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Summary 

Enterprise-Wide Optimization for the Fast Moving Consumer Goods Industry 

Because of the increasingly competitive global market, companies with a global supply 
chain have to continuously evaluate and optimally reconfigure their supply chain 
operations. Optimizing the supply chain involves balancing many different aspects. For 
example, while centralized production may benefit from the economies of scale, local 
production will reduce the transportation costs. Enterprise-Wide Optimization (EWO) is 
similar to supply chain optimization, although with a greater emphasis on the production 
facilities. In addition to the usual challenges associated with EWO, Fast-Moving Consumer 
Goods (FMCG) companies must also consider an extremely large number of products and 
the seasonality of those products and their ingredients.  

Due to the complexity of the supply chain, spreadsheet optimization is unlikely to result in 
the best possible configuration and operation. Instead, the integrated supply chain can be 
optimized by using Mathematical Programming (MP) models. The main objective of this 
thesis is to develop MP models that can be used to optimize the supply chain operations of 
a FMCG company. 

First, a short-term scheduling Mixed-Integer Linear Programming (MILP) model is 
developed. In this model, the timing and allocation decisions are optimized for a single 
factory over a one week horizon. The computational efficiency is increased by exploiting 
the problem characteristics. For example, the number of binary variables is decreased 
drastically by dedicating time intervals to product types. As a result, the weekly planning 
for a small factory can be optimized within 170 seconds. Next, a periodical cleaning 
requirement is added to this scheduling model. While this significantly increases the 
complexity of the model, it can still be optimized within a reasonable time using a proposed 
algorithm. Using this algorithm, for 9 out of 10 case studies an optimal solution can be 
obtained within half an hour. The makespan in the 10th case study is 0.6% higher than the 
theoretical minimum makespan.  

Secondly, a tactical planning MILP model is developed. In the tactical planning model, the 
complete supply chain is considered over a one year horizon. The main decisions are 
procurement, production, product set-up, inventory, and distribution. While this model is 
demonstrated for a case study containing 10 Stock-Keeping Units (SKUs), it becomes 
intractable for larger, more realistically sized problems.  

Therefore, an algorithm based on decomposing the model into single-SKU submodels is 
proposed. To account for the interaction between SKUs, slack variables are introduced into 
the capacity constraints. These slack variables initially allow the capacity to be violated. In 
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an iterative procedure the cost of violating the capacity is slowly increased, and eventually 
a feasible solution is obtained. Even for a relatively small 10-SKU case study, the required 
CPU time can be reduced from 1144 to 175 seconds using the decomposition algorithm. 
Moreover, the algorithm is used to optimize case studies containing up to 1000 SKUs, 
whereas the full space model is intractable for case studies containing 50 or more SKUs. 
The solutions obtained with the algorithm are typically within a few percent of the global 
optimum. 

Thirdly, shelf-life restrictions are incorporated into this tactical planning problem. It is 
crucial to consider the shelf-life, since otherwise products in inventory could exceed their 
shelf-life, which would lead to unnecessary waste and possibly missed sales due to the 
reduced inventory level. Three possible methods for considering the shelf-life are 
evaluated. The direct method tracks the age of all products. It can guarantee optimal 
solutions, but it is computationally inefficient. The indirect method ensures all products 
leave the supply chain before the end of their shelf-life without tracking the age of 
individual products. It is the most efficient method, and it typically finds solutions within a 
few percent of optimality. The hybrid method combines the direct and indirect methods, has 
an average computational efficiency, and obtains near optimal solutions. 

Finally, the environmental impact is introduced into the tactical planning model using the 
Eco-indicator 99 system. The trade-offs between environmental and economic objectives of 
operating the supply chain are evaluated using a Pareto analysis. A set of solutions 
approximating the Pareto front is generated using the -constraint method. Since the tactical 
planning decisions are often optimized within a specified optimality tolerance of for 
example 1%, the environmental impact can typically be reduced by a few percent without 
increasing the economic costs. The main opportunities for reducing the environmental 
impact are related to the supplier and factory decisions. 

Overall it can be concluded that while EWO problems in the FMCG industry are typically 
large and complex, good solutions can be obtained by using efficient mathematical 
programming models combined with decomposition algorithms. 
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Every day, billions of people worldwide use Fast Moving Consumer Goods (FMCG). 
These FMCG are typically products one can buy at a supermarket, such as food products, 
drinks and detergents (Sattler et al., 2010). These products are mostly produced by large 
multinational companies such as Unilever, Procter & Gamble and Nestlé, which all have a 
yearly revenue of over €50BN. 

These companies produce a wide range of products to satisfy an increasing demand for 
product variety (Bilgen and Günther, 2010). In fact, even a single product category, such as 
ice cream, can consist of a thousand Stock-Keeping Units (SKUs). These SKUs are 
products that may vary in composition or packaging.  

Generally, FMCG are fully used up or replaced over a short period of time, ranging from 
days to months depending on the product (Leahy, 2011). In addition, seasonality plays an 
important role in the FMCG industry. Not only are the products often seasonal, but many of 
the ingredients are seasonal as well. In addition, many FMCG have a maximum shelf-life 
and can, therefore, only be stored for a limited amount of time.  

When a FMCG is sold out, a consumer will typically buy a substitute product rather than 
waiting for the product to become available. This substitute product might very well be a 
product of one of the competitors. Therefore, it is very important that a sufficient amount of 
product is available at the retailers.   

However, the costs of maintaining a sufficient inventory throughout the supply chain to 
ensure a high customer service level are generally significant (Papageorgiou, 2009). Even 
though FMCG are profitable because they are produced and sold in large quantities, they 
generally have a low profit margin. Therefore, it is crucial to obtain the right balance 
between minimizing the total costs of operating the supply chain, including inventory costs, 
and ensuring that a sufficient amount of product is available to meet the demand. However, 
the scale and complexity of the enterprise-wide supply chains in which these products are 
produced has increased significantly due to globalization (Varma et al., 2007). 

Therefore, Enterprise-Wide Optimization (EWO) has become a major goal in the process 
industries. EWO is a relatively new research area that lies at the interface of chemical 
engineering and operations research (Grossmann, 2005). It involves optimizing the 
procurement, production and distribution functions of a company. Although similar to 
Supply Chain Management (SCM), it typically places a greater emphasis on the 
manufacturing facilities. Laínez and Puigjaner (2012) provide a review on EWO and SCM. 
The major activities included in EWO can be divided into three temporal layers, as is 
shown in Figure 1.1.  

The first layer is strategic planning, which optimizes long term decisions, such as the 
supply chain design, over a time horizon covering several years. The second layer is tactical 
planning, which optimizes the procurement, production and distribution activities of a 
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supply chain over a shorter time horizon which can range from several weeks up to a year. 
The third layer is scheduling, which focusses on the short term allocation and timing 
decisions, typically covering a few days to one or two weeks. 

 
Figure 1.1. Overview of the temporal layers in Enterprise-Wide Optimization 

It should be noted that these three temporal layers are, in principle, part of the same 
problem. Therefore, the interaction between the layers is important. For example, the 
tactical planning will provide the production targets for the scheduling. However, the 
production capacity is represented in less detail on the tactical planning layer than on the 
scheduling level. Nevertheless, the production capacity in the tactical planning should 
closely resemble the restrictions found on the scheduling level. Otherwise, either 
suboptimal solutions will be obtained if the production capacity is underestimated, or 
infeasible production targets will be obtained if the production capacity is overestimated. 

The focus in this thesis will be on the tactical planning and short-term scheduling layers. In 
the remainder of this introduction chapter, the basic concepts of scheduling and tactical 
planning will first be introduced. Then, a short introduction will be given to Mixed Integer 
Linear Programming (MILP), which is the model type used to optimize the scheduling and 
tactical planning problems in this thesis. Finally, the objectives of this thesis will be 
discussed and an outline of the thesis will be given. 

1.1. Scheduling 

Scheduling plays an important role in most manufacturing and service industries (Pinedo 
and Chao, 1999). It involves allocating limited resources to activities such that the 
objectives of a company are optimized (Pinedo, 2009). Various objectives can be used in 
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the scheduling. For example, the objective can be to minimize the time to complete all 
activities, the total tardiness, or the total costs. 

The type of scheduling considered in this thesis is short-term production scheduling of a 
single production facility. The main decisions of production scheduling are to select the 
tasks to be executed, to decide on which equipment the tasks should be executed, and to 
determine the sequence and the exact timing of the tasks (Harjunkoski et al., 2013). 

Production scheduling has historically been done manually using pen and paper, heuristics, 
planning cards, or spreadsheets (Harjunkoski et al., 2013). However, especially when the 
utilization percentage of the equipment is high, the scheduling can become complex, and 
even obtaining a feasible schedule can become difficult. As a result, optimization support 
can substantially improve the capacity utilization leading to significant savings. For 
example, Bongers and Bakker (2006) reported an increase in effective production capacity 
of 10-30% by using a multistage scheduling model rather than manually scheduling the 
separate stages in the factory.  

A variety of approaches have been developed to facilitate the production scheduling and to 
improve the solutions. These approaches include expert systems, mathematical 
programming, and evolutionary algorithms. In chemical engineering, MILP is one of the 
most commonly used methods for optimizing scheduling problems (Mouret et al., 2009). 
For example, State-Task Network (STN) (Kondili et al., 1993) and Resource-Task Network 
(RTN) (Pantelides, 1994) MILP formulations have been applied to a large variety of 
scheduling problems.    

One of the most important characteristics of scheduling models is their time representation. 
A discrete time model divides the scheduling horizon into a finite number of time slots with 
a pre-specified length. However, to accurately represent all activities of various length, a 
fairly short time slot length must typically be used (Floudas and Lin, 2004).  As a result, the 
total number of time slots might be large. Since most variables and constraints are 
expressed for each time slot, the resulting model can become very large. On the other hand, 
the advantage of a formulation based on a discrete time horizon is that it is typically tight 
(Harjunkoski et al., 2013).  

A continuous time model also divides the scheduling horizon into a finite number of time 
slots, but the length of these time slots is determined in the optimization. Therefore, the 
number of time slots can be reduced considerably, and the resulting models are 
substantially smaller. Nevertheless, they do not necessarily perform better computationally 
than discrete time formulations (Harjunkoski et al., 2013). In addition, it can be challenging 
to determine the optimal number of time slots in a continuous time model.  

In a precedence-based model, the tasks are not directly related to a time line, but instead the 
focus is on binary precedence relationships between tasks executed on the same unit 
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(Maravelias, 2012). As a result, precedence-based models can handle sequence dependent 
changeover times in a straightforward manner. However, the disadvantage of precedence-
based models is that the number of sequencing variables scales quadratically with the 
number of batches to be scheduled (Mendez et al., 2006). As a result, precedence-based 
models can become relatively large for real-world applications. 

Another important characterization of scheduling models is their scope. A generic model 
aims at addressing a wide variety of problems. On the other hand, in a problem specific 
formulation the computational efficiency can be increased by using the problem 
characteristics. However, this often means that the problem specific model relies on these 
problem characteristics and is, therefore, only applicable to a smaller range of problems. 
Nevertheless, problem specific formulations can often be used to optimize problems that 
are too large or complex for generic models.  

More extensive reviews on production scheduling are provided by Kallrath (2002b), 
Floudas and Lin (2004), Mendez et al. (2006), Zhu and Wilhelm (2006), Li and Ierapetritou 
(2008), Allahverdi et al. (2008), Ribas et al. (2010), Maravelias (2012), and Harjunkoski et 
al. (2013). In the remainder of this section, an overview of production scheduling in the 
FMCG industry will be given. 

1.1.1. Scheduling in the FMCG Industry 

The short-term scheduling problem in the FMCG industry can be characterized as follows: 
A typical FMCG production process is a two-stage make-and-pack production process with 
limited intermediate storage (Bilgen and Günther, 2010). This is a sequential process 
because, as shown in Figure 1.2, each product is first produced on a production line, then 
stored in one of the storage tanks, and finally packed on one of the packing lines. The 
production process is usually a semi-continuous process, where storage tanks often 
determine the batch size. The production targets are usually obtained from the tactical 
planning. A more detailed description of the production process will be given in Chapter 2. 

Wilkinson et al. (1996) optimize the production and distribution scheduling of a FMCG 
company. They optimize the production of three factories that serve 15 warehouses. They 
adopt an aggregated formulation (Wilkinson et al., 1995) of the RTN model introduced by 
Pantelides (1994). This aggregated RTN formulation approximates the production capacity, 
which greatly reduces the size of the problem. The model is used to determine the transport 
of products from factories to warehouses. In the second step of their solution procedure, a 
detailed production plan is established for each factory using the production targets 
determined in the previous step. Their formulation uses a discrete time horizon with 
intervals of 2 hours, which effectively means that all tasks must be performed for multiples 
of 2 hours.  
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Figure 1.2. Typical production process in the FMCG industry 

Mendez and Cerda (2002b) presented an MILP based approach for the scheduling of make-
and-pack production plants. They significantly reduced the required computational time by 
applying preordering rules for both stages, which rely on their assumption of unlimited 
intermediate storage. Using these preordering rules, they obtained near optimal solutions. 

Shaik and Floudas (2007) proposed a unit-specific event-based continuous time STN model 
for short-term scheduling of continuous processes. They considered unlimited inventory, 
dedicated finite storage, flexible finite storage, no intermediate storage, and the bypassing 
of intermediate storage. They compared their model with models of Giannelos and 
Georgiadis (2002),  Castro et al. (2004a and 2004b), and Mendez and Cerda (2002a) for 
case studies with various inventory requirements based on a FMCG manufacturing process. 
On average, the model of Shaik and Floudas (2007) was the most efficient, and their model 
could obtain the global optimal solution for all case studies. astro et alCastro et al. 

Soman et al. (2007) evaluate a previously developed hierarchical production planning 
framework which combines Make-To-Order (MTO)  and Make-To-Stock (MTS)  
production (Soman et al., 2004). They test the framework for a food company that produces 
230 products on a single production line. They conclude that especially the short-term 
batch-scheduling problem requires more attention in the framework. Therefore, they 
propose a heuristic algorithm for this short-term scheduling problem. 

Akkerman et al. (2007) consider a two-stage food production system with intermediate 
storage. They consider both capacity and time limitations for the intermediate storage. They 
compared several basic scheduling and sequencing heuristics for the second stage using 
simulation. They concluded that the Longest Processing Time (LPT) rule, which orders the 
products from longest to shortest unit processing time, results in the largest total daily 
production volume. 

Jain and Grossmann (2000) proposed a disjunctive scheduling model for the production 
process of detergents. They reduced the required computational time by several orders of 
magnitude by applying a partial preordering heuristic. However, their model formulation is 
based on the key assumptions that each product is manufactured in one lot and that lot sizes 
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are smaller than the intermediate inventory capacity. These assumptions do not hold for all 
FMCG production processes. 

Entrup et al. (2005) developed three MILP models for the scheduling and planning of the 
packing lines in a yogurt production plant. Their models are more suitable for planning than 
for short-term scheduling since they do not consider mixing lines, intermediate inventory or 
sequence-dependent changeovers. 

The scheduling for a yogurt packing company was also considered by Marinelli et al. 
(2007). They modeled the intermediate storage and packing lines but no mixing lines. They 
developed a two-stage optimization heuristic based on decomposing the problem into lot 
sizing and scheduling problems. Using this approach, they could obtain near-optimal 
solutions.  

Doganis and Sarimveis (2008) also optimized the scheduling of yogurt packing lines. They 
considered a facility with a single mixing line. They considered this mixing line by 
enforcing that if multiple packing lines are simultaneously active, they must pack the same 
product since they are all fed by the same mixing line.  They reduced the number of binary 
variables by using a precedence-based model with a fixed product ordering. The schedules 
they obtained with their MILP model reduced the weekly costs on average by 24% 
compared to the schedules that were currently used in the yogurt factory.  

Kopanos et al. (2010) also proposed a MILP model for the scheduling of yogurt packing 
lines. Their formulation, which is based on aggregating products into product families, 
considers the fermentation stage by adding fermentation capacity constraints. Their 
formulation includes sequence-dependent changeovers between product families. Recently, 
Kopanos et al. (2011b) extended this formulation using a more general product family 
definition allowing products within a family to have different packing rates, set-up times 
and inventory costs. In addition, they included renewable resource constraints which are 
used to model the limited availability of manpower. 

Finally, an ice cream scheduling problem has been introduced by Bongers and Bakker 
(2006 and 2007).  This problem is selected as an example scheduling problem in this thesis 
because many of the characteristics of this problem are common in the FMCG industry. 
Several models have already been developed for this problem. However, they require 
manual intervention and produce suboptimal schedules (Bongers and Bakker, 2006), or 
produce suboptimal and infeasible schedules (Subbiah et al., 2011), or are inflexible for 
many of the process characteristics (Kopanos et al., 2011). In addition, none of the 
approaches consider the periodic cleaning periods that are required on the mixing lines. 
Therefore, the first objective of this thesis is to develop a short-term production scheduling 
model for this problem that does not require manual interventions, that produces good and 
feasible solutions, and that is flexible to most of the characteristics. 
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1.2. Tactical Planning 

Tactical planning seeks to determine the optimal use of the procurement, production, 
distribution, and storage resources in the supply chain (Papageorgiou, 2009). Often an 
economic objective, such as the maximization of profit or the minimization of costs, is used 
in the tactical planning. 

Tactical planning typically considers a multi-echelon supply chain instead of the single 
production facility considered in scheduling. In addition, it considers a longer time horizon, 
which usually covers one year. This one year time horizon should be divided into periods to 
account for seasonality and other time-dependent factors (Shapiro, 2007). As a result of the 
larger scope of tactical planning, aggregated information is often used. For example, 
products could be aggregated into families, resources into capacity groups, and time periods 
into longer periods (Stadtler and Kilger, 2008). Moreover, the level of detail considered in 
the tactical planning is lower than in scheduling. For example, the sequence dependency of 
setup times and costs is typically not considered in a tactical planning problem (Pinedo, 
2009).  

The optimal management of the supply chain can offer a major competitive advantage in 
the global economy (Bojarski et al., 2009). Therefore, both academia and industry have 
acknowledged the need to develop quantitative tactical planning models to replace 
commonly used qualitative approaches (Papageorgiou, 2009). These optimization models 
can resolve the various complex interactions that make supply chain management difficult 
(Shapiro, 2007). Probably the most commonly used type of optimization models in supply 
chain management are mathematical programming models (Grossmann and Guillén-
Gosálbez (2010) and Grossmann (2012)). For example, Kallrath (2002a) discusses the 
successful implementation of a mathematical programming model for supply chain 
management in a large chemical company. 

Originally, these models focused on subsets of the tactical planning decisions (Varma et al., 
2007). However, optimizing the tactical planning of the various supply chain functions 
separately leads to suboptimal solutions due to the lack of cross-functional coordination 
(Shah, 2005). Therefore, it is desirable to consider the entire supply chain in a tactical 
planning model (Erengüç et al., 1999). For example, Park (2005) increased both profit and 
customer service levels by integrating production and distribution decisions in an MILP 
model rather than using a decoupled two-phase procedure commonly found in industry. 

In addition to mathematical programming, multi-echelon inventory systems are also often 
used to optimize some of the tactical planning decisions. In particular, these models can be 
used to determine the optimal safety stock levels across the supply chain considering 
demand uncertainty. For example, Farasyn et al. (2011) reported a planner-led effort at 
Procter & Gamble that was supported by single and multi-echelon inventory management 
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tools that reduced the inventory levels and resulted in $1.5 billion savings. An extensive 
overview of multi-echelon inventory systems is given by Axsäter (2006).  

Reviews on tactical planning are provided by Thomas and Griffin (1996), Erengüç et al. 
(1999), Min and Zhou (2002), Grossmann (2005), Shah (2005), Varma et al. (2007), 
Papageorgiou (2009), Mula et al. (2010), and Barbosa-Póvoa (2012). Many of these 
reviews focus on the process industry in general. A more specific review of tactical 
planning in the food industry is provided by Akkerman et al. (2010). In the remainder of 
this section, a brief overview of tactical planning in the FMCG industry will be provided. 

1.2.1. Tactical Planning in the FMCG Industry  

As shown in Figure 1.3, a typical supply chain in the FMCG industry consists of suppliers, 
factories, warehouses, distribution centers and retailers. For the factories, both the mixing 
and packing capacity should be considered since either stage could be the bottleneck 
depending on the selection of products. In addition, various types of mixing and packing 
lines should be considered since each type can only produce a subset of the products.  

 
Figure 1.3. Typical supply chain in the FMCG industry 

The tactical planning of a FMCG company should be considered over a one year horizon 
divided into weekly time periods due to the seasonality of many of the products and 
ingredients. This, combined with the large supply chain, can lead to very large problems. 
Moreover, the number of SKUs can be extremely large. Even within a single product 
category, there can be as many as 1000 SKUs. Another important characteristic is that no 
backlog of demand is possible, since a consumer will usually buy a substitute product if a 
product is sold out. A more detailed description of the tactical planning problem in the 
FMCG industry is given in Chapter 3. 
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Duran (1987) considers the production and distribution network for a brewery by 
introducing separate capacities for the processing and the packing. The problem consisted 
of 17 breweries, 17 bottling factories, 40 agencies, 13 brands and 12 monthly periods. A 
combination of time decomposition and brand decomposition was used to obtain a solution. 
The proposed method reduced the total costs by 3.7% compared to the program that was 
being used at the production department. 

DelCastillo and Cochran (1996) optimize the production and distribution operations of a 
soft drink company. They consider the recycling of plastic bottles, aluminium cans, and 
glass bottles. They reduced the required computational effort by first considering the 
planning on an aggregated product family level, and in the next step performing a 
disaggregated optimization for a single product family. They further fine-tuned the plan 
using a detailed shift-by-shift simulation. They considered a case study containing 14 
products, 4 container types, 2 plants, 12 production lines, and 13 depots.  

Brown et al. (2001) discuss the operational and tactical planning Linear Programming (LP) 
models used at the FMCG company Kellogg. The supply chain they consider contains 
plants, co-packers and distribution centers. The tactical planning model contained over 600 
SKUs, 27 locations and a 1-2 year horizon divided into 4-week periods. However, set-up 
times, set-up costs and raw materials were not considered. 

Ioannou (2005) used an LP model to reduce the transportation costs for the Hellenic Sugar 
Industry. The model was applied to a case study containing 5 production facilities, 10 
packaging lines, and 3 packaging varieties. The solution obtained with the LP model 
reduced the transportation costs by 25% compared to the initial situation.  

Li et al. (2009) optimize the capacity allocation decisions for a supply chain consisting of 
suppliers, factories and warehouses. They use two heuristic algorithms to be able to solve 
larger case studies.  Using the algorithms, they were able to optimize case studies 
containing up to 100 products and 4 time periods.  

Bilgen and Günther (2010) propose a flexible block planning approach for the short-term 
planning problem of a company producing fruit juices and soft drinks. A block planning 
approach is based on cyclically scheduling blocks that each consist of a pre-defined order 
of variable size production orders. They considered a planning problem containing 19 
products, 4 weeks and a supply chain consisting of 3 factories and 3 warehouses with 
unlimited capacity. They showed that 5-15% cost savings can be obtained when using their 
flexible block planning approach instead of the more common rigid block planning 
approach. 

Kopanos et al. (2012) consider the optimization of production and logistics operations for a 
Greek dairy company. They use a discrete time representation to model the inventory and 
transportation decisions, and they use a continuous time representation to model the 
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production and sequencing decisions.  The sequencing and timing decisions are made for 
aggregated product families, whereas all other decisions are based on individual products. 
The largest problem they consider contains 93 products grouped into 23 families, 8 time 
periods, and a supply chain consisting of 2 factories and 5 distribution centers. 

None of the papers discussed above have considered the optimization of a tactical planning 
problem for a 5-echelon supply chain, over 52 weekly periods, considering up to a thousand 
SKUs, and considering set-up times. Therefore, the second objective of this thesis is to 
develop an approach capable of optimizing such a case, which would be realistic for the 
FMCG industry. 

1.3. Mixed Integer Linear Programming 

As mentioned in the previous two sections, mathematical programming is a commonly used 
method in the optimization of scheduling and planning. MILP models, which are a specific 
class of mathematical programming models, are suitable for these type of problems because 
they can accurately capture the important decisions, constraints and objectives in supply 
chain problems (Pochet and Wolsey (2006), Shapiro (2007), and Grossmann (2012)). In 
addition, demonstrably good solutions to these problems can be obtained with MILP 
methods (Shapiro, 2007). In fact, given a sufficient amount of time, MILP methods can 
even yield optimal solutions. In this thesis, MILP models are developed for both scheduling 
and tactical planning in the FMCG industry. Therefore, this section will provide a brief 
introduction to MILP models.   

In an MILP model, a linear objective is optimized subject to linear constraints over a set of 
variables. An MILP model contains both continuous variables, which can assume any 
nonnegative value, and integer variables, which are limited to nonnegative integer values. 
In the most common case of MILP models, the integer variables are binary variables, which 
are constrained to values of 0 or 1 (Nemhauser and Wolsey, 1988). This type of MILP 
model will be considered in the rest of this thesis. These binary variables typically represent 
yes/no decisions. For example, the decision whether a product should be produced in a 
certain factory and in a certain week can be modeled with a binary variable.  

The general form of an MILP model with binary variables is given below.  

min   
. .    

        ,  0

        0,1

T T

n

p

c x d y
s t Ax By b

x x

y

 

where x is a vector of n continuous variables, y is a vector of p binary variables, c and d are 
the coefficient vectors of the objective function, A and B are coefficient matrices of the 
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constraints, and b is the right-hand-side vector of the constraints. All elements of b, c, d, A 
and B are known constants. 

The major difficulty in optimizing MILP problems comes from the binary variables. For 
any choice of 0 or 1 for all of the elements of the vector of binary variables y, a resulting 
Linear Programming (LP) model containing the x variables can be optimized. The simplest 
method of optimizing an MILP problem would then be to optimize these LP models for all 
possible combinations of the binary variables. However, the number of possible 
combinations of the binary variables increases exponentially with the number of binary 
variables. Consequently, the required computational effort of optimizing the MILP model 
with such a brute force approach would also grow exponentially (Floudas, 1995). 

Rather than using a pure brute force approach, MILP models have traditionally been solved 
via branch-and-bound (B&B) techniques (Wolsey, 1998). The B&B method is an implicit 
enumeration approach that theoretically can solve any MILP by solving a series of LP 
relaxations (Weng, 2007). An LP relaxation of the MILP problem can be obtained by 
removing the integrality requirements from the integer/binary variables (Pochet and 
Wolsey, 2006). In other words, binary variables can assume any value from 0 to 1 in the 
relaxed model.  

The first step in the B&B method is to optimize the LP relaxation of the MILP model. If all 
relaxed binary variables are exactly 0 or 1 in the obtained solution, the solution of the LP 
relaxation is a feasible and optimal solution of the MILP. The feasible region of the original 
MILP problem is a subset of the feasible region of the LP relaxation. Therefore, assuming a 
minimization objective, when non-integer values are obtained for the 0-1 variables, the LP 
relaxation provides a lower bound on the objective of the MILP model (Weng, 2007). As a 
result, if the optimal solution of the LP model is feasible for the MILP model, it will also be 
the optimal solution of the MILP model. 

However, in most cases the relaxed solution will contain binary variables that have taken a 
value between 0 and 1, and therefore, the solution will be infeasible for the MILP model. 
The B&B method then selects one of the binary variables that violate the integrality 
requirement and branches on this variable. That is to say, it will create two subproblems, 
one where the binary variable is fixed at 0 and one where the binary variable is fixed at 1. 
These subproblems are denoted as nodes. An LP relaxation of these subproblems can then 
be solved. The solutions to these LP relaxations provide lower bounds for their respective 
nodes.  

This procedure is then repeated until a feasible solution is obtained. This feasible solution 
provides an upper bound. After all, any solution with an objective that is higher than this 
upper bound will be inferior to the obtained solution. The upper bound is updated each time 
a new feasible solution with an objective value that is less than the current upper bound is 
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obtained. At any time during the optimization, there will be a set of nodes that still need to 
be investigated. A search strategy determines the order in which the nodes are selected for 
branching. Examples of search strategies are depth-first and best-bound. 

The advantage of the B&B method compared to a pure brute force approach lies in the 
pruning of nodes. If the lower bound of a certain node is equal to or higher than the current 
upper bound, any solution that could be obtained in this node, or any of the successors of 
this node, will have an objective that in the best case is equal to best obtained solution. 
Therefore, the successors of this node do not need to be investigated since they will not 
provide better solutions. The B&B algorithm will terminate once all nodes have been 
pruned, since that signifies that either the optimal solution has been obtained or no feasible 
solution exists.  

Often these B&B algorithms are optimized with a specified optimality tolerance. In this 
case, any node whose lower bound is within, for example, one percent of the best obtained 
solution will be pruned. The advantage is that this can greatly speed up the optimization. 
The disadvantage is that the obtained solution might no longer be optimal. The only 
guarantee is that it is within 1% of the optimal solution. Nevertheless, the available 
optimization time is usually limited in practice. As a result, it is often preferable to obtain a 
near optimal solution in a reasonable amount of time rather than an optimal solution in a 
considerably longer amount of time.  

Even with this branch-and-bound algorithm and with a small optimality tolerance, MILP 
problems often become difficult to solve when the number of binary variables increases. In 
fact, 0-1 MILP problems belong to the class of NP-complete problems (Vavasis, 1991). 

However, in the last two decades great progress has been made in solution algorithms and 
computer hardware. Current state-of-the-art commercial solvers, such as CPLEX and 
GUROBI, incorporate a wide variety of approaches into the B&B algorithm. For example, 
cutting planes can be used in a B&B based approach to considerably improve the obtained 
bounds, and thereby greatly reduce the required amount of enumeration (Marchand et al., 
2002). Johnson et al. (2000) give an overview of improvements to the B&B algorithm. 
They discuss improvements to preprocessing, branching, and primal heuristics. In addition, 
they discuss branch-and-cut and branch-and-price versions of the B&B algorithm.  

As a result of these and other improvements, a purely algorithmic speedup of more than 
55,000 times has been reported between CPLEX version 1.2 and 12.2. The performance 
improvement in CPLEX between 1991 and 2009 is shown in Figure 1.4.  

Due to the combination of this algorithmic speedup and the improvement in computer 
hardware, solving MILP problems has become around 100 million times faster in the last 
20 years (Koch et al., 2011). Due to this drastic improvement, many MILP problems that 
were unsolvable a decade ago, can be solved within seconds today (Grossmann, 2005). This 
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allows for the development of more realistic models that include more details and have a 
wider scope. Nevertheless, as will be shown in this thesis, even with the vastly improved 
optimization capabilities, many realistically sized optimization problems are still 
challenging from a computational point of view, since MILP problems are NP-complete, 
which means that in the worst case the computational time increases exponentially with the 
problem size. 

 
Figure 1.4. Performance improvement of CPLEX versions 1.2 through 12.2. The geometric mean speed-up is 
shown on the right axis and the number of instances that could be solved out of a test set of 1,852 instances is 
shown on the left axis. The shown improvements are purely due to algorithmic improvements. (Koch et al., 2011) 

 

1.4. Objectives 

The first objective of this thesis is to develop a scheduling model for the short-term 
production scheduling problem in the FMCG industry. Currently available scheduling 
models for this problem either require manual intervention, provide infeasible solutions, or 
are inflexible to many of the process characteristics. Therefore, this scheduling model 
should be able to obtain good feasible production schedules without any manual 
interference. In addition, while a problem-specific approach might be required due to the 
complexity of the problem, the model should still be applicable to a wide range of 
production scheduling problems in the FMCG industry.   

Second, a new optimization approach for the tactical planning problem in the FMCG 
should be developed. This approach should be capable of handling the extremely large 
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problem sizes found in the FMCG industry, which can contain up to 1000 SKUs and for 
which available models are intractable. In addition, the solution should be realistic and 
provide feasible production targets for the scheduling level. 

Third, the limited shelf-life of many FMCG should be considered in the tactical planning. 
Otherwise, products in inventory might exceed their shelf-life and become waste. 
Moreover, the resulting lower inventory levels might lead to missed sales. However, 
commonly used methods of incorporating shelf-life are computationally inefficient. Since 
the tactical planning problem for the FMCG industry is already computationally 
challenging without considering shelf-life, these methods might not be tractable for 
realistically sized problems. Therefore, the third objective is to develop computationally 
more efficient methods of implementing shelf-life restrictions. 

Finally, the traditional supply chain management goal of maximizing the profit while 
guaranteeing customer service levels is slowly changing (Barbosa-Póvoa, 2012). Supply 
chain management can have a significant environmental impact (Côté et al., 2008). In 
addition, improving the environmental performance has been identified as a method of 
increasing revenue and market share. (Barbosa-Póvoa, 2009). Nevertheless, Akkerman et 
al. (2010) conclude that sustainability on the tactical planning level in the food industry has 
not received any attention in literature. Therefore, the final objective of this thesis is to 
integrate the environmental impact into the tactical planning model. 

1.5. Outline 

The chapters of this thesis are visualized in Figure 1.5. In Chapter 2, an MILP model for the 
short-term scheduling in the FMCG industry is proposed. The efficiency of this formulation 
is increased through the use of product family dedicated time intervals and the indirect 
modeling of the inventory constraints. The efficiency and flexibility of this formulation is 
demonstrated on 10 examples based on an ice cream scheduling case study that is 
representative for the FMCG industry. In addition, Chapter 2 introduces an algorithm based 
on a pre-ordering heuristics that greatly reduces the required computational effort. 

