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Chapter 1

Introduction

“An ounce of prevention is worth a pound of
cure.”

Benjamin Franklin



2 Chapter 1

1.1 Definition of Failures and Maintenance Actions
under Various Maintenance Policies

When a system or component is unable to deliver its satisfactory function, we define
this undesirable situation as a failure [26]. In practice, two types of failures can be
recognized: hard failure and soft failure [36, 50]. When a component stops functioning
or the system breaks down, such a failure is a hard failure. For example, power outage
due to a short circuit can lead to the complete down of a production system. When a
system or component can continue its operation with a lower performance compared
with its normal standard, such a failure is a soft failure. For example, a worn bearing
connecting to the main shaft in a wind turbine will reduce the efficiency of energy
generation, while the wind turbine is still operating. This lower performance results
in a loss in terms of revenue generation, which we may also see as quality loss costs.

To restore a failed system or component to its satisfactory performance level, a
relatively expensive corrective maintenance (CM) action is taken, which also results
in unplanned downtime. Instead of waiting for failures to happen and taking CM
actions, a more proactive approach is to take preventive maintenance (PM) actions
before failures happen, which is often cheaper than taking CM actions. However, the
drawback of a PM action is that components are replaced earlier than their actual
failure time. In this case, only part of their life durations is utilized and remaining
useful lifetimes of components are wasted. To avoid high wastes of remaining useful
lifetimes, the actual degradations of components should be monitored. According to
the actual conditions of the degradation, also known as condition-based maintenance
policies, one can take PM actions at much later moments than in the situation of
age-based maintenance policies, so that less remaining useful lifetimes are wasted.
The details of age-based and condition-based maintenance policies are described in
Subsection 1.3.

1.2 Maintenance Costs and Service Contracts in the
High-Tech Industry

In this thesis, we focus on the high-tech industry. When the maintenance/downtime
costs of equipments with long life cycles are very high, there is a huge economic
incentive to improve/optimize the maintenance policy [38]. According to the research
in 2006 by Cohen et al. [12], “American business and consumers spend approximately
1 trillion Dollars on the assets they already own”. Hence, original equipment
manufacturers (OEMs) in the high-tech industry consider maintenance and services
in the after-sales market as very important issues.
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Service contracts are often used in the high-tech industry. This means that operators
do not only buy equipments from OEMs, but also packages/contracts covering the
maintenance/services for the long operational period of the equipments. In this
case, the after-sales services can be guaranteed or even regulated in the service
contracts, which can result in high system availability/uptime for the operator.
Under such contracts, OEMs have a stronger motivation to improve the quality of
their products and to optimize the maintenance policy (e.g., by implementing more
advanced preventive maintenance actions and techniques). These service contracts
can lead to win-win results for both OEMs and operators. Hence, it is beneficial to
improve maintenance policies for both OEMs and operators.

High-tech capital goods (e.g., aircraft engines, wind turbines, semiconductor produc-
tion systems, MRI scanners) nowadays have high production efficiencies and long life
times. The common trends of these complex high-tech systems are: (i) the structure
of the system and the dependency between components are very complicated, so that
it becomes harder or even impossible for operators to do quick-and-easy maintenance
by themselves; (ii) it is very expensive when a system is down; (iii) while buying
new systems, operators consider total cost of ownership. During the long exploitation
phases of capital goods, the maintenance costs including downtime and setup costs
are often very high (e.g., twice as high as the purchase price in the case study reported
in Öner et al. [38]). Two types of costs can be very high in the high-tech industry:

• Downtime costs: Because of the high production efficiency of high-tech systems,
interruptions are very costly. Every hour of downtime can easily cause a profit
reduction of many thousands of Euros.

• Setup costs: The fixed cost before taking maintenance actions. For example,
it may be expensive and time-consuming to send maintenance personnel and
equipments to a remote site.

As shown in Table 1.1, these costs happen to different systems in various high-tech
industries.

Compared with notoriously expensive downtime, much less attention is drawn to
the high setup costs for maintenance of these complex high-tech systems. Due to
a large amount of components in the systems, it is often economically beneficial to
perform maintenance actions of multiple components simultaneously. Hence, we focus
on the setup of maintenance actions in this research, which are very expensive in
the high-tech industry. When maintenance actions are taken, a maintenance crew
and equipments have to be sent to the field and the operation of the system is
interrupted. Consequently, a high fixed setup cost is charged for the visited system.
This setup cost refers to a fixed cost that is incurred for a maintenance visit regardless
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Table 1.1 Downtime costs and setup costs in the high-tech industries

Complex systems Downtime costs Setup costs
Wind turbines in
the energy industry

Loss of energy generation Sending maintenance
crews and equipments
to the field by jack-up
vessels or helicopters

Airplanes and
trains in the
transportation
industry

Loss of goodwill, com-
pensations to passengers,
delays on other tracks

Sending airplanes or
trains to the maintenance
depot for repair.

MRI scanners in
the health care in-
dustry

Loss of patients and even
human lives

Sending maintenance
crews and equipments

Micro chips pro-
duction systems

Loss of production time Maintenance crews need
time to enter the clean
room.

what maintenance actions are performed. For a production line, it includes the cost
of sending a maintenance team to the site, stopping the production, resetting the
production environment, etc. For a transportation system (e.g., aircrafts, trains or
trucks), it includes the cost of bringing the system to a maintenance depot/hangar.
These complex high-tech systems consist of large numbers of components. Hence, it is
often economically beneficial to perform maintenance actions of multiple components
simultaneously. If we decide to take a maintenance visit for a single component,
we need to pay such a fixed setup cost per visit. However, if we decide to take a
maintenance visit to conduct the maintenance activities for several components at
one joint maintenance interval, we only have the setup cost once.

Various maintenance policies are proposed to schedule the joint maintenance actions in
multi-component systems, in order to minimize cost. These policies are also different
from one to another, due to different maintenance techniques described in Subsection
1.3.

1.3 Maintenance Policies and Underlying Techniques

Regarding the policies used in maintenance, we distinguish three categories in
our research, i.e., condition-based, age-based (or time-based) and failure-based
maintenance policies. According to Jardine et al. [25], the earliest maintenance
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technique is run-to-failure or failure-based, where a corrective maintenance action
is taken only at each time that a failure happens. Under such a failure-based
maintenance (FBM) policy, the maintenance actions are unplanned and the system
downtime is unscheduled, which may be very expensive. To avoid expensive failures,
preventive maintenance actions are planned either at a certain moment in time or
based on the age of components/ systems. In this case, one can use the life time
distribution to optimize the maintenance policy, which is also known as age-based (or
time-based) maintenance optimization. Compared with a FBM policy, there are more
planned maintenance actions and scheduled system downtimes under an age-based
maintenance (ABM) policy. However, the physical degradation (e.g., temperature of
engine, wearing of a brake) of components/ systems is not considered to determine the
actual health status. The rapid development of advanced sensor and ICT technology
makes the remote acquisition of condition monitoring data less costly. Based on the
condition data, a large amount of unnecessary maintenance tasks can be avoided,
by taking maintenance actions only when the physical degradations of the critical
conditions are evident. This is known as condition-based maintenance (CBM), which
helps to reduce maintenance related costs further [25, 42]. Hence, considerable
attention from researchers has been drawn to study CBM policies.

In a CBM framework, there are several key steps, i.e., data acquisition, data
processing, diagnostics and prognostics. Using the information from prognostics,
maintenance decisions can be optimized to minimize the maintenance costs or
maximize the availability/reliability of systems [25]. The main difference between
the conventional maintenance models and CBM models is the utilization of condition
measurements [42]. In this case, a failure is identified when the degradation level
of a component reaches its failure threshold level. Consequently, an expensive CM
action is triggered. To have cheaper PM actions before its degradation exceeds its
failure threshold level, a control limit (lower than the failure threshold level) on the
degradation of each component is introduced. On one hand, if the control limit is
high, the risk that failures occur will be higher, which is expensive. On the other
hand, if the control limit is low, the component will be maintained much earlier than
necessary, which is also expensive. Due to this trade-off, it is important to determine
the optimal control limit to minimize the maintenance cost at the component level.

Regarding degradation modeling, Si et al. [49] distinguished two types of probability
models of RUL estimation: directly observed CBM models (e.g., regression-based
models [33], Wiener processes [21], Gamma processes [59], Markovian-based models
[27]) and indirectly observed CBM models (e.g., stochastic filtering-based models [63],
covariation-based hazard models [60], hidden Markov models [32]). In this research,
we consider the situation that the degradation data can be observed continuously by
micro-sensors, which is a typical feature of systems in the industry of advance capital
goods. When a specific physics of failures is given by the engineering department
of the companies, a random coefficient model [33] can be used, due to its flexibility
of describing various degradation paths derived from laws of mechanical engineering
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and material science. Alternatively, the Gamma process [59] is a very popular tool
to model the degradation in literature, due to its mathematical properties (e.g.,
memoryless, additive, etc). We use both the random coefficient model and the Gamma
process to model the degradation path in our research (for more details, see Appendix
A).

Our research objective is to develop maintenance optimization models for multi-
component systems based on remotely monitored condition data, which helps to
minimize the average cost rate of the entire systems in a long run.

1.4 Literature Review

In the existing literature on age-based and condition-based maintenance, much
more attention has been paid to single-component problems (blocks A and E in
Table 1.2) than to multi-component problems (blocks B, C and D in Table 1.2)
[11, 17, 25, 37, 42, 51, 61]. As mentioned in our research objective, we focus on
maintenance policies for multi-component systems. According to Wang’s review paper
[61], multi-component maintenance optimization models can be classified as group
maintenance policies and opportunistic maintenance policies (see Table 1.2). Group
maintenance models are often used to cluster components in a system into different
sub groups/coalitions, where joint maintenance actions are taken. In practice, we
also observe that the failures of a few critical components have large impacts in
terms of costs. In this case, the opportunistic maintenance policies are more useful
for synchronizing the maintenance actions of those components, together with the
maintenance actions of the entire systems.

Table 1.2 Categories of literature

Single-component Multi-component
Opportunistic maintenance Group maintenance

Condition-based A B C
(Chapter 3) (Chapter 2)

Age-based D E F
(Chapter 4)

Mixed - - G
(Chapter 5)

For condition-based maintenance for single components (block A in Table 1.2), various
methods are used to model degradation paths. According to Si et al. [49], diverse
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degradation models in the literature can be classified as indirectly observed CBM
models and directly observed CBM models. Regarding the indirectly observed
CBM models, the condition of components/systems are not physical parameters
(e.g., temperature, pressure, etc) that can be observed directly. For example, the
proportional hazard model (PHM) is a popular model that is often used to relate
the system’s condition to the hazard function of a system, so that the maintenance
policies can be optimized with respect to the optimal risk value of the hazard function
[24, 60]. In contrast, the condition in the literature of directly observed CBM models
are physical parameters. Within the directly observed CBM models, the degradation
can be modeled by diverse methods. For monotonic stochastic deteriorations, the
Gamma process is a popular degradation model in the literature [59]. Based on the
Gamma process, the CBM models were developed to have a single-level control limit
[18, 40, 41] or a multi-level control limit [22] under the scenarios of periodic inspection
[40], aperiodic inspection [18, 22] or continuous monitoring [31, 41]. If the physical
degradation is based on the physics of failures, the random coefficient model (RCM)
[33] is a more convenient model to describe degradation formula from mechanical
engineering or law of physics. Based on the RCM model, Wang [62] proposed a CBM
model to determine the optimal control limit and the inspection interval in terms of
cost, downtime and reliability. Gebraeel et al. [21] extended the general degradation
model to estimate the RUL distribution from sensor signals, using a Wiener process
and Bayesian updating. Using this technique, a single-unit replacement problem is
formulated as a Markov decision process to develop a structured replacement policy
[20]. For the degradation process modeled by discrete states, Markovian-based models
are often applied. The optimal replacement policies were derived from observable
Markov processes [27, 34] or the evolution of the hidden states [7, 32]. More CBM
literature can be found in review papers within the area of prognostics [25, 42, 61].

Although many models have been proposed for single-component systems, they
cannot be applied directly for multi-component systems, because one has to deal
with the economic, structural and/or stochastic dependencies among the components
[11, 17, 37, 51]. According to Wang’s review paper [61], the CBM literature for
multi-component systems is classified into block B and C in Table 1.2. Regarding the
group maintenance models in block C, Bouvard et al. [6] converted a condition-based
maintenance problem into a similar age-based maintenance clustering problem [65],
which yielded an optimal schedule with a dynamic maintenance interval. By including
a random failure threshold and imperfect maintenance as an extension of Bouvard et
al., van Horenbeek and Pintelon [58] proposed a dynamic scheduling model, based on
simulation. They also compared their maintenance policy with five different policies,
which shows a significant cost savings. Wijnmalen and Hontelez [64] used a heuristic
algorithm to compute control limits for components in systems under different
discounted scenarios, which is formulated within a Markov decision framework.
Castanier et al. [10] introduced a model to coordinate inspection/replacement of
a two-component system via a Markov renewal process and minimize the long-
run maintenance cost. However, it becomes intractable for extending to systems
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consisting of a large amount of components. Similarly, Barata et al. [2] simulated
the degradation process by Monte Carlo simulation and optimized the control limit of
each component in a two-component series system. To solve large-scale problems for
systems with many components, Marseguerra et al. [35] used Monte Carlo simulation
and Genetic Algorithms. They used a Markov model to define the state transition
probability of the condition degradation and formulate a multi-objective optimization
problem with control limits on the states of components. Alternatively, Tian et al.
proposed two maintenance policies for multi-component systems using a Proportional
Hazard Model [53] and an Artificial Neural Network [52], where the control limits
of components are not based on the degradations of their physical conditions. By
assuming identical components in the system, they [53] studied two-component and
three component systems respectively. The other model [52] optimized the control
limits of failure probabilities based on simulation, where a case study of wind turbines
is performed. Regarding the opportunistic maintenance model in block B in Table
1.2, it is surprising to find that very little attention has been paid on CBM models
in the context of opportunistic maintenance, which also coincides with the findings of
Koochaki et al. [28]. Koochaki et al. studied the cost effectiveness of condition-based
and age-based opportunistic maintenance policy, by considering a three-component
series system via simulation.

Compared with the existing CBM models for multi-component systems, there is more
abundant literature about age/time-based maintenance models for multi-component
systems. Similarly, we use the same classification of Wang’s review paper [61] (see
blocks E and F in Table 1.2).

Regarding the opportunistic maintenance models in block E, many models considered
either scheduled or unscheduled opportunities. For the models with unscheduled
opportunities only, Radner and Jorgenson [45] introduced an (n,N) policy with a
proof of optimality. They distinguished two types of components, 0 and 1, where n is
the age threshold for opportunistic replacements of component 0 when component 1
fails and N is the preventive replacement threshold of component 0 when component
1 is good. Zheng [67] introduced a (T − w, T ) policy. If the ages of components
exceed T , preventive maintenance actions will be taken, which are also considered to
be opportunities to preventively replace other components with their ages between
T − w and T . This policy is similar to the (n,N) policy, but based on renewal
theory. Pham and Wang [43] proposed a (τ, T ) policy. According to this policy, no
preventive maintenance is taken and only minimum repairs are performed on failures
in the period (0, τ ]. In the period (τ, T ], if k components fail, those k components
are replaced and all other components are preventively replaced; if there are less
than k failed components in the system, all components are preventively replaced
at time point T . Moreover, Dagpunar[13] proposed a policy with a control limit
on age, based on assuming opportunity process is Poisson. Similarly, exponentially
distributed times between opportunities were assumed by Dekker and Dijkstra [15].
As a different policy, they proposed a so-called ”one-opportunity-look-ahead” policy;
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namely, one can make a decision on taking either the current opportunity or the
next opportunity after X time units, based upon a marginal cost function and
the distribution of time between maintenance opportunities. For the model with
scheduled opportunities only, Dekker and Smeitink extended this ”one-opportunity-
look-ahead” policy in the context of block replacement. Regarding the literature
including both scheduled and unscheduled opportunities, two models [29, 50] are able
to solve the optimization problem of small-scale systems by simulation. Taghipour
and Banjevic [50] proposed a model that considers both scheduled inspection and non-
scheduled failures of systems as opportunities to perform inspections on soft-failure
components. For hard failure components, preventive maintenance actions are taken
at scheduled inspections depending on their condition. Its objective function in a
finite-horizon setting is evaluated by a simulation algorithm. Similarly, Laggoune et
al. [29] developed a different dynamic clustering model based on simulation. In this
model, preventive maintenance is scheduled at each fixed time point kτ, k ∈ N, and
each component j can be preventively replaced at a multiple of τ , kjτ, kj ∈ N. If
unscheduled system downs occur, a decision on taking the opportunity or not will be
made, according to marginal costs.

Regarding the group maintenance models in block F, we can categorize them in
two types: exact methods and heuristics. The exact methods are often aimed for
the analytical results of optimality and insights, where the numbers of components
in systems are limited. For systems with a large number of components, the exact
models become intractable. In contrast, various heuristics are proposed to solve the
optimization problem for systems with a large number of components. Regarding the
exact methods, the models of Haurie [23] and Ozekici [39] are able to find the exact
optimal solution for small scale systems (e.g., two-component system). For the k -out-
of-n systems, Popova and Wilson [44] provided a (k, T ) policy. This policy suggests
the replacement of all components either at the time of the kth failure or time T ,
whichever occurs first. Close-form results are shown in the case of a three-component
system. A generalized group maintenance policy (T, T + w, k) was introduced [48],
which includes k failures as a decision variable also. In the period (0, T ], this policy
distinguishes two types of failures: i) “minor” failures that will be fixed by minimum
repair and ii) “catastrophic” failures that will be fixed by replacements. In the period
(T, T + w], if k “catastrophic” failures happen, all components are jointly replaced;
otherwise, this joint maintenance will be delayed till T +w. To reduce the complexity
of the large-scale optimization problem, Dekker and Wildeman [17, 65] developed a
maintenance clustering method to coordinate maintenance tasks at the system level,
considering the penalty cost of deviating with the maintenance schedule from the
optimal maintenance interval of individual components. By assuming the expected
deterioration cost function based on a Weibull process, they proved the structure
of their clustering policy is optimal. As alternatives to reduce the computational
complexity, various heuristics were proposed [1, 55, 56]. Van der Duyn Schouten and
Vanneste developed a model for systems consisting of M identical components [55].
The accuracy of approximate results was validated via comparison with simulation. In
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the work of van Dijkhuizen and van Harten [56], a greedy-heuristic with a branch and
bound procedure was proposed. Based on 100 randomly generated test problem with
10 set-up and 30 maintenance jobs, the heuristic was able to find the optimal solutions
in 47 out 100 tests. The average computation time was in terns of seconds. Moreover,
as the extension of block replacement policy, Berg and Epstein [4] introduced a (b, t)
model, where t is the fixed maintenance interval and b is a control limit in terms of
age. At each point nt, n ∈ N, preventive maintenance is performed on the components
whose ages are larger than b. A heuristic was also developed to extend the (b, t) model
for multi-component systems [1].

To sum up, there is much less literature at the multi-component level on condition-
based maintenance (block B and C) than on age/time-based maintenance models
(block E and F). To the best of our knowledge, there is no literature considering a
system that consists of a large number of components with a mixture of CBM, ABM
and FBM policies (block G).

1.5 Contribution and Structure of the Thesis

The overall position of this entire research is pinpointed in Table 1.2. To optimize
maintenance policies of different complex systems with different features, we devel-
oped four models [68, 69, 70, 71] in four chapters respectively. In this section, the
difference and connection with our models are described. Each model has its unique
scientific contribution, which is briefly explained. The more detailed comparison with
its relevant literature for each model is elaborated in the introduction of each chapter
(see Sections 2.1, 3.1, 4.1 and 5.1).

According to the classification of Wang’s review paper [61], our research outcomes
are two group maintenance models for multi-component systems (see Chapter 2 and
5) and two opportunistic maintenance models (see Chapter 3 and 4). To develop
the model in Chapter 5, we develop these two opportunistic maintenance models for
a single component in a multi-component system as building blocks (see Chapter 3
and 4). In Chapter 2, we consider soft failures and quality loss cost, and only allow
maintenance actions at predetermined scheduled downs with a static time interval.
In contrast, we consider hard failures in Chapter 5. In this case, system downs occur
not only at predetermined scheduled downs, but also at the unscheduled moments
that the hard failures of other components in the system occur. These scheduled
and unscheduled downs are considered as opportunities for preventive maintenance,
which generates dynamic intervals for the joint maintenance actions. Moreover, the
system in Chapter 2 consists of condition-based components only, while the system
in Chapter 5 has a mixture of CBM, ABM and FBM components. As the building
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blocks of the model in Chapter 5, Chapter 3 describes a CBM model and Chapter
4 describes an ABM model. Figure 1.1 provides an overview on the structure of the
thesis.

Figure 1.1 Structure of the thesis

Regarding the contribution of Chapter 2, we propose a new CBM model for
multi-component systems consisting of a large number of components. To reduce
the high setup cost of maintenance, a joint maintenance interval is introduced
by setting up periodic scheduled downs to take maintenance actions of multiple
components simultaneously. We assume all failures of components are soft failures
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with quality/performance loss costs per time unit, before maintenance actions are
taken at the scheduled downs. In this case, we can decompose the main problem at
the system level to subproblems at the component level, which allows exact evaluation
of the objective function (i.e., the average cost rate). With the maintenance interval at
the system level and the control limit on the degradation of each component as decision
variables, we develop a model to minimize the long-run average maintenance cost
rate of the systems. Moreover, a numerical study of a production system consisting
of a large number of non-identical components is presented, including a sensitivity
analysis. Finally, our policy is compared to a failure-based policy and an age-based
policy, in order to evaluate the cost-saving potential.

Regarding the contribution of Chapter 3, to the best of our knowledge, our policy is
the first opportunistic CBM policy that considers both the scheduled and unscheduled
downs of a complex system as free opportunities. In practice, unscheduled downs can
also happen if hard failures occur for other components, instead of soft failures as
assumed in Chapter 2. Both scheduled and unscheduled downs can be considered
as free opportunities for monitored components to perform preventive maintenance,
so that no additional setup cost and downtime cost are charged on the monitored
component. This model determines the optimal control limit of a critical component
monitored continuously, in order to decide the timing of taking opportunistic
maintenance, where the long-run average cost rate is minimized. In this chapter,
the end points of maintenance actions are not always at scheduled system downs,
because the scheduled downs are not rescheduled after each maintenance action of
the CBM component. Hence, our cost rate evaluation based on renewal theory is
not exact, but approximate. The accuracy of this approximation is verified via the
comparison of approximate results and simulated results. Moreover, a case study on
lithography machines in the semiconductor industry is provided. Finally, numerical
experiments are performed to investigate the accuracy of our model and the cost-
saving potential of our optimal policy under various parameter settings.

As explained in the existing literature of opportunistic ABM models in block E in
Table 1.2, most of them considered either scheduled or unscheduled opportunities.
Only two simulation-based models consider both types of opportunities. The
simulation-based models have computational limitations for systems consisting of a
large number of components. However, the model proposed in Chapter 4, with both
the scheduled and unscheduled opportunities, can be used as a building block to solve
optimization problem for systems consisting of a large number of components. In
practice, it is not always feasible to monitor components remotely, due to physical
constraints from the design of the system. For example, a sensor can hardly be
installed in an enclosed space (e.g., inside a gearbox). In this case, ABM may be
implemented, instead of CBM as in Chapter 3. Hence, we develop this ABM model
in Chapter 4 to optimize the age limit on the age of the age-based component, instead
of the control limit on the degradation of the condition-based component. The optimal
age limit helps to decide the timing of taking opportunities, in order to minimize the
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average long-run cost rate. Moreover, a numerical study is conducted to show the
usage of the model. Similar to the CBM model in Chapter 3, the cost evaluation is
also an approximation and its accuracy is verified via the comparison with simulated
results. Under various numerical experiments, we investigate the accuracy of our
model and the cost-saving potential of our optimal policy.

In the high-tech industry, we observe that complex engineering systems are often
with a mixture of components under different maintenance policies (e.g., ABM, CBM
and FBM). However, to the best of our knowledge, this maintenance optimization
problem with the coordination of maintenance actions under the different policies
(block G in Table 1.2) has not been studied in the literature. The model proposed in
Chapter 5 is able to solve maintenance optimization problems for a system with such
a mixture of components under CBM, ABM and FBM policies, by using the CBM
and ABM model in Chapter 3 and 4 as building blocks. This mixture also can better
represent multi-component systems in real life, which usually consist of components
under different maintenance disciplines. To be able to solve large-scale problems
in real life, where systems consist of large numbers of components, we develop a
maintenance optimization model with a heuristic procedure to optimize 1) the control
limits of condition-based components, 2) the age limits of age-based components, and
3) the maintenance interval for scheduled downs of the entire system. Similar to
Chapter 2, we decompose the main problem at the system level to subproblems at
the component level. Via an iterative procedure, in a relatively short time, we are
able to find a heuristic solution with a close-to-minimal average cost rate for the
entire system, under the assumed policy structure. Moreover, we also simulate the
true average cost rate by using the same heuristic solution, to compare with the cost
rates obtained via our approximation.

Regarding the scope of our research, first of all, we only consider perfect quality of
maintenance actions. Each maintenance action will restore components to its original
performance level. Hence, we do not consider the aging effect of components and
imperfect maintenance actions. Secondly, we assume small time intervals spent on
maintenance actions, because most of the maintenance actions in the practice of
high-tech systems are replacements, instead of repair on site. In other words, when a
maintenance action is triggered on a failed component in a system, a new component
is brought to the field and exchanged with the failed component. The actual repair
of the failed component will be carried out in the repair shop. This procedure
results in a short downtime for the system operation. Thirdly, the coordination of
maintenance actions for multi-component systems is difficult, due to the economic,
structural or stochastic dependencies among the components [11, 17, 37, 51]. Amongst
the literature of multi-component problem, we focus on the economic dependency,
and not on the structural and stochastic dependencies. Moreover, in practice, the
maintenance actions are planned with a smaller interval (in terms of weeks), compared
with the long life cycles (from 10 to 40 years) of complex systems. Hence, an infinite
time horizon is considered in this research. Finally, the application of micro-sensors
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and other techniques enable the remote collection of condition data in a real time,
which motivate the assumption that the degradation of components can be monitored
continuously.



Chapter 2

A Condition-Based Maintenance
Policy for Multi-Component Systems
with a High Maintenance Setup Cost

“In my opinion, all things in nature occur
mathematically.”

René Descartes
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2.1 Introduction

Compared with single-component systems, the maintenance optimization of multi-
component systems in a CBM framework is much more complicated because of
economic, structural or stochastic dependencies among the components [11, 17, 37].
In this chapter, we focus on economic dependency and propose a new CBM policy
for multi-component systems with stochastic and continuous deteriorations. To
reduce the setup cost of maintenance for multi-component systems, we propose a
joint maintenance interval to synchronize the maintenance activities for all degrading
components in a system. Maintenance strategies with static joint maintenance
intervals are often applied in the industries of advance capital goods (e.g., aviation, oil-
gas refinery, renewable energy and chemical process) due to the convenience of static
intervals for the operations planning and coordination of maintenance resources (e.g.,
service engineers, maintenance equipments, spare parts) [17].

Table 2.1 Summary of literature about condition-based maintenance models for multi-
component systems (Y=yes, N=no, L=large, S=small, Con=continuous, Dis=discrete,
Sim=simulation, Ana=analysis, Heu=heuristic)

[64] [10] [2] [35] [6] [58] [52] [53] [28] This
chap-
ter

Assumptions:
Monotonic degradation Y Y Y Y Y Y N N Y Y
Repair as good as new Y Y N N Y N Y Y Y Y
Negligible
repair/replacement
time

Y Y N Y Y N N Y Y Y

Infinite time horizon N Y N N N N N N N Y
Directly observable
degradation

Y Y Y Y N Y N N Y Y

Independence Y N Y N Y N Y Y N Y

Features:
Time Dis Dis Dis Con Con Dis Con Con Con Con
Scale of problem L S S L L L L L S L
Solution method Heu Ana Sim Sim

+
GA

Sim
+
Ana

Sim Sim PHM Sim Ana

To position our research among existing works, we summarize the literature of
condition-based maintenance model for multi-component systems in Table 2.1. Via
the comparison of existing research, our contribution is that we develop a new
mathematical model to optimize the condition-based maintenance policy for systems
with a large number of identical/non-identical components (rather than small-scale
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systems in [2, 10, 28, 58]). Instead of using simulation as in many papers in the
literature [2, 6, 28, 35, 58], our model is based on analysis and our cost rate evaluation
is exact. Instead of a finite-horizon setting as in [2, 6, 28, 35, 64], we consider an
infinite horizon. Unlike [2, 10, 58, 64], our degradation path is continuous. Our
maintenance decision is optimized based on the directly observable measurements of
physical degradations, instead of using indirect measurements (e.g., risk threshold,
hazard rate, etc) as decision variables [6, 52, 53, 58]. Therefore, we can conclude our
model has a unique contribution among the existing literature.

To avoid high setup costs, our model coordinates the maintenance tasks at the system
level by introducing a static joint maintenance interval. The components are jointly
maintained at the next upcoming maintenance time point if their physical conditions
exceed the specified control limits, which can be easily implemented in the industries
of advance capital goods. Under this structure, we develop a nested enumeration
approach to minimize the long-run average cost rate by specifying the control limits
of degrading components and the fixed joint maintenance interval. This model is
capable of dealing with systems consisting of a large number of identical/non-identical
components, because the setup cost of maintenance visits and the variable cost of
maintenance visits can be evaluated in separate terms in the objective function: (i)
the setup cost is related to the joint maintenance interval, which can be optimized
at the outer loop of the optimization algorithm (ii) the variable cost, which is
dependent on the types of maintenance activities (preventive or corrective) and the
amount of components involved, can be evaluated separately for each component
using renewal theory. Due to this decomposition, for a given maintenance interval,
we can first optimize the control limits of components and then specify the optimal
joint maintenance interval at the system level. For different degradation processes,
the structure of the model and the algorithm of optimization will not be changed,
although the probability expressions will be different for different degradation models.
Notice that our model is not only adaptable for components with different degradation
processes (e.g., random coefficient models, Wiener processes and Gamma processes),
but also applicable to systems composed of components with different types of
maintenance policies (e.g., age-based maintenance or periodic inspections).

The outline of this chapter is as follows. The description of the system and the
assumptions are given in Section 2.2. The details of the mathematical model are
explained in Section 2.3. In Section 2.4, a numerical study of a semiconductor
production system is performed. Moreover, in Section 2.5, a sensitivity analysis is
performed. In Section 2.6, our optimal policy is compared with the optimal solutions
of a failure-based maintenance policy and an age-based maintenance policy, in order
to evaluate the cost-saving potential. Finally, the conclusions are stated in Section 2.7.
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2.2 System Description

Consider a system consisting of m subsystems. The set J = {1, 2...,m} denotes the
set of subsystems. Subsystem j ∈ J consists of lj components. For the system, all
components of all systems are numbered from 1 to k and I = {1, 2, ..., k} denotes the
set of components, where k =

∑
j∈J lj .

When maintenance actions are taken, a maintenance crew and equipment have to
be sent to the field and the operation of the system is interrupted. Consequently,
a high fixed setup cost S is charged on the system for maintenance actions on its
components. The setup cost S refers to a fixed cost that is incurred for a maintenance
visit regardless of what maintenance actions are performed. For a production line, it
includes the cost of sending a maintenance team to the site, stopping the production,
resetting the production environment, etc. Hence, it is often economically beneficial
to perform maintenance actions of multiple components simultaneously. If we decide
to take a maintenance visit for a single component, we need to pay such a fixed cost
S. However, if we decide to take a maintenance visit to conduct the maintenance
activities for n components at one joint maintenance interval, we only need to pay
one fixed cost S. In this case, we save n−1 setup costs for the system, compared with
taking maintenance visits separately for each component at different time moments.
This is the economic dependency that we are dealing with.

Due to the convenience of implementation, maintenance policies with a fixed interval
are commonly adopted in practice, which is also referred as block replacement policy
in literature. For example, in the industry of semiconductor, a periodic maintenance
visit will be scheduled at fixed time points. We consider such a policy with a
fixed maintenance interval τ (a decision variable). Namely, it is possible to set up
maintenance actions only at time points nτ , n ∈ N. In practice, the maintenance
interval (in terms of weeks) is small compared with the long life cycles (from 10 to 40
years) of complex systems. Hence, an infinite time horizon is assumed in this chapter.

At the component level, we can continuously monitor the degradation of a certain
physical parameter; e.g., the wearing of a braking system, the cracks of a stringer.
Such physical conditions degrade over time monotonically and restored by mainte-
nance actions only. For each component i ∈ I, Xi(t) is the degradation path over time
t ∈ [0,∞) (see Figure 2.1). In this chapter, we assume a soft failure, which means that
a component continues functioning with a lower performance when its degradation
exceeds its soft failure threshold Hi (i.e., Xi(t) > Hi). Such soft failures usually
happen to components with mechanical/thermal-stress degradation [8]. For example,
i) the cutting tools are not able to deliver satisfactory performance after a certain
percentage of the metal material is worn, which can result in a lower throughput of
production line; ii) an overpowered laser beam generated by a degraded laser unit
may lead to imprecise cutting and high scrap rate in production. Both of them can
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Figure 2.1 Condition-based maintenance of single components with corrective maintenance
only

be considered as soft failures. When Xi(t) exceeds Hi, a soft failure is observed
between two maintenance points (n−1)τ and nτ and a corrective maintenance (CM)
action (with a cost cCMi ) on the failed component is taken at the maintenance point
nτ . The period from the time point when the soft failure occurs till the maintenance
point nτ is the soft failure period (see Figure 2.1). Such a period can cause quality loss
in production or lower performance in operation with a cost rate cPi . For instance,
in a semiconductor production system, if the laser power output exceeds a certain
limit, the silicon wafers will not be cut precisely, which will cause a higher scrap rate.
Hence, this quality loss/low performance cost is equal to the length of soft failure
period multiplies cPi .

In order to avoid a high corrective maintenance cost cCMi and quality loss costs
when Xi(t) exceeds Hi, it is economically beneficial to take maintenance actions
pro-actively, which is known as preventive maintenance (PM), with a lower cost
cPMi (cPMi < cCMi ). Thus, for each component, we introduce a control limit Ci
to trigger PM actions at the next closest maintenance point, before its degradation
exceeds Hi (Ci < Hi), as shown in Figure 2.2. When the stochastic degradation
increases fast and exceeds both Ci and Hi at the next closest maintenance point
nτ , a CM action will be taken (see Figure 2.2 (B)). Nevertheless, if the stochastic
degradation increases slowly and the degradation level is between Ci and Hi at the
next closest maintenance point nτ ; a PM action with a lower cost will be taken
(see Figure 2.2 (A)). Notice that both τ and Ci, i ∈ I, are the decision variables of
the optimization model. After a maintenance action is taken, the condition of the
component is restored to the initial degradation level (also known as “Repair-As-
New”) and the component continues its operation till the next maintenance action
is taken. This renewal cycle will repeat itself throughout the infinite time horizon.
The period between two consecutive maintenance actions for a component is defined
as a maintenance cycle (see Figure 2.1), which is also called as a renewal cycle. The
beginning of each cycle is a so-called renewal point. According to renewal theory, the
average cost rate over an infinite time horizon is equal to the average cost rate over
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one maintenance (renewal) cycle, Zi(τ, Ci). The expected maintenance cost per cycle
and the expected maintenance cycle length are derived in Section 2.3.2.

Figure 2.2 Condition-based maintenance of single components with preventive and corrective
maintenance: (A) a PM action is taken at the next maintenance point if Hi ≥ Xi(t) > Ci; (B)
a CM action is taken at the next maintenance point if Xi(t) > Hi

In this chapter, we assume components are independent with each other. Several
real life applications satisfy this assumption. For example, in a lithography machine
consisting of many components and modules [69], the degradations of the modules
(e.g., laser units, micro mirrors, etc.) are independent. They are independent because
there is no joint environmental factor, since the operation of the machine requires a
clean-room or vacuum environment. The degradations of the lighting systems in a
building are independent, because the degradation of a light bulb will not affect the
degradation of another light bulb. In a multi-stage production system, the mechanical
components degrade over time (e.g., the cutting tools, the transmitting chains, the
rotating/moving components). Most of the components are independent, because the
degradation of the mechanical components in one stage will not affect the degradation
of the mechanical components in another stage.

To solve the maintenance problem for systems with a large number of components,
we propose a nested enumeration approach, because the setup cost of maintenance
visits and the variable cost of maintenance visits can be evaluated separately. We first
decompose the optimization of the system into optimization problems at individual
component level to find the optimal control limit of each component C∗i for a given
τ by minimizing the average cost rate of each component, Zi(τ, Ci). Afterwards, we
can find the optimal τ by minimizing the average cost rate of the system Zsyst(τ).
We assume that the system is composed of a large number of components, so that
the probability of no component failure within one maintenance interval is negligible.
Hence, a setup of maintenance actions is always needed at each static maintenance
point and the average setup cost rate can be modeled as S

τ . Furthermore, since the
degradation processes of components are assumed to be independent, the variable
cost rate of maintenance visits equals the summation of the variable cost rates of
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all the individual components, which can be evaluated by using renewal theory.
Consequently, the average cost rate on the system level for a given τ is

Zsyst(τ) =
S

τ
+
∑
i∈I

Z∗i (τ) (2.1)

where Z∗i (τ) = Zi(τ, C
∗
i ), which is the minimum average cost rate excluding setup

costs for each component with an optimal control limit C∗i for a given τ .

2.2.1 Notation

i : index of components in the system
n : index of maintenance intervals over the planning horizon
Xi(t) : degradation of component i on a physical condition
τ : maintenance interval at the system level (decision variable)
Ci : control limit on the degradation level of component i (decision variable)
Hi : (predetermined) soft failure threshold on the degradation level of component i
Zi : average cost rate of component i (without setup costs)
Zsyst : average cost rate of the system
cPMi : cost per PM action taken on component i
cCMi : cost per CM action taken on component i
cPi : soft failure cost rate on component i
S : cost per setup action taken at the system level

2.2.2 Assumptions

1) Maintenance actions are set up at fixed maintenance points nτ, n ∈ N.
2) The time horizon is infinite
3) Maintenance actions restore the conditions of components back to their initial
degradation levels. (also known as “repair-as-new”).
4) The components in the system are independent of each other.
5) The condition degrades over time monotonically.
6) The system continues its operation with a lower performance when the degradation
of components exceeds the failure thresholds (also known as “soft failure”).
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2.3 Model Formulation and Analysis

Before optimizing the maintenance policy at the system level (see Equation (2.1)),
the degradation process of a single component within a single maintenance cycle is
introduced in Subsection 2.3.1. Afterwards, the optimization model is formulated
both at the component and system level in Subsection 2.3.2.

2.3.1 Degradation model

As mentioned in the literature in Section 2.1, there are several approaches to modeling
the stochastic degradation paths of components (e.g., Random Coefficient Model,
Gamma process, Brownian Motion or Markov Process). In this chapter, we use the
Random Coefficient Model [33], because it is relatively flexible and convenient for
describing the degradation derived from physics of failures, such as law of physics and
material science. According to the Random Coefficient Model, the degradation level
of component i at time t̂ ∈ [0,∞) in a single maintenance cycle, Xi(t̂; Φi,Θi), is a
random variable, given a set of constant parameters Φi = {φi,1, ..., φi,Q}, Q ∈ N, and
a set of random parameters Θi = {θi,1, ..., θi,V }, V ∈ N, following certain probability
distributions. The probability that the degradation at time t̂ exceeds a threshold χ
is equal to the probability that the passage time Tχ over the threshold χ is less than
time t̂

P r{Tχ < t̂} = Pr{X(t̂; Φi,Θi) > χ}, ∀i ∈ I. (2.2)

EXAMPLE 1: In order to clarify the model, a simple example is given. Consider
a component i in the system with a degradation path Xi(t; Φi,Θi) = φi,1 + θi,1t

φi,2

where Φi = {φi,1, φi,2} and Θi = {θi,1}. Equation (2.2) can be written in terms of
Fθi,1 (the cumulative density function of random variable θi,1, θi,1 ≥ 0):

Pr{Tχ < t̂} = Pr{φi,1 + θi,1t̂
φi,2 > χ}

= Pr{θi,1 >
χ− φi,1
t̂φi,2

}

= 1− Fθi,1
(χ− φi,1

t̂φi,2

)
(2.3)

♦

For component i ∈ I, the cumulative density functions of passage time TCi and
THi (when the degradation level exceeds Ci and Hi) can be derived based on
Equation (2.2) given the degradation path function Xi(t̂; Φi,Θi) and the probability
distributions of Θi. Recalling the proposed policy explained in Section 2.2 (see Figure
2.2), maintenance actions are taken at fixed time points. Hence, the probability that
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the control limit Ci is reached between time point (n− 1)τ and nτ can be expressed
as

Pr{Xi

(
(n−1)τ ; Φi,Θi

)
≤ Ci < Xi(nτ ; Φi,Θi)} = Pr{(n−1)τ ≤ TCi < nτ}, ∀n ∈ N.

