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PERFORMANCE ANALYSIS OF EXPONENTIAL MULTI-SERVER

PRODUCTION LINES WITH FLUID FLOW AND FINITE BUFFERS

Stijn Fleuren,1 Remco Bierbooms,2 and Ivo Adan1

1Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands
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� This article presents an approximation method for fluid flow production lines with multi-server
workstations and finite buffers. Each workstation consists of parallel identical servers, which are
subject to operation-dependent failures with exponentially distributed uptimes and downtimes. The
proposed method decomposes the production line into single-buffer subsystems, each described by a
continuous state Markov process, the parameters of which are determined iteratively. The approxi-
mation method is appropriate for the analysis of longer production lines, able to accurately estimate
performance characteristics (e.g., throughput and mean buffer content), and shown to perform well
on a large test set.

Keywords Approximate analysis; Multi-server production lines; Operation dependent
failures; Decomposition technique.

Mathematics Subject Classification 90B22.

1. INTRODUCTION

This article studies production lines with multi-server workstations in
series and finite buffers in between. Each workstation consists of parallel
identical servers. The flow through the workstations is assumed to be contin-
uous, that is, fluid instead of discrete items. Figure 1 illustrates a fluid-flow
multi-server production line, labeled L, with four workstations W1, . . . ,W4

in series, where Wi denotes the ith workstation.
The downstream buffer of Wi is denoted by Bi , the size of which is bi .

Each workstation Wi has si identical parallel servers, which are subject to
operation dependent failures. This means that servers can only break down
when actually producing. Each server in Wi breaks down at an exponential
rate λi (when producing), and it is repaired at an exponential rate μi . The
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470 Fleuren et al.

FIGURE 1 A multi-server production line with four workstations.

speed of a single server in workstation Wi is vi/si , and thus the maximum
speed at which workstation Wi can process fluid (when all servers are up) is
vi . When the downstream buffer Bi becomes full, workstation Wi slows down
to the production rate of Wi+1 or becomes blocked if Wi+1 is not producing.
Similarly, when upstream buffer Bi−1 becomes empty, it slows down to the
production rate of Wi−1, or becomes starved if Wi−1 is not producing.

Fluid flow models are natural models for production systems producing
continuous material but also for high-volume discrete production systems,
as seen in, for example, back-end semiconductor manufacturing. Actually,
the present study is motivated by the design of a production line for small
appliances, consisting of six workstations, where the second and third one
consist of multiple identical machines; see also the next section. One of the
issues in the design of this production line are the required buffer sizes in
between the workstations in order to meet the target throughput.

An exact analysis of the fluid flow models proposed in this article is
intractable. Hence, we aim at finding an analytical method to efficiently
approximate the performance of fluid flow models, such as throughput
and mean buffer content. In the literature, approximations have been
developed for single-server fluid flow lines, based on aggregation[14,15],
decomposition[17,12,22,4,11,18,6,5,3], and homogenization[13,16,19]. Recently, a
decomposition-based approximation for fluid flow lines has been proposed
in Ref.[5]. The model in Ref.[5] includes multi-server lines. An alternative ap-
proach for multi-server lines can be found in Refs.[20,4], proposing to replace
multi-server workstations with equivalent single-server workstations and thus
making the model suitable for application of single-server methods.

The approximation method in this article is based on decomposition
and aggregation: the production line is decomposed into single-buffer sub-
systems, each of which is composed of an arrival workstation, aggregating the
upstream part of production line, and a departure workstation, aggregating
the downstream part. The parameters of the subsystems are then determined
iteratively. Use of aggregation is crucial to keep the (size of the) subsystems
manageable. A single-buffer subsystem can be described by a continuous-
time continuous-state Markov chain, the steady-state distribution of which
satisfies a set of linear differential equations with constant coefficients. The
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Exponential Multi-Server Production Lines 471

solution of this set of linear differential equations can be expressed as a
matrix exponential function or alternatively, in terms of the eigenvalues and
eigenvectors of the matrix exponent. However, both expressions may be
numerically unstable, severely limiting their applicability, cf. Section 4.3 in
Ref.[3]. In this article, we avoid these numerical issues by using the numer-
ically stable matrix-analytic methods for fluid flow models developed in
Ref.[10,9], which have been inspired by earlier work in Ref.[21] exploring the
similarity between fluid flow models and discrete-state quasi-birth-and-death
processes.

The decomposition-aggregation technique in Ref.[3] has been developed
for the approximate analysis of single-server fluid flow lines with generally
distributed up- and downtimes. This technique, however, cannot be directly
applied to the exponential multi-server lines considered in the current arti-
cle, since multi-server stations have state-dependent uptimes and production
speeds (i.e., depending on the number of servers being up). As mentioned
above, the approximation method in Ref.[5], also applies to exponential
multi-server lines. The main difference between this method and the cur-
rent one is in the level of detail at which subsystems are modeled. In Ref.[5]

the state space of the detailed Markov model of a subsystem grows almost
exponentially in the length of the production line, whereas this state space
explosion is avoided by the current method due to aggregation.

The article is organized as follows. In Section 2 we elaborate on the pro-
duction line of small appliances motivating this research. In Sections 3 and 4
we first describe the approximation method at high level, and then fill in the
details in Section 5. In Section 6 we validate the approximation method on a
large test set of 8,640 cases. Results show good performance of the proposed
method. We also compare this method to other approximation methods
from the literature and perform a sensitivity analysis of the practical case.

2. APPLICATION

The present study is motivated by the design of a new production line
for small appliances. Figure 2 shows the proposed layout of this production
line, consisting of six workstations, where the second and third one consist
of multiple identical machines. In this figure, Wi, j presents the jth machine
of the ith workstation (Wi ); Bi is a conveyor belt transporting the products
from the ith to the i + 1th workstation. The conveyor belts are also used
for buffering. The circles (with R) are robots taking products from the
machines to the conveyor belt (indicated by dashed arrows) and vice versa
(indicated by solid arrows). Each machine is subject to operation-dependent
failures. Products are transported through the system by means of carriers:
products are placed on a carrier at the beginning of the production line, the
carrier then moves along the workstations, and after processing at the last
workstation, the final product is removed from the carrier and the empty
carrier is returned to the beginning of the line.
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472 Fleuren et al.