Chapter 3 introduces an MILP model for the tactical planning in the FMCG industry. An 
accurate approximation of the packing line capacity is obtained by approximating the 
sequence-dependent changeovers with SKU and SKU family set-ups. A relatively small 10 
SKU example demonstrates the necessity of including these binary set-up variables. 
However, the MILP model becomes intractable for more realistically sized problems. 

Therefore, a decomposition algorithm based on single-SKU submodels is developed in 
Chapter 4. It is shown that this decomposition algorithm can obtain solutions within a few 
percent of the optimal solution for a variety of examples. Even for these small 10-SKU 
examples, the decomposition algorithm is computationally considerably more efficient than 
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the full space model. Moreover, the SKU-decomposition algorithm can optimize examples 
containing up to 1000 SKUs, whereas the full space model is intractable for examples 
containing 50 or more SKUs. 

 
Figure 1.5. Overview of this thesis. 

Chapter 5 introduces shelf-life restrictions into the tactical planning problem. It is first 
shown that commonly used methods of directly incorporating shelf-life restrictions are 
computationally inefficient. Therefore, indirect and hybrid methods of incorporating shelf-
life restrictions are developed. The hybrid method is computationally considerably more 
efficient than the direct method, and it can obtain near optimal solutions. The indirect 
method is computationally even more efficient, and it can obtain solutions within a few 
percent of optimality. This indirect method is used in combination with the SKU-
decomposition algorithm to optimize examples containing up to 1000 SKUs.  

In Chapter 6 the environmental impact is considered as a second objective function in the 
tactical planning model. The environmental impact is evaluated using the Eco-indicator 99. 
Using the -constraint method, a set of Pareto optimal solutions is identified for an example 
problem containing 10 SKUs. The -constraint method is also applied in combination with 
the SKU-decomposition algorithm. Using this combination, a set of solutions within a few 
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percent of the Pareto optimal solutions is obtained for the 10-SKU example. Moreover, this 
combination is used to optimize a larger 100 SKU example, for which the full space model 
is intractable. 

Finally, Chapter 7 summarizes the major contributions and conclusions of this thesis. 
Furthermore, it presents an outlook on future work.  
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ABSTRACT: In this chapter, a problem-specific model is presented for the short-term 
scheduling problem in the Fast Moving Consumer Goods (FMCG) industry. In order to 
increase the computational efficiency, the limited intermediate inventory is modeled 
indirectly by relating mixing and packing intervals. In addition, the model size is reduced 
by exploiting the process characteristics by dedicating time intervals to product families. 
The efficiency and flexibility of the formulation is demonstrated using ten examples based 
on an ice cream scheduling case study. The examples contain 62-73 batches of 8 products 
that must be produced within a 120 hour horizon. All case studies could be solved to 
optimality within 170s. The addition of a periodic cleaning requirement on the mixing lines 
significantly increased the complexity of the problem. An algorithm is proposed that solves 
to optimality within half an hour 9 out of 10 case studies with periodic cleaning. For the 
10th case study the makespan obtained was 0.6% higher than the theoretical minimum 
makespan.  

2.1.  Introduction 

Production scheduling in the process industry has been studied extensively over the last 
twenty years. The objective of this area is to find the optimal timing of activities for 
producing products on a given set of processing equipment based on processing recipes 
while considering both resource and timing limitations. What constitutes the optimal 
schedule depends on the objective, which can for instance be to maximize profit or 
minimize makespan.  

In chemical engineering, Mixed Integer Linear Programming (MILP) is one of the most 
commonly used techniques for formulating and solving scheduling problems (Mouret et al., 
2009).  Some of the most important progress in this area has been the development of the 
State Task Network (STN) (Kondili et al., 1993) and Resource Task Network (RTN) 
(Pantelides, 1994) MILP models. Both are general approaches that are able to handle 
processes with a wide variety of characteristics. Many different scheduling models have 
been proposed, and extensive reviews are, for instance, given by Kallrath (2002b), Floudas 
and Lin (2004), Mendez et al. (2006), and Harjunkoski et al. (2013). 

In contrast to general scheduling models, such as the STN and RTN, problem-specific 
formulations focus on a single problem. Sometimes these problem-specific formulations 
may be more suitable since they can exploit the process characteristics more effectively. 
Therefore, they are often computationally more efficient (Pekny et al., 1990). In this 
chapter, a problem-specific formulation is presented for the short-term scheduling in the 
Fast Moving Consumer Goods (FMCG) industry.  

The model formulation will be evaluated based on an ice cream scheduling case study 
introduced by Bongers and Bakker (2006). This ice cream case study is representative of 
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the FMCG industry because two-stage production with intermediate storage is common in 
the FMCG industry (Bilgen and Günther, 2010). In addition, the ice cream production 
process characteristics are common in the FMCG industry as well. These characteristics 
include limited intermediate inventory, single continuous packing campaigns and periodic 
cleaning. However, not all FMCG production processes contain all process characteristics 
found in the ice cream production process. Therefore, the model should still be suitable for 
problems without some of these characteristics.   

Bongers and Bakker (2006) proposed a model for the ice cream case study using the 
INFOR advanced scheduling software. However, this model required manual interventions 
to find a feasible solution. Subbiah et al. (2011) used a timed automata approach to solve 
several scheduling problems, and they applied their approach to a similar ice cream 
scheduling problem. Using ordering heuristics, they were able to obtain a solution for the 
example case study without manual intervention. However, they could not obtain the global 
optimal solution. 

Kopanos et al. (2011a) proposed an efficient global precedence based MILP model for the 
same ice cream scheduling problem discussed in this chapter but without periodic cleaning 
on the mixing lines. Their solution method also includes ordering rules, and they could 
obtain the global optimal solution for 10 example case studies. Recently, Kopanos et al. 
(2012a) extended their model by introducing several improvements, including symmetry 
breaking constraints. In addition they introduced a decomposition based solution strategy. 
Using the new formulation and solution strategy, they could solve problems of up to 200 
batches of 24 different products. However, most of the improvements rely on the existence 
of a single mixing line and the fact that each product can only be packed on a single 
packing line. Therefore, the updated model has limited applicability to the general FMCG 
scheduling problem.  

In this chapter, a new MILP scheduling model and algorithm are presented for the 
scheduling in the FMCG industry. A problem-specific formulation is used since the 
efficiency of the model is crucial to be able to address larger case studies. The model is 
demonstrated based on an ice cream scheduling problem. The inclusion of periodic cleaning 
is an important addition compared to previous approaches dealing with this ice cream 
scheduling problem. In addition, the model formulation is flexible to many of the process 
properties of the ice cream production process, and therefore it can be applied to other 
scheduling problems in the FMCG industry. 

2.2. Problem Definition 

The ice cream production process can be simplified into a two-stage process with 
intermediate storage (Bongers and Bakker, 2006), as is shown in Figure 2.1. In the first 
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stage, the ingredients are mixed and pasteurized on one of the mixing lines. Next, the 
products are stored in the intermediate storage tanks. Finally, the products are packed by 
one of the packing lines. Such a make-and-pack production process is very common in the 
FMCG industry (Bilgen and Günther, 2010). Each mixing line, storage tank and packing 
line can only handle a subset of the products. These subsets will be denoted as product 
families.   

 
Figure 2.1. Schematic overview of the simplified ice cream production process 

The scheduling problem can then be stated as follows: Given are a set of products 
belonging to various product families that have to be produced in a plant with a two-stage 
production process with parallel mixing lines in the first stage, followed by intermediate 
inventory, and parallel packing lines in the second stage. In this production process, the 
batch identity must be maintained, and therefore product from different mixing runs cannot 
be stored in the same storage tank simultaneously. The processing rates and capacities are 
known for each product on every unit. Given is also a demand for these products that is due 
at the end of a specified time horizon, which is usually of the order of few days. The 
problem is then to find a feasible schedule that determines which products are to be 
processed on which unit at what time. Furthermore, this schedule should be optimal 
according some objective, which is a makespan minimization in this chapter.  

One defining feature of the production process is that the throughput of the mixing lines is 
usually higher than that of the packing lines. As a result, production facilities contain fewer 
mixing lines than packing lines. Consequently, the mixing lines must switch between 
products frequently; otherwise part of the packing lines would run out of intermediate 
products and would be forced to idle. This severely complicates the scheduling problem, as 
each product is not just assigned once, but it must be assigned several times to the mixing 
lines while ensuring enough product is always available in the intermediate storage to allow 
the packing to continue.  
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2.2.1. Additional Process Characteristics 

The ice cream example contains several additional process characteristics that are found in 
many of the FMCG industry production processes. However, not all processes in the 
FMCG industry contain all characteristics. Since the objective is to develop a scheduling 
model suitable for the FMCG industry in general, the proposed model can handle 
scheduling problems with and without these additional process characteristics. In the model 
description in Section 2.5, the formulation will initially be based on a case study containing 
all the ice cream production process characteristics. However, alternative formulations for 
problems without each of these characteristics will also be given. 

The first additional characteristic is that each production run must consist of a number of 
full storage tanks. In general, the industry policy is to use these full storage tank batches 
because it reduces waste production from changeovers and cleaning. In addition, it allows 
for fixed product recipe amounts which reduce the chance of human errors in the mixing 
process. If the full tank mixing run requirement is enforced, the batching decisions are fixed 
because each batch will consist of a single storage tank. Alternatively, without this 
requirement the batching decisions are included in the proposed model. 

Secondly, the ice cream must be aged after the mixing and before the packing. Therefore, 
the ice cream mix must remain in the intermediate storage for a couple of hours. The length 
of the ageing time is product dependent. Thirdly, for hygienic reasons, the mixing line must 
be cleaned at least once every 72 hours. Other important characteristics are that each 
product is packed in a single continuous packing run, and that the changeover times are 
sequence-dependent.  

2.3.  Dedicated Time Intervals 

Selecting the time representation is one of the key decisions in the development of a 
scheduling model (Floudas and Lin, 2004). A unit-specific continuous time interval 
approach, which  is an approach that was originally developed by Ierapetritou and Floudas 
(1998), was selected for the proposed model. The main advantage of this approach is that it 
requires considerably fewer intervals than discrete time or global continuous time interval 
approaches. Those approaches mainly require more intervals because of the unaligned 
starting and ending times of the different stages, the varying batch production times, and 
the sequence-dependent changeovers.  

As explained in the problem definition, the mixing lines switch frequently between 
products to prevent the packing lines from standing idle. As a result, the same product is 
almost never mixed in two consecutive mixing runs. This alternation can be exploited by 
introducing dedicated time intervals.  



Chapter 2 
 

 
24 

A dedicated time interval is one in which only a certain product family can be produced. 
All products within a product family can be packed by the same packing lines and stored in 
the same intermediate storage tanks. Although it should be noted that these products cannot 
be stored in the same storage tanks simultaneously because the batch identity has to be 
maintained. For the example case study, two interval types are introduced: type 1 which is 
dedicated to the products for the first packing line and type 2 which is dedicated to the 
products that will be packed by the second packing line. This is shown in Figure 2.2, where 
for simplicity all intervals are of uniform length, and there is no time in between the 
intervals. However, in the proposed model the length of the intervals depends on the mixing 
and packing rates. In addition, there can be time in between intervals, either due to 
changeovers, or due to one of the lines standing idle. 

 
Figure 2.2. Dedicated time interval overview. 

However, pre-fixing product families to intervals could lead to suboptimal solutions since 
the pre-fixed ordering might not be the optimal ordering. Therefore, empty intervals are 
introduced. In each interval, either a product of the dedicated product family is produced, or 
no product is produced, and the interval is empty and has a zero length. In this way, the 
same product family can be produced in multiple consecutive intervals. Therefore, the 
ordering of product families is still flexible, and the optimal solution can be obtained. 

Product family dedicated time intervals decrease the required computational time since the 
number of binary variables can be considerably reduced. For example, with two product 
families and a perfect alternation, the number of binary allocation variables can be reduced 
by 50%. However, since it should be possible to deviate from the pre-fixed ordering, a few 
extra intervals need to be added to the model to allow for the empty intervals. Therefore, 
the reduction in binary allocation variables is slightly less than 50%. It should be noted that 
a large number of empty intervals could even allow the model to obtain the optimal solution 
for a process without an alternating production of product families on the mixing lines. 
However, the formulation might be less efficient for such a process since it will require 
many empty intervals. An example of the use of dedicated time intervals to represent a not 
perfectly alternating production process is given in Figure 2.3. 



Scheduling 
 

  

 
25 

 
Figure 2.3. Example of the Dedicated Time Intervals (DTI). From top to bottom: The defined horizon contains ten 
alternating dedicated time intervals. The optimal solution is not perfectly alternating. The dedicated time intervals 
can be used to represent the optimal solution with time intervals 2, 5 and 7 being empty intervals. 

2.4. Inventory 

One of the main issues associated with using a unit-specific continuous time approach for 
the ice cream scheduling problem is the modeling of the intermediate inventory. If the 
intermediate inventory is modeled in a straightforward manner, it would require its own 
intervals that need to be linked with the mixing and packing intervals. To reduce the 
computational impact of the intermediate inventory, an alternative method to model the 
intermediate inventory is used.  

The model size is significantly reduced by not directly modeling the intermediate inventory. 
Instead the mixing intervals are coupled directly with the packing intervals. The start of a 
mixing interval is limited by the ending of previous packing intervals. This ensures that the 
mixing does not start before a tank is available to store the product. To be able to ‘count’ 
the number of storage tanks that are in use, at most one storage tank can be processed in 
each interval.  

As an example, if two storage tanks can store product family 1, then the third mixing 
interval for product family 1 cannot start before the first packing interval has finished. This 
method can also be applied for multiple identical parallel lines since only one product per 
family can be processed per interval. More than two product families can be accommodated 
by introducing additional interval types.  

2.5.  Related Interval Method (RIM) 

The constraints of the RIM are discussed in this section, and a schematic overview of the 
RIM is given in Figure 2.4. Some of the constraints of the model, most notably the timing 
and changeover detection constraints, are based on those from the MILP scheduling model 
from Erdirik-Dogan and Grossmann (2008). However, the introduction of dedicated time 
intervals and the new approach of dealing with the intermediate inventory require some 
modifications to these constraints.  
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Figure 2.4. Schematic overview of the RIM model 

2.5.1. Dedicated Time Intervals 

The dedicated time intervals have been implemented into the RIM by introducing a 
repeating sequence of dedicated time intervals. Each sequence, denoted as repeating unit, 
contains the same number and ordering of dedicated time intervals. All product families 
must have at least one dedicated time interval in this repeating unit. However, if exactly one 
interval is used for each product family, the number of required empty intervals could be 
large if the average run length of some of the product families is longer than one interval.  

Therefore, the number of intervals dedicated to each product family is based on the average 
mixing run length of that product family. If the average run length is unknown, half the 
number of available storage tanks for this product family can be used as an initial value. All 
intervals dedicated to the same product family in the repeating unit are ordered 
sequentially. 

For the set-up in the example case study, the average mixing line run length for product 
family 1 is one tank, whereas the average run length for the product family 2 is two tanks. 
This difference is mainly because the storage tanks dedicated to family 1 are twice as large 
as those dedicated to family 2. In addition, four storage tanks can store product family 2, 
while only two can store family 1. Therefore, a repeating unit of one interval dedicated to 
product family 1 and two intervals dedicated to product family 2 is used. A schematic 
overview of the interval set-up is depicted in Figure 2.5. 

 
Figure 2.5. A schematic overview of the dedicated time intervals used in the RIM model 

The required number of intervals can be estimated based on the workload of both packing 
lines. First, the minimum number of repeating units can be estimated based on the demand. 
For example, if the total demand of product family 1 is six storage tanks, and if each 
repeating unit contains a single interval of type 1, then at least six repeating units are 
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required. In order to allow for empty intervals, this minimum number of repeating units is 
initially increased by 20%. If the obtained solution is not equal to the minimum makespan, 
which is explained in the result section, then this number can be increased by one repeating 
unit until no improvement in objective function is obtained. 

2.5.2. Allocation 

At most one product can be mixed during any time interval. Even if there are multiple 
mixing lines, only one of them can be assigned to each interval. This is necessary to be able 
to count the number of tanks that are currently in use. Clearly, multiple mixing lines can be 
active simultaneously, which is achieved by allowing intervals on different mixing lines to 
overlap. Most of the variables and constraints are only declared for those intervals in which 
a certain product family can be processed according to the dedicated time intervals. The 
domain over which each variable is declared is given in the nomenclature.  

 
,

1     i,m,t
i m

WM t   (2.1) 

The packing and mixing intervals are related directly. That is to say, if product i is mixed in 
interval t, then product i will also be packed in interval t. Later, the start times of these 
intervals will be related to ensure that the product is aged before the packing starts. In the 
following constraint, an inequality is used because of the empty intervals. For the mixing 
lines, the binary allocation variables can be zero since the changeovers are based on 
WMdummy. However, calculating the changeovers for the packing lines and ensuring single 
continuous packing runs is facilitated by having a product assigned to every interval. It 
should be noted that WP must be treated as a binary variable if there is more than one 
packing line per family. If there is only one packing line per family, WP can be relaxed as a 
continuous variable. 

      i,p,t i,m,t t
p m

WP WM i IT ,t   (2.2) 

2.5.3. Production Amounts 

Each mixing run must consist of a number of full tanks. Each interval consists of the 
production of exactly one storage tank. If mixing runs are not restricted to full tanks, 
constraint (2.3) can be written as an inequality. In that case, the model would solve both the 
batching and scheduling problems simultaneously.  

 , , , ,      i m t i m t i tPM WM STC i IT ,m,t   (2.3) 
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The total production of product i is less than or equal to the demand. Alternatively, the 
demand could be used as a lower bound when either maximizing the total production or 
minimizing the makespan. 

 , ,
,

   i m t i
m t

PM D i   (2.4) 

The amount packed in a packing interval must be equal to the amount mixed in the 
corresponding mixing interval since the mixing and packing intervals are coupled.  

      i,p,t i,m,t t
p m

PP PM i IT ,t   (2.5) 

In addition, a packing line must be assigned to a product to be able to pack that product. 

 , ,     , ,i,p,t i i p t p tPP STC WP i IP IT p t   (2.6) 

2.5.4. Empty Intervals 

An interval is empty when no product is assigned to the mixing line m in interval t. 

 , , , 1     i m t m t
i

WM WEI m,t   (2.7) 

At most two out of three consecutive intervals are allowed to be empty intervals on all 
mixing lines. Having three empty intervals in a row would serve no real purpose as these 
intervals could simply be removed from the model. The NM parameter is the number of 
mixing lines. An interval will always be empty on at least NM-1 lines since at most one 
mixing line can be assigned in each interval. The total number of empty lines per three 
consecutive intervals must thus not be more than 3(NM-1)+2. 

 
2

, 3 -1 +2     
t

m t'
m t' t

WEI NM t   (2.8) 

The inventory is considered by counting the number of tanks that have been mixed but that 
have not yet been packed. However, empty intervals should not be considered when 
counting the intervals. WEI2t,t’ is used to determine whether at least two intervals are empty 
on all mixing lines in a set of intervals. Only intervals dedicated to the same product family 
are included in this range since the other products are stored in different storage tanks. The 
number of intervals in this range is the number of storage tanks dedicated to this product 
family plus 1. The Nfn,t parameter indicates the number of intervals that should be moved 
forward until the nth interval dedicated to the same family. In this way, the number of 
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intervals dedicated to a product family in an interval range can be related to the total 
number of intervals in this range. 

If the first interval in this range is not empty on all mixing lines, this variable is set to zero. 
There could still be two completely empty intervals in the range of intervals, but this will 
then be covered by one of the subsequent WEI2t,t’ variables. Subtracting NM-1 from 

,m t
m

WEI  gives 1 if the interval is empty on all mixing lines and 0 if one of them is active.  

 , , , ,1      , ,  |  
cc t t' m t c c n NST t

m
WEI2 WEI NM c t TC t' TC t t' t Nf   (2.9) 

WEI2t,t’ is set to zero if none of the intervals after t and before t’+1 are empty on all 
mixing lines. Only those intervals in which the same product family as in interval t is mixed 
are included.  To ensure that only intervals that are empty on all mixing lines are counted, 
the NM-1 is again subtracted from each ,m t

m
WEI in the summation.  

 

'

, , ,
1

,

1

                                             , , ' , ' '
c

c

t

c t t' m t''
t'' TC t m

c c n NST t

WEI2 WEI NM

c t TC t TC t t t Nf
  (2.10) 

2.5.5. Mixing Line Changeovers 

To facilitate the modeling of changeover constraints, the variable WMdummyi,m,t is 
introduced. In principle this variable is equal to the true assignment variable WMi,m,t. 
However, with the additional requirement that exactly one product is assigned to each 
interval. This ensures that, even when empty intervals in WMi,m,t are allowed, only 
changeovers between consecutive intervals have to be considered. The product assignment 
in empty intervals will be equal to the assignment in the interval before or after since the 
changeover time between two batches of the same product is zero. 

 , , , ,      , ,i m t i m t tWMdummy WM i IT m t   (2.11) 

 , , 1     ,i m t
i

WMdummy m t   (2.12) 

If product i is mixed in interval t, then there is exactly one changeover from this product i to 
any other product. The following constraint forces the changeover variable to one if WM is 
one since all changeover variables are 0-1 continuous variables. 

   i,i',m,t i,m,t
i'

WMCO WMdummy i,m,t NT   (2.13) 
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Similarly, if product i’ is mixed in interval t+1, then there is exactly one changeover from 
any product to this product i’. 

 1    i,i',m,t i',m,t+
i

WMCO WMdummy i',m,t NT   (2.14) 

Finally, each interval has exactly one changeover: 

          i,i',m,t
i,i'

WMCO = 1 m,t   (2.15) 

2.5.6. Mixing Times 

The end time of mixing interval t is equal to the starting time of this interval, plus the time 
required to mix the product in this interval. 

 , ,
, ,      ,i m t

m t m t
i i

PM
TEM TSM m t

PRM
  (2.16) 

Intervals of the same product family on different mixing lines should be in the correct 
order. By enforcing this, the number of intervals can be counted to determine how many 
storage tanks of a product family are in use. However, only the nonempty intervals are 
required to be in the correct order. As a result, intervals of different product families on 
different mixing lines are allowed to be in any order. 

 , , ,      ,  | m t m',t' m t m t' c cTSM TSM H WEI WEI c m,m',t TC ,t' TC t t'   (2.17) 

All intervals must end before the end of the time horizon. 

 ,      ,m tTEM H m t NT   (2.18) 

Mixing interval t cannot start before the end of the previous interval plus the changeover 
time from interval t-1 to t.  

 1 1 ,  m,t i,i',m,t i,i' m t
i,i'

TEM WMCO COTM TSM m,t   (2.19) 

2.5.7. Packing Changeovers 

The product assignment of the empty packing intervals is set equal to the assignment in the 
previous interval dedicated to the same product family. This is possible since each product 
is packed in a single continuous campaign without changeovers. For a packing interval to 
be empty, this mixing interval must be empty on all mixing lines.  
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, ,

1 1    , 1
n t n ti,p,t m,t+Nf i,p,t Nf p t

m
WP + WEI NM WP i IP IT , p,t n   (2.20) 

If product i is packed in interval t, then there must be a changeover from this product to any 
other product after this interval. 

      i,i', p,t i,p,t p t
i'

WPCO WP i IP IT , p,t NT   (2.21) 

If product i’ is packed in interval t+Nfn,t, then there must be a changeover from any product 
to this product i’ after interval t. The interval t+Nfn,t with n=1 is the first interval after the 
current interval that is dedicated to the same product family. 

 
,' '      ' , 1

n ti,i ,p,t i ,p,t+Nf p t
i

WPCO WP i IP IT , p,t n   (2.22) 

Each interval has exactly one changeover on each packing line that can pack the product 
family to which the interval is dedicated. 

 1     i,i', p,t t
i,i'

WPCO p PT ,t   (2.23) 

2.5.8. Packing Times 

The end of each packing interval is equal to the start time plus the time required to pack the 
product in that interval. 

      i,p,t
p,t p,t t

i i

PP
TEP = TSP + p PT ,t

PRP
  (2.24) 

All packing intervals must end before the end of the time horizon. 

      p,t tTEP H p PT ,t   (2.25) 

Each product is packed in a single continuous packing campaign. Therefore, the time 
between packing intervals is zero when the same product is produced in both intervals. 
Since the changeover time from a product to the same product is zero, the changeover 
variable is multiplied by the changeover time to limit the time between intervals. The 
changeover time is multiplied by a big-M parameter to ensure the time between intervals 
can take any value for nonzero changeovers. For the examples in this chapter the big-M 
parameter was set to 25. 

 
, '

     p,t i,i', p,t i,i' t
i i

TBP M WPCO COTP p PT ,t   (2.26) 
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The next interval starts at the end time of the previous interval, plus the changeover time, 
plus the time between packing intervals. The following constraint, together with constraint 
(2.26), ensures that there is no delay between the packing of the same product in subsequent 
intervals.   

 ,, '

                                                            , , , 1 | 

n tp,t i,i',p,t i i p,t p,t Nf
i,i'

t c

TEP WPCO COTP TBP TSP

c p PT t TC n t NT
  (2.27) 

2.5.9.  Intermediate Inventory 

The inventory restrictions are enforced by counting the number of tanks that are currently 
in use. Since the mixing and packing intervals are coupled, the packing of the nth interval of 
a product family must finish before the mixing of the NSTc+nth interval of the associated 
type can start, with NSTc being the number of tanks that are available to store this product 
family. However, when one of these intervals is an empty interval, this constraint is 
relaxed. The time horizon is used as the big-M parameter. The t-Nbn,t  gives the interval that 
is the nth previous interval dedicated to the same product family as interval t. 

 ,
,

' '
'  '

1   

                                                                  , , , ,

n t
c n t

t

p,t -Nb m,t m ,t
t TC t Nb m

t c c

TEP TSM M WEI NM

c m p PT t TC n NST

  (2.28) 

If the previous constraint is relaxed, then the NSTi+n+1th interval of this type cannot start 
mixing before the nth interval has finished packing. If this stretch of intervals contains two 
or more empty intervals, this constraint is relaxed. 

 ,
,

1

, ' ''
' '' ' 1

                                                           , , , 1

n t
c n t c

t t

p,t -Nb m,t c t ,t
t TC t Nb t TC t

t t c

TEP TSM M WEI2

c m p PT ,t TC n NST

  (2.29) 

If the previous constraint is relaxed due to two empty intervals, then the NSTi+n+2nd 
interval of the same type cannot start mixing before the nth interval has finished packing. In 
theory, this stretch could contain three or more empty intervals, in which case the constraint 
could be relaxed again. However, in general, when using a high utilization percentage the 
products are packed well before the NSTi+n+2nd interval. Therefore, no relaxation 
conditions are added to the following constraint, but the model can easily be modified when 
this relaxation is required. 

 
,

     , , , 2
n tp,t -Nb m,t t c cTEP TSM c m p PT ,t TC n NST   (2.30) 
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2.5.10. Ageing Times 

A batch cannot be packed before the end of the mixing plus the ageing time. The constraint 
is relaxed for empty intervals.  

 ,      ,p,t m,t i i,m,t m t t
i

TSP TEM AgeT WM H WEI m p PT ,t   (2.31) 

2.5.11. Periodic Cleaning Intervals in the Mixing Line 

Two different methods could be used to deal with the cleaning time. The first one is 
specific to the example problem and will be discussed below. The second method is more 
general, though less efficient for the example problem, and it is discussed in Appendix A. 

At least one cleaning interval is required because the horizon is 120 hours, and a cleaning 
interval is required once every 72 hours. Since the objective is to maximize production or 
minimize makespan, the minimum number of cleaning intervals will lead to the maximum 
production. As a result, exactly one cleaning interval is required for the example problem. 
The binary variable WCIm,t is introduced, which is one if a cleaning interval precedes the 
current interval. The first constraint ensures that each mixing line has exactly one cleaning 
interval. 

 , 1   m t
t

WCI m   (2.32) 

For this cleaning interval, at least 4 hours are required between the end of the previous 
interval and the start of the next interval: 

 , ,, 1 4   ,m t m tm tTSM TEM WCI m t   (2.33) 

Also, this cleaning interval must not be later than 72 hours after the start or earlier than 72 
hours before the end of the last mixing interval because then two cleaning intervals would 
be required. These 72 hours (CIfrequency) are the minimum cleaning interval frequency. 

 , , ,1       , ,m t' m t m tTEM CIfrequency H WCI TSM m t t' NT   (2.34) 

 , ,1       ,m t m tTSM CIfrequency H CIfrequency WCI m t   (2.35) 

2.5.12. Single Campaign per Product 

A production campaign is started only once for each product. 
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 , ,
,

1     i p t
p t

WPstart i   (2.36) 

If product i is packed in interval t and is not packed in the previous interval dedicated to 
this product family, then interval t is the start of a production campaign for product t. 

 
,
  , , 1

n ti,p,t i,p,t i,p,t -Nb p tWPstart WP -WP i IP IT p,t n   (2.37) 

2.5.13. Symmetry Breaking 

If multiple intervals are dedicated to a single product family in the repeating unit, the 
number of equivalent solutions can be reduced by enforcing that a product can only be 
mixed in the second of these intervals if one is mixed in the first as well.  

      , '  | '= 1i,m,t i,m,t' c c
i i

WM WM c m,t TC ,t TC t t   (2.38) 

2.5.14. Objective Function 

Two different objective functions are used in this chapter. The first option is maximizing 
the production, while having the demand as an upper bound. This has been defined as the 
feasibility objective function, as the optimization attempts to find a feasible schedule where 
the demand is met. In this case, the following objective is used. 

 , ,
, ,

i p t
i p t

obj PP   (2.39) 

The second objective function is a makespan minimization. Constraint (2.4) is replaced by 
constraint (2.40). The objective function is given in constraint (2.41): 

 , ,    i m t i
m t

PM D i   (2.40) 

 obj MS   (2.41) 

The makespan is defined by the following constraint. Only the packing end time is 
considered since the packing will always end after the mixing. 

 ,     ,p tMS TEP p t   (2.42) 
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2.5.15. Additional Process Characteristics 

The formulation discussed in this chapter includes all additional process characteristics 
mentioned in Section 2.2.1. However, the RIM can also be used for problems without these 
additional process characteristics. In this section, the alternative formulation for problems 
without some of these additional process characteristics will be given. The first 
characteristic is the requirement of full tank mixing runs. The model can consider non-full 
tank mixing runs by substituting constraint (2.3) with the following inequality: 

 , , , ,      i m t i m t i tPM WM STC i IT ,m,t   (2.43) 

Secondly, for a product without an ageing time requirement, the ageing time term can be 
removed from constraint (2.31). Thirdly, constraints (2.32)-(2.35) can be removed if there 
is no periodic cleaning requirement. Without the requirement for a single continuous 
packing campaign, constraints (2.26), (2.36) and (2.37) can be removed, and constraint 
(2.27) can be substituted with constraint (2.44). 

 ,
   

                                             , , 1 | 

n tp,t i,i',p,t i,i' p,t Nf
i,i'

t c c

TEP WPCO COTP TSP

c p PT ,t TC n t LastDTI
  (2.44) 

Finally, in the ice cream case study each product family can only be stored in storage tanks 
of equal size.  The model can deal with various storage tank sizes for a single product 
family by introducing a dedicated time interval type for each storage tank size. In this case, 
the storage tank capacity STCi,t no longer just depends on the product but also on the 
interval. Also, the last interval of a type, LastDTIc, refers to the last interval dedicated to a 
product family and, therefore it is the same for storage tank types that can store the same 
product family. In addition, the Nfn,t and Nbn,t parameters in the inventory constraints (2.28)-
(2.30) should be replaced by similar parameters based on the number of intervals until the 
nth  next/previous interval dedicated to the same storage tank type. The other constraints 
still require the original Nbn,t and Nfn,t to be based on the number of time intervals until the 
next/previous interval dedicated to the same product family. 

2.6. STN Model 

To evaluate the efficiency of the developed problem-specific model, it will be compared to 
the unit-specific event-based continuous time STN model by Shaik and Floudas (2007). An 
STN formulation was selected as such a formulation is capable of dealing with a wide range 
of process characteristics. Shaik and Floudas (2007) compare their model to several other 
models using case studies with various inventory limitations. Their model could always 
obtain the global optimal solution and, on average, it was the most efficient formulation. 
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Therefore, their model was selected to be compared with the developed model and to 
evaluate the impact of dedicated time intervals. Several constraints of their model have to 
be modified since the process they describe differs from the ice cream production process. 
The modified model is given in Appendix B.  

The two differences between the STN and the developed problem-specific model that are 
expected to have the largest computational impact are the introduction of dedicated time 
intervals and the different ways of modeling the intermediate storage. To estimate the 
impact of the dedicated time intervals, the model presented in this chapter is also compared 
to a version of the STN that uses dedicated time intervals. This is the regular STN model 
with an additional constraint that forces the binary assignment variables to zero for those 
task/event combinations where the event is not dedicated to the product family processed in 
the task.  

2.7. Results 

First, four small example case studies are used to compare the computational efficiency of 
the RIM with the STN. Subsequently, the RIM is compared to the models of Subbiah et al. 
(2011) and Kopanos et al. (2011a) using 10 full scale example case studies without periodic 
cleaning. In the final part of this section, the RIM is used to optimize the same 10 case 
studies with periodic cleaning. 