(2.4)
The probability that soft failure threshold Hi is reached before time point nτ can be
expressed as

Pr{Xi(nτ ; Φi,Θi) > Hi} = Pr{THi < nτ}, ∀n ∈ N, i ∈ I (2.5)

where Ci < Hi and TCi ≤ THi , since the degradation path is assumed to be monotonic.
After Ci is reached between (n − 1)τ and nτ , there are two possibilities for the
maintenance action at nτ as mentioned in Section 2: preventive maintenance (PM)
if Ci ≤ Xi(nτ) < Hi and corrective maintenance (CM) if Xi(nτ) ≥ Hi. Thus, the
probability that PM occurs at time nτ after the degradation level of component i has
reached its control limit Ci between time (n − 1)τ and nτ , can be derived based on
Equations (2.2), (2.4) and (2.5) as

Pr{PM at nτ} = Pr{THi > nτ, (n− 1)τ ≤ TCi < nτ}. (2.6)

Similarly, for CM,

Pr{CM at nτ} = Pr{THi ≤ nτ, (n− 1)τ ≤ TCi < nτ}. (2.7)

EXAMPLE 1 (continued): According to Equations (2.3) and (2.4), the probability of
reaching the control limit Ci between (n− 1)τ and nτ can be obtained as

Pr{(n− 1)τ ≤ TCi < nτ} = Fθi,1

( Ci − φi,1(
(n− 1)τ

)φi,2 )− Fθi,1(Ci − φi,1(nτ)φi,2

)
, ∀n ∈ N.

(2.8)
For component i ∈ I, the probability that either PM or CM occurs at time point
nτ after the degradation reaches Ci between (n − 1)τ and nτ can be derived from
Equations (2.6) and (2.7):

Pr{PM at nτ} = Pr
{
θi,1 <

Hi − φi,1
(nτ)φi,2

,
Ci − φi,1(

(n− 1)τ
)φi,2 ≥ θi,1 > Ci − φi,1

(nτ)φi,2

}
(2.9)

=

{ Fθi,1

(
Ci−φi,1(

(n−1)τ
)φi,2 )− Fθi,1(Ci−φi,1(nτ)φi,2

)
, if

Hi−φi,1
(nτ)φi,2

>
Ci−φi,1(

(n−1)τ
)φi,2

Fθi,1

(
Hi−φi,1
(nτ)φi,2

)
− Fθi,1

(
Ci−φi,1
(nτ)φi,2

)
, if

Hi−φi,1
(nτ)φi,2

≤ Ci−φi,1(
(n−1)τ

)φi,2 .
Similarly, for CM,

Pr{CM at nτ} = Pr
{
θi,1 ≥

Hi − φi,1
(nτ)φi,2

,
Ci − φi,1(

(n− 1)τ
)φi,2 ≥ θi,1 > Ci − φi,1

(nτ)φi,2

}
(2.10)

=

{ 0, if
Hi−φi,1
(nτ)φi,2

>
Ci−φi,1(

(n−1)τ
)φi,2

Fθi,1

(
Ci−φi,1(

(n−1)τ
)φi,2 )− Fθi,1(Hi−φi,1(nτ)φi,2

)
, if

Hi−φi,1
(nτ)φi,2

≤ Ci−φi,1(
(n−1)τ

)φi,2 .
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Regardless of the distribution of θi,1, the sum of the probabilities of PM and CM in
the interval of nτ is equal to the probability of reaching Ci between (n− 1)τ and nτ ,
as derived in Equation (2.8) . ♦

2.3.2 Evaluation and optimization

As mentioned in Section 2, we propose a nested approach to find the optimal
maintenance policy (i.e., the control limits Ci of each degrading component and the
joint maintenance interval τ) by minimizing the long-run average cost rate of the
system.

Evaluation and optimization for each component:
We first evaluate the long-run average variable cost rate for component i ∈ I incurred
by preventive maintenance, corrective maintenance and soft failure. The variable cost
of one maintenance visit is dependent on the type of maintenance activities (preventive
or corrective) on various components. Suppose that we add all the variable costs for
all the maintenance visits over an infinite time horizon together. The summation
of the variable costs over an infinite time horizon is dependent on the different
frequencies of replacements of the components and the different proportions of the
types of maintenance activities (preventive or corrective) over a long term for different
components. Notice that we assume the degradation processes of the components are
independent. Therefore, the frequencies of replacements for different components are
independent under a given τ and the given control limits. These frequencies can
be evaluated by the lengths of renewal cycles, using renewal theory separately. The
proportions of the types of maintenance activities (preventive or corrective) can be
calculated by deriving the probability of soft failures for a renewal cycle. Therefore,
the variable cost can be evaluated separately for different components, given the
values of τ and control limits. According to renewal theory, the long-run average cost

Zi(τ, Ci) is equal to the expected maintenance cost per cycle E
[
Ki(τ, Ci)

]
divided

by the expected cycle length E
[
Li(τ, Ci)

]
. The expected maintenance cost per cycle

E
[
Ki(τ, Ci)

]
is given as

E
[
Ki(τ, Ci)

]
=
∑
n∈N

[
Pr{PM at nτ}cPMi + Pr{CM at nτ}cCMi

]
+E

[
Di(τ, Ci)

]
cPi ,

(2.11)

where Pr{PM at nτ} and Pr{CM at nτ} can be obtained from Equations (2.6) and
(2.7). The costs of preventive maintenance and corrective maintenance on component
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i are denoted by cPMi and cCMi respectively. The soft failure cost in Equation (2.11)

is evaluated by the product of the expected soft failure period E
[
Di(τ, Ci)

]
and the

penalty cost rate cPi , as described in Section 2. The expected soft failure period

E
[
Di(τ, Ci)

]
can be derived as

E
[
Di(τ, Ci)

]
=
∑
n∈N

∫ nτ

(n−1)τ

(∫ nτ

x

(nτ − y)fTHi |TCi (y|x)dy

)
fTCi (x)dx, ∀ i ∈ I,

(2.12)

where fTCi (x) is the probability density function of passage time TCi and fTHi |TCi (y|x)
is the conditional probability density function of passage time THi , given that TCi = x.

Moreover, the expected cycle length E
[
Li(τ, Ci)

]
is given as

E
[
Li(τ, Ci)

]
=
∑
n∈N

nτPr{(n− 1)τ ≤ TCi < nτ}, ∀i ∈ I. (2.13)

EXAMPLE 1 (continued): Assuming that the degradation rate θi,1 follows a Weibull
distribution with αi and βi, the distribution of passage time TCi can be derived as

fTCi (x) = φi,2βi

(Ci − φi,1
αi

)βi
x−(φi,2βi+1)exp

[
−
(C − φi,1
αixφi,2

)βi]
, ∀i ∈ I. (2.14)

According to Equation (2.12), the expected soft failure period can be derived as

E
[
Di(τ, Ci)

]
=
∑
n∈N

[∫ nτ

(n−1)τ

[
nτ −

(Hi − φi,1
Ci − φi,1

)(1/φi,2)

x
]+

fTCi (x)dx

]
, ∀i ∈ I.

(2.15)
♦

Hence, the optimization for Ci is formulated as

min
Ci

Zi(τ, Ci) =
E
[
Ki(τ, Ci)

]
E
[
Li(τ, Ci)

]
s.t. 0 < Ci < Hi ∀i ∈ I

Notice that the maintenance interval τ is treated as a given parameter, instead of a
decision variable in this subproblem; so that the optimal control limit C∗i (τ) can be
obtained for each component for a given τ .
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Evaluation and optimization of the system:
For each τ value, component i has its corresponding control limit C∗i (τ) and optimal
long-run average cost rate excluding setup cost Z∗i (τ). Hence, the long-run average
cost rate of the system Zsyst(τ) can be minimized by enumerating τ . Zsyst(τ) includes
not only the sum of the minimum average cost rates of all components

∑
i∈I Z

∗
i (τ),

but also the average setup cost rate S
τ . Hence, the optimization model is

min
τ

Zsyst(τ) =
S

τ
+
∑
i∈I

Z∗i (τ)

s.t. 0 < τ < Mτ

where Mτ is the upper bound of the maintenance interval τ . In practice, there can
be a limit on τ suggested by manufacturers or industry regulations. The detailed
explanation of the algorithm is elaborated in Subsection 2.A.3.

2.4 Numerical Study

To demonstrate the use of our model, we provide a general numerical study
of a complex engineering system. One can consider a production system, with
60 individual components (i ∈ I = {1, ..., 60}). For each component, micro-
sensors can be installed to continuously monitor the degradation. The degradation
Xi(t;φi,1, φi,2, θi,1) can be described by the Random Coefficient Model [33]:

Xi(t;φi,1, φi,2, θi,1) = φi,1 + θi,1 ∗ tφi,2 , ∀i ∈ I

where t is the operation time and θi,1 is the positive random parameter. The constant
parameter φi,2 is an acceleration factor and the constant parameter φi,1 is the initial
degradation level. Notice that the production system will generate products with low
quality, when the degradation Xi(t) reaches a threshold H at a passage time TH .
Hence, this threshold H is considered as the soft failure threshold. The degradations
of components are stochastically independent. We assume that the distribution of θi,1
follows a Weibull distribution with two parameters: αi and βi, which can be obtained
by condition data fitting [33]. Therefore, we can use the mathematical expressions of
Example 1 in Subsection 2.3.1 (Equations (2.8), (2.9), (2.10) and (2.15)) to formulate
the degradation path of the component.

The parameter setting is shown in Table 2.2. Notice that these 60 components
are from three different component types, so that their parameters in Table 2.2
are not identical. Moreover, on the system level, a very expensive setup cost S is
charged, which includes the traveling cost of maintenance crews and resources, the
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cost of production disturbance and downtime, the resetting cost of manufacturing
environment, etc. To solve this maintenance optimization problem, we use the
approach proposed in Subsection 2.3.2.

Table 2.2 The parameter setting

Parameter Explanation Type x Type y Type z
i ∈ {1, ..., 20} i ∈ {21, ..., 40} i ∈ {41, ..., 60}

cPMi PM cost [thousand Euro] cPMi = 7 cPMi = 15 cPMi = 10
cCMi CM cost [thousand Euro] cCMi = 30 cCMi = 70 cCMi = 50
cPi Soft failure cost rate [thousand

Euro]
cPi = 7.2 cPi = 7.2 cPi = 7.2

S Setup cost, S=50 [thousand
Euro]

- - -

αi Scale parameter of Weibull
distribution

αi = 2.12 αi = 2.52 αi = 1.02

βi Shape parameter of Weibull
distribution

βi = 7.9 βi = 7.5 βi = 6.9

Hi Soft failure threshold Hi = 10 Hi = 20 Hi = 15
φi,1 Initial degradation level φi,1 = 1 φi,1 = 2 φi,1 = 3
φi,2 Constant parameter for differ-

ent rotational mechanisms
φi,2 = 0.33 φi,2 = 0.41 φi,2 = 0.51

Gi Expected passage time (the
first moment of Equation
(2.14)) of Hi [days]

Gi = 116.12 Gi = 141.11 Gi = 143.43

By the nested enumeration algorithm (see Subsection 2.A.3), the optimal maintenance
policy is found and shown in Table 2.3. The optimal policy is to set the maintenance
interval at 36.1 days and the control limits on the physical condition of the three types
of components are 8.11 (out of 10), 17.12 (out of 20) and 12.72 (out of 15) respectively.
The resulting average maintenance cost rate of this production system is 7424 Euros
per day. The computation performance is given in Subsection 2.A.4, which shows the
computational benefit of our algorithm compared with the algorithms that don’t use
decomposition.

Table 2.3 The optimal maintenance policy of the numerical example in Table 2.2 (index: x for
i ∈ {1, ..., 20} ; y for i ∈ {21, ..., 40} ; z for i ∈ {41, ..., 60})

Optimal Policy Values Explanation
Zsyst(τ∗) 7424 the minimum average cost rate of the

system [ Euro / day]
τ∗ 36.0 the optimal maintenance interval of the

system [day]{
C∗x(τ∗), C∗y (τ∗), C∗z (τ∗)

}
{8.11, 17.12, 12.72} the optimal control limits of each compo-

nent{
Zx(τ∗), Zy(τ∗), Zz(τ∗)

}
{94.3, 126.2, 81.2} the minimum average variable cost rate of

each component [Euro / day].

In Figure 2.3, we depict the average cost rate of the system, Zsyst(τ), as a function of
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the maintenance interval τ , which includes the sum of two elements: the setup cost
rate S/τ and the variable maintenance cost rate of all components

∑
i∈I Z

∗
i (τ). When

τ increases, S/τ decreases due to the less frequent setups of maintenance actions on
one hand; on the other hand,

∑
i∈I Z

∗
i (τ) increases due to the higher probability that

CM occurs in a maintenance interval and higher expected soft failure costs.

Figure 2.3 Average cost rate [thousand Euro per day] at the system level over τ [days]

To obtain further insight, the optimal solution of a single component is analyzed.
Taking component 1 as an example, we investigate the changes of the average variable
maintenance cost rate Z1(τ, C1) under given τ values over the control limit C1 as
shown in Figure 2.4. For τ = 15, 20 and 25, the optimal control limit C∗1 (τ) is
9.28, 8.92, and 8.83 respectively and the minimum average cost rate Z1(τ, C∗1 ) is
75.0, 82.2 and 91.9 Euros per day respectively. We can observe a higher Z1(τ, C∗1 )
and a lower C∗1 at larger τ values. This is because the probability that CM occurs in
a maintenance interval increases and the expected soft failure cost becomes higher.
Consequently, the average variable cost rate of maintenance for each component
increases, even though lower control limits are set on the degradation levels. (The
plot of Z1 under a larger τ value is included in Subsection 2.A.2)
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Figure 2.4 Average cost rate [ thousand Euro per day] on component 1 over C1 for various τ
value

2.5 Sensitivity Analysis

A sensitivity analysis is performed based on varying the four parameters cPMi , cPi , S
and βi in Table 2.2 by ±50% and the rest of the parameter setting remains unchanged.
We choose each parameter equal to 50%, 100% and 150% of its original value, and a full
factorial test bed is set up by considering all combinations. To simplify the notation,
we define the factors of the test bed as a = (cPM1 , cPM2 , ..., cPM60 ), b = (cP1 , c

P
2 , ..., c

P
60),

c = S and d = (β1, β2, ..., β60). Also we define a test bed of instances Λ with elements
(aj , bl, ck, dm),∀j, l, k,m ∈ {1, 2, 3}, where a1 = 50% × a, a2 = 100% × a, and a3 =
150%× a; and similarly for bl, ck and dm. This test bed consists of 81 instances. The
output of each instance consists of the minimum average cost rate of the system, the
optimal joint maintenance interval and control limits of components, which is denoted
by (Ẑsyst(τ̂

∗), τ̂∗, Ĉ∗x, Ĉ
∗
y , Ĉ

∗
z ). The components from supplier x, y and z are grouped

as: x for i ∈ {1, ..., 20}; y for i ∈ {21, ..., 40} ; z for i ∈ {41, ..., 60}. In Table 2.4,
the relative ratios between the optimal policies in the test bed and the optimal policy
under the original parameter setting (see Table 2.3) are given.

The results in Table 2.4 match our intuition. They show that the joint optimal
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Table 2.4 Results of the test bed (the percentages is the relative ratio dividing the new optimal
solutions by the original optimal solutions in Table 2.3.

Λ (
Ẑsyst(τ̂

∗)
Zsyst(τ∗)

, τ̂
∗

τ∗ ,
Ĉ∗
x

C∗
x
,
Ĉ∗
y

C∗
y
,
Ĉ∗
z

C∗
z

) Λ (
Ẑsyst(τ̂

∗)
Zsyst(τ∗)

, τ̂
∗

τ∗ ,
Ĉ∗
x

C∗
x
,
Ĉ∗
y

C∗
y
,
Ĉ∗
z

C∗
z

)

(a1, b1, c1, d1) (48%, 36%, 113%, 117%, 119%) (a2, b2, c2, d3) (97%, 113%, 96%, 96%, 95%)
(a1, b1, c1, d2) (49%, 95%, 101%, 101%, 101%) (a2, b2, c3, d1) (113%, 48%, 111%, 114%, 115%)
(a1, b1, c1, d3) (49%, 110%, 97%, 96%, 96%) (a2, b2, c3, d2) (106%, 101%, 99%, 99%, 99%)
(a1, b1, c2, d1) (63%, 50%, 110%, 113%, 114%) (a2, b2, c3, d3) (103%, 114%, 96%, 95%, 95%)
(a1, b1, c2, d2) (57%, 97%, 101%, 101%, 101%) (a2, b3, c1, d1) (80%, 38%, 113%, 117%, 118%)
(a1, b1, c2, d3) (54%, 112%, 97%, 96%, 96%) (a2, b3, c1, d2) (93%, 95%, 101%, 101%, 101%)
(a1, b1, c3, d1) (75%, 58%, 109%, 111%, 112%) (a2, b3, c1, d3) (91%, 111%, 97%, 96%, 96%)
(a1, b1, c3, d2) (64%, 101%, 99%, 99%, 99%) (a2, b3, c2, d1) (97%, 37%, 113%, 117%, 118%)
(a1, b1, c3, d3) (60%, 114%, 96%, 95%, 95%) (a2, b3, c2, d2) (96%, 68%, 106%, 108%, 109%)
(a1, b2, c1, d1) (48%, 37%, 113%, 117%, 119%) (a2, b3, c2, d3) (97%, 112%, 97%, 96%, 96%)
(a1, b2, c1, d2) (48%, 67%, 107%, 109%, 110%) (a2, b3, c3, d1) (113%, 48%, 111%, 114%, 115%)
(a1, b2, c1, d3) (49%, 110%, 97%, 97%, 96%) (a2, b3, c3, d2) (107%, 99%, 100%, 100%, 100%)
(a1, b2, c2, d1) (63%, 48%, 111%, 114%, 116%) (a2, b3, c3, d3) (103%, 113%, 96%, 96%, 95%)
(a1, b2, c2, d2) (57%, 95%, 101%, 101%, 101%) (a3, b1, c1, d1) (102%, 18%, 118%, 122%, 124%)
(a1, b2, c2, d3) (55%, 111%, 97%, 96%, 96%) (a3, b1, c1, d2) (133%, 103%, 99%, 99%, 99%)
(a1, b2, c3, d1) (78%, 60%, 108%, 110%, 111%) (a3, b1, c1, d3) (128%, 74%, 105%, 106%, 107%)
(a1, b2, c3, d2) (64%, 97%, 101%, 101%, 101%) (a3, b1, c2, d1) (127%, 33%, 114%, 117%, 119%)
(a1, b2, c3, d3) (61%, 113%, 97%, 96%, 95%) (a3, b1, c2, d2) (140%, 106%, 98%, 98%, 98%)
(a1, b3, c1, d1) (48%, 38%, 113%, 117%, 118%) (a3, b1, c2, d3) (136%, 77%, 105%, 106%, 107%)
(a1, b3, c1, d2) (48%, 63%, 107%, 109%, 111%) (a3, b1, c3, d1) (145%, 36%, 113%, 117%, 118%)
(a1, b3, c1, d3) (49%, 109%, 97%, 97%, 97%) (a3, b1, c3, d2) (146%, 106%, 98%, 98%, 98%)
(a1, b3, c2, d1) (64%, 48%, 111%, 114%, 115%) (a3, b1, c3, d3) (145%, 94%, 101%, 101%, 101%)
(a1, b3, c2, d2) (58%, 93%, 101%, 101%, 102%) (a3, b2, c1, d1) (99%, 20%, 117%, 121%, 124%)
(a1, b3, c2, d3) (55%, 110%, 97%, 96%, 96%) (a3, b2, c1, d2) (135%, 100%, 99%, 99%, 99%)
(a1, b3, c3, d1) (77%, 50%, 110%, 113%, 115%) (a3, b2, c1, d3) (134%, 114%, 96%, 95%, 95%)
(a1, b3, c3, d2) (65%, 95%, 101%, 101%, 101%) (a3, b2, c2, d1) (127%, 33%, 114%, 118%, 120%)
(a1, b3, c3, d3) (61%, 112%, 97%, 96%, 96%) (a3, b2, c2, d2) (141%, 101%, 99%, 99%, 99%)
(a2, b1, c1, d1) (78%, 26%, 115%, 120%, 122%) (a3, b2, c2, d3) (139%, 115%, 96%, 95%, 95%)
(a2, b1, c1, d2) (92%, 101%, 99%, 99%, 99%) (a3, b2, c3, d1) (145%, 37%, 113%, 117%, 119%)
(a2, b1, c1, d3) (91%, 112%, 97%, 96%, 95%) (a3, b2, c3, d2) (147%, 103%, 99%, 99%, 99%)
(a2, b1, c2, d1) (97%, 38%, 113%, 117%, 118%) (a3, b2, c3, d3) (145%, 115%, 96%, 95%, 95%)
(a2, b1, c2, d2) (99%, 101%, 99%, 99%, 99%) (a3, b3, c1, d1) (99%, 22%, 117%, 121%, 124%)
(a2, b1, c2, d3) (97%, 115%, 96%, 95%, 95%) (a3, b3, c1, d2) (119%, 37%, 113%, 117%, 119%)
(a2, b1, c3, d1) (112%, 48%, 111%, 114%, 116%) (a3, b3, c1, d3) (134%, 112%, 97%, 96%, 95%)
(a2, b1, c3, d2) (105%, 103%, 99%, 99%, 99%) (a3, b3, c2, d1) (127%, 33%, 114%, 118%, 120%)
(a2, b1, c3, d3) (102%, 116%, 96%, 95%, 94%) (a3, b3, c2, d2) (142%, 100%, 99%, 99%, 99%)
(a2, b2, c1, d1) (78%, 30%, 115%, 119%, 120%) (a3, b3, c2, d3) (140%, 114%, 96%, 96%, 95%)
(a2, b2, c1, d2) (85%, 38%, 113%, 117%, 118%) (a3, b3, c3, d1) (145%, 38%, 113%, 117%, 119%)
(a2, b2, c1, d3) (91%, 112%, 97%, 96%, 96%) (a3, b3, c3, d2) (148%, 99%, 100%, 100%, 100%)
(a2, b2, c2, d1) (97%, 36%, 113%, 118%, 119%) (a3, b3, c3, d3) (145%, 115%, 96%, 95%, 95%)
(a2, b2, c2, d2) (100%, 100%, 100%, 100%, 100%)
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maintenance interval τ̂∗ increases when cPi and cPMi decrease or when βi and S
increase. These findings are sensible because: 1) it is economically beneficial to have
a longer maintenance interval or less frequent maintenance setups when soft failure
costs cPi are less expensive, or when the setup cost S is more expensive; 2) if preventive

maintenance costs cPMi are more expensive, optimal control limits Ĉ∗i become larger
to have less PM actions and reduce average cost rate at the component level. In
this case, the probability of corrective maintenance and expected soft failure cost also
increases, so that a shorter τ̂∗ can help reduce average cost rate at the system level;
3) a larger βi leads to a lower variance in the distribution of degradation rate, and it

is economically beneficial to have a higher τ̂∗ at the system level and a lower Ĉ∗i at
the component level in this case. Moreover, we also observe that the optimal control
limits Ĉ∗i decrease when τ̂∗ increases. When maintenance intervals are larger at the
system level, more corrective maintenance and soft failures will occur at individual
component level. To reduce these high costs, it is sensible to keep control limits lower.

Table 2.5 Summary of sensitivity analysis

Ẑsyst(τ̂∗)/Zsyst(τ∗) τ̂∗/τ∗

Λ Mean Min Max Mean Min Max
Λa1 58% 48% 78% 83% 36% 114%
Λa2 98% 78% 113% 81% 26% 116%
Λa3 134% 99% 148% 76% 18% 115%
Λb1 97% 48% 146% 81% 18% 116%
Λb2 97% 48% 147% 81% 20% 115%
Λb3 99% 48% 148% 78% 22% 114%
Λc1 85% 48% 135% 72% 18% 114%
Λc2 98% 55% 142% 82% 33% 115%
Λc3 107% 61% 148% 87% 36% 116%
Λd1 95% 48% 145% 39% 18% 60%
Λd2 98% 48% 148% 92% 37% 106%
Λd3 97% 49% 145% 110% 75% 116%

In Table 2.5, we categorize the instances of Table 2.4 containing a specific level of a
factor into a subset. For example, a subset of instances containing a1 is defined as
Λa1 =

{
(a1, bj , cl, dk)|j, l, k ∈ {1, 2, 3}

}
. Table 2.5 shows the mean, minimum and

maximum levels of Ẑsyst(τ̂
∗)/Zsyst(τ

∗) and τ̂∗/τ∗ for these 12 subsets. In general, we

observe that the mean value of Ẑsyst(τ̂
∗)/Zsyst(τ

∗) increases when cost parameters,
i.e., cPMi , cPi and S, are higher. Among them, the variation of cPMi leads to the

largest variation on the mean value of Ẑsyst(τ̂
∗)/Zsyst(τ

∗). Also notice that cPMi has

a relatively low difference between the minimum and maximum of Ẑsyst(τ̂
∗)/Zsyst(τ

∗),
compared with cPi , S and βi. Regarding the mean of τ̂∗/τ∗, the variation of βi leads
to the largest variation, on one hand. On the other hand, the difference between the
minimum and maximum in the case of βi is much lower than cPMi , cPi and S.
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2.6 Performance Evaluation

To evaluate the cost reduction potential of our model, we compare our optimal solution
in Table 2.3 with the optimal solutions of two other maintenance policies: i) failure-
based maintenance policy : a condition-based maintenance policy without control
limits Ci for PM actions, i.e., there are only CM actions for components; and ii)
age-based maintenance policy : similar to our condition-based maintenance policy, the
decision variables are PM age limits Ai on the ages, instead of the physical condition,
at the component level and the optimal maintenance interval τ̃ of the system; which
is a modification of Berg and Epstein’s policy [4]. The detailed description and model
formulation of these two policies are given in Subsection 2.A.1. Regarding the design
of our experiments, we only know the failure time distribution in the case of the age-
based maintenance policy, instead of the degradation level over time in the case of a
condition-based maintenance policy. In the experiments, we are trying to evaluate the
value of advanced information for the optimization of maintenance policies. Therefore,
the changing factor for the two cases in our experiment design is the fact that the
age-based maintenance policy does not have the advanced information, whereas the
condition-based maintenance policy has such information. In order to have a fair
comparison, we need to keep the other factors fixed according to the one-factor-at-a-
time method [14]. Hence, the failure time distribution for the age-based maintenance
policy is the same failure time distribution generated by the degradation processes in
condition-based maintenance policy.

The motivations of such comparisons are: 1) to show the economic benefits of
implementing condition-based maintenance and remote monitoring to decision makers
in industry, via the comparisons with current policies, i.e., failure-based maintenance
policy and age-based maintenance policy ; 2) to fill the literature gap on the comparison
of condition-based maintenance and age-based maintenance. This comparison is
scientifically interesting in the context of systems with a large amount of components.

Based on the same parameter setting in Table 2.2, the optimal solutions of these
two policies are shown in Table 2.6. We denote these two policies as Policy (i) and
(ii).

Comparing those two policies in Table 2.6 with our policy in Table 2.3, our policy
shows a considerable cost-saving potential. Notice that we use the percentage of
extra cost incurred by using Policy (i) or (ii), comparing with the minimum cost rate
obtained via our proposed policy

4 =
Z̃syst(τ̃

∗)− Zsyst(τ∗)
Zsyst(τ∗)

,

as the performance indicator. Policy (i) suggests a joint maintenance interval τ̃∗ of

5.98 days and the average cost rate Z̃syst(τ̃
∗) is 36817 Euros per day. The maintenance
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Table 2.6 The optimal solutions of Policy (i): failure-based maintenance policy and Policy
(ii): age-based maintenance policy (index: x = Main Bearing, i ∈ {1, ..., 20} ; y = Gearbox,
i ∈ {21, ..., 40} ; z = Generator, i ∈ {41, ..., 60})

Policy (i) Values Explanation

Z̃syst(τ̃∗) 36817 the minimum average cost rate of the
system [ Euro / day]

τ̃∗ 5.98 the optimal maintenance interval of the
system [day]{

Z̃x(τ̃∗), Z̃y(τ̃∗), Z̃z(τ̃∗)
}

{432.1, 553.8, 438.3} the minimum average maintenance cost
rate of each component [Euro / day].

Policy (ii) Values Explanation

Z̃syst(τ̃∗) 12431 the minimum average cost rate of the
system [ Euro / day]

τ̃∗ 25.50 the optimal maintenance interval of the
system [day]{

A∗x(τ̃∗), A∗y(τ̃∗), A∗z(τ̃∗)
}

{51.0, 76.5, 76.5} the optimal PM threshold on the age of
each component [day]{

Z̃x(τ̃∗), Z̃y(τ̃∗), Z̃z(τ̃∗)
}

{172.4, 217.3, 133.8} the minimum average maintenance cost
rate of each component [Euro / day].

interval of Policy (i) is much smaller than our policy, because a shorter maintenance
interval helps to decrease the expected soft failure costs when no PM actions are
taken. However, the setup cost rate becomes higher when τ is smaller, which further
increases the cost rate at the system level. Policy (ii) suggests a joint maintenance
interval τ̃∗ of 25.50 days and PM thresholds on age A∗i (τ̃

∗) of {51.0, 76.5, 76.5} days.

The average cost rate Z̃syst(τ̃
∗) is 12431 Euros per day. A shorter maintenance interval

increases the setup cost rate, which leads to a higher cost rate at the system level.
Policy (ii) performs worse than our condition-based maintenance policy, because the
maintenance optimization is solely based on the failure time distribution, instead of
the continuously monitored condition. In this numerical example, our policy with
Zsyst(τ

∗) = 7424 outperforms not only Policy (i) with Z̃syst(τ̃
∗) = 36817, but also

Policy (ii) with Z̃syst(τ̃
∗) = 12431.

To show the cost saving potential under different parameter settings, we used the
same test bed design as in Section 2.5. For each instance, the minimum average cost
rate Z̃∗syst of Policy (i) and (ii) is compared with the minimum average cost rate of
our proposed model Z∗syst under the same parameter setting. The percentage of extra
cost 4 and the optimal joint maintenance interval of two policies τ̃∗ are presented in
Table 2.7.

As shown in Table 2.7, the first insight is that all percentages of extra costs are
positive. The average of the percentages is 448% compared with Policy (i) and 43%
compared with Policy (ii). Hence, we conclude that the cost saving potential of
our proposed policy is considerable under various parameter settings. In the test
bed, we have 3 levels for each factor. In the summarized results in Table 2.8, for
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Table 2.7 Results of the test bed of cost saving potential.

Policy (i) Policy (ii) Policy (i) Policy (ii)
Λ {4, τ̃∗} {4, τ̃∗} Λ {4, τ̃∗} {4, τ̃∗}

(a1, b1, c1, d1) {528%, 6.72} {116%, 47.6} (a2, b2, c2, d3) {442%, 5.48} {16%, 49.5}
(a1, b1, c1, d2) {667%, 5.80} {32%, 27.7} (a2, b2, c3, d1) {294%, 8.02} {57%, 35.7}
(a1, b1, c1, d3) {738%, 5.65} {17%, 48.3} (a2, b2, c3, d2) {417%, 6.95} {24%, 45.6}
(a1, b1, c2, d1) {441%, 9.44} {76%, 48.3} (a2, b2, c3, d3) {461%, 6.73} {15%, 49.6}
(a1, b1, c2, d2) {652%, 8.32} {24%, 44.2} (a2, b3, c1, d1) {374%, 3.78} {104%, 34.3}
(a1, b1, c2, d3) {731%, 8.10} {16%, 48.5} (a2, b3, c1, d2) {407%, 3.20} {27%, 44.8}
(a1, b1, c3, d1) {395%, 11.6} {57%, 48.9} (a2, b3, c1, d3) {445%, 3.09} {16%, 49.1}
(a1, b1, c3, d2) {626%, 10.2} {22%, 44.4} (a2, b3, c2, d1) {362%, 5.31} {78%, 34.5}
(a1, b1, c3, d3) {708%, 9.95} {16%, 48.7} (a2, b3, c2, d2) {475%, 4.54} {31%, 45.0}
(a1, b2, c1, d1) {616%, 4.66} {127%, 44.1} (a2, b3, c2, d3) {497%, 4.41} {16%, 49.2}
(a1, b2, c1, d2) {809%, 3.97} {35%, 43.5} (a2, b3, c3, d1) {342%, 6.50} {60%, 34.7}
(a1, b2, c1, d3) {840%, 3.84} {17%, 48.1} (a2, b3, c3, d2) {474%, 5.60} {24%, 45.1}
(a1, b2, c2, d1) {531%, 6.56} {84%, 44.6} (a2, b3, c3, d3) {524%, 5.41} {15%, 49.3}
(a1, b2, c2, d2) {766%, 5.65} {24%, 43.8} (a3, b1, c1, d1) {205%, 6.72} {117%, 39.3}
(a1, b2, c2, d3) {859%, 5.48} {16%, 48.3} (a3, b1, c1, d2) {190%, 5.80} {25%, 47.5}
(a1, b2, c3, d1) {470%, 8.02} {59%, 45.1} (a3, b1, c1, d3) {220%, 5.65} {19%, 50.9}
(a1, b2, c3, d2) {751%, 6.95} {22%, 44.0} (a3, b1, c2, d1) {169%, 9.44} {76%, 39.6}
(a1, b2, c3, d3) {851%, 6.73} {16%, 48.4} (a3, b1, c2, d2) {208%, 8.32} {24%, 47.7}
(a1, b3, c1, d1) {684%, 3.78} {134%, 42.2} (a3, b1, c2, d3) {234%, 8.10} {16%, 51.0}
(a1, b3, c1, d2) {885%, 3.20} {35%, 43.2} (a3, b1, c3, d1) {155%, 11.6} {60%, 39.8}
(a1, b3, c1, d3) {916%, 3.09} {20%, 30.6} (a3, b1, c3, d2) {217%, 10.2} {23%, 47.8}
(a1, b3, c2, d1) {601%, 5.31} {89%, 42.6} (a3, b1, c3, d3) {236%, 9.95} {13%, 51.1}
(a1, b3, c2, d2) {851%, 4.54} {24%, 43.4} (a3, b2, c1, d1) {252%, 4.66} {128%, 37.2}
(a1, b3, c2, d3) {956%, 4.41} {16%, 48.1} (a3, b2, c1, d2) {224%, 3.97} {26%, 46.6}
(a1, b3, c3, d1) {551%, 6.50} {67%, 43.0} (a3, b2, c1, d3) {245%, 3.84} {15%, 50.4}
(a1, b3, c3, d2) {843%, 5.60} {22%, 43.6} (a3, b2, c2, d1) {216%, 6.56} {83%, 37.4}
(a1, b3, c3, d3) {957%, 5.41} {16%, 48.2} (a3, b2, c2, d2) {255%, 5.65} {25%, 46.7}
(a2, b1, c1, d1) {288%, 6.72} {98%, 36.7} (a3, b2, c2, d3) {278%, 5.48} {15%, 50.5}
(a2, b1, c1, d2) {320%, 5.80} {27%, 45.9} (a3, b2, c3, d1) {206%, 8.02} {66%, 37.6}
(a2, b1, c1, d3) {349%, 5.65} {16%, 49.7} (a3, b2, c3, d2) {272%, 6.95} {24%, 46.9}
(a2, b1, c2, d1) {253%, 9.44} {69%, 37.0} (a3, b2, c3, d3) {298%, 6.73} {14%, 50.5}
(a2, b1, c2, d2) {336%, 8.32} {25%, 46.1} (a3, b3, c1, d1) {285%, 3.78} {133%, 36.0}
(a2, b1, c2, d3) {369%, 8.10} {15%, 49.8} (a3, b3, c1, d2) {299%, 3.20} {44%, 46.0}
(a2, b1, c3, d1) {230%, 11.6} {53%, 37.3} (a3, b3, c1, d3) {273%, 3.09} {15%, 50.0}
(a2, b1, c3, d2) {341%, 10.2} {24%, 46.3} (a3, b3, c2, d1) {252%, 5.31} {88%, 36.2}
(a2, b1, c3, d3) {377%, 9.95} {15%, 50.0} (a3, b3, c2, d2) {289%, 4.54} {25%, 46.1}
(a2, b2, c1, d1) {346%, 4.66} {106%, 35.2} (a3, b3, c2, d3) {317%, 4.41} {15%, 50.1}
(a2, b2, c1, d2) {414%, 3.97} {39%, 45.3} (a3, b3, c3, d1) {244%, 6.50} {70%, 36.3}
(a2, b2, c1, d3) {404%, 3.84} {16%, 49.4} (a3, b3, c3, d2) {313%, 5.60} {24%, 46.2}
(a2, b2, c2, d1) {314%, 6.56} {74%, 29.8} (a3, b3, c3, d3) {343%, 5.41} {15%, 50.2}
(a2, b2, c2, d2) {396%, 5.98} {67%, 25.5}
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Table 2.8 Summary of cost saving

Policy (i) Policy (ii)
4mean 4min 4max 4mean 4min 4max

Λa1 712% 395% 957% 45% 16% 134%
Λa2 382% 230% 525% 41% 15% 106%
Λa3 249% 155% 344% 45% 13% 133%
Λb1 378% 155% 738% 41% 13% 117%
Λb2 455% 206% 859% 44% 15% 127%
Λb3 510% 244% 957% 46% 15% 134%
Λc1 453% 190% 916% 56% 15% 134%
Λc2 449% 169% 956% 41% 15% 89%
Λc3 441% 155% 957% 34% 13% 70%
Λd1 356% 155% 684% 87% 53% 134%
Λd2 473% 190% 885% 28% 22% 44%
Λd3 514% 220% 957% 16% 13% 20%

each level of a certain factor, we categorize the instances containing a specific level
of a certain factor into a subset. For example, a subset of instances containing
a1 is defined as Λa1 =

{
(a1, bj , cl, dk)|∀j, l, k ∈ {1, 2, 3}

}
,Λa1 ⊂ Λ. Table 2.8

shows the means, minimums and maximums of extra cost percentages (4mean, 4min
and 4max respectively) of these 12 subsets. Generally speaking, Policy (ii) with
preventive maintenance outperforms Policy (i) without preventive maintenance, which
is intuitively sensible. Also notice that if βi is larger or the variance of the life time
distribution is lower, the mean of 4 in comparison with Policy (ii) is significantly
lower, which makes our policy much less attractive.

