

Chemical looping membrane reformer concept for H2 production and CO2 capture

Citation for published version (APA): Medrano Jimenez, J. A., Spallina, V., Sint Annaland, van, M., & Gallucci, F. (2014). Chemical looping membrane reformer concept for H2 production and CO2 capture. In *22nd PIN meeting Process Intensification* Network(PIN), 21 May 2014, New Castle, England. (pp. 1-35).

Document status and date: Published: 01/01/2014

Document Version:

Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

The Membrane-Assisted Chemical Looping Reforming concept as efficient reactor for H_2 production and CO_2 capture: a comparison to benchmark technology.

J.A. Medrano, V. Spallina, M. van Sint Annaland, F. Gallucci

Chemical Process Intensification, Chemical Engineering and Chemistry, Eindhoven University of Technology

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Fundamentally Innovative

OUTLINE

Introduction

Description of different systems

-- Results

Conclusions

H₂ PRODUCTION...

Reactor concept Results Conclusions

- Is continuously increasing
- Fossil fuels represent the main source for hydrogen production.
- More than 80% is produced by Steam Reforming (SR) of natural gas/methane in multi-tubular fixed-bed reactors.

THE CO₂ PROBLEM

Reactor concept Results Conclusions

 CO_2 is the main gas affecting the climate change. CO_2 concentration in the atmosphere has increased from about 280 ppm in pre-industrial period till 390 ppm in 2010.

The IPCC summarized in a report different mitigation strategies:

H₂ PRODUCTION WITH CO₂ CAPTURE

Reactor concept Results Conclusions

The goal is to develop an <u>efficient</u> process for hydrogen production with integrated CO_2 capture

Efficient: reduction in the number of steps in the steam reforming and the achievement of auto-thermal operation.

• CCS system: a **pure CO**₂ stream provides an important contribution in the **reduction** of CO_2 emissions and thus climate change

A novel reactor concept might be the solution...

12-11-2014

PAGE 4

MEMBRANE ASSISTED CHEMICAL LOOPING REFORMING REACTOR

Introduction

Reactor concept

Results

Conclusions

The novel reactor combines the advantages of chemical looping and membranes reactors and solves drawbacks of benchmark technology

Enabling new technology

Reactors Group

emical Engineering & Chemistry

• Reforming and water gas-shift reactions are carried out in the same unit.

• Heat is supplied by a warm oxygen carrier coming from the air reactor.

ion

• H₂ extraction through the membranes displaces the thermodynamic equilibrium towards products.

THE SYSTEM PROVIDES A HIGH DEGREE OF PROCESS INTENSIFICATION

Technische Universiteit **Eindhoven** University of Technology

THERMODYNAMICS

Introduction Reactor concept **Results** Conclusions

The reactor concept has been analyzed with **Aspen Plus** and the calculations are carried out at *chemical equilibrium*

General **scheme** of the different cases studied:

THERMODYNAMICS

Introduction Reactor concept **Results** Conclusions

Hydrogen recovery with the different reactor concepts

J.A. Medrano, et al. Int J. Hydrogen Energy 39 (2014) 4725-4738

Conclusions

SMR+WGS+PSA concept is only interesting at very high temperatures. At low temperatures CH₄ conversion is low

Processes with membrane reactors achieve higher hydrogen recoveries.

GENERAL CONCLUSIONS ABOUT THE CONCEPT

Introduction Reactor concept **Results** Conclusions

Auto-thermal reaction with integrated hydrogen production and CO₂ capture could be achieved in only one unit.

Question:

What happens when we consider NOT ONLY the reactor BUT THE WHOLE PLANT?

12-11-2014

PAGE 8

CONVENTIONAL PLANT OF SMR

Introduction Reactor concept **Results**

Conclusions

The scheme presented below does not represent the real plant for H_2 production.

It is much more complicated !!

