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We examine the performance of various commonly used integration schemes in dissipative particle
dynamics simulations. We consider this issue using three different model systems, which
characterize a variety of different conditions often studied in simulations. Specifically, we clarify the
performance of integration schemes in hybrid models, which combine microscopic and mesoscale
descriptions of different particles using both soft and hard interactions. We find that in all three
model systems many commonly used integrators may give rise to surprisingly pronounced artifacts
in physical observables such as the radial distribution function, the compressibility, and the tracer
diffusion coefficient. The artifacts are found to be strongest in systems, where interparticle
interactions are soft and predominated by random and dissipative forces, while in systems governed
by conservative interactions the artifacts are weaker. Our results suggest that the quality of any
integration scheme employed is crucial in all cases where the role of random and dissipative forces
is important, including hybrid models where the solvent is described in terms of soft potentials.
Regarding the integration schemes, the best overall performance is found for integrators in which
the velocity dependence of dissipative forces is taken into account, and particularly good
performance is found for an approach in which velocities and dissipative forces are determined
self-consistently. Remaining temperature deviations from the desired limit can be corrected by
carrying out the self-consistent integration in conjunction with an auxiliary thermostat, in a manner
that is similar in spirit to the well-known Nose´–Hoover thermostat. Further, we show that
conservative interactions can play a significant role in describing the transport properties of simple
fluids, in contrast to approximations often made in deriving analytical theories. In general, our
results illustrate the main problems associated with simulation methods in which dissipative forces
are velocity dependent, and point to the need to develop new techniques to resolve these issues.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1450554#

I. INTRODUCTION

One of the greatest challenges in theoretical physics is to
understand the basic principles that govern soft condensed
matter systems, such as polymer solutions and melts, colloi-
dal suspensions, and various biological processes. Experi-
mental studies of these complex systems are often comple-
mented by numerical simulations of model systems, which
can provide a great deal of information not easily accessible
by experiment. In this regard, molecular dynamics1 ~MD! is
often the method of choice, and indeed it can elucidate vari-
ous physical phenomena on a microscopic level. In general,
however, such an atomistic approach is problematic since
many intriguing processes in soft matter systems are not dic-

tated by microscopic details but rather take place at mesos-
copic length and time scales~roughly 1–1000 nm and
1–1000 ns! which are beyond the practical limits of MD. In
such cases, it is necessary to model soft matter systems by
viewing them from a larger perspective than from a micro-
scopic point of view. In practical terms, this means that one
has to design ways to simplify the underlying systems as
much as possible, while still retaining the key properties
which are expected to govern the processes of interest. Re-
cently, this approach has attracted wider attention as various
‘‘coarse-grained’’ simulation techniques have been
developed2–8 with the purpose of studying mesoscopic
physical properties of model systems.

Dissipative particle dynamics5–8 ~DPD! is particularly
well suited for this purpose. DPD is characterized by coarse
graining in particle representation, which allows studies ofa!Electronic mail: ilpo.vattulainen@csc.fi
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systems at mesoscopic length scales and a simplified descrip-
tion of interparticle interactions8 allowing for studies at me-
soscopic time scales. Since DPD preserves hydrodynamic
modes, one may characterize DPD as momentum-conserving
Brownian dynamics. For these reasons, DPD is a very prom-
ising method for mesoscopic studies of soft systems and re-
cently has attracted considerable interest in studies of
polymers,8 microphase separation,9 and lipid bilayers,10

among others.
Despite its advantages, DPD has certain practical prob-

lems that have to be resolved before extensive use in large-
scale simulations. Many of them are related to the idea of
coarse graining which can be done by simplifying molecular
representations, and then replacing the ‘‘fast’’ variables re-
lated to the coarse-grained degrees of freedom by random
noise. The random noise mimics thermal fluctuations and
hence drives the system. In DPD, this idea is implemented
by a special ‘‘DPD thermostat’’6–8 in terms of dissipative as
well as random pairwise forces such that the momentum is
conserved. This is a prerequisite for the emergence of hydro-
dynamic flow effects on a macroscopic scale. However, due
to the DPD thermostat and the resulting stochastic nature of
the equations of motion, the quest for a suitable integration
scheme in DPD is a nontrivial task. It has been recently
observed that various integration schemes commonly used in
classical MD lead to distinct deviations from the true equi-
librium behavior, including deviations from the temperature
predicted by the fluctuation–dissipation theorem, and artifi-
cial structures observed in the radial distribution
function.7,11–14These findings demonstrate the serious prac-
tical problems associated with the use of DPD and raise con-
cerns regarding its future application to large-scale simula-
tions of soft systems.

A related problem regards hybrid models, where the aim
is to combine microscopic models of biomolecules with a
mesoscale modeling of the solvent.15,16 In this promising ap-
proach, one can examine microscopic properties of complex
biological molecules in an explicit solvent but with a reduced
computational cost. While biomolecules are described by
hard conservative interactions such as Lennard-Jones and
Coulombic forces, the solvent can be described by DPD as a
softly interacting fluid. The drawback is that the integration
schemes may again lead to deviations from the true equilib-
rium behavior. To our knowledge, the role of integration
schemes in these cases, where both soft and hard interactions
are used within a mesoscale DPD simulation, has not been
studied yet. These examples clearly highlight the current
need to examine the relative performance of different inte-
gration schemes in DPD under various conditions, and de-
velop new integration techniques where the special features
of DPD are properly accounted for.

In this work, we study the performance of a number of
commonly used integration schemes in DPD simulations.
They all are based on the velocity-Verlet scheme but differ in
how the velocity dependence of dissipative forces in DPD is
taken into account. We test the integrators by studying a
number of physical observables such as the temperature, the
compressibility, and the tracer diffusion coefficient, and
evaluate their performance in three different model systems.

We first examine how the integrators perform in the absence
of conservative forces. This case was partly discussed in our
previous work,17 which is here extended by a thorough dis-
cussion of the results and the details of self-consistent inte-
gration schemes suggested in Ref. 17. Then, by increasing
the relative importance of conservative forces, we eventually
obtain a model which is used to assess the performance of
integration schemes in a hybrid approach.

We find that various commonly used integration schemes
in MD and DPD indeed lead to pronounced artifacts in actual
physical quantities. These artifacts are found to be strongest
in weakly interacting systems, where interactions are soft
and dominated by random and dissipative forces. In the op-
posite limit, where hard conservative interactions govern the
system under study, the artifacts due to integration schemes
are less pronounced. We conclude that the quality of an in-
tegration scheme employed is crucial in all cases where the
role of random and dissipative forces is important, including
hybrid models where the solvent is described in terms of soft
potentials.

Regarding the integration schemes, best overall perfor-
mance is found for an integration scheme which involves the
self-consistent determination of particle velocities and dissi-
pative forces. For cases where precise temperature control is
crucial, we further suggest and analyze in detail an additional
auxiliary thermostat which corrects for the residual tempera-
ture deviations.

The outline of the paper is as follows. In Sec. II, we first
review the essential background of DPD and then introduce
the three model systems studied in this work. The integrators
which are tested are described in Sec. III, after which, in Sec.
IV, we present and discuss the test results. In Sec. V we
discuss the special case of tracer diffusion behavior of DPD
particles and compare our findings to previous theoretical
descriptions. Finally, we close this paper with a short sum-
mary and discussion in Sec. VI.

