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Abstract

Motivated by rock-fluid interactions occurring in a geothermal reservoir, we present a
two-dimensional pore scale model of a thin strip consisting of void space and grains, with
fluid flow through the void space. Ions in the fluid are allowed to precipitate onto the grains,
while minerals in the grains are allowed to dissolve into the fluid, taking into account the
possible change in the aperture of the strip that these two processes cause. Temperature
variations and possible effects of the temperature in both fluid density and viscosity and in
the mineral precipitation and dissolution reactions are included. For the pore scale model
equations, we investigate the limit as the width of the strip approaches zero, deriving one-
dimensional effective equations. We assume that the convection is dominating over diffusion
in the system, resulting in Taylor dispersion in the upscaled equations and a Forchheimer-
type term in Darcy’s law. Some numerical results where we compare the upscaled model with
three simpler versions are presented; two still honoring the changing aperture of the strip but
not including Taylor dispersion, and one where the aperture of the strip is fixed but contains
dispersive terms.

1 Introduction
In a geothermal reservoir, cold water is injected and the warmer in-situ brine is produced. As
the injected water and the in-situ brine have different temperatures and chemical composition,
reservoir rock properties can develop dynamically with time as the fluids flow through the reservoir.
Minerals dissolving and precipitating onto the reservoir matrix can change the porosity and hence
the permeability of the system. Mineral solubility is affected by the cooling of the rock and
by the different ion content in the saturating fluids, hence large changes in permeability can
occur. This interaction among altering temperature, solute transport with mineral dissolution
and precipitation and fluid flow is highly coupled and challenging to model appropriately as the
relevant physical processes jointly affect each other [9]. As parameters affecting fluid flow can
change through the production period, operating conditions for the geothermal plant are altered.

The ion content of the injected cold water is normally different than the original groundwater,
affecting the equilibrium state of the chemical system. Field studies and simulations report poros-
ity and permeability changes due to precipitation and dissolution of minerals as silica, quartz,
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anhydrite, gypsum and calcite [16, 22, 23, 28, 37, 38]. Through modeling of the mineral precipita-
tion and dissolution, we can better understand the processes and try to estimate to which extent
the chemical reactions can affect the permeability in the porous medium.

The pore scale is highly relevant when modeling porosity changes as the reactions depend on
the reactive surface area and the permeability depends on pore geometry. To invoke the pore
scale effects, we start with a model on the pore scale and derive equations valid on Darcy scale by
homogenization. Pore scale models incorporating mineral precipitation and dissolution have been
studied earlier; e.g. in [32, 36] and the corresponding Darcy scale models have been investigated
further in [14, 31]. These papers assume that the pore geometry is not changed by the chemical
reactions, which is a valid assumption when the deposited or dissolved mineral layer is thin.
Investigations honoring the porosity changes may be found in [7, 8, 15, 33, 34], where mineral
precipitation and dissolution have been considered in a periodic porous medium or in a thin strip.
In these papers, the position of the interface between grain and void space is tracked, giving a
problem with a free boundary. Similar models can also be obtained for biofilm growth [35], for
drug release from collagen matrices [27], and on an evolving microstructure [25].

In the present work we consider mineral precipitation and dissolution in a thin strip, which can
represent a single pore channel in a geothermal reservoir. The strip can also be interpreted as a
thin fracture surrounded by an impermeable medium. In the model, the effect of temperature on
the chemical reactions and on the fluid flow is taken into account, giving a more coupled system
of equations compared to previous works by van Noorden [34] and Kumar et al [15]. Temperature
changes can initiate or accelerate the rate of chemical reactions due to changes in solubility of
the minerals. Also, the fluid flow is affected by the temperature changes due to changes in the
fluid density and viscosity. The model presented here builds on [7], but is extended to include
a dominating convection, meaning that transport through fluid flow is happening at a shorter
time scale than diffusive transport. This situation corresponds to the typical case for geothermal
systems with water injection where water is injected at a high rate. The dominating convection
is due to the large Péclet number appearing in the non-dimensional model. Such problems are
considered in [3, 4, 5, 6, 10, 21, 19, 20], but in the case of fixed geometries, and in [15] in the
variable geometry/free boundary context, but at isothermal conditions and hence for simpler flow
models.

Using the pore scale model we can give an accurate description of the relevant processes, while
upscaling the model to Darcy scale shows which pore scale effects are important at a larger scale,
and how these processes are coupled. Extending the previously considered pore scale model in [7]
to include a large Péclet number means that other pore scale processes gain importance at the
Darcy scale. Kumar et al [15] did a similar extension of the thin strip in [34] and could therefore
observe Taylor dispersion [30]. Compared to fixed geometry models including Taylor dispersion;
such as [20], Kumar et al [15] also found how the transport was affected by the reactions. Taylor
dispersion and coupling between transport and reactions at the Darcy scale are also important
processes in the present work, but further effects will appear due to the couplings with temperature
dependence.

The structure of this paper is as follows: In Section 2 we present the pore scale model, while in
Section 3 we perform formal homogenization on the model equations, obtaining one-dimensional
upscaled equations. Some numerical examples are shown in Section 4. The paper ends with some
concluding remarks on the resulting upscaled equations in Section 5.

2 Pore scale model
The thin strip is shown in Figure 1. The length of the strip is L while the width is l, where l is
much smaller than L. Symmetry around the horizontal axis is assumed. The width of the mineral
part is d(x, t), where 0 ≤ d(x, t) < l/2, hence clogging is not allowed.

The total domain Υ is the rectangle seen in the figure given by

Υ = {(x, y) ∈ R2| 0 ≤ x ≤ L,−l/2 ≤ y ≤ l/2}.
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Figure 1: Model of thin strip.

The void space Ω(t) where fluid can flow is defined by

Ω(t) = {(x, y) ∈ R2| 0 ≤ x ≤ L,−(l/2− d(x, t)) ≤ y ≤ (l/2− d(x, t))},

while the grain space G(t) consisting of minerals is

G(t) = {(x, y) ∈ R2| 0 ≤ x ≤ L,−l/2 ≤y ≤ −(l/2− d(x, t)) ∨
(l/2− d(x, t)) ≤y ≤ l/2}.

The interface Γg(t) where mineral precipitation and dissolution can occur, is given by

Γg(t) = {(x, y) ∈ R2| 0 < x < L, y = ±(l/2− d(x, t))}.

The outward unit normal n of the interface is (for the lower part) given by

n = (∂xd,−1)T /
√

1 + (∂xd)2.

As the mineral width d(x, t) changes with time, a point located at the interface Γg(t) has a certain
velocity. A point at the interface has coordinates s(t) = (x(t),−(l/2 − d(x, t))) and velocity
s′(t) = (x′(t), ∂xdx

′(t) + ∂td) by the chain rule. Hence, the normal velocity of the lower boundary
is

vn = n · s′(t) = −∂td/
√

1 + (∂xd)2. (1)

The Rankine-Hugoniot condition guarantees conservation of quantities across a moving boundary
[13]:

n · [j] = vn[u] (2)

where u is the preserved quantity (e.g. mass or energy) and j is the flux of this quantity. The use
of square brackets means the jump of the quantities, and is the difference between the quantities at
each side of the interface; [u] = u+−u−, where the positive and negative side are chosen according
to the orientation of the normal vector n [13].

We assume conservation of ions, mass, momentum and energy to form a complete set of
equations and refer readers to e.g. [24] for justification of the conservation equations. Boundary
conditions at the internal boundary and otherwise at the external boundaries are prescribed when
necessary for the upscaling process. For computer simulations, more external boundary conditions
and initial conditions are required. As these are not necessary for the upscaling process, they will
not be specified in this section.
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2.1 Conservation of ions
There are two active ions in the fluid, with molar concentrations u1 and u2. They satisfy the
convection-diffusion equation in the void space:

∂tu
i = ∇ · (D∇ui − qui) for (x, y) ∈ Ω(t). (3)

In the above equation, D is the diffusion coefficient, which we assume to be constant, and q is the
fluid velocity. The Rankine-Hugoniot condition (2) for conserving ions across the moving interface
is

n · (D∇ui − qui) = vn(ρC − ui) on Γg(t), (4)

where ρC is the molar density of the formed solid. The difference on the right-hand is the jump
of ion concentration: the ions are either dissolved in the fluid space with molar concentration ui
or as part of the mineral molecules with molar density ρC . The two ions are assumed to have
initially the same concentration. As the same number of ions disappear or are produced through
the reaction, the two ions will always have the same concentration. Hence, u1 = u2 = u.

2.2 Conservation of mass
The fluid consists of water and the two dissolved components. As the fluid consists mainly of
water, the fluid molar density ρf is assumed to not be affected by the chemical reactions, but
depends on temperature. The same holds also for the fluid viscosity, µ. These dependencies are
made specific in (32) below. Hence, the mass conservation equation of the fluid is

∂tρf +∇ · (ρfq) = 0 for (x, y) ∈ Ω(t). (5)

At the boundary, ions can leave the fluid and become part of the grain space instead. The
Rankine-Hugoniot boundary condition applied to mass is

n · (−ρfq) = vn(2ρC − ρf ) on Γg(t). (6)

The factor (2ρC − ρf ) describes the jump of the mass. As a mineral molecule consists of two ions
that can be released into or retrieved from the fluid, the factor 2 appears in front of ρC . Note
that if ρf ≡ 2ρC , the normal component of the velocity is zero at the interface, meaning that
the chemical reactions do not cause volume change. This simplifying assumption is made in, e.g.,
[15], but would be inconsistent with our assumptions of varying fluid density and constant grain
density.

