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Abstract

We introduce a graph-theoretic dissolution model that applies to a
number of redistribution scenarios such as gerrymandering in political
districting or work balancing in an online situation. The central aspect of
our model is the deletion of certain vertices and the redistribution of their
loads to neighboring vertices in a perfectly balanced way.

We investigate how the underlying graph structure, the pre-knowledge
of which vertices should be deleted, and the relation between old and new
vertex loads influence the computational complexity of the underlying
graph problems. Our results establish a clear borderline between tractable
and intractable cases.

1 Introduction

Motivated by applications in areas like political redistricting, economization, and
distributed systems, we introduce a class of graph modification problems that
we call network-based dissolution. We are given an undirected graph where each
vertex carries a load consisting of discrete entities (voters, tasks, data). These
loads are balanced : all vertices carry the same load. Now a certain number of
vertices has to be dissolved, that is, they are to be deleted from the graph and
their loads are to be redistributed among their neighbors such that afterwards
all loads are balanced again.

Indeed, our dissolution problem comes in two flavors called Dissolution
and Biased Dissolution. Dissolution is the basic version, as described in
the preceding paragraph. Biased Dissolution is a variant that is motivated
by gerrymandering in the context of political districting. It is centered around
a bipartisan scenario with two types A and B of discrete entities. The goal
is to find a redistribution that maximizes the number of vertices in which the
A-entities form a majority. See Section 2 for a formal definition of these models.
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Our main focus lies in analyzing the computational complexity of network-
based dissolution problems, and in getting a good understanding of polynomial-
time solvable and NP-hard cases.

Three application scenarios. We discuss three example scenarios in some
detail. The first and third example relate to Biased Dissolution, while the
second example is closer to Dissolution.

Our first example comes from political districting, the process of setting
electoral districts. Let us consider a situation with two political parties (A and B)
and an electorate of voters that each support either A or B. The electorate
is currently divided into n districts, each consisting of precisely s individual
voters. A district is won by the party that receives the majority of votes in
this district. The local government performs an electoral reform that reduces
the number of districts, and the local governor (from party A) is in charge
of the redistricting process. His goal is of course to let party A win as many
districts as possible while dissolving some districts and moving their voters
to adjacent districts. All resulting new districts should have equal sizes snew

(where snew > s). In the network-based dissolution model, the districts and
their neighborhoods are represented by an undirected graph: vertices represent
districts and edges indicate that two districts are adjacent.

Our second example concerns economization in a fairly general form. Let
us consider a company with n employees, each producing s units of a desirabe
good during an eight-hour working day; for concreteness, let us say that each
employee proves s theorems per working day. Now due to the increasing sup-
port of automatic theorem provers, each employee is suddenly able to prove
snew theorems per day (snew > s). Hence, without lowering the total number
of proved theorems per day, some employees may be moved to a special task
force for improving automatic theorem provers: this will secure the company’s
future competitiveness in proving theorems, without decreasing the overall theo-
rem output. By company regulations, all theorem proving employees have to
be treated equally and should have identical workloads. In the network-based
dissolution model, employees correspond to vertices. Employees in the special
task force are dissolved and disappear from the scene of action; their workload is
to be taken over by neighboring employees who are comparable in qualification
and research interests.

Our third and last example concerns storage updates in parallel or distributed
systems. Let us consider a distributed storage array consisting of n storage
nodes, each having a capacity of s storage units, of which some space is free.
As the prices on cheap hard disk space are rapdily decreasing, the operators
want to upgrade the storage capacity of some nodes and to deactivate other
nodes for saving energy and cost. As their distributed storage concept takes full
advantage only in case all nodes have equal capacity, they want to upgrade all
(non-deactivated) nodes to the same capacity snew and move capacities from
deactivated nodes to non-deactivated neighboring nodes. In the resulting system,
every non-deactivated node should only use half of its storage capacity.
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Related work. We are not aware of any previous work on our network-based
dissolution problem. Our main inspiration comes from the area of political
districting, and in particular from gerrymandering [15, 19, 20] and from su-
pervised regionalization methods [9]. Of course, graph-theoretic models have
been employed before for political districting; for instance Mehrota et al. [17]
draws a connection to graph partitioning, and Duque [8] and Maravalle and
Simeone [16] use graphs to model geographic information in the regionalization
problem. These models are tailored towards very specific applications and are
mainly used for the purpose of developing efficient heuristic algorithms, often
relying on mathematical programming techniques. The computational hardness
of districting problems has been known for many years [1].

Remark on nomenclature. For the ease of presentation, throughout the
paper we will adopt a political districting point of view on network-based
dissolution: the words districts and vertices are used interchangeably, and the
entities in districts are referred to as voters or supporters.

Contributions and organization of this paper. We propose two simple
models Dissolution and Biased Dissolution for network-based dissolution
(Section 2). In the main body of the paper, we provide a variety of computa-
tional tractability and intractability results for both models. Furthermore, we
investigate how the structure of the underlying graphs or an in-advance fixing of
vertices to be dissolved influence the computational complexity (mainly in terms
of polynomial-time solvability versus NP-hard cases).

• First of all, network flow techniques show that Biased Dissolution is
polynomially solvable if the set of districts to be dissolved and the set of
districts to be won are both specified as part of the input. The general
version is NP-hard for every fixed s ≥ 3. These results are given in
Section 3.

• Section 4 presents a complexity dichotomy for Dissolution and Biased
Dissolution with respect to the old district size s and the increase ∆s

in district size (= difference between new and old district size). Dissolu-
tion is polynomially solvable for s = ∆s, and Biased Dissolution is
polynomially solvable for s = ∆s = 1; all other cases are NP-hard.

• Section 5 analyzes the complexity of Dissolution and Biased Disso-
lution for various specially structured graphs, including planar graphs
(hard), cliques (easy), and graphs of bounded treewidth (easy).

2 Formal setting

We start by introducing notation and formal definitions of the technical terms
that we use throughout the paper.

3



Graphs. We consider simple undirected graphs G = (V,E), where V is a
set of |V | = n vertices and E ⊆

(
V
2

)
is a set of |E| = m edges. For a given

graph G, we denote by V (G) the set of vertices and by E(G) the set of edges
of G. For a vertex v ∈ V , we denote by N(v) := {u ∈ V | {u, v} ∈ E} the
(open) neighborhood of v, that is, all vertices that are connected to v by an edge.
For a subset E′ ⊆ E of edges, the graph G[E] := (V,E′) is called a subgraph
of G. For a vertex subset V ′ ⊆ V , the induced subgraph G[V ′] of G is defined

as G[V ′] := (V ′, E∩
(
V ′

2

)
). A t-star is a graph K1,t on t+1 vertices where exactly

one vertex v is connected to all other t vertices by an edge. The vertex v is called
the center of the star. A t-star partition of G is a partition {V1, . . . , Vn/(t+1)} of
the vertex set V into subsets of size t+ 1 such that each G[Vi] contains a t-star
as a subgraph. Note that a 1-star partition is also called a perfect matching.