II. METHODS AND MODELS

Below we give a short summary of DPD and describe
the model systems used in this study. For more thorough
accounts on DPD, see Refs. 7 and 8.

A. Dissipative particle dynamics

In the present work, we study a simple model fluid sys-
tem described byN identical particles each with massm, and
which have coordinatesr i , and velocitiesvi . Interparticle
interactions are characterized by the pairwise conservative,
dissipative, and random forces exerted on particle ‘‘i’’ by
particle ‘‘j,’’ respectively, and are given by

Fi j
C5avC~r i j !ei j , ~1!

Fi j
D52gvD~r i j !~vi j •ei j !ei j , ~2!

Fi j
R5svR~r i j !j i j ei j , ~3!

where r i j [r i2r j , r i j [ur i j u, ei j [r i j /r i j , and vi j [vi2vj .
The j i j are symmetric random variables with zero mean and
unit variance, and are independent for different pairs of par-
ticles and different times.
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The pairwise conservative force of Eq.~1! is written in
terms of a weight functionvC(r i j ), whose choice is dictated
by the system under study. In principle,vC(r i j ) can include
various kinds of forces due to, e.g., electrostatic interactions,
as well as descriptions of detailed intermolecular interactions
such as van der Waals forces. However, since DPD has been
designed to model molecular systems on a mesoscopic level,
a detailed atomistic description of interactions is, in many
cases, not necessary. Instead, it is often preferable to use
soft-repulsive interactions of a relatively simple form. This
approach is justified by observations by Forrest and Suter
that coarse graining of a molecular representation tends to
soften interactions.18 Recent work by Flekkøyet al.19 also
supports this view. We will return to this issue in Sec. II B,
where the actual form ofvC(r i j ) will be discussed in more
detail.

Unlike the conservative force, the weight functions
vD(r i j ) and vR(r i j ) of the dissipative and random forces
cannot be chosen independently. Physically,Fi j

D andFi j
R have

to be coupled, since thermal heat generated by the random
force must be balanced by dissipation. The precise relation-
ship between these two forces is determined by the
fluctuation–dissipation theorem, which sets conditions for
both the weight functions

vD~r i j !5@vR~r i j !#
2, ~4!

and the amplitudes of these forces

s252gkBT* , ~5!

whereT* is the canonical temperature of the system.
DPD samples phase space according to the canonical

ensemble with a potential energy determined by the conser-
vative force described by Eq.~1!. Consequently, static prop-
erties such as the pair correlation function and the specific
heat could be calculated equally well using any stochastic
technique~such as the off-lattice Monte Carlo method!. On
the other hand, as in molecular dynamics, DPD also provides
a means to calculate dynamical properties of the system.
Consequently, a method is required to evolve the system in
time, which in DPD is usually done by integrating Newton’s
equations of motion. Unlike the case in standard molecular
dynamics, the presence of a stochastic contribution to the
force in DPD implies that the equations of motion are now
given by the set of stochastic differential equations

dr i5vidt, ~6!

dvi5
1

mi
~Fi

C dt1Fi
D dt1Fi

RAdt!, ~7!

whereFi
R5( j Þ iFi j

R is the total random force acting on par-
ticle ‘‘ i,’’ and Fi

C and Fi
D are defined correspondingly. The

velocity increment due to the random force in Eq.~7! is
written in a form which can be given a precise meaning by
identifying it as the infinitesimal increment of a Wiener
process.20 In practice, finite time increments are used in the
simulations, and the equations of motion@Eqs. ~6! and ~7!#
have to be solved by some integration procedure. As will be
seen in Sec. IV, this may lead to serious artifacts if the spe-
cial features of DPD are not taken into account.

B. Model systems

In this study, we investigate the performance of various
integration schemes using three different model systems.
They all are based on a 3D simple model fluid system with a
fixed number of similar spherical particles. The differences
between the model systems arise from interaction effects,
which are varied step by step from an ideal gas to a more
realistic description of an interacting fluid system. The mod-
els studied here are described below.

1. Model A

We first consider the case characterized by the absence
of conservative forces~a50!. This choice corresponds to an
ideal gas~sometimes termed ‘‘ideal DPD fluid’’ within the
framework of DPD!, which provides us with some exact the-
oretical results to be compared with those of model simula-
tions. Here, the dynamics of the system arises only from
random noise and the dissipative coupling between pairs of
particles. The random force strength is chosen ass53 in
units of kBT* , and the strength of the dissipative forceg is
then determined by the fluctuation-dissipation relation in Eq.
~5!. The weight functionvR(r i j ) was chosen as in various
previous works7–9,11

vR~r i j !5H 12r i j /r c , for r i j <r c

0, for r i j .r c
~8!

wherer c is a cutoff distance. The weight functionvD(r i j ) is
defined via Eq.~4!. Therefore, the dissipative and random
forces are just soft pairwise repulsions acting along the line
of centers of two DPD particles, andg ands are the ampli-
tudes which define the maxima of these forces.

In our simulations we use a 3D box of size 10310310
with periodic boundary conditions, where the length scale is
defined byr c51, and a particle number densityr54.

2. Model B

Model B is a simple interacting DPD fluid. Its main
difference with respect to model A is the presence of a con-
servative force, which we choose to have a strengtha525
and a weight functionvC(r i j ) of the same form as the ran-
dom force in Eq.~8!. In all other respects, this model system
is identical to model A.

3. Model C

Model C is a variation of model B. Instead of soft po-
tentials, we now use hard conservative interactions. The con-
servative potential between particles ‘‘i’’ and ‘‘ j’’ is described
by the truncated and shifted Lennard-Jones potential

Ui j
C~r i j !5H 4eF S l

r i j
D 12

2S l

r i j
D 6

1
1

4G , r i j <r c

0, r i j .r c

~9!

such that the potential is purely repulsive and decays
smoothly to zero atr c . We choosel 5221/6 and e5kBT* ,
and thereforer c5 l21/651. For r i j >r c , Ui j

C(r i j )50. The
pairwise conservative force follows directly fromFi j

C

52¹Ui j
C . The dissipative and random forces are described

by Eq. ~8!.
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Simulations were carried out in a 3D box of size 16
316316 with periodic boundary conditions, withs ranging
from 1 to 200, and with particle densitiesr50.1 andr50.7.

Finally, let us briefly justify the choice of these model
systems. In model A, the idea is to study integrator-induced
artifacts in a case where the role of random noise with re-
spect to conservative interactions is as pronounced as pos-
sible. Model B corresponds to a typical situation where
large-scale processes such as microphase separation and
morphological properties of complex systems are studied in
terms of coarse-grained particles. In that case, details of mo-
lecular representation are no longer accounted for, and all
interactions are described in terms of soft potentials. Finally,
model C aims to gauge integrator-induced effects in a hybrid
approach, where both hard and soft interactions are present.
One likely scenario of this idea is to model solute molecules
with realistic atomic force fields, while the solvent is de-
scribed in a coarse-grained fashion. In the present work we
restrict our test simulations to simple spherical particles
which interact via Lennard-Jones-type interactions, since that
should already allow a reliable assessment of integrator-
induced artifacts in hybrid models.