2.3 Conservation of momentum
Conservation of momentum can be expressed as

∂t(ρfq) +∇ · (ρfqq) =−∇p+∇ ·
(
µ(∇q + (∇q)T )

)
− 2

3
∇(µ∇ · q) for (x, y) ∈ Ω(t), (7)

where we have assumed that the fluid is Newtonian and isotropic and that the stress tensor is a
linear function of the strain rates. We apply no-slip conditions at the interface in the sense that
the velocity q is assumed to have zero tangential component at the interface. As the interface can
move in the normal direction, we allow the fluid to have a normal component. Combining with
equation (6), the new boundary condition becomes

q =
ρf − 2ρC

ρf
vnn on Γg(t). (8)
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2.4 Conservation of energy
We separate between two temperatures; the temperature in the fluid Tf and temperature in the
grain Tg. The separation is made to emphasize the different heat transfer processes occurring in
the two domains. Fluid temperature is only defined in the void space Ω(t) and grain temperature
is defined in the grain space G(t). We assume no viscous dissipation, hence energy transfer in the
fluid can happen through diffusion and convection, which gives the temperature equation

∂t(ρfcfTf ) = ∇ · (kf∇Tf − ρfcfqTf ) in Ω(t). (9)

In the grain space flow is not possible, hence

∂t(ρCcgTg) = ∇ · (kg∇Tg) in G(t). (10)

In the above equations, cf and cg are specific heats, and kf and kg are heat conductivities, of
fluid and mineral respectively, and are all assumed constant. The Rankine-Hugoniot condition for
conservation of energy across the moving interface is

n · (kf∇Tf − ρfcfqTf − kg∇Tg) = vn(ρCcgTg − ρfcfTf ) on Γg(t), (11)

and we also assume temperature continuity at the interface; that is,

Tg = Tf on Γg(t). (12)

For the lower and upper part of G(t), homogeneous Neumann boundary conditions is assumed;
hence,

∂yTg = 0 for 0 ≤ x ≤ L, y = ±l/2. (13)

2.5 How reactions affect the grain width
At the interface Γg(t), minerals can precipitate and dissolve. The position of the boundary changes
continuously throughout this process. This change is quantified through changes in the grain width
d(x, t) and the normal velocity vn. The normal velocity is proportional to the local difference
between dissolution and precipitation rates,

ρCvn = −(fp − fd) on Γg(t), (14)

where fp and fd are the precipitation and dissolution rates for the reaction. The precipitation rate
is assumed to increase with ion concentration and with temperature. This is described through a
kinetic rate depending on ion concentration with an Arrhenius factor [11, 34],

fp(Tf , u) = k0e
−E/RTf u2

Km(Tf )
, (15)

where k0 is a positive rate constant, E is the activation energy, R is the gas constant, Tf is fluid
temperature and Km(Tf ) is the equilibrium constant for the mineral. The equilibrium constant is
allowed to vary with fluid temperature, but is constant in the sense that it is independent of ion
and mineral concentration. Dissolution can take place as long as there are precipitated minerals
present; that is, as long as d(x, t) > 0. We assume that the dissolution happens faster at higher
temperatures, hence

fd(Tf , u, d) = k0e
−E/RTfw(d(x, t), Tf , u), (16)

where w(d, Tf , u) is given by

w(d, Tf , u) =


0 if d < 0

min( u2

Km(Tf )
, 1) if d = 0

1 if d > 0.
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Collecting the equations (14), (15) and (16) and combining with (1), yields

ρC∂td(x, t) = k0e
−E/RTf

( u2

Km(Tf )
− w(d(x, t), Tf , u)

)√
1 + (∂xd(x, t))2 on Γg(t). (17)

This equation describes how the reaction rates affect the aperture through the derivatives of the
mineral width d(x, t).

2.6 Non-dimensional equations
To achieve non-dimensional quantities, we introduce tref , xref = L, yref = l, uref , qref , pref =
L4uref/t

2
ref l

2, Tref , µref = l2pref/Lqref and let ε = l/L. Non-dimensional quantities are denoted
with a hat and are defined as

t̂ = t/tref , x̂ = x/xref , ŷ = y/yref , ûε = u/uref ,

q̂ε = q/qref , p̂ε = p/pref , ρ̂f = ρf/uref , ρ̂ = ρC/uref ,

d̂ε = d/yref , µ̂ = µ/µref , T̂f
ε

= Tf/Tref . T̂g
ε

= Tg/Tref

Dependence on the small variable ε is emphasized by denoting our main variables with ε as a
superscript. Observe that the dimensionless viscosity scales with ε2, which is a natural assumption
when upscaling of porous media flows (see e.g. [2] or [17]) and is also the context used in [29]
for proving rigorously the convergence of the homogenization process. This assumption leads to
non-trivial upscaled flows when ε approaches zero. In this case, the friction of the fluid at the
pore walls, where no-slip conditions are assumed, is balanced by either a lower viscosity, or a high
pressure exerted to set the fluid in motion, or a low fluid velocity.

The reference time for fluid flow is tF = L/qref and will also act as reference time for observa-
tions; tref . Further, the reference time for solute diffusion is tD = L2/D, heat conduction (for the
fluid phase) is tC = L2urefcf/kf and the reference time for chemical reactions is tR = uref l/k0.
Using these reference times we define two Péclet numbers and the Damköhler number:

PeD =
tD
tF

= O(ε−β1) PeC =
tC
tF

= O(ε−β2) Da =
tF
tR

= O(εβ3).

As the model is convection dominated, β1 and β2 will be positive, giving large Péclet numbers.
Using values representative for a geothermal system, it is reasonable to assume β1 = β2 = 1 and
β3 = 0. This way the non-dimensional solute diffusion parameter, heat conduction parameters
and reactive parameter are

D̂ = ε−1
D

Lqref
, κ̂f = ε−1

kf
Lurefqrefcf

, κ̂g = ε−1
kg

Lurefqrefcf
k̂ = ε0

k0L

qrefuref l
.

Observe that choosing the dimensionless fluid density ρ̂f as the ratio of the fluid molar density
ρf and the reference species molar density uref implicitly means that uref is the reference value
for the fluid molar density. Together with the chosen reference time tref and pressure pref , one
immediately obtains µref = Lurefqref .

Since from now on we will only use non-dimensional variables, we skip the hat in the notations
and all quantities and variables below should be understood as non-dimensional.

Using non-dimensional variables, the total domain is defined by

Υε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2}.

The void space is now given by

Ωε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−(1/2− dε(x, t)) ≤ y ≤ (1/2− dε(x, t))},

while the grain space is defined as

Gε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ −(1/2− dε) ∨ (1/2− dε) ≤ y ≤ 1/2}.
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The interface between the void and grain space is now

Γε(t) = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = ±(1/2− dε(x, t))},

while the outward unit normal for the lower part of the interface is given by

nε = (ε∂xd
ε,−1)T /

√
1 + (ε∂xdε)2. (18)

Inserting the dimensionless variables into the model equations gives the following set of equa-
tions and boundary conditions. The normal velocity vn is inserted from equation (1) when neces-
sary. Note that due to different scaling in the two spatial directions, the ∇-operator is defined as
∇ = ∂

∂x i + 1
ε
∂
∂y j.

The convection-diffusion equation (3) describing the ion concentration becomes

∂tu
ε +∇ · (qεuε) = εD∇2uε in Ωε(t), (19)

with the boundary condition (4) now written as

nε · (εD∇uε − qεuε) = −ε∂tdε(ρ− uε)/
√

1 + (ε∂xdε)2 on Γε(t). (20)

Note that an underlying assumption is that the non-dimensional diffusion coefficient D is of order
1, and the difference in representative time scales appears as the factor ε in front of D. This
assumption on D is to ensure we are still in the regime of the Péclet number being O(ε−1).

The mass conservation equation (5) transforms into

∂tρf +∇ · (ρfqε) = 0 in Ωε(t). (21)

The non-dimensional Rankine-Hugoniot boundary equation (6) is

qε · nε = −ερf − 2ρ

ρf
∂td

ε/
√

1 + (ε∂xdε)2 on Γε(t). (22)

The momentum balance equation (7) becomes

ε2
(
∂t(ρfq

ε) +∇ · (ρfqεqε)
)

= −∇pε

+ ε2
(
∇ ·
(
µ(∇qε + (∇qε)T )

)
− 2

3
∇(µ∇ · qε)

)
in Ωε(t). (23)

The factor ε2 in the above appears due to the chosen scaling of the (reference) viscosity, pressure
and time. While having a viscosity of order ε2 leads to non-trivial upscaled models, the scaling of
the time derivative and inertia terms is important as well and can lead to different variants of the
(Darcy like) models. Such aspects are discussed in [1, 2, 18]. The boundary condition (8) is

qε = −ερf − 2ρ

ρf
∂td

εnε/
√

1 + (ε∂xdε)2 on Γε(t). (24)

The non-dimensional forms of the energy conservation equations (9) and (10) are

∂t(ρfT
ε
f ) +∇ · (ρfqεT εf ) = εκf∇2T εf in Ωε(t) (25)

and
∂t(ςρT

ε
g ) = εκg∇2T εg in Gε(t), (26)

where ς = cg/cf , κf and κg are assumed to be of order 1. The assumption on ς is to ensure the
heat exchange rate in fluid and solid to not deviate too much, and is a typical choice for most
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relevant solids. Further, the assumptions on κf and κg follow from the assumption on the Péclet
number being O(ε−1). The boundary condition (11) is written

nε · (εκf∇T εf − ρfqεT εf − εκg∇T εg )

= −ε(ςρT εg − ρfT εf )∂td
ε/
√

1 + (ε∂xdε)2 on Γε(t), (27)

and the continuity condition (12) is

T εg = T εf on Γε(t). (28)

The boundary condition (13) for Tg is now

∂yT
ε
g = 0 for 0 ≤ x ≤ 1, y = ±1/2. (29)

The non-dimensional version of the equation (17) is

ρ∂td
ε = (fp(T

ε
f , u

ε)− fd(T εf , uε, dε))
√

1 + (ε∂xdε)2 on Γε(t). (30)

The reaction rates are non-dimensional and are given by

fp(T
ε
f , u

ε) = ke−α/T
ε
f

(uε)2

Km(T εf )

and
fd(T

ε
f , u

ε, dε) = ke−α/T
ε
fw(dε(x, t), T εf , u

ε), (31)

where α = E/RTref is non-dimensional. Also note that Km(T εf ) is non-dimensionalized. The non-
dimensional reactive constant k is of order 1 due to the previous assumption on the Damköhler
number.