Networks and flows. A flow network I∗ consists of a directed graph G∗ =
(V ∗, E∗) where V ∗ is the set of nodes and E∗ is a set of directed edges (arcs)
over V ∗, an arc capacity function c∗ : E∗ → R0, and two distinguished
nodes σ, τ ∈ V ∗ denoted as the source and the target of the network. A (σ, τ)-
flow f : E∗ → R0 is an arc value function with f(u, v) ≥ 0 for all (u, v) ∈ E∗
such that (1) the capacity constraint is fulfilled, i.e. f(u, v) ≤ c(u, v),∀(u, v) ∈
E∗, and (2) the conservation property is satisfied, i.e.

∑
(u,v)∈E∗ f(u, v) =∑

(v,u)∈E∗ f(v, u), ∀u ∈ V ∗ \ {σ, τ}. We call f integer if all its values are

integers. The value of f is defined as
∑

(σ,u)∈E∗ f(σ, u).

Dissolutions. Let G = (V,E) be an undirected graph representing n districts.
Let s,∆s ∈ N+ be the district size and district size increase, respectively. For
a subset V ′ ⊆ V of districts, let Z(V ′, G) = {(x, y) | x ∈ V ′ ∧ y ∈ V (G) \
V ′ ∧ {x, y} ∈ E(G)} be the set of pairs of districts in V ′ and their neighbors
that are not in V ′. The central notion for our studies is that of a dissolution,
which basically describes a valid movement of voters from dissolved districts into
remaining districts. The formal definition is the following:

Definition 1 (Dissolution). Let G = (V,E) be an undirected graph and let
D ⊂ V be a subset of districts to dissolve and z : Z(D,G) → {0, . . . , s} be a
function that describes how many voters shall be moved from one district to its
non-dissolved neighbors. Then, (D, z) is called an (s,∆s)-dissolution for G if

a) no voter remains in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = s, and

b) the size of all remaining (non-dissolved) districts increases by ∆s:

∀v ∈ V \D :
∑

(v′,v)∈Z(D,G)

z(v′, v) = ∆s.
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n = 5

s = 3

∆s = 2

Figure 1: An illustration of a 1-biased (3, 2)-dissolution (left) and a 2-biased
(3, 2)-dissolution (right). Black circles represent A-supporters while white circles
represent B-supporters. The figure on the top shows the neighborhood graph
of five districts, each district consisting of three voters. The task is to dissolve
two districts such that each remaining district contains five voters. The figures
in the middle show two possible realizations of dissolutions. The figures on
the bottom show the two corresponding outcomes. The arrows point from the
districts to be dissolved to the “goal districts” and the black/white circle labels
on the arrows indicate which kind of voters are moved along the arrows.

Throughout this work, we use snew := s + ∆s to denote the new district size,
d := |D| = |V | · ∆s/snew to denote the number of dissolved districts, and
r := |V | − d to denote the number of remaining, non-dissolved districts.

We write dissolution instead of (s,∆s)-dissolution when s and ∆s are clear
from the context. By definition, a dissolution only ensures that the numbers
of voters moving between districts fulfill the given constraints on the district
sizes, that is, the size of each remaining district increases by ∆s. For instance,
the two pictures in the middle illustrated in Figure 1 indicated two possible
(3, 2)-dissolutions.

Motivated from the social choice context, we additionally assume that each
voter supports one of two parties A and B. We then seek a dissolution such that
the number of remaining districts won by party A is maximized. Here, a district
is won by the party that is supported by a strict majority of the voters inside
the district. This yields the notion of a biased dissolution, which is defined as
follows:

Definition 2 (Biased dissolution). Let G be an undirected graph and let
α : V (G) → {0, . . . , s} be an A-supporter distribution, where α(v) denotes the

5



number of A-supporters in district v ∈ V . Let (D, z) be an (s,∆s)-dissolution
for G. Let rα ∈ N be the minimum number of districts that party A shall win
after the dissolution and zα : Z(D,G)→ {0, . . . , s} be an A-supporter movement,
where zα(v′, v) denotes the number of A-supporters moving from district v′ to
district v. Finally, let Rα ⊆ V (G) \ D be a size-rα subset of districts. Then,
(D, z, zα, Rα) is called an rα-biased (s,∆s)-dissolution for (G,α) if and only if

c) a district cannot receive more A-supporters from a dissolved district than
the total number of voters it receives from that district:

∀(v′, v) ∈ Z(D,G) : zα(v′, v) ≤ z(v′, v),

d) no A-supporters remain in any dissolved district:

∀v′ ∈ D :
∑

(v′,v)∈Z(D,G)

zα(v′, v) = α(v′), and

e) each district in Rα has a strict majority of A-supporters:

∀v ∈ Rα : α(v) +
∑

(v′,v)∈Z(D,G)

zα(v′, v) >
s+ ∆s

2
.

We also say that a district wins if it has a strict majority of A-supporters and
loses otherwise.

Figure 1 shows two biased dissolutions: one with rα = 1 and the other one
with rα = 2. We are now ready to formally state the definitions of the two
dissolution problems that we discuss in this work:

Dissolution
Input: An undirected graph G = (V,E) and positive integers s and ∆s.
Question: Is there an (s,∆s)-dissolution for G?

Biased Dissolution
Input: An undirected graph G = (V,E), positive integers s,∆s, rα, and an

A-supporter distribution α : V → {0, . . . , s}.
Question: Is there an rα-biased (s,∆s)-dissolution for (G,α)?

Note that Dissolution is equivalent to Biased Dissolution with rα = 0.
As we will see later, both Dissolution and Biased Dissolution are NP-hard
in general. In this work, we additionally look into special cases of our dissolution
problems and investigate where the intractability results lie.

3 Partially known dissolutions

In this section, we investigate some relevant special cases of our (in general)
NP-hard dissolution problems. These include situations where the districts
to be dissolved or to be won are fixed in advance. We find out that Biased
Dissolution is only polynomial-time solvable if both are fixed, and NP-hard
otherwise.
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3.1 Fixed set D of dissolved districts and fixed set Rα of
winning districts

Sometimes, the districts that are to be dissolved and the districts that are to
win are not arbitrary but already determined beforehand. For this case, we show
that Biased Dissolution can be modelled as a network flow problem which
can be solved in polynomial time.

Theorem 1. Let I = (G = (V,E), s,∆s, rα, α) be a Biased Dissolution
instance, and let D,Rα ⊂ V be two disjoint subsets of districts. The problem of
deciding whether (G,α) admits an rα-biased (s,∆s)-dissolution in which D is the
set of dissolved districts and in which all districts in Rα are won can be reduced
in linear time to a maximum flow problem with 2|V |+ 2 nodes, 2|V |+ 3|E| arcs,
and maximum arc capacity max(s,∆s).

