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We study, numerically and analytically, the forced transport of deformable containers through a narrow
constriction. Our central aim is to quantify the competition between the constriction geometry and the active
forcing, regulating whether and at which speed a container may pass through the constriction and under what
conditions it gets stuck. We focus, in particular, on the interrelation between the force that propels the container
and the radius of the channel, as these are the external variables that may be directly controlled in both artificial
and physiological settings. We present lattice Boltzmann simulations that elucidate in detail the various phases of
translocation and present simplified analytical models that treat two limiting types of these membrane containers:
deformational energy dominated by the bending or stretching contribution. In either case we find excellent
agreement with the full simulations, and our results reveal that not only the radius but also the length of the
constriction determines whether or not the container will pass.

DOI: 10.1103/PhysRevE.90.033006 PACS number(s): 47.63.−b, 47.11.−j, 82.70.Uv

I. INTRODUCTION

Membrane-enclosed vesicles are the principal carriers used
in intracellular protein trafficking. Moreover, because of their
intrinsic biocompatibility and flexibility they are becoming an
increasingly common motif in drug delivery, for instance, in
transdermal applications, as well as in microfluidic production
and processing [1,2]. In each of these settings, vesicles
frequently encounter narrow passages: geometric constrictions
that force them to change shape dramatically in order to pass.
While driving forces such as pressures (possibly osmotic),
fluid flow, directly exerted forces from molecular motors, or
external fields may promote passage, the required changes in
shape generically result in energetic barriers to translocation
and the eventual (non-) passage is thus determined by a subtle
balance of forces originating from various physical sources, as
well as by the geometry of the constriction.

Specific examples of the channel passage problem are
encountered in microfluidic devices in medical diagnostics
[3–5] and the fabrication of microgel capsules [6]. Experimen-
tal work on red blood cells [3] and polymeric capsules [7] has
shown that changes in mechanical properties and cell radius
determine the passage of the container and in some cases may
induce capillary blockage [8,9]. Previous theoretical work has
extensively studied the transient dynamics of elastic capsules
in both cylindrical and rectangular constrictions [10–12], the
production of smaller vesicles [13], and the translocation of
vesicles through narrow pores [14]. Experimental work on
transfersomes has demonstrated that ultraflexible artificial
liposomes roughly 500 nm in diameter may pass through
pores as small as 50 nm virtually unobstructed, lending clear
credibility to the paramount importance of membrane bending
energies in this process [15,16].

Our own interest in the problem is further sparked by the
regulatory use of recycling endosomes in dendritic spines:

*Corresponding author: r.p.t.kusters@tue.nl

large lipid bilayer vesicles are actively directed by myosin
motors [17] into, and out of, a long thin neck that connects
the functional domain of a dendritic spine to the dendritic
shaft. These vesicles are thought to serve dual purposes: they
actively transport membrane-bound glutamate receptors to the
functional domain, but, when stuck inside the neck, may also
serve as a physical barrier [18–20] that helps retain proteins
inside the spine’s head compartment [21,22], not unlike the
manner in which a cork serves to keep wine inside the bottle.

While this prior work has laid important foundations for
our understanding of the process of vesicle translocation,
much is still unclear. In particular, the dynamics of the
translocation process still poses some open questions: How
fast is the container transported through the constriction?
When does it cease to translocate, and are typical molecular
force levels sufficient to effect translocation in physiological
settings? We focus in particular on those physical variables that
cells have some control over: motor activity and constriction
geometry. We also consider the dependence on the membrane’s
mechanical moduli which in synthetic settings such as vesicle
production or extrusion may be controlled and optimized. Our
principal interest, however, lies with the basic competition
between the constriction geometry and the active forcing:
how the shape, length, and radius of the constriction and
the force regulate the transport of a deformable container
through a narrow constriction. We model the energetics of
the transportation of deformable containers through a narrow
constriction in a lattice Boltzmann simulation, combined with
an immersed boundary method and a finite element method,
and a simplified theoretical model. Our theoretical model may
be applied to a wide range of deformable containers, but here
we restrict ourselves to the discussion of two limiting cases:
highly stretchable containers and inextensible membrane
containers, to which we will refer as capsules and vesicles
respectively. Our analysis reveals a generic phase behavior
of the Stuck and Pass regimes as function of the applied
force, relative size of the constriction, and the mechanical
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properties, in both the vesicle and capsule limits. In addition
to infinitely long constrictions, we model the effect of a finite
constriction length and show that the deformation energy and
thus the minimal force necessary to get the capsule through the
constriction significantly decreases for decreasing neck length.