The fluid density and viscosity are assumed to depend linearly on the fluid temperature T εf ,
hence

ρf (T εf ) = ρ0 − βρfT εf and µ(T εf ) = µ0 − βµT εf , (32)

for some positive constants βρf and βµ and reference density and viscosity ρ0 and µ0. The assump-
tion of linear dependence is a common simplification, but using other differentiable dependencies
between density/viscosity and temperature is straightforward through Taylor expanding the re-
lationships. Using linear relationships simplifies the presentation of the upscaling steps, but the
resulting model is not explicitly dependent on using these linear models for density and viscosity.
The considered temperature range is such that the fluid density is decreasing with temperature;
hence, the dimensional temperature should correspond to above 4◦C, and otherwise below tem-
peratures that would result in boiling. Note that the two constants βρf and βµ are relatively
small, but are assumed to be independent of ε to avoid over-simplyfing the potential dependence.

3 Asymptotic expansion
We perform a formal asymptotic expansion for the variables depending on ε, namely uε, dε, qε,
pε, T εf and T εg . For all expecting dε we assume

uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) +O(ε2),

where u0(x, y, t) is the function describing the first order behavior of the variable uε. The following
term εu1(x, y, t) is less important as ε is small. Since the velocity qε is a vector function, we apply
the above expansion for both the horizontal component qε(1) and the vertical component qε(2).
The width dε does not depend on y and has the expansion

dε(x, t) = d0(x, t) + εd1(x, t) +O(ε2).
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Below we follow the ideas in [7] and [15]. The goal is to derive an upscaled effective model
describing the thin strip with vanishing width, obtaining a one-dimensional model still honoring
the changes in aperture. Collecting the lowest order terms as in [7] would result in a hyperbolic
model due to the dominating convection. The hyperbolic model could be a poor approximation
to the original equations [15], hence we include the second lowest order variables u1, d1, etc, as
well in the upscaling process.

3.1 Conservation of mass part I
The required asymptotic expansions are inserted into the mass conservation equation (21). Al-
though we have not shown it yet, we will take advantage of Tf0 being independent of y. We make
use of the notation ρf0 = ρ0 − βρfTf0. The lowest order term is

∂y(ρf0q
(2)
0 ) = 0,

and, since ρf0 is independent of y, this means that ∂yq
(2)
0 = 0. The second lowest order terms are

∂tρf0 + ∂x(ρf0q
(1)
0 ) + ∂y(ρf0q

(2)
1 ) = 0. (33)

Sorted into order and components, the boundary condition (24) arising from the momentum
balance equation expresses that

q
(1)
0 = 0, q

(2)
0 = 0, q

(1)
1 = 0, q

(2)
1 = −2ρ− ρf0

ρf0
∂td0 for y = ±(

1

2
− d0). (34)

As ∂yq
(2)
0 = 0 in the void space, we conclude that

q
(2)
0 ≡ 0.

To proceed, the mass conservation equation (21) is integrated across a thin section in the void
space with width δx; the integration area is given by Y = {(x, y) ∈ R2 | x1 ≤ x ≤ x1 +δx,−(1/2−
dε) ≤ y ≤ 1/2− dε}. Hence, we obtain

0 =

∫
Y

∂tρfdV +

∫
Y

∇ · (ρfqε)dV.

Gauss’ theorem is applied to the second integral and the whole equation is divided by δx at the
same time. We insert the limits in our two integrals accordingly, apply the asymptotic expansions
and keep terms up to O(ε2), hence obtaining

O(ε2) =
1

δx

∫ x1+δx

x1

∫ 1/2−de

−(1/2−de)
∂t(ρf0 − εβρfTf1)dydx

+
1

δx

∫ 1/2−de

−(1/2−de)

(
(ρf0q

(1)
0 + ερf0q

(1)
1 − εβρfTf1q

(1)
0 )|x=x1+δx

− (ρf0q
(1)
0 + ερf0q

(1)
1 − εβρfTf1q

(1)
0 )|x=x1

)
dy

+
2

δx

∫ x1+δx

x1

(2ρ−(ρf0 − εβρfTf1))|y=−(1/2−de)∂tdedx,

where we have applied (22) in the last term. The notation de = d0+εd1 is the effective grain width.
The three integrals on the right-hand side are rewritten in different ways. In the first integral,
the order of integration and differentiation is interchanged for the innermost integral. The second
integral is rewritten using the effective transmissivity q̄e =

∫ 1/2−de
−(1/2−de) qedy =

∫ 1/2−de
−(1/2−de)(q

(1)
0 +

εq
(1)
1 )dy and the effective density ρfe = ρf0 − εβρf T̄f1, where T̄f1 = 1

1−2de

∫ 1/2−de
−(1/2−de) Tf1dy. The

9



third integrand is rewritten by adding and subtracting a T̄f1-term in order to obtain an expression
with ρfe. We then let δx approach zero, using the fundamental theorem in calculus and the
definition of the derivative where applicable. Some terms cancel each other, hence we obtain

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e)

− εβρf∂x
(∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0

)
= O(ε2). (35)

This equation will later serve as the upscaled mass conservation equation when the last term has
been rewritten. From this equation we can also obtain the lowest order mass conservation equation
by considering terms of O(1) only. Then,

∂t

(
(1− 2d0)ρf0 + 2d02ρ

)
+ ∂x(ρf0q̄0) = 0, (36)

where q̄0 =
∫ 1/2−d0
−(1/2−d0) q

(1)
0 dy. This is the same equation as found in [7].

3.2 Conservation of momentum part I
We continue with the momentum equation and insert the required asymptotic expansion into (23).
Recall that q(2)0 is equal to zero, hence

O(ε2) = −1

ε
∂yp0j− ∂xp0i− ∂yp1j− ε∂xp1i− ε∂yp2j

+ µf0∂
2
yq

(1)
0 i + εµf0∂

2
yq

(1)
1 i + εµf0∂

2
yq

(2)
1 j− εβµ∂y(Tf1∂yq

(1)
0 )i + εµf0∂

2
yq

(2)
1 j

+ ε∂x(µf0∂yq
(1)
0 )j− ε2

3
µf0∂y∂xq

(1)
0 j− ε2

3
µf0∂

2
yq

(2)
1 j,

where µf0 = µ0 − βµTf0 is independent of y. The lowest order term is ∂yp0 = 0, which implies
that p0 = p0(x, t). The horizontal and vertical component of the second lowest order terms are,

∂xp0 = µf0∂
2
yq

(1)
0 , (37)

∂yp1 = 0.

From the second equation we conclude p1 = p1(x, t). By making use of the horizontal component
of the third lowest order terms, we obtain

∂xp1 = µf0∂
2
yq

(1)
1 − βµ∂y(Tf1∂yq

(1)
0 ) = 0, (38)

and then consider the sum of (37) and (38). Hence,

∂xp0 + ε∂xp1 = µf0∂
2
yq

(1)
0 + εµf0∂

2
yq

(1)
1 − εβµ∂y(Tf1∂yq

(1)
0 ) = 0.

We introduce effective pressure pe = p0 + εp1, effective viscosity µfe = µf0 − εβµT̄f1 and effective
horizontal velocity qe = q

(1)
0 + εq

(1)
1 . Note that the two first are independent of y. Our equation

hence reads
∂xpe = µfe∂

2
yqe − εβµ∂y

(
(Tf1 − T̄f1)∂yq

(1)
0

)
+O(ε2). (39)

To proceed, an explicit expression for q(1)0 must be found. The boundary condition for q(1)0 can
be found from (34), hence q(1)0 = 0 at y = ±(1/2− d0). We integrate (37) twice with respect to y,
applying this boundary condition. Hence,

q
(1)
0 = −1

2

∂xp0
µf0

(
(
1

2
− d0)2 − y2

)
, (40)

10



and we define the transmissivity q̄0(x, t) =
∫ 1/2−d0
−(1/2−d0) q

(1)
0 (x, y, t)dy, which is

q̄0 = −2

3

∂xp0
µf0

(
1

2
− d0)3. (41)

The boundary condition for qe can also be found from (34), hence qe = 0 at y = ±(1/2− de).
We insert (40) into (39), then integrate twice with respect to y and apply this boundary condition.
This will result in

1

2
∂xpe

(
y2 − (

1

2
− de)2

)
= µfeqe

− ε βµ
µf0

∂xp0

∫ y

−(1/2−de)

(
Tf1(x, z, t)− T̄f1(x, t)

)
zdz +O(ε2). (42)

As with the mass conservation equation, the term involving Tf1 needs to be rewritten. The
effective transmissivity q̄e can be found by integrating the above equation and will later serve as
the upscaled Darcy’s law with an additional Forchheimer-type term.