C. Practical details

One of the most important practical aspects within DPD
is the stochastic nature of the interactions. This is built in to
the random force of Eq.~3! via j i j , which are independent
random variables with zero mean and unit variance. In the
present work, we have described them by uniformly distrib-
uted random numbersuPU(0,1) such that, for every pair of
particles at any moment, we generate a different stochastic
term j5A3(2u21). This approach is very efficient and
yields results that are indistinguishable from those generated
by Gaussian random numbers.21

In generating the random numbers, we used a pseudo-
random number generator RAN2, which is based on the 32-
bit combination generator first proposed by L’Ecuyer22 and
later published inNumerical Recipes23 using shuffling. In a
recent study,24 where several pseudorandom number genera-
tors were tested in DPD model simulations, it was demon-
strated that RAN2 performs very well in simulations of
simple fluids.

The length scale in the simulations is defined byr c51
and the time scale is given in units ofr cAm/kBT* . The
energy scale is defined by setting the desired thermal energy
to unity via kBT* 51.

The simulations were carried out with particle numbers
of the order of a few thousand~4000 in models A and B, and
roughly 2800 in model C forr50.7!. The number of time
steps varied depending on the size of the time incrementDt
such that the total simulation time was about 5000–10 000
~in units of r cAm/kBT* !.

III. INTEGRATORS

One of the central issues in molecular dynamics calcu-
lations is the integration of the equations of motion. In the
context of MD, the present understanding of this issue is
rather clear and comprehensive.25 However, in the case of

DPD simulations the situation is more problematic. To
clarify this, let us consider the equations of motion in detail.
Using Eq.~7! for the velocity term we obtain

dvi5
1

mi
Fadt(

j Þ i
vC~r i j !ei j 2gdt(

j Þ i
vD~r i j !

3~vi j •ei j !ei j 1sAdt (
j Þ i

vR~r i j !j i j ei j G ,
which immediately reveals two potential problems. First, due
to the stochastic nature of interactions, the time reversibility
is no longer guaranteed. Another serious problem arises from
the dissipative forces, which depend on the pairwise veloci-
ties of all pairs of particles. This seemingly minor detail is
absent from classical MD simulations but leads to significant
problems in DPD simulations, including artifacts in various
physical quantities measured from simulation studies.7,11–13

In principle, this problem could be solved by finding a self-
consistent solution for both dissipative forces and particle
velocities by inverting an appropriate interaction matrix of
sizeN3N at every time step. However, it is obvious that this
approach is generally not feasible, and thus one must search
for more practical solutions.

A. Simple velocity-Verlet-based integration schemes

We use the velocity-Verlet scheme26 as a starting point
and consider various previously used integrators based on
this approach. These are summarized in Table I, where the
acronym ‘‘MD-VV’’ corresponds to the standard velocity-
Verlet algorithm used in classical MD simulations. The
MD-VV scheme is~in the case of solely conservative forces!
a time-reversible and symplectic second-order integration
scheme, which has been shown to be relatively accurate in
typical MD simulations especially at large time steps.27 Al-

TABLE I. Update scheme for a single integration step~time incrementDt!
for various integration schemes in DPD~for acronyms see the text!. For
positions and velocities at timet, the updated positions and velocities at time
t1Dt are given by the corresponding variables on the right-hand side of
steps~2! and ~4! below, respectively.

GW~l!: steps~0!–~4!, ~s!
MD-VV [GW~l51/2!: steps~1!–~4!, ~s!a

GCC~l!: steps~0!–~5!, ~s!
DPD-VV[GCC~l51/2!: steps~1!–~5!, ~s!a

~0! vi
0←vi1l

1

m
~Fi

CDt1Fi
DDt1Fi

RADt !

~1! vi←vi1
1

2

1

m
~Fi

CDt1Fi
DDt1Fi

RADt !

~2! r i←r i1viDt

~3! Calculate Fi
C$r j%, Fi

D$r j ,vj
0%, Fi

R$r j%

~4! vi←vi1
1

2

1

m
~Fi

CDt1Fi
DDt1Fi

RADt !

~5! Calculate Fi
D$r j ,vj%

~s!b Calculate kBT5
m

3N23 (
i 51

N

vi
2,...

aWith substitution ofvj for vj
0 in step~3!.

bSampling step@calculation of temperaturekBT, g(r ),...#.

3970 J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Vattulainen et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.155.151.148 On: Fri, 29 May 2015 07:56:00



though some higher-order algorithms are more accurate than
the MD-VV,28 the simplicity of MD-VV makes it a good
starting point for further development.

Unlike in molecular dynamics, the forces in DPD de-
pend on the velocities. This fact is not accounted for within
the MD-VV scheme. In an attempt to deal with this compli-
cation, Groot and Warren subsequently proposed7 a modified
velocity-Verlet integrator@‘‘GW ~l!’’ in Table I#. In this ap-
proach, the forces are still updated only once per integration
step, but the dissipative forces are evaluated based on inter-
mediate ‘‘predicted’’ velocitiesvi

0. The underlying idea ofvi
0

is to use a phenomenological tuning parameterl, which
mimics higher-order corrections in the integration procedure.
The casel51/2 corresponds to the usual MD-VV, while
other suggested choices range from zero to one. The problem
is that the relative merits of different numerical values forl
are poorly understood. Groot and Warren studied the tem-
perature control in an interacting fluid and found that
l50.65 works better thanl51/2.7 In a different study, No-
vik and Coveney concluded thatl51/2 gives a more accu-
rate temperature thanl51.11 Thus, it is evident that the op-
timal value ofl, which minimizes the temperature shift and
other artifacts, depends on model parameters and has to be
determined empirically.

Recently, Gibsonet al. proposed13 a slightly modified
version of the GW integrator. This ‘‘GCC~l!’’ integrator up-
dates the dissipative forces@step~5! in Table I# for a second
time at the end of each integration step. This approach suf-
fers from the same problem as the GW integration scheme,
i.e., it uses a phenomenological parameter whose optimiza-
tion depends on the system and the conditions that are being
modeled. Based on a few model studies by Gibsonet al.,
values ofl between 1/2 and 1 may be preferable to smaller
values.13

Despite the use of a phenomenological parameter, the
GCC scheme is a promising approach for DPD simulations.
A rational starting point is to fixl to a value of 1/2, which
leads to an integrator equivalent to the MD-VV scheme
supplemented by the second update of the dissipative forces.
This Verlet-type integrator, here termed ‘‘DPD-VV’’, is par-
ticularly appealing because it doesnot involve any tuning
parameters, yet it takes the velocity dependence of the dissi-
pative forces at least approximately into account. In addition,
it is computationally very efficient since the additional up-
date of dissipative forces is an easy task compared to the
time-consuming part of updating neighbor tables.

In this work, we consider, besides the schemes GW~l
51/2!5MD-VV and GCC~l51/2!5DPD-VV, GW~l50.65!
and GCC~l50.65!.