TABLE 1 Estimated data for the production line of Figure 2

Workstation Mean uptime 1/λi Mean downtime 1/μi Workstation speed vi Size of bufffer Bi

W1 169 9.0 26.8 63
W2 143 11.3 9.4 150
W3 221 11.1 5.0 125
W4 257 7.2 25.9 13
W5 757 24.0 26.8 8
W6 227 4.4 26.8

This production line is modeled as follows. First, the flow of products is
represented as a fluid flow, which is justified by the high processing speed
compared to the uptimes and downtimes, and we assume that there are
always enough carriers available at the beginning of the line (so the influx
never stops because of lack of carriers). We also assume that uptimes and
downtimes are exponentially distributed. Finally, we assume that each buffer
position can be reached from any machine of the upstream and downstream
workstation. Based on these assumptions, the model of the production line
fits in the present framework for exponential multi-server production lines,
as shown in Figure 1 with si = 1 for i = 1, 4, 5, 6, and s2 = 3, s3 = 5.

Since this concerns the design of a new (not yet existing) production
lines, only estimates of the machine and buffer data are available; see
Table 1. A sensitivity analysis of this production line is referred to Section 6.

FIGURE 2 Schematic representation of a production line for small appliances.
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Exponential Multi-Server Production Lines 473

FIGURE 3 Decomposition of production line L in three single-buffer subsystems L1, L2, and L3.

3. DECOMPOSITION

We decompose the production line L into subsystems L1, . . . ,LN −1 as
illustrated in Figure 3. Each subsystem consists of the following three ele-
ments:

• Arrival workstation W a
i , which behaves as original workstation Wi with si

servers including starvation and speed adaptation caused by the upstream
part of the production line. We model this workstation as a continuous-
time Markov chain (CTMC) with k(i)

A states and generator Q(i)
A . The vector
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474 Fleuren et al.

of production speeds is defined as r(i)
A , the jth element of which is the

production speed corresponding to state j of the CTMC, j = 1, . . . , k(i)
A .

• Buffer Bi of size bi .
• Departure workstation W d

i , which is original workstation Wi+1 with si+1

servers including blocking and speed adaptation caused by the downstream
part of the production line. We model this workstation as a CTMC with
k(i)

D states, generator Q(i)
D , and speed vector r(i)

D .

In the next section, we propose an iterative method to estimate the
elements of Q(i)

A , r(i)
A , Q(i)

D , and r(i)
D , and ultimately the throughput and the

average buffer content of the production line.

4. ITERATIVE METHOD

We present an iterative method to obtain the performance measures of
a multi-server production line L, based on decomposition into subsystems
L1, . . . ,LN −1 as explained in the previous section.

Step 0: Initialization
We initially assume that each subsystem Li , i = 1, . . . ,N − 1, is not af-

fected by starvation or blocking due to upstream or downstream subsystems.
The parameters in Q(i)

A , r(i)
A , Q(i)

D , and r(i)
D are set accordingly.

Step 1: Subsystem analysis from left to right and update the arrival work-
stations

We analyze all subsystems, starting with L1 up to LN −1.

(a) Construction of Markov chains for W a
i and W d

i
We construct a CTMC describing the phase behavior of W a

i using
information from the upstream subsystem and a CTMC describing
the phase behavior of W d

i using information from the downstream
subsystem. The elements of Q(i)

A , r(i)
A , Q(i)

D , and r(i)
D are determined in

this step; see Section 5.1.
(b) Determination of steady-state distribution

We determine the steady state distribution of the subsystem. This step
is referred to Section 5.2.

(c) Determination of throughput estimate
Using the steady-state distribution, we determine the throughput t(i)

n,1,
where the subscript n, 1 refers to step 1 of the nth iteration. In Section
5.1 we formulate expressions for the throughput.

(d) Update starvation and speed parameters if i < N − 1
This step updates the important parameters to construct new CTMCs
for the phase behavior of arrival workstation W a

i+1 if i < N − 1. More
specifically, we determine the rate at which W a

i+1 goes starved and
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Exponential Multi-Server Production Lines 475

the mean starvation time of W a
i+1 (both depending on the number of

active servers). Furthermore, we determine the average production
speed of W a

i+1 when j servers are up, j = 1, . . . , si+1, which includes
speed adaptation due to a slower upstream machine W a

i . This step is
explained in Section 5.3.

Step 2: Subsystem analysis from right to left and update the departure
workstations

We analyze all subsystems, starting with LN −1 down to L1.

(a) Construction of Markov chains for W a
i and W d

i
We construct a CTMC describing the phase behavior of W a

i using
information from the upstream subsystem and a CTMC describing
the phase behavior of W d

i using information from the downstream
subsystem. The elements of Q(i)

A , r(i)
A , Q(i)

D , and r(i)
D are determined in

this step; see Section 5.1.
(b) Determination of steady-state distribution

We determine the steady-state distribution of the subsystem.
(c) Determination of throughput estimate

Using the steady-state distribution, we determine the throughput t(i)
n,2,

where subscript n, 2 refers to step 2 of the nth iteration.
(d) Update blocking and speed parameters if i > 1

This step updates the important parameters to construct new CTMCs
for the phase behavior of departure workstation W d

i−1 if i > 1. That
is, we update the rate at which W d

i−1 jumps to the blocked state, the
mean blocking time of W d

i−1 (both depending on the number of active
servers), and the average production rate of W d

i−1 when j servers are
up, j = 1, . . . , si , which includes speed adaptation due to a lower
production speed of downstream machine W d

i . This step is explained
in Section 5.3.

Step 3: Repeat
We repeat steps 1–2 until the throughput estimates have converged. If

for some small ε it holds that

|t(i)
n,2 − t(i)

n−1,2|
t(i)
n−1,2

< ε for all i ≤ N − 1,

then we stop; otherwise, we perform another iteration.
In the next section, we elaborate on the steps of the iterative algorithm.

In contrast to the approximation for single-server lines[2,3], the conservation
of flow property is not guaranteed for this algorithm, i.e., the throughput
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476 Fleuren et al.

estimates of the different subsystems do not necessarily converge to the
same value. Therefore, we implement a conservation of flow equation to
force the throughput estimates to be equal. This is explained in Section
5.4. Consistency equations, such as conservation of flow, are often used in
decomposition methods; cf. Refs.[17,12].

Very few theoretical results are available in the literature about the con-
vergence of iterative algorithms based on decomposition, and the available
results typically concern special cases. Convergence is established by[23] for
single-server discrete production lines with unreliable servers, all having the
same processing rate. In the case of exponential single-server discrete pro-
duction lines with reliable servers, Ref.[7] proves that, for each subsystem in
their iterative algorithm, the successive estimates of the exponential service
rate of the arrival and departure server are monotone and bounded se-
quences and thus converge. However, in the current setting of multi-server
fluid flow production lines, we believe that the complexity of the subsystems
prohibits a proof of convergence.

