 2 xd

xu
for the amount of ‘negative’ evidence. More-

over, we use the notation e(x) = p(x) + n(x) to represent
the total amount of evidence underlying opinion x .

SL provides a number of operators to combine opinions.
One of the fundamental operations is the combination of
evidence from multiple sources. Consider the following sce-
nario. Alice has evidence (p1, n1) about some proposition.
She forms an opinion x1 = (p1, n1, 2)/(p1 + n1 + 2). Later
she collects additional evidence (p2, n2) independent of the
first evidence. Based on the second body of evidence alone,
she would arrive at opinion x2 = (p2, n2, 2)/(p2 + n2 + 2).
If she combines all the evidence, she obtains opinion

x = (p1 + p2, n1 + n2, 2)

p1 + p2 + n1 + n2 + 2
. (4)

The combined opinion x is expressed as a function of x1
and x2 via the so-called consensus rule; this is denoted as
x = x1 ⊕ x2.

Definition 2 (Consensus) [15] Let x, y ∈ Ω . The consensus
x ⊕ y ∈ Ω is defined as

x ⊕ y
def= (xuyb + yuxb, xuyd + yuxd, xuyu)

xu + yu − xuyu
. (5)

Equation (5) precisely corresponds to (4). Note that x ⊕ y =
y ⊕ x . Furthermore, the consensus operation is associative,
i.e., x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z. These properties are exactly
what one intuitively expects from an operation that com-
bines evidence. It is worth noting that the evidence has to
be independent for the ⊕ rule to apply. Combining depen-
dent evidence would lead to the problem of double-counting
evidence.We formalize and discuss this problem in Sect. 3.3.

The second important operation in SL is the transfer of
opinions from one party to another. Consider the following
scenario. Alice has opinion x about Bob’s trustworthiness.
Bob has opinion y about some proposition P . He informs
Alice of his opinion. Alice now has to form an opinion
about P . The standard solution to this problem is that
Alice applies an x-dependent weight to Bob’s opinion y
[4,23,26,31,35]. This is the so-called discounting. The fol-
lowing formula is usually applied.

Definition 3 (Discounting) [15] Let x, y ∈ Ω . The dis-
counting of opinion y using opinion x is denoted as x ⊗ y ∈
Ω , and is defined as

x ⊗ y
def= (xbyb, xbyd, xd + xu + xbyu). (6)
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It holds that x⊗ y �= y⊗x and that x⊗(y⊗z) = (x⊗ y)⊗z.
The discounting rule (6) is not distributive w.r.t. consensus,
i.e., (x ⊕ y) ⊗ z �= (x ⊗ z) ⊕ (y ⊗ z) and x ⊗ (y ⊕ z) �=
(x ⊗ y) ⊕ (x ⊗ z).

In SL, a trust network can be modeled with a combina-
tion of consensus and discounting operators. The consensus
operator is used to aggregate trust information from dif-
ferent sources, while the discounting operator is used to
implement trust transitivity. Note that, in a trust network, SL
distinguishes two types of trust relationship: functional trust,
which represents the opinion about an entity’s ability to pro-
vide a specific function, and referral trust, which represents
the opinion about an entity’s ability to provide recommen-
dations about other entities. Referral trust is assumed to be
transitive, and a trust chain is said to be valid if the last edge
of the chain represents functional trust and all previous edges
represent referral trust.

3 Limitations of subjective logic

Our desideratum is a novel reputation metric that has the
advantages of both SL and flow-based models. On one hand,
we aim at an automated procedure for computing reputa-
tion as in flow-based approaches. On the other hand, we aim
to determine the confidence in reputation values by making
uncertainty explicit as in SL. In this section, we discuss the
limitations of SL. Then, in Sect. 4, we show how these lim-
itations affect a naïve approach that combines flow-based
reputation and SL.

3.1 Dogmatic opinions

Definition 4 The extreme points corresponding to full belief
(B), full disbelief (D) and full uncertainty (U ) are defined as

B
def= (1, 0, 0) D

def= (0, 1, 0) U
def= (0, 0, 1). (7)

The special points B, D,U behave as follows regarding the
consensus operation: B ⊕ x = B; D ⊕ x = D; U ⊕ x = x .
The full uncertainty U behaves like an additive zero.

With respect to the discounting rule, the special points
B, D,U behave as B ⊗ x = x , D ⊗ x = U , U ⊗ x = U ,
x⊗U = U , x⊗B = (xb, 0, 1−xb), x⊗D = (0, xb, 1−xb).

Opinions that have u = 0 (i.e., lying on the line between
B and D) are called ‘dogmatic’ opinions. They have to be
treated with caution, since they have e = ∞ and therefore
overwhelm other opinions when the consensus ⊕ is applied.
We will come back to this issue in Sect. 5.1.

3.2 Counterintuitive behavior of the ⊗ operation

Weobserve that the discounting rule⊗does not have anatural
interpretation in terms of evidence handling. For instance, if
we compute the positive evidence contained in x ⊗ y we get,
using p, n notation as introduced in Sect. 2.2,

p(x ⊗ y) = 2
(x ⊗ y)b
(x ⊗ y)u

= 2
xbyb

xd + xu + xbyu

= 2
1
4 p(x)p(y)

1
2n(x)/yu + 1/yu + 1

2 p(x)

= p(x)p(y)

[2 + n(x)][1 + 2p(y) + 2n(y)] + p(x)
(8)

where in the final step we have used 1/yu = 1 + 2p(y) +
2n(y). Similarly, we get

n(x ⊗ y) = 2
(x ⊗ y)d
(x ⊗ y)u

= p(x)n(y)

[2 + n(x)][1 + 2p(y) + 2n(y)] + p(x)
. (9)

Equations (8) and (9) are complicated functions of the
amounts p(x), n(x), p(y), n(y). We show that they do not
have a clear and well-defined interpretation in terms of evi-
dence handling. For instance, Eq. (8) does not allow us to
determine whether the evidence underlying x ⊗ y originates
from x or y; one can argue that p(x⊗ y) is either a “fraction”
of p(y), a “fraction” of p(x), or contains evidence from both
y and x . Even if we try to interpret in the standard way (see
Sect. 2.2), we can observe that the factor multiplying p(y)
in (8) and n(y) in (9) depends on p(y) and n(y). Hence,
the evidence underlying x ⊗ y is not simply an x-dependent
multiple of the evidence underlying y. In fact, the examples
below show that in some cases the contribution from y com-
pletely disappears from the equation.

Example 2 Let x, y ∈ Ω , with n(x) = 0, n(y) = 0 and
p(y) � p(x). Then, p(x ⊗ y) ≈ p(x)/4.

Example 3 Let x, y ∈ Ω , with n(x) = 0, p(y) = 0 and
n(y) � p(x). Then, n(x ⊗ y) ≈ p(x)/4.

In both these examples, y is based on a lot of evidence; but
even if x contains a lot of belief, none of y’s evidence survives
in x⊗ y. We conclude that the discounting operation⊗ gives
counterintuitive results.

The ⊗ rule is inspired by a probabilistic interpretation of
opinions. The probabilistic interpretation might suggest that
it is natural to multiply probabilities, i.e., that the expressions
(x ⊗ y)b = xbyb and (x ⊗ y)d = xbyd are intuitively cor-
rect. However, we argue that this is not at all self-evident.
When discounting y through x , the uncertainties in x induce
an x-dependent probability distribution on y. This can be
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thought of as an additional layer of uncertainty about beta
distributions. Let (3) describe opinion y; then, the discount-
ing through x introduces uncertainty about the parameters p
and n in the equation (a probability distribution on p and n).
It is not at all self-evident that the resulting opinion is x ⊗ y
as prescribed by Definition 3. It would make equal sense
to replace the discounting factor xb by, e.g., the expectation
xb + axu. In this paper, we do not pursue such an approach
based on distributions, but we mention it in order to point out
that the ⊗ rule is not necessarily well-founded.

The fact that SL employs on the one hand a consensus rule
based on adding evidence and on the other hand a discounting
rule based on multiplying opinions leads to a lack of ‘coop-
eration’ between the ⊕ and ⊗ operations. Most importantly,
the ⊗ is not distributive with respect to ⊕,

(x ⊗ y) ⊕ (x ⊗ z) �= x ⊗ (y ⊕ z). (10)

Consider the following scenario.

Example 4 Alice has opinion x about Bob’s trustworthi-
ness in providing recommendations. Bob experiments with
chocolate onMonday and forms an opinion y about its medi-
cinal qualities. On Tuesday, he does some more of the same
kind of experiments and forms an independent opinion z. He
informs Alice of y, z and his final opinion y⊕z. What should
Alice think about the medicinal qualities of chocolate? One
approach is to say that Alice should appraise opinions y and
z separately, yielding (x ⊗ y) ⊕ (x ⊗ z) (Note that the two
occurrences of x represent the very sameopinion, i.e., the evi-
dence underlying the two occurrences is the same). Another
approach is to weight Bob’s combined opinion, yielding
x ⊗ (y ⊕ z). Intuitively, the two approaches should yield
exactly the same opinion, yet the SL rules give (10).

We now present a numerical example that illustrates the
issue discussed above.