All case studies are based on the ice cream scheduling case study introduced by Bongers 
and Bakker (2006). The plant consists of one mixing line, six storage tanks and two packing 
lines, and it processes two product families. The connectivity between the equipment is 
shown in Figure 2.1. Both product families can be mixed by the same mixing line. Products 
of the first product family can be handled by the first two storage tanks and the first packing 
line. Products of the second product family can be handled by storage tanks 3-6 and the 
second packing line. 

The mixing rate for all products is 4500 kg/hr, the storage capacity of tanks 1-2 is 8000 kg, 
and the storage capacity of tanks 3-6 is 4000 kg. Table 2.1 lists the packing rates and the 
ageing time for all the products. Note that products 1-4 correspond to product family 1, 
while products 5-8 correspond to product family 2. 

Table 2.2 lists the required changeover times for the packing lines. For example, the 
required changeover time from product P2 to product P3 on a packing line is 60 minutes. 
Table 2.3 lists the required changeover times on the mixing line. The data in Table 2.1-2.3 
is identical for all case studies that were studied, although the small case studies did not 
contain all eight products. All optimizations were performed using Gurobi 3.0 in AIMMS 
3.10 on a computer with an Intel(R) Core(TM)2 Duo CPU P8700 2.53 GHz and with 4 GB 
of memory.  
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Table 2.1. Packing rates and ageing times 
 Packing Rate [kg/hr]  

Product Line 1 Line 2 Ageing Time 
P1 1750 - 1 hr 
P2 1500 - 3 hr 
P3 1000 - 3 hr 
P4 1500 - 0 hr 
P5 - 1750 2 hr 
P6 - 2000 2 hr 
P7 - 2000 2 hr 
P8 - 2000 2 hr 

Table 2.2. Packing line changeover times [min] between products P1-P8 
 P1 P2 P3 P4 P5 P6 P7 P8 

P1  60 60 60 - - - - 
P2 30  60 60 - - - - 
P3 30 30  60 - - - - 
P4 30 30 30  - - - - 
P5 - - - -  60 60 60 
P6 - - - - 30  60 60 
P7 - - - - 30 30  60 
P8 - - - - 30 30 30  

Table 2.3. Mixing line changeover times [min] between products P1-P8 
 P1 P2 P3 P4 P5 P6 P7 P8 

P1  30 30 30 30 30 30 30 
P2 30  30 30 30 30 30 30 
P3 30 30  30 30 30 30 30 
P4 30 30 30  30 30 30 30 
P5 30 30 30 30  15 15 15 
P6 30 30 30 30 5  15 15 
P7 30 30 30 30 5 5  15 
P8 30 30 30 30 5 5 5  

 

2.7.1. Small Example Problems 

The four small example problems are based on a 48 hour horizon. The cleaning interval 
frequency is every 36 hours, and the cleaning interval duration is 2 hours. The demands are 
listed in Table 2.4. In case study A the first packing line is the bottleneck, in case study B 
the second packing line is the bottleneck, in case study C the workload on both lines is 
similar, and case study D considers different products. 

   



Chapter 2 
 

 
38 

Table 2.4. Demand [kg] 
Case Study A B C D 
Product 1 40,000 40,000 32,000 - 
Product 2 24,000 16,000 32,000 16,000 
Product 3 - - - 16,000 
Product 4 - - - 16,000 
Product 5 40,000 40,000 48,000 - 
Product 6 24,000 28,000 20,000 - 
Product 7 - - - 40,000 
Product 8 - - - 32,000 

 
The feasibility objective was used for all four case studies. This objective function is 
explained in Section 2.5.14.  The computational results are given in Table 2.5. STN* is the 
STN model using dedicated intervals. For the RIM and the STN*, the number of time 
intervals is equal to the initial estimate explained in Section 2.5.1. For the STN, the number 
of intervals is equal to the number of batches since it does not contain any empty intervals.  

Table 2.5. Computational results of case studies A-D 
Case 
Study 

Model Intervals 
/Events 

Variables 
(Binary) 

Constraints Required 
CPU Time 

Objective 

A RIM 30 1319(90)   1600       1s 128,000 
STN 24 1946(504) 13699   521s 128,000 
STN* 30 2432(630) 20366     51s 128,000 

B RIM 30 1319(90)   1600       1s 124,000 
STN 24 1946(504) 13699   600s 124,000 
STN* 30 2432(630) 20366     24s 124,000 

C RIM 30 1319(90)   1600     11s 132,000 
STN 25 2027(525) 14720   837s 132,000 
STN* 30 2432(630) 20366   322s 132,000 

D RIM 33 1892(110)   1928       1s 120,000 
STN 24 2330(600) 21460 2293s 120,000 
STN* 33 3203(825) 38570   405s 120,000 

 
By comparing the different model sizes, it can be seen clearly that the alternative method of 
modeling the intermediate inventory results in considerably smaller models. In particular, 
the number of constraints is reduced by one order of magnitude. Even though the STN 
requires the fewest intervals, the RIM contains far fewer binary variables since it only 
requires binary mixing line allocation variables and a binary cleaning interval variable. The 
number of binary variables in the STN* is larger than in the STN model because it requires 
more intervals. However, half of the binary allocation variables are forced to zero because 
the product processed in a task is not part of the dedicated product family.  
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For all models feasible schedules for the 4 small example case studies could be obtained. 
As is clear from Table 2.5, the regular STN model is computationally the most expensive 
for these case studies. This was expected, as the STN* and RIM are more specific and 
exploit the features of this problem, whereas the STN model is intended to solve more 
general problems. While the STN* model with dedicated time intervals is more efficient 
than the regular STN, it is still far less efficient than the RIM. From this it may be 
concluded that both the alternative method of modeling the intermediate inventory and the 
dedicated time intervals result in more efficient models. 

2.7.2. Full Scale Example Problems without Periodic Cleaning 

In this section, the RIM will be compared with models by Subbiah et al. (2011) and 
Kopanos et al. (2011a) that are also used to optimize the ice cream scheduling process. 
However, before the computational comparison, the differences in the ice cream production 
processes considered in the various papers will be discussed. First, Subbiah et al. (2011) 
and Kopanos et al. (2011a) do not consider the periodic cleaning of the mixing line. This 
periodic cleaning severely complicates the scheduling as the freedom on the non-bottleneck 
mixing and packing lines is reduced. Therefore, a version of the RIM without periodic 
cleaning will be compared with their models.  

Secondly, the inventory requirements are relaxed in the model of Subbiah et al. (2011). 
They implicitly assume that the intermediate storage is only required between the end of the 
mixing and the start of the packing. As a result, the schedule they obtain would be 
infeasible for the production process discussed in this chapter as it violates the maximum 
available inventory.  

Except for the periodic cleaning, the production process considered by Kopanos et al. 
(2011a) is the same as in this chapter. However, it should be noted that their precedence 
based model has a limited flexibility regarding certain process characteristics. For example, 
it requires that the batching decisions must be made before the scheduling. This may lead to 
suboptimal solutions if full mixing runs are not required. Similarly, their model may also 
lead to suboptimal solutions when a product can be stored in storage tanks of different 
sizes. In addition, the efficiency of their formulation could be significantly reduced without 
the single continuous packing campaigns requirement. The efficiency would be reduced 
because the tightening constraint linking the ordering of batches on a mixing line to the 
ordering of products on a packing line could no longer be used. 

The models are compared based on full scale case studies over a 120 hour horizon. The 
demand for the full scale example case studies is given in Table 2.6. The RIM is first 
compared with the model of Subbiah et al. (2011) based on the first example and 
subsequently with the model of Kopanos et al. (2011a) based on all 10 examples. It should 
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be noted that example 1 was first introduced by Bongers and Bakker (2006) and examples 
2-10 by Kopanos et al. (2011a). 

Table 2.6. Demand [kg] of products P1-P8 for case studies 1-10 
Case 
Study 

P1 P2 P3 P4 P5 P6 P7 P8 

1 80,000 48,000 32,000   8,000 112,000 12,000   48,000 24,000 
2 48,000 56,000 16,000 48,000   80,000 44,000   12,000 64,000 
3 32,000 32,000 40,000 32,000   32,000 60,000   44,000 80,000 
4   8,000 32,000 64,000 24,000   52,000 44,000   88,000 32,000 
5 88,000 16,000 24,000 40,000   12,000 48,000   64,000 84,000 
6 16,000 16,000 16,000 88,000   24,000 24,000 104,000 52,000 
7   8,000   8,000 96,000   8,000 116,000 64,000     4,000   4,000 
8 16,000 40,000 32,000 56,000   36,000 40,000   60,000 60,000 
9 48,000 24,000 56,000 16,000     8,000 92,000   20,000 88,000 
10   8,000 72,000   8,000 72,000   80,000 80,000     4,000 32,000 

 
In these case studies without periodic cleaning, the freedom on the non-bottleneck stage 
increases significantly, and therefore the RIM requires fewer empty intervals. Hence, for 
the case studies without periodic cleaning, the number of intervals is set equal to the 
minimum number of repeating units plus 10%. This is sufficient to obtain the global 
optimal solution for all 10 case studies. Overlapping decisions from the previous week are 
not considered.  

Similarly to Subbiah et al. (2011) and Kopanos et al. (2011a), a heuristic is used to 
predefine the sequence of products on the packing lines. This heuristic is also similar to the 
partial pre-ordering of Jain and Grossmann (2000). The ordering applied on each packing 
line is the ordering for which the makespan would be minimal if the capacities of all other 
stages are neglected. This makespan is denoted as the theoretical minimum makespan.  

For the bottleneck stage, the ordering leading to the theoretical minimum makespan is most 
likely the optimal ordering, since any other ordering would lead to an overall makespan 
larger than the theoretical minimum makespan. However, the interaction between the tasks 
may lead to a makespan larger than the theoretical minimum makespan (Raaymakers and 
Fransoo, 2000). The interaction between the tasks may especially increase the makespan if 
the flexibility is decreased by enforcing the minimum makespan ordering on all lines.  
Therefore, the optimal ordering on the non-bottleneck stages is not necessarily equal to the 
theoretical minimum makespan ordering since the non-bottleneck stages contain some 
slack. If the obtained solution has a higher makespan than the theoretical minimum 
makespan, the ordering on the non-bottleneck stages could be removed. However, for all 
case studies without periodic cleaning, the global optimal solution could be obtained while 
enforcing the ordering on all packing stages.  
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For the first packing line, the optimal ordering is 4-3-2-1 since that sequence minimizes 
both the changeover times and the ageing time of the first product. When using this 
ordering, the theoretical minimum makespan is equal to the active packing time (115.05 
hours), plus the mixing time of the first batch of product 4 (1.78 hours), plus the ageing 
time of product 4 (0 hours), plus the packing changeover times (3 0.5 hours). The total 
theoretical minimum makespan is thus 118.33 hours. The second best ordering would 
require at least half an hour more in changeover time. For the second packing line, the 
optimal ordering is 8-7-6-5 with a theoretical minimum makespan of 110.39. For the 
second packing line, a different ordering would increase the makespan by at least half an 
hour as well. The theoretical minimum makespan of the packing stages can be used as a 
lower bound in the makespan minimization. This lower bound is added to the model in a 
tightening constraint similar to constraint 18 in Kopanos et al. (2011a).  

 Theoretical Minimum MS   pMS p   (2.45) 

The ordering heuristics are implemented as constraints. For example, the following 
constraint enforces the 4-3-2-1 and 8-7-6-5 ordering. A different ordering could be used by 
changing the domain of c, i and i’. 
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Additionally, part of the binary allocation variables can be forced to zero when the products 
are ordered. For example, if product 4 is mixed first, the first few intervals of type 1 cannot 
produce any other product than product 4. The length of this interval range is equal to the 
number of storage tanks of product 4 that must be mixed. In more general terms, the first X 
intervals of type c cannot mix product i, where X is equal to the minimum number of 
intervals that are required to mix the products that precede product i in the ordering. For the 
4-3-2-1 and 8-7-6-5 ordering the constraint is the following. A constraint with different 
domains of c, i and i’ can be used to implement any ordering of products. 
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Similarly, the last Y intervals of type c cannot mix product i, where Y is equal to the 
minimum number of intervals that are required to mix the products that follow product i in 
the ordering. For the 4-3-2-1 and 8-7-6-5 ordering the constraint is the following. A 
constraint with different domains of c, i and i’ can be used to implement any ordering of 
products. 
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The RIM model for case study 1 without periodic cleaning contains 81 intervals and is 
composed of 6,443 constraints,  9,169 continuous variables and 324 binary variables. The 
RIM requires 12s to obtain the global optimal solution for case study 1. The solution is the 
global optimal solution since the makespan of 118.33 hours is equal to the theoretical 
minimum makespan.  The resulting Gantt chart is given in Figure 2.6.  

 
Figure 2.6. Gantt chart of the optimal schedule for case study 1 without periodic cleaning 

The model of Subbiah et al. (2011) requires a similar computational effort of 15s to obtain a 
solution. However, this solution is not the global optimal solution. The makespan of their 
solution is 0.67 hr longer than the optimal solution. Moreover, their model relaxes the 
inventory requirements as it only requires intermediate inventory between the end of the 
mixing and the start of the packing. As a result, the schedule they obtain would not be 
feasible for the ice cream production process described in this chapter.   

The computational results of the RIM for all 10 case studies are summarized in Table 2.7. It 
should be noted that the makespan does not include a two hour cleaning interval at the end 
of the horizon on all mixing and packing lines. Since this cleaning interval is added at the 
end of the last activity on each line, and since it is the same length for all lines, this cleaning 
interval does not influence the decisions in a makespan minimization. The optimal solution 
was obtained for all 10 case studies, and the required computational time ranged from 12s 
to 170s. Kopanos et al. (2011a) report required computational times between 1s to 51s to 
obtain the optimal solution. It should be noted that these CPU times are not directly 
comparable because Kopanos et al. (2011a) used a different computer, modeling software 
and solver. 

Nevertheless, the model of Kopanos et al. (2011a) seems computationally slightly more 
efficient, although both models are able to obtain the global optimal solution of all example 
case studies within minutes of CPU time. On the other hand, the RIM is more flexible to the 
process characteristics. In order to demonstrate this flexibility, the RIM is used to optimize 
the first five full scale example case studies with various process characteristics. These case 
studies are optimized without the single continuous packing campaign requirement, without 
the full tank mixing runs requirement, without the ageing time requirement and with 
different storage tank sizes. For this last scenario, the available storage capacity is changed 
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for product family 2 to two tanks of 4000kg and two tanks of 6000kg.  The required 
modifications to the RIM for these case studies are discussed in Section 2.5.15. 

Table 2.7. Computational results of the RIM for the full scale case studies without periodic cleaning 
Case 
Study 

Intervals Constraints Continuous 
Variables 

Binary 
Variables 

MS [hr] CPU 
Time[s] 

Case 1 81 6,443   9,493 324 118.33   12 
Case 2 84 6,677   9,845 336 116.04   95 
Case 3 90 7,139 10,549 360 114.67   54 
Case 4 90 7,136 10,549 360 116.10 124 
Case 5 87 6,914 10,197 348 114.90 155 
Case 6 84 6,668   9,845 336 108.10 121 
Case 7 78 6,188   9,141 312 114.52   59 
Case 8 81 6,434   9,493 324 108.42   86 
Case 9 87 6,905 10,197 348 113.37 170 
Case 10 81 6,440   9,493 324 111.85 153 

Table 2.8. Required computational time and makespan of the RIM for variations of the first 5 full scale example 
case studies 

Case 
Study 

No Single 
Packing 

Campaign 

 Non Full Tank 
Mixing Runs 

 No Ageing Time  Different 
Storage Tank 

Capacities 
CPU 
Time 

[s] 

MS 
[hr] 

 CPU 
Time 

[s] 

MS 
[hr] 

 CPU 
Time 

[s] 

MS 
[hr] 

 CPU 
Time 

[s] 

MS 
[hr] 

1 81 118.33  69 118.33  13 118.33  86 118.33 
2 160 116.04  64 116.04  15 116.04  98 116.04 
3 23 114.67  25 114.67  11 112.67  171 114.67 
4 135 116.10  33 116.10  19 114.10  317 116.10 
5 201 114.90  33 114.90  19 114.90  167 114.90 

 
As can be seen from Table 2.8, the RIM is also computationally efficient for these case 
studies. In fact, without the full tank mixing runs requirement, and especially without the 
ageing time requirement, the required computational effort decreases. On the other hand, 
with storage tanks of different sizes the complexity of the problem seems to increase 
slightly. The required computational time also increases slightly without the single 
continuous packing campaign requirement. Solutions with a makespan equal to the 
theoretical minimum makespan were obtained for all case studies in the reported 
computational time. It should be noted that without the ageing time requirement, the 
theoretical minimum makespan of case studies 3 and 4 decreases by 2 hours.  
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2.7.3. Full Scale Example Problems with Periodic Cleaning 

The RIM was selected for the optimization of the example case studies with periodic 
cleaning because of the flexibility and because the RIM is also able to obtain optimal 
solutions within minutes. These case studies are the same example problems as discussed in 
the previous section. However, a 4 hour cleaning interval is now required once every 72 
hours. The number of intervals is set to 20% more than the minimum number of repeating 
units as was explained in Section 2.5.1. The RIM model for the first case study contains 87 
intervals and is composed of 7,028 constraints and 10,156 variables, of which 435 are 
binary. For this first case study, the RIM model is able to find the optimal schedule with a 
makespan of 118.33 hour in 2074s.  

2.7.3.1. Algorithm Outline 

An algorithm was developed to reduce the required CPU time. This algorithm will first be 
introduced, then demonstrated on case study 1, and finally the results for the other 9 case 
studies will be given as well. The outline of the algorithm is as follows: 

Step 1: Identify the bottleneck stage by calculating the theoretical minimum makespan of 
all stages 

Step 2: Order the products according to the theoretical minimum makespan for each 
packing stage 

Step 3: Relax the horizon by 1%, and perform a makespan minimization with large 
optimality tolerance to obtain an initial solution. 

Step 4: Fix the allocation decisions in the first 1/3rd of the schedule, and perform a 
makespan minimization. If the obtained makespan is equal to the theoretical minimum 
makespan, terminate the algorithm.   

Step 5: Fix the allocation decisions in the last 1/3rd of the schedule, and perform a 
makespan minimization. If the obtained makespan is equal to the theoretical minimum 
makespan, terminate the algorithm.   

Step 6: Fix the bottleneck stage allocation decisions, and perform a makespan 
minimization. If the obtained makespan is equal to the theoretical minimum makespan, 
terminate the algorithm. Otherwise, go to step 4. 

After Steps 4-6: If the makespan in three consecutive steps is identical, remove the 
ordering on the non-bottleneck packing stage with the lowest theoretical minimum 
makespan. If the ordering on all non-bottleneck packing stages was already removed, 
terminate the algorithm. 
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In step 3 the horizon is slightly relaxed to obtain an initial solution faster. This solution 
does not necessarily have to be feasible since the other steps in the algorithm will improve 
the solution. A sufficient optimality tolerance is used in this step such that the optimization 
terminates at the first solution that is feasible for the relaxed horizon. 

If an identical solution is obtained in steps 4-6, the ordering on one of the non-bottleneck 
stages is removed. This is necessary since the ordering on the non-bottleneck stages is not 
necessarily equal to the minimum makespan ordering on this non-bottleneck stage. The 
reason is that this packing line contains some slack when compared to the bottleneck 
packing line. Therefore, using a different order, with for example longer changeovers, will 
not necessarily lead to a longer overall makespan.  

In fact, the interaction between the mixing and packing stages is such that the optimal order 
on the non-bottleneck packing lines may be dictated by the order on the bottleneck packing 
line. For example, the allocation on the non-bottleneck packing line could be such that the 
cleaning interval on the mixing line does not affect the bottleneck packing line. As a result, 
the non-bottleneck packing line might be standing idle for a brief period and have slightly 
longer changeovers, but since there is some slack the total makespan would not necessarily 
increase. A time limit of 15 minutes is used in steps 4-6 since typically the global optimal 
solution could be obtained faster by switching between steps than by continuing to optimize 
a single step until optimality is proven for that step.   

2.7.3.2. Algorithm Example 

Next, the algorithm is applied to the first full scale example case study. In the first two 
steps, the horizon is relaxed by 1% to 121.2 hours, and a 4-3-2-1 ordering on packing line 1 
and an 8-7-6-5 ordering on packing line 2 is enforced. By relaxing the time horizon, the 
capacity utilization is decreased, which makes it considerably easier to obtain a schedule. 
After 191s the schedule shown in Figure 2.7a with a makespan of 121.10 hours was found. 
While this initial schedule is infeasible as the production time is longer than 120 hours, it 
can be used as a starting point for the algorithm.  

In the other steps of the algorithm, makespan minimizations will be performed while part of 
the schedule is fixed. First, in step 4 all allocation decisions in the first 1/3rd of the schedule 
are fixed. In this case study, the allocation decisions in the first 28 intervals are fixed. After 
72 seconds the schedule shown in Figure 2.7b with a makespan of 119.16 hours was 
obtained. In step 5 the allocation in the last 28 intervals is fixed. After 418s the schedule 
shown in Figure 2.7c with a makespan of 118.33 hours was found. The algorithm was 
terminated because 118.33 hours was equal to the theoretical minimum makespan. The total 
required computational time by the algorithm was 681s which is considerably shorter than 
the 2074s required for the one step full space optimization. 
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Figure 2.7. Gantt chart of the full scale problem after step 3 (a), step 4 (b) and step 5 (c) of the algorithm 

2.7.3.3. Algorithm Results 

The algorithm was also applied to the other 9 example case studies used in Kopanos et al. 
(2011a) with the addition of the periodic cleaning requirement on the mixing lines, which is 
not handled by their model. The computational results for all 10 case studies are 
summarized in Tables 2.9-2.11. For all case studies except for case study 10, the algorithm 
was able to find a solution with a makespan equal to the theoretical minimum makespan. 
Therefore, for case studies 1-9 the algorithm was able to find the global optimal solution. 
For case study 10 the theoretical minimum makespan is 111.85. The obtained solution is 
thus within 0.7 hour, or 0.6%, of the lower bound.  

Table 2.9. Computational results of the algorithm. Required computational time and makespan for the full scale 
case studies 1-4. 

 Case Study 1 Case Study 2 Case Study 3 Case Study 4 
 CPU 

Time 
MS 
[hr] 

CPU 
Time 

MS 
[hr] 

CPU 
Time 

MS 
[hr] 

CPU 
Time 

MS 
[hr] 

Step 3 191s 121.10 190s 118.37   210s 119.29 207s 118.94 
Step 4   72s 119.16 323s 116.76   900s 115.23 305s 116.46 
Step 5 418s 118.33   45s 116.04     51s 114.67 100s 116.10 
Total 681s 118.33 558s 116.04 1161s 114.67 612s 116.10 

Table 2.10. Computational results of the algorithm. Required computational time and makespan for the full scale 
case studies 6, 7, and 9. 

 Case Study 6 Case Study 7 Case Study 9 
 CPU Time MS [hr] CPU Time MS [hr] CPU Time MS [hr] 

Step 3   854s 113.55 119s 116.36   178s 116.90 
Step 4   304s 108.66   16s 116.32   900s 113.90 
Step 5       6s 108.10   47s 114.52   235s 113.37 
Total 1164s 108.10 182s 114.52 1313s 113.37 
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The required computational time ranged from 182s to 5546s, with only case study 10 
requiring more than half an hour. However, for this case study 10 a solution within 1% of 
the theoretical lower bound was already obtained after 1932s. 

Table 2.11. Computational results of the algorithm. Required computational time and makespan for the full scale 
case studies 5, 8 and 10. 

 Case Study 5 Case Study 8 Case Study 10 
 CPU Time MS [hr] CPU Time MS [hr] CPU Time MS [hr] 

Step 3   345s 119.60     45s 115.90   132s 117.39 
Step 4     62s 118.67   570s 109.89   900s 114.07 
Step 5   900s 115.29   900s 108.64   900s 112.96 
Step 6     70s 114.94       2s 108.42     14s 112.96 

Step 4-II   172s 114.90 - -   900s 112.96 
Step 5-II - - - -   900s 112.55 
Step 6-II - - - -   900s 112.55 

Step 4 -III - - - - 900s 112.55 
Total 1549s 114.90 1517s 108.42 5546s 112.55 

 

Case study 10 is difficult because the theoretical minimum makespan of both packing lines 
is similar. When accounting for the fact that the mixing line can only mix a product for one 
of the packing lines in the first interval, the minimum makespan for packing lines 1 and 2 is 
111.85 and 110.38 respectively. As a result, the second packing line has very little 
flexibility to accommodate the periodic cleaning. In fact, in the obtained solution the 
second packing line has a longer makespan than the first packing line because of the 
periodic cleaning. This schedule is given in Figure 2.8.    

 
Figure 2.8. Gantt chart of the best obtained schedule for the full scale case study 10 

While it should be noted that this algorithm cannot guarantee global optimality, it typically 
yields solutions close to global optimality in considerably less time than doing a full space 
optimization in one step. If the final solution is worse than the theoretical minimum 
makespan of the second best ordering on the bottleneck stage, the algorithm could be 
executed based on this ordering to attempt to obtain a better solution.  
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2.8. Conclusions 

A problem-specific MILP model was developed for scheduling in the FMCG industry. The 
computational efficiency was increased by dedicating time intervals to product families. 
The introduction of empty time intervals allows for deviations from the pre-fixed ordering, 
and it ensures that the optimal solution can still be obtained. The same technique was also 
applied to a general STN model and results showed that the STN model was significantly 
more efficient after the implementation of product family dedicated time intervals. 

The computational efficiency of the model was further increased by indirectly modeling the 
intermediate inventory limitations with the RIM model by linking the packing and mixing 
intervals, instead of directly modeling the intermediate storage tanks. The model proved to 
be computationally more efficient than both the general STN and the STN with dedicated 
time intervals.  

The model was also compared to previous ice cream scheduling models using 10 full scale 
example case studies. The proposed model could obtain the optimal solution for all 10 case 
studies within 170s. The computational efficiency of the model of Subbiah et al. (2011) was 
similar to the proposed model. However, they could not obtain the optimal solution for the 
case study they optimized. The model of Kopanos et al. (2011a) was slightly more efficient 
and could obtain the optimal solution for all 10 example case studies as well. However, the 
formulation proposed in this chapter is more flexible to the process characteristics. It was 
shown that the developed formulation is still suitable for case studies without many of the 
process characteristics found in the ice cream production process. 

Finally, periodic cleaning of the mixing lines was implemented into the proposed model. 
This periodic cleaning was not considered by the other models. This increases the 
complexity of the problem, and therefore an algorithm was developed to decrease the 
required computational effort. Using the algorithm, which is based on fixing part of the 
schedule, 9 out of 10 example case studies could be optimized to optimality within half an 
hour. For the 10th case study, the solution was within 0.6% of optimality. Therefore, it 
could be concluded that even when considering periodic cleaning, the proposed model and 
algorithm can obtain optimal, or near-optimal, solutions within a reasonable time.  

2.9. Nomenclature 

As explained in Section 2.3, the number of variables and constraints is reduced significantly 
by dedicating time intervals to product families. Therefore, several subsets are defined to 
indicate the valid combinations of the various indices. These subsets can be constructed 
based on the product family to which each product belongs and the chosen repeating unit 
for the time horizon. The subset over which each variable is defined is given in the 
definition of the variables. 
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2.9.1. Indices 

c Product families 
i ,i’  Products  
m, m’ Mixing lines 
n  Counting index. For example used to identify the 1st, 2nd… Nth interval dedicated 

to the same product family. 
p  Packing lines 
t,t’,t’’ Time intervals 

2.9.2. Subsets 

ICc  Products belonging to product family c 
IPp Products that can be packed on packing line p 
ITt Products that can be produced in interval t 
PTt Packing lines that can be active in interval t. These are the packing lines that can 

pack the products to which interval t is dedicated 
TCc Time interval dedicated to product family c 

2.9.3. Parameters 

AgeTi  Minimum required ageing time of product i 
CIfrequency Maximum time between cleaning intervals 

COTMi,i’  Changeover time from product i to product i’  
COTPi,i’  Changeover time from product i to product i’  
Di  Demand of product i 
FirstDTIc First time interval in the horizon dedicated to product family c 
H  Scheduling horizon 
LastDTIc Last time interval in the horizon dedicated to product family c 
Nbn,t Number of previous intervals until the nth previous interval dedicated to 

the same product family as interval t  
Nfn,t Number of intervals until the nth interval dedicated to the same product 

family as interval t 
NM  Number of mixing lines 
NSTc  Number of storage tanks that can be used to store products of family c 
NT  Total number of time intervals 
PRMi  Mixing rate of product i  
PRPIi  Packing rate of product i. 
STCi  Storage capacity of tanks that can store product i 
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2.9.4. Nonnegative Continuous Variables 

MS   Total makespan of the production schedule 

Obj   Objective function 

PMi,m,t | ti IT   Production amount of product i on mixing line m in interval t 

PPi,p,t  | t pi IT IP  Production amount of product i on packing line p in interval t 

TBPp,t | tp PT   Time between intervals t and t+1 on packing line p 

TEMm,t   End time of interval t on mixing line m 
TEPp,t  | tp PT   End time of interval t on packing line p 
TSMm,t   Start time of interval t on mixing line m 
TSPp,t  | tp PT   Start time of interval t on packing line p 

2.9.5. [0-1] Variables (Can be treated as continuous) 

WEIm,t  Indicates whether interval t on mixing line m is an empty interval 
WEI2c,t,t’ | ,, ' , 1  

cc n NST tt t TC t t' t Nf  Indicates if the range t to t’ contains 

two empty intervals dedicated to the 
same product family. The  

range contains NSTc+1 intervals of type c. 
WMdummyi,m,t Dummy assignment variable that is equal to the binary assignment 

variable WMi,m,t for the intervals in which a product is assigned. 
WMCOi,i’,m,t  Indicates a changeover from product i to product i’ on mixing line m in 

interval t 

WPi,p,t | t pi IT IP  Indicates if product i is assigned to packing line p in interval t 

WPCOi,i’,p,t | , ' p ti i IP IT  Indicates a changeover from product i to product i’ on 

packing line p in interval t 

WPstarti,p,t | t pi IT IP  Indicates if interval t is the start of a packing campaign 

of product i on packing line p  

2.9.6. Binary Variables 

WCIm,t Binary variable indicating whether interval t is preceded by a 
cleaning interval 

WMi,m,t | ti IT   Binary variable assigning product i to mixing line m in interval t 
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ABSTRACT: A Mixed Integer Linear Programming (MILP) model for the optimization of 
the tactical planning problem for a Fast Moving Consumer Goods (FMCG) company is 
presented in this chapter. Suppliers, factories, warehouses, distribution centers and 
retailers are included in this tactical planning model to capture all interactions between the 
various echelons of the supply chain. The capacity limitations of the production process are 
considered by including the capacity of mixing and packing stages and by approximating 
sequence-dependent changeovers with set-ups of Stock-Keeping Units (SKU) and SKU-
families. Using a 10 SKU case study, it is shown that unrealistic production targets are 
obtained if these set-up variables are not included. The MILP model could not obtain a 
feasible solution within 12 hours for a 50 SKU case study. Since realistic problems could 
contain up to 1000 SKUs, a decomposition algorithm that allows the model to optimize 
these extremely large problems will be proposed in the next chapter.     

3.1. Introduction 

The scale and complexity of enterprise-wide supply chains has increased significantly due 
to globalization. (Varma et al., 2007) Recently, the operation of enterprise-wide supply 
chains has attracted much interest. Grossmann (2005) and Varma et al. (2007) review the 
current research on Enterprise-Wide Optimization (EWO), and they identify challenges and 
research opportunities. One of the main challenges is the integration of decision-making 
across various layers. This includes the integration of the various echelons of the supply 
chain and the integration of the various temporal decisions layers. The decisions on the 
various layers are often interconnected leading to trade-offs between these decisions 
(Maravelias and Sung, 2009). Therefore, better solutions can be obtained if these decisions 
are optimized simultaneously.  

Usually, three temporal decision layers are distinguished: strategic planning, tactical 
planning and scheduling. Scheduling was discussed in the previous chapter, and it covers 
the allocation and timing decisions for a single factory for a single week. Tactical planning 
will be discussed in this chapter, and it covers the medium-term decisions regarding the 
allocation of capacity over the whole supply chain. Strategic planning covers the long-term 
decisions regarding the design of the supply chain.  

Maravelias and Sung (2009) review the integration of short-term scheduling and tactical 
production planning. They identify two options for this integration. First, the detailed 
scheduling decisions can directly be included into the tactical planning model. While this 
would in theory yield optimal solutions, the resulting models are usually very large and 
difficult to solve.  

Therefore, advanced solution strategies are often applied to solve larger problems. For 
example, Erdirik-Dogan and Grossmann (2007) developed a bi-level decomposition 
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strategy to solve larger instances of their integrated scheduling and tactical planning model 
for a single plant. In addition, they modeled the sequence-dependent changeovers more 
efficiently by using constraints based on the traveling salesman problem. Terrazas-Moreno 
and Grossmann (2011) extended this model and bi-level decomposition method to a multi-
site setting. In addition, they proposed a new hybrid decomposition method that combines 
bi-level and spatial Lagrangean decomposition. This hybrid method proved to be the most 
efficient for large-scale problems.  

The second approach is to approximate the scheduling decisions by removing or relaxing 
part of the constraints or by aggregating some of the decisions.  For example, Sung and 
Maravelias (2007) consider the restrictions found on the short-term scheduling level by 
incorporating linear surrogate constraints into the tactical planning model. These surrogate 
constraints are a convex approximation of the feasible region of the scheduling model 
projected in the space of production amounts of the products. They obtain these surrogate 
constraints by analyzing an MILP scheduling model off-line. 