5. SUBSYSTEM ANALYSIS

In this section we analyze subsystem Li , i = 1, ...,N − 1. First, we con-
struct a CTMC describing the phase process of both W a

i and W d
i . Using

these CTMCs, we determine the steady-state distribution of Li using matrix-
analytic methods and update the parameters of W a

i+1 and W d
i−1 using the

steady-state distribution of Li . Last, we implement a conservation of flow
equation to assure that the (limiting) throughput values are equal for all
subsystems.

5.1. Phase Behavior of Arrival and Departure Workstation

We model the phase behavior of W a
i and W d

i as CTMCs with generators
Q(i)

A and Q(i)
D , respectively. Each state of the CTMC has a corresponding

production speed; the vectors of production speeds are defined as r(i)
A and

r(i)
D , respectively.

Starting with the arrival workstation, we define state u( j) as the state
where W a

i is not starved and j servers are up, j = 0, . . . , si . Furthermore,
the state s t( j) implies that W a

i is starved by the upstream part of the line
and j servers are up, j = 1, . . . , si . With these definitions, the state space of
the CTMC for W a

i is given by S(i)
A = {u(0), . . . ,u(si ), s t(1), . . . , s t(si)}. The

number of states of this CTMC is

k(i)
A = 2si + 1.
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Exponential Multi-Server Production Lines 477

FIGURE 4 Division of states for W a
i and W d

i in case si = 3.

The left part of Figure 4 illustrates the structure of the CTMC for W a
i in case

si = 3. We distinguish four types of transitions:

• Machine breakdowns, which are transitions from u( j) to u( j − 1), j =
1, . . . , si . Since j servers are up in state u( j), the rate of transitions of
this type is given by jλi , so

Q(i)
A (u( j),u( j − 1)) = jλi , j = 1, . . . , si .

Because the failures are operation dependent, machine breakdowns do
not occur if W a

i is starved.
• Machine repairs, which are transitions from u( j) to u( j + 1), j = 0, . . . , si −

1, or transitions from s t( j) to s t( j + 1), j = 1, . . . , si − 1. There are si − j
servers under repair in state u( j) and s t( j), so the repair rate in these
states is given by (si − j)μi ;

Q(i)
A (u( j),u( j + 1)) = (si − j)μi , j = 0, . . . , si − 1,

Q(i)
A (s t( j), s t( j + 1)) = (si − j)μi , j = 1, . . . , si − 1.
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478 Fleuren et al.

• Transitions from up to starved, or equivalently, from u( j) to s t( j). We define
the rate of these transitions as θ (i)

A, j ;

Q(i)
A (u( j), s t( j)) = θ

(i)
A, j , j = 1, . . . , si .

• Transitions from starved to up, or equivalently, from s t( j) to u( j), which
occur at a rate of ψ(i)

A, j ;

Q(i)
A (s t( j),u( j)) = ψ

(i)
A, j , j = 1, . . . , si .

The diagonal elements of Q(i)
A are chosen such that the sum of each

row is equal to zero. The parameters θ (i)
A, j and ψ(i)

A, j are obtained from the
analysis of Li−1; the determination of these parameters is referred to the
next section.

The average production speed of workstation W a
i in state u( j), so when

j servers are up, j = 1, . . . , si , is defined as v(i)
A, j . The average speeds are also

obtained from the analysis of Li−1; see the next section. Note that v(i)
A, j is not

necessarily equal to j vi/si , since W a
i adjusts its speed when Bi−1 is empty and

W a
i−1 produces at a lower speed. The elements of speed vector r(i)

A are given
by

r(i)
A (u(0)) = 0,

r(i)
A (u( j)) = v(i)

A, j , j = 1, . . . , si ,

r(i)
A (s t( j)) = 0, j = 1, . . . , si .

For the departure server, we define state u( j) as the state where W d
i

is not blocked and j servers are up, j = 0, . . . , si+1, and bl( j) as the state
where W d

i is blocked and j servers are up, j = 1, . . . , si+1. The CTMC for
W d

i is illustrated in the right part of Figure 4. The number of states for this
CTMC is equal to

k(i)
D = 2si+1 + 1.

Since the analysis of W d
i is symmetrical to the analysis of W a

i , we just specify
the elements of Q(i)

D .

• Machine breakdowns

Q(i)
D (u( j),u( j − 1)) = jλi+1, j = 1, . . . , si+1.
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Exponential Multi-Server Production Lines 479

• Machine repairs

Q(i)
D (u( j),u( j + 1)) = (si+1 − j)μi+1, j = 0, . . . , si+1 − 1,

Q(i)
D (bl( j), bl( j + 1)) = (si+1 − j)μi+1, j = 0, . . . , si+1 − 1.

• Transitions from up to blocked

Q(i)
D (u( j), bl( j)) = θ

(i)
D, j , j = 1, . . . , si+1.

• Transitions from blocked to up

Q(i)
D (bl( j),u( j)) = ψ

(i)
D, j , j = 1, . . . , si+1.

The diagonal elements of Q(i)
D are chosen such that the sum of each row

is equal to zero. The elements of r(i)
D are given by

r(i)
D (u(0)) = 0,

r(i)
D (u( j)) = v(i)

D, j , j = 1, . . . , si+1,

r(i)
D (bl( j)) = 0, j = 1, . . . , si+1,

where v(i)
D, j is defined as the average production speed of W d

i when j servers

are up, j = 1, . . . , si+1. The determination of θ (i)
D, j , ψ

(i)
D, j , and v(i)

D, j is referred
to the next section.

5.2. Steady-State Distribution

In this section, we determine the steady-state distribution of Li . For ease
of notation, we drop the subscript i and superscript (i) referring to the ith
subsystem. We merge the CTMCs of both W a and W d into a new CTMC
describing the phase behavior of the whole subsystem. The tuple of variables
(iA, iD, x) describes the state of the subsystem, where iA ∈ SA is the state (or
phase) of W a , iD ∈ SD is the state of W d , and 0 ≤ x ≤ b is the fluid level of
the buffer. The CTMC describing Li has generator Q and (net) speed vector
r given by

Q = QA ⊗ IkD + IkA ⊗ QD,

r = rA ⊗ 1kD − 1kA ⊗ rD,

where A ⊗ B is the Kronecker product of matrices A and B, In is the identity
matrix of size n and 1n is a column vector of ones of size n. This CTMC has
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480 Fleuren et al.

state space S, where S = SA × SD . In generator Q and (net) speed vector r
these states are ordered lexicographically.