Example 5 Figure 1 shows the trust network representing the
scenario in Example 4. To highlight that opinions x and y
are independent, in the figure we abuse the network notation
and duplicate the node representing Bob: B1 represents Bob
on Monday, and B2 represents Bob on Tuesday. The edge

B1 y

A P

B2
z

x

Fig. 1 Trust network representing the scenario in Example 4. A is
Alice, B1 and B2 are Bob on Monday and Tuesday, respectively, and P
is the proposition “chocolate has medicinal qualities.” Referral trust is
drawn as a full line, and functional trust as a double full line

between Alice (A) and Bob (dashed rectangle) represents
Alice’s opinion x about Bob’s recommendations. This opin-
ion concerns Bob’s recommendations regardless of when
they are formed (e.g., on Monday or on Tuesday).

Suppose that Alice’s opinion about Bob’s trustworthiness
is x = (0.6, 0.1, 0.3), and Bob’s opinions about the propo-
sition P are y = (0.3, 0.6, 0.1) and z = (0.5, 0.2, 0.3). We
are interested in Alice’s opinion w about P based on Bob’s
recommendations. As discussed in the previous example, we
have two approaches to compute such an opinion:

1. w = (x ⊗ y) ⊕ (x ⊗ z) = (0.314, 0.341, 0.345)
2. w = x ⊗ (y ⊕ z) = (0.227, 0.324, 0.449)

Clearly, the two approaches yield different opinions, contra-
dicting the intuitive expectation.

3.3 Double counting of evidence in trust networks

The ⊕ rule imposes constraints on the evidence that can be
aggregated: It requires evidence to be independent [15]. In
the literature, however, there is no well-defined notion of
evidence independence. Some researchers [33,45] assume
that pieces of evidence are independent if they are obtained
from independent sources, where two sources are said to be
independent if they measure completely unrelated features.
This definition, however, is too restrictive. For instance, the
evidence collected by a sensor at different points in time can
also be independent.

In this work, we adopt a notion of opinion independence
based on the independence of evidence, which we define in
the sameway as independence of randomvariables.We adopt
the usual notation: Names of random variables are written in
capitals, and numerical realizations of random variables are
denoted with lowercase letters.

Definition 5 (Independent evidence) Let Ei and E j be
evidence-valued random variables. We say that Ei and E j

are independent if and only if Prob(Ei = ei |E j = e j ) =
Prob(Ei = ei ).

The definition above can be extended to opinions.

Definition 6 (Independent opinions) Let X and Y be Ω-
valued random variables. We say that X and Y are inde-
pendent if and only if the evidence underlying X and Y is
independent.

Combining dependent evidence leads to the problem of
double-counting evidence.

Definition 7 (Double counting) Let X and Y be Ω-valued
random variables. In an expression of the form X⊕Y , we say
that there is double counting if there is dependence between
the evidence underlying X and the evidence underlying Y .
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Intuitively, dependent evidence shares “part” of the evidence.
Therefore, aggregating dependent evidence leads to counting
some part of the evidence more than once.1

Example 6 Consider the expression (Y ⊗ X) ⊕ (Z ⊗ X),
where both occurrences of X are obtained from the same
observation. The evidence underlying X is contained on the
left side as well as the right side of the ‘⊕.’ This is a clear
case of double counting.

Example 7 Consider the expression (X ⊗ Y ) ⊕ (X ⊗ Z),
again with both instances ‘X ’ coming from the same obser-
vation. The evidence underlying X is contained on the left
side as well as the right side of the ‘⊕,’ but less evidently
than in Example 6, because now X is used for discounting.
In Sect. 3.2, we showed that the⊗ rule causes evidence from
X to end up in X ⊗Y in a complicated way. Hence, the opin-
ions X ⊗ Y and X ⊗ Z are not independent, even if Y and
Z are independent. This causes double counting of X in the
expression (X ⊗ Y ) ⊕ (X ⊗ Z).

It is worth noting that double counting of X in the expression
(X ⊗ Y ) ⊕ (X ⊗ Z) can also be observed in Example 5.
Indeed, the uncertainty in (X⊗Y )⊕(X⊗Z) is lower than the
uncertainty in X⊗(Y ⊕Z), indicating that the result contains
more evidence when the trust network is represented using
the first expression.

To avoid the problem of double counting, SL requires that
the trust network is expressed in a canonical form [20,22],
where all trust paths are independent. Intuitively, a trust net-
work expression is in canonical form if every edge appears
only once in the expression.

Example 8 Consider the two trust network expressions rep-
resenting the trust network in Fig. 1 (Example 4): (x ⊗ y) ⊕
(x⊗z) and x⊗(y⊕z). The first expression is not in canonical
form as opinion x occurs twice in the expression; the second
expression is in canonical form as every edge appears only
once in the expression. Thus, x ⊗ (y ⊕ z) is the proper rep-
resentation of the trust network in Fig. 1.

In the next section, we show that it is not always possible to
express a trust network in canonical form. As suggested in
[20,22], this issue can be addressed by removing some edges
from the network. This, however, means discarding part of
the trust information, thus reducing the quality of reputation
values.

1 Note that it is entirely possible for two independent random variables
X, Y ∈ Ω to have the same numerical value x = y by accident. In that
case, x ⊕ y is not double counting.

4 Combining flow-based reputation and subjective
logic

This section presents a naïve approach that combines flow-
based reputation and SL.We illustrate the limitations of such
a naïve approach.

We first introduce some notation and definitions. Flow-
based reputation models usually assume that users who are
honest during transactions are also honest in reporting their
ratings [23]. This assumption, however, does not hold in
many real-life situations [1]. Thus, as it is done in SL, we
distinguish between referral trust and functional trust (see
Sect. 2). We use A to represent direct referral trust and T to
represent direct functional trust. R denotes the final referral
trust and F the final functional trust.

Definition 8 For n users, the direct referral trust matrix A
is an n×n matrix, where Axy ∈ Ω (with x �= y) is the direct
referral trust that user x has in user y, and Axx = (0, 0, 1)
for all x .

Note that we impose the condition Axx = (0, 0, 1) in order
to prevent artifacts caused by self-rating [35].

Let Tj P be the opinion of user j about some proposition
P , and let Ri j be i’s (possibly indirect) opinion about the
trustworthiness of user j . The opinion of user i about P
based on direct and indirect evidence can be computed using
the following equation:

Fi P = Ti P ⊕
⊕

j : j �=i

(Ri j ⊗ Tj P ). (11)

Equation (11) computes the final functional trust Fi P by
combining user i’s direct opinion Tip with all the avail-
able opinions of other users, {Tj P } j �=i . The opinion received
from j is weighted with the ‘reputation’ Ri j .

To find Ri j , we could try a recursive approach2 inspired
by Eq. (1):

Ri j = Ai j ⊕
⊕

k:k �=i

(Rik ⊗ Akj ) for i �= j. (12)

To demonstrate the problems that occur in this naïve combi-
nation of flow-based reputation and SL, we consider the trust
networks shown in Figs. 2 and 3. Referral trust is drawn as a
full line, functional trust as a double full line.

Figure 2 is a variant of a network discussed in [20]. We
are interested in determining the opinion F1P of user 1 about
some proposition P . User 1 does not have any direct evi-
dence. The only functional trust about P comes from user 7.

2 We consider only scenarios where all entities publish their opinions.
If opinions are not published but communicated solely over the network
links, then a recursive equation containing A ⊗ R (the opposite order
of R ⊗ A) applies.
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4

1 2 3 6 7 P

5

Fig. 2 Example of a trust network that is problematic for subjective
logic

2

1 P

3

Fig. 3 Example of a trust network containing a loop

Thus, we have to determine R17, user 1’s referral trust in
user 7. This is done by taking A67 with the proper weight,
namely R16. Continuing this recursive approach using (12)
gives

F1P = [A12 ⊗ A23 ⊗ A34 ⊗ A46 ⊕ (A12 ⊗ A23 ⊗ A34 ⊗ A45

⊕A12 ⊗ A23 ⊗ A35) ⊗ A56] ⊗ A67 ⊗ T7P . (13)

This, however, is a problematic result. Recall that SL requires
trust networks to be expressed in a canonical form. If this
restriction is not satisfied, we face the problem of ‘double
counting’ opinions, i.e., applying the⊕ operation to opinions
that are not independent (Definition 7).

In Fig. 2, consider the case A45 = U . The canonical solu-
tion for this case is

F1P = A12 ⊗ A23 ⊗ (A34 ⊗ A46 ⊕ A35 ⊗ A56)

⊗A67 ⊗ T7P (14)

whereas (13) yields

F1P = (A12 ⊗ A23 ⊗ A34 ⊗ A46 ⊕ A12 ⊗ A23 ⊗ A35 ⊗ A56)

⊗A67 ⊗ T7P . (15)

In (15) the A12 and A23 are double-counted.We conclude that
the naïve recursive equation (12) does not properly reproduce
the canonical solution.

There is a further problem, unrelated to the naïve recursive
approach. As was shown in [20], it is not even possible to
transform the trust network in Fig. 2 into a canonical form in
the general case A45 �= U .