B. Self-consistent velocity-Verlet integrators

Unfortunately, as will be shown in Sec. IV, all of the
above integrators display pronounced unphysical artifacts in
the radial distribution functiong(r ), and thus do not produce
the correct equilibrium properties~see the results and discus-
sion below!. This highlights the need for an approach in
which the velocity dependence of dissipative forces is fully
taken into account. In principle this problem can be easily

addressed by solving the velocities and dissipative forces in a
self-consistent fashion. In practice, however, there is no
unique way to do this. In this work, we present in Table II the
update schemes for two self-consistent schemes which are
variants of DPD-VV. The basic variant SC-VV, which is
similar in spirit to the self-consistent leap-frog scheme intro-
duced by Pagonabarragaet al.,12 determines the velocities
and dissipative forces self-consistently through functional it-
eration, and the convergence of the iteration process is moni-
tored by the instantaneous temperaturekBT.

In the second approach, which we call SC-Th, we couple
the system to an auxiliary thermostat and obtain an
‘‘extended-system’’ method in the spirit of Nose´–Hoover.29

The idea behind this approach is that whenever^kBT& devi-
ates fromkBT* , the dissipation rate is on average not bal-
anced by the excitation rate~due to the stochastic forces! in
the system. Here, we attempt to correct this imbalance by
‘‘fine-tuning’’ the dissipation rate by an auxiliary thermostat.
In order to preserve the pairwise conservation of momentum
in DPD, this auxiliary thermostat is implemented by employ-
ing a fluctuatingdissipation strength, defined by

g~ t !5
s2

2kBT* ~11h~ t !Dt !, ~10!

whereh is the thermostat variable. The rate of change ofh is
proportional to the instantaneous temperature deviationḣ
5C(kBT2kBT* ), whereC is a coupling constant, step~i! in
Table II. This first-order differential equation must be inte-
grated@step ~ii !# simultaneously with the equations of mo-
tion. In this respect our thermostat resembles the Nose´–
Hoover thermostat familiar from MD simulations.29

Equation~10! can be interpreted as an expansion of the op-
timal g in terms of Dt up to the linear order. This ansatz
ensures that the correct continuum version of DPD is re-

TABLE II. Update scheme for the two self-consistent integrators without
~SC-VV! and with ~SC-Th! the auxiliary thermostat@steps~i!–~iii !#. The
self-consistency loop is over steps~4b! and ~5! as indicated. For positions
and velocities at timet, the updated positions and velocities at timet1Dt
are given by the corresponding variables on the right-hand side of steps~2!
and~4b! below ~after the last iteration of the self-consistency loop!, respec-
tively. The desired temperature iskBT* . Initialization: h50, g
5s2/(2kBT* ), andkBT is calculated from the initial velocity distribution.

3971J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 Integration schemes for dissipative particle dynamics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.155.151.148 On: Fri, 29 May 2015 07:56:00



gained forDt→0. Also note that the coupling constantC has
to be chosen with care. Very small values ofC require con-
siderably longer simulation times, while values that are too
high may bias the temperature distribution as well as the
transport coefficients. For the simulations reported here, we
optimized C by studying the characteristic decay time of
^g(t)g(0)&. In this manner, we ensured that the chosen time
scale of the dissipation strength fluctuations did not interfere
with the underlying dynamics of the system~in the absence
of an auxiliary thermostat!.

IV. PERFORMANCE OF INTEGRATORS

A. Physical quantities studied

We characterize the integrators by studying a number of
physical observables. After equilibrating the system, we first
calculate the average kinetic temperature^kBT&, whose con-
servation is one of the main conditions for reliable simula-
tions in the canonical ensemble. Next, we consider the radial
distribution functiong(r ),30 which is one of the most central
observables in studies of liquids and solid systems. For the
ideal gas~model A!, the radial distribution function provides
an excellent test for the integrators, since theng(r )[1 in the
continuum limit. Therefore, any deviation from unity has to
be interpreted as an artifact due to the integration scheme
employed. For the other models there are no such straight-
forward theoretical predictions. Consequently, we test each
model by comparing the results of different integrators to
one another.

Artifacts in g(r ) are also reflected in the relative isother-
mal compressibility

k̃T[kT /kT
ideal, ~11!

wherekT
ideal5(rkBT* )21 denotes the compressibility of the

ideal gas in the continuum limit. For an arbitrary fluid,k̃T is
related tog(r ) by

k̃T5114prE
0

`

dr r 2@g~r !21#, ~12!

and thus any deviation fromk̃T51 for the ideal gas~model
A! indicates an integrator-induced artifact. For models B and
C, k̃T serves as a measure of integrator-induced artifacts af-
ter a thorough comparison of results of different integrators
relative to each other.

To gauge the underlying problems in thedynamicsof the
system, we consider the tracer diffusion coefficient

DT5 lim
t→`

1

6Nt (i 51

N

^@r i~ t !2r i~0!#2&, ~13!

in which the mean-square displacement^@r i(t)2r i(0)#2& is
the average squared distance that the tagged particle travels
during a time intervalt. In the long-time limit one obtains the
tracer diffusion coefficientDT , which characterizes the dis-
tancel D;ADTdt traveled by a particle during a long-time
perioddt.

Another way to gauge the effects of the numerical inte-
gration methods on dynamical quantities is to monitor the
velocity-correlation function

f~ t !5
1

N (
i 51

N

^vi~ t1t8!•vi~ t8!&, ~14!

which defines the tracer diffusion coefficient through the
Green–Kubo formula30

DT5
1

3 E0

`

dt f~ t !. ~15!

We note that Eqs.~13! and ~14! are complementary ap-
proaches for testing the integrators. First, the tracer diffusion
coefficient can easily be measured from simulations via Eq.
~13!, and it provides a way to characterize how possible de-
viations from the true dynamical behavior accumulate to-
gether. On the other hand, the velocity-correlation function
f(t) provides relevant information of the short-time dynam-
ics of the tagged particle, prior to the region where Eq.~13!
becomes well defined. As an example, the leading termf~0!
provides information about temperature conservation, since
for fluid systemsf(0)5^kBT&/3m. In addition, since the
definition ofDT requiresf(t) to decay to zero at long times,
the decay off(t) can be used to characterize possible short-
comings in the dynamics of the system.

B. Results for model A

First, we discuss the deviations of the observed kinetic
temperature^kBT& from the DPD-thermostat temperature
kBT* . For MD-VV this temperature shift, shown in Fig. 1, is
always positive and increases monotonically withDt. For
DPD-VV, ^kBT& first decreases with increasingDt, then ex-
hibits a minimum atDt'0.25, and eventually becomes
larger thankBT* . The self-consistent approach SC-VV ex-
hibits a negative, monotonically increasing temperature shift
up to Dt'0.13, where this scheme becomes unstable at the
employed particle density. Most importantly, and perhaps
most surprisingly, we find that the modulus of the tempera-
ture deviation is even larger than for DPD-VV. This finding
contrasts with the findings of a recent study by Pagonabar-
raga et al.,12 who studied the 2D ideal gas using a self-
consistent version of the leap-frog algorithm, and found good

FIG. 1. Results for the deviations of the observed temperature^kBT& from
the desired temperaturekBT* [1 vs the size of the time stepDt in model A.
Results of GW and GCC are forl50.65.
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temperature control forDt50.06 atr50.5. This discrepancy
can be explained by our observation for the 3D ideal gas that
the temperature shift is in general more pronounced at higher
densities. A similar effect is found if the strength of the in-
teractions is increased. This suggests that temperature devia-
tions and other related problems due to large time steps be-
come more pronounced when the role of interparticle
interactions is enhanced.