3.3 Conservation of ions
The effective ion concentration ue is defined as

ue = u0 + εū1 = u0 +
ε

1− 2de

∫ 1/2−de

−(1/2−de)
u1dy.

Later, we show that u0 is independent of y, hence ue will also be independent of y. The ion
conservation equation (19) is integrated in y from −(1/2− dε) to 1/2− dε, resulting in∫ 1/2−dε

−(1/2−dε)
∂tu

εdy +

∫ 1/2−dε

−(1/2−dε)
∂x(uεqε(1))dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(uεqε(2))dy

= εD

∫ 1/2−dε

−(1/2−dε)
∂x(∂xu

ε)dy +
1

ε
D

∫ 1/2−dε

−(1/2−dε)
∂y(∂yu

ε)dy.

For the integrals of derivatives with respect to y, the integrals can be evaluated. For the remaining
integrals, the order of integration and differentiation is interchanged, taking into account that the
integration limits depend on x and t through dε. This will result in some terms to be evaluated
at the boundary, to which we apply (20). Inserting asymptotic expansions and keeping terms up
to O(ε2) yield

∂t

(∫ 1/2−de

−(1/2−de)
(u0 + εu1)dy

)
+ 2ρ∂tde

+∂x

(∫ 1/2−de

−(1/2−de)
(u0 + εu1)(q

(1)
0 + εq

(1)
1 )dy

)
= εD∂x

(∫ 1/2−de

−(1/2−de)
∂xu0dy

)
+O(ε2).

By evaluating the integrals and rewriting,

∂t

(
(1− 2de)ue + 2deρ

)
+ ∂x(ueq̄e) + ε∂x

(∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy − ū1q̄0

)
= εD∂x

(
(1− 2de)∂xue

)
+O(ε2), (43)

is obtained.
It is necessary to express all terms using the effective variables, hence the last term on the first

line in the above equation needs some extra care. We seek an explicit expression for u1 and go
back to the original conservation equation (19) and insert asymptotic expansions; hence,

∂tu0 + ∂x(u0q
(1)
0 ) + ∂y(u0q

(2)
1 ) =

1

ε
D∂2yu0 +D∂2yu1 +O(ε).

11



The boundary condition (20) is

−D∂yu0 − εD∂yu1 − ε∂xd0u0q(1)0 + εu0q
(2)
1 = −ε(ρ− u0)∂td0 +O(ε2).

The lowest order term is ∂2yu0 = 0, and the lowest order boundary condition is ∂yu0 = 0 at
y = ±(1/2−d0). The only possibility is that u0 = u0(x, t). Further, the second lowest order terms
of the equation are

∂tu0 + ∂x(u0q
(1)
0 ) + ∂y(u0q

(2)
1 ) = D∂2yu1.

Rewriting using (33) enables us to write

∂tu0 + q
(1)
0 (∂xu0 −

u0
ρf0

∂xρf0)− u0
ρf0

∂tρf0 = D∂2yu1. (44)

The second lowest order boundary condition is

D∂yu1 = − u0
ρf0

(2ρ− ρf0)∂td0 + (ρ− u0)∂td0, at y = −(1/2− d0), (45)

where the boundary conditions for the velocity known from (34) are inserted.
We integrate (44) in y from −(1/2 − de) to 1/2 − de. We make some abuse of notation by

writing q̄0 when applicable, which should only be used when the integral is from −(1/2 − d0) to
1/2− d0. This abuse of notation introduces an error of O(ε) in (44), which in the final expression
based on (43) will appear as an error of O(ε2), which is tolerated. Hence,

(1− 2de)∂tu0 + q̄0(∂xu0 −
u0

ρf0∂xρf0
)− (1− 2de)

u0
ρf0

∂tρf0 + 2D∂yu1|y=−(1/2−de) +O(ε).

Multiplying (44) with (1−2de) and subtracting from the above equation, and applying the bound-
ary condition (45) at the same time, yield

(1− 2de)D∂
2
yu1 + (∂xu0 −

u0
ρf0

∂xρf0)
(
q̄0 − (1− 2de)q

(1)
0

)
−2

u0
ρf0

(2ρ− ρf0)∂tde + 2(ρ− u0)∂tde = O(ε).

The expressions for q(1)0 and q̄0 known from (40) and (41) are inserted, and we introduce the short-
hand notations A(x, t) = (∂xu0− u0

ρf0
∂xρf0)∂xp0µf0

and B(x, t) = −2 u0

ρf0
(2ρ−ρf0)∂tde+2(ρ−u0)∂tde.

By integrating in y from −(1/2 − de) to y, and making use of the boundary condition (45), we
obtain

2(
1

2
− de)D∂yu1 +

1

3
A(

1

2
− de)

(
(
1

2
− de)2y − y3

)
+By = O(ε).

Integrating once more from −(1/2− de) to y, results in

2(
1

2
− de)Du1 − 2(

1

2
− de)Du1|y=−(1/2−de)

− 1

12
A(

1

2
− de)

(
y4 − 2(

1

2
− de)2y2 + (

1

2
− de)4

)
+

1

2
B
(
y2 − (

1

2
− de)2

)
= O(ε).

Solving this equation for u1 yields

u1 = u1|y=−(1/2−de) +
1

24

A

D

(
y4 − 2(

1

2
− de)2y2 + (

1

2
− de)4

)
− 1

4

1

1/2− de
B

D

(
y2 − (

1

2
− de)2

)
+O(ε), (46)

giving us an explicit expression for u1 in terms of lower order functions. The expression is indeter-
minate due to the appearance of u1|y=−(1/2−de) which we have no information about. However,
this will not cause any difficulty as this term will cancel out in the resulting model equation.
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In equation (43), we need to calculate
∫ 1/2−de
−(1/2−de) u1q

(1)
0 dy − ū1q̄0. The first term is

∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy = −u1|y=−(1/2−de)

2

3

∂xp0
µ0

(
1

2
− de)3 −

2

105

A

D

∂xp0
µ0

(
1

2
− de)7

− 2

15

B

D

∂xp0
µ0

(
1

2
− de)4 +O(ε).

For the second term, the average ū1 is found to be

ū1 =
1

1− 2de

∫ 1/2−de

−(1/2−de)
u1dy

= u1|y=−(1/2−de) +
1

45

A

D
(
1

2
− de)4 +

1

6

B

D
(
1

2
− de) +O(ε). (47)

This means that the expression needed for (43) is∫ 1/2−de

−(1/2−de)
u1q

(1)
0 dy − ū1q̄0 = − 1

105

1

D
(
1

2
− de)q̄20(∂xu0 −

u0
ρf0

∂xρf0)

+
1

15

1

D
(
1

2
− de)q̄0

(
(ρ− u0)∂tde −

u0
ρf0

(2ρ− ρf0)∂tde

)
+O(ε).

The resulting equation for the effective concentration ue is then

∂t

(
(1− 2de)ue + 2deρ

)
+ ∂x(ueq̄e)

= εD∂x

(
(1− 2de)∂xue(1 +

q̄2e
210D2

)− (1− 2de)
q̄2e

210D2

ue
ρfe

∂xρfe

+ (1− 2de)
q̄e

60D2
∂t(2de)

( ue
ρfe

(2ρ− ρfe)− (ρ− ue)
))

+O(ε2).

3.4 Conservation of energy
We define effective fluid temperature and effective grain temperature:

Tfe = Tf0 + εT̄f1 = Tf0 +
ε

1− 2de

∫ 1/2−de

−(1/2−de)
Tf1dy,

Tge = Tg0 + εT̄g1 = Tg0 +
ε

de

∫ −(1/2−de)
−1/2

Tg1dy.

Soon, we show that Tf0 and Tg0 are independent of y and in fact equal due to the continuity
condition (28). In general, T̄f1 and T̄g1 will not be equal. The conservation equations (25) and
(26) are integrated over their respective domains in y and summed, resulting in∫ 1/2−dε

−(1/2−dε)
∂t(ρfT

ε
f )dy + 2

∫ −(1/2−dε)
−1/2

∂t(ςρT
ε
g )dy

+

∫ 1/2−dε

−(1/2−dε)
∂x(ρfT

ε
fq
ε(1))dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(ρfT

ε
fq
ε(2))dy

= ε

∫ 1/2−dε

−(1/2−dε)
∂x(κf∂xT

ε
f )dy +

1

ε

∫ 1/2−dε

−(1/2−dε)
∂y(κf∂yT

ε
f )dy

+ 2ε

∫ −(1/2−dε)
−1/2

∂x(κg∂xT
ε
g )dy +

2

ε

∫ −(1/2−dε)
−1/2

∂y(κg∂yT
ε
g )dy.
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The integrals of derivatives of y are evaluated, while in the remaining integrals we interchange the
order of integration and differentiation. Applying the boundary condition (27) causes the terms
evaluated at y = −(1/2−dε) to cancel out. We insert the necessary asymptotic expansions, hence

∂t

(∫ 1/2−de

−(1/2−de)
(ρf0 − εβρfTf1)(Tf0 + εTf1)dy

)
+ 2∂t

(∫ −(1/2−de)
−1/2

ςρ(Tg0 + εTg1)dy
)

+ ∂x

(∫ 1/2−de

−(1/2−de)
(ρf0 − εβρfTf1)(Tf0 + εTf1)(q

(1)
0 + εq

(1)
1 )dy

)
= ε∂x

(∫ 1/2−de

−(1/2−de)
κf∂xTf0dy

)
+ 2ε∂x

(∫ −(1/2−de)
−1/2

κg∂xTg0dy
)

+O(ε2).