The problems become even worse when the trust network
contains loops, e.g., a loop as shown in Fig. 3. Here too,
there is no canonical form. Applying the recursive approach
to Fig. 3 gives R13 = R12 ⊗ A23, with R12 = A12 ⊕ R12 ⊗

A23⊗A32. Repeatedly substituting the latter into itself yields

R12 = A12 ⊕ [A12 ⊕ {A12 ⊕ · · · } ⊗ A23 ⊗ A32]
⊗A23 ⊗ A32. (16)

We observe that taking opinion A32 into account causes
excessive double counting of A12. If the loop is somehowdis-
carded, then the information contained in A32 is destroyed.

In conclusion, (i) generic trust networks with several con-
nections Ai j �= U cannot be handled with SL because there
is no canonical form for them that avoids double counting;
(ii) even when there is a canonical result, this result cannot
be reproduced by a straightforward recursive approach.

5 Subjective logic revisited

This section presents a new, fully evidence-based approach
to SL. We refer to the resulting opinion algebra as Evidence-
Based Subjective Logic or EBSL.

5.1 Excluding dogmatic opinions

As mentioned in Sect. 3.1, dogmatic opinions are problem-
atic when the ⊕ operation is applied to them. Furthermore,
a dogmatic opinion corresponds to an infinite amount of evi-
dence, which in our context is not realistic. In the remainder
of this paper, we will exclude dogmatic opinions. We will
work with a reduced opinion space defined as follows.

Definition 9 The opinion space excluding dogmatic opin-

ions is denoted as Ω ′ and is defined as Ω ′ def= {(b, d, u) ∈
[0, 1) × [0, 1) × (0, 1] | b + d + u = 1}.
We are by no means the first to do this; in fact, the exclusion
of dogmatic opinions was proposed as an option in the very
early literature on SL [22].

5.2 The relation between evidence and opinions: a
simplified justification

We make a short observation about the mapping between
evidence andopinions.Aswasmentioned inSect. 2.2, there is
a one-to-onemapping (2) based on the analysis of probability
distributions (Beta distributions). Here, we show that there
is a shortcut: The same mapping can also be obtained in a
much simpler way, based on constraints.

Theorem 1 Let p ≥ 0 be the amount of evidence that sup-
ports ‘belief’; let n ≥ 0 be the amount of evidence that
supports ‘disbelief.’ Let x = (b, d, u) ∈ Ω ′ be the opin-
ion based on the evidence. If we demand the following four
properties,
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1. b/d = p/n
2. b + d + u = 1
3. p + n = 0 ⇒ u = 1
4. p + n → ∞ ⇒ u → 0

then the relation between x and (p, n) has to be

x = (b, d, u) = (p, n, c)

p + n + c
; (p, n) = c

(b, d)

u
(17)

where c > 0 is a constant.

Proof Property 1 gives (b, d) = (p, n)/ f (p, n) where f
is some function. Combined with property 2, we then have
p+n
f (p,n)

= 1 − u. Property 3 then gives 0
f (0,0) = 0, while

property 4 gives lim p+n→∞ p+n
f (p,n)

= 1. The latter yields
f (p, n) = p + n + c where c is some constant. Allow-
ing c < 0 would open the possibility of components of x
being negative. Thus, we must have c ≥ 0. The require-
ment 0

f (0,0) = 0 eliminates the possibility of having c = 0,
since c = 0 would yield division by zero. Finally, setting
u = c/(p + n + c) is necessary to satisfy property 2. �

Theorem 1 shows that we can derive a formula similar
to (2), based on minimal requirements which make intu-
itive sense. Only the constant c is not fixed by the imposed
constraints; it has to be determined from the context. One
can interpret c as a kind of soft threshold on the amount of
evidence: Beyond this threshold one starts gaining enough
confidence from the evidence to form an opinion.

We observe that (17) with its generic constant c is already
sufficient to derive the consensus rule ⊕, i.e., the consensus
rule does not require c = 2.

Lemma 1 The mapping (17) with arbitrary c implies the
consensus rule ⊕ as specified in Definition 2.

Proof Consider x = (b1, d1, u1) = (p1, n1, c)/(p1+n1+c)
and y = (b2, d2, u2) = (p2, n2, c)/(p2 + n2 + c). An opin-
ion formed from the combined evidence (p1 + p2, n1 + n2)
according to (17) is given by (b, d, u) = (p1+p2,n1+n2,c)

p1+n1+p2+n2+c .

Substituting pi = c bi
ui

and ni = c di
ui

yields, after some sim-

plification, (b, d, u) = (u1b2+u2b1,u1d2+u2d1,u1u2)
u1+u2−u1u2

. �
Theorem 1 and Lemma 1 improve our understanding of
evidence-based opinion forming and of the consensus
rule.

Furthermore, in (2) and (3), we can replace ‘2’ by c and the
expectation of t , obtained by integrating the Beta distribution
times t , is still xb + axu! Therefore, in the remainder of the
paper, we will work with a redefined version of the p(x) and
n(x) functions (Sect. 2.2). The new version has a general
value c > 0 instead of c = 2.

Definition 10 Let x = (xb, xd, xu) ∈ Ω ′. We define the
notation p(x), n(x) and e(x) as

p(x)
def= c

xb
xu

; n(x)
def= c

xd
xu

; e(x)
def= p(x)+n(x). (18)

5.3 Scalar multiplication

Our next contribution has more impact. We define an opera-
tion on opinions that is equivalent to a scalar multiplication
on the total amount of evidence.

Definition 11 (Scalarmultiplication)Let x = (xb, xd, xu) ∈
Ω ′ and let α ≥ 0 be a scalar. We define the product α · x as

α · x def= (αxb, αxd, xu)

α(xb + xd) + xu
. (19)

Lemma 2 Let x ∈ Ω ′ and α ≥ 0. The scalar multiplication
as specified in Definition 11 has the following properties:

1. α · x ∈ Ω ′.
2. 0 · x = U.
3. 1 · x = x.
4. For n ∈ N, n ≥ 2, it holds that n · x = x ⊕ x ⊕ · · · ⊕ x︸ ︷︷ ︸

n

.

5. The evidence underlying α · x is α times the evidence
underlying x, i.e., p(α·x) = αp(x) and n(α·x) = αn(x).

6. If α �= 0 then (α · x)b/(α · x)d = xb/xd.

Proof Property 1: It is readily verified that the components
add to 1, using xb + xd = 1 − xu. Since α ≥ 0, all three
components ofα ·x are nonnegative, since x ∈ Ω ′. Properties
2 and 3: Found directly by substituting α = 0 resp. α = 1
in (19). Property 4: Consider n = 2. Setting α = 2 in (19)

yields 2 · x = (2xb,2xd,xu)
2−xu

= (2xuxb,2xuxd,x2u )

2xu−x2u
= x ⊕ x . The

rest follows by induction. Property 5: We use (17) to map
between opinions and evidence. The positive evidence of x
is p(x) = cxb/xu. The positive evidence of α · x is p(α · x)
= c αxb

α(1−xu)+xu
/ xu

α(1−xu)+xu
= αcxb/xu = α p(x). The proof

for n(α · x) is analogous. Property 6: Follows directly by
dividing the first and second component of α · x . �
Lemma 3 (Distributivity of the scalar multiplication) Let
x, y ∈ Ω ′. Let α, β ≥ 0. Then, it holds that

α · (x ⊕ y) = (α · x) ⊕ (α · y) and

(α + β) · x = (α · x) ⊕ (β · x). (20)

Proof Wemake extensive use of α ·x ∝ (αxb, αxd, xu). First
part:On the one hand,α·(x⊕y) ∝ (α[xuyb+yuxb], α[xuyd+
yuxd], xuyu). We have not written the normalization factor;
it is not necessary since we already know that the result is
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normalized. On the other hand, (α · x)⊕ (α · y) ∝ (xu[αyb]+
yu[αxb], xu[αyd] + yu[αxd], xuyu).

Second part: On the one hand, (α + β) · x ∝ ([α +
β]xb, [α + β]xd, xu). On the other hand, (α · x) ⊕ (β · x)
∝ ([β · x]u[α · x]b + [α · x]u[β · x]b, [β · x]u[α · x]d + [α ·
x]u[β ·x]d, [α ·x]u[β ·x]u) ∝ (xu[αxb]+xu[βxb], xu[αxd]+
xu[βxd], x2u ) ∝ (αxb + βxb, αxd + βxd, xu). �
Lemma 4 Let x ∈ Ω ′ and α, β ≥ 0. Then, α · (β · x) =
(αβ) · x.
Proof α · (β · x) ∝ α · (βxb, βxd, xu) ∝ (αβxb, αβxd, xu).

�

5.4 New discounting rule

We propose a new approach to discounting: Instead of multi-
plying (part of) the opinions, we multiply the evidence. The
multiplication is done using our scalar multiplication rule
(Definition 11). We return to the example where Alice has
an opinion x ∈ Ω ′ about the trustworthiness of Bob, and
Bob has an opinion y ∈ Ω ′ about some proposition P . We
propose a discounting of the form g(x) · y, where g(x) ≥ 0
is a scalar that indicates which fraction of Bob’s evidence
is accepted by Alice. One can visualize the discounting as a
physical transfer of evidence fromBob toAlice, duringwhich
only a fraction g(x) survives, due to Alice’s mistrust and/or
uncertainty. It is desirable to set g(x) in the range [0, 1]:
allowing g(x) < 0 would lead to negative amounts of evi-
dence (not to be confused with the term ‘negative evidence’
which is used for evidence that contradicts the proposition
P); allowing g(x) > 1 would “amplify” evidence, i.e., create
new evidence out of nothing, which is clearly unrealistic.