The objective is to compare the efficiency of the benchmark technology for SMR with the whole plant including a MA-CLR concept

CONVENTIONAL PLANT

Introduction Reactor concept **Results**

Conclusions

CONVENTIONAL PLANT WITH CO₂ CAPTURE

Introduction Reactor concept **Results** Conclusions

MEMBRANE ASSISTED CHEMICAL LOOPING REFORMING

Introduction Reactor concept

Results

Conclusions

HEAT INTEGRATION MA-CLR

Introduction Reactor concept **Results** Conclusions

Heat transferred, % of total heat

The HT N_2 -rich stream is first cooled down to produce the required steam for the process (steam cycle is not present). After that, N_2 is expanded and released to the atmosphere

Most of the H_2O required for the process is produced by cooling the ultra-pure H_2 .

The retentate is only CO₂ and H₂O:
the system can be designed properly
No additional processes are required for high purity CO₂

Fechnische Universiteit **Eindhoven** University of Technology

MAIN ASSUMPTIONS (1/2)

Introduction Reactor concept **Results** Conclusions

DATA	Conventional	Conventional	MA-CLR
CO ₂ capture	-	MDEA	H_2O condensation
T _{REF} ,°C	890	890	600-700
p _{REF} , bar	32.7	32.7	32-50
S/C, mol/mol	2.7	4	1.5-2
T _{WGS} , °C	400	400/270	-
η _{Η2, PSA} , %	89%	89%	-
H ₂ pressure (after separation), bar	29.7	29.7	P _{permeate}
p _{H2,del} , bar	150	150	150
CO ₂ pressure, bar	-	110	110
Minimum CO ₂ purity, %	-	>95%	>95%

MAIN ASSUMPTIONS (2/2)

Introduction Reactor concept **Results** Conclusions

DATA	Conventional	Conventional	MA-CLR			
CO ₂ capture	-	MDEA	H ₂ O condensation			
CHEMICAL LOOPING						
Oxygen Carriers, %vol			20% NiO, 80%MgAl ₂ O ₄			
T _{FR} , °C			600-700			
ΔT _{AR-FR} , °C			200			
H ₂ MEMBRANE						
Minimum Δp _{H2} , bar			0.2			
Permeate pressure, bar			1-5			
H ₂ selectivity			infinite			
Max temperature, °C			700			

COMPARISON THERMAL BALANCE

Introduction Reactor concept **Results** Conclusions

COMPARISON		SMR+WGS+PSA	SMR+WGS+PSA	MA-CLR
	CO ₂ capture	-	MDEA	H ₂ O cond
THERMAL BALANCE	UNITS			
NG mass flow rate	kg/s	2.62	2.81	2.62
H ₂ mass flow rate	kg/s	0.75	0.75	0.91
Electricity prod/cons				
Air Compressor/Air Fan	MW_{el}	-0.68	-0.91	-5.73
Gas turbine expander	MW_{el}	-	-	4.07
H ₂ , compressors	MW_{el}	-2.27	-2.28	-9.03
CO ₂ compressors	MW_{el}	0.00	-2.23	-0.60
Steam Turbine	MW_{el}	3.23	3.80	-
LP/HP pumps	MW_{el}	-0.21	-0.29	-0.04
Other Auxiliaries	MW_{el}	-0.05	-0.11	-0.12
Net electric power	MW_{el}	0.03	-2.03	-11.44
Heat export/import				
Steam (160°C, 6 bar)	kg/s	3.94	1.94	0.47
Steam heat content	MW _{th}	8.57	4.29	1.03

HOW TO COMPARE THE PERFORMANCE?