Also shown in Table 2.7, for both policies, the optimal maintenance interval τ̃∗

decreases and cost saving potential 4 increases when cPi increases. This implies
that it is economically beneficial to have shorter maintenance intervals and more
frequent maintenance setups to avoid increasing soft failure costs. On the contrary, it
is more sensible to have longer maintenance intervals and less frequent maintenance
setups when the setup cost S is more expensive. A larger βi implies a lower variance
in the distribution of degradation rate. In Policy (i), a larger βi leads to lower τ̃∗.
This is because the expected maintenance cycle length decreases in a higher βi and
the decreasing rate becomes faster in a higher τ̃ (see Subsection 2.A.1). Hence, the
average cost rate at the component level grows increasingly fast over τ̃ . To have a
lower average cost rate at the system level, a lower τ̃∗ is more economically beneficial.
Also notice that there is no control limit or PM actions in Policy (i). On one hand,

the optimal cost rate Z̃∗syst and τ̃∗ remain unchanged in Policy (i). On the other
hand, as explained in Section 2.5, the optimal cost rate of our proposed policy Z∗syst
increases with a higher cPMi . Hence, 4 decreases when cPMi increases.
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2.7 Conclusions

In this chapter, we proposed a new condition-based maintenance model for multi-
component systems with continuous stochastic deteriorations. In order to reduce
the high setup cost of maintenance for multi-component systems, we used a
joint maintenance interval τ to coordinate the maintenance tasks. In addition,
we introduced the control limits Ci on the degradation levels of components to
trigger the preventive maintenance actions. The optimal maintenance control limits
of components and the optimal joint maintenance interval were determined by
minimizing the long-run average cost rate related to maintenance and failures. A
nested enumeration approach was proposed to solve this large-scale optimization
problem. We first decomposed the optimization of the system into the optimization
at the individual component level to obtain the optimal Ci for a given τ . Afterwards,
we enumerated τ to find the minimum average maintenance cost rates of the system.
The numerical example for a production system demonstrated that our model and the
nested enumeration approach can be applied on complex systems with a large number
of non-identical components. Comparing with a failure-based maintenance policy and
age-based maintenance policy, our maintenance policy has a considerable cost-saving
potential. Moreover, a sensitivity analysis of full factorial design was conducted to
investigate the influence of different parameter settings on the optimal solutions.

Our model can be utilized to solve the maintenance scheduling problems of various
engineering systems with a large number of non-identical components (e.g., production
lines), because 1) it is convenient in practice to implement such a static maintenance
interval for planning; 2) different physics of failures and degradations models can be
adopted by the formulation of our optimization model; 3) our model can be integrated
with different maintenance policies (e.g., age-based maintenance, periodic inspection)
due to the static maintenance interval.

The limitation of our model includes 1) the degradation processes of components
are assumed to be independent; 2) the effect of hard failures has not been taken into
account. For future research, the maintenance interval can be dynamic, rather than
static, in order to further reduce the long-run average cost rate. Another possible
extension of the model is to consider the system structures or the dependency of
components in the systems. Moreover, the effect of hard failures on the maintenance
policies of complex systems can also be investigated, since many components in a
system are subject to multiple failure processes (e.g., random shocks, wear-out, and
crack growth).
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2.A Appendices

2.A.1 Description of two comparison policies

1) Failure-based maintenance policy:
When the degradation of one component Xi(t) in the system reaches Hi, a CM action
is taken. For each component i ∈ I, the failure-based maintenance policy implies that
there is no PM action taken, so that no control limit Ci is set on the degradation
before Hi is reached (see Figure 2.1). Or equivalently, Ci = Hi. The optimization
algorithm of our model in Subsection 2.3.2 remains unchanged in essence. Equation
(2.6), (2.7), (2.11), (2.12) and (2.13) are derived as follows,

Pr{PM at nτ̃} = 0

Pr{CM at nτ̃} = Pr{(n− 1)τ̃ ≤ THi < nτ̃}

E
[
Ki(τ̃)

]
=

∑
n∈N

[
Pr{PM at nτ̃}cPMi + Pr{CM at nτ̃}cCMi + E

[
Di(τ̃)

]
cPi

]

= cCMi +

(∑
n∈N

E
[
Di(τ̃)

])
cPi

E
[
Di(τ̃)

]
=

∫ nτ̃

(n−1)τ̃

(nτ̃ − x) fTHi (x)dx

E
[
Li(τ̃)

]
=
∑
n∈N

nτ̃Pr{(n− 1)τ̃ ≤ THi < nτ̃}

2) Age-based maintenance policy:
Unlike the failure-based maintenance policy, PM actions are taken at joint mainte-
nance time point nτ̃ , n ∈ N according to a threshold Ai on the age of component i. It
is almost the same to our proposed policy in Section 2.2, except the ages of components
are observed, instead of the condition degradation. Notice the assumptions in
Subsection 2.2.2 are also valid. Since PM actions are taken at a joint maintenance
time point to save setup costs, the decision variable Ai should be a multiple of τ̃ , i.e.,
Ai = kiτ̃ . Hence, if there is no failure before Ai, a PM action will be performed at
Ai which is also a joint maintenance point. Otherwise, if there is a failure, a CM
action will be performed at the next closest joint maintenance point, similarly to
the maintenance policy proposed in this chapter. The optimization algorithm of this
age-based maintenance policy is also similar to the one proposed in Subsection 2.3.2,
except Equation (2.11), (2.12) and (2.13) are derived as follows,
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E
[
Ki(τ̃ , Ai)

]
=

∫ ∞
kiτ̃

fTHi (x)dx cPMi +

∫ kiτ̃

0

fTHi (x)dx cCMi + E
[
Di(τ̃ , Ai)

]
cPi ,

E
[
Li(τ̃ , Ai)

]
=

∫ ∞
kiτ̃

kiτ̃ fTHi (x)dx+

ki∑
n=1

∫ nτ̃

(n−1)τ̃

nτ̃fTHi (x)dx,

E
[
Di(τ̃ , Ai)

]
=

ki∑
n=1

∫ nτ̃

(n−1)τ̃

(nτ̃ − x)fTHi (x)dx,

and fTHi (x) is the probability density function of the failure time (Ci = Hi in Equation
(2.14)). Notice that the distribution of the failure time is the same as the distribution
of the passage time of Hi, because a soft failure occurs when the degradation process
crosses the threshold Hi.

2.A.2 The average cost rate of a single component over two
decision variables Ci and τ

To show how the objective function varies with two decision variables Ci and τ , we
plot the average cost rate of component 1, a function of C1 and τ in Figure 2.5, as an
example.

2.A.3 Optimization algorithm

The procedure of the nested enumeration algorithm can be summarized in Algorithm
1. Notice different grid sizes can be used for optimizing Ci and τ , which will also
affect the computational duration. In this chapter, we use the grid size Hi/100 and
Mτ/300 for Ci and τ respectively. The upper bound Mτ is a very large value (at least
larger than maxi∈I{Gi}.). In this chapter, we choose Mτ = 300 days.

2.A.4 Computation performance

Instead of optimizing Ci(τ) and τ simultaneously, we used a nested approach. Namely,
we i) optimize Ci(τ) for each component under a given τ and then ii) optimize τ for
the system. The motivation of such a decomposition is to reduce the computation
time of large-scale problems. When the amount of components in a system is large,
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Figure 2.5 Average cost rate on component 1 over τ and C1 (Top: 3D plot; Down: contour
plot)

the solution space of decision variables increases dramatically.

For example, a system consisting of two components (i ∈ {1, 2}) is considered in our
optimization model. For each component, we optimize the Ci(τ) ∈ (0, H). Suppose
we discretise the degradation range (0, H) into 10 grids with a grid size H/10. The
size of the solution space (C1, C2) at a given τ value is 102. In the case of this two-
component system, it is plausible to optimize τ and Ci simultaneously. However, if a
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Algorithm 1 Nested optimization algorithm.

Initialize
for all τ ∈ (0,Mτ ] do

for all i ∈ I do
for all Ci ∈ [φi,1, Hi] do

Zi(τ, Ci) =
E

[
Ki(τ,Ci)

]
E

[
Li(τ,Ci)

]
end for
C∗i (τ) = argmin{Zi(τ, Ci)}, i ∈ I

end for
Zsyst(τ) = S

τ +
∑
i∈I Z

∗
i (τ)

end for
Find τ∗ = argmin{Zsyst(τ)}
Results: optimal maintenance policy {τ∗, C∗i (τ∗)},∀i ∈ I

system consists of 50 components, then the size of its solution space will be 1050 under
each given τ , which is nearly impossible to solve within a short period. Therefore, it is
not efficient to optimize τ and Ci simultaneously. To solve such a large-scale problem
within a reasonable computation time, we propose a nested approach to decompose
the problem at system level into component level (see Section 2.3.2 ). This approach
will reduce the solution space to 10 × 50 under a given τ . Regarding the numerical
example in Section 2.4, the code is built in MATLAB with the runtime of 4.6 × 103

seconds (by a computer with a 2.5 GHz processor and 4 G RAM) .



Chapter 3

An Opportunistic Maintenance Policy
for Components Under Condition
Monitoring in Complex Systems

“There is only one kind of shock worse than
the totally unexpected: the expected for
which one has refused to prepare.”

Mary Renault
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3.1 Introduction

In the industry of advance capital goods (e.g., aviation, oil-gas refinery, energy plant,
automotive), it is usually not feasible to implement CBM for all components in a
complex engineering system. Instead, there are only a few very critical components
in the system that are under condition monitoring continuously. However, these
critical components have large impacts on the system in terms of costs. In this
case, the opportunistic maintenance policies are more useful for synchronizing the
maintenance actions of those components, together with the maintenance actions of
the entire systems. The rest of the components in the system may be subject to
different maintenance policies (e.g., failure-based maintenance, periodic preventive
maintenance, etc). Hence, it is a challenging problem to coordinate different
maintenance actions for a complex engineering system.

Before solving a multi-component problem, one needs to solve a single-component
problem first. The literature of condition-based maintenance models at single-
component level has been explained in Section 1.4 (see block A in Table 1.2).
Wang proposed a CBM model based on the general random coefficient model [33]
to determine the optimal control limit and the monitored interval in terms of cost,
downtime and reliability. This work is closely related with our model in this chapter.
For example, in both models, degradation paths are modeled by random coefficient
model with 1) a pre-set failure level and 2) a preventive maintenance level as a
decision variable. The clear difference is that our model included the opportunities
from other components in the system, but Wang’s work did not. After reviewing
the CBM literature for multi-component systems (block B and C in Table 1.2 of
Section 1.4), it is surprising to find that very little attention has been paid on CBM
models in the context of opportunistic maintenance, which also coincides with the
findings of Koochaki et al. [28]. They studied the cost effectiveness of condition-
based and age-based maintenance in the context of opportunistic maintenance, by
considering a three-component series system. Unlike their research considering only
the unscheduled opportunities, our model included both scheduled and unscheduled
opportunities. There are also some studies including both scheduled and unscheduled
opportunities (see [29, 50]). However, they are not condition-based models, but age-
based models.

Regarding the contribution of this chapter, we propose a new opportunistic main-
tenance policy for a monitored component to minimize the downtime cost and
setup cost of maintenance. The uniqueness of our opportunistic maintenance
policy is the coordination of maintenance actions for a single CBM component, by
considering opportunities from both i) scheduled system downs at predetermined
time points and ii) unscheduled system downs at random time points (i.e., a large
portion of the components in the system are subject to failure-based maintenance
policies and periodic preventive maintenance policies). This coordination has
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rarely been discussed in the literature of CBM policies. However, for a complex
engineering system in practice, different maintenance policies are employed for
different components due to the diverse characteristics of components. For example,
some electronic parts (e.g., circuit board, current adapter) can be under the failure-
based maintenance policy, since their failure times follow exponential distributions.
On the other hand, some parts in the system can be under the periodic preventive
maintenance policy due to the fact that the conditions of the components are too
difficult to be measured. Under such circumstances, if we can combine the CBM
activities of this monitored component with other components that are under failure-
based maintenance policy (i.e., unscheduled opportunities) and periodic preventive
maintenance policy (i.e., scheduled opportunities), the downtime cost and setup
cost of maintenance for this monitored component will be reduced/eliminated.
Thus, we introduce a control limit for the monitored component, so that when
the degradation level of this component exceeds the control limit we will take the
appeared opportunities from other maintenance policies and jointly maintain this
monitored component with other components. Based on renewal theory, the long-
run average cost rate of maintenance for this component is evaluated and minimized
by optimizing the control limit of opportunistic maintenance. Notice that the cost
rate evaluation is approximate, because renewal theory implies that the time points
of periodic preventive maintenance are rescheduled after each maintenance action
taken. However, in practice, the periodic preventive maintenance actions are planned
in advance. Hence, we also verify the accuracy of the approximate evaluation by
comparing with simulated evaluation under various parameter settings. Moreover,
we investigate the cost saving potential of using opportunities at USDs or/and SDs
under various parameter settings.

The outline of this chapter is as follows. The description of the system and the
assumptions are explained in Section 3.2. The details of the mathematical model
are given in Section 3.3. In Section 3.4, a numerical case of lithography machines in
semiconductor industry is studied. Moreover, in Section 3.5, numerical experiments
are performed to investigate the accuracy of our model and the cost-saving potential
under various parameter settings. Finally, the conclusions are given in Section 3.6.

3.2 System Description

Consider a complex engineering system consisting of multiple components. One crit-
ical component is monitored continuously and maintained according to a condition-
based maintenance policy. We call such a component a “CBM component”. The
degradation state of the CBM component X(t) can be monitored continuously over
time t, t ∈ [0,∞). When the degradation state X(t) exceeds a predetermined warning
limit H, the system operates under an unsatisfied condition. Hence, a maintenance
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action will be triggered immediately to restore the degradation level of the CBM
component to its initial level. Such a system down due to the maintenance of the
CBM component is called “CBMD” (see Figure 3.1). In this model, the warning limit
H is a given parameter from the experts, who have the knowledge on the physics of
failures.

Apart from this CBM component, all other components in the system are subject
to either a corrective maintenance or a periodic maintenance policy:

• Failure-based maintenance policy : For the components that are under a failure-
based maintenance policy, the maintenance or replacement will be conducted
immediately after the failure of the component. This will lead to unscheduled
downs (USDs) of the system (see Figure 3.1). We assume that the inter arrival
time of the failures follow an exponential distribution with its rate λ, so that
the corrective maintenance actions causes USDs that can be modeled as an
homogeneous Poisson process. According to the Palm-Khintchine theorem
[46], even if the failure times of some components do not follow exponential
distributions, the combination of a large amount of non-Poisson renewal
processes will still have Poisson properties. Hence, this assumption about
corrective maintenance is realistic if a sufficiently large amount of components
in the system is under a failure-based maintenance policy.

• Periodic maintenance policy : In the industries of advance capital goods (e.g.,
aviation, oil-gas refinery, energy, automotive), periodic maintenance actions
(e.g., inspection, cleaning, lubrication) for the system are taken every fixed
interval τ [54]. This is a common practice in industry, due to the convenience
of planning and coordination of maintenance resources (e.g., service engineers,
maintenance equipments, spare parts). τ is a given parameter in our model,
which can be determined by industrial regulations. For example, the automotive
industry often recommends annual inspections on cars (τ = 1 year), which leads
to scheduled downs (SDs) of the system (see Figure 3.1).

When a system down occurs (e.g., USD, SD, or CBMD), the system operation
will be interrupted and it will cause a high downtime cost for the system. Also,
a setup cost of maintenance will be incurred, such as sending maintenance crews
to the field. To save the downtime costs and setup costs for the multi-component
system, it can be beneficial to combine preventive maintenance actions of multiple
components opportunistically, which is also known as opportunistic maintenance. In
this model, we use the system downs caused by corrective maintenance (at USD)
and periodic maintenance (at SD) as opportunities to do preventive maintenance
actions for this CBM component before X(t) reaches the warning limit H (see Figure
3.2). Consequently, the setup cost and downtime cost of this CBM component will be
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Figure 3.1 The maintenance policy of one CBM component, given the reliability information
of the system

reduced by taking advantage of the opportunities. As a drawback of this opportunistic
preventive maintenance, the useful lifetime of this CBM component will be shortened.
In this chapter, we distinguish three types of maintenance actions on this CBM
component:

1. Corrective Maintenance at a CBMD (CM): when the system stops due to a
CBMD, namely, at the time point t = inf{t : X(t) > H} (see Figure 3.2), a
corrective maintenance (CM) action is taken with a cost cCM , which includes
maintenance setup cost and downtime cost.

2. Preventive Maintenance at an USD (PM-USD): when the system stops at time
t due to an USD, it provides an opportunity for the CBM component to
be maintained together with components under the failure-based maintenance
policy at this USD. If the degradation X(t) exceeds a control limit C (X(t) ≥ C,
see Figure 3.2), a preventive maintenance (PM) action will be taken with a cost
cPM−USD. Notice that cPM−USD < cCM , because the maintenance setup cost
and downtime cost of the CBM component can be eliminated or reduced, if
we take the opportunity at USD to jointly maintain this CBM part. This
opportunity will not be taken by the CBM component if X(t) < C.

3. Preventive Maintenance at a SD (PM-SD): when the system stops due to a SD
at time nτ , n ∈ N; it provides an opportunity for the CBM component to be
maintained together with components under the periodic maintenance policy at
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this SD. If the degradation X(t) exceeds a control limit C (X(t) ≥ C, see Figure
3.2), a preventive maintenance (PM) action will be taken at this SD with a cost
cPM−SD. Notice that cPM−SD < cCM , because the maintenance setup cost and
downtime cost of the CBM component will be eliminated or reduced, if we take
the opportunity at SD to jointly maintain this CBM part. This opportunity
will not be taken by the CBM component if X(t) < C.

Figure 3.2 The degradation of the CBM component with three maintenance actions in practice

The periodic maintenance at time points nτ , n ∈ N with maintenance interval τ (in
terms of days or weeks) is small compared with the long life cycles (from 10 to 20
years) of complex engineering systems. Hence, an infinite time horizon is assumed.
Moreover, we assume that the CBM component is restored as good as new by any
maintenance action (CM, PM-USD or PM-SD), as shown in Figure 3.2. The intervals
between two consecutive maintenance actions is defined as maintenance cycles. Hence,
the maintenance cycle length of the CBM component depends on the ending point of
the previous maintenance cycle and the maintenance action in current maintenance
cycle (see Figure 3.2):

1. if a corrective maintenance action is taken on the CBM component, the
maintenance cycle length is equal to the passage time that X(t) exceeds H
(i.e., TH);

2. if a preventive maintenance action is taken at an USD, the maintenance cycle
ends at the time point that the first USD of other components occurs after the
degradation exceeds C (i.e., TC+TUSD, where TUSD is exponentially distributed
with a rate λ) due to the memoryless property of the Poisson process.

3. if a preventive maintenance action is taken at a SD, the maintenance cycle ends
at the time point that the first SD occurs after the degradation exceeds C.
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Figure 3.3 The degradation of the CBM component with three maintenance actions in renewal
theory

Notice that if we assume that periodic maintenance is rescheduled at the end of
each maintenance cycle of the CBM component (see Figure 3.3), the renewal theory
can be applied to evaluate the long-run average cost rate of the CBM component.
Consequently, the end points of maintenance cycles are the renewal points. However,
the schedule of periodic maintenance for other components is usually planned in
advance, which can not be changed due to the maintenance of the CBM component
(see Figure 3.2). In other word, the renewal theory is exact only in the case that
the previous maintenance cycle ends with a PM-SD. Hence, the renewal theory is not
an exact method to evaluate the long-run average cost rate of the CBM component,
but an approximation. In this chapter, we first assume the schedule of periodic
maintenance restarts at every maintenance point of the CBM component (see Figure
3.3), so that renewal theory can be used to evaluate the long-run average cost rate
approximately. This implies that we assume all maintenance cycles start at time
points nτ, n ∈ N. Based on this approximate evaluation, an optimization model of
the opportunistic maintenance policy is proposed to minimize the long-run average
cost rate by specifying the control limit C. The simulated evaluation of the long-run
average cost rate (see Figure 3.2) is performed in the case study in Section 3.4.

3.2.1 Notation

X(t) : degradation of the CBM component over time t
τ : interval of scheduled downs
λ : arrival rate of unscheduled downs (a Poisson process)
C : control limit on the degradation level (decision variable)
H : CM threshold on the degradation level
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Z(C) : average cost rate of the CBM component
cPM−USD : PM cost of the CBM component at unscheduled system downs
cPM−SD : PM cost of the CBM component at scheduled system downs
cCM : CM cost of the CBM component

3.2.2 Assumptions

1) The degradation of the CBM component is independent of scheduled and
unscheduled downs caused by other components in the system.
2) The time horizon is infinite.
3) Maintenance actions restore the conditions of components back to their initial
degradation levels. (also known as “repair-as-new”).

3.3 Approximate Evaluation

The probabilities of the three maintenance actions on the CBM component in a
maintenance cycle mentioned in Section 3.2 are derived in Subsection 3.3.1. Using
the analytical results obtained in Subsection 3.3.1, we evaluate the long-run average
cost rate of the CBM component in Subsection 3.3.2, by deriving the expected cost
in a maintenance cycle and the expected cycle length. The optimization model is
formulated at the end of this section.

3.3.1 Degradation model

Let X(t̂) denotes the degradation of the CBM component at time t̂ ∈ [0,∞) in one
maintenance cycle. Notice that the degradation process can be described by many
different kinds of stochastic processes, e.g., random coefficient model, Gamma process,
Brownian Motion or Markov Process. If the degradation process is monotonic, the
probability that the degradation at time t̂ exceeds a threshold χ is equal to the
probability that the passage time Tχ of the threshold χ is less than time t̂:

Pr{Tχ ≤ t̂} = Pr{X(t̂) ≥ χ}, (3.1)

which is also equal to FTχ(t̂), the cumulative density function (c.d.f.) of the passage
time Tχ. Hence, the c.d.f. and p.d.f. (probability density function) of the passage
TC and TH can be derived based on the degradation process X(t̂), given C and H
respectively. Since we assume the degradation X(t̂) is monotonic, X(t̂) will first
cross the control limit C before reaching H (i.e., TC < TH). The CBM component
is eligible for preventive maintenance, only if C < X(t̂) < H. In other words, if
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there are opportunities between TC and TH for the CBM component to do joint
maintenance with other components, we will take the first opportunity to maintain
the CBM component preventively, together with other components. If no opportunity
appeared between TC and TH , we have to maintain the CBM component by CM, once
X(t̂) crosses the warning limit H (i.e., at the time point TH).

We consider TC occurs in a certain interval between the two periodic maintenance
actions (n − 1)τ ≤ TC < nτ, n ∈ N, namely, when X(t̂) reaches C at the time point
u ∈

[
(n − 1)τ, nτ

)
. The p.d.f. of TC is fTC (u) du. Notice the passage time TH

depends on the TC . Given that TC = u, the conditional p.d.f of TH is fTH |TC (v|u),
where v ∈ [u,∞). The probabilities of the maintenance actions are analyzed under
the two scenarios:

Scenario 1: (n− 1)τ ≤ TC < nτ and TH < nτ
Given (n−1)τ ≤ TC < nτ , if X(t̂) passes H at the time point v before nτ , i.e., TH = v
and v ∈ [u, nτ), there will be no opportunity due to periodic maintenance. Hence, it
is only possible to take the first opportunity due to corrective maintenance. This will
happen if TC + TUSD ≤ TH , with a probability Pr{TUSD ≤ v − u} = 1 − e−λ(v−u).
Notice that this probability is the conditional probability given that TC = u and
TH = v. Hence, PM-USD happens in this scenario with a probability:∫ u=nτ

u=(n−1)τ

∫ v=nτ

v=u

(1− e−λ(v−u))fTH |TC (v|u) dv fTC (u) du

On the other hand, if no opportunity is taken (i.e., TC + TUSD ≥ TH), a CM will be
taken once X(t̂) reaches H, with a probability:∫ u=nτ

u=(n−1)τ

∫ v=nτ

v=u

e−λ(v−u)fTH |TC (v|u) dv fTC (u) du

Scenario 2: (n− 1)τ ≤ TC < nτ and TH ≥ nτ
Given (n−1)τ ≤ TC < nτ , if X(t̂) passes H at the time point v after nτ , i.e., TH = v
and v ∈ [nτ,∞), there will never be a CM. Instead, the first opportunity caused by
either periodic maintenance or corrective maintenance of other components will be
taken immediately after X(t̂) exceeds C. Hence, if TC + TUSD ≤ nτ , a PM-USD will
be taken on the CBM component. Notice that this probability depends on TC = u
and nτ with a conditional probability Pr{TUSD ≤ nτ − u} = 1− e−λ(nτ−u). Hence,
PM-USD happens in this scenario with a probability:∫ u=nτ

u=(n−1)τ

(1− e−λ(nτ−u))

∫ v=∞

v=nτ

fTH |TC (v|u) dv fTC (u) du

On the other hand, if TC +TUSD ≥ nτ), a PM-SD will be taken at nτ . This happens
with a probability∫ u=nτ

u=(n−1)τ

e−λ(nτ−u)

∫ v=∞

v=nτ

fTH |TC (v|u) dv fTC (u) du
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To summarize, the choice maintenance actions (CM, PM-SD and PM-USD) depend
on which one among TH , nτ and TC + TUSD happens first (see in Section 3.2).
The probabilities of those three types of maintenance actions within a periodic
maintenance interval (n− 1)τ and nτ are

Pr
{
PM − USD in

[
(n− 1)τ, nτ

)}
= Pr

{
(n− 1)τ ≤ TC < TC + TUSD < min (TH , nτ)

}
Pr
{
PM − SD in

[
(n− 1)τ, nτ

)}
= Pr

{
(n− 1)τ ≤ TC < nτ < min (TH , TC + TUSD)

}
Pr
{
CM in

[
(n− 1)τ, nτ

)}
= Pr

{
(n− 1)τ ≤ TC < TH < min (nτ, TC + TUSD)

}

Here we define P1 =
∑∞
n=1 Pr

{
PM−USD in

[
(n−1)τ, nτ

)}
, P2 =

∑∞
n=1 Pr

{
PM−

SD in
[
(n− 1)τ, nτ

)}
and P3 =

∑∞
n=1 Pr

{
CM in

[
(n− 1)τ, nτ

)}
.

P1 =

∞∑
n=1

{∫ u=nτ

u=(n−1)τ

∫ v=nτ

v=u

(1− e−λ(v−u))fTH |TC (v|u) dv fTC (u) du

+

∫ u=nτ

u=(n−1)τ

(1− e−λ(nτ−u))

∫ v=∞

v=nτ

fTH |TC (v|u) dv fTC (u) du
}

P2 =

∞∑
n=1

∫ u=nτ

u=(n−1)τ

e−λ(nτ−u)

∫ v=∞

v=nτ

fTH |TC (v|u) dv fTC (u) du

P3 =

∞∑
n=1

∫ u=nτ

u=(n−1)τ

∫ v=nτ

v=u

e−λ(v−u)fTH |TC (v|u) dv fTC (u) du

(3.2)

The sum of those three probabilities (P1, P2 and P3) is also equal to one. Notice
the aggregation of (n − 1)τ ≤ TC < nτ (n ∈ N, τ ∈ <) implies TC ∈ [0,∞) and∑∞
n=1

∫ u=nτ

u=(n−1)τ
fTC (u) du = 1

3.3.2 Evaluation and optimization

As explained in Section 3.2, the evaluation of the average cost rate via renewal
theory is an approximation, which will be compared with simulation results. The
minimization of the cost rate can be based on the approximate evaluation Z(C) and
simulation Ẑ(Ĉ), which leads to their optimal control limits C∗ and Ĉ∗ respectively.
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According to Equation (3.2), the expected cycle cost K(C) can be derived:

K(C) = P1 c
PM−USD + P2 c

PM−SD + P3 c
CM

=

∞∑
n=1

∫ u=nτ

u=(n−1)τ

{∫ v=nτ

v=u

[
cPM−USD(1− e−λ(v−u)) + (cCM )e−λ(v−u)

]
·

fTH |TC (v|u) dv +
[
cPM−USD

(
1− e−λ(nτ−u)

)
+ (cPM−SD)e−λ(nτ−u)

]
·∫ v=∞

v=nτ

fTH |TC (v|u) dv
}
fTC (u) du

and similarly the expected cycle length L(C) is (also see Subsection 3.A.1)

L(C) =

∞∑
n=1

∫ u=nτ

u=(n−1)τ

{
u+

∫ v=nτ

v=u

(
1

λ

(
1− e−λ(v−u)

))
fTH |TC (v|u) dv

+
1

λ

∫ v=∞

v=nτ

(
1− e−λ(nτ−u)

)
fTH |TC (v|u) dv

}
fTC (u) du (3.3)

According to the renewal theory, the expected cost rate of the CBM component Z(C)
is equal to K(C)/L(C). Hence, the optimization model is formulated as

min
C

Z(C) =
K(C)

L(C)

s.t. 0 < C < H

The objective function is non-linear and different when degradation paths are modeled
by different degradation models. Hence, several non-linear optimization methods may
be used [5], depending on different degradation models.

3.4 Case Study

As a demonstration of our model, we provide a case of lithography machines in
semiconductor industry. The machines are complex engineering systems processing
the pure-silicon-made wafers to semiconductor integrated circuits, also known as
micro-chips. The laser unit in the machine is considered as one of the most important
components, whose degradation is continuously monitored. The measurement of its
physical condition is the output power in Watts. When the degradation of output
power exceeds a certain limit, bad chips are produced and a maintenance action
is needed. Considering the laser unit as the CBM component, the degradation of
output power over time is obtained from the historical data of n laser units. For
each laser unit j = {1, 2, ..., n}, the degradation level xk,j is measured at minute k,
k = {1, 2, ...,m}, where m ∈ N. The time of the last degradation measurement m is
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Figure 3.4 A laser unit in a lithography machine[3]

the same for all laser units.
As mentioned in the literature review in Section 3.1, there are several approaches

to model the stochastic degradation paths of a component (e.g., random coefficient
model, Gamma process, Wiener process or Markov Process). To validate our
model for various degradation paths, we model X(t̂) by two approaches: i) Random
coefficient model [33], because it is relatively flexible and convenient for describing
the degradation paths derived from physics of failures, such as laws of physics and
material science; ii) Gamma process [59], due to its popularity in the literature.
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Fitting Option 1 - Random coefficient model: X(t̂; Φ,Θ) is a random variable given
a set of constant parameters Φ = {φ1, ..., φQ}, Q ∈ N; and a set of random parameters,
Θ = {θ1, ..., θV }, V ∈ N, following certain probability distributions. In order to clarify
the model, we start with a simple degradation path X(t̂; Φ,Θ) = φ1 + θ1t̂

φ2 , where
Φ = {φ1, φ2} and Θ = {θ1}. Equation (3.1) can be written in terms of Fθ1 (the
cumulative density function of random variable θ1, θ1 ≥ 0) as:

Pr{Tχ ≤ t̂} = Pr{φ1 + θ1t̂
φ2 ≥ χ}

= Pr{θ1 ≥
χ− φ1

t̂φ2
}

= 1− Fθ1
(χ− φ1

t̂φ2

)
(3.4)

For example, if the degradation rate θ1 follows a Weibull distribution with a scale
parameter α and a shape parameter β, then the probability density function of the
passage time Tχ is

fTχ(t̂) =
φ2βα

χ− φ1

(
χ− φ1

αt̂φ2

)β+1

exp{−
(
χ− φ1

αt̂φ2

)β
}, t > 0. (3.5)

Notice that φ1 = 0 and φ2 = 1 in the case of this laser unit and the degradation path
reduces to X(t̂) = θ1t̂. Hence, only the parameters α and β need to be estimated. ♦

Fitting Option 2 - Gamma process: if X(t̂) is a Gamma distribution with its initial
degradation level x0 at t̂ = 0. The random increments throughout the process are
independently and identically distributed (i.i.d.) according to a Gamma process with
a scale parameter η and a shape parameter γ. The cumulative density function of the
passage time Tχ is

FTχ(t̂) =
Γ(γt̂, η(χ− x0))

Γ(γt̂)
, (3.6)

where Γ(γt̂) =
∫∞

0
yγt̂−1e−ydy and Γ(γt̂, η(χ− x0)) =

∫∞
η(χ−x0)

yγt̂−1e−ydy [47]. ♦

Besides the degradation parameters (i.e., α, β, γ and η) estimated from the data,
the rest of the input parameters in Table 3.1 are given by the company of lithography
machines [54]. The parameter estimation of the degradation path follows the standard
methods in the literature (see Section A.1 in Appendix A).

Given the input parameters 1 in Table 3.1, the optimal maintenance policy of the
laser unit can be obtained for both the random coefficient model (see Fitting Option
1) and the Gamma process (see Fitting Option 2).

1Due to the regulation of confidentiality from the company, the parameters in this table are
dummy values.
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Table 3.1 The parameter setting

Parameter Explanation

cPM−SD = 26.5 Preventive maintenance due to scheduled downs [thousand Euro]
cPM−USD = 28.8 Preventive maintenance due to unscheduled downs [thousand Euro]

cCM = 44.5 Corrective maintenance [thousand Euro]
τ = 91 The interval of scheduled downs [day]

α = 0.159 Scale parameter of the Weibull distribution
β = 3.73 Shape parameter of the Weibull distribution

{φ1, φ2} = {0, 1} Constant parameters
λ = 8.86 ∗ 10−3 Poisson arrival rate of unscheduled downs [per day]

H = 88 Failure threshold [Watt]
γ = 0.221 Shape parameter of the Gamma distribution
η = 1.85 Scale parameter of the Gamma distribution

The optimal control limit C∗ in terms of a percentage of H can be found by minimizing
the average cost rate Z(C∗) via the approximate evaluation (see Subsection 3.3.2).
As a comparison, we simulate the average cost rate Ẑ (see Subsection 3.A.2) given C∗

as the control limit. Figure 3.5 illustrates the changes of the average cost rate over
the control limit C (relative to H). The results obtained from both the approximate
evaluation and simulation, are shown in Figure 3.5, where the random coefficient
model is used in Figure 3.5 (A) and the Gamma process is used in Figure 3.5 (B).
The numerical results are also given in Table 3.2. Under the use of the random

coefficient model, the optimal maintenance policy obtained via the approximate
evaluation has a control limit that is 85.71% of the threshold (C∗/H = 85.71%)
and a minimum cost rate of 45.09 euro per day (see Figure 3.5-A). In the case of
the Gamma process, the optimal maintenance policy obtained via the approximate
evaluation has a control limit that is 87.18% of H with a minimum cost rate around
40.99 euro per day (see Figure 3.5-B). The confidence interval is also very small in
Figure 3.5. (More details in Subsection 3.A.2).

To further investigate the differences between our approximation model and the
simulation model, Table 3.2 shows: i) the optimal policy obtained via the approximate
evaluation, including the optimal control limit C∗, its minimum cost rate Z(C∗), its

probabilities of three maintenance actions
{
P1, P2, P3

}
and its expected cycle length

L(C∗); ii) the simulation results under the optimal control limit C∗ obtained via

approximate evaluation, where Ẑ(C∗) denotes the average cost rate,
{
P̂1, P̂2, P̂3

}
denotes the probabilities of three maintenance actions and L̂(C∗) denotes the
mean cycle length; iii) the optimal control limit Ĉ∗ obtained via simulation-based
optimization with its minimum cost rate Ẑ(Ĉ∗), its probabilities of three maintenance

actions
{
P̂1, P̂2, P̂3

}
and its mean cycle length L̂(Ĉ∗).

Based on the results in Table 3.2, we observe that the absolute value |
(
Ẑ(C∗) −
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Figure 3.5 Average cost rate [euro per day] over various C
H

. (A) by the random coefficient
model and (B) by the Gamma process

Z(C∗)
)
/Ẑ(C∗)|, denoted by Gap 1, is only 0.16% in the RCM case and 0.05% in

the GP case, which shows that our approximate evaluation model is very close to
the simulation model, under the same C∗ value. The absolute value |

(
Ẑ(Ĉ∗) −

Ẑ(C∗)
)
/Ẑ(Ĉ∗)|, denoted by Gap 2, is only 0.04% in the RCM case and 1.06% in

the GP case. This implies that the deviation of C∗ from Ĉ∗ does not lead to a large
deviation on the simulated cost rate, which is due to the fact that the cost rate Ẑ(C) is
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Table 3.2 The optimal maintenance policies under the parameter setting in Table 3.1
({P1, P2, P3} and {P̂1, P̂2, P̂3} are the probabilities of taking PM-USD, PM-SD and CM actions
obtained via the approximate evaluation and simulation respectively)

in the case of the random coefficient model (RCM)
Approximation Result Simulation Result 1

Z(C∗) = 45.09 [euro per day] Ẑ(C∗) = 45.16± 0.024 [euro per day]
C∗/H = 85.71% C∗/H = 85.71%{

P1, P2, P3

}
= {0.3075, 0.6350, 0.0576}

{
P̂1, P̂2, P̂3

}
= {0.3062, 0.6333, 0.0605}

L(C) = 627.4 [day] L̂(C) = 627.6 [day]
Simulation Result 2

Ẑ(Ĉ∗) = 45.14± 0.021 [euro per day]

Ĉ∗/H = 85.23% |Gap1|: |
(
Ẑ(C∗)−Z(C∗)

)
Ẑ(C∗)

| = 0.16%{
P̂1, P̂2, P̂3

}
= {0.3086, 0.6412, 0.0502} |Gap2|: |

(
Ẑ(Ĉ∗)−Ẑ(C∗)

)
Ẑ(Ĉ∗)

| = 0.04%

L̂(Ĉ∗) = 623.8 [day]

in the case of the Gamma process (GP)
Approximation Result Simulation Result 1

Z(C∗) = 40.99 [euro per day] Ẑ(C∗) = 41.01± 0.051 [euro per day]
C∗/H = 87.18% C∗/H = 87.18%{

P1, P2, P3

}
= {0.3102, 0.6563, 0.0335}

{
P̂1, P̂2, P̂3

}
= {0.3096, 0.6512, 0.0392}

L(C) = 679.76 [day] L̂(C) = 681.98 [day]
Simulation Result 2

Ẑ(Ĉ∗) = 40.57± 0.038 [euro per day]

Ĉ∗/H = 85.75% |Gap1|: |
(
Ẑ(C∗)−Z(C∗)

)
Ẑ(C∗)

| = 0.05%{
P̂1, P̂2, P̂3

}
= {0.3122, 0.6635, 0.0243} |Gap2|: |

(
Ẑ(Ĉ∗)−Ẑ(C∗)

)
Ẑ(Ĉ∗)

| = 1.06%

L̂(Ĉ∗) = 682.79 [day]

flat in the neighborhood of its minimum. Hence, in practice, the optimal maintenance
policy of our approximate evaluation will result in an average cost rate that is very

close to the true minimum cost rate. Also notice that the values of
{
P1, P2, P3

}
and

L(C) via approximation are very close to the simulated values
{
P̂1, P̂2, P̂3

}
and L̂(C).

Therefore, we can conclude that the gaps are small and our approximate evaluation
is accurate in this case study.

3.5 Numerical Experiments

To validate our model under various parameter settings, we conduct the following
numerical experiments based on full factorial test beds. In Section 3.5.1 and 3.5.2, we
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investigate the accuracy of our approximate evaluation. In Section 3.5.3, we evaluate
the cost reduction potential of our proposed policy under various parameter settings.

3.5.1 Accuracy of the approximate evaluation

The accuracy of our approximate evaluation is assessed based on the gap between
the simulation result Ẑ(C) and the approximation result Z(C). We vary four factors
in our test bed: the variable C and three parameters τ , λ and σ 2. Three different
levels of the control limit C as the percentage of the threshold H, {30%, 50%, 70%},
are chosen, and each of the other three parameters has a basic value multiplied
by a set of factors, {50%, 100%, 150%}. The basic values are found back in Table
3.3. Hence, a full factorial test bed is set up and a space of instances is defined,
(Cj , σl, λk, τm) ∈ Λ,∀j, l, k,m = {1, 2, 3}, which leads to |Λ| = 81 instances in the
test bed.

Table 3.3 Parameter setting of the test bed

Parameter Explanation
τ = 0.2 ∗ {50%, 100%, 150%} The interval of scheduled downs
λ = 2 ∗ {50%, 100%, 150%} Poisson arrival rate of unscheduled downs
σ = 1/2 ∗ {50%, 100%, 150%} Standard deviation of component life time

C = {30%, 50%, 70%} Control limit on the degradation level
E[TH ] = 1 Expected component life time
H = 100% Failure threshold

We set the expected life time E[TH ] of the CBM component to be equal to 1, which
normalizes the time unit. By fitting the two moments of the component life time,
the shape and scale parameters of the Weibull distribution in the RCM case (see
Fitting Option 1 in Subsection 3.3.1) and of the Gamma distribution in the GP
case (see Fitting Option 2 in Subsection 3.3.1) can be estimated. To show the
variance of the degradation path, we choose the standard deviation σ as a varying
parameter. Moreover, τ and λ are varied, because they determine the frequency of
the opportunities from PM-USD and PM-SD events (see Section 3.2). The design of
the full factorial test bed is shown in Table 3.3.