It makes intuitive sense to set limx→B g(x) = 1,
limx→D g(x) = 0 and g(U ) = 0, or even to set g(x) =
g̃(xb), i.e., a function of xb only, with g̃(0) = 0 and g̃(1) = 1.
For instance, we could set g(x) = xb.3 On the other hand,
it could also make sense to set g(U ) > 0, which would rep-
resent the “benefit of the doubt.” An intuitive choice would
then be g(x) = xb + axu, i.e., the expectation value corre-
sponding to x . We postpone the precise details of how the
function g can/should be chosen, and introduce a very broad
definition.

Definition 12 (New generic discounting rule �) Let x, y ∈
Ω ′. Let g : Ω ′ → [0, 1] be a function. We define the opera-
tion � as

x � y
def= g(x) · y = ( g(x)yb, g(x)yd, yu )

(yb + yd)g(x) + yu
(21)

with the · operation as specified in Definition 11.

3 Even though taking g(x) = xb appears to be similar to the ⊗ rule (6),
we show in Sect. 7 that they have a very different behavior.

Differently from ⊗, the operator � has a well-defined inter-
pretation in terms of evidence handling. The following
theorem states that the evidence underlying x � y is a frac-
tion of the evidence underlying y defined by a scalar weight
depending on x .

Theorem 2 Let x, y ∈ Ω ′. The operation � (Definition 12)
has the following properties:

1. x � y ∈ Ω ′.
2. p(x � y) = g(x)p(y) and n(x � y) = g(x)n(y).
3. (x � y)b/(x � y)d = yb/yd.
4. x �U = U.
5. Discounting cannot decrease uncertainty, i.e., (x�y)u ≥

yu.

Proof Property 1 follows from x � y = g(x) · y and the
first property in Lemma 2. Property 2: We compute p(x �
y) = (x � y)b/(x � y)u using the definition (21), which
yields g(x)yb/yu = g(x)p(y). For n(x� y), the derivation is
analogous. Property 3: Follows directly by dividing the belief
and disbelief part of (21). Property 4: Follows by setting
yb = 0, yd = 0 and yu = 1 in (21). Property 5: We have
(x � y)u = yu

(yb+yd)g(x)+yu
. Since yb + yd + yu = 1 and

g(x) ∈ [0, 1], the denominator of the fraction lies in the
range [yu, 1]. �
Corollary 1 Let x, y ∈ Ω ′ with g(x) > 0. Let limy→B

g(y) = 1, limy→D g(y) = 0 and g(U ) = 0. Then, the
extreme points B, D, U have the following behavior with
respect to the new discounting rule �,

lim
y→B

y � x = x lim
y→B

x � y = B

lim
y→D

y � x = U lim
y→D

x � y = D

U � x = U. (22)

We stress again that the whole ‘dogmatic’ line between B
and D is not part of the opinion space Ω ′, so that we avoid
having to deal with infinite amounts of evidence.

Theorem 3 There is no function g : Ω ′ → [0, 1] such that
x � y = x ⊗ y for all x, y ∈ Ω ′.

Proof On the one hand, we have x ⊗ y = (xbyb, xbyd, 1 −
xbyb − xbyd). On the other hand, x � y = (g(x)yb,g(x)yd,yu)

g(x)(yb+yd)+yu
.

Demanding that they are equal yields, after some rewriting,
g(x) = xbyu/[1 − xb(1 − yu)]. This requires g(x), which is
a function of x only, to be a function of yu as well. �

Being based on the scalar multiplication rule (and hence
ultimately on the ⊕ rule), our operation � has several prop-
erties that ⊗ lacks: (i) right-distribution; (ii) permutation
symmetry of parties that transfer evidence. This is demon-
strated below.
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Lemma 5 Let x, y, z ∈ Ω ′. Then,

x � (y ⊕ z) = (x � y) ⊕ (x � z). (23)

Proof It follows trivially from x � (y ⊕ z) = g(x) · (y ⊕ z)
and Lemma 3. �

This distributive property resolves the issue discussed in
Sect. 3.2: using the � operator, it does not matter if y and
z are combined before or after the discounting. This solves
the inconsistency caused by the ⊗ operation.

Notice also that the left-hand side of (23) obviously is
not double counting x ; hence, also the expression on the
right-hand side does not double count x . In contrast, the right-
hand side expression with ⊗ instead of � would be double
counting. We come back to this point in Sect. 5.6.

Lemma 6 Let y, x1, x2 ∈ Ω ′. Then,

x1 � (x2 � y) = x2 � (x1 � y). (24)

Proof x1 � (x2 � y) = g(x1) · (g(x2) · y). Using Lemma 4,
this reduces to (g(x1)g(x2)) · y. Exactly the same reduction
applies to x2 � (x1 � y). �

Lemma 6 generalizes to chains of discounting:

x1 � (x2 � (· · · (xN � y))) =
[

N∏

i=1

g(xi )

]
· y. (25)

Expression (25) is invariant under permutation of the opin-
ions x1, . . . , xN .

Note that one property of the ⊗ rule is not generically
present in the � rule: associativity. Whereas the old rule has
x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z, the new rule has

x � (y � z) = [g(x)g(y)] · z versus

(x � y) � z = (g(x � y)) · z = [g(g(x) · y)] · z. (26)

However, it is important to realize that the lack of associativ-
ity is not a problem. The transfer of evidence along a chain has
a very clear ordering, which determines the order in which
the � operations have to be performed (see Sect. 6.)

Also note that � does not have a left-distribution prop-
erty for arbitrarily chosen g. It takes some effort to define a
reasonable function g that yields left-distributivity.

Lemma 7 There is no function g : Ω ′ → [0, 1] that satisfies
lims→B g(s) = 1 and gives (x ⊕ y)� z = (x � z)⊕ (y � z)
for all x, y, z ∈ Ω ′.

Proof We consider the limit x → B, y → B. On the one
hand, (x ⊕ y) � z → B � z = z. On the other hand, (x �
z) ⊕ (y � z) → z ⊕ z. �

It may look surprising that we cannot achieve left-
distributivity with a function g chosen from a very large
function space with only a single constraint. (And a very
reasonable-looking constraint at that). But left-distributivity
requires g(x ⊕ y) = g(x) + g(y), which conflicts with the
constraint lims→B g(s) = 1.

5.5 New specific discounting rule

One way to satisfy g(x ⊕ y) = g(x) + g(y) is by setting
g(x) ∝ p(x). This approach, however, causes some compli-
cations. Suppose we define g(x) = p(x)/θ , where θ is some
constant. If the amount of positive evidence ever exceeds
θ , then the discounting factor becomes larger than 1, i.e.,
amplification instead of reduction, which is an undesirable
property. If we redefine g such that factors larger than 1 are
mapped back to 1, then we lose the distribution property. We
conclude that the “g proportional to evidence” approach can
only work if the maximum achievable amount of positive
evidence in a given trust network can be upper-bounded by
θ .

Definition 13 (New specific discounting rule �) Let x, y ∈
Ω ′. Let θ be a threshold larger than the maximum amount of
positive evidence in any opinion that is used for discounting.
We define the operation � as

x � y
def=

(
c

θ

xb
xu

)
· y = p(x)

θ
· y (27)

with the · operation as specified in Definition 11.

We stress again that θ depends on the interactions between
entities within the system, i.e., on the structure of the trust
network and the maximum amount of positive evidence in
the network.

Lemma 8 (Left-distributivity of �) Let x, y, z ∈ Ω ′. Then,

(x ⊕ y) � z = (x � z) ⊕ (y � z). (28)

Proof The right-hand side evaluates to (x � z) ⊕ (y � z) =
[g(x) · z] ⊕ [g(y) · z] = [g(x) + g(y)] · z. The g-function in
Definition 13 equals positive evidence divided by θ ; hence,
g(x)+g(y) = [p(x)+ p(y)]/θ . The left-hand side evaluates
to g(x ⊕ y) · z with g(x ⊕ y) = θ−1 p(x ⊕ y) = [p(x) +
p(y)]/θ . �
Lemma 9 (Associativity of �) Let x, y, z ∈ Ω ′. Then,

x � (y � z) = (x � y) � z. (29)

Proof From (26), we see that x � (y � z) = [g(x)g(y)] · z,
but now we have g(x)g(y) = θ−2 p(x) p(y). From (26), we
also see (x � y) � z = g(g(x) · y) · z, but now we have
g(g(x) · y) = θ−1 p(θ−1 p(x) · y) = θ−2 p(x) p(y). �
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We are not claiming that� is the proper discounting oper-
ation to use. It has the unpleasant property that the negative
evidence underlying x is completely ignored in the compu-
tation of x � y. A quick fix of the form g(x) ∝ p(x) − n(x)
does not work since it can cause g(x) < 0 and therefore
x � y /∈ Ω ′.