This paper is organized as follows: Sec. II discusses the
lattice Boltzmann simulation and presents the key results
of our simulation. In Sec. III we introduce our simplified
theoretical model and outline calculations of the two limiting
cases (stretch vs bend-dominated containers). In Sec. IV we
compare and discuss the results of our theoretical model with
the simulation results and present our main conclusions.

II. LATTICE-BOLTZMANN SIMULATIONS

In this section we outline our three-dimensional lattice
Boltzmann simulations for the deformable container and
present our main results. In order to efficiently simulate
deformable containers, immersed in a fluid, we use a lattice
Boltzmann method as fluid solver, an explicit immersed
boundary method for the coupling of the fluid and the
membrane, and a finite element method for the computations
of the membrane response to deformations. The surface of the
particles is triangulated to allow efficient calculations of the
deformations. The number of faces is in the range of 720 to
1280, which is sufficient to capture the studied deformations.
For an overview of our method and membrane model, its
relation to microscopic structure and the numerical evolution
of the deformation gradient and its corresponding membrane
forces we refer to Refs. [23–25]. We will present our results
in conventional lattice units, and at the end of this section we
will shortly outline the conversion to SI units.

Deviations from the equilibrium shape of the container
induce an increase in the total energy, which we divide into
three distinct contributions: (1) energy due to in-plane strain,
i.e., local contributions due to resistance to shear and to lateral
dilatation, (2) energy due to out-of-plane bending, and (3)
energy due to global volumetric expansion or compression.
The in-plane strain energy of an isotropic and homogeneous
section of membrane is computed as

ES =
∫

εs dA, (1)

where εs is the surface strain energy density which depends
on the principal stretches: the eigenvalues (λ1,λ2) of the
displacement gradient tensor D. In general, the strain energy
density is a function only of the invariants I1 = λ2

1 + λ2
2 − 2

and I2 = λ2
1λ

2
2 − 1, and any constitutive model is represented

by a specific functional form for εs(I1,I2). As the deformations
in biological cells are in general large, a linear stress-strain
approximation is generally not justified. In our modeling,
we implement therefore the nonlinear strain energy density
proposed by Skalak [26] for biological membranes, valid for
both small and large strains: εs = κs(I 2

1 + 2I1 − 2I2)/12 +
καI 2

2 /12. κs is the surface elastic shear modulus, and κα the
area dilation modulus. For pure lipid bilayers, the in-plane
behavior is liquidlike and κs should be set to zero (in favor,
technically, of a 2D viscosity multiplying the in-plane strain
rate; we will, however, consider slow deformations and neglect
viscous effects). For polymer capsules and even more complex

mixtures of lipids, however, there will be contributions
from the in-plane shear. Note that we neglect thermal area
fluctuations; their effects are discussed in Ref. [27].

To account for the membrane bending, we recall the
Helfrich bending energy [28],

EB = κB

2

∫
(H − H0)2 dA, (2)

where κB is (the out-of-plane) bending modulus of the
membrane H is the mean curvature, and H0 is the spontaneous
curvature. The most general formulation of the Helfrich bend-
ing energy includes the Gaussian curvature term κG

∫
K dA,

but this does not contribute to the overall energy provided no
topological changes occur.

Finally, as the membrane is permeable to water, but not to
ions, we associate an osmotic penalty for a deviation in volume
given by

EV = κV

2

(V − V0)2

V0
, (3)

where V − V0 is the deviation in total volume and κV is the
volume modulus.

We now use this model to address the question to what
extent the force and the relative radius and length of the
constriction affect the translocation of a deformable container
[see Fig 1(a)]. In particular, we focus on a container with given
mechanical properties (fixed κV = 1, κα = 0.018, κs = 0.5,
and κb = 0.05), where we have used a dimensionless lattice
constant, time step, and mass and set them all to unity, as
well as the relaxation time. For the parameter values we
choose here, the container is highly stretchable and strongly
resists deviations in total volume. The bending contribution is
relatively weak, and as it is resistant to shear, it resembles a
polymeric capsule rather than a bilayer membrane. As we show
in the next section, however, the bending dominated limit and
the stretching dominated limit show very similar behavior.
In our simulations we assume that the fluid both inside and
outside the capsule are Newtonian, and both have the same
properties, i.e., the same viscosity and density. In Fig. 1(b) we
show a typical time sequence of the transport of a deformable
container through a constriction.