Notice that no cost parameter is chosen as factors in this test bed, since the objective
function is fully determined by the probabilities of the three maintenance actions
and the expected cycle length. This also helps to reduce the size of the test
bed. To compare the approximation results and simulation results, we compare the
probabilities of PM-USD, PM-SD and CM and the expected cycle length obtained by
the approximate evaluation

(
P1, P2, P3, L(C)

)
and the simulation

(
P̂1, P̂2, P̂3, L̂(C)

)
2σ2 = E[T 2

H ]− E[TH ]2, where E[TH ] and E[T 2
H ] are the 1st and 2nd moment of the component

life time. σ is the standard deviation of the component life time distribution TH (see Equation (3.5)
and (3.6)). The larger σ is, the larger the variance of the degradation path is.
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respectively; which is similar to Table 3.2 in Section 3.4. To see how much the
approximation results deviate from the simulation results, we define a deviation vector[
δ1, δ2, δ3, δ4

]
=
[
P̂1 − P1, P̂2 − P2, P̂3 − P3, (L̂(C) − L(C))/L̂(C)

]
. The deviation

vectors of 81 instances are shown in Table 3.8, 3.9, 3.10 and 3.11 of Subsection 3.A.3.
There are three levels for each factor in (Cj , σl, λk, τm) ∈ Λ,∀j, l, k,m = {1, 2, 3}.
We categorize the instances containing a specific level of a certain factor into a
subset. For example, a subset of instances containing C1 is defined as ΛC1

={
(C1, σl, λk, τm)|l, k,m ∈ {1, 2, 3}

}
. For each of these subsets, the average of the

absolute deviation vectors (denoted by AAD) and the maximum of the absolute
deviation vectors (denoted by MAD) are summarized in Table 3.4.

Table 3.4 The evaluation of the average absolute difference (AAD) and maximum absolute
difference (MAD) between the simulation results and the approximation results; in the case of
the random coefficient model (RCM) and the Gamma process (GP)

RCM case
|δ1| |δ2| |δ3| |δ4|

{AAD,MAD} {AAD,MAD} {AAD,MAD} {AAD,MAD}
ΛC1

{0.0047, 0.0156} {0.0048, 0.0160} {0.0003, 0.0004} {0.52%, 1.48%}
ΛC2 {0.0030, 0.0143} {0.0031, 0.0149} {0.0005, 0.0007} {0.21%, 1.01%}
ΛC3

{0.0020, 0.0168} {0.0039, 0.0295} {0.0023, 0.0127} {0.12%, 0.62%}
Λσ1 {0.0043, 0.0168} {0.0057, 0.0295} {0.0017, 0.0127} {0.33%, 1.40%}
Λσ2 {0.0028, 0.0148} {0.0034, 0.0151} {0.0009, 0.0053} {0.26%, 1.30%}
Λσ3 {0.0026, 0.0150} {0.0028, 0.0154} {0.0005, 0.0014} {0.26%, 1.48%}
Λλ1

{0.0012, 0.0048} {0.0019, 0.0143} {0.0010, 0.0095} {0.17%, 0.58%}
Λλ2

{0.0031, 0.0109} {0.0038, 0.0209} {0.0011, 0.0122} {0.29%, 1.06%}
Λλ3

{0.0054, 0.0168} {0.0061, 0.0295} {0.0011, 0.0127} {0.39%, 1.48%}
Λτ1 {0.0005, 0.0014} {0.0007, 0.0019} {0.0005, 0.0007} {0.07%, 0.19%}
Λτ2 {0.0031, 0.0140} {0.0031, 0.0138} {0.0004, 0.0007} {0.25%, 0.95%}
Λτ3 {0.0060, 0.0168} {0.0081, 0.0295} {0.0022, 0.0127} {0.53%, 1.48%}
Λ {0.0032, 0.0168} {0.0039, 0.0295} {0.0010, 0.0127} {0.28%, 1.48%}

GP case
|δ1| |δ2| |δ3| |δ4|

{AAD,MAD} {AAD,MAD} {AAD,MAD} {AAD,MAD}
ΛC1

{0.0017, 0.0055} {0.0016, 0.0040} {0.0008, 0.0040} {0.16%, 0.50%}
ΛC2 {0.0017, 0.0078} {0.0069, 0.0314} {0.0066, 0.0294} {0.20%, 0.44%}
ΛC3

{0.0052, 0.0186} {0.0298, 0.0600} {0.0339, 0.0635} {0.37%, 1.12%}
Λσ1 {0.0021, 0.0078} {0.0080, 0.0504} {0.0073, 0.0511} {0.19%, 0.43%}
Λσ2 {0.0034, 0.0186} {0.0125, 0.0516} {0.0141, 0.0598} {0.26%, 0.88%}
Λσ3 {0.0032, 0.0154} {0.0177, 0.0600} {0.0198, 0.0635} {0.29%, 1.12%}
Λλ1

{0.0019, 0.0077} {0.0148, 0.0600} {0.0150, 0.0635} {0.24%, 0.70%}
Λλ2

{0.0030, 0.0186} {0.0119, 0.0509} {0.0137, 0.0598} {0.26%, 1.12%}
Λλ3

{0.0038, 0.0184} {0.0115, 0.0479} {0.0125, 0.0575} {0.24%, 0.88%}
Λτ1 {0.0013, 0.0030} {0.0041, 0.0207} {0.0033, 0.0191} {0.18%, 0.50%}
Λτ2 {0.0026, 0.0097} {0.0144, 0.0600} {0.0148, 0.0635} {0.22%, 0.55%}
Λτ3 {0.0048, 0.0186} {0.0197, 0.0535} {0.0231, 0.0607} {0.34%, 1.12%}
Λ {0.0029, 0.0186} {0.0127, 0.0600} {0.0137, 0.0635} {0.25%, 1.12%}

The first insight from Table 3.4 is that the AAD and MAD of δ1, δ2, δ3 and δ4 are
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small, which implies that our approximate evaluation is accurate under all parameter
settings (including the control limit C). We also observe that the AAD and MAD in
the RCM case are at the magnitude of 10−3 and 10−2, respectively. Compared with
the RCM case, our model in the GP case is less accurate, as its AAD and MAD are
at the magnitude of 10−2 and 10−2 respectively. Notice that the AAD and MAD for
both RCM and GP become larger when τ is larger. This is due to the assumption
that each maintenance cycle starts at a scheduled down in the approximate evaluation.
The larger τ is, the larger the effect of this assumption is.

3.5.2 Heuristic optimization based on the approximate evalu-
ation

The results in Table 3.2 of Section 3.4 show that the optimal policies obtained via
our approximate evaluation and simulation are close to each other, which verifies
the accuracy of the approximate evaluation in the case of lithography machines. In
this subsection, we intend to verify these results further under various parameter
settings in this test bed. Similar to Table 3.2, we evaluate two gaps: i) Gap 1,(
Ẑ(C∗) − Z(C∗)

)
/Ẑ(C∗), shows how much the true cost rate deviates from the

cost rate of the approximate evaluation, by using the optimal control limit of our
approximate evaluation; and ii) Gap 2,

(
Ẑ(Ĉ∗) − Ẑ(C∗)

)
/Ẑ(Ĉ∗), shows how much

the optimal maintenance policy of our approximate evaluation deviates from the true
optimal policy; where C∗ and Ĉ∗ are the optimal control limits of the approximate
evaluation and simulation respectively.

Since we will compare the optimal policies via approximate evaluation with simula-
tion, the control limit C is no longer a factor in the test bed and Table 3.3. Hence,
the space of instances is (σl, λk, τm) ∈ Ω,∀l, k,m = {1, 2, 3}, which leads to |Ω| = 27
instances in the test bed. The cost factors are found back in Table 3.1. The deviation
vectors of 27 instances are shown in Table 3.12 of Subsection 3.A.3. For each factor,
we categorize the instances containing a specific level into a subset. For example, a
subset of instances containing σ1 is defined as Ωσ1

=
{

(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}
}

.
For each of these subsets, the average of absolute deviation is denoted by AAD and
the maximum of the absolute deviation vectors is denoted by MAD. These results are
summarized in Table 3.5 for RCM and GP.

The first insight from Table 3.5 is that the AAD and MAD are reasonably small,
which verifies the accuracy of our approximate evaluation in the neighborhood of the
optimal solution. Regarding Gap 1, the AAD for RCM is smaller than the AAD for
GP, which means the accuracy of the approximate evaluation is higher in the RCM
case than GP. Regarding Gap 2, the AAD for RCM is smaller than the AAD for
GP, which is caused by the lower deviations of Ĉ∗ from C∗ for RCM than for GP.
Compared Gap 1 with Gap 2 for both cases of RCM and GP, we observe that the AAD
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Table 3.5 The average absolute difference (AAD) and the maximum absolute difference (MAD)

between the simulation results and the approximation results for Gap 1, Gap 2 and (Ĉ∗−C∗)/H
; in the case of the random coefficient model (RCM) and the Gamma process (GP)

RCM case

(Ĉ∗ − C∗)/H Gap1 Gap2
{AAD,MAD} {AAD,MAD} {AAD,MAD}

Ωσ1 {0.97%, 6.57%} {0.20%, 0.30%} {0.12%, 0.41%}
Ωσ2 {0.55%, 1.36%} {0.20%, 0.64%} {0.10%, 0.19%}
Ωσ3 {0.90%, 3.72%} {0.17%, 0.35%} {0.14%, 0.33%}
Ωλ1

{0.83%, 3.72%} {0.14%, 0.30%} {0.12%, 0.33%}
Ωλ2

{1.13%, 6.57%} {0.21%, 0.63%} {0.15%, 0.41%}
Ωλ3

{0.45%, 1.36%} {0.22%, 0.64%} {0.10%, 0.17%}
Ωτ1 {0.31%, 1.36%} {0.11%, 0.35%} {0.10%, 0.21%}
Ωτ2 {0.73%, 3.72%} {0.15%, 0.26%} {0.15%, 0.33%}
Ωτ3 {1.37%, 6.57%} {0.32%, 0.64%} {0.11%, 0.41%}
Ω {0.81%, 6.57%} {0.19%, 0.64%} {0.12%, 0.41%}

GP case

(Ĉ∗ − C∗)/H Gap1 Gap2
{AAD,MAD} {AAD,MAD} {AAD,MAD}

Ωσ1 {1.76%, 3.82%} {3.61%, 4.93%} {0.68%, 1.69%}
Ωσ2 {2.67%, 5.45%} {3.98%, 6.76%} {1.03%, 1.74%}
Ωσ3 {3.71%, 7.33%} {3.18%, 7.13%} {1.92%, 3.93%}
Ωλ1

{2.72%, 6.65%} {3.98%, 7.13%} {1.44%, 3.93%}
Ωλ2

{2.53%, 5.14%} {3.56%, 6.90%} {1.11%, 2.79%}
Ωλ3

{2.89%, 7.33%} {3.23%, 6.52%} {1.08%, 2.58%}
Ωτ1 {1.21%, 1.79%} {1.11%, 2.36%} {0.68%, 1.69%}
Ωτ2 {2.17%, 4.30%} {3.59%, 4.70%} {1.33%, 2.73%}
Ωτ3 {4.77%, 7.33%} {6.06%, 7.13%} {1.62%, 3.93%}
Ω {2.72%, 7.33%} {3.59%, 7.13%} {1.21%, 3.93%}

of Gap 2 is smaller than Gap 1. This implies that the deviation of Ĉ∗ from C∗ does not
lead to much deviation on the simulated cost rate under various parameter settings;
even though the inaccuracy of the approximate evaluation (or Gap 1) is sightly higher.
This is due to the fact that the neighborhood of the minimum Ẑ is flat. Hence, in
practice, the optimal maintenance policy of our approximate evaluation is only an
suboptimal solution, where its cost rate is very close to the true optimal cost rate.
Also notice that the AAD and MAD in both cases of RCM and GP become larger
when τ is larger. This is sensible, because we assume that scheduled downs restart
at the end of each maintenance cycle in our approximate evaluation, as explained in
Section 3.2. The larger τ is, the lower the probability that a maintenance cycle ends
at a multiple of τ . Hence, we can conclude that our approximate evaluation is more
accurate at a smaller τ .
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3.5.3 Cost reduction potential

To show the cost benefits of including the opportunities at USDs and SDs for a
continuously monitored component, three policies are considered: 1) an only-SD-
opportunistic policy, which means that only SDs are considered as opportunities and
no opportunistic preventive maintenance actions are taken at USDs; 2) an only-USD-
opportunistic policy, which means that only USDs are considered as opportunities and
no SDs are planned; and 3) a failure-based policy, which means that neither USDs or
SDs are considered as opportunities for preventive maintenance. Notice that Policy 1
can be analyzed as a special case of our policy, where λ = 0; Policy 2 can be analyzed
as a special case of our policy, where τ =∞; and Policy 3 can be analyzed as a special
case of our policy, where C = H.

To show the cost benefits under various parameter settings, we use the same test
bed and parameter settings as in Section 3.5.2. The minimum average cost rate of
our policy that includes opportunities at both USDs and SDs is denoted by Z. The
minimum average cost rates of Policy 1 and 2 are denoted by Z̃1 and Z̃2 respectively.
Notice that no opportunity is considered in Policy 3; so that its cost rate Z̃3 remains
unchanged under different parameter settings, which is 44.5 thousand Euro. We use
Z̃3 as the basis of the comparison.

In total, we have three comparisons: A) the cost saving percentage of including
opportunities at both USDs and SDs, denoted by 4A = (Z̃3 − Z)/Z̃3; B) the cost
saving percentage of using only opportunities at SDs (i.e., Policy 1), denoted by
4B = (Z̃3 − Z̃1)/Z̃3; C) the cost saving percentage of using only opportunities
at USDs (i.e., Policy 2), denoted by 4C = (Z̃3 − Z̃2)/Z̃3. Similar to Subsection
3.5.2, we categorize the instances containing a specific level of a certain factor
into a subset. For example, a subset of instances containing σ1 is defined as
Ωσ1

=
{

(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}
}

. The means, minimums and maximums of
the cost saving percentages of these 9 subsets for both cases of RCM and GP are
summarized in Table 3.6. The result of each instance is shown in Table 3.13 in
Subsection 3.A.3

The first observation from Table 3.6 is that our policy (using opportunities at both
SDs and USDs) has a higher cost-saving potential than Policy 1 (using opportunities
at SDs only), Policy 2 (using opportunities at USDs only) and Policy 3 (using no
opportunities). The mean values of 4A are bigger than 4B and 4C , because more
opportunities for preventive maintenance (cheaper than corrective maintenance) are
included in our policy than in Policy 1 and 2. The mean values of 4B are bigger
than 4C , because the cost of preventive maintenance at a SD is cheaper than at an
USD. Regarding the variation of the mean values under various parameter settings,
we observe that i) 4A is inversely proportional to σ, λ and τ . ii) 4B is inversely
proportional to σ and τ . It remains unchanged to λ, because no USD opportunity
is considered in Policy 1. iii) 4C is proportional to λ and inversely proportional to
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Table 3.6 Summary of the cost saving percentages by using opportunities at USDs and SDs;
including the mean, minimum and maximum values of 4A, 4B and 4C respectively

Cost saving percentage in the case of RCM
4A 4B 4C

mean min max mean min max mean min max
Ωσ1 29.7% 23.0% 35.3% 23.4% 11.6% 31.6% 8.6% 5.1% 11.7%
Ωσ2 28.7% 22.7% 34.7% 22.5% 14.6% 29.7% 8.4% 5.0% 11.5%
Ωσ3 28.5% 23.0% 34.3% 21.9% 16.2% 29.5% 8.2% 4.8% 11.3%
Ωλ1

29.5% 23.7% 35.3% 22.6% 11.6% 31.6% 5.0% 4.8% 5.1%
Ωλ2

28.8% 22.7% 35.0% 22.6% 11.6% 31.6% 8.7% 8.5% 8.9%
Ωλ3

28.5% 22.7% 34.7% 22.6% 11.6% 31.6% 11.5% 11.3% 11.7%
Ωτ1 34.5% 33.7% 35.3% 30.3% 29.5% 31.6% 8.4% 4.8% 11.7%
Ωτ2 29.0% 27.8% 30.9% 23.4% 20.2% 27.0% 8.4% 4.8% 11.7%
Ωτ3 23.4% 22.7% 25.0% 14.1% 11.6% 16.2% 8.4% 4.8% 11.7%
Ω 28.9% 22.7% 35.3% 22.6% 11.6% 31.6% 8.4% 4.8% 11.7%

Cost saving percentage in the case of GP
4A 4B 4C

mean min max mean min max mean min max
Ωσ1 27.4% 23.6% 31.4% 21.0% 16.5% 25.9% 11.5% 8.8% 14.0%
Ωσ2 26.3% 23.0% 30.1% 20.8% 15.4% 26.4% 10.5% 7.5% 13.1%
Ωσ3 26.1% 22.9% 29.7% 20.7% 12.2% 27.9% 9.5% 6.4% 12.4%
Ωλ1

26.7% 22.9% 31.4% 20.8% 12.2% 27.9% 7.6% 6.4% 8.8%
Ωλ2

26.6% 22.9% 31.2% 20.8% 12.2% 27.9% 10.8% 9.8% 11.8%
Ωλ3

26.5% 23.0% 31.0% 20.8% 12.2% 27.9% 13.2% 12.4% 14.0%
Ωτ1 30.2% 29.5% 31.4% 26.7% 25.9% 27.9% 10.5% 6.4% 14.0%
Ωτ2 26.3% 25.6% 27.4% 21.1% 20.6% 21.9% 10.5% 6.4% 14.0%
Ωτ3 23.2% 22.9% 24.0% 14.7% 12.2% 16.5% 10.5% 6.4% 14.0%
Ω 26.6% 22.9% 31.4% 20.8% 12.2% 27.9% 10.5% 6.4% 14.0%

σ. It remains unchanged to τ , because no SD opportunity is considered in Policy 2.
A higher σ means a higher variance in the lifetime distribution of the component,
which leads to a higher probability of having corrective maintenance (more expensive
than preventive maintenance). Hence, the mean values of 4A, 4B and 4C decrease
when σ increases. Moreover, the cost of taking opportunities at SDs is cheaper than
at USDs. On one hand, a higher λ leads to more opportunities at expensive USDs;
on the other hand, a higher τ leads to less opportunities at cheaper SDs. Hence, 4A
decreases when λ or τ increases. For the same reason, a higher τ leads to a lower
4B . However, 4C increases at a higher λ, because only opportunities at USDs are
considered in 4C . In this case, a higher λ leads to more opportunities to take, so
that higher cost saving percentages can be observed. Notice that the aforementioned
observations appear in both cases of RCM and GP.
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3.6 Conclusions

In this chapter, we proposed a new opportunistic maintenance policy for a monitored
component in a complex system, under given scheduled and unscheduled downs of
the system. This opportunistic maintenance policy can be utilized in the context
of a mixture of different maintenance policies, such as failure-based maintenance
policies or/and periodic preventive maintenance policies. As the decision variable of
the model, a control limit is introduced to decide the timing of taking opportunities
to maintain together with other components in the system, which saves the downtime
cost and setup cost of the monitored component. The optimal control limit is
determined such that it minimizes long-run average cost rate of the monitored
component under an infinite time horizon setting.

To validate our model, we compared our approximate evaluation results with the
simulation results. In a case study of lithography machines in the semiconductor
industry, our approximate evaluation is very accurate and the cost-saving potential
of our model is considerable. To verify this finding further, numerical experiments
are executed based on a full factorial test bed. Under various parameter settings, our
model shows a good accuracy and a considerable cost-saving potential.

Our model can be applied to different types of monitored critical components in
different complex engineering systems, because i) different physics of failures and
various degradations models (as Subsection 3.3.1) can be plugged directly into
the optimization model (as Subsection 3.3.2) and ii) our model can be used as a
building block for multi-component systems with a mixture of different maintenance
policies (not only condition-based, but also age-based maintenance or/and periodic
inspection).
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3.A Appendices

3.A.1 Derivation of the expected cycle length

L(C) is formulated as

∞∑
n=1

∫ u=nτ

u=(n−1)τ

{∫ v=nτ

v=u

(∫ s=v−u

s=0

(u+ s)λe−λs ds+ v

∫ s=∞

s=v−u
λe−λs ds

)
fTH |TC (v|u) dv

+

∫ v=∞

v=nτ

(∫ s=nτ−u

s=0

(u+ s)λe−λs ds+ nτ

∫ s=∞

s=nτ−u
λe−λs ds

)
fTH |TC (v|u) dv

}
× fTC (u) du (3.7)

Using integration by part, we can obtain:∫ s=v−u

s=0

(u+ s)λe−λs ds+ v

∫ s=∞

s=v−u
λe−λs ds = u+

1

λ

(
1− e−λ(v−u)

)
and ∫ s=nτ−u

s=0

(u+ s)λe−λs ds+ nτ

∫ s=∞

s=nτ−u
λe−λs ds = u+

1

λ

(
1− e−λ(nτ−u)

)
Hence, L(C) can be rewritten as

∞∑
n=1

∫ u=nτ

u=(n−1)τ

{
u+

∫ v=nτ

v=u

1

λ

(
1− e−λ(v−u)

)
fTH |TC (v|u) dv

+
1

λ

∫ v=∞

v=nτ

(
1− e−λ(nτ−u)

)
fTH |TC (v|u) dv

}
fTC (u) du
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3.A.2 Simulation procedures

As explained in Section 3.1, the periodic maintenance planned on the schedule will
be shifted after each maintenance cycle in our approximate evaluation model, which
is not the case in practice. To evaluate the accuracy of the approximate evaluation,
we run a simulation to compare with the approximation results. We simulate i) the
random failures by a Poisson process with a rate λ and ii) the degradation models
under certain distributions.

IPM−USDk =

{
1 if a PM-USD action is taken
0 otherwise

IPM−SDk =

{
1 if a PM-SD action is taken
0 otherwise

ICMk =

{
1 if a CM action is taken
0 otherwise

There are m seeds in the simulation. In each seed i ∈ {1, 2, ...,m}, we simulate
ki renewal/maintenance cycles, where k ∈ {0, 1, 2, ..., ki} is the index of the cycles.
Each seed i consists of: 1) a Poisson process with random arrival time points
A = {a1, a2, ..., ax} ∈ <x+, x ∈ N, where <+ = [0,∞); 2) a set of random passage
times TCk,i and THk,i ∈ <+,∀k ∈ N, according to the degradation process; and 3)
a constant set B = {τ, 2τ, ..., nτ}, n ∈ N on a time horizon Tmax that is sufficiently
large to simulate the infinite time horizon (e.g., 106 times larger than L(C)).ε is a
very small number (ε = e−4)

By running the algorithm in Table 3.7 iteratively with m seeds, the final result of the

simulation Ẑ =
∑m
i=1 Ẑi
m with a 100(1−α)% confidence interval is expressed as follows

[30]:

Ẑ ± t(1− α/2,m− 1)

√
S2

m

where S =
∑m
i=1

(Ẑi−Ẑ)2

m−1 and t(1−α/2,m− 1) is the upper 1−α/2 critical point for
the t-distribution with (m−1) degrees of freedom (in our case, m = 100 and α = 5%).
The expected cost rate for each simulation run is:

Ẑi =

∑ki
k=1

(
IPM−USDk,i cPM−USD + IPM−SDk,i cPM−SD + ICMk,i c

CM
)

Rki,i
, ∀i ∈ {1, 2, ...,m}
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For i = 1 : m,

Initialize k = 0: Ẑ0 = 0 and R0,i = 0

While Rk,i < Tmax and |Zk,i−Zk−1

Zk,i
| ≥ ε

ki = ki + 1
If ∃ a non-empty subset {Ak,i} ⊆ A : {Ak,i} ⊆ [Rk−1,i+TCk,i , Rk−1,i+THk,i),
If ∃ a non-empty subset {Bk,i} ⊆ B : {Bk,i} ⊆ [Rk−1,i + TCk,i , Rk−1,i +

THk,i),
If min{Ak,i} > min{Bk,i},

Calculate Ẑk,i; given (IPM−USDk,i , IPM−SDk,i , ICMk,i ) = (0, 1, 0) and Rk,i =
min{Bk,i}

Else Calculate Ẑk,i; given (IPM−USDk,i , IPM−SDk,i , ICMk,i ) = (1, 0, 0) and
Rk,i = min{Ak,i}

Else Calculate Ẑk,i; given (IPM−USDk,i , IPM−SDk,i , ICMk,i ) = (1, 0, 0) and Rk,i =
min{Ak,i}

Else

If ∃ a a non-empty subset {Bk,i} ⊆ B : {Bk,i} ⊆ [Rk−1,i + TCk,i , Rk−1,i +
THk,i)

Calculate Ẑk,i; given (IPM−USDk,i , IPM−SDk,i , ICMk,i ) = (0, 1, 0) and Rk,i =
min{Bk,i}

Else Calculate Ẑk,i; given (IPM−USDk,i , IPM−SDk,i , ICMk,i ) = (0, 0, 1) and Rk,i =
Rk−1,i + THk,i

End if

End while

Obtain Ẑi=Ẑk,i and Rki,i = Rk,i, where k = ki
End

Table 3.7 Simulation procedure

Moreover, the probabilities of PM-USD, PM-SD and CM
[
P̂1, P̂2, P̂3

]
; and the

expected cycle length
[
L̂(C)

]
are:

P̂1 =

∑m
i=1

[∑ki
k=1

(
IPM−USD
k,i

IPM−USD
k,i +IPM−SD

k,i +ICMk,i

)]
m

P̂2 =

∑m
i=1

[∑ki
k=1

(
IPM−SD
k,i

IPM−USD
k,i +IPM−SD

k,i +ICMk,i

)]
m

P̂3 =

∑m
i=1

[∑ki
k=1

(
ICMk,i

IPM−USD
k,i +IPM−SD

k,i +ICMk,i

)]
m
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and

L̂ =

∑m
i=1

(
Rki,i
ki

)
m
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3.A.3 Detail results of Test bed 1 and 2

Detail results of Table 3.4, 3.5 and 3.6 are given in the following tables

Table 3.8 A full factorial test bed including {P̂1, P̂2, P̂3, L̂(C)} from the simulation and the
deviation

[
δ1, δ2, δ3, δ4

]
from the approximate evaluation; in the case of random coefficient

model (RCM)

Λ RCM case
Simulation Deviation{

P̂1, P̂2, P̂3, L̂(C)
} {

δ1, δ2, δ3, δ4
}

(C1, σ1, λ1, τ1) {0.044, 0.956, 0.000, 0.344} {0.000, 0.000, 0.000, 0.1%}
(C1, σ1, λ1, τ2) {0.104, 0.896, 0.000, 0.403} {0.000,−0.001, 0.000, 0.0%}
(C1, σ1, λ1, τ3) {0.109, 0.890, 0.000, 0.409} {0.003,−0.003, 0.000, 0.6%}
(C1, σ1, λ2, τ1) {0.085, 0.914, 0.000, 0.343} {0.000, 0.000, 0.000, 0.2%}
(C1, σ1, λ2, τ2) {0.193, 0.807, 0.000, 0.397} {−0.002, 0.002, 0.000,−0.1%}
(C1, σ1, λ2, τ3) {0.201, 0.799, 0.000, 0.401} {0.008,−0.008, 0.000, 1.0%}
(C1, σ1, λ3, τ1) {0.125, 0.875, 0.000, 0.342} {0.001,−0.001, 0.000, 0.2%}
(C1, σ1, λ3, τ2) {0.273, 0.727, 0.000, 0.391} {−0.003, 0.003, 0.000,−0.3%}
(C1, σ1, λ3, τ3) {0.278, 0.722, 0.000, 0.393} {0.016,−0.016, 0.000, 1.4%}
(C1, σ2, λ1, τ1) {0.048, 0.951, 0.000, 0.348} {0.000, 0.000, 0.000, 0.0%}
(C1, σ2, λ1, τ2) {0.109, 0.891, 0.000, 0.409} {−0.001, 0.001, 0.000,−0.3%}
(C1, σ2, λ1, τ3) {0.108, 0.891, 0.000, 0.408} {0.002,−0.003, 0.000, 0.5%}
(C1, σ2, λ2, τ1) {0.092, 0.907, 0.000, 0.347} {−0.001, 0.001, 0.000, 0.1%}
(C1, σ2, λ2, τ2) {0.201, 0.799, 0.000, 0.400} {−0.005, 0.005, 0.000,−0.6%}
(C1, σ2, λ2, τ3) {0.202, 0.798, 0.000, 0.401} {0.009,−0.009, 0.000, 1.1%}
(C1, σ2, λ3, τ1) {0.135, 0.864, 0.000, 0.346} {0.000, 0.000, 0.000, 0.1%}
(C1, σ2, λ3, τ2) {0.279, 0.721, 0.000, 0.393} {−0.011, 0.011, 0.000,−0.9%}
(C1, σ2, λ3, τ3) {0.280, 0.720, 0.000, 0.393} {0.015,−0.015, 0.000, 1.3%}
(C1, σ3, λ1, τ1) {0.050, 0.950, 0.000, 0.350} {0.000, 0.000, 0.000, 0.0%}
(C1, σ3, λ1, τ2) {0.109, 0.891, 0.000, 0.410} {−0.002, 0.002, 0.000,−0.4%}
(C1, σ3, λ1, τ3) {0.108, 0.891, 0.000, 0.409} {0.002,−0.002, 0.000, 0.5%}
(C1, σ3, λ2, τ1) {0.096, 0.903, 0.000, 0.348} {0.000, 0.000, 0.000, 0.1%}
(C1, σ3, λ2, τ2) {0.201, 0.799, 0.000, 0.401} {−0.008, 0.007, 0.000,−0.7%}
(C1, σ3, λ2, τ3) {0.202, 0.797, 0.000, 0.401} {0.008,−0.008, 0.000, 0.9%}
(C1, σ3, λ3, τ1) {0.140, 0.860, 0.000, 0.346} {0.000, 0.000, 0.000,−0.1%}
(C1, σ3, λ3, τ2) {0.279, 0.721, 0.000, 0.394} {−0.014, 0.014, 0.000,−1.0%}
(C1, σ3, λ3, τ3) {0.282, 0.717, 0.000, 0.395} {0.015,−0.015, 0.000, 1.5%}
(C2, σ1, λ1, τ1) {0.049, 0.950, 0.000, 0.549} {0.000,−0.001, 0.000, 0.0%}
(C2, σ1, λ1, τ2) {0.107, 0.892, 0.000, 0.606} {0.000, 0.000, 0.000,−0.2%}
(C2, σ1, λ1, τ3) {0.128, 0.871, 0.001, 0.627} {0.004,−0.005, 0.001, 0.5%}
(C2, σ1, λ2, τ1) {0.096, 0.904, 0.000, 0.548} {0.000,−0.001, 0.000, 0.1%}
(C2, σ1, λ2, τ2) {0.196, 0.803, 0.000, 0.598} {−0.005, 0.004, 0.000,−0.3%}
(C2, σ1, λ2, τ3) {0.240, 0.759, 0.001, 0.620} {0.011,−0.011, 0.001, 0.8%}
(C2, σ1, λ3, τ1) {0.138, 0.862, 0.000, 0.546} {−0.001, 0.000, 0.000, 0.0%}
(C2, σ1, λ3, τ2) {0.272, 0.727, 0.000, 0.591} {−0.010, 0.010, 0.000,−0.5%}
(C2, σ1, λ3, τ3) {0.334, 0.666, 0.001, 0.613} {0.014,−0.015, 0.001, 1.0%}
(C2, σ2, λ1, τ1) {0.050, 0.950, 0.000, 0.548} {0.001,−0.002, 0.000, 0.0%}
(C2, σ2, λ1, τ2) {0.097, 0.902, 0.000, 0.599} {−0.002, 0.001, 0.000,−0.1%}
(C2, σ2, λ1, τ3) {0.139, 0.861, 0.001, 0.638} {0.001,−0.002, 0.001, 0.2%}
(C2, σ2, λ2, τ1) {0.095, 0.905, 0.000, 0.547} {0.001,−0.002, 0.000, 0.0%}
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Table 3.9 (Continued) a full factorial test bed including {P̂1, P̂2, P̂3, L̂(C)} from the simulation
and the deviation

[
δ1, δ2, δ3, δ4

]
from the approximate evaluation; in the case of random

coefficient model (RCM)

Λ RCM case
Simulation Deviation{

P̂1, P̂2, P̂3, L̂(C)
} {

δ1, δ2, δ3, δ4
}

(C2, σ2, λ2, τ2) {0.184, 0.816, 0.000, 0.592} {−0.002, 0.001, 0.000,−0.2%}
(C2, σ2, λ2, τ3) {0.255, 0.745, 0.001, 0.627} {0.003,−0.003, 0.001, 0.2%}
(C2, σ2, λ3, τ1) {0.136, 0.863, 0.000, 0.546} {0.001,−0.001, 0.000, 0.1%}
(C2, σ2, λ3, τ2) {0.255, 0.745, 0.000, 0.586} {−0.006, 0.006, 0.000,−0.1%}
(C2, σ2, λ3, τ3) {0.351, 0.648, 0.001, 0.618} {0.003,−0.004, 0.001, 0.2%}
(C2, σ3, λ1, τ1) {0.049, 0.951, 0.000, 0.549} {0.001,−0.001, 0.000, 0.2%}
(C2, σ3, λ1, τ2) {0.094, 0.906, 0.000, 0.595} {0.000, 0.000, 0.000, 0.1%}
(C2, σ3, λ1, τ3) {0.145, 0.855, 0.001, 0.645} {−0.001, 0.000, 0.001, 0.0%}
(C2, σ3, λ2, τ1) {0.094, 0.906, 0.000, 0.547} {0.001,−0.001, 0.000, 0.0%}
(C2, σ3, λ2, τ2) {0.176, 0.824, 0.000, 0.588} {−0.001, 0.001, 0.000, 0.0%}
(C2, σ3, λ2, τ3) {0.263, 0.736, 0.001, 0.632} {−0.002, 0.002, 0.001,−0.2%}
(C2, σ3, λ3, τ1) {0.136, 0.863, 0.000, 0.546} {0.001,−0.001, 0.000, 0.1%}
(C2, σ3, λ3, τ2) {0.245, 0.754, 0.000, 0.583} {−0.003, 0.003, 0.000, 0.1%}
(C2, σ3, λ3, τ3) {0.360, 0.640, 0.001, 0.620} {−0.005, 0.005, 0.001,−0.3%}
(C3, σ1, λ1, τ1) {0.048, 0.952, 0.001, 0.748} {0.000, 0.000, 0.001, 0.0%}
(C3, σ1, λ1, τ2) {0.098, 0.902, 0.001, 0.797} {0.000,−0.001, 0.001, 0.0%}
(C3, σ1, λ1, τ3) {0.145, 0.762, 0.093, 0.847} {−0.005, 0.014,−0.01,−0.3%}
(C3, σ1, λ2, τ1) {0.093, 0.907, 0.001, 0.747} {−0.001, 0.000, 0.001, 0.0%}
(C3, σ1, λ2, τ2) {0.181, 0.819, 0.001, 0.791} {−0.001, 0.001, 0.001, 0.0%}
(C3, σ1, λ2, τ3) {0.263, 0.670, 0.067, 0.832} {−0.009, 0.021,−0.012,−0.5%}
(C3, σ1, λ3, τ1) {0.137, 0.863, 0.001, 0.745} {0.001,−0.002, 0.001, 0.0%}
(C3, σ1, λ3, τ2) {0.254, 0.746, 0.001, 0.785} {−0.003, 0.002, 0.001,−0.1%}
(C3, σ1, λ3, τ3) {0.354, 0.599, 0.048, 0.818} {−0.017, 0.029,−0.013,−0.6%}
(C3, σ2, λ1, τ1) {0.048, 0.952, 0.001, 0.749} {−0.001, 0.000, 0.001, 0.1%}
(C3, σ2, λ1, τ2) {0.092, 0.908, 0.001, 0.792} {0.000,−0.001, 0.001, 0.1%}
(C3, σ2, λ1, τ3) {0.132, 0.790, 0.079, 0.833} {−0.002, 0.006,−0.004,−0.1%}
(C3, σ2, λ2, τ1) {0.093, 0.906, 0.001, 0.748} {0.000, 0.000, 0.001, 0.2%}
(C3, σ2, λ2, τ2) {0.172, 0.827, 0.001, 0.786} {0.000,−0.001, 0.001, 0.0%}
(C3, σ2, λ2, τ3) {0.240, 0.702, 0.058, 0.822} {−0.003, 0.008,−0.005, 0.1%}
(C3, σ2, λ3, τ1) {0.136, 0.863, 0.001, 0.746} {0.000, 0.000, 0.001, 0.0%}
(C3, σ2, λ3, τ2) {0.244, 0.755, 0.001, 0.782} {0.002,−0.002, 0.001, 0.2%}
(C3, σ2, λ3, τ3) {0.332, 0.623, 0.045, 0.811} {−0.001, 0.005,−0.004,−0.1%}
(C3, σ3, λ1, τ1) {0.048, 0.951, 0.001, 0.749} {0.000,−0.001, 0.001, 0.1%}
(C3, σ3, λ1, τ2) {0.092, 0.906, 0.002, 0.792} {0.000,−0.001, 0.001, 0.1%}
(C3, σ3, λ1, τ3) {0.128, 0.802, 0.070, 0.829} {0.000, 0.002,−0.001, 0.0%}
(C3, σ3, λ2, τ1) {0.094, 0.906, 0.001, 0.747} {0.000,−0.001, 0.001, 0.0%}
(C3, σ3, λ2, τ2) {0.172, 0.826, 0.002, 0.787} {0.000,−0.001, 0.001, 0.2%}
(C3, σ3, λ2, τ3) {0.237, 0.708, 0.055, 0.818} {0.002,−0.002, 0.000, 0.1%}
(C3, σ3, λ3, τ1) {0.135, 0.864, 0.001, 0.745} {−0.001, 0.000, 0.001, 0.0%}
(C3, σ3, λ3, τ2) {0.243, 0.755, 0.001, 0.782} {0.000,−0.001, 0.001, 0.1%}
(C3, σ3, λ3, τ3) {0.325, 0.632, 0.043, 0.809} {0.002,−0.003, 0.001, 0.2%}
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Table 3.10 A full factorial test bed including {P̂1, P̂2, P̂3, L̂(C)} from the simulation and the
deviation

[
δ1, δ2, δ3, δ4

]
from the approximate evaluation; in the case of Gamma process (GP)