We note that there is no alternative g-function to the ones
discussed above if linearity of g is required. This is formal-
ized in the following lemma.

Lemma 10 The property g(x ⊕ y) = g(x) + g(y) can only
be achieved by setting g(x) = αp(x) + βn(x), where α and
β are scalars.

The proof is given in the “Appendix.” Note that, for suffi-
ciently smooth g, it is possible to prove that the property
g(x ⊕ y) = g(x) + g(y) implies g(g(x) · y) = g(x)g(y),
i.e., associativity.

5.6 The new discounting rule avoids double counting

In Sect. 2.2, we saw that the consensus operation⊕ should be
applied only to opinions that are derived from independent
evidence. If this restriction is not obeyed, then we speak of
double counting. Example 7 showed that in the SL expression
(X ⊗ Y ) ⊕ (X ⊗ Z), the evidence in the random variable X
is double-counted. If we look at the equivalent expression in
which ⊗ is replaced with �, we get

(X � Y ) ⊕ (X � Z) = X � (Y ⊕ Z). (30)

Here, there is obviously no double counting. Next, we look
at more complicated EBSL expressions.

Lemma 11 Let Y and Z be two independent Ω ′-valued
random variables. Let X1 and X2 beΩ ′-valued random vari-
ables independent of Y and Z, but with mutual dependence.
Then, the expression

(X1 � Y ) ⊕ (X2 � Z) (31)

does not double count any of the evidence underlying X1 and
X2.

Proof The evidence underlying X1 �Y is the evidence from
Y , scalar-multiplied by g(X1). Likewise, the evidence under-
lying X2 � Z is a scalar multiple of (p(Z), n(Z)). Since Y
and Z are independent, the evidence on the left and right side
of the ‘⊕’ in (31) is independent. �

Lemma 11 still holds when X1 = X2. Based on the results
above, we can conclude that:

Corollary 2 Transporting different pieces of evidence over
the same link x with the � operation is not double counting
x.

Thus, many expressions that are problematic in SL become
perfectly acceptable in EBSL, simply because � is just an
(attenuating) evidence transport operation, whereas SL’s ⊗
is a very complicated thing that mixes evidence from its left
and right operand (Eqs. 8 and 9).

6 Flow-based reputation with uncertainty

In this section, we will use the discounting rule � without
specifying the function g.We show that EBSL can be applied
to arbitrarily connected trust networks and that the simple
recursive approach (12), with ⊗ replaced by �, yields con-
sistent results that avoid the double-counting problem.

6.1 Recursive solutions using EBSL

We show that the trust networks discussed in Sect. 3, which
are problematic in SL, can be handled in EBSL. We take the
EBSL equivalent of the recursive approach in SL (11), (12),
namely

Fi P = Ti P ⊕
⊕

j : j �=i

(Ri j � Tj P )

Ri j = Ai j ⊕
⊕

k:k �=i

(Rik � Akj ) for i �= j, (32)

and demonstrate that these equations yield acceptable results
in the case of the trust networks depicted in Figs. 2 and 3.

For Fig. 2, we obtain the EBSL equivalent of (13) by using
(32) recursively as follows,

F1P = R17 � T7P

R17 = R16 � A67

R16 = (R14 � A46) ⊕ (R15 � A56)

R15 = (R14 � A45) ⊕ (R13 � A35)

R14 = R13 � A34

R13 = R12 � A23

R12 = A12.

By substituting these expressions from bottom to top, we get
the end result for F1P . The result is very similar to (13), but
now we have lots of brackets because � is not associative.
We inspect R16,

R16 = ((A12�A23)�A34)�A46

⊕
{
((A12�A23)�A34)�A45 ⊕ (A12�A23)�A35

}
�A56.

(33)

We observe that the links A12 and A23 occur three times.
The link A34 occurs twice. However, the computation of R16
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only relies on the evidence in A46 and A56; all the other opin-
ions Ai j serve as ‘transport,’ i.e., merely providing weights
multiplying the evidence in A46 and A56. Therefore, there is
no double counting of evidence.

In the case of Fig. 3, i.e., with a loop, recursive use of (32)
gives the direct EBSL equivalent of (16). We have

R13 = R12 � A23 (34)

R12 = A12 ⊕ R13 � A32

= A12 ⊕ (R12 � A23) � A32. (35)

Equation (35) gives an expression for the unknown R12 that
contains R12. It can be solved in two ways. The first is to
repeatedly substitute (35) into itself. We define a mapping
f (x) = A12⊕(x�A23)�A32. From (35),we see that R12 is a
fixed point of f . The fixed point can be found approximately
by setting x = A12 and repeatedly applying f until the output
does not change any more.

R12 ≈ f r (A12) for large r. (36)

R12 = A12 ⊕ ([A12 ⊕ ({A12 ⊕ · · · }�A23)�A32]�A23)�A32.

(37)

Convergence will be fast if A23 and A32 contain a lot of
uncertainty. In Eq. (37), we observe that (i) the evidence
contributing to R12 comes from the first A12 and from the
final A32. (ii) All the other occurrences of opinions Ai j are
only used to compute the weights for the scalar multiplica-
tion.

The second method is to treat (35) as two independent
equations in two unknowns (the two independent compo-
nents of R12 ∈ Ω ′) and to solve them algebraically. This can
be quite difficult if the function g is complicated, since g has
to be applied twice,

R12 = A12 ⊕ g(g(R12) · A23) · A32 (38)

⇔{
p(R12) = p(A12) + g(g(R12) · A23)p(A32)

n(R12) = n(A12) + g(g(R12) · A23)n(A32).
(39)

The solution is simple in the following special cases:

– If g(A12) = 0 and g(U ) = 0 then R12 = A12.
– If A23 �= U , g(x) > 0 for x �= U , and A32 → B then

R12 → B. The direct A12 can be overwhelmed by the
indirect A32, even if user 1 has little trust in user 2. This
demonstrates the danger of allowing opinions close to
full belief.

– If A23 → B and g(B) = 1 then R12 → A12 ⊕ A32.

6.2 Recursive solution in matrix form

The recursive Eq. (32) for obtaining the Ri j solutions can
be rewritten in matrix notation. We choose g such that
g(U ) = 0. We are looking for the off-diagonal components
of a matrix R or, equivalently, for a complete matrix R which
has the uncertainty ‘U ’ on its diagonal. Let X be an n × n
matrix containing opinions; it is allowed to have a non-empty
diagonal, e.g., Xii �= U . We define a function f as

f (X)
def= A ⊕ {[offdiag X ] � A}, (40)

where ‘offdiag X ’ is defined as X with its diagonal replaced
byU entries, and an expression of the form X� A is a matrix
defined as (X � A)i j = ⊕

k Xik � Akj . Note that f (X) is a
matrix that can have a non-empty diagonal. Solving (32) is
equivalent4 to the following procedure:

1. Find the fixed point X∗ satisfying f (X∗) = X∗.
2. Take R = offdiag X∗.

One approach to determine the fixed point X∗ is to pick a suit-
able starting matrix X0 and then keep applying f until the
output does not change any more, X∗ ≈ f N (X0). Another
approach is to treat the formula f (X∗) = X∗ as a set of alge-
braic equations, whose complexity is affected by the choice
of the g function.

At this point, two important questions have tobe answered:
(i) whether the recursive approach for (40) converges, i.e., if
the fixed point exists, and (ii), when it converges, whether
the fixed point solution is unique. When there are no loops
in the network, then trivially we have convergence and the
fixed point is unique. Intuitively, the repeated applications of
f after the trust network has been completely explored do
not propagate additional evidence.

In the case of general networks, the situation is more com-
plicated. We can prove that there is no divergence. In every
iteration of themapping X �→ f (X), the new value of X is of
the form Xi j = Ai j ⊕⊕

k g((offdiag X)ik) · Akj . We see that
the evidence in each Akj gets multiplied by a scalar smaller
than 1. Hence, no matter how many iterations are done, the
amount of evidence about user j that is contained in X can
never exceed the amount of evidence about j present in A.
This puts a hard upper bound on the amount of evidence in
offdiag X , which prevents the solution from ‘running off’
toward full belief. Hence, the evidence underlying Ri j can-
not be greater of the total amount of evidence underlying the
opinions in A about user j .

4 An even more compact formulation is possible if one is willing to
temporarily use the full belief B in the computations. Let ‘1’ be the
diagonal matrix. Let Z = B1 + R. Solving (32) for R is equivalent to
solving Z = B1 ⊕ (Z � A) for Z .
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It can be observed that, being flow-based, our fixed point
equation for the matrix R has the same form as the fixed
point equation for a Markov Chain. The main difference is
that in an ordinary Markov chain, there is a real-valued tran-
sition matrix whereas we have opinions Ai j ∈ Ω∗, and in
our case multiplication of reals is replaced by� and addition
by ⊕. In spite of these differences, we observe in our experi-
ments that every type of behavior of Markov Chain flow also
occurs for R. Indeed, experiments on real data show that we
indeed have convergence (see Sect. 7). Moreover, for some
fine-tuned instances of the A-matrix, which are exceedingly
unlikely to occur naturally, oscillations can exist just like in
Markov chains; after a number of iterations, the powers of
A jump back and forth between two states. Just as in flow-
based reputation (1), adding the direct opinion matrix A in
each iteration dampens the oscillations and causes conver-
gence.