Because of operation-dependent failures, no servers of W a can go down
whenever B is full and W d is in a state with zero-speed. In this situation, it is
also not possible for W a to go starved. Similarly, W d cannot become blocked,
and no servers of W d can go down when W a is in a state with zero-speed and
B is empty. Therefore, we define a “full-buffer” generator QF

A containing the
transition rates of the phase process of W a that apply when B is full and W d

is in a state with zero-speed. So in case B is full and W d is in state u(0) or
bl( j), the transition rates of W a from state u( j) to u( j − 1) and from state
u( j) to s t( j), are set to zero. The other transition rates in QF

A are equal
to those in QA. The full-buffer generator QF , describing the CTMC of the
whole subsystem when buffer B is full, is given by

QF = QF
A ⊗ ĨkD + QA ⊗ (IkD − ĨkD ) + INA ⊗ QD,

where the jth diagonal element of the diagonal matrix ĨkD is 1 if rD, j = 0 and
0 otherwise. Further, we define an “empty-buffer” generator QE

D containing
transition rates of W d that apply when W a is in a state with zero-speed and B
is empty. So in case B is empty and W a is in state u(0) or s t( j) the transition
rates of W d from states u( j) to u( j − 1) and from u( j) to s t( j) are set to
zero. The other transition rates in QE

D are the same as those in QD. Hence, the
empty-buffer generator QE , describing the CTMC of the whole subsystem
when buffer B is empty, is given by

QE = QA ⊗ IkD + ĨkA ⊗ QE
D + (IkA − ĨkA) ⊗ QD,

where the jth diagonal element of the diagonal matrix ĨkA is 1 if rA, j = 0 and
0 otherwise.

We define Fi (x) as the probability that the phase process is in state i ∈ S,
and the buffer level is less than or equal to x, 0 ≤ x ≤ b . This probability is
also referred to as the cumulative density function of subsystem L.

We determine these cumulative density functions using the numerically
stable matrix-analytic methods for fluid models developed in Refs.[10,9]; see
also Chapter 2 in Ref.[1].

5.3. Update Parameters

In this section, we update the parameters for the downstream arrival
workstation and for the upstream departure workstation. More specifically,
for W a

i+1 we update the rate from up to starved (θ (i+1)
A, j ), the rate from starved

to up (ψ(i+1)
A, j ), and the average speed (v(i+1)

A, j ) for j = 1, . . . , si+1. For W d
i−1,

we update the transition rate from up to blocked (θ (i−1)
D, j ), the rate from
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Exponential Multi-Server Production Lines 481

blocked to up (ψ(i−1)
D, j ), and the production speed (v(i−1)

D, j ) for j = 1, . . . , si .
We introduce the following variables, all obtained from the cumulative den-
sity function of Li :

• π (i)
kA,kD

: the probability that W a
i is in state kA ∈ S(i)

A and W d
i is in state kD ∈ S(i)

D .
• p (i)

kA,kD
(0) and p (i)

kA,kD
(b): boundary probabilities at the levels 0 and b. The

subscript (kA, kD) indicates that W a
i is in state kA ∈ S(i)

A and W d
i is in state

kD ∈ S(i)
D .

• f (i)
kA,kD

(0) and f (i)
kA,kD

(b): the value of the probability density function (pdf)
at the levels 0 and b for state kA ∈ S(i)

A and kD ∈ S(i)
D .

5.3.1. Update Arrival Workstation W a
i+1

Note that arrival workstation W a
i+1 corresponds to workstation W d

i . Start-
ing with θ (i+1)

A, j , we argue that W a
i+1 can go from up to starved in two different

ways:

(i) First, W a
i is not producing (i.e., starved or down), W d

i is up and Bi is
non-empty. This means that W d

i drains the buffer until finally it happens
that Bi becomes empty, and thus W a

i+1 gets starved.
(ii) First, W a

i and W d
i are both up and Bi is empty. Then W a

i stops producing,
and simultaneously W a

i+1 gets starved.

The probability that Bi becomes empty in a small time interval dt when
W a

i is in a zero-speed state k and W d
i is draining the buffer at a speed vD, j (i)

is given by f (i)
k,u( j)(0)v(i)

D, j dt . Dividing by dt and summing over all zero-speed
states k ∈ Sa

i , the frequency of occurrence of type-(i) jumps per time unit is
given by

f (i)
u(0),u( j)(0)v(i)

D, j +
si∑

k=1

f (i)
s t(k),u( j)(0)v(i)

D, j .

Type-(ii) jumps occur at a rate of Q (i)
A (u(1),u(0)) + Q (i)

A (u(1), s t(1)) if
one server of W a

i is up and Bi is empty (w.p. p (i)
u(1),u( j)(0)) and at a rate

of Q (i)
A (u(k), s t(k)) if k = 2, . . . , si servers are up and Bi is empty (w.p.

p (i)
u(k),u( j)(0)). Together, the number of type-(ii) jumps per time unit is given

by

p (i)
u(1),u( j)(0)Q (i)

A (u(1),u(0)) +
si∑

k=1

p (i)
u(k),u( j)(0)Q (i)

A (u(k), s t(k)).
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482 Fleuren et al.

Conditioning on the fact that j servers of W d
i (or equivalently, W a

i+1) are up
and W d

i is producing, we obtain the transition rate from up to starved

θ
(i+1)
A, j = f (i)

u(0),u( j)(0)v(i)
D, j + ∑si

k=1 f (i)
s t(k),u( j)(0)v(i)

D, j∑si
k=0 π

(i)
u(k),u( j) − p (i)

u(0),u( j)(0) + ∑si
k=1(π (i)

s t(k),u( j) − p (i)
s t(k),u( j)(0))

+ p (i)
u(1),u( j)(0)Q (i)

A (u(1),u(0)) + ∑si
k=1 p (i)

u(k),u( j)(0)Q (i)
A (u(k), s t(k))∑si

k=0 π
(i)
u(k),u( j) − p (i)

u(0),u( j)(0) + ∑si
k=1(π (i)

s t(k),u( j) − p (i)
s t(k),u( j)(0))

.

Next, we determine rate ψ
(i+1)
A, j at which W a

i+1 goes from starved
to up for j = 1, . . . , si+1. If W a

i+1 is in state s t( j), W a
i+1 goes up with

rate Q (i)
A (u(0),u(1)) if all servers of workstation W a

i are down (w.p.
p (i)

u(0),u( j)(0)

p (i)
u(0),u( j)(0)+∑si

k=1 p (i)
s t(k),u( j)(0)

) and with rate Q (i)
A (s t(k),u(k)) if W a

i is also starved

and k = 1, . . . , si servers of W a
i are up (w.p.

p (i)
s t(k),u( j)(0)

p (i)
u(0),u( j)(0)+∑si

k=1 p (i)
s t(k),u( j)(0)

). To-

gether, the rate of transitions from starved to up of W a
i+1, when j servers are

up, is given by

ψ
(i+1)
A, j

= p (i)
u(0),u( j)(0)Q (i)

A (u(0),u(1)) + ∑si
k=1 p (i)

s t(k),u( j)(0)Q (i)
A (s t(k),u(k))

p (i)
u(0),u( j)(0) + ∑si

k=1 p (i)
s t(k),u( j)(0)

.