Λ GP case
Simulation Deviation{

P̂1, P̂2, P̂3, L̂(C)
} {

δ1, δ2, δ3, δ4
}

(C1, σ1, λ1, τ1) {0.047, 0.953, 0.000, 0.360} {−0.001, 0.001, 0.000, 0.0%}
(C1, σ1, λ1, τ2) {0.095, 0.905, 0.000, 0.406} {0.001,−0.001, 0.000, 0.0%}
(C1, σ1, λ1, τ3) {0.132, 0.868, 0.000, 0.446} {−0.001, 0.001, 0.000, 0.3%}
(C1, σ1, λ2, τ1) {0.092, 0.908, 0.000, 0.358} {−0.002, 0.001, 0.000,−0.1%}
(C1, σ1, λ2, τ2) {0.176, 0.824, 0.000, 0.400} {−0.001, 0.001, 0.000,−0.1%}
(C1, σ1, λ2, τ3) {0.241, 0.759, 0.000, 0.432} {−0.001, 0.001, 0.000,−0.1%}
(C1, σ1, λ3, τ1) {0.138, 0.861, 0.000, 0.357} {0.002,−0.002, 0.000, 0.1%}
(C1, σ1, λ3, τ2) {0.246, 0.753, 0.000, 0.393} {−0.003, 0.003, 0.000,−0.4%}
(C1, σ1, λ3, τ3) {0.330, 0.669, 0.000, 0.421} {−0.001, 0.001, 0.000,−0.2%}
(C1, σ2, λ1, τ1) {0.051, 0.949, 0.000, 0.371} {0.002,−0.002, 0.000,−0.1%}
(C1, σ2, λ1, τ2) {0.092, 0.907, 0.000, 0.416} {−0.001, 0.001, 0.000, 0.0%}
(C1, σ2, λ1, τ3) {0.131, 0.868, 0.001, 0.457} {−0.002, 0.003,−0.001, 0.1%}
(C1, σ2, λ2, τ1) {0.092, 0.908, 0.000, 0.370} {−0.002, 0.001, 0.000, 0.2%}
(C1, σ2, λ2, τ2) {0.176, 0.824, 0.000, 0.412} {0.000, 0.000, 0.000, 0.4%}
(C1, σ2, λ2, τ3) {0.244, 0.755, 0.001, 0.446} {0.001, 0.000,−0.001, 0.3%}
(C1, σ2, λ3, τ1) {0.137, 0.863, 0.000, 0.368} {0.000,−0.001, 0.000, 0.1%}
(C1, σ2, λ3, τ2) {0.244, 0.756, 0.000, 0.406} {−0.004, 0.004, 0.000, 0.1%}
(C1, σ2, λ3, τ3) {0.338, 0.661, 0.001, 0.435} {0.003,−0.003, 0.000, 0.2%}
(C1, σ3, λ1, τ1) {0.049, 0.951, 0.000, 0.385} {0.001,−0.001, 0.000, 0.5%}
(C1, σ3, λ1, τ2) {0.094, 0.905, 0.001, 0.430} {0.000, 0.001,−0.001, 0.4%}
(C1, σ3, λ1, τ3) {0.136, 0.861, 0.003, 0.469} {0.001, 0.003,−0.004,−0.1%}
(C1, σ3, λ2, τ1) {0.094, 0.906, 0.000, 0.382} {0.000, 0.000, 0.000, 0.1%}
(C1, σ3, λ2, τ2) {0.177, 0.822, 0.001, 0.423} {0.001, 0.000,−0.001, 0.0%}
(C1, σ3, λ2, τ3) {0.251, 0.747, 0.003, 0.457} {0.004, 0.000,−0.004,−0.2%}
(C1, σ3, λ3, τ1) {0.134, 0.865, 0.000, 0.380} {−0.002, 0.002, 0.000, 0.0%}
(C1, σ3, λ3, τ2) {0.252, 0.747, 0.001, 0.417} {0.003,−0.003,−0.001,−0.1%}
(C1, σ3, λ3, τ3) {0.345, 0.653, 0.002, 0.448} {0.005,−0.002,−0.003, 0.1%}
(C2, σ1, λ1, τ1) {0.045, 0.954, 0.000, 0.555} {−0.003, 0.003, 0.000,−0.2%}
(C2, σ1, λ1, τ2) {0.095, 0.905, 0.000, 0.599} {0.001,−0.001, 0.000,−0.4%}
(C2, σ1, λ1, τ3) {0.131, 0.868, 0.001, 0.643} {−0.003, 0.007,−0.003, 0.0%}
(C2, σ1, λ2, τ1) {0.093, 0.906, 0.000, 0.556} {0.000, 0.000, 0.000, 0.2%}
(C2, σ1, λ2, τ2) {0.178, 0.821, 0.001, 0.595} {0.002,−0.003, 0.000,−0.2%}
(C2, σ1, λ2, τ3) {0.249, 0.751, 0.001, 0.632} {0.003, 0.000,−0.003, 0.2%}
(C2, σ1, λ3, τ1) {0.135, 0.864, 0.001, 0.554} {−0.001, 0.000, 0.001, 0.2%}
(C2, σ1, λ3, τ2) {0.240, 0.759, 0.001, 0.593} {−0.008, 0.008, 0.000, 0.3%}
(C2, σ1, λ3, τ3) {0.339, 0.661, 0.001, 0.622} {0.001, 0.001,−0.002, 0.3%}
(C2, σ2, λ1, τ1) {0.049, 0.950, 0.001, 0.565} {0.001,−0.001, 0.000, 0.0%}
(C2, σ2, λ1, τ2) {0.094, 0.906, 0.001, 0.607} {0.000, 0.004,−0.004,−0.4%}
(C2, σ2, λ1, τ3) {0.134, 0.865, 0.001, 0.653} {−0.002, 0.019,−0.017, 0.2%}
(C2, σ2, λ2, τ1) {0.093, 0.907, 0.001, 0.562} {−0.001, 0.001, 0.000,−0.2%}
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Table 3.11 (Continued) A full factorial test bed including {P̂1, P̂2, P̂3, L̂(C)} from the
simulation and the deviation

[
δ1, δ2, δ3, δ4

]
from the approximate evaluation; in the case of

Gamma process (GP)

Λ GP case
Simulation Deviation{

P̂1, P̂2, P̂3, L̂(C)
} {

δ1, δ2, δ3, δ4
}

(C2, σ2, λ2, τ2) {0.176, 0.824, 0.001, 0.605} {0.000, 0.003,−0.003, 0.2%}
(C2, σ2, λ2, τ3) {0.246, 0.753, 0.001, 0.641} {−0.001, 0.015,−0.014, 0.2%}
(C2, σ2, λ3, τ1) {0.136, 0.863, 0.001, 0.561} {0.000, 0.000, 0.000,−0.1%}
(C2, σ2, λ3, τ2) {0.250, 0.749, 0.000, 0.600} {0.003, 0.000,−0.003, 0.2%}
(C2, σ2, λ3, τ3) {0.343, 0.656, 0.001, 0.630} {0.004, 0.008,−0.012, 0.1%}
(C2, σ3, λ1, τ1) {0.048, 0.952, 0.000, 0.572} {−0.001, 0.003,−0.002,−0.3%}
(C2, σ3, λ1, τ2) {0.095, 0.904, 0.001, 0.618} {0.002, 0.010,−0.012, 0.1%}
(C2, σ3, λ1, τ3) {0.132, 0.863, 0.005, 0.660} {−0.002, 0.031,−0.029, 0.1%}
(C2, σ3, λ2, τ1) {0.094, 0.906, 0.001, 0.571} {0.000, 0.002,−0.002,−0.2%}
(C2, σ3, λ2, τ2) {0.176, 0.823, 0.001, 0.614} {0.001, 0.009,−0.010, 0.3%}
(C2, σ3, λ2, τ3) {0.244, 0.752, 0.004, 0.650} {0.000, 0.025,−0.025, 0.4%}
(C2, σ3, λ3, τ1) {0.135, 0.864, 0.000, 0.570} {−0.001, 0.003,−0.002,−0.1%}
(C2, σ3, λ3, τ2) {0.246, 0.753, 0.001, 0.608} {−0.001, 0.010,−0.009, 0.1%}
(C2, σ3, λ3, τ3) {0.339, 0.658, 0.003, 0.635} {0.003, 0.018,−0.022,−0.2%}
(C3, σ1, λ1, τ1) {0.048, 0.951, 0.001, 0.754} {0.000, 0.001, 0.000, 0.1%}
(C3, σ1, λ1, τ2) {0.091, 0.908, 0.000, 0.797} {−0.002, 0.022,−0.020,−0.1%}
(C3, σ1, λ1, τ3) {0.133, 0.826, 0.041, 0.840} {0.001, 0.050,−0.051, 0.4%}
(C3, σ1, λ2, τ1) {0.091, 0.908, 0.001, 0.754} {−0.003, 0.003, 0.000, 0.3%}
(C3, σ1, λ2, τ2) {0.176, 0.823, 0.001, 0.791} {0.002, 0.015,−0.017,−0.1%}
(C3, σ1, λ2, τ3) {0.244, 0.721, 0.035, 0.829} {0.002, 0.039,−0.041, 0.4%}
(C3, σ1, λ3, τ1) {0.133, 0.866, 0.001, 0.748} {−0.003, 0.003, 0.000,−0.3%}
(C3, σ1, λ3, τ2) {0.247, 0.752, 0.001, 0.787} {0.000, 0.015,−0.015, 0.1%}
(C3, σ1, λ3, τ3) {0.340, 0.637, 0.023, 0.816} {0.007, 0.033,−0.040, 0.1%}
(C3, σ2, λ1, τ1) {0.048, 0.951, 0.001, 0.761} {0.000, 0.008,−0.009, 0.4%}
(C3, σ2, λ1, τ2) {0.095, 0.904, 0.001, 0.805} {0.003, 0.043,−0.047, 0.5%}
(C3, σ2, λ1, τ3) {0.136, 0.802, 0.063, 0.843} {0.008, 0.052,−0.059, 0.7%}
(C3, σ2, λ2, τ1) {0.091, 0.908, 0.001, 0.757} {−0.002, 0.010,−0.008, 0.1%}
(C3, σ2, λ2, τ2) {0.182, 0.817, 0.002, 0.799} {0.010, 0.032,−0.042, 0.4%}
(C3, σ2, λ2, τ3) {0.253, 0.703, 0.044, 0.832} {0.019, 0.041,−0.060, 0.6%}
(C3, σ2, λ3, τ1) {0.135, 0.865, 0.001, 0.754} {−0.001, 0.008,−0.008,−0.1%}
(C3, σ2, λ3, τ2) {0.240, 0.759, 0.001, 0.793} {−0.003, 0.041,−0.037, 0.2%}
(C3, σ2, λ3, τ3) {0.342, 0.621, 0.037, 0.825} {0.018, 0.034,−0.052, 0.9%}
(C3, σ3, λ1, τ1) {0.050, 0.949, 0.001, 0.764} {0.002, 0.017,−0.019, 0.2%}
(C3, σ3, λ1, τ2) {0.094, 0.901, 0.006, 0.806} {0.004, 0.060,−0.064, 0.2%}
(C3, σ3, λ1, τ3) {0.133, 0.786, 0.081, 0.846} {0.007, 0.053,−0.061, 0.7%}
(C3, σ3, λ2, τ1) {0.090, 0.909, 0.001, 0.763} {−0.002, 0.021,−0.018, 0.3%}
(C3, σ3, λ2, τ2) {0.177, 0.818, 0.005, 0.798} {0.007, 0.051,−0.058,−0.2%}
(C3, σ3, λ2, τ3) {0.243, 0.693, 0.064, 0.839} {0.012, 0.046,−0.059, 1.1%}
(C3, σ3, λ3, τ1) {0.136, 0.864, 0.001, 0.762} {0.001, 0.016,−0.018, 0.3%}
(C3, σ3, λ3, τ2) {0.245, 0.751, 0.004, 0.799} {0.005, 0.048,−0.053, 0.5%}
(C3, σ3, λ3, τ3) {0.333, 0.616, 0.050, 0.828} {0.015, 0.042,−0.057, 0.8%}
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Table 3.12 Detail results of Table 3.5: the optimal maintenance policy of approximate
evaluation and simulation in the case of random coefficient model (RCM) and Gamma process
(GP).

Instances by RCM by GP

{ Ĉ
∗−C∗

H
, Gap1, Gap2} { Ĉ

∗−C∗

H
, Gap1, Gap2}

(σ1, λ1, τ1) {−0.03%, 0.06%, 0.01%} {1.79%, 2.36%, 1.69%}
(σ1, λ1, τ2) {0.28%, 0.25%, 0.05%} {−0.26%, 4.70%, 0.07%}
(σ1, λ1, τ3) {0.35%, 0.30%, 0.01%} {−3.82%, 4.80%, 0.72%}
(σ1, λ2, τ1) {−0.03%, 0.11%, 0.02%} {1.54%, 1.69%, 1.20%}
(σ1, λ2, τ2) {0.28%, 0.24%, 0.24%} {−1.12%, 4.25%, 0.04%}
(σ1, λ2, τ3) {6.57%, 0.09%, 0.41%} {−1.83%, 4.86%, 0.54%}
(σ1, λ3, τ1) {−0.03%, 0.24%, 0.07%} {1.29%, 1.43%, 1.08%}
(σ1, λ3, τ2) {0.28%, 0.26%, 0.10%} {−0.64%, 3.44%, 0.60%}
(σ1, λ3, τ3) {−0.88%, 0.27%, 0.17%} {−3.57%, 4.93%, 0.19%}
(σ2, λ1, τ1) {0.58%, 0.06%, 0.19%} {1.32%, 1.75%, 0.39%}
(σ2, λ1, τ2) {−0.50%, 0.01%, 0.10%} {−1.47%, 4.61%, 1.35%}
(σ2, λ1, τ3) {0.35%, 0.11%, 0.04%} {−4.59%, 6.76%, 1.74%}
(σ2, λ2, τ1) {−0.20%, 0.03%, 0.09%} {1.02%, 1.05%, 0.36%}
(σ2, λ2, τ2) {−0.50%, 0.08%, 0.15%} {−2.39%, 4.27%, 0.96%}
(σ2, λ2, τ3) {−0.96%, 0.63%, 0.06%} {−5.14%, 6.34%, 1.44%}
(σ2, λ3, τ1) {1.36%, 0.12%, 0.11%} {0.74%, 0.88%, 0.40%}
(σ2, λ3, τ2) {0.28%, 0.12%, 0.16%} {−1.94%, 3.65%, 1.17%}
(σ2, λ3, τ3) {−0.18%, 0.64%, 0.05%} {−5.45%, 6.52%, 1.50%}
(σ3, λ1, τ1) {−0.20%, 0.01%, 0.10%} {0.29%,−0.55%, 0.38%}
(σ3, λ1, τ2) {3.72%, 0.24%, 0.33%} {−4.30%, 3.18%, 2.73%}
(σ3, λ1, τ3) {1.48%, 0.25%, 0.20%} {−6.65%, 7.13%, 3.93%}
(σ3, λ2, τ1) {−0.20%, 0.35%, 0.21%} {−1.32%,−0.26%, 0.20%}
(σ3, λ2, τ2) {−0.50%, 0.14%, 0.16%} {−3.92%, 2.45%, 2.45%}
(σ3, λ2, τ3) {−0.96%, 0.25%, 0.05%} {−4.52%, 6.90%, 2.79%}
(σ3, λ3, τ1) {−0.20%, 0.02%, 0.10%} {−1.61%, 0.06%, 0.43%}
(σ3, λ3, τ2) {0.28%, 0.02%, 0.09%} {−3.47%, 1.80%, 2.58%}
(σ3, λ3, τ3) {0.60%, 0.29%, 0.04%} {−7.33%, 6.33%, 1.76%}
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Table 3.13 The cost saving potential of including opportunities at USDs and SDs: the mean,
minimum and maximum values of 4A, 4B and 4C respectively; in the case of the random
coefficient model (RCM) and the Gamma process (GP).

Ω 4A 4B 4C
by RCM by GP by RCM by GP by RCM by GP

(σ1, λ1, τ1) 35.3% 31.4% 31.6% 25.9% 5.1% 8.8%
(σ1, λ1, τ2) 30.9% 27.4% 27.0% 20.6% 5.1% 8.8%
(σ1, λ1, τ3) 25.0% 24.0% 11.6% 16.5% 5.1% 8.8%
(σ1, λ2, τ1) 35.0% 31.2% 31.6% 25.9% 8.9% 11.8%
(σ1, λ2, τ2) 30.2% 27.1% 27.0% 20.6% 8.9% 11.8%
(σ1, λ2, τ3) 23.0% 23.7% 11.6% 16.5% 8.9% 11.8%
(σ1, λ3, τ1) 34.7% 31.0% 31.6% 25.9% 11.7% 14.0%
(σ1, λ3, τ2) 29.6% 26.9% 27.0% 20.6% 11.7% 14.0%
(σ1, λ3, τ3) 23.1% 23.6% 11.6% 16.5% 11.7% 14.0%
(σ2, λ1, τ1) 34.7% 30.1% 29.7% 26.4% 5.0% 7.5%
(σ2, λ1, τ2) 29.0% 26.2% 23.0% 20.7% 5.0% 7.5%
(σ2, λ1, τ3) 24.0% 23.1% 14.6% 15.4% 5.0% 7.5%
(σ2, λ2, τ1) 34.4% 29.9% 29.7% 26.4% 8.7% 10.7%
(σ2, λ2, τ2) 28.6% 26.0% 23.0% 20.7% 8.7% 10.7%
(σ2, λ2, τ3) 22.7% 23.0% 14.6% 15.4% 8.7% 10.7%
(σ2, λ3, τ1) 34.1% 29.8% 29.7% 26.4% 11.5% 13.1%
(σ2, λ3, τ2) 28.2% 25.9% 23.0% 20.7% 11.5% 13.1%
(σ2, λ3, τ3) 22.7% 23.0% 14.6% 15.4% 11.5% 13.1%
(σ3, λ1, τ1) 34.3% 29.7% 29.5% 27.9% 4.8% 6.4%
(σ3, λ1, τ2) 28.4% 25.8% 20.2% 21.9% 4.8% 6.4%
(σ3, λ1, τ3) 23.7% 22.9% 16.2% 12.2% 4.8% 6.4%
(σ3, λ2, τ1) 34.0% 29.6% 29.5% 27.9% 8.5% 9.8%
(σ3, λ2, τ2) 28.1% 25.7% 20.2% 21.9% 8.5% 9.8%
(σ3, λ2, τ3) 23.1% 22.9% 16.2% 12.2% 8.5% 9.8%
(σ3, λ3, τ1) 33.7% 29.5% 29.5% 27.9% 11.3% 12.4%
(σ3, λ3, τ2) 27.8% 25.6% 20.2% 21.9% 11.3% 12.4%
(σ3, λ3, τ3) 23.0% 23.0% 16.2% 12.2% 11.3% 12.4%
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Chapter 4

An Age-Based Maintenance Policy
Using the Opportunities of Scheduled

and Unscheduled System Downs

“All knowledge degenerates into
probability.”

David Hume
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4.1 Introduction

Due to physical constraints from the design of the system, many critical components
can not be monitored remotely. For example, a sensor can hardly be installed in an
enclosed space (e.g., inside a gearbox). In this case, we develop a new age-based
maintenance (ABM) model, which also includes both scheduled and unscheduled
downs as free opportunities for a single ABM component to perform opportunistic
maintenance.

There are many age/time-based models proposed for multi-component systems
considering the economic dependence, which has been explained in Section 1.4
(see block E and F in Table 1.2). Most of them considered only one types of
opportunities from either scheduled system downs (see [16]) or unscheduled system
downs [13, 15, 39, 67]. There are also some studies including both scheduled and
unscheduled opportunities [29, 50]. Laggoune et al. [29] developed a different dynamic
clustering model based on simulation. In this model, preventive maintenance is
scheduled at each fixed time point kτ, k ∈ N, and each component j can only
be preventively replaced at a multiple of τ , kjτ, kj ∈ N. If unscheduled system
downs occur, a decision on taking the opportunity or not will be made, according
to marginal costs. Taghipour and Banjevic [50] proposed a model that considers
both scheduled inspection and non-scheduled failures of systems as opportunities
to perform inspections on soft-failure components. For hard failure components,
preventive maintenance actions are taken at scheduled inspections depending on their
condition. Its objective function in a finite-horizon setting is evaluated by a simulation
algorithm.

Different from the aforementioned literature including one type of opportunities,
we consider two types of opportunities to jointly maintain single components under
an age-based maintenance policy and other components in a system, i.e., the
opportunities from the scheduled system downs and unscheduled system downs due to
random failures of other components. It is important to consider both the scheduled
and unscheduled system downs as opportunities for joint maintenance when the fixed
setup costs of maintenance are high. The high setup costs of maintenance will
be reduced further by considering multiple types of opportunities together in the
joint maintenance model, compared with using only one type of opportunities. For
example, lithography machines in chip factories normally operate continuously over
time (24 hours/day,7 days/week), except during the scheduled system downs per
month and unscheduled system downs due to random failures. In order to conduct
maintenance tasks for the machine, the machine needs to be shut down and the
production of chips will be interrupted, which will cause a significant economic loss
per hour downtime. Some lithography machines require a special manufacturing
environment (e.g., vacuum environment), which makes the setup of maintenance even
more costly. Therefore, it can be beneficial to take the opportunities of both the
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scheduled and unscheduled system downs to jointly perform preventive maintenance
tasks of components under age-based maintenance policies. Compared with the
literature that includes both scheduled and unscheduled opportunities (see [29, 50]),
simulation algorithms were used to evaluate the objective function. In contrast, our
objective function is evaluated by stochastic renewal theory. Notice that renewal
theory implies that the time points of periodic preventive maintenance are rescheduled
after each maintenance action taken. However, in practice, periodic preventive
maintenance actions are planned in advance. Hence, the evaluation is approximate
and we investigate the accuracy of the approximate evaluation by comparing with
simulated evaluation under various parameter settings. Finally, we investigate the cost
saving potential of using opportunities at USDs or/and SDs under various parameter
settings.
The outline of this chapter is as follows. The description of the system and the
assumptions are given in Section 4.2. The details of the mathematical model are
explained in Section 4.3. In Section 4.4, a numerical example is provided to show the
utility of the model. Moreover, in Section 4.5, numerical experiments are performed to
investigate the accuracy of our approximate evaluation and the cost-saving potential
under various parameter settings. Finally, the conclusions are given in Section 4.6.

4.2 System description

We propose an age-based maintenance policy for a single component in a multi-
component system, given the information of scheduled downs (SDs) and unscheduled
downs (USDs) caused by other components in the system. This component is an
ABM component.

Two preventive maintenance actions at USDs and SDs are considered:

• Preventive Maintenance at an USD (PM-USD): when the system stops due to
an USD, it provides an opportunity for an ABM component to be maintained
together with other components in the system. If this opportunity is taken, then
a PM-USD action will be taken on this ABM component. This will incur a cost
cPM−USD that includes the repair cost of the component on one hand. On the
other hand, the downtime cost and setup cost caused by this ABM component
can be saved by conducting its maintenance action simultaneously with other
components that cause this USD.

• Preventive Maintenance at a SD (PM-SD): when the system stops at time t due
to a SD, it provides an opportunity for an ABM component to be maintained
together with other components in the system. If this opportunity is taken, then
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a PM-SD action will be taken on this ABM component. This will incur a cost
cPM−SD that includes the repair cost of the component on one hand. On the
other hand, the downtime cost and setup cost caused by this ABM component
can be saved by conducting its maintenance action simultaneously with other
components that cause this USD.

Suppose the life time of this ABM component T follows a certain distribution
with p.d.f. f(T ). If failures occur before taking USD or SD opportunities for
preventive maintenance, corrective maintenance (CM) actions are taken with the
costs cCM , which consists of not only the repair costs cR of the component, but also
the unscheduled setup costs including downtime costs, denoted by SUSD; namely,
cCM=SUSD+cR. Notice that cPM−USD and cPM−SD are smaller than cCM . In
other words, if an ABM component is jointly maintained at an opportunity, instead
of taking a CM action separately, the maintenance setup cost and downtime cost of
this component can be saved at the system level, on one hand. On the other hand,
the maintenance cost rate increases while taking opportunities too frequently due to
the wasted usage lifetime of this component. Hence, we have to make decisions on the
timing of taking opportunities for joint maintenance actions, in order to minimize the
cost rate of the system. An age limit A on the age of the component t is introduced
as a decision variable, which gives us a decision rule as follows:

• If an opportunity at SD or USD appears at time t < A, do nothing at this
opportunity.

• If an opportunity at SD or USD appears at time t ≥ A, take this opportunity
to do preventive maintenance.

We define the interval between two consecutive maintenance actions as a maintenance
cycle. Similar to the condition-based policy in Chapter 3, if scheduled downs are
rescheduled at the end of each maintenance cycle of the ABM component (see Figure
4.1-(A)), renewal theory can be applied to evaluate the long-run average cost rate of
the component. However, in practice, the scheduled downs are planned in advance
(see Figure 4.1-(B)), which can not restart according to the maintenance actions of
the component. Hence, we develop an approximate evaluation procedure, which is
still based on renewal theory.

To improve the cost rate evaluation further, we propose an approximate evaluation
method considering the distribution of the ending points of maintenance cycles with
respect to SDs for an infinite horizon. We denote the deviation of a renewal point from
SD as ξ, where 0 ≤ ξ < τ (see Figure 4.2)). The conditional average cycle cost and
cycle length can be evaluated in an exact way, given that the maintenance cycle starts
at a time point that is ξ time units away from the previous SD. Then we approximate
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Figure 4.1 The three maintenance actions of an age-based component in the context of renewal
theory (A) and practical situation (B)

the distribution of the deviation ξ over [0, τ) by analyzing the behavior of the renewal
process. Finally we evaluate the average maintenance cycle cost and cycle length based
on the approximate distribution of the deviateion ξ, and the conditional average cycle
cost and cycle length. To verify our approximate model, we use simulation to check
the accuracy of our approximate evaluation.

4.2.1 Notation

τ : interval of scheduled downs
λ : arrival rate of unscheduled downs (a Poisson process)
A : age limit on the age of component (decision variable)
Z(A) : average cost rate of the ABM component
cPM−USD : PM cost of the ABM component at an USD
cPM−SD : PM cost of the ABM component at a SD
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Figure 4.2 The deviation of the renewal point ξ

cCM : CM cost of the ABM component

4.2.2 Assumptions

1) The life time of the ABM component is independent of SDs and USDs caused by
other components in the system.
2) The time horizon is infinite
3) Maintenance actions restore components as new.

4.3 Approximate Evaluation Procedure

As shown in Figure 2, suppose a maintenance cycle starts at ξ time units away
from the previous SD. The SDs in this maintenance cycle will occur at time points
nτ − ξ till the end of this maintenance cycle, where n ∈ N. The age limit A
of opportunistic maintenance will be in a certain interval between two SDs, i.e.,
(n − 1)τ − ξ < A ≤ nτ − ξ (notice that given ξ and τ , n is dependent on the
decision variable A and n = dA+ξ

τ e). Let u denote the random lifetime of the ABM
component. We have 3 scenarios as follows:

Scenario 1: u ≤ A
Possibility 1.1: if a failure occurs at time u ≤ A, then no opportunities is taken
for preventive maintenance, and a corrective maintenance CM action is taken. The
corresponding probability is

P[1.1] = Pr
{
u < A

}
=

∫ u=A

u=0

f(u) du, (4.1)
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and the contribution to the expected cycle length L̇(A|ξ) is

L̇
(
A|ξ, in 1.1

)
P[1.1] =

∫ u=A

u=0

uf(u)du. (4.2)

Scenario 2: u > nτ − ξ and u > A
Possibility 2.1: If i) no failure of the component occurs before nτ−ξ and ii) at the same
time no USD occurs before nτ − ξ, then a PM-SD action will be taken at time point
nτ−ξ. Since the arrivals of the USDs are assumed to follow a Poisson process with an
arrival rate λ, the time period from A to the first arrival of USDs after A follows an
exponential distribution according to the memoryless property. Thus the probability
that there’s no USDs between A and nτ−ξ is equal to

∫∞
nτ−ξ−A g(s) ds = e−λ(nτ−ξ−A),

where g(s) is the p.d.f. of the exponential distribution with a parameter λ. Hence, a
PM-SD happens in this scenario. The corresponding probability is

P[2.1] =

∫ u=∞

u=nτ−ξ

∫ s=∞

s=nτ−ξ−A
g(s) ds f(u) du, (4.3)

and the contribution to the expected cycle length L̇(A|ξ) is

L̇
(
A|ξ, in 2.1

)
P[2.1] = (nτ − ξ)

∫ u=∞

u=nτ−ξ

∫ s=∞

s=nτ−ξ−A
g(s)dsf(u)du. (4.4)

Possibility 2.2: However, if there is an USD before nτ − ξ, with a probability∫ nτ−ξ−A
0

g(s) ds = 1 − e−λ(nτ−ξ−A), a PM-USD happens in this scenario. The
corresponding probability is

P[2.2] =

∫ u=∞

u=nτ−ξ

∫ s=nτ−ξ−A

s=0

g(s) ds f(u) du, (4.5)

and the contribution to the expected cycle length L̇(A|ξ) is

L̇
(
A|ξ, in 2.2

)
P[2.2] =

∫ u=∞

u=nτ−ξ

∫ s=nτ−ξ−A

s=0

(A+ s)g(s)dsf(u)du. (4.6)

Scenario 3: u ≤ nτ − ξ and u > A
Possibility 3.1: If there is a failure before nτ−ξ, no PM-SD action is possible. The first

arrival of the USDs after A may occur before u with a probability
∫ u−A

0
g(s) ds = 1−

e−λ(u−A). Hence, a PM-USD happens in this scenario. The corresponding probability
is

P[3.1] =

∫ u=nτ−ξ

u=A

∫ s=u−A

s=0

g(s) ds f(u) du, (4.7)

and the contribution to the expected cycle length L̇(A|ξ) is

L̇
(
A|ξ, in 3.1

)
P[3.1] =

∫ u=nτ−ξ

u=A

∫ s=u−A

s=0

(A+ s)g(s)dsf(u)du. (4.8)
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Possibility 3.2: Or if there is no USD before u, with a probability
∫∞
u−A g(s) ds =

e−λ(u−A), a CM happens in this scenario. The corresponding probability is

P[3.2] =

∫ u=nτ−ξ

u=A

∫ s=∞

s=u−A
g(s) ds f(u) du, (4.9)

and the expected cycle length is

L̇
(
A|ξ, in 3.2

)
P[3.2] =

∫ u=nτ−ξ

u=A

u

∫ s=∞

s=u−A
g(s)dsf(u)du. (4.10)

To summarize, we have 5 possibilities in total. Under our opportunistic maintenance
policy for the component, the occurrence of the three maintenance actions at the end
of every maintenance cycle depends on which event happens first, u, nτ − ξ, or the
first USD after A. The probability of PM-USD, Ṗ1, is the sum of P[2.2] and P[3.1] ;

the probability of PM-SD, Ṗ2, is equal to P[2.1] ; the probability of CM, Ṗ3, is the

sum of P[1.1] and P[3.2]. Notice that the sum of Ṗ1, Ṗ2 and Ṗ3 is equal to one.

Ṗ1(ξ) =

∫ u=∞

u=nτ−ξ

∫ s=nτ−ξ−A

s=0

g(s) ds f(u) du+

∫ u=nτ−ξ

u=A

∫ s=u−A

s=0

g(s) ds f(u) du,

Ṗ2(ξ) =

∫ u=∞

u=nτ−ξ

∫ s=∞

s=nτ−ξ−A
g(s) ds f(u) du.

Ṗ3(ξ) =

∫ u=nτ−ξ

u=A

∫ s=∞

s=u−A
g(s) ds f(u) du+

∫ u=A

u=0

f(u) du

(4.11)

and the expected cycle length is the sum of the contribution in all possibilities,

L̇(A|ξ) = L̇
(
A|ξ, in 1.1

)
P[1.1] + L̇

(
A|ξ, in 2.1

)
P[2.1] + L̇

(
A|ξ, in 2.2

)
P[2.2]

+ L̇
(
A|ξ, in 3.1

)
P[3.1] + L̇

(
A|ξ, in 3.2

)
P[3.2]

=

∫ u=nτ−ξ

u=A

(∫ s=u−A

s=0

(A+ s)g(s)ds+ u

∫ s=∞

s=u−A
g(s)ds

)
f(u)du

+

∫ u=∞

u=nτ−ξ

(
(nτ − ξ)

∫ s=∞

s=nτ−ξ−A
g(s)ds+

∫ s=nτ−ξ−A

s=0

(A+ s)g(s)ds

)
f(u)du

+

∫ u=A

u=0

uf(u)du. (4.12)

As mentioned previously in Section 4.2, to evaluate the average cost rate over an
infinite horizon, we need to propose an approximate evaluation method to characterize
the difference between the ending points of maintenance cycles and SDs, i.e., ξ. The
appearance of ξ also depends on the three maintenance actions at the end of every
maintenance cycle. If a PM-SD action is taken, the ξ for the next maintenance cycle



4.3 Approximate Evaluation Procedure 83

will be equal to 0. If a PM-USD action or a CM action is taken, ξ for the next
maintenance cycle will be any possible value in [0, τ). Since the arrivals of USDs
follow a Poisson process, ξ for the next maintenance cycle is assumed to take any
value in [0, τ) with equal chances, given that a PM-USD action is taken at the end
of this maintenance cycle. Furthermore, if we assume that the intervals of SDs are
relatively small compared with the average value of the failure time u, the ξ will also
be approximately evenly-distributed over [0, τ), given that an CM action is taken at
the end of this maintenance cycle. Hence, the following distribution function can be
used to describe the random variable ξ,

H(ξ) =

{ 0 if ξ < 0

q + (1−q)ξ
τ if 0 ≤ ξ < τ

1 if ξ ≥ τ
(4.13)

where H(ξ) is uniformly distributed on [0, τ) with a positive probability mass q at
ξ = 0. The probability q is the probability that an arbitrary cycle ends with a PM-SD.
Notice that q can not be calculated directly from Ṗ2(ξ) in Equation (4.11), because
Ṗ2(ξ) is the conditional probability of PM-SD given that the renewal point starts at
ξ time units away from the previous SD.

Suppose we could approximate the value of q, we can also obtain the unconditional
probabilities of PM-USD, PM-SD and CM by multiplying f(ξ) with the conditional
probabilities of PM-USD, PM-SD and CM, denoted by P1, P2 and P3 respectively:

P1 = Ṗ1(0)q +

∫ τ

0

Ṗ1(ξ)
(1− q)
τ

dξ,

P2 = Ṗ2(0)q +

∫ τ

0

Ṗ2(ξ)
(1− q)
τ

dξ,

P3 = Ṗ3(0)q +

∫ τ

0

Ṗ3(ξ)
(1− q)
τ

dξ

(4.14)

Similarly, the expected cycle length denoted by L(A|ξ) are derived as

L(A) = L̇(A|ξ = 0)q +

∫ τ

0

L̇(A|ξ) (1− q)
τ

dξ.

(4.15)

The determination of q is done by iteratively calculating P2, starting with q = Ṗ2 at
ξ = 0. The details of the algorithm are elaborated in Subsection 4.A.1.

According to Equation (4.14), the expected cycle cost K(A) can be derived as:

K(A) = P1 Copm,usd + P2 Copm,sd + P3 CCM .

(4.16)
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According to the renewal theory, the expected total maintenance cost rate of the
component Z(A) is equal to K(A)/L(A). Hence, the optimization model is formulated
as

min
A

Z(A) =
K(A)

L(A)

s.t. 0 < A <∞

The objective function is non-linear. Hence, several non-linear optimization meth-
ods may be used (e.g., local search, interior point method, first-order-condition
method)[5], depending on different degradation models. As explained in Section 4.2,
the evaluation of the average cost rate via renewal theory is an approximation, which
will be compared with simulation results. The minimization of the cost rate can be
based on the approximate evaluation Z(A) and simulation Ẑ(Â), which leads to their
optimal age limits A∗ and Â∗ respectively.

4.4 Numerical Example

To demonstrate the usage of the model, we show a simple numerical example. The life
time distribution of the component is subject to a Weibull distribution with a scale
parameter α and a shape parameter β. In this case, the probabilities of PM-USD,
PM-SD and CM are

Ṗ1(ξ) =

∫ u=nτ−ξ

u=A

(
1− e−λ(u−A)

)(βu(β−1)

αβ
e−( uα )β

)
du

+
(

1− e−λ(nτ−ξ−A)
)(

1− F (nτ − ξ)
)

Ṗ2(ξ) =
(
e−λ(nτ−ξ−A)

)(
1− F (nτ − ξ)

)
Ṗ3(ξ) =

∫ u=nτ−ξ

u=A

(
e−λ(u−A)

)(βu(β−1)

αβ
e−( uα )β

)
du + F (A)

(4.17)

where F (u) = 1− e−( uα )β is the c.d.f. of the Weibull distribution.

The input parameters given in Table 4.1 are not from a real case. We set the shape
(β = 2.101) and scale parameter (α = 1.129) of the Weibull distribution, so that the
expected life time E[T ] is equal to 1 year, which normalizes the time unit.

The optimal age limit A∗ can be found by minimizing the average cost rate Z(A∗)
via the approximate evaluation (see Section 4.3). As a comparison, we simulate the
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Table 4.1 The parameter setting

Parameter Explanation

cPM−SD = 1 Preventive maintenance due to scheduled downs [thousand Euro]
cPM−USD = 2 Preventive maintenance due to unscheduled downs [thousand Euro]
cCM = 10 Corrective maintenance [thousand Euro]
τ = 0.2 The interval of scheduled downs [year]
α = 1.129 Scale parameter of Weibull distribution
β = 2.101 Shape parameter of Weibull distribution
λ = 2 Poisson arrival rate of unscheduled downs [per year]

average cost rate Ẑ (see Subsection 4.A.2) under a given A. Figure 4.3 illustrates the
changes of the average cost rate over the age limit A via the approximate evaluation
and the simulation with a 95% confidence interval.

Figure 4.3 Average cost rate [thousand euro per year] over A [year]. The approximate result Z

is compared with the simulated result Ẑ in a confidence interval with a lower and upper bound

The first observation is that the curves of the average cost rate obtained via the
approximate evaluation and simulation are very close, which means our approximate
evaluation is relatively accurate. The optimal maintenance policy via the approximate
evaluation has a age limit that is A∗ = 0.400 year and a minimum cost rate
Z(A∗) = 5.189 euro per day (see Figure 4.3), which is slightly different from the
simulation results Â∗ = 0.380 and Ẑ(Â∗) = 5.185± 0.006 in Table 4.2. Moreover, the
confidence interval is very small in Figure 4.3 (More details in Subsection 4.A.2).

Table 4.2 shows i) the optimal policy via the approximate evaluation, including
the optimal age limit A∗, its minimum cost rate Z(A∗), its probabilities of three
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maintenance actions
{
P1, P2, P3

}
and its expected cycle length L(A∗); ii) the

simulation results under the optimal age limit A∗ obtained via the approximate

evaluation, where Ẑ(A∗) denotes the average cost rate,
{
P̂1, P̂2, P̂3

}
denotes the

probabilities of three maintenance actions and L̂(A∗) denotes the mean cycle length;
iii) the optimal age limit Â∗ obtained via simulation-based optimization with its

minimum cost rate Ẑ(Â∗), its probabilities of three maintenance actions
{
P̂1, P̂2, P̂3

}
and its mean cycle length L̂(Â∗).

Table 4.2 The optimal maintenance policies under the parameter setting in Table 4.1
({P1, P2, P3} and {P̂1, P̂2, P̂3} are the probabilities of taking PM-USD, PM-SD and CM actions
by approximate evaluation and simulation respectively)

Approximation Result Simulation Result 1

Z(A∗) = 5.189 [K euro per year] Ẑ(A∗) = 5.289± 0.008 [K euro per year]
A∗ = 0.400 [year] A∗ = 0.400 [year]{

P1, P2, P3

}
= {0.0269, 0.8570, 0.1161}

{
P̂1, P̂2, P̂3

}
= {0.0601, 0.8132, 0.1267}

L(A∗) = 0.3993 [day] L̂(A∗) = 0.4161 [day]
Simulation Result 2

Ẑ(Â∗) = 5.185± 0.006 [K euro per year]

Â∗ = 0.380 [year] |Gap1|: |
(
Ẑ(C∗)−Z(C∗)

)
Ẑ(C∗)

| = 1.88%{
P̂1, P̂2, P̂3

}
= {0.0485, 0.8420, 0.1095} |Gap2|: |

(
Ẑ(Ĉ∗)−Ẑ(C∗)

)
Ẑ(Ĉ∗)

| = 1.96%

L̂(Â∗) = 0.3923 [day]

Based on the results in Table 4.2, we observe that the absolute value |
(
Ẑ(A∗) −

Z(A∗)
)
/Ẑ(A∗)|, denoted as Gap 1, is only 1.88%, which shows that our approximate

evaluation is very close to the simulation results, under the same A∗ value. The
absolute value |

(
Ẑ(Â∗) − Ẑ(A∗)

)
/Ẑ(Â∗)|, denoted as Gap 2, is only 1.96%. This

implies that the deviation of A∗ from Â∗ does not lead to a large deviation on the
simulated cost rate, which is due to the fact that the cost rate Ẑ(A) is flat in the
neighborhood of its minimum. Hence, in practice, the optimal maintenance policy
of our approximate evaluation will result in an optimal solution having an average
cost rate that is very close to the true minimum cost rate. Also notice that the

values of
{
P1, P2, P3

}
and L via the approximate evaluation are very close to the

simulated values of
{
P̂1, P̂2, P̂3

}
and L̂. Therefore, we can conclude that the gaps are

small and our approximate evaluation is relatively accurate in this numerical example.

It is very interesting to observe that the average cost rates of approximate evaluation
and simulation are not smooth curves. To have insights further on the spikes of the
curves, we plot the probabilities P1, P2 and P3 in Figure 4.4 and the expected cycle
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Figure 4.4 The probabilities of three maintenance actions (i.e., PM-USD, PM-SD and CM)

over A [year]. The approximate result
{
P1, P2, P3

}
is compared with the simulated result{

P̂1, P̂2, P̂3

}

length L in Figure 4.5.