In cases where temperature preservation is crucial in cal-
culating equilibrium quantities, the self-consistent scheme
with an auxiliary thermostat, SC-Th, is clearly the method of
choice, as is evident from the results shown in Fig. 1. For
this extended-system method, we find that the temperature
deviations diminish by over two orders of magnitude, with a
modulus typically of the order of 1025 to 1024. The auxil-
iary thermostat thus performs very well as long as the itera-
tion procedure within the self-consistent scheme remains
stable.

Results forg(r ) are shown in Fig. 2. We find that the
deviations from the ideal gas limitg(r )51 are very pro-
nounced for MD-VV, indicating that even for small time
steps this integration scheme gives rise to unphysical corre-
lations. The performance of DPD-VV is clearly better, while
the self-consistent scheme SC-VV leads to even smaller de-
viations. For the self-consistent scheme with an auxiliary
thermostat SC-Th, we found virtually the same results for
g(r ) as for the self-consistent scheme without the thermo-
stat. The results for GW and GCC~for a few values ofl!
integrators were approximately the same as those of MD-VV
and DPD-VV, respectively. For all integrators, the artificial
structure ing(r ) typically becomes more pronounced with
increasing time incrementDt. It is noteworthy that the bias
introduced by the self-consistent integrators forDt50.10 is
comparable to that already introduced by MD-VV forDt
50.01.

The relative isothermal compressibilitiesk̃T evaluated
from g(r ) are shown in Fig. 3~a!. The best performance is
found for the self-consistent integrators SC-VV and SC-Th,

whose behavior is essentially similar, and for the DPD-VV,
whose results are almost equally good. In general, the quali-
tative behavior ofk̃T reflects our findings forg(r ).31 The
magnitude of deviations fromk̃T51 is astounding, however,
and raises serious concern for studies of response functions
such as the compressibility for interacting fluids close to
phase boundaries. Similarly, the results for tracer diffusion in
Fig. 3~b! indicate that DPD-VV and the self-consistent ap-
proach SC-VV work well up to reasonably large time steps,
while the other integrators were found to perform less well.
Further studies regarding the decay of the velocity-
correlation functionf(t) gave similar conclusions, although
the size of the artifacts in tracer diffusion is best demon-
strated byDT . Nevertheless, the decay of velocity correla-
tions in tracer diffusion is sensitive to the choice of the inte-
grator.

We now discuss some more general aspects concerning
the performance of the self-consistent integrator SC-Th.
Based on our results for^kBT&, g(r ), andk̃T , the auxiliary
thermostat performs very well. This provides clear-cut evi-
dence that the SC-Th scheme is useful for studies of equilib-
rium quantities such as the specific heat, which are deter-
mined by the conservative forces and which are not
influenced by the details of the dynamics. However, it is less
clear whether the SC-Th scheme is useful for studies of dy-
namical quantities. To illustrate this point, let us consider the
motion of a Brownian particle as an example. It is character-
ized by the Langevin equation

M
dv~ t !

dt
52Mhv~ t !1F~ t !, ~16!

whereM is the mass of the Brownian particle andh is the
friction coefficient which reflects dissipative forces. The re-
maining random termF(t) is the driving force due to colli-
sions with the solvent particles, whose mass is negligible
compared toM. In this case, one finds that32

DT5
kBT

Mh
;

1

h
, ~17!

FIG. 2. Radial distribution functionsg(r ) vs Dt in model A for the integra-
tion schemes MD-VV, DPD-VV, and SC-VV. Results of GW and GCC are
almost similar to MD-VV and DPD-VV, respectively, and are therefore
omitted here.

FIG. 3. ~a! The relative isothermal compressibilitiesk̃T vs Dt evaluated
from g(r ) in model A. Ideally one would obtaink̃T51, and the deviations
from this limit reflect artifacts due to the integration procedure.~b! Results
for the tracer diffusion coefficientDT vs the time stepDt in model A.
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which serves to demonstrate that the tracer diffusion of a
Brownian particle is clearly affected by the dissipation rate.
Although the motion of DPD particles is not equivalent to
Brownian motion, the two cases are related. This example
highlights how any change in the dissipation properties may
affect diffusion behavior. This problem could arise within the
SC-Th scheme, since the strength of dissipation is not fixed
there but fluctuates in time. Clearly, the significance of this
issue has to be examined in detail.

In Fig. 4~a! we show the tracer diffusion coefficient for
the SC-Th integrator versus the size of the time stepDt. In
the inset is shown the average strength of the dissipative
force ^g(t)& as a function ofDt. The results reveal thatDT

converges to the correct limit at smallDt, which is expected
since ^g(t)&→s2/2kBT* as Dt→0. For larger time steps,
DT clearly deviates from the correct behavior. This is due to
temperature deviations (^kBT&,kBT* ) within the original
SC-VV scheme~without an auxiliary thermostat!. These de-
viations are corrected by the auxiliary thermostat by decreas-
ing the average dissipation rate, which in turn increases the
diffusion rate.

From the discussion above, it is clear that the dissipation
rate within SC-Th depends onDt. Consequently, the trans-
port properties may not be properly described if temperature
deviations due to the self-consistent iteration procedure are
too large. In the present model, this implies that a direct
comparison of diffusion properties between SC-Th and other
integrators is not meaningful. For the purpose of complete-
ness, however, let us compare their properties in a slightly
modified fashion. Instead of comparing the diffusion coeffi-
cients themselves, we compare their scaled counterparts
DTgx/^kBT&. This idea is based on an ansatz that tracer dif-
fusion within DPD can be written as

DT

^kBT&
;S 1

g D x

. ~18!

In Brownian motion, withg substituted forh in Eq. ~17!, we
find the exponentx51. For DPD, the situation is different

and one finds the behavior ofx to be more complex~see Sec.
V and Fig. 10 for further discussion!. Detailed studies under
present conditions with the DPD-VV scheme~with smallDt!
gaveDT /^kBT&;1/g0.72. When this dependence on the dis-
sipation strength is taken into account, we obtain the results
shown in Fig. 4~b!. Obviously the SC-Th scheme now works
better, but is nevertheless not as accurate as DPD-VV, for
example. This finding simply demonstrates that any change
in dissipation may lead to further changes in the dynamic
behavior and should be taken into account in the use of aux-
iliary thermostats. For this reason, we feel that the SC-Th
scheme is not an ideal approach for studies of dynamical
quantities by DPD.

Problems of a similar nature are faced in MD studies
with the Nose´–Hoover thermostat, in which the temperature
of the system is controlled by a ‘‘thermodynamic friction
coefficient’’ which is allowed to evolve in time.1 Thus, the
present problem with SC-Th is not specific to DPD simula-
tions. Furthermore, as will be seen in Sec. IV C, the SC-Th
scheme works quite well even for dynamical quantities,
when conservative interparticle interactions are included in
the model.