Next, we determine the average production speed v(i+1)
A, j at which W a

i+1
produces when j servers are up. When Bi is nonempty, W a

i+1 produces at
a speed of j vi+1/si+1. If Bi is empty and k servers of W a

i are active and
producing, W a

i+1 lowers its speed to v(i)
A,k . Thus, the average speed v(i+1)

A, j is
given by

v(i+1)
A, j = j vi+1/si+1

+
∑si

k=1 p (i)
u(k),u( j)(0)(v(i)

A,k − j vi+1/si )∑si
k=0 π

(i)
u(k),u( j) − p (i)

u(0),u( j)(0) + ∑si
k=1(π (i)

s t(k),u( j) − p (i)
s t(k),u( j)(0))

.

(1)

This concludes step 1(d) of the iterative algorithm.
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Exponential Multi-Server Production Lines 483

5.3.2. Update departure workstation W d
i−1

Since the parameters for W d
i−1 are determined along the same lines as

the parameters of W a
i+1, we just provide the resulting expressions:

θ
(i−1)
D, j = f (i)

u( j),u(0)(b)v(i)
A, j + ∑si+1

k=1 f (i)
u( j),bl(k)(b)v(i)

A, j∑si+1
k=0 π

(i)
u( j),u(k) − p (i)

u( j),u(0)(b) + ∑si+1
k=1(π (i)

u( j),bl(k) − p (i)
u( j),bl(k)(b))

,

+ p (i)
u( j),u(1)(b)Q (i)

D (u(1),u(0)) + ∑si+1
k=1 p (i)

u( j),u(k)(b)Q (i)
D (u(k), bl(k))∑si+1

k=0 π
(i)
u( j),u(k) − p (i)

u( j),u(0)(b) + ∑si+1
k=1(π (i)

u( j),bl(k) − p (i)
u( j),bl(k)(b))

ψ
(i−1)
D, j = p (i)

u( j),u(0)(b)Q (i)
D (u(0),u(1)) + ∑si+1

k=1 p (i)
u( j),bl(k)(b)Q (i)

D (bl(k),u(k))

p (i)
u( j),u(0)(b) + ∑si+1

k=1 p (i)
u( j),bl(k)(b)

,

v(i−1)
D, j = j vi/si

+
∑si+1

k=1 p (i)
u( j),u(k)(b)(v(i)

D,k − j vi/si )∑si+1
k=0 π

(i)
u( j),u(k) − p (i)

u( j),u(0)(b) + ∑si+1
k=1(π (i)

u( j),bl(k) − p (i)
u( j),bl(k)(b))

.

This concludes step 2(d) of the iterative algorithm. The next section is
devoted to the conservation of flow equation.

5.4. Conservation of Flow

Conservation of flow is not always satisfied when using the iterative
method of Section 4. This means that the throughput estimates are not
equal for all subsystems, when all parameters have converged. Therefore,
after convergence of the parameters, we include a conservation of flow equa-
tion assuring that all throughput estimates converge to the same value, i.e.,
t(1) = · · · = t(N −1). So we proceed the iteration, now with the conservation of
flow equation, until all throughput estimates have converged (to the same
value). In this section, we explain the implementation of the conservation of
flow equation. We note that use of consistency equations, such as conserva-
tion of flow, is common in decomposition methods; cf. Refs.[17,12]. Surpris-
ingly, for the iterative methods in Ref.[2,3], developed for single-server fluid
flow production lines, it seems that conservation of flow is always satisfied,
also without the inclusion of a conservation of flow equation.

Conservation of flow will be imposed by scaling both speeds v(i+1)
A, j of the

arrival workstation (in step 1) and speeds v(i−1)
D, j of the departure workstation
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484 Fleuren et al.

(in step 2) to match the average throughput over all subsystems. To this end,
we add step 1(e) and step 2(e) to the iterative method in Section 4.

In step 1(e) we scale the speeds v(i+1)
A, j calculated in step 1(d). Note that

by scaling we change only the magnitude of speeds and not the shape of the
speed profile. Let ṽ(i+1)

A, j denote the new estimate of the speed of the arrival
workstation of subsystem Li+1, i = 1, . . . ,N − 2 when j servers are up. This
speed is related to v(i+1)

A, j as follows:

ṽ(i+1)
A, j = z(i+1)

A v(i+1)
A, j , j = 1, . . . , si+1.

The throughput of subsystem Li+1, i = 1, . . . ,N − 2 is given by

t(i+1) =
si+1∑
j=1

∑
kD∈S(i+1)

D

(
π

(i+1)
u( j),kD

− p (i+1)
u( j),kD

(b)
)

v(i+1)
A, j +

si+1∑
j=1

si+2∑
k=1

p (i+1)
u( j),u(k)(b)v(i+1)

D,k .

(2)
We now replace throughput t(i+1) by the average throughput obtained in
step 2 of the previous iteration n − 1, i.e., tn−1,2 = 1

N −1

∑N −1
i=1 t(i)

n−1,2, and we

scale the speeds v(i+1)
A, j , such that (2) is again satisfied. Thus,

z(i+1)
A = tn−1,2 − ∑si+1

j=1

∑si+2
k=1 p (i+1)

u( j),u(k)(b)v(i+1)
D,k∑si+1

j=1

∑
kD∈S(i+1)

D

(
π

(i+1)
u( j),kD

− p (i+1)
u( j),kD

(b)
)

v(i+1)
A, j

, (3)

where we use the most recent estimates for π (i+1)
u( j),kD

, p (i+1)
u( j),u(k)(b), v(i+1)

A, j and

v(i+1)
D,k .

Similarly, in step 2(e) we scale the speeds v(i−1)
D, j calculated in step 2(d).

Let ṽ(i−1)
D, j denote the new estimate of the speed of the departure workstation

subsystem Li−1, i = 2, . . . ,N − 1 when j servers are up. This speed is then
related to v(i−1)

D, j as follows:

ṽ(i−1)
D, j = z(i−1)

D v(i−1)
D, j , j = 1, . . . , si−1.

The throughput of subsystem Li−1, i = 2, . . . ,N − 1 is given by

t(i−1) =
∑

jA∈S(i−1)
A

si∑
k=1

(
π

(i−1)
jA,u(k) − p (i−1)

jA,u(k)(0)
)

v(i−1)
D,k +

si−1∑
j=1

si∑
k=1

p (i−1)
u( j),u(k)(0)v(i−1)

A, j .