The tactical planning problem for the FMCG industry is extremely large because even a 
single product category can contain up to a thousand Stock-Keeping Units (SKUs), because 
a typical FMCG supply chain contains 5 echelons, and because a yearly horizon divided 
into weekly time periods is required to capture the seasonality of ingredients and products. 
Considering the already extremely large problem size, it was decided to select the second 
method and to approximate the scheduling decisions as close as possible. While this will 
not give detailed weekly production schedules, the weekly production targets will be 
realistic.  

In the literature review provided in the introduction chapter, it was concluded that none of 
reviewed papers have considered the optimization of a tactical planning problem consisting 
of up to a thousand SKUs, for a 5-echelon supply chain, over 52 weekly periods, 
considering product set-ups. Therefore, the objective is to develop an approach capable of 
optimizing such a problem, which would be realistic for the FMCG industry. 

It should be noted that a common approach in tactical planning is to aggregate SKUs into 
SKU families (Stadtler and Kilger, 2008). While this reduces the model size, it also leads to 
a loss of detail.  For example, SKUs could be aggregated into SKU families that contain 
those SKUs that are produced on the same mixing/packing lines and that have similar 
production characteristics. However, while the production characteristics are similar, they 
are not identical, and therefore some details are lost. Moreover, for the FMCG industry, the 
SKUs within an SKU family do not necessarily require the same ingredients. As a result, if 
the SKUs are aggregated into SKU families, the procurement decisions cannot be 
considered accurately.  
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Therefore, it was decided to consider the tactical planning on the SKU level. Nevertheless, 
the model developed in this chapter could also be applied on a SKU family level. 
Moreover, the methods developed in Chapters 4-6 could still be applied to such a tactical 
planning model on SKU family level. 

In this chapter, an MILP model for the tactical planning problem will be introduced. 
However, one of the main challenges is the size of this problem. Therefore, Chapter 4 
introduces a decomposition algorithm that can be used to solve these extremely large 
problems.  

3.2. Problem Definition 

Given is a set of SKUs that have to be produced and distributed through a supply chain 
network including suppliers, factories, warehouses, distribution centers and retailers. The 
location and capacity of all facilities is fixed. A schematic overview of the supply chain is 
given in Figure 3.1 where the arrows represent the possible flow of ingredients or SKUs 
from one facility to another. The procurement, production and distribution decisions have 
to be taken over a one year horizon divided into weekly time periods due to the seasonality 
of both SKUs and ingredients.  

 
Figure 3.1. Overview of the supply chain 

The unit transportation cost between any two consecutive facilities in the supply chain is 
known. The transportation times are typically considerably shorter than the period length of 
one week. Therefore, the lead times are assumed to be zero. Ingredients can be stored at the 
factories, and SKUs can be stored at the warehouses and distribution centers. For these 
facilities the initial and maximum inventories are given. In addition, the storage costs for 
each SKU or ingredient are known for each location. The minimum safety stock and the 
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penalty for violating this minimum level are also given for all SKUs in all warehouses and 
distribution centers. 

The maximum available supply and the procurement costs are known for all ingredients for 
every supplier for every week. Given recipes link the production of SKUs to the ingredient 
consumption. Each factory contains two production stages: a mixing stage and a packing 
stage. An SKU must be mixed and packed in the same factory in the same week. Factories 
contain various types of mixing and packing lines. Each type is dedicated to a subset of 
SKUs. The available production time on both stages is given as the aggregated amount per 
type of mixing or packing line. The mixing and packing rates of all SKUs are also known. 
Average SKU and SKU-family set-up times and costs are given for the packing stage.  

The demand of each retailer is given per SKU per week, and a penalty cost for missed sales 
is given as well. Demand can only be met in the week in which it occurs, and the amount 
sent to a retailer may not exceed the demand. The inventory at the retailers is not 
considered.  

Given this information, the key decisions are the amount of each ingredient to buy from the 
suppliers, the amount of each SKU to produce in each of the factories, the inventory levels 
in the warehouses and distribution centers, the amount of each SKU to transport between 
the facilities and the amount of each SKU to be sent to each of the retailers. All decisions 
have to be taken for each week. The objective is to minimize the total costs. The total costs 
consist of the procurement costs, storage costs, transportation costs, set-up costs, safety 
stock violation costs and missed sales costs. 

3.3. MILP Model Formulation 

In this section, an MILP model for the tactical planning problem in the FMCG industry is 
proposed. The concept behind the production capacity approximation used in the model 
will first be discussed. Afterwards the model constraints are discussed. 

3.3.1. Production Capacity Approximation 

The weekly production plans generated by the tactical planning model determine how much 
of each SKU should be produced by each factory in each week. Therefore, it is crucial that 
the capacity limitations in the tactical planning model closely represent the true capacity 
limitations. The capacity could be modeled accurately by incorporating the short-term 
scheduling decisions directly into the tactical planning model. However, as discussed in 
Chapter 2, optimizing these short-term scheduling decisions is already challenging for a 
single factory for a single week. Therefore, incorporating these decisions directly into the 
tactical planning model would render it intractable. Nevertheless, a close approximation is 
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essential since underestimating the capacity would reduce the efficiency of the production 
facilities, while overestimating it would lead to infeasible weekly production targets. 

Three important aspects of the production process have to be considered in the capacity 
estimation. First of all, the production process is a two stage make-and-pack production 
process. The first stage contains the mixing lines and the second stage the packing lines. In 
general, the bottleneck stage is not known in advance because it depends on the selection of 
SKUs. Therefore, it is important that the capacity of the mixing stage and packing stage are 
both considered.  

Second, each factory may contain various types of mixing lines. Each type can only 
produce a subset of the SKUs. The group of SKUs that can be produced on a certain mixing 
line is denoted a mixing family. Therefore, the mixing capacity must be tracked per mixing 
family. Similarly, the packing capacity should be considered per type of packing line. The 
SKUs that can be produced on a certain type of packing line are a packing family. For each 
type of mixing or packing line, aggregated capacity constraints are used to ensure that the 
production plan is feasible. 

Third, there are sequence-dependent changeovers on both mixing and packing lines. 
Including sequence-dependent changeovers would require including line allocation and 
sequencing decisions in the tactical planning model. Because this would lead to an 
intractable model, the sequence-dependent changeovers are instead approximated.  

As discussed in Chapter 2, single continuous packing campaigns are generally enforced on 
the packing lines. In other words, each SKU that is assigned to a factory in a week will be 
produced in a single continuous packing campaign. Therefore, each assigned SKU will only 
require a single changeover. 

To approximate this sequence-dependent changeover the concept of SKU families is used. 
An SKU family is a group of SKUs that have similar processing characteristics. 
Changeovers between SKUs of the same family are relatively short, whereas changeovers 
between SKUs of different families are considerably longer. Changeovers between SKUs 
of the same family can be represented by a relatively small average set-up time. The longer 
changeovers between SKUs of different families are then represented by adding an average 
set-up time for each SKU family.  

In summary, on the packing line a short SKU set-up time is included for each assigned 
SKU and for each SKU family for which at least one SKU is assigned an additional SKU-
family set-up time is included. This approximation is shown in Figure 3.2. The accuracy of 
this approximation relies on the assumption that SKUs of the same family are packed 
consecutively. This is a reasonable assumption because it minimizes the total changeover 
time. 
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This SKU family approach is similar to the block planning approach by Gunther et al. 
(2006). In their approach a block is a predefined sequence of products which all have the 
same recipe. They account for a large set-up time for each block and a small set-up time for 
products within a block. The SKU families are also similar to the product families used for 
example by Shah et al. (1993), who introduced a required cleaning time when changing 
from products belonging to a “dark” family to products belonging to a “light” family.  

 
Figure 3.2. Sequence-dependent changeover times (a) are approximated by SKU and SKU family set-up times (b) 

However, this representation is not suitable for the mixing lines since the number of mixing 
line changeovers is much larger than the number of allocated SKUs. This is mainly because 
the throughput of mixing lines is higher than that of packing lines, because each factory 
contains more packing lines than mixing lines, and because of the limited intermediate 
inventory. As a result, the mixing lines must switch frequently between SKUs to allow for 
single continuous campaigns on the packing lines. This was explained in more detail in 
Chapter 2. It is also clearly demonstrated in the production schedules generated in that 
chapter that the number of mixing line changeovers is far greater than the number of 
allocated products (Figures 2.6-2.8).  

The number of mixing line changeovers mainly depends on factory characteristics, such as 
the number of mixing and packing lines, the processing rates and the available intermediate 
storage. For example, a larger intermediate storage would allow for longer mixing runs and 
thus fewer changeovers. It is, therefore, proposed to estimate the average total changeover 
time on the mixing lines based on historical factory data. While it should be noted that this 
is an approximation, it is far more accurate than linking it to the number of SKUs that are 
allocated. 

3.3.2. Procurement 

The total amount of ingredient h procured from supplier s in week t to all factories is 
limited by the available supply.  

 , , , , ,      h f s t h s t
f

TransIng MaxSupply h,s,t   (3.1) 
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The total amount of ingredients in storage at factory f in week t cannot exceed the storage 
capacity.  

 , ,   h f t f
h

INVIng INVIngCap f,t   (3.2) 

The inventory of ingredient h in factory f in week t is equal to the inventory in the previous 
week, plus the amount procured from all suppliers, minus the amount consumed in the 
production of all SKUs. 

 , , , , 1 , , , , , ,      , ,h f t h f t h f s t h i i f t
s i

INVIng INVIng TransIng Recipe Prod h f t  (3.3) 

3.3.3. Production 

The production time allocated to mixing all SKUs that are part of the same mixing family 
in factory f in week t cannot be larger than the available mixing time of this mixing family. 
This available mixing time has already been corrected for the estimated total weekly set-up 
time. 

 , ,
,

  ,

   
mfam

i f t
mfam f

i IM i f

Prod
MixTime mfam, f,t

MixRate
  (3.4) 

The packing time allocated to the SKUs of the current packing family, plus the set-up time 
of each SKU of this packing family that is produced, plus the set-up time of the SKU 
families that are part of the packing family and of which at least one SKU is produced, 
must be less than the available packing time.  

 
, ,

, , , ,
  ,

,

   

                                                                                    
pfam pfam

i f t
i i f t fam fam f t

i IP fam FAMi f

pfam f

Prod
SUT WSU FamSUT YFamSU

PackRate

PackTime pfam, ,f t

 (3.5) 

If SKU i is produced in factory f in week t, then there must be a set-up for this SKU in this 
factory in this week. The total available packing time for the packing family to which SKU 
i belongs is used as the upper bound for the packing time of SKU i. 

 , ,
, , ,

,

  , , ,  i f t
pfam f i f t pfam

i f

Prod
PackTime WSU i IP pfam f t

PackRate
  (3.6) 

If there is a set-up for SKU i, there must also be a set-up for the family to which this SKU 
belongs.  
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 , , , ,   fam f t i f t famYFamSU WSU i IF , fam, f,t   (3.7) 

The total production of SKU i in factory f in week t must be transported to the warehouses 
because there is no product storage at the factories. 

 , , , , ,    , ,i f w t i f t
w

TransFW Prod i f t   (3.8) 

3.3.4. Storage and Transport 

The warehouse and distribution constraints are discussed together because they are very 
similar. The total inventory of all SKUs in a location may not exceed the storage capacity. 

 , ,   i w t w
i

INVWH WHCap w,t   (3.9) 

 , ,   i dc t dc
i

INVDC DCCap dc,t   (3.10) 

The inventory of SKU i in warehouse w in week t is equal to the inventory in the previous 
week, plus the amount received from all factories, minus the amount sent to all distribution 
centers. For the first week, the inventory in the previous week is the initial inventory. 

 , , , , 1 , , , , , ,   , ,i w t i w t i f w t i w dc t
f dc

INVWH INVWH TransFW TransWDC i w t   (3.11) 

Similarly, the inventory of SKU i in distribution center dc in week t is equal to the 
inventory in the previous week, plus the amount received from all warehouses, minus the 
amount sent to all retailers. For the first week, the inventory in the previous week is the 
initial inventory. 

 , , , , 1 , , , , , ,   , ,i dc t i dc t i w dc t i dc r t
w r

INVDC INVDC TransWDC TransDCR i dc t   (3.12) 

If the inventory is less than the safety stock, the safety stock violation is the difference 
between the safety stock and the inventory. Otherwise the safety stock violation is zero. 
The safety stock violation is defined as a nonnegative continuous variable.  Because the 
safety stock violation costs are added to the objective function, these costs will always take 
on the lowest possible value. These safety stock constraints are similar to those of 
McDonald and Karimi (1997).   

 , , , , , ,   , ,i w t i w t i w tSSVioWH SSWH INVWH i w t   (3.13) 

 , , , , , ,   , ,i dc t i dc t i dc tSSVioDC SSDC INVDC i dc t   (3.14) 
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The total amount of SKU i transported to retailer r in week t cannot exceed the demand. 

 , , , , ,     i dc r t i r t
dc

TransDCR D i,r,t   (3.15) 

3.3.5. Costs 

The objective is to minimize the total costs. These costs consist of the purchasing and 
transportation costs of the ingredients, the inventory costs of the ingredients at the factories, 
the inventory costs of the SKUs at the warehouses and distribution centers, the SKU 
transportation costs between the factory and warehouses, between the warehouses and 
distribution centers and between the distribution centers and retailers, the safety stock 
violation penalty costs in the warehouses and distribution centers, the set-up costs of the 
SKUs, the SKU family set-up costs, and the missed sales penalty costs.  
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  (3.16) 

3.4. Case Studies 

Throughout this thesis, this MILP model has been applied to several case studies. Unless 
specified otherwise, the supply chain in these case studies consists of 10 suppliers, 4 
factories, 5 warehouses, 10 distribution centers, and 20 retailers. The case studies contain 
10 ingredients and between 10 and 1000 SKUs. Each SKU belongs to one of 2 different 
mixing families, 4 packing families and 12 SKU families. For all case studies the one year 
time horizon is divided into 52 weekly periods. 
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Due to the extremely large amount of data required and due to confidentiality, hypothetical 
data is used. Most data is generated from uniform distributions where the lower and upper 
bounds are the best estimates for the range of the parameter. For example, the ingredient 
purchasing cost is generated from the uniform distribution U(x,y), where x to y is the best 
estimate for the range of the price of a certain ingredient. 

However, there are a few notable exceptions. The available production time for both mixing 
and packing families is generated from a discrete uniform distribution, since each additional 
line would add 120 hours of production per week. Moreover, the production capacity 
between mixing and packing lines is aligned, such that the production capacity of a certain 
mixing family is similar to the packing capacity of the related packing families.  

The total demand of the SKUs is then generated based on the packing capacity and a 
utilization percentage that is determined from a uniform distribution. This total demand is 
divided over the retailers and the weeks. Because many FMCG are seasonal, 80% of the 
total demand is allocated to weeks 39 to 48. Since the retailers do not sell all SKUs, each 
SKU is only given a 33% chance to be allocated to a retailer. 

Similarly, since not every supplier will sell all ingredients, each ingredient is only given a 
25% chance to be sold at a supplier. The total availability of ingredients is determined 
based on the total ingredient demand, which is calculated from the recipes, the SKU 
demand, and a utilization percentage that is determined from a uniform distribution. 

The storage capacities are generated from a uniform distribution whose lower and upper 
bounds depend on the total demand. Similarly, the safety stock levels are generated from a 
uniform distribution whose lower and upper bounds depend on the total demand in the 
coming weeks. 

3.5. Results 

First, a case study containing 10 SKUs is generated and optimized with the proposed 
model. This case study will be used to discuss characteristics of the model and problem. All 
optimizations in this chapter are performed using CPLEX 12.4 in AIMMS 3.12 on a 
computer with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 Ghz and with 16 GB of 
memory. All optimizations are performed with a one percent MIP optimality tolerance. 

The model for the 10-SKU case study contains 41,809 constraints and 185,589 variables of 
which 2,080 are binary. The MILP model is already large for this small example case study 
because of the size of the supply chain and the 52 weekly time periods. The required CPU 
time was 1144 seconds. The solution that was obtained will be discussed by highlighting 
some of the key characteristics of the results. 
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The total inventory profile of SKU 1 is given in Figure 3.3. In the first part of the horizon 
there are a few small peaks followed by a slowly decreasing inventory. This indicates that 
producing a large batch and paying higher inventory costs is less expensive than producing 
small batches every week and incurring weekly set-up costs. After 23 weeks the inventory 
starts to build up. This is necessary to cover the peak demand during weeks 39 to 48. This 
increase in production around week 23 is also clearly visible in Figure 3.4. It can also be 
seen from Figure 3.4 that typically only one SKU per packing family is produced in each 
week. This reduces the required set-up time and thus maximizes the available production 
time. 

 
Figure 3.3. Profile of the total inventory of SKU 1 in all storage facilities over the time horizon 

 

 
Figure 3.4. Gantt chart indicating which SKU is produced in each week in factory 1 in the MILP solution 

The modeling of the SKU and SKU family set-ups is an important part of the MILP model. 
While using these set-ups to approximate the changeovers is more efficient than directly 
including sequence-dependent changeovers, the binary set-up variables still make the model 
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significantly harder to solve. To demonstrate the need of including the binary set-up 
variables, the same 10-SKU case study has also been optimized with the binary set-up 
variables relaxed as 0-1 continuous variables. 

The resulting Linear Programming (LP) problem was optimized in 70s. However, as can be 
seen in Figure 3.5, the number of SKUs that are produced in each week increases 
drastically. In fact, the average number of SKUs allocated to a factory in a week increases 
from 1.5 to 2.94. This results in a cost increase of 7% when accounting for set-up costs. 
Moreover, the solution obtained by the LP would be infeasible since it does not consider 
the set-up times. While this would only lead to a relatively small capacity violation for the 
10-SKU case, the impact would be much greater in a more realistic problem containing 
1000 SKUs. For such a problem, the LP might allocate hundreds of SKUs to the same 
factory in the same week. Therefore, the binary set-up variables are clearly necessary to 
obtain realistic solutions. 

 
Figure 3.5. Gantt chart indicating which SKU is produced in each week in factory 1 in the LP solution 

As mentioned before, the MILP model for the 10-SKU case study is already relatively 
large. For larger case studies, the MILP becomes prohibitively large. For a 50-SKU case 
study, the model contains 170,769 constraints and 826,229 variables of which 10,400 are 
binary. No feasible solution could be obtained for this case study within 12 hours. A 
realistic problem could contain up to a thousand SKUs. For such a problem, the model 
would contain more than 2 million constraints and more than 10 million variables of which 
208,000 would be binary. Because even the far smaller 50-SKU case study could not be 
optimized, the model is intractable for realistic problems.  

3.6. Conclusions 

An MILP model was developed for the tactical planning in the FMCG industry. This MILP 
model was used to optimize a case study containing 10 SKUs. Using this case study, it was 
demonstrated that binary set-up variables are required to obtain realistic production targets.  
However, the resulting MILP formulation becomes very large for problems containing 
more than 10 SKUs. In fact, no feasible solution could be obtained within 12 hours for a 
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case study containing 50 SKUs. Therefore, to be able to handle realistically sized problems 
containing up to 1000 SKUs, a decomposition method must be applied. This decomposition 
will be discussed in the next chapter. 

3.7. Nomenclature 

3.7.1. Indices 

dc  Distribution centers 
f  Factories 
fam  SKU families 
h  Ingredients 
i  SKUs 
mfam  Mixing families 
pfam  Packing Families 
r  Retailers 
s  Suppliers 
t  Weeks 
w  Warehouses 

3.7.2. Subsets 

FAMpfam  SKU families belonging to packing family pfam 
IFfam  SKUs belonging to SKU family fam 
IMmfam  SKUs belonging to mixing family mfam 
IPpfam  SKUs belonging to packing family pfam 

3.7.3. Parameters 

CostIngh,s,t Unit cost of ingredient h at supplier s in week t 
Di,r,t  Demand of SKU i at retailer r in week t 
DCCapdc Available storage capacity in distribution center dc 
FAMSUCostfam Average set-up cost for SKU family fam 
FAMSUTfam Average set-up time for SKU family fam 
INVIngCAPf Available storage capacity for ingredients at factory f  
MaxSupplyh,s,t Available supply of ingredient h at supplier s in week t 
MixTimemfam,f Available mixing time at factory f for SKUs that are part of mixing 

family mfam  
MixRatei,f Mixing rate of SKU i in factory f 
MSpeni,r,t Penalty costs per unit of missed sales of SKU i at retailer r in week t 
PackRatei,f Packing rate of SKU i in factory f  
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PackTimepfam,f Available packing time at factory f for SKUs that are part of packing 
family pfam 

Recipeh,i  Amount of ingredient h consumed per unit produced of SKU i  
SCIngh,f  Storage costs of ingredient h at factory f  
SCDCi,dc  Storage costs of SKU i at distribution center dc 
SCWHi,w  Storage costs of SKU i at warehouse w 
SSDCi,dc,t Minimum safety stock of SKU i in distribution center dc in week t 
SSWHi,w,t Minimum safety stock of SKU i in warehouse w in week t 
SSpenCost Safety stock violation penalty cost 
SUCosti  Average set-up cost for SKU i 
SUTi  Average set-up time for SKU i 
TCDCRdc,r Transportation cost between distribution center dc and retailer r 
TCFWf,w  Transportation cost between factory f and warehouse w 
TCSFs,f  Transportation cost between supplier s and factory f 
TCWDCw,dc Transportation cost between warehouse w and distribution center dc 
WHCapw Available storage capacity in warehouse w 

3.7.4. Nonnegative Continuous Variables 

INVDCi,dc,t Amount of SKU i stored in distribution center dc in week t  
INVIngh,f,t Amount of ingredient h stored in factory f in week t 
INVWHi,w,t Amount of SKU i stored in warehouse w in week t 
Prodi,f,t  Amount of SKU i produced in factory f in week t  
SSVioDCi,dc,t Amount of SKU i short of the safety stock in distribution center dc in 

week t 
SSVioWHi,w,t Amount of SKU i short of the safety stock in warehouse w in week t 
TotalCosts           Total costs of operating the supply chain 
TransDCRi,dc,r,t    Amount of SKU i transported from distribution center dc to retailer r in  

week t 
TransFWi,f,w,t Amount of SKU i transported from factory f to warehouse w in week t 
TransIngh,f,s,t Amount of ingredient h procured from supplier s to factory f in week t 
TransWDCi,w,dc,t   Amount of SKU i transported from warehouse w to distribution center dc  

in week t  

3.7.1.  [0-1] Variables (Can be treated as continuous) 

YFAMSUfam,f,t Indicates if there is a set-up of SKU family fam in factory f in week t 

3.7.1. Binary Variables 

WSUi,f,t  Binary variable indicates a set-up of SKU i in factory f in week t 
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ABSTRACT: The Mixed Integer Linear Programming (MILP) model for the tactical 
planning in the Fast Moving Consumer Goods (FMCG) industry developed in the previous 
chapter becomes intractable for realistically sized case studies. Therefore, in this chapter a 
decomposition based on single Stock-Keeping Unit (SKU) submodels is proposed. To 
account for the interaction between SKUs, slack variables are introduced into the capacity 
constraints. In an iterative procedure the cost of violating the capacity is slowly increased, 
and eventually a feasible solution is obtained. Even for a relatively small 10-SKU case 
study, the required CPU time could be reduced from 1144s to 175s using the algorithm. 
Moreover, the algorithm was used to optimize case studies of up to 1000 SKUs, whereas 
the full space model is intractable for case studies of 50 or more SKUs. In this chapter, a 
variety of case studies is optimized with this decomposition algorithm, and for all case 
studies a solution within a few percent of the global optimum was obtained.  

4.1. Introduction 

It was shown in the previous chapter that the tactical planning model is intractable for case 
studies containing 50 or more Stock-Keeping Units (SKUs). Therefore, the model size 
should be reduced to be able to optimize realistic problems. One approach would be to 
aggregate SKUs into families. For example, Omar and Teo (2007) reduce the size of their 
tactical planning model for chemical multiproduct batch plants by aggregating the products 
into product families. However, in the FMCG industry, SKUs belonging to the same family 
may require different ingredients. Therefore, if SKUs are aggregated into SKU families, it 
would not be possible to accurately determine the demand of ingredients based on the 
production. As a result, the entire supply chain would not be optimized simultaneously, 
because the procurement decisions cannot be included. 

An alternative approach to reduce the size of the model is to decompose the model into 
several smaller submodels. Sousa et al. (2011) and Terrazas-Moreno et al. (2011) give an 
overview of decomposition methods. The most common decompositions are spatial or 
temporal decompositions. In a spatial decomposition, the subproblems can describe either 
different echelons of the supply chain or different physical locations. However, for the 
tactical problem in the FMCG industry a spatial decomposition would not give a sufficient 
reduction in model size because each submodel would still contain up to a thousand SKUs 
and 52 time periods. 

In a temporal decomposition, the problem is decomposed into submodels covering a single 
time period each. Temporal decomposition does not seem promising for the tactical 
planning problem in the FMCG industry because of the high seasonality of products and 
ingredients. In addition, the resulting subproblems would still be very large since they 
would contain up to a thousand SKUs and a relatively large supply chain. 
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Castro et al. (2009) proposed an order decomposition algorithm for the scheduling of 
multiproduct plants. The main idea behind their algorithm is to start with a couple orders 
and allocate them to a unit. Then the next few orders are allocated while the allocation 
decisions for the first few orders are fixed. However, the timing decisions of the first orders 
are still variable. A few more orders are then added while the allocation decisions of all 
previous orders are fixed. This continues until all orders have been allocated. Finally, the 
schedule is improved in a rescheduling step. In this step, a few orders may be rescheduled 
while the allocation decisions for all other orders are still fixed. This step can be repeated 
several times. 

4.2. SKU-Decomposition Algorithm 

The concept of decomposition based on SKUs is promising for the tactical planning 
problem. However, the problem size will not be reduced significantly if the method of 
Castro et al. (2009) is used and only the allocation decisions are fixed. Therefore, the 
following SKU-decomposition algorithm is proposed. 

In the algorithm, the tactical planning MILP model is decomposed into single SKU MILP 
submodels. In each submodel, the domain of the constraints and variables is limited to a 
single SKU. The updated constraints for the submodels will be discussed in Section 4.3. A 
solution to the full problem could be obtained by optimizing these submodels 
incrementally. In other words, the decisions for the various SKUs are optimized 
sequentially, and the decisions of the previous SKUs are fixed. As a result, the available 
capacity will decrease after each SKU is optimized. Because this procedure does not 
include any interaction between the SKUs, the capacity would most likely be used 
inefficiently, and the initial solution would most likely be poor.  

The capacity constraints have been modified to improve the capacity utilization. A slack 
variable has been added to each capacity constraint to allow the maximum capacity to be 
violated. The capacity constraints are the constraints that model the procurement, 
production, and storage capacity limitations. The slack variables are added to the objective 
function with a penalty costs. Therefore, a penalty cost is incurred when the capacity is 
violated. This approach is similar to the classical penalty function method introduced by 
Courant (1943) that replaces constraints with penalty terms in the objective function. 

The SKU-decomposition algorithm consists of two steps. In the first step an initial solution 
is obtained. This initial solution is most likely infeasible. In the second step this initial 
solution is used as a starting point, and in several iterations it is driven towards a feasible 
solution.  

In the first step, all submodels are optimized incrementally with the penalty costs set to zero 
and with relaxed set-up variables. The zero penalty costs in essence represent an 
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optimization for unlimited capacity. Because of this unlimited capacity, the solution will 
most likely be infeasible for the problem with limited capacity. Therefore, the binary 
variables are relaxed to obtain this initial solution faster.  

In the second step, the initial solution obtained in step one is used as a starting point. All 
decisions except for those relating to the first SKU are fixed, and the first SKU is re-
optimized. In this second step the optimal decisions will change because integrality is 
enforced for the binary variables and because the penalty for capacity violation is set to a 
non-zero value. Then these updated decisions are fixed, and the decisions for the second 
SKU are re-optimized. This entire procedure is repeated for each SKU. In each 
optimization in step 2, the decisions for all SKUs but the current SKU are frozen, and the 
decisions for the current SKU are re-optimized using the MILP submodel. Afterwards, 
these decisions are frozen, and the next SKU is updated.  In each iteration in step 2, all 
SKUs are re-optimized once.  

Because the penalty is initially set to a low value, violating the capacity will be relatively 
inexpensive. As a result, for most SKUs it will be less expensive to pay the capacity 
violation penalty costs than it would be to reallocate them to a different facility. The 
algorithm continues to iterate until all slack variables are zero and a feasible solution is thus 
obtained. To ensure that the slack variables will eventually become zero, the penalty costs 
are increased after each iteration. Therefore, it will continuously become more expensive to 
exceed the capacity. For some SKUs it will become less expensive to be reallocated to a 
different facility than it would be to pay the penalty costs. Eventually, the penalty costs will 
become sufficiently high, and enough SKUs will be reallocated to obtain a feasible 
solution. The algorithm is terminated once a feasible solution is obtained.  

For the classical penalty function method, the solution of the unconstrained problem 
converges to the solution of the constrained problem if the penalty is selected to be 
sufficiently large (Luenberger, 1971). For the problem discussed here, a feasible solution 
can be guaranteed within a finite number of iterations because of the missed sales costs. 
Eventually, the penalty costs per unit of capacity violation will be higher than the missed 
sales costs. At that point, a feasible solution will be obtained because any remaining 
capacity violations will become missed sales. An overview of the algorithm is given in 
Figure 4.1. 

The ordering of the SKUs in the algorithm is chosen from lowest to highest missed sales 
costs. This typically gives the best results as the algorithm then first considers to reallocate 
or to incur missed sales of the least valuable SKUs.  
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Figure 4.1. SKU-decomposition algorithm 

4.2.1. Capacity Violation Penalty 

In the description of the algorithm above, the capacity violation penalty increases after each 
iteration but is otherwise constant for all locations and time periods. However, in addition 
to this base penalty cost, a location and time dependent penalty cost is proposed. The 
combination of a base penalty cost with a capacity violation dependent penalty cost 
improves the solutions obtained by the algorithm.  

Without this capacity violation dependent penalty cost, a location that is at its maximum 
capacity will not be considered when reallocating SKUs, since the penalty cost at that 
location would be equal to the penalty cost in the original location. However, in some cases 
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it could be better to reallocate SKU 1 from location A to B and SKU 2 from location B to C 
rather than reallocating SKU 1 from location A to C. The impact of the capacity violation 
dependent penalty cost will be discussed in Section 4.5.1. 

The capacity violation dependent penalty cost is equal to the base penalty cost times a 
factor F times the fraction of capacity violation. The factor F is used to determine the 
weight given to the capacity violation amount. A factor of 0 means that the penalty costs 
are not dependent on the amount of capacity violation, whereas a factor of 1 indicates that a 
capacity violation of 100% doubles the penalty cost.  

In the objective function, the slack variables are multiplied by both the base penalty and the 
capacity violation dependent penalty. In other words, a capacity violation incurs both the 
base penalty cost and the capacity violation dependent penalty cost. 

The capacity violation dependent penalty of the ingredient supply is given in equation (4.1). 
It should be noted that this equation is not part of the MILP model but it is instead used to 
update the capacity violation dependent penalty parameter penSuph,s,t before each 
optimization. The capacity violation dependent penalties for all other locations are 
calculated similarly. 

 , ,
, , , ,

, ,

: max  ,       h s t
h s t h s t

h s t

1
penSup pen F penSup h,s,t

MaxSupply
  (4.1) 

This capacity violation dependent penalty parameter is defined as nondecreasing to prevent 
an SKU from switching continuously between two locations. For example, consider an 
SKU that is first allocated to location A which was already at its maximum capacity. This 
increases the penalty at location A which, in the next iteration, causes the SKU to be 
reallocated to location B that was also already at its maximum capacity. However, if 
penSup would not be nondecreasing, the new penalty at location A would be equal to the 
base penalty. Therefore, in the next iteration the SKU would be reallocated back to location 
A. The SKU would then continue to switch between locations A and B until the base 
penalty is sufficiently high to force it to be reallocated to a third location with available 
capacity.  

4.3. Submodel Constraints 

In this section, the constraints of the submodels of the SKU-decomposition algorithm are 
given. First the updated versions of the constraints of the full space tactical planning model 
will be discussed. Afterwards, additional constraints that are introduced into the submodels 
will be discussed.  
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4.3.1. Updated Constraints 

The amount of ingredient h procured from supplier s in week t may not exceed the available 
supply. This capacity constraint is relaxed with the slack variable 1h,s,t, which will initially 
allow the available supply to be exceeded at a penalty cost. The constraint is only defined 
for those ingredients that are used in the production of the current SKU.  

 , , , , , , ,+      h f s t h s t h s t SKU
f

TransIng MaxSupply 1 h HI ,s,t   (4.2) 

The total amount of ingredients in storage at a factory may not exceed the storage capacity. 
The decisions for the ingredients that are not used in the production of the current SKU are 
fixed. The amount of these ingredients in storage is captured by the parameter InvIngP. 
This parameter is updated after each optimization. This constraint is relaxed with the slack 
variable 2f,t,  which initially allows the inventory capacity to be violated at a penalty cost. 