C. Results for model B

We next consider model B, which describes a fluid with
relatively strong but soft conservative interactions. This situ-
ation is often met in DPD simulations of polymer dynamics
and phase separation, among others. Clearly, it is important
to understand the effects of the integrators on the results in
these cases.

As a first and demonstrative topic, we again start by
considering the deviations of the observed actual temperature
^kBT& from the desired temperaturekBT* . Results shown in
Fig. 5 for model B reveal that the behavior of the integrators
is very similar to that found for model A in Sec. IV B. The
largest temperature deviations are found for MD-VV and
SC-VV, and the artifacts due to GCC are almost equally
pronounced. The performances of DPD-VV and GW are bet-
ter, while the SC-Th scheme is found to be superior to all of
them.

FIG. 4. ~a! Results for the tracer diffusion coefficientDT vs Dt in model A
for the SC-Th integrator, in whichg is not fixed but fluctuates in time.
Results of DPD-VV are also given for the purpose of comparison. The inset
illustrates the dependence of^g(t)& on Dt for the SC-Th integration
scheme.~b! The scaled tracer diffusion coefficientDTgx/^kBT& with x
50.72.

FIG. 5. Results for the deviations of the observed temperature^kBT& from
the desired temperaturekBT* 51 vs the size of the time stepDt in model B.
Results of GW and GCC are forl50.65.
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Results for the radial distribution functiong(r ) resemble
those for any simple interacting fluid, in this case with a
minor peak atr'0.86r c , and another, smaller one around
r'1.55r c . The radial distribution functions of different in-
tegrators were essentially similar~data are not shown!. Thus,
it is not too surprising that the compressibility data shown in
Fig. 6~a! do not reveal major differences between different
integrators. The results of all integrators are the same to
within 61% for Dt<0.01. The differences between different
integrators are very clear only at relatively large time steps,
where the MD-VV is found to be the poorest and the SC-VV
the best integration scheme of the ones considered here. The
results for tracer diffusion in Fig. 6~b! support these conclu-
sions.

The performance of the self-consistent integrator SC-Th
warrants further attention. We have found that the SC-Th
provides full temperature conservation for model B. Further-
more, its results forg(r ) and k̃T are equally good to those
given by the other integrators, and, finally, even the tracer
diffusion results by the SC-Th are in agreement with results
of other integration schemes. Thus, for time steps that are not
too large ~say, Dt<0.01!, the self-consistent integrator
SC-Th seems to provide a promising approach for studies of
DPD model simulations. These findings contrast with those
presented in Sec. IV B for the ideal gas. In the present case,
the differentiating factor is the presence of conservative in-
teractions. In model B the role of conservative forces is com-
parable to the random and dissipative contributions, suggest-
ing that the problems in model B due to velocity-dependent
dissipative forces are less pronounced than in model A. Our
results support this idea. As demonstrated in the inset of Fig.
6~b!, ^g(t)& deviates only slightly~less than 1%! from the
desired values2/2kBT* at time stepsDt<0.01. For larger
time increments the deviations increase, but remain rather
small and are about 2.5% aroundDt50.05. In summary,
these results demonstrate that, for systems where the role of
random and dissipative terms is not dominant, the auxiliary
thermostat not only minimizes temperature deviations, but

also provides a reasonable approach for calculating dynami-
cal quantities.

D. Results for model C

In the preceding models, we have dealt with systems
with soft interactions. This approach is very suitable for pro-
cesses where the microscopic degrees of freedom do not
matter, and where one is interested in phenomena at the me-
soscopic level. However, there are many systems where both
microscopic and mesoscopic properties are of interest. For
example, the dynamics of a single polymer chain may be
studied using a model in which the polymer chain is de-
scribed in terms of Lennard-Jones interactions, while the sol-
vent is treated on a mesoscopic level. In this case, the role of
DPD would be to act as a thermostat and to mediate hydro-
dynamic interactions, while the actual interatomic interac-
tions within a polymer would be described by hard poten-
tials. This approach has already proven successful in
simulations of a system of small amphiphilic molecules,
modeled by Lennard-Jones-type interactions in conjunction
with the DPD thermostat,33 although no comparison of the
performance of integration schemes was reported in that
study.

To clarify the role of integrators in such cases, we exam-
ine this problem using model C. As described in Sec. II B 3,
this model uses identical spherical particles, whose pairwise
conservative interactions are described by a hard repulsive
Lennard-Jones potential, while the random and dissipative
interactions are soft. Despite its apparent simplicity, this ap-
proach incorporates the essential aspects required to shed
light on this issue.

We focus on two integrators. The MD-VV integrator is
chosen to represent an approach commonly used in molecu-
lar dynamics simulations. The performance of MD-VV is
then compared to that of DPD-VV, which serves as an ex-
ample of integrators designed particularly for DPD.

We first consider the regime predominated by conserva-
tive interactions. This is the case for the limit of smalls,
where the role of random and dissipative forces is weak com-
pared to that of conservative interactions. The results shown
in Fig. 7 for the radial distribution functiong(r ) with s51
demonstrate that the system is indeed a fluid, and behaves in
the expected manner. The radial distribution functions for
MD-VV and DPD-VV are practically indistinguishable, and
the same holds for the compressibilities extracted from the
g(r ) data. Further studies in this regime revealed that the
two integration schemes yielded rather similar results for
both ^kBT& andDT ~see the results in Fig. 8! as well. Differ-
ences between MD-VV and DPD-VV are minor at small
time steps, but become more pronounced asDt is increased;
aroundDt'0.01 the deviations are already significant. The
temperature conservation shows that the artifacts due to
MD-VV are stronger than those due to DPD-VV. We con-
clude that in this regime DPD-VV performs slightly better
than MD-VV.

The situation becomes more interesting when the ran-
dom and dissipative forces begin to compete with conserva-
tive interactions. The crossover from the regime dominated
by conservative Lennard-Jones interactions to the regime

FIG. 6. ~a! The relative isothermal compressibilitiesk̃T evaluated fromg(r )
in model B. ~b! Results for the tracer diffusion coefficientDT vs Dt in
model B. Results of GW and GCC are forl50.65. The inset illustrates the
dependence of̂g(t)& on Dt for the SC-Th integration scheme as compared
to g54.5 determined by the fluctuation–dissipation theorem.
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dominated by dissipative forces takes place arounds'60, as
illustrated in the inset of Fig. 8~b!. Right above this thresh-
old, it is evident from Fig. 8~a! that ^kBT& starts to deviate
from the desired value. In addition, as Fig. 8~b! reveals, the
tracer diffusion coefficient begins to decrease as soon ass
exceeds 60. The decrease ofDT simply reflects the fact that
the dynamics is now governed by random and dissipative
forces rather than conservative interactions, and thus dissipa-
tion slows down the motion of DPD particles. Evidently
there are similarities with Brownian motion, in whichDT

;1/g.
The fact that the dynamics in the large-s regime is con-

trolled by random and dissipative forces leads us to expect
significant quantitative differences between MD-VV and
DPD-VV, as indeed is observed. First, in this regime the
MD-VV scheme is less stable than the DPD-VV. Second,
temperature deviations in the case of DPD-VV are in general

less pronounced as compared to MD-VV, and the results for
the tracer diffusion behavior lead to similar conclusions.
Thus, we conclude that, although the differences between
MD-VV and DPD-VV are rather small, the DPD-VV method
is more reliable for simulations in the large-s regime.