(4)
Again, we now replace throughput t(i−1) with the average throughput
obtained in step 1 of the current iteration n, i.e., we replace t(i−1) by
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Exponential Multi-Server Production Lines 485

tn,1 = 1
N −1

∑N −1
i=1 t(i)

n,1, and we scale the speeds v(i−1)
D, j , such that (4) is satis-

fied. Thus,

z(i−1)
D = tn,1 − ∑si−1

j=1

∑si
k=1 p (i−1)

u( j),u(k)(0)v(i−1)
A, j∑

jA∈S(i−1)
A

∑si
k=1

(
π

(i−1)
jA,u(k) − p (i−1)

jA,u(k)(0)
)

v(i−1)
D,k

, (5)

where we use the most recent estimates for π (i−1)
jA,u(k), p (i−1)

u( j),u(k)(0), v(i−1)
A, j and

v(i−1)
D,k .

6. RESULTS

In this section we test the quality of the proposed approximation method
for multi-server production lines. First, we test the method on a large test
set, then we compare it to other approximation methods from the literature.
Second, we perform a sensitivity analysis for the application mentioned in
Section 2.

6.1. Test Set

The performance of the approximation method is tested on a large test
set, in which six parameters are varied: the number of workstations in the
line, mean uptimes, mean downtimes, the number of servers per workstation,
the maximum speeds per workstation, and buffer sizes. Table 2 provides
the different settings for each parameter. The test set includes imbalance in
mean uptimes, mean downtimes, machine speeds, and number of servers per
workstation. The maximum speed of a workstation is defined as the number
of servers of that workstation times the speed per server. We consider three
different setups for the maximum workstation speeds: a homogeneous setup
(all workstations produce at equal speeds), an alternating speed setup (all
odd workstations produce at speed 10 and all even ones produce at speed
15), and a V-shape setup, where the first and last workstation are the fastest,

TABLE 2 Input parameter values of the test set

Input parameter Values

Number of workstations 4, 6, 8
Mean uptimes {5,5,5,5,...}, {5,2.5,5,2.5,...}, {10,10,10,10,...}, {10,5,10,5,...},

{20,20,20,20,...}, {20,10,20,10,...}
Mean downtimes {0.5,0.5,0.5,0.5,...}, {0.5,0.25,0.5,0.25,...}, {1,1,1,1,...},

{1,0.5,1,0.5,...}, {2,2,2,2,...}, {2,1,2,1,...}, {4,4,4,4,...}, {4,2,4,2,...}
Number of servers per workstation {2,2,2,2,...}, {3,2,3,2,...}, {3,3,3,3,...}, {5,3,5,3,...}, {5,5,5,5,...}
Workstation maximum speeds {10,10,10,10,...}, {15,10,15,10,...}, {15,...,10,...,15}
Buffer sizes {1,1,1,1,...}, {5,5,5,5,...}, {10,10,10,10,...}, {25,25,25,25,...}
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486 Fleuren et al.

TABLE 3 Results for production lines of different lengths

Error (%) in Error (%) in
Line the throughput avg. buffer content

length Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

4 2.69 57 19 11 5 3 4 5.08 44 14 11 7 6 18
6 4.64 43 15 12 9 6 14 5.03 47 17 9 5 4 17
8 5.86 37 15 11 9 8 20 5.68 42 20 9 6 5 19

speeds decrease linearly in the first part of the production line, and speeds
increase linearly in the second part of the production line. By making all
possible combinations of parameter settings in Table 2, we obtain a test set
of 3 × 6 ×8 × 5 × 3 × 4 = 8,640 cases.

To test the quality of the method, we focus on two variables: throughput
and average total buffer content. We compare the quantities obtained from
the approximation method to those of a discrete-event simulation model,
the 95 %confidence intervals of which have a width of at most 0.5%. Tables
3–8 show the results of this comparison. The columns “Avg” provide the
average (absolute) relative error over all cases that satisfy the property in the
first column. For instance, the 2.50% in Table 3 is the average error for all
cases with 4 workstations in the line. The columns “0–2,” “2–4,” “4–6,” “6–8,”
“8–10,” and “>10,” provide the percentage of cases satisfying the property
in the first column that fall into the specified error range.

The approximation method typically overestimates the throughput: in
approximately 96.3% of the cases, the throughput estimates exceed the
throughput values obtained by simulation. This effect may be understood
by the following example. Consider a four-workstation production line with
three servers per workstation. The speed of each server is 5. We decompose
the line into subsystems L1, L2, and L3 as illustrated in Figure 3. When
looking at the arrival server of subsystem L2, one of the parameters is v(2)

A,3,
the average speed at which workstation A2 produces when all three servers
are up. In reality, W a

2 can have three possible speeds when all servers are up:
15 when B1 is nonempty or when B1 is empty and all three servers of W1 are
up, 10 when B1 is empty and two servers of W1 are up, and 5 when B1 is empty
and one server of W1 is up. In the iterative algorithm, we calculate v(2)

A,3 using
equation (1), which is a weighted average over the three possible speeds.
Aggregating these speeds into a single value (thus making it less variable)
leads to overestimates. It is possible to not aggregate these speeds, but then
the state space explodes for longer production lines.

Table 3 shows that, not surprisingly, the most accurate throughput esti-
mates are obtained for shorter lines. The error in average total buffer content
seems to be less sensitive to the number of workstations in the line. Tables
4 and 5 show that the errors in throughput increase as the mean uptimes
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Exponential Multi-Server Production Lines 487

TABLE 4 Results for production lines with different mean uptimes

Error (%) in Error (%) in
Mean the throughput avg. buffer content

uptimes Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

5.00,2.50,5.00,2.50,... 5.82 34 17 13 10 7 19 3.33 49 24 11 5 3 7
5.00,5.00,5.00,5.00,... 5.14 38 17 12 9 8 15 3.96 50 18 11 6 5 11
10.00,5.00,10.00,5.00,... 4.94 42 16 12 8 7 15 4.50 44 21 11 6 5 14
10.00,10.00,10.00,10.00,... 4.01 48 17 11 7 6 11 5.68 45 13 9 6 6 21
20.00,10.00,20.00,10.00,... 3.67 53 16 10 7 4 10 6.25 38 17 9 7 6 24
20.00,20.00,20.00,20.00,... 2.79 60 16 8 5 4 6 7.87 41 11 6 5 6 31

decrease or the mean downtimes increase. In these cases, workstations have
to adjust their speeds more frequently, and so, by following the arguments
in the previous paragraph, larger errors (overestimates) in throughput can
be expected. Table 6 does not show a clear relation between errors in perfor-
mance estimates and the number of servers per workstation. Table 7 shows
that the estimates for production lines with a Vshape speed set-up perform
are significantly better than for production lines with a homogeneous or
alternating speed profile. The conclusion from Table 8 is clear: the larger
the buffer, the smaller the errors. In production lines with small buffers, the
effect of starvation, blocking and speed adaptation is larger, yielding larger
errors in performance estimates.