6.3 Recursive solutions using the � discounting rule

We investigate what happens when we replace the generic
EBSL discounting operation � by the special choice � as
specified inDefinition13. First we consider the case of Fig. 2.
The generic Eq. (33) reduces to

R16 = A12 � A23 � A34 � A46 ⊕
A12 � A23 � A35 � A56 ⊕
A12 � A23 � A34 � A45 � A56

= A12 � A23

� {A34 � A46 ⊕ (A35 ⊕ A34 � A45) � A56} . (41)

Notice that we do not have to put brackets around chains
of � operations because they are associative (Lemma 9).
Also notice that in (41), the common ‘factor’ A12 � A23 has
been pulled outside the brackets. We are allowed to add and
remove brackets at will because of the associativity and full
distributivity of �.

Next we consider Fig. 3, the loop case. Equation (39)
reduces to

{
p(R12) = p(A12) + 1

θ2
p(R12)p(A23)p(A32)

n(R12) = n(A12) + 1
θ2
p(R12)p(A23)n(A32)

(42)

which is easily solved,

p(R12) = p(A12)

1 − θ−2 p(A23)p(A32)
(43)

n(R12) = n(A12) + p(A12)p(A23)

θ2 − p(A23)p(A32)
n(A32). (44)

We observe that the system parameter θ has to be chosenwith
great caution. If values p(Ai j ) can get too close to θ , then the

fraction in (43) may explode and may result in p(R12) > θ ,
which is problematic. Let us define pmax = maxi j p(Ai j ).
Then, it is necessary to set θ ≥ pmax·(1+

√
5)/2. (This bound

is obtained by setting p(A12) = p(A23) = p(A32) = pmax

in (43) and demanding that p(R12) ≤ θ .)

7 Evaluation

We have implemented our flow-based reputation model with
uncertainty and performed a number of experiments to eval-
uate the practical applicability and “accuracy” of the model
using both synthetic and real-life data. Note that, while it is
possible to define some limiting situations (synthetic data)
in which a certain result is expected, in general numerical
experiments cannot ‘prove’ which approach is right because
there is no ‘ground truth’ solution to the reputation problem
that we could compare against. The only thing that can be
verified by numerics is: (i) Do the results make sense? (ii) is
the method practical? Thus, we have used synthetic data to
compare the accuracy of the opinions computed using differ-
ent reputation models. On the other hand, we used real-life
data to study the practical applicability.

Experiments for assessing the robustness of the reputation
model against attacks such as slandering, self-promotion and
Sybil attacks [8,13,35], have not been considered in thiswork
and are left for future work, as our goal here is the defini-
tion of the mathematical foundation for the development of
reputation systems. A study of the robustness against attacks
requires to consider many other aspects that are orthogonal
to this work.

In the remainder of this section, first we briefly present
the implementation; then, we report and discuss the results
of the experiments.

7.1 Implementation

We have developed a tool in Python. It implements the pro-
cedure for computing the fixed point described in Sect. 6.2.
All SL and EBSL computation rules presented in this paper
have been implemented in a Python library.

The tool takes as input a log containing recordeduser inter-
actions. Based on the evidence contained in the log, the tool
extracts the direct referral trust matrix A. The tool repeatedly
iterates the recursive equation until it converges, that is, the
difference between the new matrix R(k+1) and the previous
one R(k) is less than a certain threshold. In particular, the
termination condition is set as follows:

∑

i, j

δ
(
R(k+1)
i j , R(k)

i j

)
< 10−10 (45)

where δ(x, y)
def= |xb − yb| + |xd − yd| + |xu − yu|.
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7.2 Synthetic data

We have conduced a number of experiments using synthetic
data to analyze and compare the different approaches for trust
computation. The goal of these experiments is to analyze the
behavior of the reputation models in a number of limiting
situations for which it is known a priori how the result should
behave.
Experiment settings The experiments are based on the trust
network in Fig. 2.We considered six approaches: (i) the flow-
based method without uncertainty in Eq. (1); (ii) the flow-
based SL approach presented in Sect. 3; (iii) SL in which the
specification of the trust network is transformed to canonical
form by removing the edge from 4 to 5 (i.e., A45 is set to
U in Eq. (14)); (iv) EBSL with g(x) = xb; (v) EBSL with
g(x) = √

xb; and (vi) EBSL using the operator �.
To make the results comparable, we specify the amount

of positive and negative evidence (p, n) for each edge in the

Table 1 Evidence, opinions and aggregate ratings for case C1

Source Target Evidence Opinion Axy

1 2 (400, 300) (0.570, 0.427, 0.003) 0.571

2 3 (10, 5) (0.588, 0.294, 0.118) 0.667

3 4 (500, 0) (0.996, 0.000, 0.004) 1.0

3 5 (500, 0) (0.996, 0.000, 0.004) 1.0

4 5 (500, 0) (0.996, 0.000, 0.004) 1.0

4 6 (500, 0) (0.996, 0.000, 0.004) 1.0

5 6 (500, 0) (0.996, 0.000, 0.004) 1.0

6 7 (5, 5) (0.417, 0.417, 0.166) 0.5

7 P (10, 90) (0.098, 0.882, 0.020) 0.1

trust network and use such evidence to compute the opinions
used for EBSL and SL as well as the aggregate ratings (Axy)
used for flow-based reputation (without uncertainty). The
mapping between evidence and opinion is computed using
(2). For the mapping between evidence and aggregated rat-
ings, we use an approach similar to the one presented in [35]:

Axy = 1

2
+ p − n

2e
(46)

where Axy = 1 means fully trusted, Axy = 0 fully distrusted
and Axy = 1

2 neutral.
For the analysis, we consider three cases. Table 1 presents

the evidence along with the derived opinions and aggregated
ratings for our first case (C1). In this case, we use θ = 1000
for EBSL using operator�. In the second case (C2), we con-
sider the same evidence except for the edge from7 to P which
is now (10, 900). The corresponding opinion and aggregate
rating are T7P = (0.011, 0.987, 0.002) and A7P = 0.011,
respectively. In the last case (C3), we consider the evidence
for all edges to be (10000, 0) and we set θ = 20000. In this
case, all opinions are equal to (0.9998, 0.0000, 0.0002) and
aggregated ratings are equal to 1.
Results The results of the trust computation are presented
in Table 2 in terms of opinions (trust value for flow-based
method), and in Table 3 in terms of amount of evidence. Note
that in Table 3, we have not included the amount of evidence
for the flow-based approach of (1) as it is not possible to
reconstruct it from trust values.

The results confirm our expectation about the impact of
the trust network representation on the trust computation
when SL is used. As expected, the uncertainty component
of opinion F1P computed using SL is larger when the trust
network in Fig. 2 is represented in canonical form. Indeed, in

Table 2 Comparison in terms
of trust values r1P and opinions
F1P

C1 C2 C3

Flow-based 0.401 0.392 0.501

Flow-SL (0.024, 0.220, 0.756) (0.003, 0.246, 0.751) (0.9993, 0.0000, 0.0007)

SL (canonical form) (0.014, 0.123, 0.863) (0.002, 0.137, 0.861) (0.9990, 0.0000, 0.0010)

EBSL (g(x) = xb) (0.095, 0.859, 0.046) (0.011, 0.984, 0.005) (0.9998, 0.0000, 0.0002)

EBSL (g(x) = √
xb) (0.097, 0.873, 0.030) (0.011, 0.986, 0.003) (0.9998, 0.0000, 0.0002)

EBSL (�) (0.000, 0.000, 1.000) (0.000, 0.006, 0.994) (0.9970, 0.0000, 0.0030)

Table 3 Comparison in terms
of amount of evidence
underlying opinion F1P

C1 C2 C3

Flow-SL (0.065, 0.582) (0.007, 0.655) (2763.7, 0)

SL (canonical form) (0.032, 0.284) (0.004, 0.319) (1999.16, 0)

EBSL (g(x) = xb) (4.166, 37.490) (4.166, 374.901) (9998, 0)

EBSL (g(x) = √
xb) (6.455, 58.095) (6.455, 580.946) (9999, 0)

EBSL (�) (0.000, 0.001) (0.000, 0.011) (781.25, 0)
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this case some trust information (i.e., evidence) is discarded
(Recall that uncertainty depends on the amount of evidence;
the larger the amount of evidence, the lower the uncertainty.
See Sect. 5.2). In contrast, the representation of the trust net-
work in Eq. (13) is affected by double counting, leading to
more evidence and thus to a lower uncertainty component of
F1P .

The results show that the SL and EBSL approaches pre-
serve the ratio between belief and disbelief components
(Table 2) and consequently the ratio between positive and
negative evidence (Table 3). This ratio is close to the one
between the positive and negative evidence underlying the
functional trust T7P . If the amount of evidence increases
(C2), one would expect that the amount of evidence under-
lying opinion F1P increases proportionally to the increase
in the amount of evidence underlying T7P (Theorem 2).
Accordingly, the amount of positive evidence underlying
F1P should be the same in C1 and C2, and the amount of
negative evidence underlying F1P in C2 should be 10 times
the amount of negative evidence in C1. We can observe in
Table 3 that this is true for EBSL but not for SL. This is
explained by the fact that x ⊗ y is not an x-dependent mul-
tiple of the evidence underlying y, as was shown in Eqs. (8)
and (9).