Proof. Denote the set of remaining districts by R, that is, R = V \D. With
Rα ⊆ R given beforehand, we can calculate how many A-supporters a district v ∈
Rα needs from its neighboring dissolved district w ∈ D ∩N(v) in order to win
after the dissolution. With D given beforehand, we can even construct a flow
network where there are two nodes corresponding to each district (denoted as a
dissolved (or a non-dissolved) node if the corresponding district is dissolved (or
non-dissolved)) and appropriately add arcs from dissolved nodes to non-dissolved
nodes. The capacities of these arcs model the movement of A-supporters from
the districts in D to the districts in R that are necessary for a district v ∈ Rα
to win.

To this end, we first assume that our given neighborhood graph G is bipartite
with the two disjoint sets D and R since only edges between D and R may be
taken into account for the dissolution. Second, we observe that in order to let a
district v ∈ V \D win after the dissolution, v needs at least min{0, d(snew+1)/2e−
α(v)} additional A-supporters. Hence, we compute a “demand” function κ : R→
{0, . . . , d(snew +1)/2e} for each non-dissolved district v by κ(v) = min{0, d(snew +
1)/2e − α(v)} if w ∈ Rα and κ(v) = 0 otherwise.

We construct a flow network I∗ = (G∗ = (V ∗, E∗), c∗, σ, τ) for our input
instance I. The node set V ∗ in G∗ consists of a source node σ, a target node τ ,
and two nodes ui and ui for each district vi ∈ V . We say ui and ui correspond to
district vi. In total, V ∗ has 2|V |+ 2 nodes. Also see Figure 2 for an illustration.

The arcs in E∗ are divided into three layers: i) arcs from the source node
to all dissolved nodes, ii) arcs from the dissolved nodes to some non-dissolved
nodes, and iii) arcs from all non-dissolved nodes to the target node.

In layer i), for each dissolved district vi ∈ D, add to E∗ two arcs (σ, ui)
and (σ, ui) with capacities c∗(σ, ui) = α(vi) and c∗(σ, ui) = s − α(vi). In
layer ii), for each dissolved district vi ∈ D and for each vj ∈ N(vi) of its non-
dissolved neighbors, add to E∗ three arcs (ui, uj), (ui, uj), and (ui, uj) with
capacities c∗(ui, uj) = c∗(ui, uj) = α(vi) and c∗(ui, uj) = s− α(vi). In layer iii),
for each non-dissolved district vj ∈ R, add to E∗ two arcs (uj , τ) and (uj , τ)
with capacities c∗(uj , τ) = κ(vj) and c∗(uj , τ) = ∆s − κ(vj). This completes the
description of the flow network construction.
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v1

v2

v3

v4

v5

σ τ

u1

u1

u2

u2

u3

u3

u4

u4

u5

u5

a(
v1

)

s−a(v1)

a(v2)

s−a(v
2 )

κ(v
3 )

∆s−κ(v3)

κ(v4 )

∆s−κ
(v4)

κ(v5)

∆s
−κ

(v5
)

Figure 2: An illustration of the network flow construction. Left: the graph G of an
instance of Biased Dissolution with D = {v1, v2}. Right: the corresponding
network flow. The capacities of the arcs from dissolved nodes to non-dissolved
nodes are omitted for the sake of brevity.

ui uj

uj

zα(vi, vj)

0

u(vj) uj

uj

δ
zα(v(vj ), vj )− δ

ui uj

uj

0
zα(vi , vj )

Figure 3: Three cases of setting the flow values for arcs towards uj and uj
in layer ii), where vj is a non-dissolved vertex. Left: ui corresponds to a
vertex vi ∈ M(vj); middle: u(vj); right: ui corresponds to a vertex vi ∈
N(vj) \ (M(vj) ∪ {v(vj)}).

We show that there is an rα-biased (s,∆s)-dissolution (D, z, zα, Rα) for (G,α)
if and only if the constructed flow network I∗ has a (σ, τ)-flow of value s · |D|.

For the “only if” part, suppose that there is a dissolution (D, z, zα, Rα)
for (G,α). Construct a (σ, τ)-flow f : E∗ → R by first defining f(σ, ui) :=
c∗(σ, ui) where ui corresponds to a dissolved district and defining f(uj , τ) :=
c∗(uj , τ) where uj corresponds to a non-dissolved district. It remains to define the
flow values for the arcs in layer ii). First, for each vi ∈ D and for each vj ∈ N(vi)
of its non-dissolved neighbors, define f(ui, vj) := z(vi, vj)−zα(vi, vj). Let vj ∈ R
be a non-dissolved district. Let M(vj) ⊆ N(vj) be a subset of vj ’s dissolved
neighbors with the following two properties:

i)
∑

x∈M(vj)

zα(x, vj) ≤ κ(vj) and

ii) ∀v ∈ N(vj) \M(vj) : zα(v, vj) +
∑

x∈M(vj)

zα(x, vj) > κ(vj).
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Now, for each vi ∈ M(vj), define f(ui, uj) := zα(vi, vj) and f(ui, uj) := 0
(see the left picture in Figure 3). Let v(vj) ∈ N(vj) \M(vj) be an arbitrary (but

fixed) dissolved neighbor of vj that is not in M(vj) and let u(vj) and u(vj) be
the corresponding nodes in the flow network. Note that such a neighbor v(vj)
needs not to exist when M(vj) = N(vj), but if it exists, then zα(v(vj), vj) +∑
x∈M(vj) zα(x, vj) > κ(vj).

Let δ = max{0, κ(vj) −
∑
x∈M(vj) zα(x, vj)}. Define f(u(vj), uj) = δ and

f(u(vj), uj) = zα(v(vj), vj) − δ (see the middle picture in Figure 3). Finally,
for each vi ∈ N(vj) \ (M(vj) ∪ {v(vj)}), define f(ui, uj) := 0 and f(ui, vj) :=
zα(vi, vj) (see the right picture in Figure 3).

Now, observe that if the constructed (σ, τ)-flow f is valid, then it has
value

∑
(s,x)∈E∗ f(s, x) = s · |D| because (D, z, zα, Rα) is a biased dissolution.

It remains to show that f is valid. It is easy to verify that the flow value of
each arc does not exceed its capacity. To verify the conservation property, let
vi ∈ D be a dissolved district. By the construction of f (Figure 3), it holds
that f(ui, uj) + f(ui, uj) = zα(vi, vj) for all vj ∈ N(vi). Since (D, z, zα, Rα) is
a biased dissolution for (G,α), it must, by Property d), also hold that∑

(x,ui)∈E∗
f(x, ui) = f(σ, ui) =

∑
vj∈N(vi)

zα(vi, vj) =
∑

vj∈N(vi)

f(ui, uj) + f(ui, uj) =
∑

(ui,x)∈E∗
f(ui, x).

Analogously, the conservation property for node ui holds because of Property a)
and d).