6.2. Comparison

In this section, we compare the current approximation method to exist-
ing ones from the literature. The approximation method in Ref.[5] is able to
analyze production lines with multiple up- and multiple down-states in each

TABLE 5 Results for production lines with different mean downtimes

Error (%) in Error (%) in
Mean the throughput avg. buffer content

downtimes Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

0.50,0.25,0.50,0.25,... 0.84 87 8 3 1 0 0 8.25 48 9 4 2 3 34
0.50,0.50,0.50,0.50,... 1.70 73 14 6 3 2 2 6.56 44 15 5 3 4 29
1.00,0.50,1.00,0.50,... 2.11 67 16 8 4 2 3 5.90 51 7 6 6 5 24
1.00,1.00,1.00,1.00,... 3.61 45 22 12 7 6 8 4.98 46 18 7 5 6 18
2.00,1.00,2.00,1.00,... 4.22 37 22 15 10 6 10 4.59 49 13 10 7 7 15
2.00,2.00,2.00,2.00,... 6.20 22 18 16 13 11 20 3.71 47 25 10 6 4 8
4.00,2.00,4.00,2.00,... 7.02 19 17 16 13 10 24 4.53 32 23 18 11 6 9
4.00,4.00,4.00,4.00,... 9.48 16 14 12 10 11 36 3.60 40 26 16 7 4 6
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488 Fleuren et al.

TABLE 6 Results for production lines with different number of servers per workstation

Error (%) in Error (%) in
Number of the throughput avg. buffer content

servers Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

2.00,2.00,2.00,2.00,... 4.80 35 17 14 10 9 14 4.82 46 16 9 7 6 16
3.00,2.00,3.00,2.00,... 3.67 46 20 12 8 6 8 5.33 47 14 10 6 4 19
3.00,3.00,3.00,3.00,... 5.86 41 14 10 7 6 21 5.57 38 20 11 6 6 19
5.00,3.00,5.00,3.00,... 3.02 55 18 10 7 5 6 5.08 49 17 7 5 4 18
5.00,5.00,5.00,5.00,... 4.64 52 14 9 6 4 15 5.53 42 18 10 6 4 19

workstation. This includes multi-server lines. Memory (and also time) com-
plexity of this method, however, is more demanding than for the current
method. This is due to the level of detail at which subsystems are modeled:
the approximation method in Ref.[5] employs detailed subsystem models
with a large state space, whereas the current method uses aggregation to
reduce the size of the state space. To explain the difference in the size of the
state space, recall from Sections 5.1 and 5.2 that the number of states k(i) of
subsystem i = 1, ...,N − 1 is given by

k(i) = k(i)
A k(i)

D ,

where

k(i)
A = 2si + 1,

k(i)
D = 2si+1 + 1.

The state space of the subsystem model in Ref.[5] is larger: For W a
i or W d

i
having to adjust their speed, they need to keep track of which workstation
causes this speed reduction and how many servers of this workstation are

TABLE 7 Results for production lines with different maximum workstation speeds

Error (%) in Error (%) in
Number of the throughput avg. buffer content

servers Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

10.00,10.00,10.00,10.00,... 5.19 36 20 13 9 6 16 3.53 47 28 10 5 3 7
15.00,10.00,15.00,10.00,... 5.86 31 18 14 10 9 19 10.75 10 12 12 10 11 46
15.00,...,10.00,...,15.00 2.14 71 12 6 4 3 4 1.52 77 12 6 3 1 1
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TABLE 8 Results for production lines with different buffer sizes

Error (%) in Error (%) in
Buffer the throughput avg. buffer content

sizes Avg. 0–2 2–4 4–6 6–8 8–10 >10 Avg. 0–2 2–4 4–6 6–8 8–10 >10

1 7.40 22 16 13 11 9 27 7.44 29 16 12 9 7 27
5 4.79 40 18 12 8 7 14 4.27 48 19 8 6 6 14
10 3.44 52 17 11 7 5 8 4.16 51 17 10 5 5 13
25 1.96 68 15 8 4 2 2 5.19 50 17 8 4 3 18

active and producing. For this model, k(i)
A and k(i)

D are given by

r clk(i)
A = 1 + si +

i−1∑
l=1

⎛
⎝1 +

si∑
j=1

sl∑
j ′=1

xl, j, j ′

⎞
⎠ ,

k(i)
D = 1 + si+1 +

N∑
l=i+2

⎛
⎝1 +

si+1∑
j=1

sl∑
j ′=1

yl, j, j ′

⎞
⎠ ,

where

xl, j, j ′ =
{

1 if j vi > j ′vl

0 otherwise

yl, j, j ′ =
{

1 if j vi+1 > j ′vl

0 otherwise

TABLE 9 Parameters for test cases

Maximum
Mean Mean Number of workstation Buffer

Case uptimes downtimes servers speeds sizes

1 (100,100,100) (10,10,10) (1,2,1) (1,2,1) (10,10)
2 (100,100,100) (10,10,10) (1,2,1) (1,1,1) (10,10)
3 (100,8.33,100) (10,10,10) (1,2,1) (1,2,1) (10,10)
4 (100,100,100) (10,10,10) (1,5,1) (1,5,1) (10,10)
5 (100,100,100) (10,10,10) (1,5,1) (1,1,1) (10,10)
6 (100,100,100) (10,10,10) (1,2,1) (1,2,1) (1,1)
7 (100,100,100) (10,10,10) (1,2,1) (1,1,1) (1,1)
8 (100,8.33,100) (10,10,10) (1,2,1) (1,2,1) (1,1)
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490 Fleuren et al.

TABLE 10 Throughput results for test cases in Table 9

Current method PW-method Bur-method CG-method

Case Sim App Dif Sim App Dif App Dif App Dif

1 0.8695 0.8795 1.04% 0.872 0.863 −1.03% 0.861 −1.26% 0.8740 0.23%
2 0.8287 0.8295 0.10% 0.830 0.832 0.24% 0.830 0.00% 0.8300 0.00%
3 0.7429 0.7443 0.19% 0.756 0.680 −10.05% 0.728 −3.70% 0.7528 −0.42%
4 0.8712 0.8808 1.10% 0.884 0.873 −1.24% — — 0.8758 −0.93%
5 0.8339 0.8345 0.07% 0.847 0.838 −1.06% — — 0.8381 −1.05%
6 0.8353 0.8360 0.08% 0.838 — — 0.811 −3.22% 0.8376 −0.05%
7 0.7748 0.7750 0.03% 0.781 — — 0.778 −0.38% 0.7793 −0.21%
8 0.6432 0.6432 0.00% 0.676 — — 0.590 −12.72% 0.6710 −0.74%

For instance, for the eight-workstation production line from the previous sec-
tion, with 5 servers per workstation and an alternating speed setup, the num-
ber of states of subsystem L4 is 121 for the current approximation method
and 2,745 in Ref.[5].