The first observation is that the differences between the value of P1, P2, P3 and L
obtained via the approximate evaluation and simulation are very small, which verifies
the accuracy of our approximate evaluation further. The spikes in Figure 4.4 and the
jump in Figure 4.5 appear at scheduled downs nτ , where τ = 0.2 and n ∈ N. The
reason is that our model has a strict age limit for taking opportunities. Consider two
cases: 1) when A is just before nτ , or A + ε = nτ where ε is infinitely small and
positive, the next opportunity after A is almost certain to be PM-SD, because nτ is
just behind A. 2) However, if A is just after nτ or A = nτ + ε, then the next PM-SD
opportunity is at (n + 1)τ , instead of nτ . Therefore, P2 is much larger in Case 1
than in Case 2 when A is smaller than the expected life time (E[T ] = 1). At the
same time, P1 and P3 are much smaller in Case 1 compared with Case 2 when A is
small. For the larger values of A, e.g., A = 1.4, 1.6, 1.8 or 2.0; much less USD and SD
opportunities are taken and the probability of CM becomes larger. This means that
the renewal cycles end with failures more often, and the ξ has less chance to take the
value zero. Therefore, the spikes in Figure 4.4 becomes less sharp when A increases.
For the same reason, the magnitude of the jumps of expected cycle length in Figure
4.5 also becomes less at a larger A.
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Figure 4.5 Expected cycle length [year] over A [year]. The approximate result L is compared

with the simulated result L̂

4.5 Numerical Experiments

To validate our model under various parameter settings, we conduct the following
numerical experiments based on full factorial test beds. In Section 4.5.1 and 4.5.2, we
investigate the accuracy of our approximate evaluation. In Section 4.5.3, we evaluate
the cost reduction potential of our proposed policy that includes both opportunities
at USDs and SDs.

4.5.1 Accuracy of the approximate evaluation

The accuracy of our approximate evaluation is assessed based on the gap between the
simulation result Ẑ(A) and the approximation result Z(A). We vary four factors in
our test bed: the variable A and three parameters τ , λ and σ 1. Three different levels
of the age limit A, {0.5, 1.0, 1.5}, are chosen. For each of the other three parameters,
three different levels are obtained by multiplying a base value with a set of coefficients,

1σ2 = E[T 2]− E[T ]2, where E[T ] and E[T 2] are the 1st and 2nd moment of the component life
time. σ is the standard deviation of the component life time distribution T
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{50%, 100%, 150%} (see Table 4.3). Hence, a full factorial test bed is set up and a
space of instances is defined, (Aj , σl, λk, τm) ∈ Λ,∀j, l, k,m = {1, 2, 3}, which leads to
|Λ| = 81 instances in the test bed.

Table 4.3 Parameter setting of the test bed

Parameter Explanation
τ = 0.2 ∗ {50%, 100%, 150%} The interval of scheduled downs [year]
λ = 2 ∗ {50%, 100%, 150%} Poisson arrival rate of unscheduled downs [per year]
σ = 1/2 ∗ {50%, 100%, 150%} Standard deviation of component life time

A = {0.5, 1.0, 1.5} Age limit values
E[T ] = 1 Expected component life time [year]

We set the expected life time E[T ] of the component to be equal to 1, which normalizes
the time unit. By fitting the two moments of the component life time, the shape
and scale parameters of the Weibull distribution can be estimated. To show the
variance of the life time distribution, we choose the standard deviation σ as a varying
parameter. Moreover, τ and λ are varied, because they determine the frequency of
the opportunities from PM-USD and PM-SD events (see Section 4.2). The design of
the full factorial test bed is shown in Table 4.3.

Notice that no cost parameters are chosen as factors in this test bed, since the
objective function is fully determined by the probabilities of the three maintenance
actions and the expected cycle length. This also helps to reduce the size of the test
bed. To compare the approximation results and simulation results, we compare the
probabilities of PM-USD, PM-SD and CM and the expected cycle length obtained by
the approximate evaluation

(
P1, P2, P3, L(A)

)
and the simulation

(
P̂1, P̂2, P̂3, L̂(A)

)
;

which is similar to Table 4.2 in Section 4.4. To see how much the approximation results
deviate from the simulation results, we define a deviation vector

[
δ1, δ2, δ3, δ4

]
=[

P̂1−P1, P̂2−P2, P̂3−P3, (L̂(A)−L(A))/L̂(A)
]
. The deviation vectors of 81 instances

are shown in Table 4.9 and 4.10 of Subsection 4.A.4. There are three levels for
each factor in (Aj , σl, λk, τm) ∈ Λ,∀j, l, k,m = {1, 2, 3}. We categorize the instances
containing a specific level of a certain factor into a subset. For example, a subset
of instances containing A1 is defined as ΛA1

=
{

(A1, σl, λk, τm)|l, k,m ∈ {1, 2, 3}
}

.
For each of these subsets, the average of the absolute deviation vectors (denoted by
AAD) and the maximum of the absolute deviation vectors (denoted by MAD) are
summarized in Table 4.4.

The first insight from Table 4.4 is that the AADs and MADs of δ1, δ2, δ3 and δ4 are
small, which implies that our approximate evaluation is accurate under all parameter
settings (including the age limit A). We also observe that the AADs and MADs of δ1,
δ2 and δ3 are at the magnitude of 10−3 and 10−2 respectively. The AADs of δ4 are
less than 1% and the MAD of δ4 are less than 3%. Notice that the AADs and MADs
is larger, when A is the multiple of τ . Unlike our approximate evaluation, SDs in the
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Table 4.4 The average absolute difference (AAD) and the maximum absolute difference (MAD)
between the simulation results and the approximation results

|δ1| |δ2| |δ3| |δ4|
{AAD,MAD} {AAD,MAD} {AAD,MAD} {AAD,MAD}

ΛA1
{0.0065, 0.0261} {0.0087, 0.032} {0.0033, 0.0085} {0.33%, 0.82%}

ΛA2 {0.0021, 0.0076} {0.0027, 0.0087} {0.0031, 0.0114} {1.05%, 2.54%}
ΛA3

{0.001, 0.0036} {0.0032, 0.0075} {0.0033, 0.0067} {1.1%, 2.85%}
Λσ1 {0.0036, 0.0261} {0.005, 0.032} {0.003, 0.0114} {0.74%, 1.54%}
Λσ2 {0.0032, 0.021} {0.005, 0.0171} {0.0031, 0.0069} {0.83%, 2.4%}
Λσ3 {0.0028, 0.0157} {0.0046, 0.0184} {0.0036, 0.0089} {0.92%, 2.85%}
Λλ1

{0.0015, 0.0063} {0.0031, 0.0087} {0.0027, 0.0085} {0.7%, 2.4%}
Λλ2

{0.0029, 0.011} {0.0044, 0.0159} {0.0032, 0.0089} {0.87%, 2.85%}
Λλ3

{0.0053, 0.0261} {0.0071, 0.032} {0.0038, 0.0114} {0.9%, 2.54%}
Λτ1 {0.0008, 0.0023} {0.0033, 0.0087} {0.0033, 0.0089} {0.71%, 2.54%}
Λτ2 {0.0047, 0.0261} {0.0065, 0.032} {0.003, 0.006} {1.02%, 2.85%}
Λτ3 {0.0041, 0.021} {0.0047, 0.0193} {0.0034, 0.0114} {0.75%, 2.4%}
Λ {0.0032, 0.0261} {0.0049, 0.032} {0.0032, 0.0114} {0.83%, 2.85%}

simulation are not rescheduled, as explained in Section 4.2. In the simulation, if the
previous maintenance cycle does not end at the multiple of nτ , the starting point of
the next maintenance cycle shift. Hence, even A in the next cycle is equal to nτ , A
may still be far away from the actual SD in the simulation. This difference between
the approximation and simulation at A = nτ results in the larger AADs and MADs.

4.5.2 Heuristic optimization based on the approximate evalu-
ation

The results in Table 4.2 of Section 4.4 show that the optimal policies via the
approximate evaluation and simulation are close to each other, which verifies the
accuracy of our approximate evaluation. In this subsection, we intend to verify these
results further under various parameter settings. Similar to Table 4.2, we evaluate two
gaps: i) Gap 1,

(
Ẑ(A∗)−Z(A∗)

)
/Ẑ(A∗), shows how much the true cost rate deviates

from the cost rate of approximate evaluation, while using the optimal age limit of our
approximate evaluation model; and ii) Gap 2,

(
Ẑ(Â∗) − Ẑ(A∗)

)
/Ẑ(Â∗), shows how

much the optimal maintenance policy of our approximate evaluation deviates from
the true optimal policy.

Since we will compare the optimal policies via the approximation with the simulation
results, the age limit A is no longer a factor in the test bed. Hence, the space of
instances is (σl, λk, τm) ∈ Ω,∀l, k,m = {1, 2, 3}; which leads to |Ω| = 27 instances in
the test bed. The cost factors are found back in Table 4.1. The deviation vectors
of 27 instances are shown in Table 4.11 of Subsection 4.A.4. For each factor, we
categorize the instances containing a specific level into a subset. For example, a
subset of instances containing σ1 is defined as Ωσ1 =

{
(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}

}
.
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Table 4.5 The average absolute difference (AAD) and the maximum absolute difference (MAD)

between the simulation results and the approximation results for Gap 1, Gap 2 and (Â∗ −
A∗)/Â∗

(Â∗ −A∗)/Â∗ Gap1 Gap2
{AAD,MAD} {AAD,MAD} {AAD,MAD}

Ωσ1 {4.07%, 6.67%} {1.83%, 3.21%} {1.63%, 3.04%}
Ωσ2 {4.35%, 6.67%} {2.31%, 3.13%} {2.28%, 3.01%}
Ωσ3 {10.6%, 25.0%} {3.19%, 4.79%} {2.67%, 5.21%}
Ωλ1

{6.57%, 25.0%} {1.99%, 4.38%} {2.19%, 5.21%}
Ωλ2

{6.20%, 25.0%} {2.50%, 3.84%} {2.15%, 3.10%}
Ωλ3

{6.20%, 25.0%} {2.84%, 4.79%} {2.23%, 4.82%}
Ωτ1 {10.6%, 25.0%} {2.16%, 3.21%} {1.59%, 2.63%}
Ωτ2 {3.61%, 5.00%} {2.80%, 4.79%} {2.71%, 5.21%}
Ωτ3 {4.81%, 6.67%} {2.37%, 3.82%} {2.26%, 3.10%}
Ω {6.33%, 25.0%} {2.44%, 4.79%} {2.19%, 5.21%}

For each of these subsets, the average of absolute deviation is denoted by AAD and
the maximum of the absolute deviation vectors is denoted by MAD. These results are
summarized in Table 4.5.

In Table 4.5, we observe that the AADs and MADs of Gap 1 and Gap 2 are small, even
the AADs and MADs of (Â∗ −A∗)/A∗ are relatively larger. This implies two points:
1) the neighborhood of the minimum Ẑ is flat and our approximate evaluation is
robust; 2) our approximate evaluation is accurate in the neighborhood of the optimal
solution. Comparing Gap 1 with Gap 2, we observe that the AADs of Gap 2 are
smaller than Gap 1. This implies that the deviation of A∗ from Â∗ does not lead
to much deviation on the simulated cost rate under various parameter settings; even
though the inaccuracy of the approximate evaluation (or Gap 1) is slightly higher.
Hence, in practice, the optimal maintenance policy of our approximate evaluation will
lead to a suboptimal cost rate that is very close to the true optimal cost rate.

4.5.3 Cost reduction potential

To show the cost benefits of including the opportunities at USDs and SDs for the ABM
component, three policies are considered: 1) an only-SD-opportunistic policy, which
means that only SDs are considered as opportunities and no opportunistic preventive
maintenance actions are taken at USDs; 2) an only-USD-opportunistic policy, which
means that only USDs are considered as opportunities and no SDs are planned; and
3) a failure-based policy, which means that neither USDs or SDs are considered as
opportunities for preventive maintenance. Notice that Policy 1 can be analyzed as a
special case of our policy, where λ = 0; Policy 2 can be analyzed as a special case of
our policy, where τ =∞; and Policy 3 can be analyzed as a special case of our policy,
where A =∞.
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To show the cost benefits under various parameter settings, we use the same test
bed and parameter settings as in Section 4.5.2. The minimum average cost rate of
our policy that includes opportunities at both USDs and SDs is denoted by Z. The
minimum average cost rates of Policy 1 and 2 are denoted by Z̃1 and Z̃2 respectively.
Notice that no opportunity is considered in Policy 3; so that its cost rate Z̃3 remains
unchanged under different parameter settings, which is 10 thousand Euro. We use Z̃3

as the basis of the comparison.

Table 4.6 Summary of the cost saving percentages by using opportunities at USDs and SDs;
including the mean, minimum and maximum values of 4A, 4B and 4C respectively.

4A 4B 4C
mean min max mean min max mean min max

Ωσ1 63.7% 60.5% 65.4% 58.8% 55.9% 60.3% 28.7% 19.6% 36.1%
Ωσ2 47.8% 45.9% 48.9% 41.0% 39.7% 41.7% 19.7% 14.1% 24.3%
Ωσ3 32.7% 30.7% 33.9% 24.2% 23.0% 25.0% 12.2% 9.1% 14.6%
Ωλ1

48.5% 32.2% 65.4% 41.3% 23.0% 60.3% 14.3% 9.1% 19.6%
Ωλ2

48.1% 31.4% 65.3% 41.3% 23.0% 60.3% 21.4% 12.9% 30.4%
Ωλ3

47.7% 30.7% 65.2% 41.3% 23.0% 60.3% 25.0% 14.6% 36.1%
Ωτ1 49.2% 33.4% 65.4% 42.3% 25.0% 60.3% 20.2% 9.1% 36.1%
Ωτ2 48.7% 32.6% 65.2% 42.1% 24.7% 60.2% 20.2% 9.1% 36.1%
Ωτ3 46.3% 30.7% 61.4% 39.5% 23.0% 55.9% 20.2% 9.1% 36.1%
Ω 48.1% 30.7% 65.4% 41.3% 23.0% 60.3% 20.2% 9.1% 36.1%

In total, we have three comparisons: A) the cost saving percentage of including
opportunities at both USDs and SDs, denoted by 4A = (Z̃3 − Z)/Z̃3; B) the cost
saving percentage of using only opportunities at SDs (i.e., Policy 1), denoted by
4B = (Z̃3 − Z̃1)/Z̃3; C) the cost saving percentage of using only opportunities
at USDs (i.e., Policy 2), denoted by 4C = (Z̃3 − Z̃2)/Z̃3. Similar to Subsection
4.5.2, we categorize the instances containing a specific level of a certain factor
into a subset. For example, a subset of instances containing σ1 is defined as
Ωσ1 =

{
(σ1, λk, τm)|∀k,m ∈ {1, 2, 3}

}
. The means, minimums and maximums of

the cost saving percentages of these 9 subsets are summarized in Table 4.6. The
result of each instance is shown in Table 4.12 in Subsection 4.A.4

The first observation from Table 4.6 is that our policy (using opportunities at both
SDs and USDs) has a higher cost-saving potential than Policy 1 (using opportunities
at SDs only), Policy 2 (using opportunities at USDs only) and Policy 3 (using no
opportunities). The mean values of 4A are bigger than 4B and 4C , because more
opportunities for preventive maintenance (cheaper than corrective maintenance) are
included in our policy than in Policy 1 and 2. The mean values of 4B are bigger
than 4C , because the cost of preventive maintenance at a SD is cheaper than at an
USD. Regarding the variation of the mean values under various parameter settings,
we observe that i) 4A is inversely proportional to σ, λ and τ . ii) 4B is inversely
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proportional to σ and τ . It remains unchanged to λ, because no USD opportunity
is considered in Policy 1. iii) 4C is proportional to λ and inversely proportional to
σ. It remains unchanged to τ , because no SD opportunity is considered in Policy 2.
A higher σ means a higher variance in the lifetime distribution of the component,
which leads to a higher probability of having corrective maintenance (more expensive
than preventive maintenance). Hence, the mean values of 4A, 4B and 4C decrease
when σ increases. Moreover, the cost of taking opportunities at SDs is cheaper than
at USDs. On one hand, a higher λ leads to more opportunities at expensive USDs;
on the other hand, a higher τ leads to less opportunities at cheaper SDs. Hence, 4A
decreases when λ or τ increases. For the same reason, a higher τ leads to a lower
4B . However, 4C increases at a higher λ, because only opportunities at USDs are
considered in 4C . In this case, a higher λ leads to more opportunities to take, so
that higher cost saving percentages can be observed.

4.6 Conclusions

In this chapter, we proposed a new opportunistic maintenance policy for a single ABM
component in a complex system, under given scheduled and unscheduled downs of
the system. This opportunistic maintenance policy can be utilized in the context
of a mixture of different maintenance policies, such as failure-based maintenance
policies or/and periodic preventive maintenance policies. As the decision variable
of the model, an age limit is introduced to decide the timing of taking opportunities
to maintain the ABM component together with other components in the system,
which saves the downtime cost and setup cost of the ABM component. The optimal
age limit is determined with respect to minimum long-run average cost rate of the
component over an infinite time horizon.

To validate our model, we compared our approximate evaluation results with the
simulation results under various parameter settings. In numerical experiments based
on a full factorial test bed, our model shows a good accuracy and a considerable cost-
saving potential. It is also interesting to observe the spikes and jumps of the average
cost rate when the age limit is a multiple of the schedule down interval; which is
unexpected, but sensible. Finally, our model can be applied to different complex
engineering systems, because it can be used as a building block for multi-component
systems with a mixture of different maintenance policies.
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4.A Appendices

4.A.1 Iteration algorithm

We use an iteration algorithm to find the value of q in Equation (4.13). We start with
an initial value q0 = Ṗ2(ξ = 0) and iterate k times until qk − qk−1 < ε, where ε is a
very small positive value (e.g., ε = 10−8). The procedure of the iteration algorithm
is summarized in Table 4.7.

Initialize q0 = Ṗ2(ξ = 0)

k = 1 , q1 = q0Ṗ2(ξ = 0) +
∫ τ

0
Ṗ2(ξ)f(ξ) dξ, where f(ξ) = (1− q0)/τ

While qk − qk−1 < ε
k = k + 1

qk = qk−1Ṗ2(ξ = 0) +
∫ τ

0
Ṗ2(ξ)f(ξ) dξ, where f(ξ) = (1− qk−1)/τ

End while

Obtain q = qk
End

Table 4.7 Iteration Algorithm
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4.A.2 Simulation procedures

As explained in Section 4.2, the schedule downs will be shifted after each maintenance
cycle in our approximate evaluation model, which is not the case in practice. To
evaluate the accuracy of the approximate evaluation, we run a simulation to compare
with the approximate evaluation results.

Iopm,usdk =

{
1 if a PM-USD action is taken
0 otherwise

Iopm,sdk =

{
1 if a PM-SD action is taken
0 otherwise

ICMk =

{
1 if a CM action is taken
0 otherwise

There are m seeds in the simulation. In each seed i ∈ {1, 2, ...,m}, we simulate
ki renewal/maintenance cycles, where k ∈ {0, 1, 2, ..., ki} is the index of the cycles.
Hence, each seed consists of 1) a Poisson process with a rate λ and random arrival
time points D = {d1, d2, ..., dx} ∈ <x+, x ∈ N, where <+ = [0,∞); 2) a set of random
failure times Tk,i ∈ <+,∀k ∈ N; and 3) a constant set B = {τ, 2τ, ..., nτ}, n ∈ N on a
time horizon Tmax that is sufficiently large to simulate the infinite time horizon (e.g.,
106 times larger than L(A)).

By running the algorithm in Table 4.8 iteratively with m seeds, the final result of the

simulation Ẑ =
∑m
i=1 Ẑi
m with a 100(1−α)% confidence interval is expressed as follows

[30]:

Ẑ ± t(1− α/2,m− 1)

√
S2

m

where S =
∑m
i=1

(Ẑi−Ẑ)2

m−1 and t(1−α/2,m− 1) is the upper 1−α/2 critical point for
the t-distribution with (m−1) degrees of freedom (in our case, m = 100 and α = 5%).
The expected cost rate for each simulation run is:

Ẑi =

∑ki
k=1

(
Iopm,usdk,i Copm,usd + Iopm,sdk,i Copm,sd + ICMk,i CCM

)
Rki,i

, ∀i ∈ {1, 2, ...,m}

Moreover, the probabilities of PM-USD, PM-SD and CM
[
P̂1, P̂2, P̂3

]
; and the

expected cycle length
[
L̂(A)

]
are:
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For i = 1 : m,

Initialize k = 0: Ẑ0 = 0 and R0,i = 0
While Rk,i < Tmax
ki = ki + 1
If Rk−1,i +A ≥ Rk−1,i + Tk,i
Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (0, 0, 1) and Rk,i = Rk−1,i +Tk,i
Else

If ∃ a non-empty subset {Dk,i} ⊆ D : {Dk,i} ⊆ [Rk−1,i +A,Rk−1,i + Tk,i),
If ∃ a non-empty subset {Bk,i} ⊆ B : {Bk,i} ⊆ [Rk−1,i +A,Rk−1,i + Tk,i),
If min{Dk,i} > min{Bk,i},

Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (0, 1, 0) and Rk,i =
min{Bk,i}

Else Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (1, 0, 0) and Rk,i =
min{Dk,i}

Else Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (1, 0, 0) and Rk,i =
min{Dk,i}

Else

If ∃ a a non-empty subset {Bk,i} ⊆ B : {Bk,i} ⊆ [Rk−1,i +A,Rk−1,i +Tk,i)

Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (0, 1, 0) and Rk,i =
min{Bk,i}

Else Calculate Ẑk,i; given (Iopm,usdk,i , Iopm,sdk,i , ICMk,i ) = (0, 0, 1) and Rk,i =
Rk−1,i + Tk,i

End if

End if

End while

Obtain Ẑi=Ẑk,i and Rki,i = Rk,i, where k = ki
End

Table 4.8 Simulation algorithm

P̂1 =

∑m
i=1

[∑ki
k=1

(
Iopm,usdk,i

Iopm,usdk,i +Iopm,sdk,i +ICMk,i

)]
m

P̂2 =

∑m
i=1

[∑ki
k=1

(
Iopm,sdk,i

Iopm,usdk,i +Iopm,sdk,i +ICMk,i

)]
m

P̂3 =

∑m
i=1

[∑ki
k=1

(
ICMk,i

Iopm,usdk,i +Iopm,sdk,i +ICMk,i

)]
m



4.A Appendices 97

and

L̂ =

∑m
i=1

(
Rki,i
ki

)
m

4.A.3 Results without the iteration procedure

As explained in Section 4.3, we use an iterative procedure to calculate P1, P2, P3 and
L (see Equations (4.14) and (4.15)) based on a probability density function H(ξ) (see
Equation (4.13)). To show the effectiveness of the iterative procedure, we take the
same numerical case in Section 4.4 as an example and evaluate the average cost rate
Z without the iterative procedure, where q = 1 in H(ξ). This will lead to P1 = Ṗ1,
P2 = Ṗ2, P3 = Ṗ3 and L = L̇ (see Equations (4.14) and (4.15)), where Ṗ1, Ṗ2, Ṗ3

and L̇ are derived as Equations (4.11) and (4.12). The results without the iterative
procedure are given in Figure 4.6 and Figure 4.7.

Figure 4.6 The probabilities of three maintenance actions (i.e., PM-USD, PM-SD and CM) over

A [year]. The approximate result (without the iterative procedure)
{
P1, P2, P3

}
is compared

with the simulated result
{
P̂1, P̂2, P̂3

}
Similar to Figure 4.4 and Figure 4.5 in Section 4.4, we plot the probabilities P1, P2

and P3 in Figure 4.6 and the expected cycle length L in Figure 4.7. By comparing i)
Figure 4.4 against Figure 4.6 and ii) Figure 4.5 against Figure 4.7, it is obvious that
our approximate evaluation with the iterative procedure is more accurate than the
case without the iterative procedure.
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Figure 4.7 Expected cycle length [year] over A [year]. The approximate result (without the

iterative procedure) L is compared with the simulated result L̂

4.A.4 Detail results of Test bed 1 and 2

Detail results of Tables 4.4, 4.5 and 4.6 are given in the following tables
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Table 4.9 A full factorial test bed including {P̂1, P̂2, P̂3, L̂(A)} from the simulation and the
deviation

[
δ1, δ2, δ3, δ4

]
from the approximation

Simulation Deviation{
P̂1, P̂2, P̂3, L̂(A)

} {
δ1, δ2, δ3, δ4

}
(A1, σ1, λ1, τ1) {0.003, 0.915, 0.082, 0.493} {−0.001, 0.0000.000− 0.2%}
(A1, σ1, λ1, τ2) {0.090, 0.775, 0.135, 0.577} {0.006,−0.009, 0.003, 0.6%}
(A1, σ1, λ1, τ3) {0.093, 0.766, 0.142, 0.583} {−0.001, 0.0000.001,−0.1%}
(A1, σ1, λ2, τ1) {0.006, 0.914, 0.080, 0.493} {−0.001, 0.003,−0.002,−0.2%}
(A1, σ1, λ2, τ2) {0.169, 0.697, 0.133, 0.574} {0.011,−0.015, 0.004, 0.8%}
(A1, σ1, λ2, τ3) {0.184, 0.677, 0.139, 0.582} {0.004,−0.003,−0.001, 0.4%}
(A1, σ1, λ3, τ1) {0.009, 0.912, 0.079, 0.493} {−0.001, 0.004,−0.003,−0.2%}
(A1, σ1, λ3, τ2) {0.250, 0.617, 0.133, 0.569} {0.026,−0.032, 0.006, 0.8%}
(A1, σ1, λ3, τ3) {0.275, 0.585, 0.140, 0.579} {0.016,−0.019, 0.003, 0.5%}
(A1, σ2, λ1, τ1) {0.007, 0.824, 0.169, 0.478} {0.0000.002,−0.002,−0.1%}
(A1, σ2, λ1, τ2) {0.081, 0.693, 0.226, 0.548} {0.006,−0.004,−0.003, 0.2%}
(A1, σ2, λ1, τ3) {0.085, 0.678, 0.238, 0.558} {−0.001, 0.004,−0.003, 0.0%}
(A1, σ2, λ2, τ1) {0.014, 0.815, 0.171, 0.477} {0.0000.0000.000− 0.400%}
(A1, σ2, λ2, τ2) {0.151, 0.618, 0.231, 0.546} {0.010,−0.016, 0.006, 0.5%}
(A1, σ2, λ2, τ3) {0.172, 0.589, 0.239, 0.557} {0.007,−0.008, 0.001, 0.4%}
(A1, σ2, λ3, τ1) {0.018, 0.815, 0.166, 0.479} {−0.002, 0.006,−0.004,−0.1%}
(A1, σ2, λ3, τ2) {0.214, 0.562, 0.223, 0.541} {0.015,−0.016, 0.002, 0.4%}
(A1, σ2, λ3, τ3) {0.257, 0.513, 0.230, 0.553} {0.021,−0.017,−0.004, 0.3%}
(A1, σ3, λ1, τ1) {0.009, 0.748, 0.243, 0.462} {0.000− 0.008, 0.008,−0.4%}
(A1, σ3, λ1, τ2) {0.072, 0.634, 0.294, 0.526} {0.004,−0.007, 0.003, 0.3%}
(A1, σ3, λ1, τ3) {0.076, 0.611, 0.313, 0.533} {−0.005,−0.004, 0.009,−0.6%}
(A1, σ3, λ2, τ1) {0.015, 0.752, 0.233, 0.462} {−0.002, 0.004,−0.002,−0.3%}
(A1, σ3, λ2, τ2) {0.139, 0.569, 0.292, 0.523} {0.009,−0.014, 0.005, 0.5%}
(A1, σ3, λ2, τ3) {0.154, 0.541, 0.305, 0.531} {−0.001,−0.004, 0.004,−0.3%}
(A1, σ3, λ3, τ1) {0.024, 0.746, 0.230, 0.463} {−0.002, 0.007,−0.005,−0.1%}
(A1, σ3, λ3, τ2) {0.199, 0.514, 0.287, 0.517} {0.016,−0.018, 0.003, 0%}
(A1, σ3, λ3, τ3) {0.228, 0.473, 0.299, 0.529} {0.008,−0.010, 0.002,−0.1%}
(A2, σ1, λ1, τ1) {0.012, 0.451, 0.537, 0.861} {0.000− 0.003, 0.003,−0.9%}
(A2, σ1, λ1, τ2) {0.023, 0.416, 0.562, 0.871} {0.0000.000− 0.001,−1.0%}
(A2, σ1, λ1, τ3) {0.061, 0.279, 0.660, 0.908} {0.003,−0.005, 0.002,−0.8%}
(A2, σ1, λ2, τ1) {0.022, 0.447, 0.531, 0.864} {−0.001, 0.004,−0.003,−0.5%}
(A2, σ1, λ2, τ2) {0.041, 0.395, 0.564, 0.871} {−0.003, 0.0000.003,−0.9%}
(A2, σ1, λ2, τ3) {0.111, 0.249, 0.640, 0.902} {0.005,−0.002,−0.003,−0.9%}
(A2, σ1, λ3, τ1) {0.035, 0.435, 0.529, 0.857} {0.001, 0.003,−0.004,−1.4%}
(A2, σ1, λ3, τ2) {0.062, 0.377, 0.561, 0.873} {−0.002, 0.0000.002,−0.7%}
(A2, σ1, λ3, τ3) {0.138, 0.219, 0.643, 0.894} {−0.008,−0.004, 0.011,−1.3%}
(A2, σ2, λ1, τ1) {0.011, 0.431, 0.558, 0.804} {−0.001, 0.002,−0.001,−0.7%}
(A2, σ2, λ1, τ2) {0.023, 0.397, 0.580, 0.813} {0.001,−0.002, 0.002,−1.0%}
(A2, σ2, λ1, τ3) {0.061, 0.291, 0.648, 0.849} {0.003,−0.008, 0.005,−0.9%}
(A2, σ2, λ2, τ1) {0.022, 0.420, 0.557, 0.806} {−0.001, 0.002,−0.001,−0.6%}
(A2, σ2, λ2, τ2) {0.043, 0.377, 0.580, 0.812} {0.000− 0.003, 0.003,−1.0%}
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Table 4.10 (continued) A full factorial test bed including {P̂1, P̂2, P̂3, L̂(A)} from the simulation
and the deviation

[
δ1, δ2, δ3, δ4

]
from the approximation

Simulation Deviation{
P̂1, P̂2, P̂3, L̂(A)

} {
δ1, δ2, δ3, δ4

}
(A2, σ2, λ2, τ3) {0.110, 0.264, 0.626, 0.849} {0.004, 0.002,−0.007,−0.3%}
(A2, σ2, λ3, τ1) {0.035, 0.408, 0.557, 0.800} {0.002, 0.000,−0.002,−1.2%}
(A2, σ2, λ3, τ2) {0.062, 0.366, 0.572, 0.811} {−0.002, 0.006,−0.004,−1.1%}
(A2, σ2, λ3, τ3) {0.146, 0.225, 0.629, 0.830} {0.001,−0.006, 0.004,−2%}
(A2, σ3, λ1, τ1) {0.011, 0.408, 0.581, 0.762} {0.000,−0.002, 0.002,−0.8%}
(A2, σ3, λ1, τ2) {0.023, 0.382, 0.595, 0.771} {0.001,−0.001, 0.000,−1.0%}
(A2, σ3, λ1, τ3) {0.058, 0.296, 0.646, 0.809} {0.001,−0.001, 0.000,−0.5%}
(A2, σ3, λ2, τ1) {0.022, 0.390, 0.588, 0.758} {0.000,−0.009, 0.009,−1.2%}
(A2, σ3, λ2, τ2) {0.039, 0.365, 0.596, 0.762} {−0.004, 0.002, 0.002,−2.0%}
(A2, σ3, λ2, τ3) {0.108, 0.256, 0.635, 0.800} {0.006,−0.003,−0.003,−0.9%}
(A2, σ3, λ3, τ1) {0.034, 0.389, 0.577, 0.749} {0.001, 0.001,−0.001,−2.5%}
(A2, σ3, λ3, τ2) {0.059, 0.343, 0.598, 0.764} {−0.004,−0.001, 0.005,−1.7%}
(A2, σ3, λ3, τ3) {0.144, 0.226, 0.630, 0.799} {0.003,−0.003,−0.001,−0.5%}
(A3, σ1, λ1, τ1) {0.004, 0.068, 0.929, 0.982} {0.000, 0.003,−0.004,−0.8%}
(A3, σ1, λ1, τ2) {0.005, 0.049, 0.946, 0.983} {−0.001, 0.001,−0.001,−0.9%}
(A3, σ1, λ1, τ3) {0.007, 0.043, 0.950, 0.991} {0.000, 0.003,−0.004,−0.2%}
(A3, σ1, λ2, τ1) {0.005, 0.057, 0.938, 0.979} {−0.001,−0.004, 0.005,−1.0%}
(A3, σ1, λ2, τ2) {0.011, 0.042, 0.947, 0.980} {0.001,−0.003, 0.002,−1.2%}
(A3, σ1, λ2, τ3) {0.014, 0.035, 0.951, 0.982} {0.001,−0.001, 0.000,−1.0%}
(A3, σ1, λ3, τ1) {0.008, 0.053, 0.938, 0.974} {−0.001,−0.006, 0.007,−1.5%}
(A3, σ1, λ3, τ2) {0.015, 0.038, 0.947, 0.981} {0.000,−0.004, 0.004,−1.1%}
(A3, σ1, λ3, τ3) {0.020, 0.032, 0.949, 0.990} {0.002,−0.002, 0.000,−0.2%}
(A3, σ2, λ1, τ1) {0.005, 0.138, 0.857, 0.948} {−0.001,−0.004, 0.005,−0.5%}
(A3, σ2, λ1, τ2) {0.013, 0.114, 0.873, 0.945} {0.000,−0.003, 0.003,−1.6%}
(A3, σ2, λ1, τ3) {0.015, 0.111, 0.873, 0.940} {0.000, 0.004,−0.004,−2.4%}
(A3, σ2, λ2, τ1) {0.013, 0.136, 0.851, 0.954} {0.001, 0.001,−0.002, 0.1%}
(A3, σ2, λ2, τ2) {0.023, 0.102, 0.874, 0.941} {0.000,−0.005, 0.006,−2.0%}
(A3, σ2, λ2, τ3) {0.027, 0.094, 0.879, 0.948} {−0.001,−0.003, 0.004,−1.4%}
(A3, σ2, λ3, τ1) {0.018, 0.133, 0.849, 0.940} {0.001, 0.002,−0.003,−1.3%}
(A3, σ2, λ3, τ2) {0.036, 0.092, 0.872, 0.954} {0.003,−0.008, 0.005,−0.5%}
(A3, σ2, λ3, τ3) {0.042, 0.085, 0.873, 0.947} {0.003,−0.003, 0.000,−1.4%}
(A3, σ3, λ1, τ1) {0.007, 0.175, 0.818, 0.905} {0.000,−0.001, 0.001,−1.2%}
(A3, σ3, λ1, τ2) {0.016, 0.150, 0.834, 0.917} {0.001, 0.000,−0.001,−0.9%}
(A3, σ3, λ1, τ3) {0.021, 0.146, 0.833, 0.924} {0.003, 0.004,−0.007,−0.4%}
(A3, σ3, λ2, τ1) {0.013, 0.167, 0.820, 0.910} {0.000,−0.002, 0.003,−0.7%}
(A3, σ3, λ2, τ2) {0.032, 0.137, 0.831, 0.899} {0.002, 0.000,−0.002,−2.8%}
(A3, σ3, λ2, τ3) {0.035, 0.124, 0.842, 0.915} {0.000,−0.004, 0.004,−1.3%}
(A3, σ3, λ3, τ1) {0.020, 0.170, 0.810, 0.915} {0.000, 0.007,−0.007,−0.1%}
(A3, σ3, λ3, τ2) {0.043, 0.121, 0.836, 0.902} {0.001,−0.006, 0.005,−2.4%}
(A3, σ3, λ3, τ3) {0.052, 0.117, 0.831, 0.916} {0.004, 0.001,−0.005,−1.0%}
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Table 4.11 Detail results of Table 4.5: the optimal maintenance policy of approximation and
simulation.

Ω {(Â∗ −A∗)/A∗, Gap1, Gap2}
(σ1, λ1, τ1) {5.00%, 2.07%, 2.63%}
(σ1, λ1, τ2) {2.50%, 0.51%, 0.33%}
(σ1, λ1, τ3) {6.67%, 1.40%, 1.34%}
(σ1, λ2, τ1) {2.50%, 0.10%, 0.30%}
(σ1, λ2, τ2) {2.50%, 2.75%, 3.04%}
(σ1, λ2, τ3) {3.33%, 2.41%, 2.27%}
(σ1, λ3, τ1) {2.50%, 3.21%, 2.17%}
(σ1, λ3, τ2) {5.00%, 2.29%, 1.46%}
(σ1, λ3, τ3) {6.67%, 1.76%, 1.12%}
(σ2, λ1, τ1) {2.50%, 1.96%, 2.54%}
(σ2, λ1, τ2) {2.50%, 1.61%, 1.67%}
(σ2, λ1, τ3) {6.67%, 1.83%, 3.01%}
(σ2, λ2, τ1) {5.00%, 2.81%, 2.14%}
(σ2, λ2, τ2) {5.00%, 1.89%, 1.96%}
(σ2, λ2, τ3) {6.67%, 2.74%, 2.83%}
(σ2, λ3, τ1) {2.50%, 2.24%, 0.93%}
(σ2, λ3, τ2) {5.00%, 3.13%, 2.94%}
(σ2, λ3, τ3) {3.33%, 2.54%, 2.47%}
(σ3, λ1, τ1) {−25.0%, 2.74%, 1.27%}
(σ3, λ1, τ2) {5.00%, 4.38%, 5.21%}
(σ3, λ1, τ3) {3.33%, 1.42%, 1.69%}
(σ3, λ2, τ1) {−25.00%, 2.12%, 0.76%}
(σ3, λ2, τ2) {2.50%, 3.84%, 3.00%}
(σ3, λ2, τ3) {3.33%, 3.82%, 3.10%}
(σ3, λ3, τ1) {−25.0%, 2.21%, 1.61%}
(σ3, λ3, τ2) {2.50%, 4.79%, 4.82%}
(σ3, λ3, τ3) {3.33%, 3.40%, 2.56%}
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Table 4.12 The cost saving potential of including opportunities at USDs and SDs: 4A, 4B
and 4C .

Ω
4A 4B 4C

(σ1, λ1, τ1) 65.4% 60.3% 19.6%
(σ1, λ1, τ2) 65.2% 60.2% 19.6%
(σ1, λ1, τ3) 61.4% 55.9% 19.6%
(σ1, λ2, τ1) 65.3% 60.3% 30.4%
(σ1, λ2, τ2) 64.9% 60.2% 30.4%
(σ1, λ2, τ3) 61.0% 55.9% 30.4%
(σ1, λ3, τ1) 65.2% 60.3% 36.1%
(σ1, λ3, τ2) 64.8% 60.2% 36.1%
(σ1, λ3, τ3) 60.5% 55.9% 36.1%
(σ2, λ1, τ1) 48.9% 41.7% 14.1%
(σ2, λ1, τ2) 48.5% 41.4% 14.1%
(σ2, λ1, τ3) 47.1% 39.7% 14.1%
(σ2, λ2, τ1) 48.7% 41.7% 20.8%
(σ2, λ2, τ2) 48.1% 41.3% 20.8%
(σ2, λ2, τ3) 46.4% 39.7% 20.8%
(σ2, λ3, τ1) 48.5% 41.7% 24.3%
(σ2, λ3, τ2) 47.7% 41.4% 24.3%
(σ2, λ3, τ3) 45.9% 39.7% 24.3%
(σ3, λ1, τ1) 33.9% 25.0% 9.1%
(σ3, λ1, τ2) 33.6% 24.7% 9.1%
(σ3, λ1, τ3) 32.2% 23.0% 9.1%
(σ3, λ2, τ1) 33.7% 25.0% 12.9%
(σ3, λ2, τ2) 33.1% 24.7% 12.9%
(σ3, λ2, τ3) 31.4% 23.0% 12.9%
(σ3, λ3, τ1) 33.4% 25.0% 14.6%
(σ3, λ3, τ2) 32.6% 24.7% 14.6%
(σ3, λ3, τ3) 30.7% 23.0% 14.6%
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An Opportunistic Maintenance Model
for Multi-Component Systems under a

Mixture of Different Maintenance
Policies

“Simplicity is the ultimate sophistication.”