As for nodes corresponding to non-dissolved districts, let vj ∈ R be a non-
dissolved district. Let V (vj), v(vj), and u(vj) be computed as described above.
Then, ∑

(ui,uj)∈E∗
f(ui, uj) = f(u(vj), uj) +

∑
vi∈M(vj)

f(ui, uj) +
∑

vi′∈W (vj)

f(ui′ , uj),

where W (vj) = N(vj) \ (M(vj) ∪ {v(vj)}). Analogously, the conservation law
for node uj can be shown due to Properties b) and e).

For the “if” part, suppose that f is a (σ, τ)-flow for I∗ with value s · |D|. Let
zα : Z(D,G)→ {0, . . . , s} and z : Z(D,G)→ {0, . . . , s} be two functions with
values zα(vi, vj) = f(ui, uj)+f(ui, uj) and z(vi, vj) = zα(ui, uj)+f(ui, uj). One
can verify that (D, z, zα, Rα) is an rα-biased (s,∆s)-dissolution for (G,α).

With the help of the above flow network construction we can design a
polynomial time algorithm solving Biased Dissolution when the number of
districts is a constant.

Proposition 1. Any instance ((V,E), s,∆s, α) of Biased Dissolution can
be solved in time O(3|V | · (max(s,∆s) · |V | · |E|+ |V |3)).

Proof. Since each district will either be dissolved, won, or lost, there are at
most 3|V | different ways to fix the roles of all |V | districts. For each of these
fixtures, we can construct a flow network with O(|V |) nodes and maximum
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capacity max(s,∆s) in O(max(s,∆s) · |V | · |E|) time and compute the maximum
flow (Theorem 1) to solve Biased Dissolution. Hence, by using anO(|V |3) time
maximum flow algorithm we solve Biased Dissolution in O(3|V |(max(s,∆s) ·
|V | · |E|+ |V |3)) time.

3.2 Fixed set D of dissolved districts

For the case that only the set D of dissolved districts is given beforehand, the
remaining task is to decide how many A-supporters are moved to a certain
non-dissolved district. However, as we will see in Section 4.2 from the hardness
construction for Theorem 2 for the case of s ≥ 3, it is already determined which
districts are to be dissolved. Hence, already knowing which districts are to be
dissolved beforehand does not help in attacking the NP-hardness of Biased
Dissolution.

Proposition 2. Biased Dissolution is NP-hard for every fixed s ≥ 3, even
if the set D of dissolved districts is known in advance.

As for Dissolution which is the special case of Biased Dissolution with
Rα = ∅, with D given beforehand, we can utilize the flow network approach
behind Theorem 1 to solve it in polynomial time (see Lemma 1).

3.3 Fixed set Rα of winning districts

Since Dissolution is the special case of Biased Dissolution with rα = 0
(which implies Rα = ∅) and since Dissolution is NP-hard for the case of s 6= ∆s

(Theorem 2), we obtain the following.

Proposition 3. Biased Dissolution is NP-hard, even if the set Rα of districts
required to be won is empty.

4 Complexity dichotomy with respect to district
sizes

In this section, we study the computational complexity of Dissolution and
Biased Dissolution with respect to the ratio of the two integers: old district
size s and district size increase ∆s. We show that Dissolution is polynomial-
time solvable if s = ∆s, and NP-complete otherwise (Theorem 2). Biased
Dissolution is only polynomial-time solvable if s = ∆s = 1 and NP-complete
otherwise (Theorem 3). We start by showing some useful structural observations
for dissolutions in Section 4.1 before we come to the results for Dissolution in
Section 4.2 and for Biased Dissolution in Section 4.3.

4.1 Structural properties

If the districts to dissolve are fixed, then Dissolution turns into a simple
transportation problem (see Theorem 1). The following lemma shows that the
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Figure 4: Flow network for Dissolution when the set D of districts to dissolve
is known.

number of nodes and arcs in the corresponding network is polynomially bounded
and that the capacity values used are either s or ∆s.

Lemma 1. Let G = (V,E) be a graph and let D ⊂ V . If there exists an (s,∆s)-
dissolution (D, z) for G, then it can be found by computing the maximum flow in
a network with |V |+ 2 nodes and |E|+ 2|V | arcs where all capacities are either
s or ∆s.

Proof. If the districts to dissolve are known and we only search for a dissolution
(or rα = 0), then the flow network used to compute a dissolution from the proof
of Theorem 1 basically reduces to a much simpler flow network. We can assume
that Rα = ∅, remove all arcs with capacity zero, and finally also remove nodes
without a directed path to the sink.

We have a source σ and a sink τ and two additional layers of nodes: the first
layer contains one node for each vertex from D and the second layer contains
one node for each vertex from V \ D. There is an arc from the source σ to
each node in the first layer with capacity s and an arc from each node in the
second layer to the sink τ with capacity ∆s. Finally, there is an arc of capacity s
from a node in the first layer to a node in the second layer if and only if the
corresponding vertices in the neighborhood graph G are adjacent. See Figure 4
for an illustration.

If ∆s = 1, then each non-dissolved district receives exactly one addition voter
from one of its neighboring districts. Each dissolved district has to move exactly
one voter each to s of its neighboring districts. Hence, it is easy to see that a
graph has an (s, 1)-dissolution if and only if it has an s-star partition.

Using the flow construction from Lemma 1, we can even show that this
equivalence to star partition generalizes to the case that s is any multiple of ∆s.

Lemma 2. There exists a (t ·∆s,∆s)-dissolution for an undirected graph G, if
and only if G has a t-star partition.

11



Proof. If G can be partitioned into t-stars, then it is easy to see that there
is a (t ·∆s,∆s)-dissolution for G: Let C = {c1, . . . , cd} ⊂ V be the set of t-
star centers and let Li ⊂ V, 1 ≤ i ≤ d, be the set of leaves of the i-th star.
Define function z : Z(C,G)→ {0, . . . , t ·∆s} such that for all (ci, l) ∈ Z(C,G),
z(ci, l) := ∆s if l ∈ Li and z(ci, l) := 0 otherwise. Obviously, (C, z) is a
(t ·∆s,∆s)-dissolution for G.

Now, let (D, z) be a (t ·∆s,∆s)-dissolution for G. We show that G can be
partitioned into t-stars with D being the t-star centers. To this end, consider the
network flow constructed in Lemma 1 and modify the network as follows. For each
arc, divide its capacity by ∆s. Clearly, if there is a flow with value |D| · t ·∆s =
|V \D| ·∆s, then the modified network has a flow with value |D| · t = |V \D|.
As all capacities are integers, there exists a maximum integer flow f . Hence, a
partition of G into t-stars consists of one star for each vi ∈ D such that vi is the
star center connected to its leaves Li = {u | f(vi, u) = 1}.

As a third property, we observe a symmetry concerning the district size s and
the district size increase ∆s in the sense that exchanging their values yields an
equivalent instance of Dissolution. Intuitively, the idea behind the following
lemma is that the roles of dissolved and non-dissolved districts in a given (s,∆s)-
dissolution can in fact be exchanged by “reversing” the movement of voters to
obtain a (∆s, s)-dissolution.