Finally, in the last case (C3), we have considered a limit-
ing case where every trust relation in the network of Fig. 2 is
characterized by a large amount of positive evidence. Here,
one would expect that the opinion F1P is close to (1, 0, 0)
and the trust value r1P close to 1. From Table 2, we can
observe that SL and all EBSL approaches meet this expecta-
tion. However, if we look closely at the evidence underlying
such an opinion (Table 3), we can observe that when the
SL discounting operator ⊗ and EBSL operator � are used,
a large amount of evidence is “lost” on the way. In con-
trast, we expect the amount of evidence underlying F1P to
be close to that of T7P (Theorem2). Table 3 shows that EBSL,
both for g(x) = xb and g(x) = √

xb, preserves the amount
of evidence when referral trust relations are close to full
belief.

Moreover, Table 2 shows that the value of r1P is close to
neutral trust rather than to full trust. This can be explained
by Eq. (1) and the impossibility to express uncertainty. On
the one hand, at each iteration Eq. (1) computes a weighted
average of aggregated ratings where weights are equal to the
trust a user places in the users providing recommendations.
On the other hand, the flow-based approach does not distin-
guish between neutral trust (equal amount of positive and
negative evidence) and full uncertainty (zero evidence). In
particular, the lack of evidence between two users is repre-
sented in the matrix of aggregated ratings A as neutral trust
(see Eq. 46). In sparse trust networks (i.e., networkswith only
a few edges) like the one in Fig. 2, the neutral trust used to
express uncertainty has a significant impact on the weighted

average used to compute trust values.5 These results demon-
strate that the ability to express uncertainty is fundamental
to capture the actual trustworthiness of a target, which is one
of the main motivations for this work.

7.3 Real-life data

We performed a number of experiments using real-life data
to assess the practical applicability of EBSL and flow-based
reputation models built on top of EBSL. In particular, we
study the impact of various discounting operators on the
propagation of evidence and the convergence speed of the
iterative procedure.
Experiment Settings For the experiments, we used a dataset
derived from a BitTorrent-based client called Tribler [29].
The dataset consists of information about 10,364 nodes
and 44,796 interactions between the nodes. Each interac-
tion describes the amount of transferred data in bytes from
a node to another node. The amount of transferred data can
be either negative, indicating an upload from the first node
to the second node, or positive, indicating a download.

To provide an incentive for sharing information, someBit-
Torrent systems require users to have at least a certain ratio
of uploaded vs. downloaded data. Along this line, we treat
the amount of data uploaded by a user as positive evidence,
and the downloaded amount as negative evidence. Intuitively,
positive evidence indicates a user’s inclination to share data
and thus to contribute to the community.

It is worth noting that Tribler has a high population
turnover and, thus, the dataset contains very few long living
and active nodes alongside many loosely connected nodes of
low activity [9]. This results in a direct referral trust matrix
that is very sparse (i.e., most opinions are full uncertainty).
In this sparse form, it is inefficient to do large matrix multi-
plications. To this end, we have grouped the nodes into 200
clusters, each of which contains about 50 nodes. Intuitively,
a cluster may be seen as the set of nodes under the control of
a single user.

For the experiments with real data, we considered four
reputation models: (i) the flow-based SL approach presented
in Sect. 3; (ii) EBSL with g(x) = xb; (iii) EBSL with
g(x) = √

xb; and (iv) EBSL using the operator�. Note that,
due to the large number of interconnected loops in the trust
network, we did not consider SL in which the trust network
is transformed into a canonical form.

In all four models, we computed the final referral trust
matrix R. The amount of evidence in the matrix A is visu-
alized in Fig. 4. Figure 4a presents the amount of positive
evidence, and Fig. 4b the total amount of evidence (sum of

5 It worth noting that a trust value close to 1 can be obtained by Eq. 1
only if the trust network is a complete graph in which the aggregate
rating associated with each edge is close to 1.
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Fig. 4 The evidence in the direct opinion matrix A for the Tribler data.
For each pair (i, j), the amount of evidence underlying the opinion of
i about j is shown as a shade of gray, using a logarithmic gray scale.

White corresponds to zero, black to 8.7 · 106, which is the maximum
amount of evidence occurring in a single matrix entry in the experi-
ments. a Positive evidence, b sum of positive and negative evidence

positive and negative). We can observe the presence of a few
active userswhohad interactionswith a lot of other users (vis-
ible as dark lines). A horizontal dark line in Fig. 4a indicates
a user who downloaded data frommany other users. The ver-
tical dark lines in Fig. 4b represent negative evidence: many
users uploading to the same few users. Note that Fig. 4b is not
symmetric, since an interaction never results in user feedback
from both sides.

It is also interesting to note the clusters of strongly con-
nected users who often interact with each other (for instance
the top-left corner).
Results The amount of evidence in R is presented in Fig. 5
(only positive evidence) and in Fig. 6 (sum of positive and
negative evidence). For most users, the amount of evidence
in R has increased compared to the initial situation (Fig. 4a,
b). The plots are characterized by uniform vertical stripes,
indicating that (most) users have approximately the same
amount of (positive) evidence about a given user. The amount
of evidence, however, remains close to 0 for those users who
had very few interactions with other users (horizontal white
lines in Figs. 5, 6). It is also worth noting that the diagonal
of R is clearly recognizable as a white line. This is due to
the fact we impose the diagonal to be full uncertainty, i.e.,
users cannot have an opinion about themselves, to reduce the
effect of self-promoting.

The choice of the discounting operator, which defines
how evidence is propagated, has a significant impact on the
amount of evidence in R. Ideally, users should be able to use
the available trust information to decide whether to engage
an interaction with another user [42]. Therefore, a reputation
system should allows users to gather as many recommenda-
tions (i.e., evidence) as possible from trusted users. However,

the use of the � operator causes most of the evidence to be
lost along the way. This can be clearly understood by observ-
ing that the initial situation in Fig. 4a (Fig. 4b, respectively)
and the final referral trust matrix R in Fig. 5a (Fig. 6a respec-
tively) are almost the same. Figures 5b and 6b show that the
⊗ operator propagates more evidence than�. We remind the
reader that ⊗ causes double counting as well as discarding
of evidence as shown in Examples 2 and 3. The � operator
with both g(x) = xb and g(x) = √

xb results in the propaga-
tion of more evidence compared to the� and⊗ operators, as
shown in Fig. 5c, d (positive evidence) and in Fig. 6c, d (total
evidence). These findings confirm the results obtained with
the synthetic data (Table 3). Therefore, we conclude that the
� operator is preferable to the other operators.
Convergence We have analyzed the convergence of the iter-
ative approach using the Tribler dataset. The experiments
show that the reputation models built on top of EBSL con-
verge. In particular, EBSL with g(x) = xb converges after
47 iterations, EBSL with g(x) = √

xb converges after 24
iterations, and EBSL using the � operator after nine iter-
ations. One can observe that, in all the cases, convergence
is fast. Accordingly, we believe that the proposed reputa-
tion model can handle real scenarios. In the experiments,
we also analyzed the convergence of the naïve approach
that combines flow-based reputation and SL, as presented
in Sect. 3. Here, convergence is not reached in a reason-
able amount of time: After 1000 iterations, we still have∑

i, j δ(R
(k+1)
i j , R(k)

i j ) ≈ 10−8.
To study the link between our approach and Markov

chains, we performed additional experiments (not reported
here) with a number of limiting situations, i.e., synthetic
data unlikely to occur in real life. In particular, we studied
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Fig. 5 Positive evidence in the final referral trust matrix R for the
Tribler data. For each pair (i, j), the amount of positive evidence under-
lying the opinion of i about j is shown as a shade of gray, using a
logarithmic gray scale. White corresponds to zero, black to 8.7 · 106,

which is the maximum amount of evidence occurring in a single matrix
entry in all the experiments. a R obtained using �, b R obtained using
⊗, c R obtained using � with g(x) = xb, d R obtained using � with
g(x) = √

xb

the EBSL case where the powers of A show oscillations,
i.e., Ak+2 = Ak with Ak+1 �= Ak . Here, Ak stands for
((· · ·� A)� A)� A. This can occur in Markov chains too. In
flow-based reputation (1), the added term (1−α)sx dampens
the oscillations and thus improves convergence. Similarly, in
our EBSL experiments, the added term A in each iteration
(40) gives a convergent result in spite of the oscillatory nature
of A. This strengthens our conviction that EBSL correctly
captures the idea of reputation flow.