Introduction Reactor concept **Results** Conclusions

$$\eta_{el} = 58.3\%$$
$$E_{el} = 351.7 \frac{kg_{co2}}{kWhel_{el}}$$

$$\eta_{th} = 90\%$$
$$E_{th} = 227.9 \frac{kg_{co2}}{kWh_{th}}$$

• **Reforming Efficiency** : $\eta_{H2} = \frac{\dot{m}_{H_2} * LHV_{H_2}}{\dot{m}_{NG} * LHV_{NG}}$

• Heat Output: $Q_{th} = \dot{m}_{steam,imp/exp} * (h_{steam@6bar} - h_{liqsat@6bar})$

- Equivalent NG mass: $\dot{m}_{NG,eq} = \dot{m}_{NG} \frac{Q_{th}}{LHV_{NG}*\eta_{th}} \frac{W_{el}}{LHV_{NG}*\eta_{el}}$
- Equivalent H₂ production efficiency : $\eta_{EQ,H2} = \frac{\dot{m}_{H_2} * LHV_{H_2}}{\dot{m}_{NG,eg} * LHV_{NG}}$
- Specific CO₂ emissions: $E = \frac{\dot{m}_{CO2,vent}}{\dot{m}_{H_2}*LHV_{H_2}}$

Multiphase Reactors

• Equivalent specific CO₂ emissions per unit of heat and electricity :

$$E_{eq} = \frac{\dot{m}_{co2,vent} - E_{el} * W_{el} - E_{th} * Q_{th}}{\dot{m}_{H_2} * LHV_{H_2}}$$

COMPARISON PERFORMANCE

Introduction Reactor concept **Results**

Conclusions

COMPARISON		SMR+WGS+PSA	SMR+WGS+PSA	MA-CLR
	CO ₂ capture	-	MDEA	H ₂ O cond.
PERFORMANCE	UNITS			
Ref. efficiency η_{H2}	$MW_{H2,LHV}/MW_{NG,LHV}$	0.74	0.69	0.89
Equivalent NG m _{NG.eq}	kg/s	2.42	2.88	3.02
H ₂ yield	knmol _{H2} /kmol _{eq,CH4}	2.47	2.29	2.98
Eq. Ref. efficiency $\eta_{H2,eq}$	MW _{H2,LHV} /MW _{NGeq,LHV}	0.80	0.67	0.78
CO ₂ specific emissions, E _{CO2}	kg _{CO2} /MWh _{NG,LHV}	76.91	12.70	0.00
Eq. CO ₂ spec. em., E _{CO2,eq}	kg _{CO2} /MWh _{NG,LHV}	70.88	11.88	9.64
CO ₂ avoided, eq	-	-	0.83	0.86

MA-CLR concept converts mostly NG into $\rm H_2 \to the$ system is designed to maximize the $\rm H_2$ flow through the membrane

Due to the high power consumptions (mainly H_2 compressors) of the MA-CLR concept the reforming efficiency drops $\rightarrow \uparrow p_{permeate}$ and $\uparrow p_{retentate}$

Carbon avoidance is accounted also for the equivalent CO₂ required for the production of electricity (membrane systems)

FINAL CONCLUSIONS

Introduction Reactor concept Results **Conclusions**

- <u>CO₂ capture in the benchmark technology</u>: the main efficiency decay (14 pp) is represented by the CO₂ consumptions and the less steam export (higher S/C and AGR reboiler)
- <u>Membrane reactor</u>: high process intensification + very low efficiency decay (≈ 1 pp).
 - High electric consumptions: especially because of the low pressure of the H₂ at the permeate side
 - Low cost CO₂ separation technology
 - Possible scale-down to medium-small applications

12-11-2014

PAGE 19

FINAL CONCLUSIONS

Introduction Reactor concept Results **Conclusions**

 <u>Challenge</u>: In MA-CLR a HP circulating FBRs is required for the chemical looping process

TECHNO-ECONOMIC DECISION

- H₂ production: higher membrane area or higher pressure difference across the membrane is necessary. However, the system already produces between 13-20% more H₂ than conventional plant.
- **Power consumption is the main issue** of the membrane-assisted plant: optimization is required also according to the economics of the systems. In case of MA-CLR the higher pressure affects the GT selection and operation

ACKNOWLEDGMENTS

NWO/STW for the financial support through the VIDI project ClingCO2 – project number 12365

Thank you for your attention