Lemma 3. There exists an (s,∆s)-dissolution for an undirected graph G, if and
only if there exists a (∆s, s)-dissolution for G.

Proof. Let (D, z) be an (s,∆s)-dissolution for G. Then, (V (G) \ D, z′) with
z′(x, y) = z(y, x) is a (∆s, s)-dissolution for G: The domain of z′ is correct:
Z(V (G) \D,G) = {(x, y) | x ∈ V (G) \D ∧ y ∈ V (G) \ (V (G) \D) ∧ {x, y} ∈
E(G))} = {(x, y) | x ∈ V (G) \ D ∧ y ∈ D ∧ {x, y} ∈ E(G))}. Let us check
whether (V (G) \ D, z′) fulfills all properties from Definition 1. Property a is
fulfilled for (V (G) \ D, z′) if and only if Property b is fulfilled for (D, z) and
Property b is fulfilled for (V (G) \ D, z′) if and only if Property a is fulfilled
for (D, z).

4.2 Complexity dichotomy for Dissolution

In this subsection, we show a P vs. NP dichotomy of Dissolution with respect
to the district size s and the size increase ∆s. Using Lemma 2, we can show that
finding an (s, s)-dissolution essentially corresponds to finding a perfect matching
and can thus be done in polynomial time.

Lemma 4. If s = ∆s, then Dissolution can be solved by computing a perfect
matching in graph G.

Proof. Let I = (G, s,∆s) be a Dissolution instance with ∆s = s. Set t :=
s/∆s = 1. Lemma 2 implies that I is a yes-instance if and only if G has a t-star
partition. A t-star partition with t = 1 is indeed a perfect matching.

12
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Figure 5: The constructed instance for t = 3.

If s 6= ∆s, then Dissolution becomes NP-hard. We can use a result from
the field of number theory to encode the NP-complete Exact Cover by t-Sets
problem into our dissolution problem.

Exact Cover by t-Sets
Input: A finite set X and a collection C of subsets of X of size t.
Question: Is there a subcollection C′ ⊆ C that partitions X, that is, each

element of X is contained in exactly one subset in C′?

Now, let us briefly recall some prerequisite from elementary number theory.

Lemma 5 (Bézout’s identity). Let a and b be two positive integers and let g
be their greatest common divisor. Then, there exist two integers x and y with
ax+ by = g.

Moreover, x and y can be computed in polynomial time using the extended
Euclidean algorithm [5, Section 31.2]. Indeed, we can infer from Lemma 5 that
any two integers x′ and y′ with x′ = ix + jb/g and y′ = iy − ja/g for some
i, j ∈ Z satisfy ax′ + by′ = ig. We will make use of this fact several times in the
NP-hardness proof of the following theorem.

Theorem 2. If s = ∆s, Dissolution is solvable in O(nω) time (where ω is
the matrix multiplication exponent); otherwise the problem is NP-complete.

Proof. First, Lemma 4 implies that an (s, s)-dissolution corresponds to a perfect
matching in G, which can be computed in O(nω) time, where ω is the smallest
exponent such that matrix multiplication can be computed in O(nω) time.
Currently, the smallest known upper bound of ω is 2.3727 [21].

For the case s 6= ∆s, we show that Dissolution is NP-complete if s > ∆s.
Due to Lemma 3, this also transfers to the cases where s < ∆s. First, given
a Dissolution instance (G, s,∆s) and a function z : Z(D,G) → {0, . . . , s}
where D ⊂ V (G), one can check in polynomial time whether (D, z) is an
(s,∆s)-dissolution. Thus, Dissolution is in NP.

To show the NP-hardness result, we give a reduction from the NP-complete
Exact Cover by t-Sets problem [13] for t := (s + ∆s)/g > 2, where g :=
gcd(s,∆s) ≤ ∆s is the greatest common divisor of s and ∆s.
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Given an Exact Cover by t-Sets instance (X, C), we construct a Disso-
lution instance (G, s,∆s) with a neighborhood graph G = (V,E) defined as
follows: For each element u ∈ X, add a clique Cu of properly chosen size q to G
and let vu denote an arbitrary fixed vertex in Cu. For each subset S ∈ C, add a
clique CS of properly chosen size r ≥ t to G and connect each vu for u ∈ S to a
unique vertex in CS .

Next, we explain how to choose the values of q and r. We set q = xq + yq,
where xq ≥ 0 and yq ≥ 0 are integers satisfying xqs− yq∆s = g. Such integers
exist by our preliminary discussion (Lemma 5). The intuition behind is as
follows: Dissolving xq districts in Cu and moving the voters to yq districts in Cu
creates an overflow of exactly g voters that have to move out of Cu. Notice
that the only way to move voters into or out of Cu is via district vu. Moreover,
in any dissolution, exactly xq districts in Cu are dissolved because dissolving
more districts leads to an overflow of at least g + s + ∆s > s voters, which is
more than vu can move, whereas dissolving less districts yields a demand of at
least s+ ∆s − g > ∆s voters, which is more than vu can receive. Thus, vu must
be dissolved since there is an overflow of g voters to move out of Cu and this
can only be done via district vu.

The value of r ≥ t is chosen in such a way that, for each S ∈ C and each u ∈ S,
it is possible to move g voters from vu to CS (recall that vu must be dissolved).
In other words, we require CS to be able to receive in total t · g = s + ∆s

voters in at least t non-dissolved districts. Thus, we set r := xr + yr, where
xr ≥ 0 and yr ≥ t are integers satisfying xrs− yr∆s = −(s+ ∆s). Again, since
−(s+ ∆s) is divisible by g, such integers exist by our preliminary discussion. It
is thus possible to dissolve xr districts in CS moving the voters to the remaining
yr districts in CS such that we end up with a demand of s+ ∆s voters in CS .
Note that the only other possibility is to dissolve xr + 1 districts in CS in order
to end up with a demand of zero voters. In this case, no voters of any other
districts connected to CS can move to CS . By the construction of Cu above, it
is clear that it is also not possible to move any voters out of CS because no vu
can receive voters in any dissolution. Thus, for any dissolution, it holds that
either all or none of the vu connected to some CS move g voters to CS . Figure 5
shows an example of the constructed neighborhood graph for t = 3.

The proof of correctness is as follows. Suppose (X, C) is a yes-instance, that is,
there exists a partition C′ ⊆ C of X. We can thus dissolve xq districts in each Cu
(including vu) and move the voters such that all yq non-dissolved districts receive
exactly ∆s voters. This is always possible since Cu is a clique. If we do so, then,
by construction, g voters have to move out of each vu. Since C′ partitions X,
each u ∈ X is contained in exactly one subset S ∈ C′. We can thus move the g
voters from each vu to CS . Now, for each S ∈ C′, we dissolve any xr districts
that are not adjacent to any vu and for the subsets in C \ C′, we simply dissolve
arbitrary xr +1 districts in the corresponding cliques. By the above discussion of
the construction, we know that this in fact yields an (s,∆s)-dissolution. Hence,
(G, s,∆s) is a yes-instance.