 , , , , +   
SKU SKU

h f t h f t f f,t
h HI h HI

INVIng INVIngP INVIngCap 2 f,t   (4.3) 

The inventory of ingredient h in factory f in week t is equal to the inventory in the previous 
week, plus the amount procured from all suppliers, minus the amount consumed in the 
production of all SKUs. The production of all SKUs except for the current SKU is fixed in 
the parameter ProdP. This constraint is only defined for those ingredients that are required 
in the production of the current SKU. 
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  (4.4) 

The production time allocated to mixing all SKUs that are part of the same mixing family 
in factory f in week t cannot be larger than the available mixing time of this mixing family. 
The production of all SKUs except for the current SKU is fixed in the parameter ProdP. 
This constraint is relaxed with the slack variable 3mfam,f,t, which initially allows the mixing 
capacity to be violated at a penalty cost. This slack variable is divided by the average 
mixing rate of this mixing family to ensure that the unit is the same as all other slack 
variables. As a result, a penalty cost per tonne of SKU can be applied to all slack variables. 
This constraint is only defined for the mixing family to which the current SKU belongs. 
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The packing time allocated to the SKUs of the current packing family, plus the set-up time 
of each SKU of this packing family that is produced, plus the set-up time of the SKU 
families that are part of this packing family and of which at least one SKU is produced, 
must be less than the available packing time. For all SKUs except for the current SKU, the 
production is fixed in the parameter ProdP, the SKU set-ups are fixed in the parameter 
WSUP, and the SKU family set-ups are fixed in the parameter YFAMSUP. This constraint 
is relaxed with the slack variable 4pfam,f,t, which initially allows the packing capacity to be 
violated at a penalty cost. This slack variable is divided by the average packing rate of this 
packing family to ensure that the unit is the same as all other slack variables. As a result, a 
penalty cost per tonne of SKU can be applied to all slack variables. This constraint is only 
defined for the packing family to which the current SKU belongs. 
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 (4.6) 

If SKU i is produced in factory f in week t, then there must be a set-up for this SKU in this 
factory in this week. The total available packing time for the packing family to which this 
SKU belongs is used as the upper bound. This constraint is only defined for the current 
SKU and the packing family to which this SKU belongs. 

 , ,
, , ,
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PackTime WSU i SKU pfam PI f t

PackRate
  (4.7) 

If there is a set-up for SKU i, there must also be a set-up for the family to which this SKU 
belongs. However, if there is a set-up for any of the other SKUs that belong to this family, 
this family set-up will already be covered by the family set-up parameter, and therefore this 
constraint is relaxed in that case. This constraint is only defined for the current SKU and the 
SKU family to which this SKU belongs. 
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The total weekly production must be transported to the warehouses because there is no 
product storage in the factories. This constraint is only defined for the current SKU. 

 , , , , ,    , ,i f w t i f t
w

TransFW Prod i SKU f t   (4.9) 

The total inventory of all SKUs in a warehouse may not exceed the storage capacity. For all 
SKUs except for the current SKU, the inventory is fixed in the parameter INVWHP. This 
constraint is relaxed with the slack variable 5w,t, which initially allows the storage capacity 
to be violated at a penalty cost. 

 , , , , ,+   i w t i w t w w t
i SKU i SKU

INVWH INVWHP WHCap 5 w,t   (4.10) 

The total inventory of all SKUs in a distribution center may not exceed the storage 
capacity. For all SKUs except for the current SKU, the inventory is fixed in the parameter 
INVDCP. This constraint is relaxed with the slack variable 6dc,t, which initially allows the 
storage capacity to be violated at a penalty cost. 

 , , , , ,+   i dc t i dc t dc dc t
i SKU i SKU

INVDC INVDCP DCCap 6 dc,t   (4.11) 

The inventory of SKU i in warehouse w in week t is equal to the inventory in the previous 
week, plus the amount received from all factories, minus the amount sent to all distribution 
centers. This constraint is only defined for the current SKU. 
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  (4.12) 

Similarly, the inventory of SKU i in distribution center dc in week t is equal to the 
inventory in the previous week, plus the amount received from all warehouses, minus the 
amount sent to all retailers. This constraint is only defined for the current SKU. 
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If the inventory is less than the safety stock, the safety stock violation is the difference 
between the safety stock and the inventory. Otherwise the safety stock violation is zero. 
These constraints are only defined for the current SKU.  

 , , , , , ,   , ,i w t i w t i w tSSVioWH SSWH INVWH i SKU w t   (4.14) 
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The total amount of SKU i transported to retailer r in week t cannot exceed the demand. 
This constraint is only defined for the current SKU. 

 , , , , ,     i dc r t i r t
dc

TransDCR D i SKU,r,t   (4.16) 

Similar to the full space model, the objective is to minimize the costs which consist of 
procurement costs, inventory costs, transportation costs, safety stock violation costs, set-up 
costs and missed sales penalty costs. In addition, the capacity violation penalty costs are 
added to this objective. These capacity violation penalty costs are added for the supply 
capacity, production capacities, and inventory capacities. 
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4.3.2. Additional Constraints 

In addition to the modified full space model constraints, two new constraints are included in 
the submodels. The mixing and packing capacity constraints are relaxed with the slack 
variables. However, an upper bound can still be imposed on the total amount of any SKU 
that can be produced. The total amount of an SKU that can be mixed in a factory in a week 
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is limited to the mixing capacity of its mixing family. This constraint is only defined for the 
mixing family to which the current SKU belongs. 
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Similarly, the total amount of an SKU that can be packed in a factory in a week is limited to 
the packing capacity of its packing family minus the SKU and SKU family set-ups. This 
constraint is only defined for the packing family that contains the current SKU. 
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  (4.19) 

The number of constraints in the submodels is greatly reduced by limiting the domain of all 
constraints to the current SKU, the mixing/packing/SKU family to which the current SKU 
belongs, or the ingredients required in its production. The number of variables is also 
greatly reduced by limiting the domain of the variables in a similar way. 

4.4. Illustrative Example 

The SKU-decomposition algorithm will be demonstrated using a small illustrative problem. 
This illustrative example contains 4 time periods, 4 ingredients, 4 SKUs and a supply chain 
consisting of 2 suppliers, 2 factories, 2 warehouses and 2 retailers. Dimensionless data is 
used in this illustrative example. The ingredient availability at the suppliers is given in 
Table 4.1, and the procurement cost for all ingredients is 1/unit. The transportation costs are 
given in Table 4.2, and the demand is given in Table 4.3. The weekly storage costs are 
0.5/unit. For all SKUs, the production rate on mixing and packing lines is 1 unit/hr, the set-
up time is 0.5 hr, the set-up cost is 15, and the missed sales costs are 25/unit. All SKUs 
belong to the same mixing, packing and SKU family, and therefore, family set-up times or 
costs are not considered. The available production time is 24 hours in factory 1 and 12 
hours in factory 2. 

Table 4.1. Weekly available supply 
 Ingredient 1 Ingredient 2 Ingredient 3 Ingredient 4 

Supplier 1 20 - - 12 
Supplier 2 - 5 12 - 
 



Chapter 4 
 

 
78 

Table 4.2. Transportation costs per unit between suppliers (S), factories (F), warehouses (W) and retailers (R) 
 F1 F2   W1 W2   R1 R2 

S1 0.2 0.6 F1 0.3 0.5 W1 0.3 0.5 
S2 0.6 0.2 F2 0.5 0.3 W2 0.5 0.3 

Table 4.3. Demand at the retailers 
 Week 1 Week 2 Week 3 Week 4 

SKU 1 1 1 5 1 
SKU 2 0.5 0.5 2.5 0.5 
SKU 3 1.5 1.5 6.5 1.5 
SKU 4 3 3 3 3 

 
The production of one unit of SKU 1 requires one unit of ingredient 1. Similarly, the 
production of SKUs 2-4 requires one unit of ingredients 2-4. Since the illustrative example 
is used to demonstrate the algorithm based on the production decisions, it does not include 
the storage capacity constraints or safety stock constraints. The initial penalty costs are set 
at 0.5, and a penalty increase of 50% after each iteration is used. 

In the first step of the algorithm, the set-up variables are relaxed, and the penalty costs are 
set to 0. The decisions are then optimized sequentially for the four SKUs. The resulting 
production plan is shown on the left side of Figure 4.2. Because of the relaxed set-up costs 
and the zero capacity violation penalty costs, the optimal production plan exactly meets the 
demand of each SKU in each week. In addition, the ingredient transportation costs are 
minimized by producing SKU 1 and 4 in factory 1 and SKU 2 and 3 mainly in factory 2. 
The solution obtained in this first step of the algorithm is infeasible since the production 
capacity of factory 2 is violated in the third week. 

Figure 4.2 also shows the production plans obtained in the first iteration of the second step 
of the algorithm. In this figure, iteration i.k refers to the optimization of the decisions of 
SKU k in iteration i. The penalty costs are set to 0.50 in the first iteration of the second 
step. In addition, the set-up costs are no longer relaxed in step 2 of the algorithm. As a 
result, the complete production of SKU 1 is moved to the first week in iteration 1.1. While 
this increases the inventory costs, the decrease in set-up costs is considerably larger. 
Similarly, the complete production of SKU 2 is moved to the first week in iteration 1.2 to 
reduce the set-up costs.  

In iterations 1.3 and 1.4, the set-up costs are further reduced by producing SKU 3 and 4 
only in weeks 1 and 3. Producing all of SKU 3 and 4 in the first week would reduce the set-
up costs even further. However, the increased ingredient and production capacity penalty 
costs combined with the increased inventory costs would outweigh the reduction in set-up 
costs. The solution obtained after the first iteration of the second step is still infeasible as 
the production capacity is violated in week 1 for both factories. 
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Figure 4.2. Production plans for the illustrative example obtained in step 1 and the first iteration of step 2 of the 
algorithm 

In each iteration of step 2, each SKU is re-optimized once, and the penalty cost is increased 
at the end of each iteration. Only those optimizations that resulted in changes in the 
production plan will be discussed, and these production plans are given in Figure 4.3. The 
first change occurs in the iteration 2.1. In this optimization, the penalty costs are 
sufficiently high to force part of the production of SKU 1 to be reallocated to the third 
week. The additional set-up costs are less than the penalty and inventory costs would have 
been otherwise. The amount produced in the first week is exactly enough to meet the 
demand in the first two weeks. It should be noted that this leads to a small capacity 
violation in week 3, where the total required time is now 24 hours of production and 1 hour 
of set-ups. However, for the current penalty costs, this small capacity violation is less 
expensive than the alternatives. 

In iteration 2.2, the penalty costs are sufficiently high to force SKU 2 to be reallocated. 
Interestingly, the production is reallocated from the second factory in week 1 to the first 
factory in week 1. While this increases the ingredient transportation costs, it prevents an 
additional set-up. It should again be noted that this leads to a small 1.5 hour capacity 
violation at the first factory.  

The next change occurs in iteration 4.2. In this optimization the capacity violation in 
factory 1 week 1 is removed by moving most of the production of SKU 2 to week 2 factory 
2. This also removes the ingredient 2 capacity violation. Not all of the production of SKU 2 
is moved since that would lead to missed sales in the first week. While some production 
capacity is available in factory 2 week 1, the available capacity is insufficient to meet all 
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week 1 SKU 2 demand. Therefore, a small amount of SKU 2 is still produced in factory 1 
in week 1. Finally, in iteration 5.1 the small capacity violation in factory 1 week 3 is 
resolved by moving 1 unit of SKU 1 to factory 1 week 1. At this point a feasible solution is 
obtained, and the algorithm terminates. 

 
Figure 4.3. Production plans for the illustrative example obtained in the various iterations of step 2 of the 
algorithm. Only those iterations where the production plan changed are included. 

The solution obtained with the algorithm for the illustrative example is identical to the 
solution that would be obtained with the full space model. Therefore, for this problem the 
algorithm obtains the optimal solution. However, it should be noted that the algorithm 
offers no guarantee of global optimality.  

4.5. Results 

4.5.1. Penalty Settings 

The quality of the solution obtained by the algorithm depends on the selection of the 
penalty settings. These penalty settings also influence the required CPU time. A feasible 
solution can be obtained more quickly by using high initial penalty costs. When using high 
initial penalty costs, most infeasibilities will already be resolved in the first iteration since 
the costs of capacity violations will be high. However, this may cause the “wrong” SKUs to 
be reallocated since the penalty costs could be sufficiently high such that any SKU would 
be reallocated to prevent incurring capacity violation penalty costs. In this case the 
algorithm will reallocate the first few SKUs that are considered, whereas it might be less 
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expensive to reallocate some of the other SKUs.  Alternatively, a low initial penalty cost 
will yield better solutions but at a higher computational cost.  

Similarly, better solutions can also be obtained by using a low penalty increase, although 
again at a computational cost. A feasible solution can be obtained faster by using a high 
penalty increase because fewer iterations are required to reach a sufficiently high penalty 
cost to remove the infeasibilities. Nevertheless, this higher penalty increase may lead to 
worse solutions.   

As an example for seeing the effect of the penalty increase, consider the situation where 
SKU 1 and 2 would ideally both be allocated to the same factory. However, allocating both 
would exceed the production capacity, and the optimal decision would be to allocate SKU 1 
to this factory and SKU 2 to another.  

The basis of the algorithm is that initially both are allocated to the same factory. Then by 
slowly increasing the penalty costs, they eventually become sufficiently high to reallocate 
one of the two. If a small penalty increase is used, then at a certain iteration the penalty 
costs are sufficiently high to force SKU 2 to be reallocated but not high enough to force 
SKU 1 to be reallocated. However, if a large penalty increase is used, it is possible that at 
one iteration neither of the two would be forced to be reallocated, while in the next iteration 
both would be forced to be reallocated. In that scenario SKU 1 would be reallocated 
because it is considered first. 

Therefore, it is important to carefully select the penalty settings to obtain a good balance 
between the total required CPU time and the solution quality. The 10-SKU case study has 
been optimized using various penalty settings. The initial penalty was varied between 0.05 
and 5, and the penalty increase was varied between 5% and 500% per iteration.  

The third penalty setting is the factor F.  As discussed in Section 4.2.1, this factor indicates 
the weight given to the capacity violation dependent part of the penalty costs. This factor F 
was varied between 0 and 2. The results are summarized in Figure 4.4. Cost increase 
denotes the increase in costs for the solution obtained with the algorithm compared to the 
best lower bound obtained with the full space model. Therefore, this cost increase provides 
an upper bound on the real increase in cost by using the algorithm. The CPU time is the 
total required CPU time until a feasible solution was obtained.  

It can be seen that all solutions obtained with the algorithm have a higher costs than the 
solution obtained with the full space model. However, with the right penalty settings good 
solutions can be obtained with the algorithm. In fact, the best solution obtained with the 
algorithm had a cost increase of only 2.23%. Moreover, for all penalty settings the CPU 
time required by the algorithm is less than the 1144 seconds required by the full space 
model.   
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A very high initial penalty of 5 leads to poor solutions for any penalty increase and factor. 
This is because the high initial penalty cost forces all infeasibilities to be removed in the 
first iteration. Even though these solutions can be obtained within a minute, such a high 
initial penalty is a poor choice because the total costs increase by more than 6%.   
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Figure 4.4. Cost increase and required CPU time for the various penalty settings 

On the other hand, good solutions can still be obtained with a very high penalty increase, as 
long as the initial penalty is small. For example, the solution obtained with an initial penalty 
of 0.05, a factor of 1, and a penalty increase of 500% has a cost increase of 3.54%. 
Nevertheless, with smaller penalty increases even better solutions can be obtained at only 
slightly increased computational cost. Especially for small initial penalty values, a penalty 
increase of 50% offers a good trade-off between solution quality and required 
computational time. Therefore, the combination of an initial penalty value of 0.05 and a 
penalty increase of 50% is a suitable penalty setting. 

A higher factor reduces the required CPU time because fewer iterations are required until 
the penalty is sufficiently high to prevent infeasibilities. However, for an initial penalty of 
0.05 and a penalty increase of 50%, the impact of the factor on the CPU time is relatively 
minor. The required CPU time is reduced from 217s to 155s by increasing the factor from 0 
to 2. Therefore, the factor is selected based on the cost increase. Both on average and for 
the selected initial penalty and penalty increase, the best solutions could be obtained when 
using a factor of 1. Therefore, the selected penalty settings are a factor of 1, an initial 
penalty of 0.05 and a penalty increase of 50%. For the 10-SKU case study, a solution with a 
cost increase of 2.58% could be obtained in 175 seconds when using these penalty settings. 
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It should be noted that the best penalty settings depend on the data. However, it was 
determined that as long as the data is in the same range, the best penalty settings remain 
reasonably constant. Because the data in all case studies is generated between the same 
upper and lower bounds, these penalty settings are used for all case studies. When using 
them in the optimization of the 10-SKU case study, the algorithm spent 3s in the first step. 
The second step required 9 iterations for a total of 172s. Because the penalty is set to zero 
in the first step, the time spent in the first step is independent of the penalty settings. 
Therefore, the differences in required CPU time between the various penalty settings 
originate from the second step of the algorithm. 

Each submodel in the algorithm contains approximately 6917 constraints, 20593 continuous 
variables and 208 binary variables. The exact number of continuous variables and 
constraints varies slightly between the submodels. For example, the number of constraints 
describing the availability of ingredients varies because only those ingredients that are used 
in the production of the current SKU are included in the submodel. 

4.5.2. Penalty Setting Validation 

To validate these penalty settings, another 10 case studies containing 10 SKUs have been 
generated and optimized with the algorithm using the proposed penalty settings of a factor 
of 1, an initial penalty of 0.05, and a penalty increase of 50%. As can be seen in Figure 4.5, 
for all these case studies a solution within a few percent of optimality was obtained. In 
addition, Figure 4.6 shows that the algorithm is on average more efficient than the full 
space model for these 10-SKU case studies. Moreover, the required computational time of 
the algorithm is relatively constant, varying between 83s and 175s, while the required 
computational time of the full space model varies greatly between 54s and 1144s.  

 
Figure 4.5. Cost increase when optimizing the 10-SKU case studies with the algorithm. The cost increase is 
compared to the best lower bound obtained with the full space model. 
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Figure 4.6. Comparison of the required computational time of the full space model and the algorithm for the 10-
SKU case studies 

The sensitivity of the penalty settings to the data is tested using another 13 case studies 
containing 10 SKUs. For each of these case studies, one parameter has been generated 
differently. For most of these case studies this parameter is either high, which indicates that 
it has been increased by 100%, or low, which indicates that it has been decreased by 50%. 
For three of these case studies, the demand has been changed from seasonal to non-seasonal 
demand. The computational results are given in Figures 4.7 and 4.8. 

  
Figure 4.7. Cost increase when using the SKU-decomposition algorithm to optimize a variety of 10-SKU case 
studies. The cost increase is calculated based on the best obtained lower bound of the full space model. 
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Figure 4.8. Required computational time when using the SKU-decomposition algorithm to optimize a variety of 
10-SKU case studies. 

For 12 out of these 13 case studies, a solution within 2% of optimality could be obtained 
using the proposed penalty settings. However, for the high non-seasonal demand case 
study, the cost increase was 6.01% when using a penalty increase of 50%. This cost 
increase is mainly caused by higher missed sales costs. In theory, the capacity violation 
dependent penalty costs should allow SKUs to be reallocated more easily such that the 
correct SKUs are produced in the correct amount and the least expensive SKUs will be sold 
out if the total capacity is insufficient. However, when a large penalty increase is used, the 
number of iterations in which the SKUs can be reallocated between the various facilities 
might be insufficient and the more expensive SKUs might be forced to become missed 
sales. 

Therefore, these 13 case studies are also optimized with a penalty increase of 5%. As can 
be seen in Figure 4.7, the cost increase of the high non-seasonal demand case study is 
reduced to 0.90% when using a penalty increase of 5%. However, as can be seen in Figure 
4.8, the required computational time increases substantially because the number of required 
iterations increases considerably. While the additional iterations result in a clearly better 
solution for the high seasonal and high non-seasonal demand case studies, they provide no 
significant benefit for the other case studies. Basically, if the amount of missed sales is low, 
the additional iterations due to the smaller 5% penalty increase provide no real benefit. On 
the other hand, when the amount of missed sales is high, such as the 22% missed sales in 
the high non-seasonal demand case study, clearly better solutions can be obtained with a 
5% penalty increase. 
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Since the difference in required computational time between a 5% and a 50% penalty 
increase is relatively large, it is recommended to initially perform the optimization with a 
50% penalty increase. If the resulting solution has a considerable amount of missed sales, 
for example more than 5%, a second optimization with a 5% penalty increase is 
recommended since it could provide significant cost savings. These settings are tested on 
another 5 high non-seasonal demand and 5 high seasonal demand case studies, and the 
results are given in Figure 4.9 

 
Figure 4.9. Cost increase when using the SKU-decomposition algorithm to optimize several high demand 10-SKU 
case studies. The cost increase is calculated based on the best obtained lower bound of the full space model. 

As is shown in Figure 4.9, a penalty increase of 5% improved the solution for all 10 of 
these case studies. Moreover, solutions within a few percent of optimality were obtained for 
all 10 case studies when using a penalty increase of 5%. Therefore, this second 
optimization with a smaller penalty increase is indeed recommended when initially a 
solution with a considerably amount of missed sales is obtained. 

4.5.3. Solution Quality 

As discussed in the previous sections, the solutions obtained with the algorithm have 
slightly higher total costs than the solutions obtained with the full space model. In this 
section, the characteristics of both solutions of the original 10 SKU case study will be 
discussed in more detail. The solution quality of larger case studies will be discussed at the 
end of this section. 

Figure 4.10 shows which SKUs are produced in factory 1 in each week in the solution 
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the same SKUs are allocated to factory 1 in the full space model. However, it can also be 
seen that the exact timing of the allocation decisions varies. Nevertheless, most differences 
in these timing decisions have a limited impact on the costs. For example, only the storage 
costs differ between producing SKU 1 in week 38 and SKU 2 in week 41 and producing 
them the other way around. Because the differences in unit storage costs between the 
various SKUs are very small, the impact on the total costs is very small as well. 

 
Figure 4.10. Gantt chart indicating which SKU is produced in each week in factory 1 in the algorithm solution 

Even though the timing of the individual SKUs varies, it can be seen in Figure 4.11 that the 
total inventory buildup is very similar. As a result, the total inventory costs are similar in 
both solutions. The majority of the total cost increase is caused by the set-up costs and the 
transportation costs.  

 
Figure 4.11. Profile of the total inventory of all SKUs in all storage facilities over the time horizon 

0

17500

35000

52500

70000

0 10 20 30 40 50

To
ta

l i
nv

en
to

ry
 o

f a
ll 

SK
U

s

Week

Algorithm

Full model



SKU-Decomposition Algorithm 
 

  

 
89 

It is more difficult to determine the quality of the solutions obtained with the algorithm for 
case studies containing more SKUs since the full space model is intractable for these case 
studies. However, when the set-up variables are relaxed, the full space model is able to 
optimize case studies containing up to 100 SKUs. Therefore, despite some limitations in 
this comparison, Linear Programming (LP) relaxations of both the full space model and the 
algorithm were used to optimize case studies containing between 10 and 100 SKUs. An 
overview of the increase in costs when using the algorithm instead of the full space model 
is given in Table 4.4. It should be noted that the submodel constraints and variables given 
in Table 4.4 are the typical number of constraints and variables in a submodel for an SKU 
produced from 3 ingredients. The exact number may vary depending on data such as the 
number of ingredients used in the production of the current SKU. 

Table 4.4. Computational results for case studies containing between 10 and 100 SKUs. In all case studies the set-
up variables were relaxed in both the full space model and the algorithm. The cost increase is for the solution 
obtained with the algorithm compared to the solution obtained with the full space model. 
Number 

of  
SKUs 

Full Space Model  Algorithm 
Constraints Variables CPU  

Time 
 Submodel 

Constraints 
Submodel 
Variables 

Total 
CPU 
Time 

Cost 
Increase 

  10   41,809    185,589   46s  6,917 20,593   44s 1.16% 
  25   90,169    425,829   68s  6,917 20,593 164s 1.59% 
  50 170,769    826,229 131s  6,917 20,593 206s 1.81% 
  75 251,369 1,226,629 384s  6,917 20,593 392s 0.92% 
100 331,969 1,627,029 887s  6,917 20,593 720s 1.53% 

 
It should be noted that the data set influences the cost increase of the solution obtained with 
the algorithm compared to the solution obtained with the full space model. However, for all 
case studies, the cost increase is within a few percent. Moreover, there does not seem to be 
a relation between the number of SKUs and the cost increase. This is particularly important 
because a realistic problem could contain up to a thousand SKUs. While it should be noted 
that the relaxation of binary variables may influence the optimality gap, it seems unlikely 
that including binary variables would introduce a strong correlation between the number of 
SKUs and the cost increase of the algorithm. Therefore, it is concluded that while the 
algorithm cannot guarantee global optimality, it obtains solution within a few percent of 
optimality.  

4.5.4. Required CPU Time 

The advantage of the algorithm is that it is computationally much more efficient than the 
full space model. It was shown in Section 4.5.1 that the algorithm is already more efficient 
than the full space model for a small case study containing only 10 SKUs. However, the 
main advantage of the algorithm is that it can solve case studies that are far larger than 
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those that can be solved with the full space model. While the full space model is intractable 
for case studies containing 50 or more SKUs, the algorithm can be used to solve case 
studies of up to 1000 SKUs.  

Not only is the algorithm capable of solving these large case studies, but the required 
computational time scales well with the number of SKUs because the size of the submodels 
is independent of the number of SKUs. Whether the problem contains 10 or 100 SKUs, 
each submodel contains approximately 6917 constraints, 20,593 continuous variables and 
208 binary variables. As a result, the only difference between case studies with 10 and 100 
SKUs is that the number of submodels increases by a factor 10. Consequently, the duration 
of each iteration is approximately 10 times longer, and thus, as is shown in Table 4.5, the 
total required computational time also increases by a factor 10. However, for extremely 
large case studies containing 500 or 1000 SKUs, the required computational time increases 
more than linearly. While the time spent optimizing each submodel remains constant, there 
is a significant time loss in between the optimizations of submodels. Nevertheless, case 
studies containing 500 and 1000 SKUs could still be solved with the algorithm. 

Table 4.5. Required CPU time of the algorithm for case studies containing between 10 and 1000 SKUs. 
Problem Size Required CPU time 

    10 SKU       3 minutes 
    25 SKU       7 minutes 
    50 SKU     15 minutes 
    75 SKU     23 minutes 
  100 SKU     27 minutes 
  150 SKU     75 minutes 
  500 SKU   370 minutes 
1000 SKU 1499 minutes 

4.6. Conclusions 

Realistically sized case studies, which can contain up to 1000 SKUs, are intractable for the 
tactical planning MILP model developed in Chapter 3. Therefore, an SKU-decomposition 
algorithm was proposed in this chapter. In this algorithm, submodels containing a single 
SKU are optimized sequentially while a penalty cost is introduced for violating the 
capacity. This penalty cost is increased after each optimization, and eventually it becomes 
sufficiently high to obtain a feasible solution. While there is no guarantee of global 
optimality, it was shown in this chapter that this feasible solution is typically within a few 
percent of the global optimum. Moreover, the algorithm is computationally efficient. Even 
for a small 10-SKU case study the required CPU time could be reduced by more than a 
factor 6 by using the algorithm instead of the full space model. Furthermore, the algorithm 
was able to optimize case studies of a realistic size containing up to 1000 SKUs.  
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4.7. Nomenclature 

4.7.1. Indices 

dc  Distribution centers 
f  Factories 
fam  SKU families 
h  Ingredients 
i  SKUs 
mfam  Mixing families 
pfam  Packing families 
r  Retailers 
s  Suppliers 
SKU  Current SKU 
t  Weeks 
w  Warehouses 

4.7.2. Subsets 

FAMpfam  SKU families belonging to packing family pfam 
FAMIi  SKU family to which SKU i belongs 
HIi  Ingredients that are required for the production of SKU i 
IFfam  SKUs belonging to SKU family fam 
IMmfam  SKUs belonging to mixing family mfam 
IPpfam  SKUs belonging to packing family pfam 
MIi  Mixing family to which SKU i belongs 
PIi  Packing family to which SKU i belongs 

4.7.3. Parameters 

CostIngh,s,t Unit cost of ingredient h at supplier s in week t 
Di,r,t  Demand of SKU i at retailer r in week t 
DCCapdc Available storage capacity in distribution center dc 
F Factor that determines the weight allocated to the capacity violation 

dependent penalty cost 
FAMSUCostfam Average set up cost for SKU family fam 
FAMSUTfam Average set up time for SKU family fam 
INVDCPi,dc,t Amount of SKU i stored in distribution center dc in week t. This 

parameter is used when the decisions for SKU i are frozen in the current 
optimization.  

INVIngCAPf Available storage capacity for ingredients at factory f  
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INVIngPh,f,t Inventory of ingredient h at factory f in week t. This parameter is used 
when the decisions for ingredient h are frozen in the current optimization. 

INVWHPi,w,t Amount of SKU i stored in warehouse w in week t. This parameter is used 
when the decisions for SKU i are frozen in the current optimization.  

MaxSupplyh,s,t Available supply of ingredient h at supplier s in week t 
MixTimemfam,f Available mixing time at factory f for SKUs that are part of mixing 

family mfam  
MixRatei,f Mixing rate of SKU i in factory f 
MSpeni,r,t Penalty costs per unit of missed sales of SKU i at retailer r in week t 
PackRatei,f Packing rate of SKU i in factory f  
PackTimepfam,f Available packing time at factory f for SKUs that are part of packing 

family pfam 
Pen Base penalty cost for exceeding the capacity 
PenDCdc,t Capacity violation dependent penalty cost of distribution center dc in 

week t 
PenIngInvf,t Capacity violation dependent penalty cost of storage in factory f in week t 
PenMixmfam.f,t Capacity violation dependent penalty cost of mixing family mfam at 

factory f in week t 
PenPackpfam.f,t Capacity violation dependent penalty cost of packing family pfam at 

factory f in week t 
PenSuph,s,t Capacity violation dependent penalty cost of ingredient h at supplier s in 

week t 
PenWHw,t Capacity violation dependent penalty cost of warehouse w in week t 
ProdPi,f,t Amount of SKU i produced in factory f in week t. This parameter is used 

when the decisions for SKU i are frozen in the current optimization.  
Recipeh,i  Amount of ingredient h consumed per unit produced of SKU i  
SCIngh,f  Storage costs of ingredient h at factory f  
SCDCi,dc  Storage costs of SKU i at distribution center dc 
SCWHi,w  Storage costs of SKU i at warehouse w 
SSDCi,dc,t Minimum safety stock of SKU i in distribution center dc in week t 
SSWHi,w,t Minimum safety stock of SKU i in warehouse w in week t 
SSpenCost Safety stock violation penalty cost 
SUCosti  Average set-up cost for SKU i 
SUTi  Average set-up time for SKU i 
TCDCRdc,r Transportation cost between distribution center dc and retailer r 
TCFWf,w  Transportation cost between factory f and warehouse w 
TCSFs,f  Transportation cost between supplier s and factory f 
TCWDCw,dc Transportation cost between warehouse w and distribution center dc 
WHCapw Available storage capacity in warehouse w 
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WSUPi,f,t Binary parameter, indicates a set-up of SKU i in factory f in week t. This 
parameter is used when the decisions for SKU i are frozen in the current 
optimization.  

YFAMSUPfam,f,t Binary parameter, indicates if there is a set-up of SKU family fam in 
factory f in week t. This parameter is used to indicate a required set up for 
one of the SKUs of SKU family fam that are frozen in the current 
optimization.  

4.7.4. Nonnegative Continuous Variables 

INVDCi,dc,t Amount of SKU i stored in distribution center dc in week t  
INVIngh,f,t Inventory of ingredient h at factory f in week t 
INVWHi,w,t Amount of SKU i stored in warehouse w in week t 
Prodi,f,t  Amount of SKU i produced in factory f in week t  
SSVioDCi,dc,t Amount of SKU i short of the safety stock in distribution center dc in 

week t 
SSVioWHi,w,t Amount of SKU i short of the safety stock in warehouse w in week t 
TotalCosts          Total costs of operating the supply chain 
TransDCRi,dc,r,t    Amount of SKU i transported from distribution center dc to retailer r in  

week t 
TransFWi,f,w,t Amount of SKU i transported from factory f to warehouse w in week t 
TransIngh,f,s,t Amount of ingredient h procured from supplier s to factory f in week t 
TransWDCi,w,dc,t   Amount of SKU i transported from warehouse w to distribution center dc  

 in week t  
1h,s,t  Slack variable, represents the procurement amount that exceeds the 

available capacity of ingredient h at supplier s in week t. 
2,f,t  Slack variable, represents the ingredient inventory amount that exceeds 

the available capacity of factory f in week t. 
3mfam,f,t  Slack variable, represents the production amount that exceeds the 

available capacity of mixing family mfam at factory f in week t. 
4pfam,f,t  Slack variable, represents the production amount that exceeds the 

available capacity of packing family pfam at factory f in week t. 
5w,t  Slack variable, represents the inventory amount that exceeds the available 

capacity of warehouse w in week t. 
6dc,t  Slack variable, represents the inventory amount that exceeds the available 

capacity of warehouse dc in week t. 