Using that ρf0, Tf0 and Tg0 are independent of y, this can be written as

∂t

(
(1− 2de)ρfeTfe + 2deςρTge

)
+ ∂x(ρfeTfeq̄e)

+ ε∂x

(
(ρf0 − βρfTf0)

{∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0

})
= ε∂x

(
(1− 2de)κf∂xTfe + 2deκg∂xTge

)
+O(ε2). (48)

The Tf1-part needs to be rewritten. Also, since there is one equation and two unknowns Tfe and
Tge, one more equation in needed to have a consistent formulation. Both of these difficulties are
solved by finding explicit expressions for Tf1 and Tg1, using a similar technique as performed for
u1.

The necessary asymptotic expansions are inserted into (25), (26), (27), (28) and (29), keeping
the lowest order terms. The energy equations are then

∂t(ρf0Tf0) + ∂x(ρf0Tf0q
(1)
0 ) + ∂y(ρf0Tf0q

(2)
1 ) =

1

ε
∂y

(
κf∂y(Tf0 + εTf1)

)
+O(ε);

∂t(ςρTg0) =
1

ε
∂y

(
κg∂y(Tg0 + εTg1)

)
+O(ε),

while the boundary conditions for the lower part of the moving boundary are

−κf∂yTf0 − εκf∂yTf1 + ερf0q
(2)
1 Tf0 + κg∂yTg0 + εκg∂yTg1

= −ε(ςρTg0 − ρf0Tf0)∂td0 +O(ε2);

Tf0 + εTf1 = Tg0 + εTg1 +O(ε2),

and the boundary condition at the top and bottom of the strip is

∂yTg0 + ε∂yTg1 = O(ε2).

Collecting the lowest order terms from the five above equations, results in the system

∂2yTf0 = 0 for − (1/2− d0) ≤ y ≤ 1/2− d0,
∂2yTg0 = 0 for 1/2− d0 ≤ |y| ≤ 1/2,

κf∂yTf0 = κg∂yTg0 at y = ±(1/2− d0),

Tf0 = Tg0 at y = ±(1/2− d0),

∂yTg0 = 0 at y = ±1/2.

The only possible solution is that Tf0 and Tg0 are equal and independent of y, hence T0(x, t) =
Tf0(x, t) = Tg0(x, t) can be defined. Next step is to consider the O(1)-parts of the energy equations
independently.
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The O(1)-part of the void space energy equation is

∂t(ρf0Tf0) + ∂x(ρf0Tf0q
(1)
0 ) + ∂y(ρf0Tf0q

(2)
1 ) = κf∂

2
yTf1.

Using (33) to eliminate q(2)1 , this can be written

ρf0∂tTf0 + ρf0q
(1)
0 ∂xTf0 = κf∂

2
yTf1. (49)

Integrating in y from −(1/2− de) to (1/2− de) gives us

(1− 2de)ρf0∂tTf0 + ρf0∂xTf0q̄0 = −2κf∂yTf1|y=−(1/2−de) +O(ε), (50)

which can also serve as a boundary condition for ∂yTf1 at y = −(1/2−de). Multiplying (49) with
(1− 2de) and subtracting from (50) result in

(1− 2de)κf∂
2
yTf1 = ρf0∂xTf0

(
(1− 2de)q

(1)
0 − q̄0

)
− 2κf∂yTf1|y=−(1/2−de) +O(ε).

To ease the notation, we do not insert the boundary condition for ∂yTf1 at y = −(1/2 − de) at
this moment. We do however insert the expressions for the velocities known from (40) and (41),
hence

2(
1

2
− de)κf∂2yTf1 = C(x, t)(

1

2
− de)

(
y2 − 1

3
(
1

2
− de)2

)
− 2κf∂yTf1|y=−(1/2−de) +O(ε),

where C(x, t) = ρf0∂xTf0
∂xp0
µf0

. Integrating twice in y from −(1/2− de) to y, results in

2(
1

2
− de)κfTf1 = 2(

1

2
− de)κfTf1|y=−(1/2−de)

+
1

12
C(x, t)(

1

2
− de)

(
y4 − 2(

1

2
− de)2y2 + (

1

2
− de)4

)
− κf∂yTf1|y=−(1/2−de)

(
y2 − (

1

2
− de)2

)
+O(ε),

which means that

Tf1 = Tf1|y=−(1/2−de) +
1

24

C

κf

(
y4 − 2(

1

2
− de)2y2 + (

1

2
− de)4

)
− 1

2

1

1/2− de
∂yTf1|y=−(1/2−de)

(
y2 − (

1

2
− de)2

)
+O(ε). (51)

The average T̄f1 is then

T̄f1 = Tf1|y=−(1/2−de) +
1

45

C

κf
(
1

2
− de)4 +

1

3
∂yTf1|y=−(1/2−de)(

1

2
− de) +O(ε). (52)

We turn our attention to the O(1) terms from the grain space energy equation:

∂t(ςρTg0) = κg∂
2
yTg1.

Integrating in y from −1/2 to −(1/2− de) gives us

de∂t(ςρTg0) = κg∂yTg1|y=−(1/2−de), (53)

which later can be used as a boundary condition for ∂yTg1 at y = −(1/2 − de). Next step is to
multiply the O(1) terms with de and subtract from the above equation, resulting in

deκg∂
2
yTg1 = κg∂yTg1|y=−(1/2−de).
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This equation is integrated first from −1/2 to y, then from y to −(1/2− de), giving us

Tg1 = Tg1|y=−(1/2−de) +
1

2de
∂yTg1|y=−(1/2−de)

(
y2 + y + (

1

2
− de)− (

1

2
− de)2

)
+O(ε).

The average is

T̄g1 = Tg1|y=−(1/2−de) −
1

3
de∂yTg1|y=−(1/2−de) +O(ε).

The expressions for Tf1 and Tg1 and their averages involves the function evaluation of Tf1 and
Tg1 at y = −(1/2 − de). Due to the boundary condition (28) these are known to be equal, even
though we do not know the value. As Tfe = T0 + εT̄f1 and Tge = T0 + εT̄g1, we can calculate the
difference

Tfe − Tge = ε
{2de

12
(
1− 2de
κf

+
2de
κg

)∂t(ςρTge)

+
1

12

1

κf
(1− 2de)

(
(ςρTge − ρfeTfe)− Tfe(2ρ− fρfe)

)
∂t(2de)

− 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

}
+O(ε2),

where we have rewritten using (35) and (48) and inserted the boundary conditions for ∂yTf1 and
∂yTg1 at y = −(1/2 − de). This equation will be a part of the final set of equations and acts as
the second relation between the variables Tfe and Tge.

To find the required Tf1-expression in equation (48), we calculate∫ 1/2−de

−(1/2−de)
Tf1q

(1)
0 dy − T̄f1q̄0 =

1

60

1

κf
(1− 2de)q̄e

(
2de∂t(ςρTge)

+ (ςρTge − ρfeTfe)∂t(2de)− Tfe(2ρ− ρfe)∂t(2de)
)

− 1

210

1

κf
(1− 2de)ρfe∂xTfeq̄

2
e +O(ε). (54)

Inserting this into (48), results in

∂t

(
(1− 2de)ρfeTfe + 2deςρTge

)
+ ∂x(ρfeTfeq̄e)

=εκf∂x

{
(1− 2de)∂xTfe

(
1 +

q̄2e
210κ2f

ρfe(ρfe − βρfTfe)
)

− q̄e
60κ2f

(1− 2de)(ρfe − βρfTfe)
(

2de∂t(ςρTge) + (ςρTge

− ρfeTfe)∂t(2de)− Tfe(2ρ− ρfe)∂t(2de)
)}

+ εκg∂x(2de∂xTge) +O(ε2).

3.5 Conservation of mass part II
We turn back to equation (35), where inserting (54) results in

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = ε

β

κf
∂x

{
− q̄2e

210
(1− 2de)ρfe∂xTfe

+
q̄e
60

(1− 2de)
(

2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}

+O(ε2).
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3.6 Conservation of momentum part II
Inserting (51) and (52) into (42) and evaluating the integral yield

1

2
∂xpe

(
y2 − (

1

2
− de)2

)
= µfeqe

−ε βµ
µf0

∂xp0

( 1

24

C

κf

(1

6
y6 − 1

2
(
1

2
− de)2y4 +

7

30
(
1

2
− de)4y2 +

1

10
(
1

2
− de)6

)
+

1

2

1
1
2 − de

∂yTf1|y=−(1/2−de)
(
− 1

4
y4 +

1

6
(
1

2
− de)2y2 +

1

12
(
1

2
− de)4

))
+O(ε2).

Integrating this equation in y to obtain an expression involving q̄e, yields

−2

3
∂xpe(

1

2
− de)3 = µfeq̄e

− ε βµρf0
µf0κf

∂xp0

( 4

105
∂xTf0

∂xp0
µf0

(
1

2
− de)7 −

4

45
∂tTf0(

1

2
− de)5

)
+O(ε2).