Now assume that there exists an (s,∆s)-dissolution for (G, s,∆s). As we
have already seen in the above discussion, any (s,∆s)-dissolution generates an
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overflow of g voters in each Cu that has to be moved over vu to some district
in CS . Furthermore, each CS either receives g voters from all its adjacent vu or
no voters at all. Therefore, the subsets S corresponding to cliques CS that receive
t · g voters form a partition of X, showing that (X, C) is a yes-instance.

4.3 Complexity of Biased Dissolution

Since Dissolution is a special case of Biased Dissolution, the NP-hardness
results for s 6= ∆s transfer to Biased Dissolution. It remains to see whether
Biased Dissolution remains polynomial-time solvable when s = ∆s. Interest-
ingly, this is true for s = ∆s = 1, but Biased Dissolution becomes NP-hard
when s = ∆s ≥ 2.

First, we introduce a notion called “edge set” for a given dissolution (D, z) of
a given graph G which will be used in several proofs. Let Ez ⊆ E(G) contain all
edges {x, y} with (x, y) ∈ Z(D,G) and z(x, y) > 0. Then, we call Ez the edge
set used by the dissolution (D, z).

The following lemma shows that finding an rα-biased (1, 1)-dissolution essen-
tially corresponds to finding a maximum weighted perfect matching.

Lemma 6. Let (G = (V,E), s = 1,∆s = 1, rα, α) be a Biased Dissolution
instance. There exists a rα-biased (1, 1)-dissolution for (G,α) if and only if there
exists a perfect matching of weight at least rα in (G,w) with w({x, y}) := 1 if
α(x) = α(y) = 1 and w({x, y}) := 0 otherwise.

Proof. “⇒”: Let (D, z, zα, Rα) be an rα-biased (1, 1)-dissolution for (G,α).
Then, the edge set Ez ⊆ E used by (D, z, zα, Rα) partitions G into 1-stars or
in other words, Ez is a perfect matching for G (see Lemma 2). Note that a
non-dissolved district can only win if it already contains an A-supporter and
receives one additional A-supporter. By the construction of w, this implies that
the weight of each edge that connects a winning district is one (i.e. ∀e ∈ Ez :
e ∩Rα 6= ∅ ↔ w(e) = 1). Since |Rα| ≥ rα, the perfect matching Ez has weight
at least rα.

“⇐”: Let E′ ⊆ E be a perfect matching of weight at least rα. By the
construction of w, E′ must contain at least rα edges each of which has weight
one. Then, we construct an rα-biased (1, 1)-dissolution (D, z, zα, Rα) as follows.
For each edge {x, y} ∈ E′, arbitrarily add one of its endpoints, say x, to D and
set z(x, y) := 1. Further, if α(x) = 1, then set zα(x, y) := 1. If w({x, y}) = 1
meaning that the district corresponding to x and y have an A-supporter each,
then add y to Rα since y wins after the dissolution. Finally, |Rα| ≥ rα since
|E′| ≥ rα.

As we have already seen from Lemma 4, the edge set used by a (1, 1)-
dissolution is a perfect matching. This was useful to find polynomial-time
algorithm solving Biased Dissolution, since even maximum weighted per-
fect matchings can be computed very efficiently. Can we find similar useful
characterizations for (s, s)-dissolutions with s > 1?
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a path of length two

a cycle; length divisible by four

a cycle; length not divisible by four

Figure 6: Graphs induced by edge sets used by an rα-biased (2, 2)-dissolution.
In order to have a majority of A-supporters (black dots) in at least half of the
new districts, each component must be a cycle whose length is divisible by four.

Already for (2, 2)-dissolutions, a characterization by the edge set used is not
as compact as for (1, 1)-dissolutions: The edge set used by a (2, 2)-dissolution
for some graph G corresponds to a partition of the graph into disjoint cycles of
even length and disjoint paths of length two. For the case of rα-biased (2, 2)-
dissolution one would at least need some weights and it is not clear how to find
such a partition efficiently. However, by appropriately setting α and rα we can
enforce that the edge set used by any rα-biased (2, 2)-dissolution only induces
cycles of lengths divisible by four: We let each district have one A-supporter and
one B-supporter (i.e. α : V → {1} for each district v) and let rα := |V (G)|/4.
Doing this we end up with a restricted two-factor problem which is already
studied in the literature [14].

A two-factor of a graph G = (V,E) is a subset of edges E′ ⊆ E such that
each vertex in G′ := (V,E′) has degree exactly two, that is, G′ only consists of
disjoint cycles.

Lemma 7. Let G = (V,E) be an undirected graph with 4q vertices (q ∈ N).
Then G has a two-factor E′ whose cycle lengths are all multiples of four if and
only if (G,α) admits a q-biased (2, 2)-dissolution where α(v) = 1 for all v ∈ V .

Proof. “⇒”: Let E′ ⊆ E be an edge subset such that each vertex in G′ := (V,E′)
has degree two and G′ consists of disjoint cycles of lengths divisible by four.
We now construct a q-biased (2, 2)-dissolution (D, z, zα, Rα) for (G,α). To
this end, we start with D := ∅, Rα = ∅, and we do the following for each
cycle c1c2 . . .4l c1, l ≥ 1. For each number i with 1 ≤ i ≤ 2l, add c2i to D,
set z(c2i, c2i−1) := z(c2i, c(2i+1) mod 4l) := 1. For each 1 ≤ i ≤ l, we set
zα(c4i−2, c4i−3) := 1, zα(c4i−2, c4i−1) := 0, zα(c4i, c(4i+1) mod 4l) := 1, and
zα(c4i, c4i−1) := 0. It is easy to verify that (D, z, zα, Rα) is indeed a q-biased
(2, 2)-dissolution.

“⇐”: Let (D, z, zα, Rα) be a q-biased (2, 2)-dissolution for (G,α). Further-
more, let Ez denote the edge set used by (D, z, zα, Rα). Each component C
in G[Ez] is either a path of length two or a cycle of even length and consists
of exactly |V (C)|/2 dissolved and |V (C)|/2 non-dissolved districts. Since each
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non-dissolved district needs at least two A-supporters in order to win and only
|V (C)|/2 A-supporters can be moved from the |V (C)|/2 dissolved districts, at
most |V (C)|/4 districts can win. With rα = q, this implies that in total exactly
q districts must win. This can only succeed if each component C is a cycle of
length which is divisible by four (also see Figure 6 for an illustration).

Now, we are ready to show that Biased Dissolution is NP-complete even
for constant values of s and ∆s, except if s = ∆s = 1 where it is solvable in
polynomial time.

Theorem 3. Biased Dissolution on graphs G = (V,E) can be solved in
O(|V |(|E| + |V | log |V |)) time if s = ∆s = 1; otherwise it is NP-complete for
any constant value s = ∆s ≥ 2.

Proof. For s = ∆s = 1, the problem reduces to computing a maximum weight
perfect matching (see Lemma 6). This can be done in O(|V |(|E|+ |V | log |V |))
time [12].