4.7.5.  [0-1] Variables (Can be treated as continuous) 

YFAMSUfam,f,t Indicates if there is a set-up of SKU family fam in factory f in week t 
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4.7.6. Binary Variables 

WSUi,f,t  Binary variable indicates a set-up of SKU i in factory f in week t 
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ABSTRACT: In this chapter, shelf-life restrictions are considered in the tactical planning 
problem for the Fast Moving Consumer Goods industry. Shelf-life restrictions are 
introduced into the tactical planning model that was developed in Chapter 3 to prevent 
unnecessary waste and missed sales. Three methods for implementing shelf-life restriction 
are compared. In the direct method the age of each product is tracked. While this method 
can provide optimal solutions, it is computationally inefficient. In the indirect method, 
products are forced to leave inventory at the end of their shelf-life. For supply chains 
consisting of two or more storage echelons this method cannot guarantee optimality. 
Nevertheless, the solutions obtained with the indirect method were always within a few 
percent of optimality. Moreover, on average, the computational time was reduced by a 
factor of 32 when using the indirect method instead of the direct method. Finally, the 
hybrid method models the product age directly in the first storage stage, while considering 
the shelf-life indirectly in the second stage. The hybrid method obtains near-optimal 
solutions and, on average, the computational time was reduced more than 5 times 
compared to the direct method. Case studies of up to 25 Stock-Keeping Units (SKUs) were 
optimized using the direct method, up to 100 SKUs using the hybrid method, and up to 1000 
SKUs using the indirect method. 

5.1. Introduction 

Due to the increasingly competitive global market, companies with a global supply chain 
have to continuously optimize their supply chain operations. Optimizing these operations 
could, for example, allow a company to reduce the inventory while maintaining high 
customer service levels (Papageorgiou,2009). An extensive review on quantitative 
optimization methods for the food supply chain is provided by Akkerman et al. (2010). 
These authors mention that the perishability of the products is an important challenge in the 
optimization of the operations in a food supply chain.  

Considering perishability is important because product freshness is one of the primary 
concerns for consumers when buying food products. Consumers can judge the freshness of 
a product either by evaluating the sensory qualities of the product or by the Best-Before-
Date (BBD) listed on the packaging. Since many products are fully packed, the consumer 
must often rely on calculating the remaining shelf-life based on this BBD (Entrup, 2005) . 

Shelf-life is defined by the Institute of Food Science & Technology (1993) as “the time 
during which the food product will remain safe, be certain to retain the sensory, chemical, 
physical and microbiological characteristics, and comply with any label declaration of 
nutritional data.” 

Because product freshness is important for consumers, the retailers require that the products 
they receive have a certain minimum remaining shelf-life. Therefore, only part of the shelf-
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life can be used in the supply chain up to the retailers. For the remainder of this chapter, 
shelf-life refers to the part of the shelf-life that may be used in the supply chain before the 
retailers. 

If the shelf-life is not considered in the tactical planning problem, part of the inventory 
could exceed its shelf-life. This would not only result in disposal costs, but the reduced 
inventory might not be sufficient to meet the demand, which would lead to missed sales. 
Therefore, considering shelf-life limitations in the tactical planning problem is crucial. 
Nevertheless, the implementation of shelf-life limitations in the tactical planning has only 
received limited attention in literature. 

Much of the research regarding implementing shelf-life limitations focuses on adding shelf-
life constraints to the Economic Lot Scheduling Problem (ELSP). Soman et al. (2004) and 
Entrup et al. (2005) give an overview of the contributions in this area. However, these 
models typically assume a constant demand rate. This is unrealistic for the food industry, 
which has many seasonal products and intense promotional activities (Entrup et al., 2005).  

Another part of the research in this area focusses on the quality degradation over time. 
Entrup (2005) integrates shelf-life in the advanced planning for fresh food industries. He 
relates the revenue of a product to its remaining shelf-life. The longer the remaining shelf-
life, the more valuable the product. The shelf-life is modeled by tracking the production day 
and selling day of each product.  

Farahani et al. (2012) propose an iterative scheme that integrates the production and 
distribution decisions for a perishable food company. They compare their integrated 
approach to a sequential planning approach. A penalty is added to the objective function for 
the quality decay of the products. They assume a linear decay for each day that a product 
remains in storage. Ahumada and Villalobos (2009) consider a similar linear decay penalty 
for the production and distribution of fresh produce. In addition, they limit the maximum 
shelf-life based on the harvest period and the sales period. 

Rong et al. (2011) optimize a food supply chain, while managing the food quality. The 
quality degradation per period is linearly dependent on the temperature, which can be 
varied for each location. The shelf-life is then considered by imposing a minimum quality 
requirement. 

Amorim et al. (2012) consider the shelf-life using two methods. In the first method, the 
maximum shelf-life is enforced directly through the dates of production and sales of the 
products. In the second method, similar to Rong et al. (2011), they adjust the remaining 
shelf-life in each period according to the storage conditions. They use two objective 
functions. In the first one, the overall costs are minimized. In the second objective, the 
remaining shelf-life of the products sent to the distribution centers is maximized. Using 
these two objectives, they consider the trade-off between costs and the value of freshness. 
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Eksioglu and Jin (2006) optimize the tactical planning for perishable products in a two-
stage supply chain, consisting of production facilities and retailers. They add a constraint to 
ensure that the inventory at a production facility in any period cannot exceed the amount 
that is sent to the retailers in the next X periods, where X is the shelf-life. However, their 
model formulation limits the retailers to receiving product from a single factory.   

Gupta and Karimi (2003) consider the shelf-life of intermediate products in the short-term 
scheduling of a two-stage multiproduct process. They introduce a constraint that forces the 
second stage processing of a batch of product to start before the end of the first stage 
processing of a product lot plus the shelf-life of the product. Using a big-M formulation, 
they relax this constraint for second stage batches that are not produced from this first stage 
lot. Finally, Susarla and Karimi (2012) optimize the tactical planning for pharmaceutical 
companies while considering the shelf-life. They directly model the age of each product, 
and set the maximum age equal to the shelf-life.  

In summary, when shelf-life is considered in literature, it is typically considered directly: 
either by tracking the age of products, by tracking the production and sales dates, or 
through the product quality. While directly tracking the shelf-life is accurate, it is relatively 
inefficient, as will be shown in this chapter. Therefore, it might not be a tractable method 
for larger, more realistically sized problems. In this chapter two other, computationally 
more efficient, methods are proposed that also accurately consider the shelf-life limitations. 

5.2. Problem Definition 

The problem considered in this chapter is similar to the problem described in Section 3.2. 
One additional characteristic is that all SKUs must leave the supply chain before the end of 
their shelf-life. This shelf-life is known for each SKU. Any SKU that remains in the supply 
chain for longer than its shelf-life will become waste. The disposal cost of this product 
waste is known for each SKU. 

5.3. Shelf-Life 

Since the problem considered in this chapter is similar to the problem described in Chapter 
3, the tactical planning Mixed Integer Linear Programming (MILP) model proposed in that 
chapter is used as a basis. This section will describe three possible methods of introducing 
shelf-life limitations into that formulation.  

5.3.1. Direct Shelf-Life Implementation 

In the direct shelf-life implementation, the shelf-life is considered directly. An additional 
index a, the age of an SKU, is introduced for all inventory and transportation variables. 
This index represents the number of weeks since an SKU has been produced. As shown in 
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Figure 5.1, this method keeps track of the age of each SKU. When the shelf-life is 
considered in literature, it is typically considered using this direct shelf-life implementation. 
For example, Susarla and Karimi (2012) directly model the age of the products in their 
supply chain to enforce shelf-life restrictions.  

 
Figure 5.1. Overview of the direct shelf-life method for an SKU with a shelf-life of 3 weeks 

For the direct shelf-life implementation, the following constraints are introduced. The total 
inventory of all SKUs i of any age a cannot be greater than the inventory capacity in any 
location at any time. 
 , , ,

,
  i w t a w

i a
INVWH WHCap w,t   (5.1) 

 , , ,
,

  i dc t a dc
i a

INVDC DCCap dc,t   (5.2) 

The inventory of an SKU i with an age of one week in a warehouse w is equal to the 
incoming amount from the factories minus the amount of SKU i that is one week old that is 
sent to the distribution centers. 

 , , , , , , , , , ,   , , , 1i w t a i f w t i w dc t a
f dc

INVWH TransFW TransWDC i w t a   (5.3) 

The inventory of an SKU i with an age a in a warehouse w is equal to the inventory that 
was a-1 weeks old in the previous week, minus the amount of SKU i that is a weeks old 
that is sent to the distribution centers, minus the amount that becomes waste. This waste 
variable, WasteWHi,w,t,a, is only defined for SKUs with an age a equal to their shelf-life SLi, 
since it is assumed that no SKUs will be disposed unless they have reached the limit of their 
shelf-life. 
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  (5.4) 

The inventory of SKU i with an age of a weeks in distribution center dc is equal to the 
inventory that was a-1 weeks old in the previous week, plus the incoming amount from the 
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warehouses that is a weeks old, minus the amount that is sent to the retailers that is a weeks 
old, minus the amount that becomes waste. Similarly to the warehouses, the waste variable, 
WasteDCi,dc,t,a, is only defined for SKUs that have reached the end of their shelf-life. 

 
, , , , , 1, 1 , , , ,

, , , , , , ,                               , , ,

i dc t a i dc t a i w dc t a
w

i dc r t a i dc t a i
r

INVDC INVDC TransWDC

TransDCR WasteDC i dc t a SL
  (5.5) 

The safety stock violation in a location is larger than or equal to the safety stock minus the 
total inventory level of an SKU in that location. 

 , , , , , , ,   , ,i w t i w t i w t a
a

SSVioWH SSWH INVWH i w t   (5.6) 

 , , , , , , ,   , ,i dc t i dc t i dc t a
a

SSVioDC SSDC INVDC i dc t   (5.7) 

The total amount of SKU i of all ages that is sent to a retailer is limited by the demand of 
this retailer.  

 , , , , , ,
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    i dc r t a i r t
dc a

TransDCR D i,r,t   (5.8) 

These constraints (5.1)-(5.8) replace constraints (3.9)-(3.15) of the base tactical planning 
model. In addition, a cost term for disposing waste is added to the objective function.  
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While the direct shelf-life implementation allows the tactical planning to be optimized 
considering the exact shelf-life limitations, it also greatly increases the model size. 
Therefore, two other options for modeling the shelf-life are considered as well. 

5.3.2. Indirect Shelf-Life Implementation 

Instead of tracking the age of all SKUs directly, constraints can be introduced that force an 
SKU to leave the supply chain at the end of its shelf-life. For a supply chain with a single 
storage echelon such constraints are relatively straightforward as is shown in Figure 5.2. 
For simplicity, the initial inventory and the waste streams are assumed to be zero in this 
example. The amount of SKU sent from any of the factories to the storage facility in weeks 
1-5 is denoted as F1-F5 respectively. The amount of SKU sent from this storage facility to 
any of the retailers in weeks 1-5 is denoted as FA-FE respectively. The example in Figure 
5.2 is explained below. 

  
Figure 5.2. Example of the indirect shelf-life constraints for a supply chain with a single storage echelon and an 
SKU with a 3-week shelf-life 

The incoming SKUs from the factories in week 1 have an age of 1 week at the end of week 
1. At the end of week 3, these SKUs have reached their maximum shelf-life of 3 weeks. 
Therefore, the sum of the amount sent to the retailers in weeks 1-3 (FA+FB+FC) must be at 
least as large as the amount that was received in week 1 (F1). It could be larger, since part 
of the SKU that was received in weeks 2 and 3 could already be sent to the retailers.  

At the end of week 4, the SKUs that arrived in week 2 have reached the end of their shelf-
life, and therefore the total amount sent to the retailers in weeks 1-4 (FA+FB+FC+FD) must 
be at least sufficient to cover the incoming SKUs in weeks 1-2 (F1+F2). Similarly, the 
outgoing flow in weeks 1-5 can be coupled with the incoming flow in weeks 1-3.  

These constraints rely on the assumption that always the oldest available batch of an SKU 
in a storage facility will be sent to the retailers first. This is a reasonable assumption 
because it minimizes the probability that an SKU will exceed its shelf-life. 

The concept behind this indirect shelf-life method is similar to, for example,  the concept 
behind the shelf-life constraint introduced by Eksioglu and Jin (2006). They limit the 
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inventory to the amount of product that leaves the storage in the next X weeks, with X 
being the shelf-life of the product. 

However, in a supply chain with two storage echelons, the age of the SKUs arriving in the 
second storage stage would be unknown, and therefore, these constraints could not be 
applied. Nevertheless, an indirect shelf-life implementation seems attractive since the 
model would be considerably smaller than a direct shelf-life model. To enable an indirect 
implementation for a two storage echelon supply chain, the shelf-life can be divided 
manually over the storage echelons. 

For example, if the total shelf-life of an SKU is 4 weeks, 2 weeks could be dedicated to the 
warehouses and 2 weeks to the distribution centers. If an SKU arrives in a warehouse in 
week 1, it can thus remain in this warehouse for at most two weeks. Therefore, the SKU 
that is produced in week 1 must be sent to a distribution center by the end of week 2. The 
SKU that arrives in the distribution center in week 2 is at most 2 weeks old by the end of 
week 2. Therefore, it must be sent to the retailers before the end of week 4, when the SKU 
is at most 4 weeks old. An overview of this example is given in Figure 5.3. F1-F4 denote the 
incoming amount of SKU from all factories to a warehouse in weeks 1-4, FA-FD denote the 
amount of SKU sent from warehouse to distribution center in weeks 1-4, and FI-FIV denote 
the amount of SKU sent from distribution center to any of the retailers in weeks 1-4. 

  
Figure 5.3. Example of the indirect shelf-life constraints for a supply chain with two storage echelons and an SKU 
with a 4-week shelf-life which is divided into a 2-week warehouse and a 2-week distribution center shelf-life 

Based on the concept discussed above, the following two constraints are introduced into the 
tactical planning model to enforce the shelf-life indirectly. The part of the initial inventory 
that reaches the end of its warehouse shelf-life before or at the end of the current period, 
plus the amount received from the factories that reaches the end of its warehouse shelf-life 
before or at the end of the current period must be less than or equal to the amount that is 
transported to the distribution centers until the end of the current period, plus the amount 
that is disposed of before the end of the current period. This constraint ensures that an SKU 
will be disposed of if it is not transported to the distribution centers before the end of its 
warehouse shelf-life. 
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Similarly, a constraint is introduced that ensures that an SKU will be disposed of if it is not 
transported to the retailers before the end of its distribution center shelf-life. 
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In addition, a waste term is added to the inventory balances:  
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The indirect shelf-life model consists of constraints (3.1)-(3.10), (3.13)-(3.15), and (5.10)-
(5.13). In addition, a term for the cost of disposing waste is added to the objective function. 
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The advantage of this indirect method is that the resulting models are considerably smaller 
than those of the direct method. In addition, it still ensures that each SKU leaves the supply 
chain before the end of its shelf-life. While optimal solutions are obtained when using the 
indirect method to optimize the operation of a supply chain with a single storage echelon, it 
cannot be guaranteed that the optimal solution for a supply chain with two storage echelons 
will be obtained. It might be beneficial for some SKUs to stay in one of the storage 
echelons longer than the maximum that is allocated.  

5.3.3. Hybrid Shelf-Life Implementation 

Therefore, a third method of implementing the shelf-life restrictions is considered. This 
method combines the direct and indirect methods. The age of all SKUs is tracked directly in 
the first stage, but in the second storage stage the shelf-life restrictions are enforced 
indirectly. The number of weeks an SKU may remain in the second storage stage can be 
calculated from the shelf-life minus the age of the SKU when it was sent to the second 
storage stage.  

An overview of the hybrid shelf-life method is given in Figure 5.4. F1-F3 represent the 
amount of SKU sent from warehouse to distribution center in week 1. The SKU in F1 is 3 
weeks old by the end of week 1, the SKU in F2 is 2 weeks old by the end of week 1, and the 
SKU in F3 is one week old by the end of week 1. Similarly, F4-F9 are the amounts sent 
from warehouse to distribution centers in weeks 2 and 3. FA-FC denote the amount sent 
from distribution center to retailers in weeks 1-3. 

 
Figure 5.4. Example of the hybrid shelf-life method for an SKU with a 3-week shelf-life 

Similar to the indirect and direct methods, a cost term for disposing of SKUs is added to the 
objective function.  
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The hybrid shelf-life model consists of constraints (3.1)-(3.8), (3.10), (3.14) and (3.15) of 
the base tactical planning model, constraints (5.1), (5.3), (5.4), and (5.6) of the direct shelf-
life model, and the following constraints (5.16) and (5.17).  

The distribution center inventory of SKU i in the current period is equal to the distribution 
center inventory in the previous period, plus the total amount of this SKU of any age 
received from the warehouses, minus the total amount sent to the retailers, minus the 
amount that is disposed of.  
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The part of the initial inventory in a distribution center that reaches the end of its shelf-life 
before or at the end of the current period, plus the amount received from the warehouses 
that reaches the end of its shelf-life before or at the end of the current period must be less 
than or equal to the total amount that is transported to the retailers until the end of the 
current period, plus the amount that is disposed of before the end of the current period. This 
constraint ensures that an SKU that reaches the end of its shelf-life is sent to a retailer or is 
disposed of. 
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In some cases this constraint might not be sufficient. Constraint (5.17) enforces that the 
total amount of SKU leaving a distribution center is at least equal to the total amount of 
SKU that was sent to this distribution center that would reach its maximum shelf-life at the 
end of the current period. However, it relies on the assumption that the SKU with the 
shortest remaining shelf-life can always be sent to the retailers. However, as will be 
demonstrated in the following example, the SKU with the shortest remaining shelf-life 
might still be in one of the warehouses. 

In week t, a batch of SKU i with 6 weeks remaining shelf-life is sent to a distribution center 
with no inventory leading up to week t. This batch of SKU is used to meet the retailer 
demand in weeks 1-3. In week 4, a second batch of SKU i is sent to this distribution center. 
This second batch is smaller and already at its maximum shelf-life in week 4. This batch 
should, therefore, immediately leave the distribution center in week 4.  

However, constraint (5.17) is already met because the first batch is larger, is already sent, 
and would still have some remaining shelf-life. Therefore, based on constraint (5.17), the 
inventory at the end of week 4 could be used to meet demand in weeks 5 and 6 as well. 
However, when applying that solution it would become clear that the second batch becomes 
waste at the end of week 4, and missed sales would thus be incurred in weeks 5 and 6. 

The solution obtained with the hybrid method can be corrected to account for this problem 
using the following procedure. First, the SKU waste that is not accounted for by the hybrid 
model is identified using a small Linear Programming (LP) model. This LP model 
considers only the distribution centers and the retailers, and is comprised of the following 
constraints. 

The amount of SKU i in distribution center dc in week t with an age of a weeks is equal to 
the amount of this SKU that was in the distribution center in the previous week with an age 
of a-1, plus the amount received from the warehouses, minus the amount sent to the 
retailers, minus the amount that becomes waste. TransWDC is input for this LP model and 
is thus a parameter which is set at the value obtained from the hybrid model.  
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The total amount of an SKU sent from a distribution center to a retailer in a week must be 
equal to the amount sent in the hybrid model solution. For the correction model, TransDCR 
is an input parameter obtained from the solution of the hybrid model.  

 , , , , , , ,    , , ,i dc r t a i dc r t
a

TransDCRC TransDCR i dc r t   (5.19) 
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The total amount of an SKU disposed from a distribution center in a week must be equal to 
the amount disposed of in the hybrid model solution. For the correction model, WasteDC is 
an input parameter obtained from the solution of the hybrid model.  

 , , , , ,    , ,i dc t a i dc t
a

WasteDCC WasteDC i dc t   (5.20) 

If an SKU remains in inventory at the end of its shelf-life, it indicates an infeasibility. 

 , , , , ,    ,i dc t i dc t a iInfeasibilityINV INVDC i,dc,t a SL   (5.21) 

If an SKU is sent to a retailer after the end of its shelf-life, it indicates an infeasibility. 

 , , , , ,    ,
i

i dc,r t i dc r,t a
a SL

InfeasibilityTrans TransDCRC i,dc,r t   (5.22) 

The objective of the LP model is to minimize these infeasibilities. This identifies for each 
distribution center and each week which SKUs exceed their shelf-life. If a batch exceeds its 
shelf-life, it should have been sent from the warehouse to the distribution center earlier so 
that it can be used to meet earlier demand.  

Therefore, in step 2 of the correction procedure, the batches that exceed the shelf-life are 
transported one week earlier from warehouses to distribution centers. Afterwards, the LP 
model is optimized again to identify any remaining infeasibilities. If no infeasibilities 
remain, the decisions of the hybrid model are updated. Otherwise, the batches that exceed 
their shelf-life are transported another week earlier. This procedure is repeated until no 
infeasibilities remain. 

It should be noted that the age of SKUs sent to retailers is not limited by their shelf-life in 
this correction model. However, if an SKU that is sent to the retailers has exceeded its 
shelf-life, the inventory of that SKU must have reached the end of its shelf-life at some 
point. The total amount of SKUs that reach the end of their shelf-life while still in 
inventory, plus the total amount of SKUs that are sent to retailers past their shelf-life is 
minimized in this correction procedure. Therefore, an SKU past its expiration date will only 
be used to meet the demand if there is no other option. At the end of the correction 
procedure, no SKUs will exceed their expiration date in inventory, and thus no SKUs past 
their shelf-life are used to meet demand. 

The corrections might lead to an inventory capacity violation at one of the distribution 
centers. However, this can easily be corrected by sending SKU with a relatively long 
remaining shelf-life to a warehouse with available capacity. Therefore, SKUs are allowed 
to be transported back from distribution centers to warehouses in this step. It should be 
noted that this is rarely necessary. Even in those cases where it is required, the amounts sent 
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back from distribution center to warehouse are typically very small. An overview of the 
correction procedure is given in Figure 5.5. 

  
Figure 5.5. Overview of the correction procedure for the hybrid shelf-life model 

It should be noted that the hybrid shelf-life model may not obtain the global optimal 
solution if the correction procedure is required. Nevertheless, the corrections are typically 
minor and have a very limited impact on the total cost.  

5.4. Results 

First, these three shelf-life implementation methods have been applied to several relatively 
small case studies. The time horizon in these case studies consists of 52 weekly periods, 
and the supply chain consists of 5 suppliers, 2 factories, 2 warehouses, 4 distribution 
centers and 8 retailers. Each of these case studies contained 10 ingredients and 5 SKUs. The 
SKUs belonged to 2 different mixing families, 4 packing families, and 5 SKU families. 
Later in this section, case studies with a larger supply chain and up to 1000 SKUs are 
considered. The data for all these case studies has been generated as explained in Section 
3.4. 
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All optimizations in this chapter have been performed using CPLEX 12.4 in AIMMS 3.12 
on a computer with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 Ghz and with 16 GB. All 
optimizations have been performed with a one percent MIP optimality tolerance unless 
specified otherwise.  

5.4.1. 5-SKU Case Studies 

In this section, four models are compared with each other: The tactical planning model 
without shelf-life considerations (No SL), with indirect shelf-life constraints (ISL), with 
hybrid shelf-life constraints (HSL), and with direct shelf-life (DSL) constraints. For the 
model without shelf-life considerations, the total costs are adjusted based on SKUs reaching 
the end of their shelf-life. These SKUs incur disposal cost. Moreover, this typically leads to 
missed sales as the remaining inventory is reduced. For the indirect shelf-life constraints, 
three shelf-life ratios are used. One where 25% of the shelf-life is allocated to the 
warehouses and 75% to the distribution centers, one where 50% of the shelf-life is allocated 
to both warehouses and distribution centers, and one where 75% is allocated to the 
warehouses and 25% to the distribution centers. 

For the base case study, the shelf-life of all SKUs was set to 13 weeks. For the indirect 
methods, the allocation of the shelf-life was 3 weeks to the warehouse and 10 to the 
distribution centers, 7 to the warehouses and 6 to the distribution centers, or 10 to the 
warehouses and 3 to the distribution centers. The total storage capacity of the warehouses is 
equal to the total storage capacity of the distribution centers. The results for this base case 
study are given in Table 5.1. The cost increase of a certain method corresponds to the 
percentage increase in cost of the solution obtained with this method compared to the best 
solution obtained with any of the methods. 

Table 5.1. Results of the various shelf-life methods for the base 5-SKU case study 
Shelf-Life Method Constraints Variables (Binary) Required CPU  

Time [s] 
Cost Increase 

 [%] 
No Shelf-Life 11,493   23,141 (520) 4 32.12% 
Indirect 3-10  

13,001 
 

  24,649 (520) 
20 13.50% 

Indirect 7-6 16   0.25% 
Indirect 10-3 13   2.84% 

Hybrid 19,241   55,849 (520) 75+18   0.02% 
Direct 48,881 180,649 (520) 524   0.00% 

 
First of all, it is clear that the direct shelf-life implementation indeed leads to a substantially 
larger model. The number of constraints is more than 3.5 times larger than in the indirect 
method and more than 2.5 times larger than in the hybrid method. Moreover, the number of 
variables is increased by a factor 7 compared to the indirect method and by a factor 3 
compared to the hybrid method. As a result, the direct method requires considerably more 
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CPU time than the other two methods. While all models could be optimized within a 
reasonable time for this base case study, it should be noted that the required times will 
increase drastically for more realistically sized case studies. 

Secondly, the costs when the shelf-life is not considered are 32.12% higher than the costs 
when the shelf-life is considered directly. Therefore, it is extremely important that the shelf-
life is considered in the tactical planning model. The corrections required by the hybrid 
method only lead to a cost increase of 0.02%. For the indirect method the results vary. If 
most of the shelf-life is allocated to the distribution centers, a poor solution with a cost 
increase of 13.50% is obtained. However, if the shelf-life is distributed evenly between the 
warehouses and distribution centers, the costs only increase by 0.25%.  

The main differences between the solutions of the various methods are in the inventory 
profiles. Figures 5.6 and 5.7 show that the inventory profiles obtained with the direct and 
hybrid shelf-life models are very similar. The only difference is that in the solution obtained 
with the hybrid shelf-life model, the inventory buildup in the distribution centers starts a 
few weeks earlier. This is caused by the correction procedure, which forces SKUs to be sent 
earlier from warehouses to distribution centers.  
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Figure 5.6. The total inventory of all SKUs in the warehouses when using the various models 

As can be seen in Figure 5.8, all models that consider shelf-life start increasing the 
inventory around week 25. Since the peak demand starts in week 40 and the shelf-life is 13 
weeks, the first couple of weeks of inventory buildup are used to meet the demand until the 
peak, and the majority is used to meet the peak demand. On the other hand, the model that 
does not consider shelf-life starts building up inventory from the first week. Therefore, part 
of the production in the first 25 weeks exceeds the shelf-life and must thus be disposed of. 
As a result, the total inventory buildup is less than with the other models, and a 
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considerable part of the peak demand cannot be met. In fact, 9.6% of the total demand 
cannot be met. 
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Figure 5.7. The total inventory of all SKUs in the distribution centers when using the various models 
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Figure 5.8. The total inventory of all SKUs in all storage facilities when using the various models 

No SKUs have to be disposed of in the solutions obtained with the indirect, hybrid and 
direct shelf-life models. The hybrid and direct shelf-life models do not incur any missed 
sales costs. However, the indirect shelf-life model incurs 4.6% and 0.3% missed sales when 
the shelf-life is allocated in a 3-10 and 10-3 ratio respectively. The reason is that these 
ratios severely limit the flexibility in inventory storage. 

As can be seen in Figure 5.6, the total inventory that is stored in the warehouses is 
considerably lower when only 3 weeks of the shelf-life are allocated to the warehouses. 
This is because three weeks of production is considerably less than the total warehouse 
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storage capacity. Therefore, the available storage capacity in the warehouses is reduced 
substantially. While the distribution center inventory can be increased slightly, the 
distribution center capacity is not sufficient to account for the difference. As a result, the 
inventory buildup is insufficient to meet the demand, and missed sales are incurred. 
Similarly, missed sales are incurred with the 10-3 ratio because the distribution center 
capacity is restricted too much. On the other hand, when using the 7-6 shelf-life ratio in the 
indirect model, the inventory buildup is very similar to the inventory buildup with the direct 
and hybrid shelf-life models, as can be seen in Figure 5.8. 

5.4.1.1. Storage Capacity Ratios 

The correct shelf-life ratio for the indirect method seems to be the storage capacity ratio. In 
other words, the fraction of the shelf-life allocated to the warehouses should be equal to the 
total warehouse capacity divided by the total storage capacity in warehouses and 
distribution centers. To investigate this further, the base case study is also optimized with a 
warehouse:distribution center capacity ratio (WH:DC ratio) of 1:3 and a WH:DC ratio of 
3:1. A 1:3 ratio indicates that 25% of the total storage capacity is in the warehouses and 
75% in the distribution centers. The computational results are given in Table 5.2. 

From Table 5.2 it is clear that the best shelf-life allocation ratio is indeed equal to the 
WH:DC storage capacity ratio. When using this ratio, solutions within 2% of the minimum 
cost are obtained with the indirect shelf-life model. On the other hand, the cost increase can 
be as high as 44% when using alternative ratios. These solutions are even worse than those 
for the base case study because choosing the shelf-life ratio opposite to the WH:DC ratio 
severely limits the effective storage capacity. Similarly to the base case study, the costs for 
not considering the shelf-life are approximately 30%. With respect to the required CPU 
time, the indirect shelf-life model is again more efficient than the hybrid shelf-life model, 
which in turn is more efficient than the direct shelf-life model. 

Table 5.2. Computational results for varying WH:DC capacity ratios 
 Required CPU Time[s] Cost Increase [%] 

WH:DC Storage 
Capacity Ratio 

 

3:1 
 

1:3 
 

3:1 
 

1:3 

No Shelf-Life 4s 6s 32.16% 28.30% 
Indirect 3-10 18s 18s 44.05%   1.75% 
Indirect 7-6 16s 15s   5.37%   4.72% 
Indirect 10-3 13s 9s   0.62% 32.39% 

Hybrid 44s+19s 75s+18s   0.07%   0.04% 
Direct 258s 351s   0.00%   0.00% 
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5.4.1.2. Varying Demand 

Another aspect that might influence the quality of the solution obtained with the different 
methods is the demand. In the base case study, all capacities are sufficient to meet the 
demand, but the overcapacity is limited. The various shelf-life methods are also compared 
for case studies with 30% higher and 30% lower demand. For the high demand case study, 
the capacity is insufficient to meet all the demand, while for the low demand case study the 
overcapacity is substantial. In addition, the shelf-life methods are compared for a case study 
with non-seasonal demand. The computational results for these case studies are given in 
Table 5.3. 

Table 5.3. Computational results for case studies with different demand 
 Required CPU Time [s] Cost Increase [%] 
 

Demand 
 

Low 
 

High 
Non- 

Seasonal 

 

Low 
 

High 
Non- 

Seasonal 
No Shelf-Life 6s 4s 3s 20.57% 18.38% 8.27% 
Indirect 3-10 19s 18s 22s   0.99% 21.35% 0.37% 
Indirect 7-6 19s 14s 16s   0.15%   0.26% 0.30% 
Indirect 10-3 12s 11s 15s   0.58% 13.40% 0.87% 

Hybrid 38s+18s 70s+19s 61s+15s   0.00%   0.05% 0.10% 
Direct 514s 336s 422s   0.06%   0.00% 0.00% 

 
First of all, the best solution for the low demand case study was obtained with the hybrid 
model. This was because the remaining MIP optimality gap was 0.43% for the hybrid 
model and 0.51% for the direct model. Both the hybrid and the direct model again obtained 
a solution close to the optimum. Due to the substantial overcapacity in the low demand case 
study, the reduction in effective storage capacity by choosing a shelf-life ratio that is not 
equal to the WH:DC ratio does not lead to missed sales. Nevertheless, the indirect model 
still obtains the best results when the shelf-life ratio is set equal to the WH:DC ratio. 

The costs of the solutions obtained with the various models for the non-seasonal demand 
case study are very similar. Even when the shelf-life is not considered at all, the costs only 
increase by 8.27%. This is mainly because no large buildup of inventory is required when 
the demand is non-seasonal. Therefore, even when the shelf-life is not considered, SKUs 
are rarely stored longer than their shelf-life.  

5.4.1.3. Varying Shelf-Life 

Finally, the length of the shelf-life might also influence the quality of the solution obtained. 
Therefore, the shelf-life methods are compared using case studies with a longer, a shorter or 
a mixed shelf-life. The longer shelf-life is 26 weeks, the shorter shelf-life is 6 weeks, and 
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the mixed shelf-life is 26, 13, 13, 6, and 6 weeks for SKUs 1-5 respectively. The results are 
given in Table 5.4. 

Table 5.4. Computational results for case studies with varying shelf-life 
 Required CPU Time[s] Cost Increase [%] 

Shelf-Life: Short Long Mixed Short Long Mixed 
No Shelf-Life 3s 4s 4s 38.23% 2.06% 35.63% 
Indirect 3-10 17s 14s 16s   2.63% 0.82%   3.04% 
Indirect 7-6 22s 12s 15s   0.70% 0.07%   0.99% 
Indirect 10-3 16s 13s 15s   1.11% 0.16%   1.00% 

Hybrid 34s+3s 48s+58s 52s+24s   0.00% 0.00%   0.07% 
Direct 60s 1504s 311s   0.30% 0.00%   0.00% 

 
Even when the shelf-life is not considered, the 26 week shelf-life is sufficiently large that it 
is almost never violated. As a result, the costs obtained with the various models are very 
similar for the 26 week shelf-life case study. On the other hand, not considering the shelf-
life leads to a very large increase in cost when the shelf-life is short. Similar to the previous 
case studies, the best solution for the indirect method is obtained when the shelf-life ratio is 
equal to the WH:DC ratio. 

It is clear from Table 5.4 that the hybrid and especially the direct shelf-life models are less 
efficient when considering SKUs with a longer shelf-life. This is mainly because the model 
size increases with the length of the shelf-life. On the other hand, the required CPU time of 
the indirect shelf-life model is independent of the shelf-life length.  