E. Computational efficiency

In practice, the choice of an integrator is always a com-
promise between accuracy and efficiency, which in turn are
related. Here, we briefly discuss how their mutual outcome
can be optimized.

Based on Tables I and II, it is clear that the efficiency of
MD-VV, GW, GCC, and DPD-VV is very similar. The
schemes GCC and DPD-VV require an additional update of
dissipative forces, but the time it takes is negligible com-
pared to the time that is required to update neighbor tables.
Therefore, these integration schemes are approximately
equally efficient. The self-consistent approaches, on the other
hand, are more computer intensive. They are based on an
iterative process to find a convergence for dissipative forces
and particle velocities, an effort which depends on the size of
the time step. Thus, we focus on a comparison of the effi-
ciency of the self-consistent integration schemes to that of
DPD-VV.

Using model A as a test case, we first consider SC-VV.
As shown in Fig. 9, we find that the SC-VV method requires
three iterations per integration step to obtain^kBT& with a
relative accuracy of 1026 at Dt50.01, while 20 iterations
were necessary atDt50.10 for the same accuracy. Com-
pared to DPD-VV, the CPU time per integration step was
increased by a factor of 1.5 forDt50.10, while it was only
negligibly higher for the three iterations atDt50.01. ~The
DPD-VV scheme corresponds to the SC-VV with ‘‘zero it-
erations.’’! Figure 9 also shows that the number of iterations
needed to obtain̂kBT& with a fixed accuracy increases with
Dt, and diverges atDt'0.13 where the algorithm becomes
unstable for the density used here.

FIG. 7. Results forg(r ) in model C withs51 using the integrators MD-VV
and DPD-VV. Results are shown for the densityr50.1 with Dt50.01, and
for the densityr50.7 withDt50.001. The results of DPD-VV and MD-VV
are essentially identical.

FIG. 8. Results for~a! the temperaturêkBT& and ~b! the tracer diffusion
coefficientDT vs the strength of the random forces in model C withr50.7.
Results are shown for the integration schemes MD-VV and DPD-VV with
two different time steps. ForDt50.01 with MD-VV, the system no longer
remained stable beyonds550. To clarify the crossover from the regime
dominated by conservative interactions to the regime dominated by random
and dissipative forces, we have shown in the inset of~b! the interactionsFR

~dot-dashed!, FD ~dashed!, and FC ~full line! for s560. For s.60, the
dissipative force is steeper than the conservative one.

FIG. 9. Computational efficiency of the self-consistent integration scheme
SC-VV via functional iteration. Shown here is the average number of itera-
tions nit as a function of the employed time stepDt to obtain the desired
accuracy. The accuracy is described by the modulus ofDT/T of the instan-
taneous temperature, and results are shown forDT/T,1026 ~solid dia-
monds! andDT/T,1024 ~solid circles!. The corresponding CPU time rela-
tive to the CPU time for plain DPD-VV~‘‘0 iterations’’! is also shown.
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In the case of SC-Th, the CPU time increases by a factor
of 3 to 5 due to the extended simulation times needed to
obtain the necessary accuracy of^kBT& with a fluctuatingg.

These results serve to estimate the computational effi-
ciency of the self-consistent integrators in systems where the
conservative force component is very weak. In cases where
the role of the conservative forces is more pronounced, we
expect the computational efficiency of the self-consistent
schemes to improve. This is due to the finding that, in mod-
els B and C, we have seen how temperature deviations in
interacting systems are smaller than in the ideal gas, and thus
a smaller number of iteration steps is expected.

We conclude that the DPD-VV is almost as fast as the
MD-VV scheme, and the SC-VV scheme is almost as effi-
cient as these simple integrators. The SC-Th scheme that
includes an auxiliary thermostat requires considerably more
time. Then, it is a matter of taste whether the gain in tem-
perature control is sufficient to justify the excess in compu-
tational effort.

V. HOW TRACER DIFFUSION RELATES TO THE
STRENGTH OF THE DISSIPATIVE FORCE

The tracer diffusion of DPD particles has been the sub-
ject of various analytical studies.7,34–36Since this topic is in
part related to the present work~see Sec. IV B!, we wish to
discuss briefly the relevance of usual approximations made
in describing the diffusion of DPD particles.

The descriptions for tracer diffusion of DPD particles are
usually based on a few reasonable approximations. Most im-
portantly, the conservative interactions are typically ignored
and the dynamical correlations between particle displace-
ments are neglected. Under these circumstances, the system
is described by the Langevin equation~within the Markovian
approximation!, which yields the tracer diffusion coefficient

DT;
kBT*

Mg
. ~19!

In practice, this expression describes the diffusion of a
Brownian particle suspended in liquid. In this context, the
absence of conservative interactions is justified since Brown-
ian motion is driven by random forces due to collisions of
the Brownian particle with the surrounding fluid particles.
Neglecting dynamical correlations is also justified, since
Brownian motion is characterized by a random walk in
which case the velocity correlation functionf(t) decays ex-
ponentially in time, reflecting the lack of memory effects.

In models often studied by DPD, the case is rather dif-
ferent, however. First, DPD particles move in the presence of
similar particles, and thus consecutive displacements of the
tagged particle are likely to be correlated. Second, the con-
servative interactions are not irrelevant. To clarify this issue,
i.e., how well Eq.~19! describes the tracer diffusion of DPD
particles, we studied the dependence ofDT on the strength of
the dissipative forceg. To this end, we investigated models A
and B using DPD-VV with a smallDt ~values ranging be-
tween 131023– 531023!.

The results are presented in Fig. 10. We find that the
behavior of DT in the two models is very different@Fig.

10~a!#. In both cases the power-law dependenceDT /^kBT&
;(1/g)x is locally valid, but the exponentx strongly depends
on g and the strength of the conservative forcea @see Fig.
10~b!#.

In the ideal gas~a50! the motion of the DPD particles is
fully governed by the random and dissipative forces, and so
the exponentx is approximately 1 at smallg. This behavior
is expected, since then the dynamical correlations are very
weak, as is confirmed by the exponential decay off(t) in
this regime~data are not shown!. This is in agreement with
recent results35,36 wheref(t) was found to decay exponen-
tially for small friction. At intermediate values ofg, the
power-law form ofDT is less clear. The exponentx has a
minimum aroundg510, and the velocity correlation func-
tion f(t) decays algebraically rather than exponentially. Fi-
nally, in the limit of largeg, x tends towards 1, which can be
understood in terms of a large friction force proportional to
Mg, and therefore this regime mimics the diffusion of DPD
particles with a large mass. In any case, the decay off(t) is
not exponential, in agreement with analytical predictions by
Español and Serrano.36

In model B with finite conservative interactions, the dif-
fusion at smallg is governed by conservative interactions.
This is best demonstrated in Fig. 10~a!, whereDT is only
weakly dependent ong in the limit of small friction. At in-
termediate values ofg, there is a crossover regime in which
conservative and random forces compete, while at largeg the
diffusion behavior becomes dominated by random and dissi-
pative forces. The exponentx varies accordingly, reaching
unity only in the limit of largeg.