It is easy to see that Biased Dissolution is in NP for s = ∆s ≥ 2. Now we
show the NP-hardness. For s = ∆s = 2, observe that Lemma 7 implicitly gives
a polynomial-time reduction from the L-Restricted Two Factor problem to
Biased Dissolution where L ⊆ {3, . . . , |V |}.

L-Restricted Two Factor
Input: A graph G = (V,E).
Question: Is there a two factor E′ ⊆ E such that the number of vertices in

each component in (V,E′) belongs to L?

Two-factors of graphs are computable in polynomial time [10]. However,
L-Restricted Two Factor is NP-hard if ({3, 4, . . . , |V |} \ L) * {3, 4} [14].
By Lemma 7, (G = (V,E), L) with |V | = 4q and L = {4, 8, . . . , q} is a yes-
instance of L-Restricted Two Factor if and only if (G, 2, 2, q, α) with
α(v) = 1 for all v ∈ V is a yes-instance of Biased Dissolution. Since
({3, 4, . . . , |V |} \ {4, 8, . . . , 4q}) * {3, 4} for all q > 1, it follows that Biased
Dissolution is NP-hard when s = ∆s = 2.

For s = ∆s ≥ 3, we show NP-hardness by a polynomial-time reduction
from the NP-complete Exact Cover by t-Sets problem for t ≥ 3 (see the
corresponding definition in Section 4.2). Given an Exact Cover by t-Sets
instance (X, C) with |X| = t · q elements and m := |C| we construct a Biased
Dissolution instance (G = (V,E), t, t, rα, α).

To construct graph G, we use the so-called t-elements gadgets. An t-elements
gadget consists of a t-star where each leaf has an additional degree-one neighbor.
We call the degree-t vertex center district, the original star leaves inner districts,
and the additional degree one vertices element districts. A 3-element gadget is
illustrated on the left hand side in Figure 7. Now, we add to the graph G the
following: i) q t-elements gadgets (we arbitrarily identify each element x ∈ X
with exactly one of the (q · t) element districts; denoted as vx in the following),
ii) a set district vY , for each subset Y ∈ C, and iii) m− q dummy districts.
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x x x x x x

Figure 7: Left: A 3-elements gadget. The only dissolution where A wins all
districts requires to dissolve the top district and move exactly one B-supporter
from the top district to each neighbor. Right: Gadget symbol in the construction.

x x x x x x x x x x x x x x x x x x

Figure 8: Illustration of the construction for t = 3, m = 4 and q = 3.

Then, we connect each set district vY with each element district vx, x ∈ Y
and connect each dummy district with each set district. We set the number rα
of winning districts to (t+ 1) · q.

We now describe how many A-supporters each district contains (i.e. the
function α).

• The dummy district contains no A-supporters.

• Each set district contains exactly one A-supporter.

• For each t-elements gadget, the center district contains no A-supporters,
each inner district contains exactly two A-supporters, and each element
district contains t A-supporters.

This construction is illustrated for t = 3 in Figure 8.
Now, we show that (X, C) is a yes-instance of Exact Cover by t-Sets if

and only if the constructed Biased Dissolution instance (G, t, t, (t+ 1)q, α) is
a yes-instance.

“⇒”: Let C′ ⊆ C be a subcollection such that each element of X is contained
in exactly one subset in C′. A (t+ 1)q-biased (t, t)-dissolution can be constructed
as follows. Dissolve each center district and move one B-supporter to each of
its adjacent inner districts. Dissolve each element district and move (t − 1)
A-supporters to its uniquely determined adjacent inner district. For each element
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district vx, x ∈ X move the remaining one A-supporter to the set district vY , Y ∈
C′ with x ∈ Y . Since C′ partitions X, vY is uniquely determined. The set Rα
of winning districts consists of all inner districts and the set districts which
correspond to the sets in C′. For each dummy district vdummy, uniquely
choose one of the set districts vY , Y /∈ C′, and move all voters from vdummy

to vY . This is possible because there are m− q dummy districts and m− q set
districts vY , Y /∈ C′, and each dummy district is adjacent to each set district.

To show that this indeed gives a (t+ 1)q-biased (t, t)-dissolution observe that
we move all t voters from each dissolved district to the adjacent non-dissolved
districts. Each inner district receives ∆s = t voters: t − 1 A-supporters and
one B-supporter. Since each inner district initially contained two A-supporters,
party A wins a total of t · q inner districts. Each set district vY , Y ∈ C′ receives
t A-supporters and initially contains one A-supporter. Furthermore, |C′| = q,
and hence, party A wins q set districts in total and loses the remaining m− q
set districts. Thus, we indeed constructed a (t+ 1)q-biased (t, t)-dissolution.

“⇐”: Assume that there is some (t + 1)q-biased (t, t)-dissolution for the
constructed instance. Since s = ∆s and G has 2t · q + 2m districts, after
the dissolution, a total of t · q + m districts is dissolved and party A wins at
least (t + 1)q districts and loses at most m − q districts. Observe that the
only neighbors of the dummy districts are the set districts and hence, by the
construction of function α, party A cannot win any non-dissolved district that
receives/contains at least one voter from a dummy district. Furthermore, since
the set of the (m− q) dummy districts and the set of their neighboring districts
build a bipartite induced subgraph, there are (m − q) non-dissolved districts
which may receive/contain any voters from the dummy districts. Thus, party A
loses at least m− q non-dissolved districts. Since rα = (t+ 1)q, party A loses
exactly m− q districts. In particular, each of the losing districts contains at least
one voter (originally) from a dummy district. This implies that party A has
to win each non-dissolved set district, element district, inner district, or center
district. However, the construction of α forbids A to win a center district or to
win an inner district if one moves two B-supporters to it. Thus, we dissolve each
center district and move exactly one B-supporter from this center districts to
each of its adjacent inner district. As a direct consequence, all element districts
are to be dissolved and t − 1 voters are moved from each element district to
its adjacent inner district such that A wins all t · q inner districts. There are
t · q A-supporters left, one A-supporter from each element district. These voters
are to be moved to a set of exactly q winning set districts each. Since each of
these districts needs at least t A-supporters to win and have exactly t adjacent
element districts, C ′ := {S ∈ C | vS ∈ Rα} partitions X.

5 Special graph classes

In this section, we discuss the complexity of Biased Dissolution on graphs
from special graph classes. In a companion paper [4], we have shown that
computing star partitions – and hence by Lemma 2 also problem Dissolution –
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remains NP-hard even on subcubic grid graphs and split graphs.
First, in Section 5.1, we consider Biased Dissolution on planar graphs.