Leonardo da Vinci



104 Chapter 5

5.1 Introduction

Due to the diverse characteristics of components, complex engineering systems in the
high-tech industry generally have a mixture of different components (e.g., age-based,
condition-based, and failure-based components). For example, for some electronic
parts (e.g., circuit board, current adapter), we may want to use a failure-based
maintenance policy (FBM), since their failures occur according to a constant failure
rate. On the other hand, for some parts in the system, it is desired to use an age-based
maintenance (ABM) policy due to the fact that they have an increasing failure rate
and the conditions of the components are too difficult to be measured. Under such
circumstances, if we can combine the CBM activities of the monitored component
with other components for which an age-based or failure-based maintenance policy
is followed, the downtime cost and setup cost of maintenance for the entire system
will be further reduced/eliminated. In this way, the system downs and maintenance
setups for other components can serve as opportunities of a certain component to
perform the preventive maintenance action without setup/downtime cost.

In this chapter, we consider multi-component systems with a mixture of components
that are under CBM, ABM and FBM policies. Even though various maintenance
optimization models of CBM and ABM at single-component level are available
[11, 17, 25, 37, 42, 51], they cannot be applied directly to multi-component systems,
because one has to deal with the economic, structural or stochastic dependencies
among the components [11, 51, 61]. In this chapter, we consider the economic
dependence only. There are many ABM and CBM models for multi-component
systems that has been elaborated in Section 1.4 (see block B, C, E and F in Table 1.2).
However, none of them has consider a multi-component system consisting of 1) such
a mixture of CBM, ABM and FBM policies and 2) a large number of components.
As the only relevant work in the literature, Koochaki et al. [28] evaluated the cost
effectiveness of ABM and CBM policies for a three-component system in the context
of opportunistic maintenance, which is based on simulation due to the complexity of
the analysis. Different from the work of Koochaki et al, we propose a maintenance
policy for multi-component systems consisting of a large number of components under
a mixture of CBM, ABM and FBM policies. As independent building blocks, the
CBM and ABM are opportunistic maintenance policies (see Chapter 3 and 4). To the
best of our knowledge, the coordination of maintenance actions under such a mixture
(block G in Table 1.2 in Section 1.4) has not been studied in the literature.

In this new policy, we introduce control limits for CBM components and age limits
for ABM components to determine when to take these opportunities. When the
degradation level of a CBM component exceeds its control limit, we will take the
scheduled/unscheduled opportunities from other components and jointly maintain
this CBM component with other components. Similarly, when the age of an ABM
component exceeds its age limit, we will take the appeared opportunities to do joint
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maintenance on this ABM component together with other components.

To be able to solve large-scale problems in real life, we develop a maintenance
optimization model with a heuristic procedure to minimize the long-run average cost
rate of the system by optimizing 1) the control limits of CBM components, 2) the age
limits of ABM components, and 3) the maintenance interval for scheduled downs of the
entire system. In this case, we can decompose the main problem at the system level
to subproblems at the component level. Regarding the reasons of using a heuristic,
instead of an exact solution method; i) it is hard to obtain a fast and exact evaluation
procedure for the objective function per component, because renewal theory can not
be directly applied due to the fixed intervals for scheduled downs (also see Chapter
3 and 4). ii) When the number of components is large, the exact methods become
intractable. iii) The objective function is non-linear and non-convex. Therefore, we
can use a heuristic via an iterative procedure to find the heuristic solution under the
structure of our proposed policy within a reasonable computation time.

The outline of this chapter is as follows. The problem description and formulation
are given in Section 5.2. In Section 5.3, the solution approach is given based on new
CBM and ABM models. For the details of the mathematical analysis, we will refer to
Chapter 3 and 4. Moreover, we show a numerical example in Section 5.4, including
three computation experiments. Finally, we give conclusions in Section 5.5.

5.2 Problem Description and Formulation

Consider a system consisting of multiple components that are subject to failures.
The set I denotes the set of all components, and the components are numbered
as {1, . . . , |I|}, see Figure 5.1. Within the system, components follow different
maintenance policies. We denote components that are under condition-based
maintenance policy by subset ICBM . Components that are under age-based
maintenance policy are denoted by IABM . Components that are under failure-based
maintenance policy are denoted by IFBM . It holds that ICBM ∩ IABM ∩ IFBM = ∅
and ICBM ∪ IABM ∪ IFBM = I. We are in particular interested in the cases that
have many components in a system (i.e., a high |I|), for which we have large-scale
optimization problems at the system level.

For such multi-component systems, we often see two types of system downs, especially
in the high-tech industry:

• Scheduled downs: For many systems, periodic maintenance actions for com-
ponents/systems (e.g., inspection, cleaning, and lubrication) are executed at
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Figure 5.1 Structure of a typical multi-component system

predetermined time points with fixed time intervals in between. This leads to
scheduled downs (SDs) of the system. This is a common practice, because it
facilitates the planning and coordination of maintenance resources (e.g., service
engineers, maintenance tools, spare parts). For example, the production lines
of food processing industry often schedule preventive maintenance activities
periodically [57].

• Unscheduled downs: Beside the scheduled downs, we will also have unexpected
system downs when hard failures of components occur. The unscheduled downs
(USDs) may come from the three different types of components in Figure 5.1:

– For FBM components, maintenance actions will be conducted immediately
after the failures occur. Thus the unexpected failures of components in
IFBM lead to a proportion of the unscheduled downs. For example, the
electronics of a system are often under failure-based maintenance policies.
When a short-circuit failure occurs, the system goes down due to power
loss.

– For ABM components, maintenance actions will be conducted preventively
when the age of a component passes a certain limit and at the same time
an opportunity appears for joint maintenance. But due to the randomness
of failure times and the arrivals of opportunities, unexpected failures may
still happen, which lead to unscheduled downs. For example, the loading
structures, such as trusses, are often under age-based policies. When a
failure due to material fatigue occurs, a truss fails before its preventive
maintenance action. The system then goes down due to a structure
deformation.

– For CBM components, their conditions are monitored continuously by
micro sensors. Opportunistic preventive maintenance will be conducted if
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the degradation level of a component crosses a certain limit. However, due
to the randomness of the opportunities, it is possible that the degradation
of a component’s condition exceeds the predetermined failure threshold1.
Then the performance of the system becomes unacceptable (e.g., yield
rate decreases or product defect rate increases), which causes a stop of the
operation.

Every scheduled/unscheduled down will cause a period of downtime and a setup
cost for maintenance actions. For the overall maintenance policy, in order to reduce
the total system downs and the setup costs of maintenance, a smart clustering
of maintenance actions (also known as joint/group maintenance) is required. The
objective is to minimize the long-run average maintenance costs of the system. To
achieve this, we can combine the preventive maintenance activities of age-based and
condition-based components with the scheduled downs and unscheduled downs.

We assume that we have scheduled downs at fixed time points {τ, 2τ, 3τ, . . . ,∞}
over an infinite time horizon. The scheduled downs can be used by age-based and
condition-based components as opportunities for preventive maintenance actions. The
fixed interval τ for scheduled downs is a decision variable. Apart from combining the
preventive maintenance actions with scheduled downs, the unscheduled downs can also
be used by ABM and FBM components as opportunities for preventive maintenance
actions. We could further reduce the total system downs and maintenance setups
by this type of opportunistic clustering with unscheduled downs. The unscheduled
downs may come from the FBM, ABM and CBM components. We approximate the
arrivals of unscheduled downs using a Poisson process, which is reasonable when the
number of components in the system is large.

Each scheduled down has a fixed setup cost SSD, which includes the cost of the
downtime and the setup of maintenance actions (e.g., sending a maintenance engineer
to the system site). Similarly, each unscheduled down has a fixed cost SUSD. These
latter costs are assumed to be higher than the scheduled downtime cost SSD, because:
(i) generally the hourly cost of unscheduled downtime is more expensive than the
hourly cost of scheduled downtime, since the operation or production gets disturbed
by the unscheduled downs; (ii) often, an unscheduled down lasts longer because a
service engineer (and other resources) cannot be planned beforehand and it takes
a certain amount of waiting time to have them available; (iii) extra costs may be
incurred to get the maintenance equipments available within a short time period.

Next, we describe the details of the opportunistic maintenance policies for individual
components.

For each component i ∈ IFBM , the lifetime of component i is a random variable with
its probability density function fi(x) and expected life time µi. For this component,

1This threshold is often determined by the experts in the design and engineering department
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we never execute a preventive maintenance action. We wait until the component
fails and conduct a corrective maintenance action. This leads to a cost SUSD for the
unscheduled down and a cost cRepi for the corrective replacement.

For each component i ∈ IABM , the lifetime of component i is also a random variable
with probability density function fi(x). We introduce an age limit Ai and execute
a preventive maintenance action if the lifetime is larger or equal to Ai when the
opportunities of joint maintenance arrive (i.e., when the scheduled or unscheduled
downs of other components appear). Since these preventive maintenance actions are
performed within the time periods of the scheduled downs or unscheduled downs from
other components, the cost of downtime can be saved for component i ∈ IABM in
this case. The setup cost of maintenance for component i is also reduced by this joint
maintenance, due to the fact that we only need one setup for this joint maintenance
activity. Thus, the corresponding preventive maintenance costs are equal to cPM−SDi

and cPM−USDi , for scheduled downs and unscheduled downs respectively; generally,
cPM−SDi ≤ cPM−USDi . When component i fails i) before the age Ai has been reached
or ii) before an opportunity appears to do a preventive replacement while the age Ai
has been reached; a corrective maintenance action is taken on component i, which
leads to a corrective replacement cost cRepi and a fixed cost SUSD for this unscheduled

down caused by component i (namely, cCMi = SUSD + cRepi ). Generally speaking,
cCMi is larger than cPM−SDi and cPM−USDi , since preventive maintenance is normally
cheaper than corrective maintenance. Notice that Ai =∞ implies that we will never
have a preventive maintenance; in that special case, the ABM policy reduces to a
FBM policy.

For each component i ∈ ICBM , the degradation level is measured continuously and
the degradation level at time t is denoted by Xi(t), t ≥ 0. We assume that a higher
level of Xi(t) corresponds to a higher level of degradation. A failure threshold Hi is
given by the experts in the design and engineering department. If the degradation
level Xi(t) reaches level Hi, one is not allowed to continue the operation and has to do
an immediate repair. Hence, when Xi(t) reaches level Hi, we see this as a failure and
the repair is seen as a corrective maintenance action. The repair itself may be done by
simply replacing the failed component by a ready-for-use spare part. This corrective
maintenance action of component i leads to a cost cCMi , which is composed of a

corrective replacement cost cRepi and a fixed cost SUSD related to the downtime and
setup of maintenance for this unscheduled down. In order to avoid these relatively high
costs, we introduce a control limit Ci (≤ Hi). We replace component i preventively if
Xi(t) ≥ Ci when an opportunity of scheduled/unscheduled downs appears at time t.
The cost of a preventive replacement at a scheduled and unscheduled down is equal
to cPM−SDi and cPM−USDi , respectively. Both cost factors are smaller than cCMi , and
generally cPM−SDi ≤ cPM−USDi . Notice that Ci = Hi implies that we will never have a
preventive replacement; in that special case, the CBM policy reduces to a FBM policy.

Given the above structure for the overall maintenance policy, we can distinguish two
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types of decision variables: (i) the fixed interval τ for scheduled downs (at the system
level); (ii) the control limits Ci, i ∈ ICBM , and the age limits Aj , j ∈ IABM (at the
component level). We can determine them in a nested way. For a given τ , we can
first optimize the control limits Ci and the age limits Aj , ∀i ∈ ICBMandj ∈ IABM .
Next one can optimize τ . This leads to subproblems at the component level and a
main problem at the system level that have to be solved.

Let us first formulate the subproblem for a given τ . Let C and A be vectors consisting
of all Ci(i ∈ ICBM ) and all Aj(j ∈ IABM ), respectively. The long-run average cost
rate under a given choice for C and A is denoted by Zsyst(τ,C,A). They consist of
the average cost rate of scheduled downs SSD/τ and all other cost rates that can be
directly coupled to individual components. Let Zi(τ,C,A) be the cost rates that are
coupled to component i, i ∈ I. Then it holds that

Zsyst(τ,C,A) =
SSD

τ
+
∑
i∈I

Zi(τ,C,A).

We assume the degradation processes or lifetimes of components are independent of
other components, and components are as good as new after repair or replacement.
Thus, the average cost rate Zi(τ,C,A) can be determined for each component
i ∈ I. The average cost rate Zi(τ,C,A) consists of the costs due to corrective

maintenance actions for all i ∈ IFBM , with a cost of SUSD + cRepi per corrective
maintenance action. Further, for all i ∈ ICBM ∪ IABM , they consist of the costs
due to preventive maintenance actions at scheduled downs (with a cost cPM−SDi per
action), the costs due to preventive maintenance actions at unscheduled downs (with
a cost cPM−USDi per action), and the costs due to corrective maintenance actions

(with a cost SUSD+cRepi per corrective maintenance action). Notice that the average

cost rate Zi(τ,C,A) = (SUSD + cRepi )/µi for a failure based component i ∈ IFBM
are independent of C and A; hence, we may also write Zi(τ,C,A) = Zi(τ) for all
i ∈ IFBM . For each condition-based component i ∈ ICBM , we can find the optimal
control limits C∗i that minimizes the cost rate Z∗i (τ,C,A) = Zi

(
C∗i (τ)

)
, given a τ .

For each age-based component i ∈ IABM , we can find the optimal age limits A∗i that
minimizes the cost rate Z∗i (τ,C,A) = Zi

(
A∗i (τ)

)
, given a τ . Let C∗(τ) and A∗(τ)

be the optimal vectors consisting of all C∗i (i ∈ ICBM ) and all A∗j (j ∈ IABM ) which
minimize Zsyst(τ,C,A) under a given τ . Then the minimum average cost rates for a
given τ are equal to

Zsyst(τ) = Zsyst(τ,C
∗(τ),A∗(τ)).

The subproblem for a given τ is to determine the optimal control limits C∗(τ) and
the age limits A∗(τ) and the corresponding average cost rates Zsyst(τ).

If we are able to solve the subproblem for a given τ , then the next step is to solve the
main problem at the system level:

(P ) : min
τ

Zsyst(τ)
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s.t. τLB < τ < τUB .

We assume both a lower bound τLB (≥ 0) and an upper bound τUB (maybe equal
to ∞) for τ . The lower bound τLB is specified due to the fact that the user of the
system does not allow too frequent scheduled downs or capacity limitations of service
engineers may prohibit a too small value for τ . The upper bound τUB may come
from regulations that prescribe the minimal frequencies of regular inspections (e.g.,
the annual inspection for personal cars implies at least one scheduled system down per
year). τ∗ ∈ [τLB , τUB ] is the optimal maintenance interval that gives the minimum
average cost rates of the system denoted by Z∗syst = Zsyst(τ

∗).

5.2.1 Notation

τ : interval of scheduled downs
Ai : age limit on the age of component i ∈ IABM (decision variable)
Ci : control limit on the degradation level of component i ∈ ICBM (decision variable)
Hi : CM threshold on the degradation of component i ∈ ICBM
µi : expected life time of component i ∈ IFBM Zi : average cost rate of component
i ∈ I
Zsyst : average cost rate of the system
cPM−USDi : PM cost of component i ∈ {ICBM ∪ IABM} at unscheduled system downs
cPM−SDi : PM cost of component i ∈ {ICBM ∪ IABM} at scheduled system downs

cRepi corrective replacement cost of component i ∈ I
SUSD : setup cost and downtime cost at unscheduled downs
SSD : setup cost and downtime cost at scheduled downs
cCMi : CM cost (SUSD + cRepi ) of component i ∈ I

5.2.2 Assumptions

1) The life time of each ABM component is independent of scheduled and unscheduled
downs caused by other components in the system.
2) The degradation of each CBM component is independent of scheduled and
unscheduled downs caused by other components in the system.
3) The time horizon is infinite
4) Maintenance actions restore components as new.
5) The system is composed of a large number of components.
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5.3 Solution Approach

In this section, we first describe the solution procedure of the subproblem for a given
τ . Next, we describe how the main problem is solved.

Consider the subproblem for a given τ . It is hard to obtain an exact and fast
evaluation procedure for the cost function Zsyst(τ,C,A), since the renewal theory
can not be directly applied due to the fixed intervals for scheduled downs. And, even
if we would have such an evaluation procedure, it is still relatively difficult to have an
exact and efficient optimization algorithm to obtain the optimal control limits C and
age limits A, since the cost rate functions Zi(τ,C,A) are nonlinear and not convex.
We therefore develop a heuristic procedure, based on approximate evaluations of the
Zi(τ,C,A). In this heuristic procedure, we specify the control limits and age limits
one by one in an iterative way. In each iteration, we take the view of an individual
component i ∈ ICBM ∪ IABM and consider scheduled downs with fixed intervals
of length τ and unscheduled downs at certain random time points as opportunities
for preventive maintenance. Notice that these unscheduled downs occur because of
failures of all other components j ∈ {I \ i}. For each other component j, they occur
according to a certain renewal process. The total process of unscheduled downs of all
other components consists of the merge of multiple renewal processes, and therefore
this total process will be close to a Poisson process when we have sufficiently many
components. In any case, we approximate the total process as a Poisson process.

The first step of our heuristic procedure is the initialization step. In this step, we
first consider each FBM component i ∈ IFB with its lifetime distribution denoted by
fi(x). The component will generate unscheduled downs with rate λi = 1/µi. Next,
for each CBM component i ∈ ICBM , we set the control limit Ci equal to Hi, in which
case this CBM component also behaves as a FBM component. And we determine the
rate λi with which unscheduled downs will be generated. Similarly, for each age-based
component i ∈ IABM , we set the control limit Ai equal to∞, in which case this ABM
component also behaves as a FBM component. And we determine the rate λi with
which unscheduled downs are generated.

After the initialization, we optimize each of the control limits Ci, i ∈ ICBM , and
the age limits Ai, i ∈ IABM , in an iterative way. Per iteration, we consider each of
the components in ICBM ∪ IABM :

• Consider a component i ∈ ICBM . This component sees scheduled downs
with intervals of length τ and unscheduled downs with rate

∑
j∈{I\i} λj as

opportunities for preventive maintenance actions. We want to choose Ci such
that Zi(τ,C,A) is minimized. This problem for component i has been studied in
Chapter 3. In that chapter, an accurate and efficient approximation procedure
has been derived for the evaluation of Zi(τ,C,A), and the control limit Ci is
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optimized on the basis of this approximate function. We determine Ai and
Zi(τ,C,A), and we also update the rate λi with which unscheduled downs are
generated by component i.

• Consider a component i ∈ IABM . This component sees scheduled downs
with intervals of length τ and unscheduled downs with rate

∑
j∈{I\i} λj as

opportunities for preventive maintenance actions. We want to choose Ai such
that Zi(τ,C,A) is minimized. This problem for component i has been studied in
Chapter 4. In that chapter, an accurate and efficient approximation procedure
has been derived for the evaluation of Zi(τ,C,A), and the age limit Ai is
optimized on the basis of this approximate function. We determine Ai and
Zi(τ,C,A), and we also update the rate λi with which unscheduled downs are
generated by component i.

We continue with these iterations until λi converges for all components with the total
cost Zsyst(τ,C,A). Notice that the decision variable of component i (i.e., Ci or Ai)
also converges when λi converges. Next, we also determine Zsyst(τ,C,A).

We have no guarantee for the convergence of the above procedure, but it is likely that
the convergence is obtained in general. The procedure leads to a heuristic solution
(C̃(τ), Ã(τ)) and an approximated Zsyst(τ, C̃(τ), Ã(τ)) for the function Zsyst(τ). The
heuristic algorithm is summarized in Subsection 5.A.1.

The main problem (P) is solved on the basis of the approximation Zsyst(τ, C̃(τ), Ã(τ)).

Here, we simply apply enumeration to minimize Zsyst(τ, C̃(τ), Ã(τ)) over τ .

5.4 Numerical Study

To demonstrate the usage of the model, we start with a simple example: a
system consisting of 5 condition-based components (ICBM = {1, 2, 3, 4, 5}) and 5
age-based components (IABM = {6, 7, 8, 9, 10}) and 40 failure-based components
(IFBM = {11, 12, ...49, 50}). To show our model is able to deal with systems
consisting of both identical and non-identical components, we consider the case
where i) component i ∈ IABM and i ∈ ICBM are non-identical. ii) components
i ∈ IFBM consisting of 4 identical subgroups IFBM1 = {11, .., 20}, IFBM2 =
{21, .., 30}, IFBM3 = {31, .., 40} and IFBM4 = {41, .., 50}. Each of these identical
subgroups consists of 10 non-identical components with their expected life time
{µ11, ..., µ20}={µ21, ..., µ30}={µ31, ..., µ40}={µ41, ..., µ50} = {1.33, 1.47, 1.60, 1.73,
1.87, 2.00, 2.13, 2.27, 2.40, 2.53 } in years and their corrective maintenance cost
{cCM11 , ..., cCM20 } ={cCM21 , ..., cCM30 } = {cCM31 , ..., cCM40 } = {cCM41 , ..., cCM50 } = { 6.00, 6.10,
6.20, 6.30, 6.40, 6.50, 6.60, 6.70, 6.80, 6.90} in thousand Euro. Notice that we
can aggregate the unscheduled down rate λi generated by each FBM component
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i ∈ IFBM . This is because each FBM component is modeled by a renewal process and
we can merge these 40 renewal processes of 40 FBM components into one aggregated
FBM component with an exponentially distributed lifetime and its failure rate∑
i∈IFBM λi = 21.56 (also see Palm-Khintchine theorem [46]). Similarly, the average

cost rates of these 40 FBM components can be also aggregated,
∑
i∈IFBM Zi = 137.82

thousand Euro per year.
For component i ∈ ICBM , we use the random coefficient model mentioned in Section
3.4 of Chapter 3 to model its degradation path. The slope of the degradation path is
a Weibull distribution with its scale and shape parameter αCBMi and βCBMi , and the
constant parameters {φ1i , φ2i} = {0, 1},∀i ∈ ICBM . For component i ∈ IABM , we
assume the lifetime distribution is a Weibull distribution with its scale and shape
parameter αABMi and βABMi , which is also described in Section 4.4 of Chapter

4. Notice that the CM cost cCMi = cRepi + SUSD must be higher than the PM
cost ( cPM−USDi or cPM−SDi ), since PM uses unscheduled or scheduled downs as
opportunities to save downtime and setup costs. For i ∈ IFBM , the expected lifetime
µi is needed for cost rate evaluation. At the system level, the fixed cost of scheduled
down SSD is smaller than the fixed cost of unscheduled down SUSD. The input
parameters at the component level and the system level are given in Table 5.1. To solve
this maintenance optimization problem, we use the approach proposed in Subsection
5.3.

5.4.1 Optimal maintenance policy

By solving the main problem (see Subsection 5.A.1), the heuristic solution of
our maintenance policy is found and shown in Table 5.2. This solution suggests
to set up scheduled maintenance actions every 0.5 year. To take scheduled
or unscheduled downs as opportunities for joint maintenance, the control lim-
its on the physical condition of the CBM components,

{
C̃∗i (τ∗),∀i ∈ ICBM

}
,

are {81.1%, 78.5%, 73.2%, 73.4%, 75.3%}; and the age limits of ABM components,{
Ã∗i (τ

∗),∀i ∈ IABM
}

, are {0.5, 0.5, 0.5, 0.5, 0.5} year, which is a multiple of τ∗ in this
case. The minimum maintenance cost rate of the system Zsyst(τ

∗) is 187.88 thousand
Euro per year. Notice that the control limits are presented as percentages of the
failure thresholds Hi (see Section 3.4 and Chapter 3). More details of the heuristic
solutions at the component level can be found in Table 5.7 in Subsection 5.A.3.

Moreover, we evaluate the gap between the average cost rate of the heuristics Zsyst(τ)

and the average cost rate of the simulated results Ẑsyst(τ). In the simulation, we use

the control limits
{
C̃∗i (τ∗),∀i ∈ ICBM

}
and age limits

{
Ã∗i (τ

∗),∀i ∈ IABM
}

obtained
via the heuristic procedure under various τ values to evaluate the average cost rate
Ẑsyst(τ). Figure 5.2 shows Zsyst(τ) and Ẑsyst(τ) over various τ values, where we
can observe a small gap between them. Especially, the gap at the optimal solution
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Table 5.1 The parameter setting

Parameters Explanation Value for i = {1, .., 5} Value for i = {6, .., 10}
IABM ICBM

cPM−USDi PM cost at unscheduled down
[thousand Euro]

2.00, 2.10, 2.20, 2.30, 2.40 2.50, 2.60, 2.70, 2.80, 2.90

cPM−SDi PM cost at scheduled down
[thousand Euro]

1.00, 1.05, 1.10, 1.15, 1.20 1.25, 1.30, 1.35, 1.40, 1.45

cRepi Replacement cost (in a CM)
[thousand Euro]

5.00, 5.50, 6.00, 6.50, 7.00 7.50, 8.00, 8.50, 9.00, 9.50

αABMi Scale parameter of Weibull
distribution for component i’s
lifetime (i ∈ IABM )

1.13, 1.24, 1.35, 1.46, 1.58 -

βABMi Shape parameter of Weibull
distribution for component i’s
lifetime (i ∈ IABM )

2.10, 2.31, 2.52, 2.73, 2.94 -

αCBMi Scale parameter of Weibull
distribution for component i’s
degradation rate (i ∈ ICBM )

- 1.13, 1.24, 1.35, 1.46, 1.58

βCBMi Shape parameter of Weibull
distribution for component i’s
degradation rate (i ∈ ICBM )

- 6.01, 6.61, 7.21, 7.81, 8.41

Hi Replacement threshold (for
condition-based components)

- Hi = 100%

SUSD Unscheduled setup cost (in a
CM) [thousand Euro]

5 5∑
i∈IFBM λi the unscheduled down rate

generated by 40 FBM compo-
nents [per year]

21.56 21.56

SSD Scheduled setup cost [thousand
Euro]

3 3

Table 5.2 The heuristic solution of our maintenance policy, where the average cost rate of the
system is minimized. The solution contains: 1) the minimum average cost rate [ thousand
Euro / year] of the system Zsyst and the component Zi, 2) optimal maintenance interval of

the system [year] τ∗ and 3) optimal control limits C̃ for CBM components and age limits Ã
for ABM components

Policy Values
Zsyst(τ∗) 187.88{
Zi
(
τ∗, C̃(τ∗), Ã(τ∗)

)
,∀i ∈ ICBM

}
{3.13, 3.75, 4.25, 4.61, 4.97}{

Zi
(
τ∗, C̃(τ∗), Ã(τ∗)

)
,∀i ∈ IABM

}
{6.29, 5.24, 4.45, 3.85, 3.50}∑

i∈IFBM Zi
(
τ∗, C̃(τ∗), Ã(τ∗)

)
137.82

τ∗ 0.5

C̃(τ∗) =
{
C̃∗i (τ∗),∀i ∈ ICBM

}
{81.1%, 78.5%, 73.2%, 73.4%, 75.3%}

Ã(τ∗) =
{
A∗i (τ∗), ∀i ∈ IABM

}
{0.5, 0.5, 0.5, 0.5, 0.5}
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τ∗ = 0.5 (see Table 5.2) is only 0.14% ((Ẑsyst(τ
∗) − Zsyst(τ∗))/Ẑsyst(τ∗)=(188.15 −

187.88)/188.15 = 0.14%). Also, we observe small confidence intervals of the simulated
results.

Figure 5.2 Average cost rate [thousand Euro per year] at the system level over τ [year]. The

cost rate obtained via heuristics (Zsyst(τ)) is compared with the simulated result (Ẑsyst(τ)) in
a confidence interval with a lower and upper bound

The cost rate shown in Figure 5.2 is intuitively sensible. On one hand, when τ is
small, the frequency of scheduled downs at the system level is high. This leads to a
high cost rate for scheduled downs in Zsyst(τ). On the other hand, when τ is large,
the opportunities of scheduled down become less, and the probabilities of PM-USD
and CM actions with higher cost per action (cPM−SDi ≤ cPM−USDi < cRepi + SUSD)
become larger, which makes the expected maintenance cost per cycle more expensive.
This also results in a higher Zsyst(τ). The control limits and age limits at the
component level also vary with different τ values, which is shown in Table 5.6 and
elaborated in Subsection 5.A.2.
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5.4.2 Convergence in the heuristic algorithm

Table 5.3 The convergence of λi,k, {C∗i,k, ∀i ∈ ICBM} and {A∗i,k, ∀i ∈ IABM} at kth iteration,

given τ∗ = 0.5

Iteration
k = 1 2 3 4

i ∈ ICBM λi,k
1 1.0000 0.0135 0.0196 0.0195
2 1.1146 0.0166 0.0240 0.0240
3 1.2290 0.0199 0.0288 0.0287
4 1.3431 0.0237 0.0343 0.0342
5 1.4571 0.0281 0.0406 0.0406

i ∈ IABM λi,k
6 1.0000 0.3739 0.3828 0.3827
7 0.9088 0.3192 0.3267 0.3267
8 0.8317 0.2248 0.2311 0.2311
9 0.7658 0.1978 0.2032 0.2032
10 0.7091 0.1756 0.1432 0.1431

i ∈ ICBM C∗i,k
1 100.0% 84.8% 81.1% 81.1%
2 100.0% 83.2% 78.5% 78.5%
3 100.0% 80.7% 73.2% 73.2%
4 100.0% 77.9% 73.4% 73.4%
5 100.0% 78.7% 75.3% 75.3%

i ∈ IABM A∗i,k
6 ∞ 0.500 0.500 0.500
7 ∞ 0.500 0.500 0.500
8 ∞ 0.500 0.500 0.500
9 ∞ 0.500 0.500 0.500
10 ∞ 0.500 0.500 0.500

According to Section 5.3, the control limits
{
C̃∗i (τ),∀i ∈ ICBM

}
and age limits{

Ã∗i (τ),∀i ∈ IABM
}

obtained via the heuristic procedure under a given τ can be
obtained through our iteration algorithm. The convergence of the unscheduled down
rate generated by component i, λi, can be observed. To show the details of the
convergence, we take the solution in Table 5.2 as an example, given τ∗ = 0.5.
Notice that the rate of unscheduled downs λi of component i at the kth iteration
is denoted by λi,k. Given τ = 0.5, we observe in Table 5.3 that λi,k converges
quickly after 4 iterations for all components in {ICBM} and {IABM}. Moreover,
we also observe that the control limits {C∗i,k,∀i ∈ ICBM} and the age limits
{A∗i,k,∀i ∈ IABM} at kth iteration converge when λi,k converges. This matches our

expectation explained in Section 5.3. Also notice that C∗i,4 = C̃∗i (τ∗),∀i ∈ ICBM and

A∗i,4 = Ã∗i (τ
∗),∀i ∈ ICBM ; which are the same results in Table 5.2.
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5.4.3 Computational experiment 1

As mentioned previously, a smaller τ leads to more opportunities from scheduled
downs to take preventive maintenance, which is cheaper at the component level
because cPM−SDi < cPM−USDi < cCMi . However, on the other hand, a smaller τ leads
to a higher cost rate of scheduled down SSD/τ at the system level. To investigate the
changes of the optimal policy under this tradeoff, we set the cost of scheduled down
SSD at different levels (i.e., {0.1, 3, 6}), and plot the average cost rates of the system
over various τ values in Figure 5.3. The results match our expectations. When SSD is
relatively small (SSD = 0.1), SSD/τ has less impact on the total cost rate, so that a
smaller τ∗ is preferable. In contrast, when SSD is relatively large (SSD = 6), SSD/τ
has larger impacts on the total cost rate, so that a larger τ∗ is preferable.

Figure 5.3 Average cost rate [thousand Euro per year] at the system level over τ [year]
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5.4.4 Computational experiment 2

Instead of optimizing the decision variables at the component level (i.e., Ci(τ) and
Ai(τ)) simultaneously with the decision variable τ at the system level, which leads to
a dramatic increment of the solution space of decision variables while the amount of
components in a system is large; our approach in Section 5.3 decomposes the system
optimization problem into the subproblems of individual components. Namely, we i)
optimize Ci(τ) and Ai(τ) for each component under a given τ and then ii) optimize
τ for the system. The motivation of such a decomposition approach is to reduce the
computation time of large-scale problems.

To see the performance of our solution approach in terms of computation time, we run
our model for several systems consisting of different amounts of FBM, ABM and CBM
components. This experiment is performed under the same computing environment
as before (by a computer with a 2.5 GHz processor and 4 G RAM). In Table 5.4,
the computation time grows with an increasing rate with respect to the total number
of components in a system. The computation times are in the magnitude of hours,
which shows that our model can be applied to optimize the maintenance policy of a
real life system that has a large number of components.

Table 5.4 The computation time of different systems

System |IFBM | |IABM | |ICBM | Computation Time [hours]
1) 40 5 5 1.908
2) 80 10 10 4.638
3) 120 15 15 10.056
4) 160 20 20 22.011

5.4.5 Computational experiment 3

As a trend observed in practice, CBM policies are implemented for more and more
components in complex systems, which gradually replaces ABM policies. To know
if it is economically attractive to do so, we show the cost difference between using
our CBM policy and our ABM policy. In this case, we consider two scenarios based
on the original system consisting of 5 ABM, 5 CBM and 40 FBM components (see
Subsection 5.4.2), with the input parameter settings in Table 5.1.

• Scenario 1: By using the CBM policy for the 5 ABM components of the original
system; the system in this scenario consists of no ABM, 10 CBM and 40 FBM
components. Suppose the underlying degradation processes of these 5 ABM
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components are the same random coefficient model of the CBM components
in the original system (see Fitting Option 1 in Section 3.4). According to
the parameter fitting procedure explained in [66], we can convert the ABM
components with their life time distributions into 5 CBM components with the
underlying degradation processes, so that the CBM policy can be used for the
ABM components.

• Scenario 2: By using the ABM policy for the 5 CBM components of the original
system; the system in this scenario consists of 10 ABM, no CBM and 40 FBM
components. We use the first passage time of H for CBM components described
in Equation (3.5) as their life time distributions in the ABM policy.

Notice that the optimization problem at the system level remains unchanged and the
approach proposed in this chapter can be used directly. Similar to Table 5.2, the
heuristic solutions for both scenarios are shown in Table 5.5.

Table 5.5 The heuristic solution of our maintenance policy, where the average cost rate of the
system is minimized. The solution contains: 1) the minimum average cost rate [thousand Euro
/ year] of the system Zsyst and the component Zi, 2) optimal maintenance interval of the

system [year] τ∗ and 3) optimal control limits C̃ for CBM components and age limits Ã for
ABM components

Policy Scenario 1 Scenario 2

Zsyst(τ∗) 169.24 193.50

For i ∈ ICBM ,{
Zi
(
τ∗, C̃(τ∗), Ã(τ∗)

)}
{1.25, 1.27, 1.29, 1.27, 1.29 -
3.12, 3.51, 3.89, 4.39, 5.15}

For i ∈ IABM ,{
Zi
(
τ∗, C̃(τ∗), Ã(τ∗)

)}
- {6.26, 5.27, 4.44, 3.91, 3.53,

3.56, 3.94, 4.66, 5.96, 8.15}

For
∑
i∈IFBM Zi 137.82 137.82

τ∗ 0.6 0.5

C̃(τ∗) {82.7%, 83.9%, 85.1%, 86.2%, 87.0%, -
77.7%, 76.8%, 78.0%, 79.3%, 79.4% }

Ã(τ∗) - {0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5}

By comparing these two scenarios in Table 5.5, we observe that the minimum average
cost rate of the system Zsyst is 169.24 thousand Euro per year in Scenario 1 and
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193.50 thousand Euro per year in Scenario 2. For the original system consisting of
5 ABM, 5 CBM and 40 FBM components, Zsyst(τ

∗) = 187.88 is between Zsyst in
Scenario 1 and Scenario 2. Notice that the cost rate of the 40 FBM components
remains unchanged in both scenarios, which is the same as in Table 5.2. Hence,
the cost difference is caused by 1) the interval of setup τ∗ and 2) the cost rate of
ABM and CBM components Zi, i = {1, 2, ..., 10}. As shown in Table 5.5, τ∗ is 0.6
year in Scenario 1 and 0.5 year in Scenario 2, which implies that the frequency of
setup and the setup cost rate are lower in Scenario 1 than Scenario 2. The sum
of
∑
i∈ICBM∪IABM Zi is 26.43 and 49.69 thousand Euro per year in Scenario 1 and

2 respectively, which results in (49.69 − 26.43)/49.69 = 46.8% cost reduction. The
main cause of this cost different is that i) the expected maintenance cycle lengths of
components are much shorter and ii) more CM actions occurs at the end of renewal
cycles in Scenario 2 than in Scenario 1. Hence, economically speaking, it is more
efficient to use the CBM policy than the ABM policy. More details of the heuristic
solutions at the component level in both scenarios can be found in Tables 5.8 and 5.9
in Subsection 5.A.3.

5.5 Conclusions

For a multi-component system with a mix of CBM, ABM, and FBM components,
we have proposed a class of opportunistic maintenance policies in Chapter 3 and 4
using both scheduled and unscheduled downs. To solve the large-scale optimization
problem, we integrated these policies and developed an efficient heuristic procedure to
determine the interval length for the scheduled downs, the control limits of the CBM
components, and the age limits of ABM components. Via the numerical example
of a system consisting of 40 FBM, 5 CBM and 5 ABM components, we show that
this heuristic can be applied to optimize the maintenance policy of a real life system
that has a large number of components (e.g., semiconductor production systems, food
production lines, trucks), within an acceptable computation time. Finally, we find
small gaps by comparing the simulated average cost rates of using the same heuristic
solution with the cost rates obtained via our heuristic.
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5.A Appendices:

5.A.1 Heuristic algorithm

Our heuristic algorithm is explained below. Notice that we use k as the index of
iteration number. For example, Ci,k is the control limit of component i at kth
iteration.

Step 1 Evaluate the cost rate for main problem (P) Zsyst(τ, C̃(τ), Ã(τ)) under a
given τ :

Step 1.1 Evaluate the cost rate of each subproblem (SP) Zi(τ, C̃(τ), Ã(τ))
under a given τ

Step 1.1.1 Initiation k = 1: Set Ci,k = Hi,k, ∀i ∈ ICBM and Ai =
∞, ∀i ∈ IABM and calculate the λi,k = 1/Li,k of all component i ∈ I
and the initial rate of the entire system at k = 1 is

∑
i∈I λi,k, where

Li,k the expected cycle length of component i at kth iteration. For
i ∈ ICBM , Li,k(τ, Ci,k,

∑
j∈{I\i} λj,k) is derived in Equation (3.3) of

Section 3.3.1. For i ∈ IABM , Li,k(τ,Ai,k,
∑
j∈{I\i} λj,k) is derived in

Equation (4.15) of Section 4.3.

Step 1.1.2 Iteration k = k + 1 :

• For i ∈ ICBM : By using the rate
∑
j∈{I\i} λj,k, we find optimal

control limit C∗i,k, ∀i ∈ ICBM and update

λi,k = P 3
i,k(τ, C∗i,k,

∑
j∈{I\i}

λj,k)/Li,k(τ, C∗i,k,
∑

j∈{I\i}

λj,k),

where P 3
i,k(τ, C∗i,k,

∑
j∈{I\i} λj,k) is the probability of CM (see

Equation (3.2) in Section 3.3.1).

• For i ∈ IABM : By using the rate
∑
j∈{I\i} λj,k, we find optimal

age limit A∗i,k, ∀i ∈ IABMand update

λi,k = P 3
i,k(τ,A∗i,k,

∑
j∈{I\i}

λj,k)/Li,k(τ,A∗i,k,
∑

j∈{I\i}

λj,k),

where P 3
i,k(τ,A∗i,k,

∑
j∈{I\i} λj,k) is the probability of CM (see

Equation (4.14) in Section 4.3).

Step 1.1.3 Stop iteration:
Keep iterating Step 1.1.2 with the updated λi,k and stop at iteration
k = n, where |λi,n − λi,n−1| < ε for all components. In this case,
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C̃(τ) = {C̃∗i,n, ∀i ∈ ICBM} and Ã(τ) = {Ã∗i,n, ∀i ∈ IABM} also

converge, where Zi(τ, C̃(τ), Ã(τ)) is minimized for this given τ .