Our aim in this work is not to focus on the diffusion
properties of DPD model systems in detail and, thus, we do
not consider this issue further. Nevertheless, we hope that the
present results serve to demonstrate that the dynamics in
DPD model systems is not similar to Brownian motion, and
this dissimilarity is further enhanced by conservative inter-
actions whose role can be significant. As regards future stud-
ies of transport properties of DPD fluid particles, various

FIG. 10. ~a! Diffusion results forDT /^kBT& vs the strength of the dissipa-
tive force g in DPD simulations for models A~a50! and B ~a525!. ~b!
Based on the results in~a! and using the ansatzDT /^kBT&;g2x, here is
shown the resulting exponentx as a function ofg. The results shown here
have been calculated by DPD-VV with smallDt ~ranging from 131023 to
531023! such that temperature deviations in all cases are very minor.
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assumptions made in deriving analytical theories should
therefore not be taken for granted.

VI. SUMMARY AND DISCUSSION

Dissipative particle dynamics~DPD! is a very promising
tool for future large-scale simulations of soft systems. Thus
far, it has been applied with success to a variety of different
problems, including studies of pressure profiles inside lipid
bilayers,10 phase behavior in surfactant solutions,37 and dy-
namics of polymer chains.38

Despite its promising nature, DPD has certain practical
problems that have to be accounted for before extensive use
in future applications. Many of them are related to the
coarse-grained nature of the systems studied. As described
by Espan˜ol and Warren,6 the theoretical framework used in
DPD leads to interparticle interactions that include a dissipa-
tive term, which depends on the pairwise velocities of DPD
particles. This implies that for a proper description of the
system in time, the dissipative forces and the particle veloci-
ties should be determined hand in hand in a truly self-
consistent fashion. As shown in the present work, this issue
contains various subtle details, but the key point is that the
integration schemes often used in molecular dynamics simu-
lations cannot be used in DPD simulations as such.

In this work, we have considered this problem through
studies of three different model systems for a number of
integration schemes based on the traditional velocity-Verlet
approach. We have shown that the traditional velocity-Verlet
scheme gives rise to pronounced artifacts in actual physical
quantities such as the compressibility and the tracer diffusion
coefficient. Further studies presented in this work revealed
that the scale of these artifacts can be greatly reduced by
accounting for the velocity dependence of dissipative forces.
The simplest approach in this regard is to calculate the dis-
sipative forces twice during a single time step, and further
improvements can be obtained if the dissipative forces and
particle velocities are determined together in a self-consistent
fashion through a functional iteration process.

For cases where the remaining temperature deviations
need to be corrected, we have proposed a self-consistent in-
tegrator that is coupled to an auxiliary thermostat. We have
discussed its properties through a detailed analysis in two
model systems. We have found that this approach works well
in the case of equilibrium quantities, whose behavior does
not depend on the details of the dynamics. For studies of
dynamical quantities such as diffusion, however, care must
be taken to avoid misleading interpretations of the data.
Problems may appear if^g(t)&, extracted from simulations
with the auxiliary thermostat, deviates significantly from the
dissipation strengthg determined by the fluctuation–
dissipation theorem. In practice, this situation is realized if
the time stepDt is relatively large and the role of conserva-
tive interactions is weak as compared to random and dissi-
pative forces. However, if care is taken and the auxiliary
thermostat is used within proper limits, our results show that
it provides an accurate method to study DPD models within
the NVT ensemble.

The self-consistent integrator with an auxiliary thermo-
stat is an example of a scheme in which the coefficient of the

dissipative force is not constant but fluctuates in time. Con-
sequently, the average dissipative force strength^g(t)& de-
pends on the time incrementDt. Very recently, den Otter and
Clarke suggested another approach,14,39 in which the coeffi-
cients of the random and dissipative forces depend on the
size of the time incrementDt. The results presented in Ref.
14 indicate that this approach leads to good temperature
control40 compared to the GW scheme, for example, but it
remains to be shown through thorough tests if this approach
is indeed more successful in minimizing integrator-induced
artifacts than the many other schemes suggested previously.

As noted in the Introduction, DPD can be thought of as
Brownian dynamics with momentum conservation. Both
methods are based on coarse graining the underlying micro-
scopic systems, and in both cases the coarse-grained vari-
ables are replaced by random noise which is coupled to a
dissipative friction term. Consequently, one may question
whether similar integrator-induced problems could be faced
in Brownian dynamics simulations. While we lack direct evi-
dence, we feel that the problems in Brownian dynamics~if
any! are likely less prominent compared to those in DPD.
This idea is justified by the fact that in Brownian~Langevin!
dynamics, the velocities of tagged particles are coupled to
the dissipative force (dvi /dt}2hvi) individually for every
particle. This situation is much easier to deal with compared
to that for DPD simulations, where the dissipative term in-
cludes contributions from all pairs of particles. A thorough
study of this topic would be useful.

In the present work we have examined the performance
of integration schemes in the well-established description of
dissipative particle dynamics, first suggested by Hooger-
brugge and Koelman5 and later refined by Espan˜ol and
Warren.6 More recently, a number of related schemes have
been suggested to shed more light on the underlying struc-
ture of DPD,19 as well as to generalize the framework of
DPD for a number of other hydrodynamic cases.41 These
approaches are numerically more complicated than the DPD
considered in this work. Studies of the related practical is-
sues would be very interesting, although they are beyond the
scope of the present study.

We close this work with a brief discussion of the situa-
tions in which DPD-specific artifacts due to integration
schemes are expected. To this end, we first summarize our
main findings. We have noticed in all three model systems
that various integrators lead to pronounced artifacts in DPD
model systems, if random and dissipative interactions are
strong compared to conservative interactions. On the other
hand, if the system is governed by conservative interactions,
then the artifacts have been found to be weaker. This sug-
gests that one should use conservative interactions that are
sufficiently strong to dominate the behavior of the model
system, and let random and dissipative forces act only as a
thermostat. Although this arrangement with dominating con-
servative forces is feasible in a number of cases,42,43there are
also many systems studied by DPD where random and dis-
sipative forces are rather weak butcomparableto conserva-
tive interactions. Furthermore, there are processes governed
by collective effects at large particle densities in the high
friction limit, which based on our work can lead to
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integrator-induced artifacts. Moreover, future aims to exam-
ine soft systems of biological molecules in an explicit sol-
vent lead naturally to studies of hybrid models, where a mi-
croscopic description for biomolecules is combined with a
coarse-grained description for the solvent. In these cases
there are both strong conservative interactions and relatively
weak soft interactions, where soft interactions for the solvent
are still subject to integrator-induced artifacts, and may affect
the behavior of the system as a whole. The overall picture of
the role of integration schemes in specific model systems is
therefore still incomplete, and more work is required to re-
solve these issues.44 Meanwhile, we emphasize that the arti-
facts are related to the dissipative force term, and therefore
care should be taken in all cases where this term plays an
important role.
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