8 Related work

The notion of uncertainty is becoming an important concept
in reputation systems and, more in general, in data fusion

[5,24]. Uncertainty has been proposed as a quantitative mea-
sure of the accuracy of predicted beliefs and it is used to
represent the level of confidence in the fusion result. Sev-
eral approaches have extended reputation systems with the
notion of uncertainty [15,30,32,39]. For instance, Reis et
al. [32] associate a parameter with opinions to indicate the
degree of certainty to which the average rating is assumed
to be representative for the future. Teacy et al. [39] account
for uncertainty by assessing the reputation of information
sources based on the perceived accuracy of past opinions.
Differently from the previous approaches, subjective logic
[15] considers uncertainty as a dimensionorthogonal to belief
and disbelief, which is based on the amount of available evi-
dence.
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Fig. 6 The sum of positive and negative evidence in the final referral
trust matrix R for the Tribler data. For each pair (i, j), the total amount
of evidence underlying the opinion of i about j is shown as a shade of
gray, using a logarithmic gray scale. White corresponds to zero, black

to 8.7 · 106, which is the maximum amount of evidence occurring in
a single matrix entry in the experiments. a R obtained using �, b R
obtained using ⊗, c R obtained using �with g(x) = xb, d R obtained
using �with g(x) = √

xb

One of themain challenges in reputation systems is how to
aggregate opinions, especially in the presence of uncertainty.
SL provides two main operators for aggregating opinions:
consensus and discounting (see Sect. 2.2). Many studies
have analyzed strategies for combining conflicting beliefs
[16,19,37] and have proposed new combining strategies and
operators [7,44]. In Sect. 5.2, we reconfirm that the standard
consensus operator used in SL is well-founded on the theory
of evidence.

In contrast, less effort has been devoted to studying the
discounting operator. Bhuiyan and Jøsang [4] propose two
alternative discounting operators: an operator based on oppo-
site belief favouring, for which the combination of two
disbeliefs results in belief, and a base rate sensitive tran-
sitivity operator in which the trust in the recommender is a

function of the base rate. Similarly to the traditional discount-
ing operator of SL, these operators are founded on probability
theory. As shown in Sect. 3, employing operators founded on
different theories has the disadvantage that these operators
may not “cooperate.” In the case of SL, this lack of coop-
eration results in the inability to apply SL to arbitrary trust
networks. In particular, trust networks have to be expressed
in a canonical form in which edges are not repeated. A pos-
sible strategy to reduce a trust network to a canonical form
is to remove the weakest edges (i.e., the least certain paths)
until the network can be expressed in canonical form [20].
This, however, has the disadvantage that some (possibly even
much) trust information is discarded. An alternative canoni-
calizationmethod called edge splittingwas presented in [18].
The basic idea of this method is to split a dependent edge into
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a number of different edges equal to the number of different
instances of the edge in the network expression. Nonethe-
less, the method requires that the trust network is acyclic; if
a loop occurs in the trust network, some edges have to be
removed in order to eliminate the loop, thus discarding trust
information. In contrast, we have constructed a discounting
operator founded on the theory of evidence. This operator
together with the consensus operator allows the computation
of reputation for arbitrary trust networks, which can include
loops, without the need to discard any information.

Cerutti et al. [7] define three requirements for discounting
based on the intuitive understanding of a few scenarios: Let
A be x’s opinion about y’s trustworthiness, C the level of
certainty that y has about a proposition P , and F = A ◦ C
the (indirect) opinion that x has about P . (i) If C is pure
belief, then F = A; (ii) If C is complete uncertainty, then
F = C ; (iii) The belief part of F is always less than or equal
to the belief part of A. Based on these requirements, they
propose a family of graphical discounting operators which,
given two opinions, project one opinion into the admissible
space of opinions given by the other opinion. These operators
are founded on geometric properties of the opinion space.
This makes it difficult to determine whether the resulting
theory is consistent with the theory of evidence or probability
theory. Our discounting operator satisfies requirement (ii)
above, but not requirements (i) and (iii); indeed, for g(A) > 0
it holds that A � B = B (where B represents full belief). It
is worth noting that the requirements proposed in [7] are not
well-founded in the theory of evidence: B means that there
is an infinite amount of positive evidence; discounting an
infinite amount of evidence still gives an infinite amount of
evidence. In Theorem 1, we provided a number of desirable
properties founded on the theory of evidence. In particular,
if p + n → ∞ then u → 0. Accordingly, if C = B the
uncertainty component of F should be equal to 0, regardless
of the precise (nonzero) value of the uncertainty component
of A.

To our knowledge, our proposal is the first work that inte-
grates uncertainty into flow-based reputation.

9 Conclusion

In this paper, we have presented a flow-based reputation
model with uncertainty that allows the construction of an
automated reputation assessment procedure for arbitrary trust
networks. We illustrated and discussed the limitations of a
naïve approach to combine flow-based reputation and SL. An
analysis of SL shows that the problem is rooted in the lack
of “cooperation” between the SL consensus and discounting
rules due to the different nature of these two operators. In
order to solve this problem, we have revised SL by introduc-
ing a scalar multiplication operator and a new discounting

Table 4 Comparison of the operators ⊗, �, and �
⊗ � �

Associativity Yes No Yes

Left-distribution No No Yes

Right-distribution No Yes Yes

Recursive solutions No Yes Yes

rule based on the flow of evidence. We refer to the new opin-
ion algebra as Evidence-Based Subjective Logic (EBSL).

A generic definition of discounting (the operator �) lacks
the associative property satisfied by the SL operator ⊗.
This, however, is not problematic since the flow of evidence
has a well-defined direction. Furthermore, the operator �
has right-distributivity, a property that one would intuitively
expect of opinion discounting. One can choose a specific dis-
counting function g(x) proportional to the amount of positive
evidence in x . The resulting discounting operator is denoted
as �. As shown in Table 4, this operator is completely linear
(associative as well as left and right distributive). However, it
has potentially undesirable behavior since it ignores negative
evidence, and requires a carefully chosen system parameter
related to the maximum amount of positive evidence in the
system.

The adoption of the discounting operator � results in a
system that is centered entirely on the handling of evidence.
We have showed that this new EBSL algebra makes it pos-
sible to define an iterative algorithm to compute reputation
for arbitrary trust networks. Thus, EBSL poses the basis for
the development of novel reputation systems. In particular,
our opinion algebra guarantees that trust information does
not have to be discarded, thus preserving the quality of the
aggregated evidence. Moreover, making the uncertainty of
the computed reputation explicit helps users in deciding how
much to rely on it based on their risk attitude. In our opinion,
this will facilitate the adoption and acceptance of reputation
systems since users are more aware of the risks of engaging
a transaction and, thus, can make more informed decisions.

Thework presented in the paper poses the basis for several
directions of future work. We have shown how EBSL can be
used to build a flow-based reputationmodel with uncertainty.
However, several reputation models have been proposed in
the literature to compute reputation over a trust network. An
interesting direction is to study the applicability of EBSL as
a mathematical foundation for these models. This will also
make it possible to study the impact of uncertainty on the
robustness of reputation systems against attacks such as self-
promotion, slandering and Sybil attacks.
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10 Associativity and left-distributivity of � imply
linearity of g

We present a Proof of Lemma 10. The proof technique
requires that opinions and the operations ⊕ and · form a
vector space with an inner product defined on it. There is no
such thing as an opinion ‘−x’ (inverse of x with respect to
⊕) in Ω or Ω ′, so we have to broaden our scope. We define
an extended opinion space

Ω∗ def= {(b, d, u) ∈ [−1, 1]2 × [0, 1] | |b| + |d| + u = 1}

that allows for negative belief and/or disbelief components.
We have to slightly modify the relation between evidence
and opinions, so that negative amounts of evidence can be
represented,

(b, d, u) = (p, n, c)

|p| + |n| + c
; (p, n) = c

(b, d)

u

with c > 0. Here, p and n can be negative. This relation auto-
matically leads to a slightly modified definition of evidence
addition (⊕) and scalar multiplication,

x ⊕ y
def= (xbyu + ybxu, xdyu + ydxu, xuyu)

|xbyu + ybxu| + |xdyu + ydxu| + xuyu

α · x def= (αxb, αxd, xu)

|αxb| + |αxd| + xu
.

For x, y ∈ Ω and α ≥ 0, all this reduces to the algebra of
Sects. 2.2 and 5.3; For x, y ∈ Ω∗ and α ∈ R, all the nice
linear properties still hold.

The spaceΩ∗ with the⊕ and · operations is a vector space.
(The underlying space of (p, n) evidence pairs has also been

turned into a vector space by allowing negative amounts of
evidence.)We introduce an inner product on this vector space
as follows,

〈x, y〉 def= p(x)p(y) + n(x)n(y).

It is easily verified from the definitions that this expression
satisfies all the requirements for being an inner product,
namely 〈x, y〉 = 〈y, x〉; 〈x, y ⊕ z〉 = 〈x, y〉 + 〈x, z〉;
〈x, x〉 ≥ 0 and 〈α · x, y〉 = α〈x, y〉.

With all this structure in place, we can now invoke the
Riesz–Fréchet theorem [12],

If Ω∗ is a real Hilbert space and g a linear functional,
then there exists a unique vector v ∈ Ω∗ such that
g(x) = 〈v, x〉 for all x ∈ Ω∗.

Here, ‘linear functional’ means that the linear property g(x⊕
y) = g(x)+ g(y) holds. Hence, the only way to achieve this
property is to set g(x) = 〈v, x〉, i.e., a linear combination of
p(x) and n(x).
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