This equation can be rewritten in two different ways. We can either solve the above equation
for q̄e, or we can use (40) to rewrite the factors involving ∂xp0 to get an expression showing the
relation to the Forchheimer-form of Darcy’s law. Hence, the above equation can be written either
as

q̄e = − (1− 2de)
3

12µfe
∂xpe

(
1−ε βµρfe

µfeκf
(1− 2de)

2
(
− 1

30
∂tTfe

+
1

280
∂xTfe

∂xpe
µfe

(1− 2de)
2
))

+O(ε2),

or as

∂xpe =− q̄e
12µfe

(1− 2de)3

(
1− ε βµρfe

µfeκf

1

30
∂tTfe(1− 2de)

2
)

+ εq̄2e
12ρfe

(1− 2de)3
βµ
κf

3

70
∂xTfe(1− 2de) +O(ε2).

As an error of O(ε2) is made in both cases, the two forms are equivalent. Further, this also justifies
replacing µf0 by µfe. Note that the non-linear term in Forchheimer’s Law is a negative term, while
we have a term that could be either positive or negative depending on the sign of ∂xTfe. The
Forchheimer’s law is due to inertial effects under different assumptions than considered here, but
is similar to ours in the sense of introducing a non-linearity in the flow equation when considering
a large Péclet number. Our non-linear term is a secondary effect due to the varying viscosity and
dominating convection. As a fluid with varying viscosity is transported through the pore, non-
linear inertial effects appear, which is indicated by the non-linear term containing the factors βµ
and ∂xTfe. Since the viscosity can either increase or decrease, the sign of the non-linear term varies
with the sign of the temperature change. We note that for most fluids and temperature ranges
the viscosity changes will not be large, hence the value of βµ, and accordingly the non-linearity,
will be small.

3.7 How reactions affect the varying aperture
To upscale (30), we first need to regularize the dissolution rate (31) to obtain a Lipschitz continuous
function. We define fδ(T εf , d

ε) = k0e
−α/T εfwδ(d

ε) where

wδ(d
ε) =


0 if dε < 0,

dε/δ if 0 ≤ dε < δ,

1 if dε ≥ δ,
(55)
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for some small δ > 0. Inserting asymptotic expansions into (30) yields

∂t(ρde) =
(
fp(Tf0 + εTf1 +O(ε2), u0 + εu1 +O(ε2))

− fδ(Tf0 + εTf1 +O(ε2), de +O(ε2))
)

+O(ε2),

where the functions depending on y should be evaluated at y = −(1/2 − de). We Taylor expand
the precipitation rate around (Tfe, ue), and the dissolution rate around (Tfe, de). Hence,

∂t(ρde) =
(
fp(Tfe, ue) + ε∂1fp(Tf1|y=−(1/2−de) − T̄f1) + ε∂2fp(u1|y=−(1/2−de) − ū1)

)
−
(
fδ(Tfe, de) + ε∂1fδ(Tf1|y=−(1/2−de) − T̄f1)

)
+O(ε2).

Letting δ approach zero, gives the original w(de, Tfe, ue). Since ū1 and T̄f1 are known from (47)
and (52), we obtain

∂t(ρde) =fp(Tfe, ue)− fd(Tfe, uede) + ε
{

(∂1fp − ∂1fd)
( 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

− 1

12

1

κf
(1− 2de)

(
2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
))

+ ∂2fp

( 1

60

1

D
(1− 2de)(∂xue −

ue
ρfe

∂xρfe)q̄e

− 1

12

1

D
(1− 2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
)
∂t(2de)

)}
+O(ε2).

3.8 Upscaled equations
We now summarize the upscaled equations. There are six unknowns: ue(x, t), q̄e(x, t), de(x, t),
pe(x, t), Tfe(x, t) and Tge(x, t), and six equations to describe them. Note that all the variables
depend only on x and t, hence our thin strip model has reduced to a one-dimensional problem.
The governing system of equations is defined for 0 ≤ x ≤ 1 and for t > 0, and is given by

q̄e = − (1− 2de)
3

12µfe
∂xpe

{
1−ε βµρfe

µfeκf
(1− 2de)

2
(
− 1

30
∂tTfe

+
1

280
∂xTfe

∂xpe
µfe

(1− 2de)
2
)}

; (56)

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = ε

β

κf
∂x

{
− q̄2e

210
(1− 2de)ρfe∂xTfe

+
q̄e
60

(1− 2de)
(

2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}

; (57)

∂t(ρde) =fp(Tfe, ue)− fd(Tfe, de) + ε
{

(∂1fp − ∂1fd)
( 1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

− 1

12

1

κf
(1− 2de)

(
2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
))

+ ∂2fp

( 1

60

1

D
(1− 2de)(∂xue −

ue
ρfe

∂xρfe)q̄e

− 1

12

1

D
(1− 2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
)
∂t(2de)

)}
; (58)
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∂t

(
(1− 2de)ue+2deρ

)
+ ∂x(ueq̄e)

= εD∂x

(
(1− 2de)∂xue(1 +

q̄2e
210D2

)− (1− 2de)
q̄2e

210D2

ue
ρfe

∂xρfe

− (1− 2de)
q̄e

60D2
∂t(2de)

(
(ρ− ue)−

ue
ρfe

(2ρ− ρfe)
))

; (59)

∂t

(
(1− 2de)ρfeTfe + 2deςρTge

)
+ ∂x(ρfeTfeq̄e)

=εκf∂x

{
(1− 2de)∂xTfe

(
1 +

q̄2e
210κ2f

ρfe(ρfe − βρfTfe)
)

− q̄e
60κ2f

(1− 2de)(ρfe − βρfTfe)
(

2de∂t(ςρTge) + (ςρTge − ρfeTfe)∂t(2de)

− Tfe(2ρ− ρfe)∂t(2de)
)}

+ εκg∂x(2de∂xTge); (60)

Tfe − Tge = ε
{2de

12
(
1− 2de
κf

+
2de
κg

)∂t(ςρTge)−
1

60

1

κf
(1− 2de)ρfe∂xTfeq̄e

+
1

12

1

κf
(1− 2de)

(
(ςρTge − ρfeTfe)− Tfe(2ρ− fρfe)

)
∂t(2de)

}
. (61)

where terms of O(ε2) have been neglected. The fluid density and viscosity are given by

ρfe = ρfe(Tfe) = ρ0 − βρfTfe and µfe = µfe(Tfe) = µ0 − βµTfe. (62)

Dispersive terms are found in several of the model equations. The model equations also contain
correction terms of O(ε) that are due to the changing geometry, e.g. (ςρTge − ρfeTfe)∂t(2de) in
(60). The difference is the jump in the effective energy across the moving boundary.

Compared to the dispersive model studied by Kumar et al in [15], our system of equations is
more coupled due to the reaction rates and the fluid density depending on temperature. Also, the
model in [15] does not take into account volume change due to chemical reactions, which in our
model can be found in terms including a (2ρ− ρfe)-factor. As Kumar et al assume constant fluid
density and that 2ρ = ρf , their model lacks terms with derivatives of ρfe and the (2ρ−ρfe)-factor
which can be found in the present work. Since we also take into account varying viscosity, an
extra non-linear term in Darcy’s law appears. This term can be interpreted as a Forchheimer-type
term, which appears when inertial effects on the flow are important; see, e.g., [12] for derivation
of the Forchheimer Law in the isothermal case. Note that the Forchheimer’s law is derived under
different assumptions than considered here, but the present flow equation shows similarities due
to the non-isothermal effects arising from the viscosity.

Compared to our previous work in [7], one large difference is the need of an extra equation
to describe the temperature. In [7] it was only necessary to use the lowest order temperature
T0, while in the present work we have to include the average of the first order correction terms,
which are not necessarily equal. The last equation in the above system is expressing how the two
effective temperatures Tfe and Tge deviate from each other. Note that the deviations are of O(ε).

4 Numerical results
We consider two types of comparisons: First, we compare the upscaled model with two simpler
versions still honoring the varying geometry; a model obtained by simple upscaling where diffu-
sion is included, and an hyperbolic model obtained by removing all terms of order ε. Secondly,
we compare the upscaled model with one obtained using a fixed geometry. The goal of these
comparisons is to emphasize similarities and differences between the various models and provide
some guidelines for when it is necessary to use a complicated model, and when it can be replaced
by a simpler version.
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4.1 Comparison with two simpler models
In the following, the upscaled model (56)-(61) will be called the dispersive model.