To isolate the influence of neck size, relative to the radius of
the container d/R0, we consider a system with a neck length
that is considerably longer than the size of the container within
the constriction: L = 100, and measure the time evolution
of the position of the center of mass. We vary the radius of
the container in the range R0 = 5.5–8.0 and fix the radius of
the neck at d = 5.5 [see Fig. 1(c)]. The container is released
at a distance 25 lattice units in front of the constriction and is
propelled by a fixed body force Fm = 1.5 × 10−4 on all the
fluid nodes. Similarly we also fix the size of the container and
the size of the constriction d/R0 = 0.7 and vary the applied
body force Fm = 2 × 10−5 − 2 × 10−4 and observe highly
similar behavior [see Fig. 1(d)]. Below a threshold force F ∗

m

and above a critical ratio (d/R0)∗, the container remains Stuck
in front of the constriction (dashed lines), and above F ∗

m and
below (d/R0)∗, the velocity within the constriction increases
for increasing Fm, as can be seen in Fig. 1(c) and 1(d).

To quantify the speed of the translocation, we extract the
minimal velocity of the container in the constriction vmin as
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FIG. 1. (a) Model system for the transport of containers through a narrow constriction of length L and radius d . (b) A typical time sequence
of the transport of a deformable container through a relatively short and narrow constriction. Position of the container’s center of mass x

as function of time t for (c) varying the relative radius of the constriction d/R0 (solid line, Pass, d/R0 = 0.92–0.68 and dashed line; Stuck,
d/R0 = 0.67) and a fixed applied body force Fd = 1.5 × 10−4 and (d) where we vary the applied force Fm (dashed line: Stuck, Fm = 2 × 10−5

and 6.5 × 10−5; and solid line: Pass, Fd = 7 × 10−5 − 2 × 10−4) and fix d/R0 = 0.7. In (e) we fix the applied body force Fd = 1.5 × 10−4,
and in (f) we fix d/R0 = 0.7 and we calculate the minimal velocity of the particle during transportation. For the containers that remained stuck
vmin = 0. In (c), (d), (e), and (f), the length of the constriction is L = 100, and the system size is b = 208 and a = 52 lattice units [see panel
(a)].

function of the relative size of the container d/R0, as shown
in Fig. 1(e), where a sharp transition between Stuck and Pass
is found at a critical ratio (d/R0)∗. Above this value, vmin

increases for increasing d/R0. The exact value of (d/R0)∗
depends on the magnitude of the applied body force as can be
seen from the force dependence, where likewise we find that
increasing the applied body force increases vmin [see Fig. 1(f)],
and that below a threshold force F ∗

m, the container remains
Stuck.

We combine the force and size dependence of the transloca-
tion into a single phase diagram, showing for which parameter
values the container gets through the constriction (Pass) or
remains stuck (Stuck) in Fig. 2(a). The regime for d/R0 < 0.6
and Fm > 0.0002, which is expected to show a power law-like
behavior of F ∗

m with decreasing d/R0, at least for fluid
vesicles [27], is presently inaccessible due to limitations in the
simulation methods: velocities on the lattice nodes become
too high, and the weak incompressibility constraint may be
numerically violated.

As mentioned in Sec. I, both the radius and the length of the
constriction are expected to affect the dynamics of the passage
process. As we show in Fig. 2(b), decreasing the length of the
neck can considerably decrease the minimal relative radius
of the neck d/R0 through which the container can be forced.
This is due to the fact that for shorter necks, one end of the
container may already be exiting the constriction while the
other end has not yet entered, allowing parts of the passage
process to occur at considerably lower curvatures and thus to
proceed more effectively. We discuss this in detail in Sec. III.