We compare the current approximation method in terms of accuracy
with three other methods from the literature[20,4,5]. We test all four methods
on eight three-workstation cases, in which the second workstation is multi-
server. Table 9 provides the input parameters for the test cases. Cases 1–5 in
Table 9 are cases 1, 3, 5, 7, and 9 reported in Ref.[20], and cases 6–8 in Table 9
are cases 46, 52, and 58 reported in Ref.[4]. Note that in these cases, only the
buffer sizes and the parameters for the second workstation are varied, the
other parameters are kept constant. It should be mentioned that the current
method applies to a model that is slightly different from the one considered
in Refs.[20,4,5]: it is assumed in Refs.[20,4,5] that the exponential rates of the
uptimes are adapted proportionally to changes in the machine speed, whereas
we assume that these rates are independent of the machine speed. So we
compare the results of the current method to simulation results of the model
with parameters as in Table 9, but with uptimes being independent of the
machines speeds. For each case, the number of simulation runs is chosen
such that the width of the 95% confidence intervals of the performance
measures is less than 0.5%.

TABLE 11 Sensitivity analysis for the production line of Section 2

Mean uptime ×2 Mean downtime ÷2 Speeds +10% Buffers +25

W1 1.12% 1.67% 0.03% 0.23%
W2 0.86% 0.75% 0.76% 0.33%
W3 1.94% 1.97% 5.25% 0.32%
W4 0.71% 0.98% 0.27% 0.20%
W5 1.10% 1.24% 0.00% 0.10%
W6 0.22% 0.62% 0.00% —

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

3:
33

 3
0 

Ja
nu

ar
y 

20
15

 



Exponential Multi-Server Production Lines 491

TABLE 12 Comparison of the throughput estimates obtained from the approximation method to a
discrete-event simulation model for the production line of Section 2

Mean uptime ×2 Mean downtime ÷2 Speed +10% Buffer +25

Sim App Dif Sim App Dif Sim App Dif Sim App Dif

— 21.94 22.07 0.59% 21.94 22.07 0.59% 21.94 22.07 0.59% 21.94 22.07 0.59%
W1 22.23 22.31 0.36% 22.34 22.44 0.41% 22.00 22.07 0.34% 21.99 22.12 0.59%
W2 22.16 22.26 0.46% 22.22 22.23 0.05% 22.11 22.24 0.58% 22.00 22.14 0.61%
W3 22.36 22.49 0.58% 22.37 22.50 0.60% 22.87 23.23 1.54% 22.01 22.14 0.58%
W4 22.11 22.22 0.53% 22.17 22.28 0.53% 21.97 22.13 0.71% 21.99 22.11 0.54%
W5 22.20 22.31 0.48% 22.24 22.34 0.45% 21.95 22.07 0.52% 21.98 22.09 0.52%
W6 22.01 22.12 0.47% 22.05 22.20 0.71% 21.95 22.07 0.54% — — —

In Table 10, “PW-method” shows the results from Ref.[20], “Bur-method”
is the approximation method in Ref.[4], and “CG-method” is the method
in Ref.[5]. The columns “Sim” show the throughput obtained by simulation,
“App” is the approximate throughput, and “Dif” is the relative difference
between the approximation and simulation of the throughput. The results
show that the current method performs overall better than the PW-method
and the Bur-method, and its performance is similar to that of the CG-method.

6.3. Application

In this section we perform a sensitivity analysis of the production line
of Section 2. Table 11 provides the results of this sensitivity analysis, and it
is based on throughput estimates obtained by the approximation method.
The columns list the change in throughput when doubling the mean up-
time, dividing the mean downtime by two, increasing the speed by 10%,
and increasing the size of the downstream buffer by 25 products, for each
of the workstations (one at a time). The rows indicate which workstation is
changed. The sensitivity analysis indicates that workstation W3 is the bottle-
neck: changing its parameters seems to have the strongest impact on the
throughput.

In Table 12, we compare the throughput estimates of the approximation
method to those of a discrete-event simulation model, the 95%confidence
intervals of which have a width of at most 0.5%. The extra row (−) is the
reference case with no change in workstation (or buffer). The columns
“Sim” list the throughput obtained by simulation, “App” is the approxi-
mate throughput, and “Dif” is the relative difference between the approx-
imation and simulation of the throughput. The errors are in the order
of 1%.
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492 Fleuren et al.

7. CONCLUDING REMARKS

In this article, we construct an approximation method for multi-server
production lines with finite buffers and exponential up- and downtimes. The
distinguishing feature of this method is the use of aggregation: this is crucial
to keep the subsystem models manageable. The approximation shows an
overall good performance on a broad test set. More specifically, it seems to
perform better for short production lines, for production lines having small
downtimes with respect to the uptimes, and for production lines with larger
buffers.
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16. Di Mascolo, M. Méthode analytique dévaluation des performances dune ligne dassemblage. Rapport

de DEA, Laboratoire dAutomatique de Grenoble, 1988.
17. Gershwin, S. An efficient decomposition algorithm for the approximate evaluation of tandem queues

with finite storage space and blocking. Oper. Res., 1987, 35, 291–305.
18. Levantesi, R.; Matta, A.; Tolio, T. Performance evaluation of continuous production lines with

machines having different processing times and multiple failure modes. Perf. Eval., 2003, 51, 247–268.
19. Liu, X.; Buzacott, J.; Approximate models of assembly systems with finite banks. Eur. J. Oper. Res.,

1990, 45, 143–154.
20. Patchong, A.; Willaeys, D. Modeling and analysis of an unreliable flow line composed of parallel-

machine stages. IIE Transactions, 2001, 33, 559–568.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

3:
33

 3
0 

Ja
nu

ar
y 

20
15

 



Exponential Multi-Server Production Lines 493

21. Ramaswami, V. Matrix analytic methods for stochastic fluid flows. Teletraffic Engineering in a Competitive
World (Proceedings of the 16th International Teletraffic Congress), Elsevier Science, B.V., EdinburghUK,
1019–1023, 1999.

22. Tan, B.; Yeralan, S. A decomposition model for continuous materials flow production systems. Int. J.
Prod. Res., 1997, 3, 2759–2772.

23. Xie, X.-L. An efficient algorithm for performance analysis of transfer lines and its convergence.
Working paper, INRIA-Lorraine, France, 1989.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

3:
33

 3
0 

Ja
nu

ar
y 

20
15

 