A simple upscaling where diffusive terms, but no other O(ε)-terms, are included, results in
a model similar as the one in [7]. This model will include five unknowns ue, q̄e, de, pe and Te
and five equations to describe them and will be called the simple upscaled model throughout the
comparison. The variables are denoted with subscript e for consistency with the notation in the
dispersive model. All equations are defined for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − (1− 2de)
3

12µfe
∂xpe; (63)

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = 0; (64)

∂t(ρde) = fp(Te, ue)− fd(Te, de); (65)

∂t

(
(1− 2de)ue + 2deρ

)
+ ∂x(ueq̄e) = εD∂x

(
(1− 2de)∂xue

)
; (66)

∂t

(
(1− 2de)ρfeTe + 2deςρTe

)
+ ∂x(ρfeTeq̄e) =εκf∂x

(
(1− 2de)∂xTe

)
+εκg∂x

(
2de∂xTe

)
, (67)

together with (62) for fluid density and viscosity.
By doing a straightforward upscaling of the model equations, only keeping leading order terms,

an hyperbolic model is obtained. This model will include five unknowns ue, q̄e, de, pe and Te and
five equations to describe them. All equations are defined for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − (1− 2de)
3

12µfe
∂xpe; (68)

∂t

(
(1− 2de)ρfe + 2de2ρ

)
+ ∂x(ρfeq̄e) = 0; (69)

∂t(ρde) = fp(Te, ue)− fd(Te, de); (70)

∂t

(
(1− 2de)ue + 2deρ

)
+ ∂x(ueq̄e) = 0; (71)

∂t

(
(1− 2de)ρfeTe + 2deςρTe

)
+ ∂x(ρfeTeq̄e) = 0, (72)

together with (62) for fluid density and viscosity.
The simple upscaled model (63)-(67) and the hyperbolic model (68)-(72) still honor the varying

grain width and include the same couplings with respect to non-isothermal effects and assumptions
on large Péclet number as in the dispersive model (56)-(61). However, these two simpler versions
differ from the dispersive model with respect to how the upscaling is performed and concerning
the accuracy with respect to ε. In the hyperbolic model, only lowest order terms have been kept,
resulting in the diffusion and second order effects to disappear. A similar procedure has been made
for the simple upscaled model, but where diffusion terms have been kept. The simple upscaled
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model represents the typical modeling choice for geothermal applications, while the hyperbolic
model results from a straightforward homogenization with a large Péclet number.

All three models are implemented fully coupled using forward Euler in time and finite dif-
ferences in space, using ∆x = 1/128 for the spatial discretization and ∆t = 10−4 for the time
steps. The second energy equation in the dispersive model, (61), is for stability reasons discretized
using backward Euler. Spatial derivatives are handled with central differences for second order
derivatives, and upstream approximation for first order derivatives. Due to the nonlinearities in
the time derivatives and the velocity couplings, the resulting discretized systems are non-linear
and Newton’s method is applied at each time step to solve the non-linear systems of equations.
The initial state is a system in equilibrium where no flow, dissolution or precipitation is occurring.
The temperatures are shifted such that they attain values between 0 and 1. With our choice of
solubility product, we have

Tfe = Tge = 1, ue = 0.5, q̄e = 0, de = 0.25,

where the initial pressure is such that no flow is achieved. In the simulations, we consider a case
mimicking flow through a pore in a geothermal reservoir where colder fluid is flowing in at x = 0,
and where the in-situ fluid flows out at x = 1. Hence, our boundary conditions are

Tfe = 0, ∂xTge = 0, ue = 0.5, q̄e = 1, ∂xde = 0, at x = 0,

and

∂xTfe = 0, ∂xTge = 0, ∂xue = 0, ∂xq̄e = 0, ∂xde = 0, at x = 1,

and where the boundary conditions for pressure are such that the flow conditions are fulfilled.
Simulations with fixed pressure at both ends of the strip were also performed, but the comparisons
in the below figures are qualitatively the same. For the simple upscaled and the hyperbolic model,
the initial and boundary conditions for Te correspond to the conditions for Tfe given here. Note
that the injected ion concentration is the same as the initial one. We use the solubility product for
CaCO3 obtained from [26], which shows that CaCO3 is a mineral whose solubility increases with
decreasing temperatures. Hence, dissolution is expected as we inject a lower fluid temperature. In
all simulations, unless otherwise stated, we have used

D = 1, κf = 1, κg = 1.2, ς = 1, ρ = 1,

ρ0 = 2, βρf = 0.01, βµ = 0.01, k = 1.

Figures 2, 3 and 4 show the temperatures and grain widths for the three models with ε = 0.05,
ε = 0.01 and ε = 0.001, respectively. All plots are snapshots at t = 0.7.

In Figure 2 we see some discrepancy between the models. All models predict dissolution due to
the cooling, but there are some difference in the extent of dissolution, which causes differences in
the flow conditions, which again affects the heat convection. The simple upscaled model produces
quite similar temperatures as the upscaled dispersive model, but differs more in grain width. We
separate between fluid and grain temperature in the dispersive model, but even for this large value
of ε the two temperatures are virtually the same. Decreasing the value of ε in Figure 3, we see
that the models produce more similar results. This is as expected as both the dispersive model
and the simple upscaled behave more like a hyperbolic model for lower values of ε. For ε = 0.01,
the largest difference between the models are found in the temperature profiles. The temperature
profile in the hyperbolic model deviates quite a lot from the other two models, indicating the
heat conduction still being relevant, despite the model being convection dominated. Applying
ε = 0.001 shows that the three models produce virtually the same results, as seen in Figure 4.
Letting ε approach zero in the model equations in the dispersive model and the simple upscaled
model, results in the hyperbolic model.
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Figure 2: Plots of temperature and grain width, respectively, when ε = 0.05. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted
red is the hyperbolic model. The temperature figure also includes a black dotted line, which is
the grain temperature in the upscaled dispersive model.

x
0 0.2 0.4 0.6 0.8 1

T

0

0.2

0.4

0.6

0.8

1

Temperature, epsilon = 0.01

Simple
Hyperbolic
Dispersive, fluid
Dispersive, grain

x
0 0.2 0.4 0.6 0.8 1

d

0

0.2

0.4

0.6

0.8

1

Grain width, epsilon = 0.01

Simple
Hyperbolic
Dispersive

Figure 3: Plots of temperature and grain width, respectively, when ε = 0.01. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted
red is the hyperbolic model. The temperature figure also includes a black dotted line, which is
the grain temperature in the upscaled dispersive model.
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Figure 4: Plots of temperature and grain width, respectively, when ε = 0.001. The black solid line
refers to the upscaled dispersive model, the dashed blue is the simple upscaled, while the dotted
red is the hyperbolic model. The temperature figure also includes a black dotted line, which is
the grain temperature in the upscaled dispersive model.

4.2 Fixed geometry vs variable geometry
To investigate the effect of the varying geometry in the upscaling process, we compare the disper-
sive model (56)-(61) with a model where the changes in geometry due to the chemical reactions
are neglected. The dominating convection is included and we keep dispersion terms in the up-
scaling process. To avoid confusion, we will denote the two models for the fixed geometry model
and the variable geometry model in this section. When fixing the geometry the mineral surface
concentration ve is used as a variable instead of the mineral width de. The upscaled system of
equations consists of five unknowns; ue, q̄e, ve, pe and Te and five equations to describe them. All
equations are defined for 0 ≤ x ≤ 1, t > 0, and are given by

q̄e = − 1

12

∂xpe
µfe

(1− ε 1

1260

ρfeβµ
κfµfe

∂xTe
∂xpe
µfe

);

∂tρfe + ∂x(ρfeq̄e) = −ε
βρf
κf

∂x

( q̄2e
210

ρfe∂xTe

)
;

∂tve = fp(Te, ue)− fd(Te, ue, ve)

+ ε
(

(∂1fp − ∂1fd)
q̄e

60κf
ρfe∂xTe + ∂2fp(

q̄e
60D

(∂xue −
ue
ρfe

∂xρfe)−
1

6D
∂tve)

)
;

∂t(ue + 2ve) + ∂x(ueq̄e) = εD∂x

(
∂xue(1 +

q̄2e
210D2

)− q̄2e
210D2

ue
ρfe

∂xρfe −
q̄e

30D2
∂tve

)
;

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂x

(
∂xTe(1 +

q̄2e
210κ2f

(ρfe − βρfTe)ρfe)
)
,

together with (62) for fluid density and viscosity. The derivation of the equations can be found
in Appendix A. When the mineral density increases, the changes in the deposited mineral layer
will be smaller. To understand when changes in geometry should be accounted for and when
they can be neglected, we show the temperature profiles for two choices of ρ in the variable
geometry model and fixed geometry model. The boundary and initial conditions for flow, ions
and temperature are the same as earlier, where the conditions for fluid temperature is applied
for Te. For initial condition we assume de = 0.25/ρ in the variable geometry case and ve = 0.25
in the fixed geometry model, which corresponds to the same amount of minerals in both cases.
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Figure 5: Comparison of the temperature profiles and mineral content for ρ = 1 and ρ = 10,
respectively. The solid lines refer to temperature, where black is for the varying geometry and red
for the fixed geometry. The dotted lines refer to the mineral content, where black is for ρde for
the varying geometry and red is ve for the fixed geometry.

The boundary conditions for ve is ∂xve = 0 at x = 0 and x = 1. As earlier, both models are
implemented using finite differences with ∆x = 1/128 in space and forward Euler with ∆t = 10−4

in time, and where Newton’s method is applied at each time step to solve the resulting nonlinear
systems of equations.

Figure 5 compares the temperature profiles and the surface concentration ve with ρde for ρ = 1
and ρ = 10. There is a large difference in temperature profiles for ρ = 1, which is due to the flow
velocity through the channel has varied between the models. The different velocity profiles also
affect how the minerals dissolve due to different ion transport. For ρ = 10, both temperature
profile and mineral content are very similar. Hence, when ρ = 1, the effect of changing geometry
is so large, especially on the temperature profile, that the varying geometry cannot be neglected.
Increasing ρ indicates smaller differences between the models.

5 Summary and discussion
Through homogenization, we have derived an upscaled model for reactive flow with heat transfer
in a thin strip where convection is dominating, and taken into account changes in aperture caused
by the reactions. The effective model includes dispersive terms in both the energy conservation
equations and the ion concentration equation, and the model equations include several second
order effects arising from the free boundary and the dominating convection. Especially, we find
the flow equation to be non-Darcy due to non-isothermal effects arising from the viscosity.