All the results we have presented in this section were given
in lattice units. These units can be converted to regular SI
units. Although the scope of this section is to come up with a
generic system and not to solve this problem for one particular
system, it is insightful to convert our lattice units to SI units for
one particular case where the kinematic viscosity of the liquid
equal that of water and the sound of speed is set to 27.8 m/s. For
this particular case the lattice constant equals 1.25 × 10−7 m,
which corresponds to a container of radius of the order of
1 μm. The resultant time step is then 2.6 × 10−9 s. As a result
of this, the force densities Fm on the lattice sites we have
considered are in the order of 109 N m−3 or 10−9 N μm−3, the
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FIG. 2. (Color online) (a) Phase diagram indicating whether the
container passes the constriction as function of the relative size of the
constriction d/R0 and the applied body force Fm. (b) Phase diagram
as function of the neck length L and the relative size of the constriction
d/R0, where Fm = 1.5 × 10−4.
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FIG. 3. (a) Translocation sequence for the passage of a container through a narrow constriction. Stage I: free capsule in solution (the
reference configuration), stage II: partial entry of the capsule into the constriction, stage IIIa : intermediate stage for short channels or large
containers, stage IIIb: intermediate stage for long channels or small containers, stage IV: partial exit out of the constriction. Stretching and
bending energy EA (d) and EB (e), respectively, as function of x for various lengths of the constriction. Decreasing the length of the neck
strongly diminishes the height of the energy barrier the container has to overcome. For (b) and (c) we assumed R0 = 1 μm, for (b) d = 0.2 μm
and κA = 1 J m−2, and for (c) κB = 2 × 10−19 J and d = 0.3 μm. In (d) and (e) we show the height of the energy barrier as function of the
radius of the constriction d relative to the initial radius of the vesicle R0, where for (d) κA = 1 J m−2 and for (e) κB = 2 × 10−19 J. If we
decrease the length of the constriction we find that the height of the barrier strongly diminishes. For an infinite neck length, the height of the
barrier strongly increases for decreasing d/R0. For finite neck lengths, however, there is a decrease at low d/R0 in the stretching energy (d).

area dilation modulus is κα = 5 × 10−3 J m−2 and the bending
modulus is κB = 2 × 10−16 J. These values can be manipulated
by varying the viscosity and the speed of sound of the medium;
this has been discussed in more detail in Narváez et al.
[29].

To conclude this section we mention that this particular
simulation method poses some limitations as it does not permit
a large range of mechanical properties of the deformable con-
tainer to be studied, and therefore, we are unable to simulate
the bilayer limit, where the shear modulus is negligible and the
area stretching modulus is very large. To access these regimes,
we now present a tractable model for the two limiting cases of
the capsule and the vesicle.

III. LIMITING BEHAVIORS

In this section we consider two limiting cases of the
translocation of a deformable container: the stretch-dominated
and the bend-dominated. The geometry we consider is shown
in Fig. 3(a). We presume the dynamics to be determined by
a balance of forces between a coarse-grained hydrodynamic
drag Fd [ẋ(t)] = 6πηR0ẋ(t), with η the dynamic viscosity of
the fluid, R0 the equilibrium radius of the container, and ẋ(t)
the instantaneous velocity of the container’s center of mass,
a driving force, associated for instance with the pulling by
molecular motors, Fm, and a force opposing the motion due
to the increase in membrane energy Fg . The latter, in the two

limits, can be determined by calculating the derivative with
respect to the center of mass position of either the global
stretching energy EA for the stretch-dominated limit or the
bending of the surface EB for the bend-dominated limit, such
that

Fg[x(t)] − Fd [ẋ(t)] + Fm = mẍ(t), (4)

where m is the mass of the container and x(t) is the position of
mass of the center of mass, which for the nonspherical particles
is calculated by summing the “weighted” contributions of
the subunits and assuming a homogeneous density. In the
remainder of this section we will assume the mass to be
m = 4π × 10−18 kg and the dynamic viscosity of the fluid
η = 10−3 N s/m2. In the limit of low Reynolds number, Eq. (4)
reduces to Fg[x(t)] + Fm = 0. We should note that the force
we apply in this theoretical model is applied to the container
and not to the fluid as we did in the simulations. Therefore,
the numerical value of the force is actually significantly lower
compared to that in the simulations.