Step 1.2 Obtain the minimum cost rate of each subproblem (SP) Zi(τ, C̃(τ), Ã(τ))
under a given τ

Step 2 Optimize τ with respect to Zsyst(τ,C,A). Given the optimal interval τ∗,{
C̃∗i (τ∗),∀i ∈ ICBM

}
and

{
Ã∗i (τ

∗),∀i ∈ IABM
}

are obtained in Step 1.2
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5.A.2 Control limits and age limits at various τ values

The control limits C̃∗i (τ) and age limits Ã∗i (τ) obtained via our heuristic procedure
at the component level for various τ values are shown in Table 5.6. Generally
speaking, we observe that the control limit C̃∗i (τ) is higher at smaller τ (e.g.,
{C̃∗i (0.025); ∀i ∈ ICBM} = {96.2%, 96.1%, 95.8%, 95.6%, 95.2%}) and is lower at
larger τ (e.g., {C̃∗i (1.00);∀i ∈ ICBM} = {81.2%, 79.4%, 77.7%, 76.2%, 74.9%}). This
general trend is sensible because a smaller τ leads to more opportunities of scheduled
downs at the system level, which allows a higher C̃∗i (τ). However, this trend does
not hold over all τ values, because the approximated evaluation takes only the
renewal cycles that start with scheduled downs into account, which leads to small
approximation errors in evaluating the objective functions.

Unlike C̃∗i (τ), when τ is relatively small (e.g., τ ≤ 0.65 in Table 5.6), Ã∗i (τ) is a
multiple of τ (i.e., Ã∗i (τ) = kτ , k ∈ N) to have a higher probability of taking PM-SD
actions, which are cheaper than other maintenance actions. This is also explained in
Section 4.4 of Chapter 4. When τ is relatively large (e.g., τ > 0.65 in Table 5.6),
Ã∗i (τ) is not always a multiple of τ . The reason is that a large τ can lead to a low
frequency of opportunities from scheduled downs. To have more opportunities for
PM actions (i.e., PM-SD and PM-USD) at the end of a renewal cycle, opportunities
from unscheduled downs should be taken more often by setting up an age limit Ã∗i (τ)
smaller than τ .
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τ
{
Ã∗1(τ), Ã∗2(τ), Ã∗3(τ), Ã∗4(τ), Ã∗5(τ), C̃∗1 (τ), C̃∗2 (τ), C̃∗3 (τ), C̃∗4 (τ), C̃∗5 (τ)

}
0.025 {0.375, 0.425, 0.500, 0.500, 0.625, 96.2%, 96.1%, 95.8%, 95.6%, 95.2%}
0.050 {0.400, 0.500, 0.500, 0.500, 0.500, 93.0%, 92.3%, 92.3%, 91.6%, 90.9%}
0.075 {0.375, 0.375, 0.375, 0.525, 0.525, 90.0%, 88.8%, 88.8%, 87.5%, 87.4%}
0.100 {0.400, 0.500, 0.500, 0.500, 0.500, 87.5%, 86.6%, 85.7%, 84.7%, 83.3%}
0.125 {0.375, 0.375, 0.500, 0.500, 0.625, 85.7%, 84.2%, 83.3%, 81.1%, 79.9%}
0.150 {0.450, 0.450, 0.450, 0.750, 0.750, 84.2%, 83.3%, 82.0%, 81.6%, 76.8%}
0.175 {0.525, 0.525, 0.525, 0.525, 0.525, 83.4%, 82.8%, 79.9%, 78.3%, 79.0%}
0.200 {0.400, 0.400, 0.400, 0.400, 0.800, 82.8%, 80.5%, 80.3%, 80.8%, 80.4%}
0.225 {0.450, 0.450, 0.450, 0.675, 0.675, 82.1%, 81.8%, 81.6%, 78.7%, 72.2%}
0.250 {0.250, 0.500, 0.500, 0.500, 0.500, 82.8%, 81.9%, 77.4%, 74.6%, 75.8%}
0.275 {0.550, 0.550, 0.550, 0.550, 0.550, 82.7%, 79.2%, 76.9%, 77.8%, 79.2%}
0.300 {0.300, 0.300, 0.600, 0.600, 0.600, 80.8%, 78.5%, 79.0%, 80.0%, 79.9%}
0.325 {0.325, 0.650, 0.650, 0.650, 0.650, 80.4%, 80.2%, 80.8%, 80.5%, 78.5%}
0.350 {0.350, 0.700, 0.700, 0.700, 0.700, 81.3%, 81.5%, 81.1%, 79.4%, 76.8%}
0.375 {0.375, 0.375, 0.375, 0.375, 0.750, 82.0%, 81.6%, 80.1%, 77.7%, 75.3%}
0.400 {0.400, 0.400, 0.400, 0.400, 0.800, 82.4%, 81.2%, 79.1%, 76.8%, 65.7%}
0.425 {0.425, 0.425, 0.425, 0.425, 0.425, 82.3%, 80.5%, 78.3%, 74.6%, 68.0%}
0.450 {0.450, 0.450, 0.450, 0.450, 0.900, 82.0%, 80.0%, 77.5%, 70.0%, 70.6%}
0.475 {0.475, 0.475, 0.475, 0.475, 0.475, 81.5%, 79.3%, 74.7%, 71.4%, 73.0%}
0.500 {0.500, 0.500, 0.500, 0.500, 0.500, 81.1%, 78.5%, 73.2%, 73.4%, 75.3%}
0.525 {0.525, 0.525, 0.525, 0.525, 0.525, 80.6%, 76.9%, 74.2%, 75.4%, 77.3%}
0.550 {0.550, 0.550, 0.550, 0.550, 0.550, 80.0%, 76.1%, 75.7%, 77.2%, 78.9%}
0.575 {0.575, 0.575, 0.575, 0.575, 0.575, 79.2%, 76.6%, 77.2%, 78.7%, 79.8%}
0.600 {0.600, 0.600, 0.600, 0.600, 0.600, 78.7%, 77.6%, 78.6%, 79.8%, 79.9%}
0.625 {0.625, 0.625, 0.625, 0.625, 0.625, 78.8%, 78.7%, 79.8%, 80.4%, 79.4%}
0.650 {0.650, 0.650, 0.650, 0.650, 0.650, 79.3%, 79.7%, 80.6%, 80.4%, 78.5%}
0.675 {0.525, 0.675, 0.675, 0.675, 0.675, 80.0%, 80.6%, 80.9%, 80.0%, 77.6%}
0.700 {0.500, 0.700, 0.700, 0.700, 0.700, 80.7%, 81.2%, 81.0%, 79.3%, 76.9%}
0.725 {0.525, 0.550, 0.725, 0.725, 0.725, 81.3%, 81.5%, 80.7%, 78.6%, 76.3%}
0.750 {0.500, 0.575, 0.750, 0.750, 0.750, 81.8%, 81.7%, 80.3%, 78.1%, 75.9%}
0.775 {0.525, 0.550, 0.625, 0.775, 0.775, 82.2%, 81.6%, 79.8%, 77.6%, 75.6%}
0.800 {0.525, 0.575, 0.625, 0.800, 0.800, 82.4%, 81.4%, 79.4%, 77.2%, 75.4%}
0.825 {0.500, 0.550, 0.625, 0.825, 0.825, 82.5%, 81.1%, 79.0%, 77.0%, 75.2%}
0.850 {0.525, 0.575, 0.600, 0.700, 0.850, 82.4%, 80.7%, 78.6%, 76.7%, 75.1%}
0.875 {0.500, 0.575, 0.625, 0.675, 0.875, 82.3%, 80.4%, 78.4%, 76.6%, 75.1%}
0.900 {0.500, 0.550, 0.600, 0.700, 0.900, 82.1%, 80.1%, 78.2%, 76.5%, 75.0%}
0.925 {0.525, 0.575, 0.625, 0.700, 0.750, 81.8%, 79.9%, 78.0%, 76.4%, 75.0%}
0.950 {0.525, 0.575, 0.625, 0.675, 0.725, 81.6%, 79.7%, 77.9%, 76.3%, 74.9%}
0.975 {0.500, 0.550, 0.600, 0.700, 0.750, 81.4%, 79.5%, 77.8%, 76.3%, 74.9%}
1.000 {0.525, 0.575, 0.625, 0.675, 0.725, 81.2%, 79.4%, 77.7%, 76.2%, 74.9%}

Table 5.6 The control limits and age limits obtained via our heuristic procedure,
{
C̃∗i (τ),∀i ∈

ICBM
}

and
{
Ã∗i (τ), ∀i ∈ IABM

}
under various τ values
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5.A.3 Detail of the solution obtained via our heuristic proce-
dure

The solution obtained via our heuristic procedure under a given τ∗ is shown in Table
5.2 in Subsection 5.4.2. In this subsection, we show the details of the solution at the
component level in Table 5.7. This system consists of 5 CBM, 5 ABM and 40 FBM
components. For each component, Table 5.7 include i) the probabilities of having
PM-USD, PM-SD and CM denoted by P1, P2 and P3; and ii) the expected cycle
length denoted by L. For each CBM component, P1, P2, P3 and L are functions
of the control limit C (see Equations (3.2) and (3.3) in Chapter 3). For each ABM
component, P1, P2, P3 and L are functions of the age limit A (see Equations (4.14)
and (4.15) in Chapter 4).

P1 P2 P3 L
i ∈ ICBM

1 0.938 0.045 0.017 0.852
2 0.957 0.027 0.016 0.747
3 0.884 0.109 0.006 0.635
4 0.806 0.188 0.006 0.583
5 0.762 0.230 0.008 0.551

i ∈ IABM
6 0.457 0.361 0.182 0.492
7 0.348 0.527 0.125 0.497
8 0.256 0.661 0.083 0.500
9 0.167 0.780 0.054 0.500
10 0.125 0.840 0.035 0.501

Table 5.7 The detail of the solution obtained via our heuristic procedure in Table 5.2, given{
C̃∗i (τ∗), ∀i ∈ ICBM

}
and

{
Ã∗i (τ∗), ∀i ∈ IABM

}
. This system consists of 5 CBM, 5 ABM and

40 FBM components

P1 P2 P3 L
i ∈ ICBM

1 0.922 0.069 0.009 0.820
2 0.853 0.140 0.007 0.729
3 0.807 0.184 0.009 0.672
4 0.791 0.196 0.013 0.627
5 0.810 0.168 0.021 0.583

6 0.909 0.077 0.014 1.624
7 0.916 0.072 0.013 1.678
8 0.917 0.071 0.012 1.751
9 0.914 0.075 0.011 1.834
10 0.913 0.078 0.009 1.922

Table 5.8 The detail of the solution obtained via our heuristic procedure in Table 5.5, given{
C̃∗i (τ∗), ∀i ∈ ICBM

}
and

{
Ã∗i (τ∗), ∀i ∈ IABM

}
. This system consists of 10 CBM, 0 ABM

and 40 FBM components
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P1 P2 P3 L
i ∈ IABM

1 0.093 0.873 0.034 0.502
2 0.076 0.879 0.045 0.500
3 0.099 0.836 0.064 0.501
4 0.159 0.738 0.101 0.502
5 0.223 0.610 0.167 0.502

6 0.447 0.372 0.181 0.491
7 0.360 0.516 0.125 0.497
8 0.249 0.669 0.083 0.499
9 0.193 0.753 0.054 0.501
10 0.137 0.829 0.035 0.501

Table 5.9 The detail of the solution obtained via our heuristic procedure in Table 5.5, given{
C̃∗i (τ∗), ∀i ∈ ICBM

}
and

{
Ã∗i (τ∗), ∀i ∈ IABM

}
. This system consists of 0 CBM, 10 ABM

and 40 FBM components

Similarly, we show the details of the heuristic solution of Table 5.5 in Subsection 5.4.5.
In Scenario 1, the system consists of 10 CBM, 0 ABM and 40 FBM components. In
Scenario 2, the system consists of 0 CBM and 10 ABM and 40 FBM components. For
each component, P1, P2, P3 and L are shown in Table 5.8 and 5.9.
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5.A.4 Simulation procedures

To compare with the heuristic results of our model, we run a simulation to calculate
the true cost rate of the system Ẑsyst(τ) for given τ values. There are m different
seeds in the simulation. In each seed j ∈ {1, 2, ...,m}, we simulate ki ∈ Nmaintenance
cycles of component i ∈ ICBM ∪ IABM . Regarding the opportunities for preventive
maintenance, each seed j consists of: 1) a Poisson process with random arrival time
points Ωusdj = {a1, a2, ..., ax} ∈ <x+, x ∈ N, where <+ = [0,∞); and 2) a constant

set Ωsdj = {τ, 2τ, ..., nτ}, n ∈ N; 3) a set of random failure times Tki,i,j ∈ <+ for
i ∈ IABM and a set of random passage times TCki,i,j and THki,i,j ∈ <+ for i ∈ ICBM ,
according to the degradation process.

The kth maintenance action of component i is taken on at a maintenance point
Rki,i,j . Notice that the maintenance point Rki,i,j is dependent on the previous
maintenance action at Rki−1,i,j . To simplify the notation in the simulation algorithm,
we define a range [LBki,i,j , UBki,i,j), where 1) LBki,i,j = Rki−1,i,j + Ai and
UBki,i,j = Rki−1,i,j + Tki,i,j for i ∈ IABM ; and 2) LBki,i,j = Rki−1,i,j + TCki,i,j
and UBki,i,j = Rki−1,i,j + THki,i,j , for i ∈ ICBM . Moreover, for each component

i ∈ ICBM∪IABM , we define three sets: Aki,i,j = {Ωusdj ∩[LBki,i,j , UBki,i,j)}, Bki,i,j =

{Ωsdj ∩ [LBki,i,j , UBki,i,j)} and Cki,i,j = {UBk,l,j ∩ [LBki,i,j , UBki,i,j); l ∈ I \ i}. The

binary parameters Ipm,usdki,i,j
, Ipm,sdki,i,j

and Icmki,i,j are defined as follows:

Ipm,usdki,i,j
=

{
1 if a PM-USD action is taken
0 otherwise

Ipm,sdki,i,j
=

{
1 if a PM-SD action is taken
0 otherwise

Icmki,i,j =

{
1 if a CM action is taken
0 otherwise

We use the algorithm in Table 5.11 as a building block to construct the simulation
algorithm of a multi-component system. The interaction between components is the
most difficult part in the simulation algorithm. For example, Component 1 with
a longer lifetime has its 1st maintenance at the time point R1,1,j according to the
algorithm in Table 5.11. However, the Component 2 with shorter lifetime may have
its 10th maintenance at R10,2,j , which can be just before R1,1,j . In this case, R10,2,j

can also be an opportunity to do preventive maintenance for Component 1. Hence, the
maintenance points Rki,i,j obtained via Table 5.11 may not be the true maintenance

point R̂ki,i,j in a multi-component setting. To deal with this problem, we construct
the simulation algorithm of a multi-component system in Table 5.10. The true cost
rate of component i at kith maintenance point denoted by Ẑki,i,j is:
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Ẑki,i,j =

∑ki
l=1

(
Ipm,usdl,i,j cPM−USDi + Ipm,sdl,i,j cPM−SDi + Icml,i,jc

CM
i

)
R̂ki,i,j

.

By running the algorithm in Table 5.10 iteratively with m seeds, the final result of

the simulation Ẑsyst =
∑m
i=1 Ẑj
m with a 100(1 − α)% confidence interval is expressed

as follows [30]:

Ẑ ± t(1− α/2,m− 1)

√
S2

m

where S =
∑m
j=1

(Ẑj−Ẑ)2

m−1 and t(1−α/2,m− 1) is the upper 1−α/2 critical point for
the t-distribution with (m−1) degrees of freedom (in our case, m = 100 and α = 5%).
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For j = 1 : m,

Initiation: ki = 0, Ẑ0,i,j = 0 and R̂0,i,j = 0, ∀i, j.
While

Zki,i,j−Zki−1,i,j

Zki,i,j
≥ ε

calculate {Aki,i,j ,Bki,i,j ,Cki,i,j}

For i = 1 : |ICBM ∪ IABM |
Case 1: for component i ∈ ICBM , use Block in Table 5.11
Case 2: for component i ∈ IABM ,

If Ai < Tki,i,j
Use Block in Table 5.11
Else

(Ipm,usdki,i,j
, Ipm,sdki,i,j

, Icmki,i,j) = (0, 0, 1) and Rki,i,j = Rki−1,i,j + Tki,i,j
End if

End For

Obtain {Rki,i,j |∀i ∈ ICBM ∪ IABM}
For i = 1 : |ICBM ∪ IABM |

If Rki,i,j = min{Rki,i,j ,∀i ∈ ICBM ∪ IABM}
Rki,i,j = R̂ki,i,j and ki = ki + 1

Else

Rki,i,j = Rki,i,j and ki = ki
End if

Calculate Ẑki,i,j
End For

End while

Obtain Ki = ki, ∀i ∈ ICBM ∪ IABM and calculate Ẑj =
∑|ICBM∪IABM |
i=1 Ẑki,i,j

End For

Table 5.10 Simulation algorithm for multi-component systems
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Block
If min{Aki,i,j ,Bki,i,j ,Cki,i,j} 6= ∅,
Rki,i,j = min{Aki,i,j ,Bki,i,j ,Cki,i,j} with 3 cases:

Case 1: if Rki,i,j ∈ Aki,i,j , then (Ipm,usdki,i,j
, Ipm,sdki,i,j

, Icmki,i,j) = (1, 0, 0)

Case 2: if Rki,i,j ∈ Bki,i,j , then (Ipm,usdki,i,j
, Ipm,sdki,i,j

, Icmki,i,j) = (0, 1, 0)

Case 3: if Rki,i,j ∈ Cki,i,j , then (Ipm,usdki,i,j
, Ipm,sdki,i,j

, Icmki,i,j) = (1, 0, 0)

Else

Rki,i,j = UBki,i,j , then (Ipm,usdki,i,j
, Ipm,sdki,i,j

, Icmki,i,j) = (0, 0, 1)

End If

Table 5.11 Simulation algorithm for single components



Chapter 6

Conclusion and Recommendation

“Essentially, all models are wrong, but some
are useful. However, the approximate nature
of the model must always be borne in mind.”

George Box
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Our research objective was to develop maintenance optimization models for multi-
component systems based on remotely-monitored condition data, in order to minimize
the long-run average cost rate of entire systems. In total, we developed four
models: two group maintenance models (see Chapter 2 and 5) and two opportunistic
maintenance models (see Chapter 3 and 4). These models help to optimize
maintenance policies of complex systems from different industries with different
features. Beside the utilities in practice, each model has its unique scientific
contribution (see Section 2.1, 3.1, 4.1 and 5.1).

For multi-component systems in which soft failures of components occur and the
degradation of each component is monitored continuously, we proposed a new CBM
policy to reduce the high setup cost of maintenance actions in Chapter 2. A
joint maintenance interval was introduced to take maintenance actions of multiple
components simultaneously at periodic scheduled downs. In this case, we decomposed
the main problem at the system level into subproblems at the component level,
which allows an exact analysis of the cost rate evaluation. By optimizing the
maintenance interval at the system level and the control limit on the degradation
of each component, our model minimizes the long-run average cost rate. A numerical
study of a production system consisting of 60 components is presented, including a
sensitivity analysis. By comparing our policy against a failure-based maintenance
policy and an age-based maintenance policy, we showed a considerable cost-saving
potential of implementing our policy.

For multi-component systems in which hard failures of components occur, the
systems stop at scheduled and unscheduled downs, which can be considered as
free opportunities for a monitored component to perform preventive maintenance.
In this case, no additional setup cost and downtime cost are charged on the
monitored component. In Chapter 3, we proposed a new CBM policy for a critical
component being monitored continuously, given the scheduled and unscheduled downs
of a complex system as free opportunities. This model determines the optimal
control limit of the monitored component, in order to decide the timing of taking
opportunistic maintenance and minimize the long-run average cost rate of the
component. Notice that the cost rate evaluation is not exact, but approximate. Via
the comparison between the approximate results and simulated results in various
numerical experiments, the high accuracy of our approximate evaluation was shown
under different parameter settings. Moreover, a case study on lithography machines
within the semiconductor industry was performed to demonstrate the utilization of our
model in real life. Finally, by comparing with three different maintenance policies, our
policy showed a considerable cost-saving potential under various parameter settings.

For some systems, their critical components can not be monitored remotely (e.g.,
because of physical constraints from the design of the system). For this case, we
developed a new ABM model in Chapter 4. Similar to the CBM model in Chapter 3,
both scheduled and unscheduled downs are considered as free opportunities to perform
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opportunistic maintenance. Unlike the CBM model in Chapter 3, this ABM model
optimizes the age limit on the age of the component, instead of the control limit on
the degradation of the condition-based component. The optimal age limit helps to
decide the timing of taking opportunities, in order to minimize the cost rate. The
cost rate evaluation is also an approximation and its high accuracy was shown via the
comparison with simulation results under various parameter settings. Moreover, a
numerical study was conducted under different parameter settings, to show the usage
of the model. By comparing our policy with three different maintenance policies, our
policy showed a considerable cost-saving potential under various parameter settings.

The high accuracy of the approximate evaluation in the CBM and ABM models
(see Chapter 3 and 4) enabled the use of the CBM and ABM models as building
blocks for an integrated maintenance policy for multi-component systems in Chapter
5. This model helps to coordinate different maintenance actions for a system with
a mixture of components under CBM, ABM and FBM. Such a mixture can better
represent multi-component systems in real life, which usually consist of components
under different maintenance policies. We developed a new maintenance optimization
model with a heuristic procedure to find a heuristic solution with a close-to-minimal
average cost rate for the entire system under the assumed policy structure. This
solution includes 1) the control limits of CBM components, 2) the age limits of ABM
components, and 3) the maintenance interval for scheduled downs of the entire system.
Moreover, we provided a numerical example of a system with 40 FBM components,
5 CBM components and 5 ABM components. We also simulated the average cost
rate for the heuristic solution. The difference between the cost rates obtained via our
heuristic and simulation was small. Finally, we used two scenarios to show the cost
difference between implementing the CBM policy and the ABM policy.

The current work describes a maintenance model for multi-component systems.
Via additional research, the underlying building blocks can be improved and other
extension can be made. We suggest the following topics for further research.

1. The decision of preventive maintenance actions on a CBM component in
Chapter 2 and 3 is based on a simple control limit. There are two ways to
improve the decision rule of the preventive maintenance, mentioned as follows:

• We use one control limit in this research, because the advantage of taking
opportunities (regardless at SDs or USDs) is to save additional setup and
downtime costs. These costs are very high compared with the actual
repair costs of the components in the high-tech capital goods industry,
so that the cost difference between preventive maintenance actions at SD
and USD opportunities is small. However, in other industries, this cost
difference between preventive maintenance actions at SDs and USDs can
be much larger. In this case, one may also use two separate control limits
for opportunities at SDs and USDs respectively.
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• It is possible to consider the control limit as a time-dependent variable. For
example, a CBM component degrades over time t, where (n−1)τ ≤ t < nτ
and n ∈ N. Within two consecutive SDs, i.e., (n − 1)τ and nτ , when t
gets closer to nτ (i.e., the opportunity at the next SD), the attractiveness
of taking opportunities at an USD is lower. In this case, a higher control
limit will be more economically beneficial. As an extreme example, when
t is just before nτ , the control limit should be set as high as possible.

The advantage is that a higher cost reduction can be achieved. The disadvantage
is that the mathematical analysis will be more complex at the component level,
which will further increase the complexity of the optimization problem at the
system level (e.g., the number of components in a multi-component system is
limited).

The same recommendation holds for the ABM component in Chapter 4 with a
single age limit.

2. The decisions regarding setups at the system level can be improved by adding
extra flexibility ∆τ to the fixed maintenance interval τ . For example, when there
is an USD occurring just before the next SD with a very short time difference ∆τ ,
it is sensible to take this opportunity at the USD to do preventive maintenance
actions for other components. In this case, the next SD that is very close to the
USD can be skipped, so that the setup and downtime cost for that SD can be
saved. Such a ∆τ can also be a decision variable. Obviously, this will lead to
additional complexity for the analysis and for finding a close-to-optimal policy.

3. We consider the economic dependency only, and the structures of systems are
not considered. However, in some cases, the degradation of a component may
depend on the degradation of other components in the system. By investigating
such structure and stochastic dependencies, the maintenance policy of a system
can be further optimized.

4. The degradation paths of components in our research are derived via statistical
estimation from the history data. However, the actual degradation may deviate
from the historical behaviors of degradation. In this case, it is helpful to include
a Bayesian updating mechanism in the estimation of degradation paths, which
enables more dynamic maintenance decision making.

5. The maintenance actions are assumed to be perfect, i.e., each maintenance
action will restore a component to its original performance level. In practice,
the more often a component/system has been repaired, the shorter its life time
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is and the older the component is. In other words, an old component may
have a faster degradation rate or a lower performance level than a brand new
component, which is also known as aging effects. Hence, it is sensible to perform
preventive maintenance actions more frequently on old components/systems.
For expensive components, one may decide if it is economically beneficial to
repair the old components or buy new ones. This tradeoff naturally triggers a
“repair-or-scrap” decision.
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Appendix A

Appendix

“Assumptions eat mathematical models for
breakfast.”

Qiushi Zhu
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A.1 Parameter estimation of the degradation model

The purpose of this section is to demonstrate how to convert condition data collected
by micro-sensors into a mathematical degradation path. The first step is to monitor a
correct physical parameter, which reflects the true “health” or status of a component.
In practice, the experts of diagnostics and trouble shooting from the engineering
department are able to provide the information about which physical parameter has
the most significant causal-effect relationship to failures. Then we start to collect the
degradation data of this physical parameter in real time and use them to estimate
the parameters of the degradation path statistically.

Figure A.1 Degradation level of a physical parameter over time, measured on several
components

The degradation data is collected in the following format

t1 x1,1 x1,2 · · · x1,n

t2 x2,1 x2,2

...
...

...
. . .

...
tm xm,1 · · · · · · xm,n

where ti is the i-th time point and xij is the degradation level at time point ti for
component j (i = 1, 2, . . . ,m, j = 1, 2, . . . , n). Each component j has a sample path
that consists of the degradation levels xi,j at time points i = 1, 2, . . .m.
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As shown in Figure A.1, the degradation paths vary from one component to another.
In this research, we model the degradation level X(t) over time t by two approaches:
i) Random coefficient model [33], because it is relatively flexible and convenient for
describing the degradation paths derived from physics of failures, such as laws
of physics and material science; ii) Gamma process [59], which is popular in the
literature, due to the nice mathematical properties (e.g., the step increments are
memoryless, the aggregation of multiple Gamma distribution is also a Gamma
distribution, etc).

As an example, we use the raw degradation data from 73 identical laser components
(i.e., n = 73). The degradation are recorded over 51 time points, namely, m = 51.
Also notice the initial degradation levels of laser components are 0, namely, X(0) = 0.

A.1.1 Random coefficient model

The random coefficient model [33] is a convenient model for describing the degradation
paths derived from the physics of failures, such as laws of physics and material
science. As shown in Figure A.1, the degradations of identical units are different. This
component-to-component variation leads to different trends on degradation paths, as
seen in Figure A.2. To depict the degradation path of one type of components/units,
we can statistically estimate the expected trend of the degradation level over time.

For all components in the group J , we can use the least-square method [36, pp.
337] to fit the degradation data and obtain 73 degradation paths for these 73 laser
components. To show a simple example, we use Fitting Option 1 in Section 3.4 (more
general forms of the random coefficient model are explained in Section A.2). The
slope of the degradation path Θ is estimated statistically, according to [36]. The
estimated slopes Θ̂j of component j are shown in Table A.1 with high R2 values.
The conditions of the components deteriorate over time, so that their degradations
increase over time. In this case, we can assume that Θ is a positive random variable
following a Weibull distribution, with its scale parameter α and shape parameter β.

Via the maximum likelihood estimation [19, pp. 409-412], we find the estimated

parameters α̂ = 0.194 and β̂ = 2.350 for the Weibull distribution of the estimated
slopes Θ̂j .
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Figure A.2 The different trends of degradation level over time, measured on several identical
components / units.

A.1.2 Gamma process

The Gamma stochastic process is a popular model to describe monotonic degradation
paths in the literature [59]. Suppose the degradation level X(ti) is monitored over
time t. In a Gamma process shown in Figure A.3, the degradation increments
X(ti)−X(ti−1), between two time points ti and ti−1, are independent and identically
distributed according to a Gamma distribution with its shape parameter γ(ti − ti−1)
and scale parameter η. An extensive explanation of the Gamma process with its
properties (e.g., memoryless, monotonic, additive, etc) is available in [47]. In the
raw data of 73 components, the degradation level is measured once per time point;
namely, ∆t = ti − ti−1 for all i = {1, ...,m}. Unlike the component-to-component
variation mentioned in the random coefficient model, it is not necessary to distinguish
which degradation increment is from which component in a Gamma process. Hence,
the index of a component, j, is not used in this subsection. Instead, the degradation
increments of all components denoted by a set G =

{
xi,j −xi−1,j ;∀i = {1, ...,m}, j =

{1, ..., n}
}

are converted into a set
{

∆xk,∀k = {1, ..., |G|}
}

. Notice that ∆xk are i.i.d
according to a Γ(γ∆t, η) distribution.

Via the maximum likelihood estimation for a Gamma process [47, pp. 9-12], the
estimated parameters γ̂ = 0.404 and η̂ = 2.287 can be found by solving the following
equations [47]:



A.1 Parameter estimation of the degradation model 141

Table A.1 Estimated slope of the degradation paths of 73 laser components

Path i Degradation rate Θ̂j R2
i Path i Degradation rate Θ̂j R2

i

1 0.1929 0.8741 37 0.2514 0.9511
2 0.1954 0.9589 38 0.1044 0.8283
3 0.1330 0.8730 39 0.1878 0.9304
4 0.2027 0.9837 40 0.2979 0.9885
5 0.2440 0.9639 41 0.1109 0.5916
6 0.2341 0.7504 42 0.0823 0.7512
7 0.1271 0.9236 43 0.3132 0.9824
8 0.1003 0.8452 44 0.2264 0.9843
9 0.2112 0.6806 45 0.0838 0.9418
10 0.1086 0.9343 46 0.1256 0.5189
11 0.0613 0.4871 47 0.1388 0.7561
12 0.1588 0.9824 48 0.2388 0.9569
13 0.1172 0.7286 49 0.0699 0.7708
14 0.0974 0.8662 50 0.1145 0.9214
15 0.1509 0.9411 51 0.2243 0.9666
16 0.1741 0.8479 52 0.0977 0.9324
17 0.2295 0.7963 53 0.0975 0.7067
18 0.2132 0.9626 54 0.2197 0.8415
19 0.1133 0.8742 55 0.1452 0.9333
20 0.1144 0.8610 56 0.1784 0.9208
21 0.1134 0.5778 57 0.2119 0.8885
22 0.1492 0.8691 58 0.2427 0.9867
23 0.1940 0.9727 59 0.2502 0.9748
24 0.1376 0.9697 60 0.0775 0.4710
25 0.1385 0.9503 61 0.3845 0.8288
26 0.1187 0.9530 62 0.3423 0.8586
27 0.1088 0.9869 63 0.1494 0.9653
28 0.0820 0.6466 64 0.1431 0.9601
29 0.1445 0.9646 65 0.0817 0.9414
30 0.0919 0.7603 66 0.1378 0.5280
31 0.1131 0.9578 67 0.2834 0.9541
32 0.0840 0.9800 68 0.1793 0.9300
33 0.2413 0.8723 69 0.1410 0.9102
34 0.3991 0.9094 70 0.3246 0.8483
35 0.1371 0.8080 71 0.3508 0.9923
36 0.1909 0.8208 72 0.1727 0.9601

73 0.1133 0.8534

|G| ln

(
γ̂
|G|∆t∑|G|
k=1 ∆xk

)
+ ∆t

|G|∑
k=1

[ln(∆xk)−Ψ(γ̂∆t)] = 0

and

η̂ = γ̂
(|G|)∆t∑|G|
k=1 ∆xk

where Ψ(γ̂∆t) = Γ′(γ̂∆t)/Γ(γ̂∆t).
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Figure A.3 Degradation level of several identical components/units over time, modeled by a
Gamma process.

A.2 Multiple variables in the random coefficient model

In this section, we will give a more general form of the random coefficient model.
The degradation path X(t; Φ,Θ) at time t ∈ [0,∞) is a random variable given
a set of constant parameters Φ = {φ1, ..., φm},m ∈ N; and a set of random
parameters, Θ = {θ1, ..., θn}, n ∈ N, following certain probability distributions. To
simplify the notation, we consider X(t; Φ,Θ) as a function of n random variables
Θ = {θ1, ..., θn}, n ∈ N. The probability that the degradation path X(θ1, ..., θn)
exceeds a threshold χ is

Pr{X(θ1, ..., θn) > χ} = 1− FX(χ),

= Pr{(θ1, ..., θn) ∈ DX}

=

∫
...

∫
(θ1,...,θn)∈DX︸ ︷︷ ︸
n

fΘ(θ1, ..., θn) dθ1 ... dθn

(A.1)

where DX is the domain such that X(θ1, ..., θn) ≥ χ and FX is the cumulative
distribution function of X. The joint probability density distribution function of
the random variables {θ1, ..., θn} is denoted by fΘ(θ1, ..., θn). If the random variables
{θ1, ..., θn} are independent, then

fΘ(θ1, ..., θn) = fθ1(θ1)fθ2(θ2) ... fθn(θn)
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where fθi(θi) is the probability density function of the random variable θi, ∀i ∈
{1, 2..., n}. Notice that the random variables {θ1, ..., θn} are not necessarily indepen-
dent. In this case, more details can be found in [9].

EXAMPLE 1: As a simple example of two independent random variables θ1 and
θ2, suppose a degradation path X = θ1t + θ2; where i) θ1 ∈ [0,∞) follows a Weibull
distribution with a shape parameter β1 and a scale parameters α1, ii) θ2 ∈ [0,∞)
follows a Weibull distribution with a shape parameter β2 and a scale parameters α2,
iii) t ∈ [0,∞). The probability of X(θ1, θ2) < χ can be derived according to Equation
A.1:

Pr{X(θ1, θ2) ≤ χ} = FX(χ)

=

∫ u=χ
t

u=0

fθ1(u)
(∫ v=χ−ut

v=0

fθ2(v) dv
)
du

=

∫ u=χ
t

u=0

(β1

α1

( u
α1

)β1−1
e(− u

α1
)β1
) (

1− e(−χ−ut
α2

)β2
)
du

(A.2)

where FX is the cumulative distribution function of the random variable X = θ1t+θ2.
♦
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Summary

High-tech capital goods (e.g., aircraft engines, wind turbines, semiconductor produc-
tion systems, MRI scanners) nowadays have high production efficiencies and long life
times. The common trends of these complex high-tech systems are: (i) the structure
of the system and the dependency between components are very complicated, so that
it becomes harder or even impossible for operators to do quick-and-easy maintenance
by themselves; (ii) it is very expensive when a system is down; (iii) while buying
new systems, operators consider total cost of ownership. During the long exploitation
phases of capital goods, the maintenance costs including downtime and setup costs
are often very high. Hence, for systems consisting of large numbers of components,
it is often economically beneficial to perform the maintenance actions of multiple
components simultaneously, in order to save setup costs and downtime.

As traditional approaches, one can synchronize the maintenance actions at certain
moments in time or based on the age/usage of components/systems, known as
age/usage-based maintenance. In this case, the maintenance actions are not based
on the actual physical conditions of systems/components and thus one may lose
significant parts of the useful lifetime. Due to the rapid development of advanced
sensor and ICT technology, nowadays, it is less costly to acquire the physical
conditions of systems/components remotely. Based on these condition data, a large
amount of unnecessary maintenance tasks can be avoided, by taking maintenance
actions only when the physical degradations of the critical components are close to
the failure levels. This is known as condition-based maintenance (CBM), by which
maintenance costs can be reduced significantly in comparison to age/usage-based
maintenance.

In the existing literature, much more attention has been paid to single-component
systems than to multi-component systems. Within the literature of multi-component
systems, much less research efforts at the multi-component level are spent on
condition-based maintenance than on age-based maintenance models.

Therefore, our research objective is to develop condition-based maintenance opti-
mization models for multi-component systems, which helps to minimize the average
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cost rate of the entire systems in a long run.

To optimize maintenance policies of different complex systems with different features,
we developed four models in four chapters, respectively. Each of them has not only
unique scientific contributions, but also value for practical applications.

• Regarding the contribution of Chapter 2, we proposed a new CBM model for
multi-component systems consisting of a large number of components. To reduce
the high setup cost of maintenance, a joint maintenance interval was introduced
by setting up periodic scheduled downs to take maintenance actions of multiple
components simultaneously. We assumed all failures of components were soft
failures with quality/performance loss costs per time unit, before maintenance
actions taken at the scheduled downs. In this case, we decomposed the main
problem at the system level to subproblems at the component level, which
allows exact evaluation of the objective function (i.e., the average cost rate).
With the maintenance interval at the system level and the control limit on the
degradation of each component as decision variables, we developed a model to
minimize the long-run average maintenance cost rate of the systems. Moreover,
a numerical study of a production system consisting of 60 components was
presented, including a sensitivity analysis. By comparing our policy against
a failure-based maintenance policy and an age-based maintenance policy, we
showed a considerable cost-saving potential of implementing our policy.

• Regarding the contribution of Chapter 3, to the best of our knowledge, our
policy is the first opportunistic CBM policy that considers both the scheduled
and unscheduled downs of a complex system as free opportunities. In practice,
unscheduled downs can happen if hard failures occur for other components.
Both scheduled and unscheduled downs are considered as free opportunities for
monitored components to perform preventive maintenance, so that no additional
setup cost and downtime cost are charged on the monitored component. This
model determines the optimal control limit of a critical component monitored
continuously, in order to minimize the long-run average cost rate. In this
chapter, our cost rate evaluation based on renewal theory is not exact,
but approximate. The accuracy of this approximation was verified via the
comparison of approximate results and simulated results. Moreover, a case study
on lithography machines in the semiconductor industry was provided. Finally,
by comparing with three different maintenance policies, our policy showed a
considerable cost-saving potential under various parameter settings.

• In practice, it is not always feasible to monitor components remotely, due to
physical constraints from the design of the system. In this case, ABM may
be implemented, instead of CBM as in Chapter 3. Hence, we developed this
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ABM model in Chapter 4 to optimize the age limit on the age of the component,
instead of the control limit on the degradation of the component. Unlike most of
existing works considering either scheduled or unscheduled opportunities, this
model proposed in Chapter 4 includes both the scheduled and unscheduled
opportunities. The optimal age limit helps to decide the timing of taking
opportunities, in order to minimize the average long-run cost rate. Moreover, a
numerical study was conducted to show the usage of the model. Similar to the
CBM model in Chapter 3, the cost evaluation is also an approximation and its
accuracy was verified via the comparison with simulated results. By comparing
our policy with three different maintenance policies, we showed that the new
policy has a considerable cost-saving potential.

• In the high-tech industry, we observe that complex engineering systems are often
with a mixture of components under different maintenance policies (e.g., ABM,
CBM and FBM). However, to the best of our knowledge, this maintenance
optimization problem with the coordination of maintenance actions under the
different policies has not been studied in the literature. The model proposed in
Chapter 5 is able to solve maintenance optimization problems for a system
with such a mixture of components under CBM, ABM and FBM policies,
by using the CBM and ABM model in Chapter 3 and 4 as building blocks.
To be able to solve large-scale problems in real life, where systems consist of
large numbers of components, we developed a maintenance optimization model
with a heuristic procedure to optimize 1) the control limits of condition-based
components, 2) the age limits of age-based components, and 3) the maintenance
interval for scheduled downs of the entire system. Via an iterative procedure,
in a relatively short time, we are able to find a heuristic solution with a close-
to-minimal average cost rate for the entire system (under the assumed policy
structure). Moreover, we provided a numerical example of a system with 40
FBM components, 5 CBM components and 5 ABM components, where we
also simulated the average cost rate for the heuristic solutions. The difference
between the cost rates obtained via our heuristic and simulation was small.
Finally, we used two scenarios to show the cost difference between implementing
the CBM policy and the ABM policy.
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