5.4.2. 10-SKU to 1000-SKU Case Studies 

For the various 5-SKU case studies, all models could be optimized within a reasonable 
time. However, a more realistic case study would contain a larger supply chain and up to 
1000 SKUs. For these larger case studies, these models quickly become intractable. In fact, 
even without considering the shelf-life, it was shown in Chapter 3 that the tactical planning 
model becomes intractable for case studies of 50 or more SKUs and a supply chain 
consisting of 10 suppliers, 4 factories, 5 warehouses, 10 distribution centers, and 20 
retailers. 

In Chapter 4, an SKU-decomposition algorithm was proposed to solve case studies of up to 
1000 SKUs. This decomposition algorithm will first be tested together with the various 
shelf-life methods on the 5 SKU case studies discussed in the previous section. For the 
indirect shelf-life method, the shelf-life ratio is set equal to the storage capacity ratio. An 
overview of the results is given in Figure 5.9.  For all case studies, the algorithm obtained a 
solution within 1.5% of the solution obtained with the corresponding full model. Therefore, 
it is concluded that the algorithm can still obtain solutions within a few percent of 
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optimality after introducing the shelf-life constraints. Because these case studies are still 
relatively small, the required computational time of the algorithm was similar to that of the 
full model. 

 
Figure 5.9. Overview of the cost increase compared to the best obtained solution for the 5-SKU case studies when 
using the indirect, hybrid, or direct shelf-life method with or without the SKU-decomposition algorithm 

However, without the algorithm, all three shelf-life models require more than 8 hours to 
obtain a solution within 10% of optimality for a case study containing 10 SKUs and the 
larger supply chain. With the algorithm, and an optimality tolerance of 2%, this 10-SKU 
case study could be optimized by all three shelf-life models.  The 2% optimality tolerance 
was chosen to ensure that each submodel could still be solved relatively quickly. Smaller 
optimality tolerances greatly increased the required CPU time to solve some of the 
submodels, which greatly increases the total required CPU time. 

As can be seen in Table 5.5, the computational differences between the models are more 
substantial for the larger case studies. For example, for the 10-SKU case study, a solution 
can be obtained in 23 minutes when using the indirect shelf-life model with the SKU-
decomposition algorithm, while the direct shelf-life model with the SKU-decomposition 
algorithm requires more than 8 hours. For this particular case study, the best solution was 
obtained with the hybrid shelf-life model. This is again caused by smaller optimality gaps 
for the hybrid model.  

For the 10- and 25-SKU case studies, all models obtained solutions for which the costs are 
again within a few percent of each other. For the 100-SKU case study, the direct shelf-life 
model is intractable as it requires more than 72 hours. For the 1000-SKU case study, both 
the direct and the hybrid shelf-life models are intractable. Nevertheless, a feasible solution 
for this extremely large case study can still be obtained with the indirect method.  
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Table 5.5. Computational results of optimizing larger case studies with the SKU-decomposition algorithm 
Case Study Shelf-Life Method Cost Increase [%] Required CPU Time 

10-SKU Indirect 2.06%   0:23 hr 
 Hybrid 0.00%   1:32 hr 
 Direct 0.93%   8:36 hr 

25-SKU Indirect 2.51%   0:33 hr 
 Hybrid 1.52%   3:36 hr 
 Direct 0.00% 18:08 hr 

100-SKU Indirect 1.50%   3:14 hr 
 Hybrid 0.00%   8:53 hr 
 Direct -   > 72 hr 

1000-SKU Indirect - 50:29 hr 
 Hybrid -   > 72 hr 
 Direct -   > 72 hr 

 

5.5. Conclusions 

Three different methods for introducing shelf-life restrictions into a tactical planning MILP 
for a FMCG company were proposed and compared. The direct method, which keeps track 
of the age of all SKUs, provides optimal solutions but is computationally inefficient. 
Therefore, it is only suitable for small problems. For larger problems, the hybrid method is 
more suitable. It tracks the age of SKUs in the first storage stage directly, while indirectly 
enforcing the maximum shelf-life in the second storage stage. The hybrid method can be 
used to obtain near-optimal solutions in less than 20% on average of the required 
computational time of the direct method. For extremely large problems, even the hybrid 
method becomes intractable. For these case studies, the indirect method can be used. This 
method models the shelf-life indirectly on both storage stages by manually dividing the 
shelf-life over the two stages. Using the indirect method instead of the hybrid method 
reduces on average the computational time by another factor 5. The solutions obtained with 
the indirect method are within a few percent of optimality. By combining this indirect 
method with the SKU-decomposition algorithm proposed in Chapter 4, case studies of up to 
1000 SKUs could be optimized.  

5.6. Nomenclature 

5.6.1. Indices 

a  Age of an SKU in weeks. 
dc  Distribution centers 
f  Factories 
fam  SKU families 
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h  Ingredients 
i  SKUs 
r  Retailers 
t, t’  Weeks 
w  Warehouses 

5.6.2. Parameters 

CostIngh,s,t Unit cost of ingredient h at supplier s in week t 
Di,r,t  Demand of SKU i at retailer r in week t 
DCCapdc Available storage capacity in distribution center dc 
DCSLi Part of the shelf-life of SKU i that is dedicated to the distribution centers. 
DisposalCosti Cost of disposing of the waste of SKU i 
FAMSUCostfam Average set up cost for SKU family fam 
INVDCinii,dc,a  The initial inventory of SKU i in distribution center dc that has been in 

storage for a weeks. 
INVWHinii,w,a  The initial inventory of SKU i in warehouse w that has been in storage for 

a weeks.  
MSpeni,r,t Penalty costs per unit of missed sales of SKU i at retailer r in week t 
SCIngh,f  Storage costs of ingredient h at factory f  
SCDCi,dc  Storage costs of SKU i at distribution center dc 
SCWHi,w  Storage costs of SKU i at warehouse w 
SLi  Maximum shelf-life of SKU i 
SSDCi,dc,t Minimum safety stock of SKU i in distribution center dc in week t 
SSWHi,w,t Minimum safety stock of SKU i in warehouse w in week t 
SSpenCost Safety stock violation penalty cost 
SUCosti  Average set-up cost for SKU i 
TCDCRdc,r Transportation cost between distribution center dc and retailer r 
TCFWf,w  Transportation cost between factory f and warehouse w 
TCSFs,f  Transportation cost between supplier s and factory f 
TCWDCw,dc Transportation cost between warehouse w and distribution center dc 
WHCapw Available storage capacity in warehouse w 
WHSLi Part of the shelf-life of SKU i that is dedicated to the warehouses 

5.6.3. Nonnegative Continuous Variables  

InfeasibilityINVi,dc,t    Amount of SKU i in distribution center dc in week t that exceeds its  
      shelf-life 

InfeasibilityTransi,dc,r,t    Amount of SKU i that is sent from distribution center dc to retailer  
           r  in week t that has exceeded its shelf-life 
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INVDCi,dc,t Amount of SKU i stored in distribution center dc in week t  
INVDCi,dc,t,a<SL Amount of SKU i stored in distribution center dc in week t with an age of 
  a weeks. Since the inventory is the inventory at the end of the week, the 
  age of all SKUs must be less than their shelf-life. Otherwise they would 
  need to be disposed of.  
INVIngh,f,t Inventory of ingredient h at factory f in week t 
INVWHi,w,t Amount of SKU i stored in warehouse w in week t 
INVWHi,w,t,a<SL Amount of SKU i stored in warehouse w in week t with an age of  
  a weeks. Since the inventory is the inventory at the end of the week, the 
  age of all SKUs must be less than their shelf-life. Otherwise they would 
  need to be disposed of.  
SSVioDCi,dc,t Amount of SKU i short of the safety stock in distribution center dc in 

week t 
SSVioWHi,w,t Amount of SKU i short of the safety stock in warehouse w in week t 
TotalCosts            Total costs of operating the supply chain 
TransDCRi,dc,r,t Amount of SKU i transported from distribution center dc to retailer r in 
  week t 
TransDCRi,dc,r,t,a Amount of SKU i with age a transported from distribution center dc to  
  retailer r in week t 
TransDCRCi,dc,r,t,a  Amount of SKU i with age a transported from distribution center dc to  

retailer r in week t (This variable is only used in the correction model of   
the hybrid model) 

TransFWi,f,w,t Amount of SKU i transported from factory f to warehouse w in week t 
TransIngh,f,s,t Amount of ingredient h procured from supplier s to factory f in week t 
TransWDCi,w,dc,t Amount of SKU i transported from warehouse w to distribution center dc 
  in week t  
TransWDCi,w,dc,t,a Amount of SKU i with age a transported from warehouse w to 

distribution center dc in week t  
WasteDCi,dc,t Amount of SKU i that is disposed of at the end of week t in distribution 

center dc  

, , , ii dc t a SLWasteDC  Amount of SKU i that is disposed of at the end of week t in distribution 

  center dc. This variable is only defined for SKUs that have reached the  
  end of their shelf-life. 

, , , ii dc t a SLWasteDCC Amount of SKU i that is disposed of at the end of week t in distribution  

center dc. This variable is only defined for SKUs that have reached the  
end of their shelf-life and is only used in the correction model of   the  
hybrid model 

WasteWHi,w,t Amount of SKU i that is disposed of at the end of week t in warehouse w 
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, , , ii w t a SLWasteWH Amount of SKU i that is disposed of at the end of week t in warehouse w. 

  This variable is only defined for SKUs that have reached the end of  
  their shelf-life. 

5.6.4. [0-1] Variables (Can be treated as continuous) 

YFAMSUfam,f,t 0-1 continuous variable, indicates if there is a set-up of SKU family fam 
in factory f in week t 

5.6.5. Binary Variables 

WSUi,f,t  Binary variable, indicates a set-up of SKU i in factory f in week t 
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ABSTRACT: In this chapter, the environmental impact of operating a supply chain of a 
Fast Moving Consumer Goods (FMCG) company over a one year horizon is considered. 
The environmental impact is evaluated using the Eco-indicator 99. In the optimization of 
the tactical planning decisions both this environmental objective and the total costs are 
considered using the -constraint method for identifying a set of Pareto-optimal solutions. 
For a case study containing 10 Stock-Keeping Units (SKUs), which was optimized with a 
1% optimality tolerance, the environmental impact could be reduced by 2.9% without 
increasing the total costs. A further reduction of environmental impact of up to 6.3% was 
possible at an increase in total costs of 5.2%. The SKU-decomposition algorithm was 
applied to optimize a larger case study containing 100 SKUs. The SKU-decomposition 
algorithm could again obtain solutions within a few percent of optimality.  

6.1.  Introduction 

Traditionally, optimization models developed in the process systems engineering 
community have focused on maximizing an economic performance indicator while 
considering the process or supply chain limitations (Bojarski et al., 2009).   

However, starting with the Brundtland (1987) report, an ever-growing pressure from 
government regulators, non-governmental organizations, and the market itself towards a 
more environmental-friendly management has led to an increased interest in a sustainable 
operation of the supply chain in both academia and industry (Hassini et al., 2012). 
Moreover, improving the environmental performance has been identified as a method of 
increasing profitability (Barbosa-Póvoa (2009) and Kumar et al. (2012)). 

The incorporation of environmental objectives into supply chain management has recently 
led to a new discipline known as Green Supply Chain Management (GrSCM). Srivastava 
(2007), Grossmann and Guillén-Gosálbez (2010), and Hassini et al. (2012) review this 
research area. One of the main challenges identified in these reviews is the definition of a 
suitable environmental performance indicator. 

Cano-Ruiz and Mcrae (1998) given an extensive review on the various environmental 
performance indicators that have been used in literature. They identified two main 
questions concerning the evaluation of alternative solutions. The first question is: how 
should an alternative be evaluated from an environmental point of view?  

Currently, researchers have not yet reached a consensus on the most suitable environmental 
metric (Grossmann and Guillén-Gosálbez, 2010). In fact, some authors (Srivastava (2007) 
and Cano-Ruiz and Mcrae (1998)) argue that given the diverse views regarding the 
environment, it is unlikely that an agreement on the most suitable environmental metric will 
ever be reached. Nevertheless, it has become clear that these environmental metrics should 
be analyzed over the complete life cycle of a product or activity (Grossmann and Guillén-
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Gosálbez, 2010). In such a Life-Cycle Assessment (LCA), which is described in a series of 
ISO documents (2006a), the total energy and materials used and the waste released to the 
environment are quantified over the full life-cycle of a product or process. Based on this 
information, the environmental impact of a product or activity can be determined.  

The Eco-indicator 99 is an aggregate indicator that can be used to evaluate the total 
environmental impact of a product or activity over its complete life-cycle (Pré consultants 
B.V, 2001). This indicator introduces a damage function approach that determines the 
environmental impact based on the damage to human health, resource and ecosystem. In 
this methodology, first an inventory is made of all emissions, resource extractions and land-
use throughout the life cycle of a product. Secondly, based on this information, the damage 
caused to human health, ecosystem quality and resources is determined. Finally, these 
damages are weighted into a single indicator. These weights have been determined in a 
social study performed by the authors of the Eco-indicator 99 (Pré consultants B.V, 2001). 
This indicator has, for example, been used by Hugo and Pistikopoulos (2005), Guillén-
Gosálbez et al. (2008), and Pinto-Varela et al. (2011) to evaluate the environmental impact 
when optimizing the design and strategic planning of a supply chain.  

The second main question identified by Cano-Ruiz and Mcrae (1998) is: how should this 
environmental objective be balanced with other objectives? Or, for the problem described 
in this chapter, how should the environmental impact be balanced with the economic costs? 
There are two main methods of dealing with such a bi-objective optimization: 1) transform 
the objectives into a single objective, 2) solve the problem as a bi-criterion optimization 
problem by determining a set of Pareto-optimal or non-inferior solutions (Grossmann and 
Guillén-Gosálbez, 2010).  

The first method is, for example, used by Yakovleva et al. (2012), who evaluate the overall 
performance of potato and chicken supply chains by combining economic, environmental 
and social indicators into a single overall sustainability index. The advantage of merging 
the objective functions is that only a single solution will be obtained. This obviates the need 
to compare the various solutions that could be obtained from a bi-objective optimization. In 
addition, this single solution can typically be obtained substantially faster than a range of 
solutions. Nevertheless, it is difficult to determine a-priori how to properly combine the 
various objectives. Or specifically for this case, it is difficult to assign an economic cost to 
the environmental impact. Moreover, having a set of solutions might be more enlightening 
to the decision-maker rather than having a single solution. 

The -constraint method can be used to generate a set of non-inferior solutions (Cano-Ruiz 
and Mcrae, 1998). A non-inferior, or Pareto-optimal solution, can be defined as a feasible 
solution to a multi-objective problem to which no other feasible solutions exist that will 
improve at least one objective without worsening at least one other objective (Cohon, 
2003).  
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When using this method for a bi-objective optimization, the two objectives are first 
optimized separately. This will yield minimum and maximum values for both objectives. In 
the -constraint method, one of the objectives is then optimized while considering the other 
objective as a variable that must be constrained to a certain value . Various points of the 
Pareto curve can then be obtained by varying the value of this . While this method can be 
complex and time consuming if the number of objectives is large, it is straightforward for a 
bi-objective optimization. The -constraint method has, for example, been used by You and 
Wang (2011) to optimize both economic and environmental objectives in the design of a 
biomass-to-liquid supply chain and by Mele et al. (2011) to evaluate economic and 
environmental objectives in the design of a fuel supply chain based on sugar cane in 
Argentina. 

A considerable amount of research has been done on LCA of industrial food products, and 
this research area has been reviewed by Roy et al. (2009). However, the results of these 
LCA are rarely combined with mathematical programming techniques. In fact, in their 
review on quality, safety and sustainability in food systems, Akkerman et al. (2010) 
conclude that “sustainability does not seem to have gotten any attention on the distribution 
network planning level”. Therefore, the goal of this chapter will be to implement the 
environmental impact into the tactical planning model for the FMCG industry that was 
developed in Chapter 2. The environmental impact will be evaluated using the Eco-
indicator 99. The environmental and economic objectives will both be considered in the 
resulting model using the -constraint method. 

6.2. Problem Definition 

The problem considered in this chapter is similar to the problem described in Section 3.2. 
The minimization of the environmental impact of the tactical planning decisions is added as 
a second objective to this problem. This environmental impact can be calculated based on 
given information about the environmental impact of ingredients, transportation and 
production. These environmental impacts depend on both the products and the location. Ice 
cream has been selected as the example product in this chapter, and the supply chain is 
based in Europe. 

6.3. Environmental Impact 

As discussed in the introduction, the environmental impact will be evaluated using the Eco-
indicator 99, which is a system based on LCA. This section will discuss the boundaries of 
the system and the environmental impact of all processes. 
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6.3.1. Ingredients 

For the ingredients, the environmental impact is analyzed based on the two main 
ingredients of ice cream: milk and sugar. For the ingredients, it is assumed that the majority 
of the environmental impact is due to greenhouse gas (GHG) emissions and energy 
consumption. Kristensen et al. (2011) evaluated the environmental performance of 67 
European dairy farms using an LCA based on GHG emissions expressed in kg CO2 
equivalent. Their LCA included both on-farm and off-farm emissions. The off-farm 
emissions were due to imported resources such as feed and fertilizer.   

Since many of the farms produce both milk and meat, the GHG emissions of the farm must 
be allocated between the milk and meat. Kristensen et al. (2011) use several allocations 
methods. Using an allocation based on the amount of milk and meat proteins produced, 
which was the method recommended by the Food and Agriculture Organization of the 
United Nations - Animal Production and Health Division (2010), they report GHG 
emissions ranging between 0.83 and 1.31 kg CO2 equivalent per kg energy corrected milk 
(ECM).  The amount of ECM can be calculated based on the fat and protein percentages of 
the milk.  

The environmental impact of milk production is also evaluated in a report by Williams et 
al. (2006). They compare organic to non-organic farming. In organic milk production, at 
least half of the total feed intake during the grazing period must be pasture. In addition, 
95% of the fodder must be organically produced, which for example means that no 
synthetically produced fertilizers or pesticides are used. Additionally, the waiting-time 
between medicine intake and milking must be twice as long as in non-organic milk 
production. (Cederberg and Stadig, 2003) 

The main advantage of the organic farming is the strong reduction in primary energy usage 
from 2.52 to 1.56 MJ/l. On the other hand, the GHG emissions increase from 1.06 to 1.23 
kg CO2 equivalent per liter. These GHG emissions are in the same range as those reported 
by Kristensen et al. (2011). Since they did not report the energy usage, the data reported by 
Williams et al. (2006) will be used for both GHG emissions and energy usage. A milk 
density of 1.03 kg/l has been used to convert the impact per liter to the impact per kilogram.  

A recent study by the European Association of Sugar Producers (CEFS) (Klenk et al., 
2012a and 2012b) evaluated the product carbon footprint (PCF) of sugar. The PCF of EU 
beet white sugar ranged from 0.300-0.643 kg CO2 equivalent per kg sugar when using the 
substitution method. This substitution method is the preferred method for co-product 
accounting according to ISO EN 14044:2006 (2006b). The PCF of sugar refined in the EU 
from imported raw cane sugar ranged between 0.642-0.760 kg CO2 equivalent per kg sugar. 
Seabra et al. (2011) report that the net fossil energy use is 721 kJ per kilogram of sugar 
from Brazilian sugar cane. They calculate the GHG emissions to be 0.234 kg CO2 
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equivalent/kg sugar. This value is significantly lower than the range reported by Klenk et 
al. (2012a and 2012b) since it does not include the overseas transport and refining. 
Therefore, the PCF from the CEFS report will be used in this chapter. The primary energy 
consumption of beet sugar was not reported in any of the papers or reports. Therefore, it is 
assumed to be equal to the primary energy consumption of cane sugar. 

The environmental impact in Eco-indicator 99 units can then be calculated. The 
environmental impact is 0.00544 ECO 99 units/kg CO2 according to the database of the 
Center for environmental assessment of product and material systems (CPM, 2013). The 
primary energy use mainly consists of diesel, electricity and gas. The environmental impact 
of the primary energy use has been estimated based on the average environmental impact of 
producing 1 kWh of electricity in Europe, which  is 0.027 ECO 99 units according to the 
addendum of the Eco-indicator 99 manual for designers (Pré consultants B.V., 2003). The 
calculated environmental impacts of milk and sugar are given in Table 6.1.  

Table 6.1. Environmental impact of milk and sugar 
 Non-Organic Milk Organic Milk Beet Sugar Cane Sugar 

Emissions  
[kg CO2-eq/t product] 1029 1194 471* 701* 

 [ECO 99 units/t product] 5.60 6.50 2.56 3.81 
Energy Consumption 

[MJ/t product] 2447 1515 721 721 
 [ECO 99 units/t product] 18.35 11.36 5.41 5.41 

Total Impact 
[ECO 99 units/t product] 

24.0 17.9 8.0 9.2 

 * Based on the average PCF 

6.3.2. Transportation 

In the Eco-indicator 99 manual for designers (Pré consultants B.V., 2003), the 
environmental impact is given for several modes of transportation. In this chapter, the 
environmental impact of transportation will be evaluated based on a 40t truck with a 50% 
load which, according to the manual, is the European average load. The environmental 
impact is then 0.015 ECO 99 units/tkm. A tkm represents one tonne of product being 
transported over a distance of one kilometer.  

6.3.3. Production 

Since ice cream is a food product, no hazardous components are used in the production 
process. Nevertheless, the ice cream production has a considerable environmental impact 
due to two factors. First, in a report completed by the Manchester Business School for the 
Department for Environment Food and Rural Affairs (Foster et al., 2006), it was estimated 
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that the production of ice cream consumes approximately 0.65 MJ/kg ice cream. The 
environmental impact of production then depends on the source of the energy. The energy 
mix varies greatly between the various European countries. As a result, the environmental 
impact of one kWh also varies greatly depending on the location. In the addendum of the 
Eco-indicator 99 manual for designers (Pré consultants B.V., 2003), the environmental 
impact per kWh is estimated for several European countries. The impact per kWh and the 
impact per kilogram ice cream produced are given in Table 6.2. 

Table 6.2. Environmental impact of the ice cream production process 
Country Environmental 

Impact per kWh 
[ECO 99 units/kWh] 

Environmental Impact 
per tonne Ice Cream 

[ECO 99 units/t product] 
Austria 0.018   3.25 
Belgium 0.024   4.33 

Switzerland 0.010   1.81 
France 0.012   2.17 
Greece 0.062 11.19 
Italy 0.048   8.67 

the Netherlands 0.037   6.68 
Portugal 0.047   8.49 

 

Secondly, the environmental impact due to set-ups on the packing line should also be 
considered. This environmental impact is approximated with the loss of 0.5 tonne of 
product per set-up. The environmental impact can then be calculated based on the recipes 
and the environmental impact of the ingredients. It is assumed that the environmental 
impact of the product waste itself is negligible for food products. 

It should be noted that changeovers on the mixing line have a similar environmental impact. 
However, as explained in chapter 3, the number of changeovers on the mixing line is 
determined by the factory design rather than the tactical planning decisions. Therefore, the 
environmental impact of the mixing line changeovers is not included in the model.   

6.3.4. Storage 

Ice cream must be stored at a low temperature. The storage temperature is often 
predetermined to be able to guarantee the shelf-life. Therefore, a considerable amount of 
cooling energy is required in the storage stages. However, the amount of cooling energy 
required depends mainly on the loss of cooling energy to the environment. The loss of 
cooling energy is independent of the amount in storage and is mostly determined by the 
facility characteristics, such as the energy efficiency of the cooling system, the size of the 
facility, and the quality of the insulation. These facility characteristics are not influenced by 
the decisions taken in the tactical planning model.  
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Therefore, the environmental impact of the storage is not included in the model since it 
would only add a constant to the objective. It should be noted, however, that it would be 
important to consider the environmental impact of storage in a strategic planning model. In 
such a model, the location of the storage facilities and the type of cooling system chosen 
could greatly influence the environmental impact.  

6.4. The  -Constraint Method 

The environmental impact discussed in the previous section is added as a second objective 
to the tactical planning model, which was described in Chapter 3. This environmental 
impact, which is minimized, is equal to the impact of the purchased ingredients, plus the 
impact of the production, plus the impact of the set-ups, plus the impact of the 
transportation. 
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 (6.1) 

The -constraint method is used to consider both this environmental objective and the cost 
objective. In the -constraint method, the optimum with respect to both objectives is 
determined first. Therefore, in the first step the economic costs are minimized without 
considering the environmental impact. The solution obtained in this step might, however, 
be weakly dominated. That is to say, while no other feasible solutions exist with a lower 
economic cost, another feasible solution with equal economic costs and a lower 
environmental impact might exist. Therefore, this minimum cost is used to constrain the 
economic cost and the environmental impact is minimized. This will yield the minimum 
economic cost and the maximum environmental impact. While feasible solutions with a 
higher environmental impact might exist, these will be Pareto inferior and thus suboptimal.  

In the second step, the environmental impact is minimized without considering the 
economic cost. However, the environmental impact can be reduced to zero by not 
procuring, producing or transporting anything. Clearly, that is an unrealistic solution. 
Therefore, the requirement is included that the customer service level should be at least 
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equal to the customer service level in the minimum cost solution. This is achieved through 
the following two constraints. First, the total amount of missed sales must be equal to or 
less than the total amount of missed sales in the minimum economic cost solution, 
MaximumMS.  

 , , , , ,
, , , , ,

i r t i dc r t
i r t i dc r t

D TransDCR MaximumMS   (6.2) 

Secondly, the total safety stock violation must be equal to or less than the total safety stock 
violation in the minimum economic cost solution, MaximumSSVio. These two constraints 
are included in all optimizations in step 2 and 3 of the -constraint method. 

 , ,
, , ,

i w t i,dc,t
i w t i dc,t

SSVioWH SSVioDC MaximumSSVio   (6.3) 

Similar to step 1, this environmental impact minimization might yield a weakly dominated 
solution. Therefore, the environmental impact is constrained to the obtained minimum and 
the economic costs are minimized. At the end of step 2, lower and upper bounds have been 
established for both objectives.  

In the third step, various solutions between these lower and upper bounds are obtained by 
constraining one objective and minimizing the other objective. In this chapter, the 
economic cost will be minimized in this step while the environmental impact is bound 
using constraint (6.4). The  will be varied between 0 and 1 in increments determined by 
the number of desired solutions, NParetoPoints. For the case studies considered in this 
chapter 26 points are used, which is a sufficient number of points to obtain a good 
representation of the Pareto front. 

 1EnvImpact EnvImpactLB EnvImpactUB   (6.4) 

While it should be noted that these solutions might again be weakly dominated, the 
possibility for improvement is small if a sufficiently large NParetoPoints is used. For 
example, if the difference between the minimum and maximum environmental impact is 
10%, then the difference in environmental impact between consecutive solutions will be 
0.4% if 26 points are used. Therefore, if the environmental impact could be reduced by 
0.4% or more without increasing the economic costs, it will be covered by the next point on 
the Pareto front.  

The -constraint method as implemented in this chapter can be summarized as follows: 

Step 1 
a) Minimize the economic costs 
b) Limit the economic costs to obtained minimum 
c) Minimize the environmental impact 
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Step 2 
a) Minimize the environmental impact 
b) Limit the environmental impact to the obtained minimum 
c) Minimize the economic costs 

Step 3 

a) 1:
NParetoPoints

  

b) Minimize economic cost with the environmental impact bound by constraint (6.4) 

c) 1:
NParetoPoints

  

d) Terminate if =1, otherwise go to Step 3b 
 

It should be noted that steps 1c and 2c are not always present in the -constraint method. 
These steps are not always necessary since the minimization of one of the objectives might 
give a unique solution. In that case, adding a bound to this first objective and minimizing 
the second objective will simply yield the same solution.  

However, for the problem discussed in this chapter, steps 1c and 2c may improve the 
second objective. First of all, because a 1% MIP optimality tolerance is used, there will 
typically be a variety of solutions whose objective is less than or equal to the lower bound 
obtained in step 1a or 2a. Therefore, a minimization on the second objective may be 
worthwhile.  

Secondly, even when the problem is solved to optimality, the minimum costs and minimum 
environmental impact solutions might not be unique. For example, the amount of product in 
storage influences the economic costs but not the environmental impact. As a result, it 
might be possible to considerably reduce the storage costs of the minimum environmental 
impact solution without increasing the environmental impact. Therefore, steps 1c and 2c are 
used in this chapter to obtain the true Pareto-optimal extreme points (within a 1% 
optimality gap). 

6.5. Results 

The first case study that is considered contains 10 SKUs, 10 ingredients, 52 weekly time 
periods, and a supply chain consisting of 10 suppliers, 4 factories, 5 warehouses, 10 
distribution centers, and 20 retailers. The factories were placed in Austria, Belgium, 
Greece, and Portugal, and they contained 16, 16, 8, and 24 packing lines respectively. One 
warehouse was located near each factory. The location of all other facilities was determined 
by randomizing the x and y coordinates. If an infeasible location was obtained, such as a 
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location in the middle of a sea, the coordinates were randomized again until a feasible 
location was obtained. The transportation distance between two locations is estimated as the 
straight line distance between the locations. 

The various recipes of ice cream were assumed to contain approximately 65-75% milk 
based ingredients, such as milk and cream, and 15-20% sugar. The environmental impact of 
all milk based ingredients was assumed to be equal to the environmental impact of milk. 
Because the other ingredients only account for a small percentage of the recipe, the 
environmental impact of the other ingredients was not considered. All other data was 
generated using the method explained in Chapter 3. 

All optimizations in this chapter are performed using CPLEX 12.4 in AIMMS 3.12 on a 
computer with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 Ghz and with 16 GB of 
memory. All optimizations are performed with a one percent MIP optimality tolerance. 

6.5.1. Full Space Model 

For the 10-SKU case study, the model contains 185,538 variables, 2,080 binary variables, 
and 41,761 constraints. The required CPU time was 8403 seconds with an NParetoPoints 
of 26. In other words, the economic costs were minimized for 24 maximum environmental 
impacts which were distributed equally between the two extremes obtained in the first two 
steps of the -constraint method. 

In step 1a, the minimum economic costs were determined to be €368.1M and the 
environmental impact of the obtained solution was 12.5M ECO 99 points. In steps 1b and 
1c, this environmental impact was then reduced to 12.1M ECO 99 point by adding the 
€368.1M as upper bound of the economic costs and then minimizing the environmental 
impact. The environmental impact could thus be reduced by 2.9% without increasing the 
economic cost.  

In step 2a, the minimum environmental impact was determined to be 11.4M ECO 99 units 
with an economic cost of €402.0M. In steps 2b and 2c, the economic cost could be reduced 
to 387.2M. This represents a cost saving of 3.8% without an increase in environmental 
impact. The scope for reducing the costs of this minimum environmental impact solution is 
this large because the inventory does not have an environmental impact. As a result, the 
inventory build-up starts unnecessarily early in the initial minimum environmental impact 
solution. In fact, 89% of the cost saving is due to the decrease in inventory costs.  

In step 3, other points on the Pareto front were generated. However, because of the 1% 
optimality gap, some solutions were dominated by other solutions. This can be explained 
using Figure 6.1. The light grey points are lower bounds, while the dark grey points are the 
obtained solutions. All solutions are within the specified optimality tolerance. However, the 
obtained optimality gap is not constant. Solution D has a small optimality gap, whereas 
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solution C has a considerably larger optimality gap. As a result, both the economic cost and 
the environmental impact of solution D are lower than those of solution C. Since these 
dominated solutions are inferior to those on the Pareto front, they will not be shown in the 
remainder of this chapter. 

 
Figure 6.1. Example of a dominated solution (point C) because of a larger optimality gap 

The Pareto front obtained in step 3 is shown in Figure 6.2. The cost increase for the more 
environmentally friendly solutions is mainly caused by more expensive ingredients and 
higher inventories. When comparing the minimum economic costs solution with the 
minimum environmental impact solution, 75.7% of the cost increase is due to ingredient 
procurement, 23.6% due to inventory costs, and 0.7% due to set-up costs. On the other 
hand, the transportation costs decrease by 4.6% in the minimum environmental impact 
solution. 

The procurement costs increase because more expensive ingredients are preferred because 
they are either closer to the factory, and thus decrease the environmental impact of 
transportation, or because the ingredient type has a lower environmental impact. The effect 
of this second factor is clearly demonstrated in Figure 6.3, which shows that for the lower 
economic costs solutions non-organic milk is preferred over organic milk. With increasing 
economic costs, and thus a decreasing environmental impact, the quantity of organic milk 
that is procured increases. On the other hand, the percentage of sugar from sugar beets and 
sugar cane remains constant, as can be seen in Figure 6.4. This is mainly because the 
difference in environmental impact is smaller, and therefore the environmental impact of 
transportation becomes a more decisive factor.  

The inventory costs increase for the more environmentally friendly solutions because it 
allows the SKUs to be produced in factories with a lower environmental impact. In the 
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minimum economic cost solution, the SKUs are typically produced close to the demand 
date to decrease the inventory costs and near the demand location to decrease the 
transportation costs. While producing near demand locations reduces the environmental 
impact of transportation, the environmental impact of the energy mix plays an important 
role in the minimum environmental impact solution as well. The distribution of production 
between the factories is given in Figure 6.5.  

 
Figure 6.2. Trade-off between economic and environmental performance 

 
Figure 6.3. Percentage of organic and non-organic milk versus the total costs 
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Figure 6.4. Percentage sugar from sugar beets and sugar cane versus the economic costs 

 
Figure 6.5. Total production in each of the 4 factories versus the total costs 

The main trend is that, in the solutions with a lower environmental impact, part of the 
production is moved from the Portuguese to the Belgian factory, which has a more 
environmentally friendly energy mix. It should be noted that the Austrian and Belgian 
factories are close to their maximum capacity in the solution with the minimum 
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environmental costs. As a matter of fact, the Austrian factory is close to its maximum 
capacity in all solutions due to its central location and environmentally friendly energy mix.  