We consider a spherical deformable container with radius
R0 that is transported through a cylindrical constriction with
radius d and length L as depicted in Fig. 3(a) and distinguish
several distinct stages of the process: stage I is the free capsule
in solution, the reference configuration for the container
shape. During this stage the deformation force, Fg , acting
on the container is zero, and the motion is determined by
a competition between driving and drag force. Stage II:
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partial entry of the capsule into the constriction. Here the
hydrodynamic drag force is much smaller than the deformation
force acting on the container. Stage IIIa: intermediate stage for
short channels or large containers. Stage IIIb: intermediate
stage for long channels or small containers; and finally stage
IV: partial exit out of the constriction. Stage IIIb is only
encountered when the volume of the container is larger than the
total volume inside the constriction. We will now consider the
stretch- and bending-dominated regime of this translocation.

A. Stretch-dominated (capsule) limit

In the stretch-dominated regime, we assume that the total
volume of the container is conserved (V = V0, EV = 0) and
that, given a certain global stretching modulus κA, the surface
of the container is allowed to stretch. For simplicity we will
account for a global energy penalty, associated with stretching:

EA = κA

2

(A − A0)2

A0
, (5)

where A − A0 is the deviation in total surface and κA a global
stretching modulus. In the limit of small and uniform stretch
(λ1 = λ2) and zero shear modulus κs , κA can be related to the
more general local area dilatation modulus κα: 4κα/3 = 2κA.
We will refer to containers in this regime as capsules. This
approach enables us to calculate analytically the height of
the elastic energy barrier due to stretching of a container. As
shown in Eq. (5) we need to calculate the difference in total
surface area for these three situations, illustrated in Fig. 3(a).
In Appendix A we detail the calculations of the total stretching
energy as function of the center of mass of this system.
Figure 3(b) collects the results, showing the elastic energy
EA as function of the position of the center of mass where we
fix the radius of the constriction and the stretching modulus
and vary the constriction length. We find that upon decreasing
the length of the constriction, the height of the energy barrier
decreases considerably as can be seen in Fig. 3(b) and 3(d).
The height of the barrier is determined by the most stretched
configuration that is encountered during the passage. For large
containers (or smaller channels) the most stretched state is
attained at the moment during stage IIIa when R1 = R2. If the
length of the constriction is greater than that of the capsule,
the spherocylindrical capsule [stage IIIb in Fig. 3(a)] is the
state with maximal surface area and thus the maximal elastic
energy. For shorter neck lengths, there is a single maximum
set by the symmetric intermediate stage IIIa shape.

The height of the energy barrier is thus proportional to
the square of the deviation in total surface between the stage
IIIa shape and the sphere. If we calculate the height of this
barrier as function of the relative size of the neck d/R0 we
find, for the infinitely long constriction, that upon decreasing
d/R0 the height of the barrier for d/R0 < 0.2, increases as
Emax ∼ κA[(R3

0 − R3
1)/dR0]2. If we now decrease the length

of the constriction we find that for d/R0 → 0 the constricted
capsule consists of two spheres with a total surface area
equal to 4πR2

0/22/3, which corresponds with two equally
sized spheres. This limiting case has a smaller surface area
than a system with a slightly larger d/R0 and therefore a
lower stretching energy. Therefore, there is a length of the
constriction for which the stretching energy is maximal, and

at which upon increasing and decreasing d/R0, the height of
the energy barrier decreases. In Fig. 3(d) we plot the height
of the barrier as function of d/R0 for various neck lengths.
Obviously, in realistic biological systems, this description
would fail as there would be a very high bending involved
with such thin necks.

From the deformation energy as a function of position we
determine Fg = ∂EA/∂x, the force that opposes translocation
due to the shape change. We solve the force balance [Eq. (4)]
to determine x(t) and ẋ(t) and extract the pass-stuck phase
diagram. Similar to the simulations of Sec. II, we obtain x(t)
and ẋ(t), from which we can calculate the phase diagram and
minimal velocity vmin within the constriction. This point of
minimal velocity corresponds to the point of maximal stretch-
ing force, and we will use this quantity to characterize the
motion of the container. We have performed the calculations
of vmin for various radii of constriction and found that, for a
given force, decreasing the size of the constriction decreases
the minimal velocity inside the constriction. Eventually, at a
critical radius (d/R0)∗, this velocity will become zero and the
container will get stuck in the constriction. Above this critical
radius, the minimal velocity increases with increasing d/R0