The upscaled model is derived using a simple geometry, but the resulting model provides quali-
tative information concerning how the various physical processes are coupled under the assumption
of varying geometry and large Péclet number. Motivated by the similarities between the upscaled
models in [7] and [8], which considers moderate Péclet numbers in a thin strip and in a periodic
porous medium, respectively, we expect an extension of the present model to a periodic case to
give qualitatively the same couplings of the model as found here. The approach for upscaling a
periodic porous medium follows the same ideas as in the thin strip case, although some consider-
ations regarding the geometry are required, especially due to the need of a level set formulation
for the free boundary. The present work shows how the various physical processes are coupled
and provides information about second order effects due to temperature dependencies, varying
geometry and the large Péclet number. This information could be incorporated into a simula-
tor code such as TOUGHREACT [39], which mainly uses simplified expressions for permeability
and diffusion although a varying porosity is allowed. TOUGHREACT does not include Taylor
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dispersion nor any non-Darcy effects on the fluid flow.
By comparing the upscaled model with two simpler versions; one including simple diffusion

and one hyperbolic model, we have investigated numerically the differences between them. For
moderately small values of ε (that is, around 0.05), the models produce significantly different
results, while the differences become smaller when ε decreases. For the temperature profile, which
is very important in a geothermal setting, we found larger differences between the models. When
ε decreases, the three models produce very similar results as the model problem is then highly
hyperbolic. This investigation shows when and how much the Taylor dispersion influences the
outcome of the simulations and gives information about when Taylor dispersion in a convection
dominated model should be included and when it can be disregarded.

The upscaled dispersive model is also compared with model equations derived from a fixed
geometry pore scale model. By varying the mineral density ρ we investigated the differences
between the two models. This comparison shows that for moderate values of the mineral density,
the chemical reactions cause changes in the aperture that should not be neglected. Especially for
the temperature profile there is a large difference between the models due to the flow velocity
through the pore channel not being satisfactory depicted by the fixed geometry model in this case.
However, when ρ is large, the changes in aperture become smaller and less important, and the
fixed geometry model produces acceptable results.
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A Upscaled equations for the fixed geometry case
We give a short derivation of the upscaled equations when the width of the strip does not change.
The surface concentration vε is the variable tracking how much mineral is dissolved or precipitated.
The fixed 2D domain

Ωε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2},

with horizontal boundary

Γε = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y = ±1/2}
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is considered. The following non-dimensional system of equations describes the reactive flow and
heat transport with dominating convection in the domain:

∂tu
ε = ∇ · (εD∇uε − uεqε) in Ωε, (73)

∂tρf = −∇ · (ρfqε) in Ωε, (74)

ε2
(
∂t(ρfq

ε) +∇ · (ρfqεqε)
)

= −∇pε

+ε2
(
∇ ·
(
µ(∇qε + (∇qε)T )

)
− 2

3
∇(µ∇ · qε)

)
in Ωε, (75)

∂t(ρfT
ε) = ∇ · (εκf∇T ε − ρfT εqε) in Ωε, (76)

∂tv
ε = fp(T

ε, uε)− fd(T ε, uε, vε) on Γε, (77)
−εnε · (D∇uε) = ∂tv

ε on Γε, (78)
qε = 0 on Γε, (79)

−εnε · (κf∇T ε) = 0 on Γε, (80)

where the reaction rates are the same as earlier, but using the surface concentration vε in stead of
the grain width dε to indicate if there are any minerals left in the dissolution rate expression. As
earlier, we assume linear dependence between fluid density and viscosity with the fluid tempera-
ture. Note that our model does not include an explicit grain part and hence no grain temperature.
Alternatively, the presence of a non-reactive solid could have been included by defining a domain
with grain temperature. In that case, the boundary conditions stated above would be at the
(non-moving) interface between void space and solid, and the last boundary condition would be
a heat-flux continuity condition between fluid and grain temperature. The unit normal for the
lower part is nε = −1j.

We use the same asymptotic expansions as before, but note that vε is a function of x and t
only as it is only defined on the horizontal boundaries. Inserting the asymptotic expansions into
(74) and (79), and collecting the lowest order terms, result, as earlier, in

q
(2)
0 ≡ 0.

Integrating (74) over the thin section Y = {(x, y) ∈ R2 | x1 ≤ x ≤ x1 + δx,−1/2 ≤ y ≤ 1/2} and
performing the same steps as in Section 3.1, result in

∂tρfe + ∂x(ρfeq̄e) = εβρf∂x

(∫ 1/2

−1/2
T1q

(1)
0 dy − T̄1q̄0

)
. (81)

Inserting the asymptotic expansions into (75) and using (79), show as before that p0 and p1
are functions of x and t only, and that

∂xp0 = µf0∂
2
yq

(1)
0 (82)

∂xpe = µfe∂
2
yqe − εβµ∂y

(
(T1 − T̄1)∂yq

(1)
0

)
+O(ε2). (83)

Integrating (82) twice and applying the lowest order of (79), show that

q
(1)
0 = −1

2

∂xp0
µf0

(
1

4
− y2), (84)

q̄0 = − 1

12

∂xp0
µf0

. (85)

Inserting (84) into (83) and integrating twice yield

1

2
∂xpe(y

2 − 1

4
) = µfeqe − εβµ

∂xp0
µf0

∫ y

−1/2

(
T1(x, z, t)− T̄1(x, t)

)
zdz +O(ε2). (86)
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Using the lowest order terms from (73) and (78), we can show that u0 is a function of x and
t only. By integrating (73) over y, interchanging the order of integration and differentiation as
before and apply the boundary condition (78), we find that

∂t(ue + 2ve) + ∂x(ueq̄e) = εD∂2xue − ε∂x
(∫ 1/2

−1/2
u1q

(1)
0 dy − ū1q̄0

)
+O(ε2), (87)

where ve = v0 + εv1 is the effective surface concentration of the mineral and is by definition a
function of x and t only. To proceed, an explicit expression for u1 is needed. We use similar steps
as in Section 3.3: Using the second lowest order terms from (73) and rewriting using (74) yield

∂tu0 −
u0
ρf0

∂tρf0 + q
(1)
0 (∂xu0 −

u0
ρf0

∂tρf0) = D∂2yu1,

with boundary conditions

D∂yu1 = ∂tv0 at y = −1

2
, −D∂yu1 = ∂tv0 at y =

1

2

coming from (78). We calculate the average over y of the above equation and subtract it, resulting
in

D∂2yu1 =
A

2
(y2 − 1

12
)− 2∂tv0,

where A(x, t) = (∂xu0 − u0

ρf0
∂xρf0)∂xp0µf0

. Integrating twice with respect to y yields

u1(x, y, t) = u1|y=−1/2 +
1

24

A

D
(y4 − 1

2
y2 +

1

16
)− ∂tv0(y2 − 1

4
),

which has the average value

ū1(x, t) = u1|y=−1/2 +
1

720

A

D
+

1

6
∂tv0.

Inserting these two expressions together with (84) and (85) into (87) and evaluating the integral,
result in

∂t(ue + 2ve) + ∂x(ueq̄e)

= εD∂x

(
∂xue(1 +

q̄2e
210D2

)− q̄2e
210D2

ue
ρfe

∂tρfe −
q̄e

30D2
∂tve

)
+O(ε2).

Performing the same steps on (76) and (80), we can show that T0, and hence ρf0 and µf0,
are independent of y. By integrating (76) over y, interchanging differentiation and integration,
applying (80) and inserting expansions, we obtain

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂
2
xTe

− ε∂x
(

(ρf0 − βTf0)(

∫ 1/2

−1/2
T1q

(1)
0 dy − T̄1q̄0)

)
+O(ε2). (88)

To find an explicit expression for T1, we use the second lowest order terms from (76), which is
rewritten using (74); hence,

ρf0∂tT0 + ρf0q
(1)
0 ∂xT0 = κf∂

2
xT1.

This equation is manipulated in the same manner as we did with the u1-equation, resulting in

T1(x, y, t) = T1|y=−1/2 +
1

24

C

κf
(y4 − 1

2
y2 +

1

16
) (89)
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with average

T̄1(x, t) = T1|y=−1/2 +
1

720

C

κf
, (90)

where C(x, t) = ρf0∂xT0
∂xp0
µf0

. Inserting (89) and (90) together with (84) and (85) into (88) and
evaluating the integral, result in

∂t(ρfeTe) + ∂x(ρfeTeq̄e) = εκf∂x

(
∂xTe(1 +

q̄2e
210κ2f

(ρfe − βρfTe)ρfe)
)

+O(ε2).

Inserting (89) and (90) into (81) gives the upscaled mass conservation equation

∂tρfe + ∂x(ρfeq̄e) = −ε
βρf
κf

∂x

( q̄2e
210

ρfe∂xTe

)
+O(ε2),

while the momentum equation (86) is

q̄e = − 1

12

∂xpe
µfe

(1− ε 1

1260

ρfeβµ
κfµfe

∂xTe
∂xpe
µfe

) +O(ε2).

Finally, we upscale (77) by first regularizing the dissolution rate by defining fδ(T
ε, vε) =

k0e
−α/T εwδ(v

ε) where wδ is defined as in (55) and δ is a small, positive number. We Taylor
expand the reaction rates around (Te, ue, ve) and obtain

∂tve =fp(Te, ue)− fd(Te, ue, ve) + ε
(

(∂1fp − ∂1fd)
q̄e

60κf
ρfe∂xTe

+ ∂2fp(
q̄e

60D
(∂xue −

ue
ρfe

∂xρfe)−
1

6D
∂tve)

)
+O(ε2)

after letting δ approach zero.
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