Finally, the set-up costs increase slightly because the environmental impact of these set-ups 
is very small. They account for only 0.02% of the total environmental impact in all 
solutions. An overview of the environmental impact of the minimum environmental impact 
and minimum economic cost solutions is given in Figure 6.5. The switch from non-organic 
to organic milk accounts for 53.4% of the decrease in environmental impact. The on 
average shorter transportation distances account for 38.2%, and the production in locations 
with a more environmentally friendly energy mix accounts for 8.4%. Interestingly, 80.2% 
of the reduction in environmental impact of transportation occurs in the transportation of 
ingredients. The optimal procurement decisions depend strongly on the objective; shorter 
transportation distances are preferred when minimizing the environmental impact, while 
less expensive ingredients are preferred when minimizing the costs. On the other hand, the 
transportation distances are the most important factor for both objectives in the 
transportation decisions in the rest of the supply chain.  

 
Figure 6.6. Comparison of the environmental impact of the minimum cost and minimum impact solutions. 

6.5.2. SKU-Decomposition Algorithm 

While the 10-SKU case study could be optimized within a reasonable time using the full 
space model, the model becomes intractable for larger case studies similar to the models in 
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Constraints (6.2) and (6.3), which limit the amount of missed sales and safety stock 
violation, are applied for each individual SKU. Constraint (6.4), which limits the 
environmental impact, must be treated as a capacity constraint. That is to say, a slack 
variable should be introduced to the right hand side to initially allow this constraint to be 
violated at a penalty cost. This slack variable is added to the objective function with a 
similar penalty as the slack variables introduced in Chapter 4. Since this slack variable is 
aggregated over all locations and weeks, it will only incur the base penalty cost, which 
increases per iteration. The updated constraint is:  

1SKUEnvImpact SKUEnvImpactP EnvImpactLB EnvImpactUB EI   (6.5) 

Similarly, the bound on the economic costs in step 1b of the -constraint method has to be 
updated as well. The total costs of all decisions influenced by the current SKU, SKUCosts, 
plus the total costs of all decisions that cannot be influenced by the current SKU, 
SKUCostsP, must be less than or equal to the minimum costs obtained in step 1a plus the 
total costs slack variable. This slack variable will initially allow solutions to exceed the 
minimum costs. But with increasing penalty costs, violating the minimum economic costs 
will become more expensive in the environmental objective. 

 SKUCosts SKUCostsP CostsLB TC   (6.6) 

The 10-SKU case study was optimized using this updated SKU-decomposition algorithm 
and the -constraint method. The required CPU time was 5498s. A comparison between the 
results obtained with the algorithm and with the full space model is given in Figure 6.7. 
When comparing the minimum economic cost solution obtained using the algorithm with 
the full space model, the total cost increases by 0.55% and the environmental impact 
increases by 0.55% as well. When comparing the minimum environmental impact solution, 
the environmental impact increases by 0.12% and the total costs increases by 0.29%. For all 
solutions obtained using the full space model, a solution was obtained using the algorithm 
with lower costs and an environmental impact within 3.00% of the environmental impact of 
the full space model solution, and/or a solution was obtained with a lower environmental 
impact and a total costs within 1.24%. Therefore, it can be concluded that the SKU-
decomposition algorithm still yields solutions within a few percent of optimality when 
applied in combination with the -constraint method. 

The SKU-decomposition algorithm was also used to optimize a larger case study containing 
100 SKUs and 6 factories located in Austria, Belgium, Greece, Portugal, Italy, and France. 
A total computational time of 43 hours is required to optimize this case study using the 
SKU-decomposition algorithm combined with the -constraint method. The trade-off 
between the environmental impact and the economic costs of the obtained solutions is 
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shown in Figure 6.8. A total decrease in environmental impact of 4.5% could be obtained at 
an economic cost increase of 5.2%.  

 
Figure 6.7. Comparison of the trade-off between economic and environmental performance of the solutions 
obtained with the full space model and the algorithm 

 
Figure 6.8. Trade-off between environmental and economic performance of the solutions obtained using the SKU-
decomposition algorithm for the 100-SKU case study 
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As shown in Figure 6.9 and similar to the 10-SKU case study, a significant part of the 
reduction in environmental impact is obtained by increasing the percentage of organic milk 
from 49% to 73%. Also similar to the 10-SKU case study, the percentage of beet sugar 
remains approximately constant in all solutions.  

 
Figure 6.9. Percentage of organic and non-organic milk versus the total costs for the 100-SKU case study 

 
Figure 6.10. Allocation of production to factories with a low or high environmental impact energy mix versus the 
total costs for the 100-SKU case study 
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The factories can be divided into two groups. The factories in Austria (3.25), Belgium 
(4.33), and France (2.17) have an energy mix with a low environmental impact, while the 
factories in Greece (11.19), Italy (8.67), and Portugal (8.49) have an energy mix with a high 
environmental impact. Figure 6.10 shows that, as would be expected, the production is 
moved towards the factories with a lower environmental impact energy mix in the more 
environmentally friendly solutions. 

6.6. Conclusions 

In this chapter, the total environmental impact of procurement, production and 
transportation was considered as a second objective in the optimization of the tactical 
planning of a FMCG company. It was shown that considering this environmental objective 
in the tactical planning can be beneficial. In fact, for the 10-SKU study, which was 
optimized with a 1% optimality gap, the environmental impact could be reduced by 2.9% 
without even increasing the economic costs. 

In addition, the environmental impact could be reduced further by up to 6.3% at a total cost 
increase of 5.2%. Using the -constraint method, a set of solutions between these two 
extremes was generated. This allows the decision-maker to select the most desirable 
solution based on the trade-off between the economic costs and the environmental impact. 

More than half of the reduction in environmental impact was achieved by switching to 
ingredient sources with a lower environmental impact. In addition, more than thirty percent 
of the reduction was achieved by opting for slightly more expensive ingredients at suppliers 
closer to the factory. Therefore, it can be concluded that while the environmental and 
economic objectives align reasonably well for the part of the supply chain between factories 
and retailers, considerable reductions in environmental impact can be achieved by 
considering the environmental impact related to supply.  

The SKU-decomposition algorithm was applied to the bi-objective tactical planning model. 
Compared to the full space model, the minimum costs obtained with the algorithm were 
0.55% higher, and the minimum environmental impact was 0.12% higher. Overall, the 
algorithm could obtain solutions similar to the full space model either within 1.24% of the 
total costs and at a lower environmental impact, or within 3.00% of the environmental 
impact and at lower costs. Therefore, it can be concluded that the SKU-decomposition 
algorithm can obtain solutions within a few percent of optimality for the bi-objective 
model. 

 

 

 



Chapter 6 
 

 
140 

6.7. Nomenclature 

6.7.1. Indices 

dc Distribution centers 
f Factories 
h Ingredients 
i SKUs 
r Retailers 
s Suppliers 
SKU Current SKU 
t Weeks 
w Warehouses 

6.7.2. Parameters 

CostsLB Lower bound on the total costs. This lower bound is determined in step 
1a of the -constraint method. 

Di,r,t Demand of SKU i in retailer r in week t 
DistanceDCRdc,r Distance between distribution center dc and retailer r in kilometer 
DistanceFWf,w Distance between factory f and warehouse w in kilometer 
DistanceSFs,f Distance between supplier s and factory f in kilometer 
DistanceWDCw,dc Distance between warehouse w and distribution center dc in kilometer 
EnvImpactIngh,s The environmental impact associated with the production of one tonne of 

ingredient h from supplier s 
EnvImpactLB Lower bound on the total environmental impact. This lower bound is 

determined in step 2a of the -constraint method. 
EnvImpactProdf The environmental impact of producing one tonne of product at factory f 
EnvImpactTrans The environmental impact of transporting one tonne of product over one 

kilometer 
EnvImpactSUi The environmental impact of a set-up to SKU i 
EnvImpactUB Upper bound on the total environmental impact. This upper bound is 

determined in step 1c of the -constraint method. 
MaximumMS Upper bound on the total amount of missed sales. This upper bound is 

determined in step 1c of the -constraint method. 
MaximumSSVio Upper bound on the total amount of safety stock violations. This upper 

bound is determined in step 1c of the -constraint method. 
NParetoPoints Parameter used to set the number of desired points on the Pareto front 
SKUCostsP Total costs of all decisions that are not influenced by the current SKU 
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SKUEnvImpactP Total environmental impact of all decisions that are not influenced by the 
current SKU 

 Parameter used in the -constraint method to select an intermediate bound 
of the environmental impact 

6.7.3. Variables 

EnvImpact Total environmental impact of the complete supply chain over a one year 
horizon 

Prodi,f,t  Amount of SKU i produced at factory f in week t 
SKUCosts Total costs of all decisions influenced by the current SKU 
SKUEnvImpact Total environmental impact of all decisions influenced by the current 

SKU 
SSVioDCi,dc,t Amount of safety stock violation of SKU i in distribution center dc in 

week t 
SSVioWHi,w,t Amount of safety stock violation of SKU i in warehouse w in week t 
TransDCRi,dc,r,t Amount of SKU i transported from distribution center dc to retailer r in 

week t 
TransFWi,f,w,t  Amount of SKU i transported from factory f to warehouse w in week t 
TransIngh,s,f,t  Amount of ingredient h transported from supplier s to factory f in week t 
TransWDCi,w,dc,t Amount of SKU i transported from warehouse w to distribution center dc 

in week t 
EI Slack variable, represents the amount of environmental impact that 

exceeds the specified upper bound 
TC Slack variable, represents the amount of the total costs that exceeds the 

specified upper bound  

6.7.4. Binary Variables 

WSUi,f,t  Binary variable indicating a set-up to SKU i at factory f in week t 
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This thesis dealt with the enterprise-wide optimization of a Fast Moving Consumers Goods 
(FMCG) company. In particular, the focus has been on the scheduling and tactical planning 
problems. In this section, first the main conclusions of this thesis will be given. Then the 
main contributions of this thesis will be presented and finally an outlook will be provided. 

7.1. Conclusions 

7.1.1. Scheduling 

A problem-specific Mixed Integer Linear Programming (MILP) model for the short-term 
scheduling problem of a single factory in the FMCG industry was developed in Chapter 2. 
The formulation of this model is based on the concept of dedicating time periods to product 
families and indirectly modeling the intermediate storage by linking mixing and packing 
intervals. As a result, the computational efficiency is greatly increased compared to generic 
scheduling models. In contrast to previously developed models for this scheduling problem, 
the formulation is still flexible to many of the process characteristics, such as fixed or 
flexible batch sizes.  

In addition, periodic cleaning intervals are introduced into this model. These periodic 
cleaning intervals are common in the food industry, but are not considered in the previously 
developed models. They significantly increase the complexity of the problem. As a result, 
the required computational time increases drastically. For example,  the first full scale case 
study could be optimized in 12 seconds without considering periodic cleaning intervals, but 
the required computational time increased to 2074 seconds when periodic cleaning intervals 
were included. 

Therefore, an algorithm was developed to decrease the required computational effort. In the 
first step of the algorithm, a pre-ordering is applied to the products on the packing lines and 
a feasible solution is obtained for a slightly relaxed scheduling horizon. This solution is 
then improved by performing several makespan minimizations while various parts of the 
schedule are fixed. The algorithm obtained the optimal solution for first full scale case 
study in 681 seconds, which is a speed up of more than 3 times compared to the full space 
model. In general, the algorithm can be used to obtain near optimal solutions within a 
reasonable time. In fact, 9 out of 10 full scale case studies could be solved to optimality 
within half an hour with this algorithm. For the 10th case study a solution within 0.6% of 
optimality was obtained. Therefore, it can be concluded that the developed model and 
algorithm can obtain optimal, or near-optimal, solutions within a reasonable time for 
scheduling problems in the FMCG industry with a variety of characteristics. 
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7.1.2. Tactical Planning 

Subsequently, an MILP model was developed for the tactical planning in the FMCG 
industry in Chapter 3. In this model, the operation of a 5-echelon supply chain is optimized 
over a 1 year horizon. The tactical planning model can generate realistic production targets 
because the capacity constraints reflect the limitations found on the scheduling level. The 
sequence dependent changeovers on the packing lines are approximated using set-ups of 
Stock-Keeping Units (SKUs) and SKU families. On the other hand, based on information 
from the scheduling level, it was concluded that the number of changeovers on the mixing 
lines depends on the factory characteristics rather than on the number of SKUs that are 
allocated.  

A realistic tactical planning problem in the FMCG industry can become very large as a 
large supply chain should be considered over a 52 week horizon, which is required due to 
seasonality. Moreover, even a single product category can contain up to 1000 SKUs. The 
tactical planning model becomes prohibitively large for these extremely large problems. 

Therefore, in Chapter 4 an SKU-decomposition algorithm was proposed to be able to 
optimize realistically sized problems. In this algorithm, submodels containing a single SKU 
are optimized sequentially, and a penalty cost is introduced for violating the capacity. The 
penalty costs are increased in each iteration, and eventually they will be sufficiently high to 
obtain a feasible solution. While the algorithm cannot guarantee global optimality, it was 
shown in Chapters 4-6  that it can be used to obtain solutions within a few percent of 
optimality for a variety of problems. Moreover, it greatly increases the computational 
efficiency for large problems, and therefore it can be used to optimize realistically sized 
tactical planning problems containing up to 1000 SKUs, which are intractable with the full 
space model. 

In addition, it was shown that optimizing these tactical planning problems without 
considering the shelf-life leads to very large amounts of missed sales. Therefore, it is 
crucial to incorporate shelf-life restrictions into the tactical planning model. Unfortunately, 
commonly used methods of directly modeling shelf-life limitations are computationally 
inefficient. Since the tactical planning problem in the FMCG industry is already difficult to 
solve due to its size, these direct methods will typically lead to intractable models. 
Therefore, two alternative methods of modeling the shelf-life were considered. 

First, an indirect method of incorporating shelf-life into the tactical planning model was 
developed in Chapter 5. This indirect method enforces all SKUs to leave the supply chain, 
either to the retailers or as waste, before the end of their shelf-life without directly 
considering the age of each individual SKU. For the case studies considered in Chapter 5, 
the required computational time was reduced by a factor 32 on average when using this 
indirect method instead of directly modeling the age of SKUs. 



Chapter 7  
 

 
146 

For a single storage echelon supply chain, the indirect method is guaranteed to obtain 
optimal solutions. For a supply chain with multiple storage echelons, the shelf-life must be 
manually divided over the storage echelons. Nevertheless, when the shelf-life is divided 
according to the storage capacity ratio, solutions within a few percent of optimality are 
obtained. The indirect method can be combined with the SKU-decomposition algorithm to 
optimize case studies of up to 1000 SKUs, whereas a direct method in combination with the 
decomposition algorithm is intractable for case studies containing more than 25 SKUs. 
Therefore, this indirect shelf-life method allows shelf-life limitations to be considered for 
realistically sized problems, which would be impossible with commonly used direct shelf-
life methods.  

Secondly, a hybrid method of incorporating shelf-life into the tactical planning model was 
developed in Chapter 5 as well. This method models the age of SKUs directly in the first 
storage echelon but indirectly in the second storage echelon. While not as efficient as the 
indirect method, the required computational time is still reduced by more than a factor 5 on 
average compared to the direct method. Furthermore, near optimal solutions are obtained 
with the hybrid method.  In combination with the SKU-decomposition algorithm, case 
studies containing up to 100 SKUs can be optimized within a reasonable time. In short, the 
proposed hybrid method can be used in considerably larger problems than direct methods, 
while still obtaining near optimal solutions.  

While traditionally tactical planning models have involved economic objectives, the 
environmental performance of companies is becoming increasingly important. Therefore, 
the environmental impact was introduced into the tactical planning model as a second 
objective in Chapter 6. The environmental impact of the ingredients, production, and 
transportation was evaluated using the Eco-indicator 99. A set of solutions approximating 
the Pareto front was obtained using the -constraint method. When optimizing with a 1% 
optimality tolerance, the environmental impact of an example case study could be reduced 
by 2.9% without increasing the costs. It can thus be concluded that, since the majority of 
the tactical planning models do not consider the environmental impact, this provides an 
opportunity to gain a competitive advantage.  

7.2. Main Contributions 

The main contributions of this thesis can be summarized as follows: 

1) An MILP model for the short-term scheduling in the FMCG industry. The model 
is based on the concept of dedicating time periods to SKU families and indirectly 
modeling the intermediate storage by linking mixing and packing intervals. The 
resulting formulation is computationally much more efficient than generic 
approaches, while still being flexible to many of the process characteristics.  
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2) An MILP model for the tactical planning in the FMCG industry. The interaction 
between all five echelons of the supply chain is considered. The production 
capacity is approximated based on the characteristics of the scheduling level to 
provide realistic production targets. 

3) An SKU-decomposition algorithm for the tactical planning MILP model. It 
decomposes the model into single-SKU submodels that are optimized sequentially. 
Capacity violations are initially allowed through slack variables with penalty costs. 
Increasing penalty costs in subsequent iterations eventually guarantee a feasible 
solution. Solutions within a few percent of optimality can be obtained using the 
algorithm, and it can be applied to optimize realistically sized problems containing 
up to 1000 SKUs. 

4) An indirect method of incorporating shelf-life restrictions into the tactical planning 
model. Instead of directly tracking the age of SKUs, it ensures that SKUs leave the 
supply chain before the end of their shelf-life. The required computational effort 
was on average reduced by a factor of 32 compared to a commonly used direct 
shelf-life method. This allows shelf-life limitations to be considered in realistically 
sized problems. 

5) A hybrid method of incorporating shelf-life restrictions into the tactical planning 
model. It tracks the age of SKUs directly in the first storage echelon and indirectly 
in the second storage echelon. While not as computationally efficient as the 
indirect method, it is still on average 5 times faster than a direct method. 
Moreover, it can be used to obtain near optimal solutions. 

6) An approach of introducing the environmental impact as a second objective into 
the tactical planning model for the FMCG industry. The impact of the ingredients, 
production, and transportation is evaluated using the Eco-indicator 99. A set of 
solutions approximating the Pareto front is generated using the -constraint 
method. When optimizing with a 1% optimality gap, the environmental impact can 
be reduced by a few percent without increasing the costs.  

7.3. Outlook 

Before the tactical planning model can be applied in practice, it should first be tested using 
historical data. A comparison between the model decisions and the original decisions based 
on this historical data will provide additional insight into the potential cost savings. 
Moreover, this comparison can be used to identify additional limitations found in the 
operation of the supply chain that should be added to the model. It should be noted that the 
input of the tactical planning model should be based on the information that was available 
at the time of the original decisions. For example, the forecast of the demand should be 
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used rather than the actual realized demand. The successful practical implementation of 
planning models is discussed for instance by Brown et al. (2001) and Kallrath (2002a). 

7.3.1. Model Extensions 

In the tactical planning model of Chapter 3, an upper bound was used for the amount of 
ingredients that can be procured from each supplier. This upper bound will typically be 
specified in a supplier contact. In the tactical planning model, it was assumed that the 
procurement amount can be anywhere between zero and the upper bound. However, in 
practice these supplier contracts often specify a lower bound as well. A penalty must then 
be paid if the procurement amount is less than this lower bound. Therefore, the 
incorporation of these lower bounds and the associated penalty costs into the tactical 
planning model should be investigated. Furthermore, one might consider various discount 
and term structures of the supplier contracts as described in Park et al. (2006). 

It is assumed in the tactical planning model that the storage temperature in the warehouses 
and distributions centers is constant. As a result, the shelf-life of all products is known, and 
the environmental impact of storage is independent of the tactical planning decisions. 
However, the storage temperature could also be considered as a decision variable (Rong et 
al., 2011). Higher storage temperatures would reduce the storage costs and the 
environmental impact of storage at the costs of a shorter shelf-life. Therefore, including this 
trade-off into the tactical planning model might provide economic and environmental 
benefits. However, it should be noted that adding the storage temperature as a decision 
variable will either introduce nonlinearities or require additional binary variables. 

The cost of an SKU being sold out is approximated using a linear missed sales cost in the 
tactical planning model. However, in practice similar SKUs might substitute each other 
when one or more is sold out. In this case, the impact of one SKU out of group of similar 
SKUs being sold out is considerably less than the impact of several similar SKUs being 
sold out. Therefore, it might be more realistic to have missed sales costs that are dependent 
on the number of SKUs of a particular group that are sold out.  

This would be difficult to implement for the full space model because it would require 
additional binary variables, and it would lead to a non-linear model. However, the SKU-
decomposition algorithm described in Chapter 4 is clearly more suitable to model these 
varying missed sales costs. Each submodel only includes a single SKU, and all decisions 
regarding the other SKUs are fixed as parameters. Therefore, the value of the missed sales 
costs can be calculated before the optimization of each submodel, and consequently neither 
non-linear constraints nor additional binary variables are required. 
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7.3.2. Computational Limits 

The proposed short-term scheduling approach is capable of obtaining near optimal solutions 
for the case studies that were addressed. However, the required computational effort would 
increase significantly when larger factories are considered. Therefore, for larger factories it 
could prove useful to apply a decomposition algorithm similar to the order decomposition 
proposed by Castro et al. (2009). The basis of their algorithm is that the complete set of 
batches is scheduled sequentially by considering a subset of the batches at a time. The 
allocation decisions of previously scheduled batches are fixed to reduce the combinatorial 
complexity. Nevertheless, other decisions of previously scheduled batches, such as their 
timing decisions, remain variable to allow for some flexibility.  

The tactical planning problem considered in this thesis is very large due to the extremely 
large number of SKUs. This problem can still be optimized using the SKU-decomposition 
algorithm. However, for supply chains that are considerably larger than the ones considered 
in this thesis, the submodels might become too large to be solved quickly. In that case, the 
total required computational time would increase drastically as the SKU-decomposition 
algorithm is based on optimizing a large number of submodels.  

These even larger problems could still be solved within a reasonable time by relaxing the 
binary variables in the second part of the horizon. In principle, this will yield infeasible 
production targets in the second part of the horizon, since the set-up times would be 
relaxed. However, in practice, the model will be used in a rolling time horizon. Therefore, 
only the production plans of the first few weeks will be implemented before the model is 
optimized again with updated data. As a result, all the implemented decisions will be 
feasible. Alternatively, feasible decisions in all weeks could be obtained by using a rolling 
or shrinking time horizon algorithm, such as those proposed by Wilkinson (1996) and 
Dimitriadis et al. (1997). Relaxing the second part of the horizon will slightly reduce the 
solution quality, because the relaxed decisions influence the decisions in the first part of the 
horizon. Nevertheless, preliminary work in this area has shown that good solutions can still 
be obtained as long as the first part of the horizon with binary variables is sufficiently large. 

On the other hand, for problems with a smaller supply chain or shorter planning horizon, a 
multi-SKU-decomposition algorithm could be used. Instead of decomposing the problem 
into single SKU submodels, each submodel could contain several SKUs. While this would 
increase the size of the submodels, this would be offset by the smaller supply chain or 
shorter planning horizon. The advantage is that the interaction between these SKUs is then 
considered directly. Preliminary work in this area has shown that this may slightly improve 
the obtained solutions. 

In Chapter 6 the -constraint method is used to obtain an approximation of the Pareto front 
of the trade-off between the economic and environmental objectives. However, this method 
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is not as suitable when more than two objectives are considered or if the exact Pareto front 
is desired. In those cases, multi-parametric programming (Acevedo (1996) and 
Pistikopoulos et al. (2007)) could be explored to more accurately and efficiently develop 
Pareto fronts.   

7.3.3. Uncertainty 

The models developed in this thesis are deterministic models. However, some of the input 
parameters might contain uncertainty. For example, the demand forecasts which are used as 
input in the tactical planning model are uncertain. The realized demand will not be exactly 
equal to the expected demand. In the tactical planning model, this uncertainty is dealt with 
through safety stocks. These higher inventory levels provide a buffer for uncertainty. If the 
realized demand is higher than expected, or a factory is offline during a certain week, the 
safety stock is used to prevent missed sales. 

An alternative approach of handling the uncertainty would be to directly incorporate the 
uncertainty into the model. In such a model, the uncertainty is often approximated using 
scenarios. Each scenario has a certain probability and reflects a possible realization of the 
uncertainty. The objective of the tactical planning model would then be to minimize the 
average cost over these scenarios. When the uncertainty is incorporated directly into the 
tactical planning model, the complex interactions between the various echelons in the 
supply chain and the uncertainty are considered simultaneously. Basically, this will allow 
the model to determine the optimal safety stock/inventory levels considering all these 
interactions. Theoretically, this could improve the solution compared to using 
predetermined safety stocks.  

However, this would result in stochastic programming problems (Birge and Louveaux, 
2011) that are difficult to solve. In fact, for the tactical planning problem in the FMCG 
industry, this problem would be extremely difficult to solve as the number of scenarios 
would be extremely large. Moreover, it would become a multi-stage stochastic problem 
because the optimal decisions in each week depend on the realization of the uncertainty in 
all previous weeks. A more manageable two-stage stochastic problem could be used to 
approximate this multi-stage stochastic problem, though the quality of the solution will 
decrease. In addition, the number of scenarios can be reduced using, for example, the 
Sample Average Approximation (SAA) method (Shapiro and Homem-de-Mello, 1998). 
Nevertheless, such a method still requires hundreds to thousands of scenarios to provide a 
reasonable approximation (Linderoth et al., 2006).  

The resulting problem would thus still be very large. To further reduce the required 
computational effort, this problem could be solved using a variant of Benders’ 
decomposition. However, such problems are extremely difficult when the recourse problem 
contains binary variables (Sahinidis, 2004), as would be the case for the tactical planning 
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model. The optimization is more straightforward if the binary variables in the second stage 
are relaxed. However, this would further reduce the quality of the solution. To circumvent 
this problem one might consider a lagrangean decomposition scheme, such as described by 
Carøe and Schultz (1999). 

Moreover, the resulting formulation would still be significantly harder to solve than the 
deterministic equivalent, and it might require additional simplifications to be able to be 
optimized for realistically sized problems. The question that, therefore, needs to be 
answered is whether directly incorporating the uncertainty will still improve the solution 
considering all these necessary approximations.  

Uncertainty also plays a role on the scheduling level. Part of this uncertainty, such as 
possible mixing/planning line breakdowns, can be handled through reactive scheduling (Li 
and Ierapetritou, 2008). In that case, the schedule is updated after the occurrence of these 
disruptive events. For this type of uncertainty, methods of quickly updating the schedule 
should be investigated. 

On the other hand, other kinds of uncertainty cannot be accounted for using reactive 
scheduling. For example, if the processing times are uncertain, a packing run might last 
longer than planned, a storage tank might therefore be available later than planned, and as a 
result the next mixing run cannot start on the scheduled time. This could prove especially 
troublesome as makespan minimizations will lead to schedules where mixing run usually 
start the moment a packing run finishes, and simultaneously the single continuous packing 
campaigns require these mixing runs to finish in time because otherwise minimum ageing 
times would be violated. Therefore, it might be advisable to account for the uncertainty in 
the processing rates and other production parameters, as is for example discussed by 
Bassett et al. (1997) and Balasubramanian and Grossmann (2003). 

7.3.4. Other Industries 

The focus in this thesis has been on the FMCG industry. The models have been developed 
such that they can handle, and in some cases even exploit, the process and supply chain 
characteristics found in the FMCG industry. Nevertheless, the models and methods may 
also prove useful for other industries.  

For example, with some small changes the tactical planning model and SKU-decomposition 
algorithm could also be applied to other industries with production processes that produce a 
variety of products/SKUs, such as the paint industry. The SKU-decomposition algorithm is 
particularly efficient if the number of SKUs is large. While it can also be used for problems 
with only a few products, in those cases using a more traditional temporal or spatial 
decomposition might be preferable.   
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Shelf-life restrictions are not unique to the FMCG industry. They are, for example, also 
found in the pharmaceutical industry. The methods of implementing the shelf-life that were 
developed in this thesis can also be used to improve the computational efficiency of tactical 
planning models for those industries. 

Finally, the environmental impact is important in all industries. A method similar to the one 
presented in Chapter 6 could be used to consider the environmental impact in a tactical 
planning model of any industry. While the -constraint method is a commonly used multi-
objective optimization method and the evaluation of the environmental impact is different 
for each industry, Chapter 6 demonstrates that the environmental impact can potentially be 
reduced without increasing the costs. This signifies that ignoring the environmental impact 
in the tactical planning, as is currently the case in the majority of the tactical planning 
models, represents a lost opportunity to gain a competitive advantage. 
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Appendix A:  

General Cleaning Interval Constraints 

In the more generic method, several cleaning interval variables are introduced. For the 
example problem, two variables would suffice since cleaning more than once in the first or 
last 72 hour is excessive. Each cleaning interval must occur exactly once: 

 , ,    1     ,n m t
t

WCI n NCI,m t   (A.1) 

Each cleaning interval is required to last at least four hours: 

 , , ,, 1 4   , ,m t n m tm tTSM TEM WCI n NCI m t   (A.2) 

Next, in order to reduce the degeneracy, the cleaning intervals are ordered. The cleaning 
intervals are allowed to overlap since it may not be known in advance how many cleaning 
intervals are required.  

 1, , , ,   ,n m t n m t
t t

t WCI t WCI n NCI m   (A.3) 

The first cleaning interval must occur within the first 72 hours of the schedule because 
cleaning is required once every 72 hours: 

 , , ,(1 )     1, ,m t n m tTSM CIfrequency WCI H n m t   (A.4) 

For the same reason, each cleaning interval must occur at most 72 hours after the previous 
one: 

 , ' 1, , '

, , ,

(1 ) H
           (1 ) H     , , , '

m t n m t

m t n m t

TSM CIfrequency WCI
TSM WCI n NCI m t t

  (A.5) 

Finally, the last cleaning interval must be at most 72 hours before the end of the scheduling 
horizon: 

 , , ,(1 )  
                                                , ,

m t n m tTSM H CIfrequency WCI H
n NCI m t

  (A.6) 
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Nomenclature 

Indices 
m Mixing lines 
n  Counting index. For example used to distinguish cleaning interval 1, 2… N. 
t, t’ Time intervals 
 
Parameters 
CIfrequency Maximum time between cleaning intervals 

H  Scheduling horizon 
NCI  Number of cleaning intervals 
 
Nonnegative Continuous Variables 
TEMm,t  End time of interval t on mixing line m 
TSMm,t  Start time of interval t on mixing line m 
 
Binary Variables 

, ,  | n m tWCI n NCI  Binary variable indicating whether the nth cleaning interval is 

before interval t
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Appendix B:  

Modified STN 

The modified STN is based on the “Flexible-Finite-Intermediate-Storage Case without 
bypassing of storage” version of the model of Shaik and Floudas (2007). It consists of 
constraints 1, 2, 9-11, 14,16a, 17, 27-29, and 33 from their model. In addition, the 
following modified constraints also have to be included. The nomenclature for these 
constraints is given at the end of this appendix. 

Only full storage tank mixing runs are allowed. Therefore, if a task is active at an event, the 
amount produced is equal to the storage tank size of the product family produced in this 
event. Otherwise, the amount produced is zero. 

 , ,   ,i n i i nb STC w i n   (B.1) 

The storage task must start as soon as a task producing the intermediate starts. 

 , , , , , ,2      , , | 0, 0
st p st p int p int st

s s p c
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The packing of a product cannot start before the end time of the mixing plus the ageing 
time. 
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Single packing campaigns are enforced by forcing that if task i is active in event n and n’ 
no other task can be active on the same packing line in the events between n and n’.  
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Continuous campaigns are required for each product. Therefore, the start time of a packing 
task is set equal to the end time of a previous packing task if no other packing tasks are 
active on this packing line in between these two tasks.  

 , , ' , ' ', ''
' ' ''
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There must be at least one periodic cleaning interval on each mixing line. 
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n
WCI j   (B.6) 

For this cleaning interval, there should be least 4 hours between the end of the previous 
interval and the start of the next interval. 
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Also, this cleaning interval must not be later than 72 hours after the start or earlier than 72 
hours before the end of the horizon because then two cleaning intervals would be required. 
These 72 hours (CIfrequency) are the minimum cleaning interval frequency. 

 , ,  , ,
m m

s
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 , ,      , ,
m m

s
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The feasibility objective is used as objective function. Alternatively, a makespan objective 
function could also be used.  

 
,

,
, ,  | 0

p
p p s ip p

i n
i n s

obj b   (B.10) 

Nomenclature 

Indices 
c Product families 
i  Tasks 
ip Processing tasks 
ist Storage tasks 
j Units 
jm Mixing lines 
jp Packing lines 
n Events 
s States 
sint States that are intermediates 
sp States that are final products 
 
Subsets 
IJj  Tasks that can be performed on unit j 
MPs,ip,ip’  Intermediate states that require ageing and are produced by task ip and 

consumed by task ip’ 
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Parameters 
AgeTs   Ageing time required by state s 
CIfrequency Maximum time between cleaning intervals 
H   Time Horizon 
STCi  Batch size of task i 

c
s,I  Amount of state s consumed by task i 

p
s,I  Amount of state s produced by task i 

 
Variables 
bi,n  Amount of material undertaking task i at event n 
Tf

i,n Time at which task i ends at event n 
Ts

i,n Time at which task i starts at event n 
wi,n Binary variable for the assignment of task i to event n 
WCIjm,n Binary variable indicating a periodic cleaning on mixing line jm before event n 
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