as shown in Fig. 4(a). The occurrence of a critical threshold
also holds for the driving force Fm, above which the velocity
increases linearly with the driving force Fm [see Fig. 4(b)].
The dependence of the minimal velocity on driving force and
d/R0 allow us to create a phase diagram indicating whether a
capsule gets through the constriction or not: this is presented
in Fig. 4(c). This phase diagram indicates the critical force
Fm necessary to translocate a container of radius R0 through a
constriction with size d, for a given stretching modulus κA. If
we now fix the driving force and vary the stretching modulus κA

and d/R0, we obtain a similar phase diagram for the critical κA.
Obviously the minimal size of the constriction through which
a container would pass decreases strongly with decreasing
modulus [see Fig. 4(d)]. While for biological membranes the
elastic parameters are largely fixed, in synthetic systems one
may have some control over the area elastic properties.

B. Bend-dominated (vesicle) limit

We now analyze the opposite limit, where the container
has very limited opportunity to stretch, and the elastic energy
is dominated by the bending contribution EB . This would
resemble more closely a biological membrane, whose internal
volume may adapt due to the relatively high permeability
to water of lipid bilayers. Though there may be some areal
extension, we will assume its energy is negligible compared
to the bending contributions. As our reference configuration,
we take again the spherical vesicle, and the various stages
of translocation are the same as in Fig. 3(a). The calculation
of the elastic energy for this type of container is highly similar
to that of the stretchable container; we refer to Appendix B for
the details and summarize only our main findings here.

Figure 3(e) shows the elastic energy for a bend-dominated
container for a constriction with finite and infinite length.
The transition from stage I, free container, to the stage II
is no longer continuous. This jump in the bending energy
is an artifact of our simplified setup, as our model does not
resolve the continuous transition from situation I to II. Once
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FIG. 4. (Color online) The minimal velocity during the entrance of the constriction vmin as function of (a) the relative radius of the
constriction d/R0 (κA = 105 J m−2, Fm = 2 pN) and (b) as function of the applied force Fm (κA = 105 J m−2, d/R0 = 0.4). Phase diagram
indicating if the stretch-dominated container Passes or gets Stuck inside the constriction as function of (c) Fm and d/R0 (κA = 105 J m−2) and
(d) κA and d/R0 (Fm = 4 pN). vmin as function of (e) d/R0 (κB = 4 × 10−19 J and Fm = 10 pN) and (f) Fm (κB = 8 × 10−19 J and d/R0 = 0.4).
Phase diagram indicating if a bend-dominated container Passes or gets Stuck as function of (g) Fm and d/R0 (κB = 4 × 10−19 J) and (h) κB

and d/R0 (Fm = 10 pN). These figures show a very generic phase behavior for both the stretch- and bend-dominated containers.

the container enters the constriction, its energy increases until it
reaches a maximum. For larger vesicles, or short channels, this
point corresponds to the symmetric configuration during stage
IIIa when R1 = R2, provided the length of the constriction
is short enough that the container can span both ends of the
constriction. For smaller vesicles, or longer channels, the stage
II bending energy continues to increase until the vesicle has
completely entered the constriction to reach stage IIIb, with the
spherocylinder completely inside the channel. Past this point,
both stage IIIa and IIIb develop into stage IV, where the energy
decreases in the inverse manner that it rose in stage II.

If we now compute the maximal height of the energy barrier
Emax in Fig. 3(g) as a function of the radius of the constriction,
we find that it increases strongly for decreasing radius and
length of the constriction. For long channels, we find a scaling
regime where EB ∼ κB(d/R0)−2 which is highly similar to
what we found for the stretchable container in Fig. 3(c). There
is, however, one notable difference: the barrier height does not
display the maximum we find in the capsule limit. This may
be understood from the fact that the bending energy diverges
for small d, whereas EA does not.

Next, we use the equation of motion [Eq. (4)] to obtain
the dependence of the minimal velocity during the passage
through the constriction as a function of the relative radius
of the constriction d/R0 [Fig. 4(e)] and the force applied
to the vesicle Fm [Fig. 4(f)]. Figures 4(e) and 4(f) reveal
similar behavior as for the stretch-dominated container: below
a threshold force, the container gets stuck, and above this
critical force, its velocity increases linearly with increasing
force Fm. If the size of the neck, relative to the size of the
vesicle, is decreased below a critical ratio d/R0, the vesicle
gets stuck. Above this value the minimal velocity increases as
shown in Fig. 4(e).

We summarize in Fig. 4(g) and 4(h) the force dependence
of the translocation in a phase diagram, indicating under
which combinations of parameters the vesicle gets through
the constriction and when it does not. This phase diagram
indicates the critical force Fm necessary to transport a vesicle
of radius R0 through a constriction with radius d. If we now
fix the driving force and vary the bending modulus κB and
d/R0, again at fixed area increasingly small bending moduli
are required to pass through the channel. Overall, the results
are very similar to those in the stretch-dominated limit and
those observed in the simulations presented in Sec. II.

IV. CONCLUSIONS

In this paper we have sought to address the question of
how passage dimensions, container mechanics, and external
forcing together determine whether or not a container will pass
through a narrow constriction, and if it does, how fast it does
so. We have shown that by varying the size of the container
relative to that of the neck and by regulating the force that is
exerted on the container, the system may be biologically or
physically controlled to, for instance, switch between a state
where the container remains Stuck in front of the neck and a
state where the container passes through the neck. Both these
states possess some biological significance.

We have presented the results of lattice Boltzmann simula-
tions, supported by two limiting simplified theoretical models.
Although a quantitative comparison between the simulations
and the theoretical is difficult to establish as a result of,
among others, the dependence on the exact driving mechanism,
we find that even while the energetics of highly stretchable
containers is very different from that of containers that are
bend-energy-dominated, the resulting phase diagram, in terms
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of Stuck vs Pass, is very similar in both cases, suggesting some
universality between both limits. We focus on the scaling and
a qualitative analysis of this problem in the regime of low flow
rates, justifying the fact that we neglect both the membrane
viscosity as well as the solvent viscosity in our models. At high
flow rates, the imposed strain rate the membrane experiences
may lead to significant contributions from both the viscosity
of the membrane as well as the viscosity of the solvent, and
different behaviors from those we describe here are to be
expected.

Nonetheless, our modeling allows us to address some of the
questions we have raised in the introduction: whether typical
cellular force levels are sufficient to effect translocation in
typically dimensioned vesicles and constrictions, and whether
it is feasible for a cell to switch between pass and stuck by
controlling this force. In order to do so, we must quantify the
position within the Stuck/Pass phase diagram for a typical
biological cell. We may use our results to provide some
quantitative insight into the passage of biological vesicles into
thin necks, such as occurs in the dendritic spines mentioned
in the introduction. In Fig. 4(g) we show the phase diagram
as a function of the minimal force that a molecular motor
has to exert vs the size of the neck, where we have substituted
typical values of relevant parameters for a recycling endosome,
which has an equilibrium radius of 1 μm [21,22], and the
bending modulus of a typical vesicle 4 × 10−19 J [30]. Our
analysis shows that the range of forces necessary to transport
this container through a typical dendritic spine neck, which
has a radius of between 0.2 − 0.6 μm, is on the order of
a few to tens of pN. A typical myosin motor can exert
forces of 5–6 pN [31,32]. The dimensions of the dendritic
neck, a very typical channel motif in cells, thus require
one to a few motors to translocate vesicle-bound cargo,
confirming that motors are eminently capable of producing
the requisite forces to selectively translocate or immobilize
vesicles in the neck, and to switch between these modes.
We will note that although the translocation is dominated
by a competition between deformation energy and forcing,
it cannot be expected from this simple model to accurately
capture the exact forcing involved in motor transport; indeed,
pulling by motors bound to cytoskeletal polymers arranged
mostly close to the cell membrane in the neck is likely to affect
the shape of the endosome. These additional contributions are,
however, unlikely to dominate; the principal bending energy
contribution still comes from the highly elongated transitional
shape during stage IIIb.

In future simulations we will include a more realistic
driving mechanism to the container such that the lattice
Boltzmann simulation may be used to capture the dynamics of
the problem in even more detail. We expect our quantitative
results to depend on the precise driving mechanism, which
will be addressed in future research. In addition to this, we
are investigating to what extent the actin network within the
neck of the dendritic spines hinders the transport of membrane
containers [33].
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APPENDIX A: STRETCH-DOMINATED LIMIT

In this appendix we outline the calculations of the energetics
involved in the stretch-dominated regime. As mentioned in the
main text we assume that for the container in the stretch-
dominated limit that the total volume is conserved, and that
the total surface determines the stretching energy as shown in
Eq. (5). The surface of the container in the constriction can
be divided in three parts [see Fig. 3(a) for parameters], and in
stage IIIa the total surface area of the capsule is computed to
be

Atot = 4πR2
1 − π

{
d2 + [

R1 −
√(

R2
1 − d2

)]}2

+ 2πld + 4πR2
2 − π

{
d2 + [

R2 −
√(

R2
2 − d2

)]}2
.

(A1)

The radius of the first spherical cap R1 is related to that of the
second spherical cap R2 via total volume conservation:

Vtot = 4πR3
0

3
= 4πR3

1

3
− πh2

3

(
3R1 − R1 −

√
R2

1 − d2
)

+πd2l + 4πR3
2

3
− πh2

3

(
3R2 − R2 −

√
R2

2 − d2
)
,

(A2)

where Vtot = 4πR3
0/3 is conserved. To calculate the evolution

of the stretching energy, we identify the position of the center
of mass of this system, then calculate the shape of the system
and the corresponding area deviation. In stage I, where we
have a spherical capsule at its equilibrium radius R0, the
total stretching energy is 0 as A = A0. The deviation in
total surface area and the corresponding stretching energy
of the stages II and IIIa/IIIb are calculated assuming total
volume conservation. In stage II, we divide the membrane
shape into three domains: a partial sphere of radius R outside
the constriction, and a (truncated) spherocylinder with length
h and radius (both of the cylindrical section and the spherical
cap) equal to the radius of the channel, d. In stage IIIa , likewise,
we distinguish three domains: a spherical cap with radius R1

outside the entry, a cylindrical tube with radius d and length h

inside the channel, and a spherical cap with radius R2 outside
the exit. In stage IIIb the shape is a spherocylinder with length
h and all radii equal to d.

APPENDIX B: BEND-DOMINATED LIMIT

In this appendix we outline the calculations of the energetics
involved in the bend-dominated regime. For the initial state
we consider a spherical vesicle that has an initial radius
R0 before it enters the constriction. Its bending energy is
given by EB = 2πκB , independent of the radius. In stage II,
we consider the entrance of the vesicle in the constriction.
Again, the complete shape is divided into two, possibly
distinct, spherical domains and the cylindrical part. Note
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that in contrast to the capsule, the total surface area of
the vesicle is conserved: Atot = AI + AII + AIII , where
AI (R1,d) = 4πR2

1 − π (d2 + (R2
1 +

√
R2

1 − d2), AII (h,d) =
2πdh and AIII (R2,d) = 4πR2

2 − π (d2 + (R2
2 +

√
R2

2 − d2).
The volume of the vesicle is allowed to increase during the
translocation.

The bending energy associated to the vesicle in stage IIIa
or IIIb can be approximated by the sum of the three separate
contributions:

EB = κB/2

[
AI (R1,d)

R2
1

+ AII (h,d)

4d2
+ AIII (R2,d)

R2
2

]
, (B1)

where AI is the surface of the spherical cap with radius R1,
AII the cylindrical part with radius d and length h, and AIII

the spherical cap with radius R2.
As mentioned in the main text, by assuming that the total

surface area is conserved, one can relate R1 and R2 to the
initial radius R0 and the position of the center of mass x. As
depicted in Fig. 3(a) we consider two separate situations, IIIa
and IIIb. in the first, we assume a neck with short length L < R0

and the situation where L � R0. To calculate the bending
energy of the first situation we fix R2 = d. By fixing the total
area we obtain the following relation between the radius of
the first spherical part R1 and the length of the cylindrical
domain h:

R1(h) = Atot − 2d2π − 2πdh√
4πAtot − 12π2d2 − 8π2hd

. (B2)

We use this condition to solve Eq. (B1) as long as h < L. If
h > L, we fix h = L and by conserving the total area one can
determine a relation between R1 and R2. Assuming that the
volume enclosed by the neck is 2πdL � 4πR2

0 one should
consider an extra situation which is the vesicle completely
inside the neck stage IIIb. The calculation is a straightforward
extension of the previous setting R1 = R2 = d. This yields the
following relation between the length of the neck and the total
area of the vesicle:

h(d) = Atot − 4dπd2

2πd
. (B3)
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