This problem restriction is interesting especially in the political districting context
since the neighborhood relation between voting districts on a map is planar
(except, possibly, if districts may have enclaves or exclaves). Unfortunately, we
will see that Dissolution and, thus, Biased Dissolution, remains NP-hard
for many choices of s and ∆s. Second, in Section 5.2, we consider the case where
the neighborhood graph is a clique, that is, voters may be moved unrestrictedly
between districts. Finally, in Section 5.3, we consider Biased Dissolution
on graphs of bounded treewidth. This problem restriction is interesting in the
context of distributed systems since computers are often interconnected using a
tree, star, or bus topology. We will see that Biased Dissolution is solvable in
linear time on graphs of bounded treewidth when s and ∆s are constant.

5.1 Planar graphs

By giving a polynomial-time reduction from the following NP-hard problem, it
is easy to derive NP-hardness results for Dissolution.

Perfect Planar H-Matching
Input: Planar graph G = (V,E).
Question: Does G contain an H-factor V1, V2, . . . , Vd|V |/|V (H)|e that partitions

the vertex set V such that G[Vi] is isomorphic to H for all i?

Perfect Planar H-Matching is NP-complete for any connected outer-
planar graph H with three or more vertices [3]. In particular, Perfect Planar
H-Matching is NP-complete for any H being a star of size at least three. This
makes it easy to prove the following theorem:

Theorem 4. Dissolution on planar graphs is NP-complete for all s 6= ∆s

such that ∆s divides s or s divides ∆s. It is polynomial-time solvable for s = ∆s.

Proof. We have already shown in Theorem 2 how to solve Dissolution in
polynomial time for s = ∆s. Hence, now assume that ∆s 6= s divides s. Let
x := s/∆s ≥ 2. Due to Lemma 2 and the fact that Perfect Planar K1,x-
Matching is NP-complete [3] we can conclude that Dissolution is NP-complete
even on planar graphs.

It seems to be a challenging task to transfer the dichotomy result for Dis-
solution on general graphs (Theorem 2) to the case of planar graphs. The
main problem is that the proof of Theorem 2 exploits Exact Cover by t-Sets
to be NP-hard for all t ≥ 3. The reduction from Exact Cover by t-Sets
to Dissolution produces a graph that, as a subgraph, contains the incidence
graph of the Exact Cover by t-Sets instance. To obtain a reduction to
Dissolution on planar graphs, it is necessary to have planar incidence graphs
of Exact Cover by t-Sets. It is, however, unknown whether this problem
variant, called Planar Exact Cover by t-Sets, is NP-hard for t ≥ 4. One
might be misled to think that Exact Cover by t-Sets is NP-hard for t ≥ 4

20



since it already is NP-hard for t = 3. However, the closely related problem
Planar 3-Sat, that is, 3-Sat with planar clause-literal incidence graphs, is
NP-complete, whereas Planar 4-Sat is polynomial-time solvable: one can show
that the clause-literal incidence graph of a Planar 4-Sat instance allows for a
matching such that each clause is matched to some literal. These literals can
then be simply set to true in order to satisfy all clauses. We consider the question
whether Planar Exact Cover by 4-Sets is NP-hard of independent interest.

5.2 Cliques

In case that the neighborhood graph is a clique, that is, the districts are fully
connected such that voters can move from any district to any other district, the
existence of an (s,∆s)-dissolution depends only on the number |V | of districts,
the district size s and the size increase ∆s. Clearly, a Dissolution instance
is a yes-instance if and only if d := |V | · ∆s/(s + ∆s) is an integer. We now
show that Biased Dissolution can likewise be solved in polynomial time if
the neighborhood graph is a clique. The basic idea is to dissolve districts with a
large number of A-supporters while minimizing the number of losing districts by
letting the districts with the smallest number of A-supporters lose.

Theorem 5. Biased Dissolution is solvable in O(|V |2) time on
cliques (V,

(
V
2

)
).

Proof. In fact, we show how to solve the optimization version of Biased Disso-
lution, where we maximize the number rα of winning districts. Intuitively, it
appears to be a reasonable approach to dissolve districts pursuing the following
two objectives: Any losing district should contain as few A-supporters as possible
and any winning district should contain exactly the amount that is required to
have a majority. Dissolving districts this way minimizes the number of “wasted”
A-supporters. We now show that this greedy strategy is indeed optimal.

To this end, let G = (V,
(
V
2

)
) be a clique, let α be an A-supporter distribution

over V , and let s and ∆s be the district size and the district size increase. With
G being complete, we are free to move voters from any dissolved district to any
non-dissolved district. Let µ := b(s+ ∆s)/2c+ 1 be the minimum number of
A-supporters required to win a district. Thus, a district with less than (µ−∆s)
A-supporters can never win. Denote by L := {v ∈ V | α(v) < µ−∆s} the set of
non-winnable districts.

Our first claim corresponds to the first objective above, that is, the losing
districts should contain a minimal number of A-supporters.

Claim 1. Let v, w ∈ V be two districts with α(v) ≤ α(w). If there exists an rα-
biased dissolution where v is winning and w is losing, then there also exists
an rα-biased dissolution where v is losing and w is winning.

To verify this, let (D, z, zα, Rα) be an rα-biased dissolution. Let v ∈ Rα
and w ∈ V \D \ Rα be two districts such that α(v) ≤ α(w). Now, we simply
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exchange v and w, that is, we set R′α := Rα \{v}∪{w} and define for all (x, y) ∈
Z(D,G):

z′(x, y) :=


z(x,w), if y = v

z(x, v), if y = w

z(x, y), else,

z′α(x, y) :=


zα(x,w), if y = v

zα(x, v), if y = w

zα(x, y), else.

Since α(v) ≤ α(w), it is clear that (D, z′, z′α, R
′
α) is also a well-defined rα-biased

dissolution.
The next claim basically corresponds to the second objective, in the sense

that districts with a large number of A-supporters (possibly too large, that is,
more than the required µ) should be dissolved in order to distribute the voters
more efficiently.

Claim 2. Let v, w ∈ V be two districts with α(v) ≤ α(w). Assume that there
exists an rα-biased dissolution where rα is optimal. If v is dissolved, then the
following holds:

(i) If w is losing, then there also exists an rα-biased dissolution where w is
dissolved and v is losing.

(ii) If w is winning and v is winnable, that is, v 6∈ L, then there exists an rα-
biased dissolution where w is dissolved and v is winning.

This claim also holds by an exchange argument similar to the one above:
Let (D, z, zα, Rα) be an rα-biased dissolution and let v ∈ D, w ∈ V \D be two
districts such that α(v) ≤ α(w). Again, we exchange v and w by setting D′ :=
D \ {v} ∪ {w}. Since

∑
x∈D′ α(x) ≥

∑
x∈D α(x) and since we are free to move

voters arbitrarily between districts, it is clear that it is always possible to find
an rα-biased dissolution such that D′ is the set of dissolved districts. In particular,
if v is a winnable district, then it is always possible to make v a winning district.

Using the two claims above, we now show how to compute an optimal biased
dissolution. In order to find a biased dissolution with the maximum number
of winning districts, we seek a dissolution which loses a minimum number of
remaining districts. Thus, for each ` ∈ {0, . . . , r}, we check whether it is possible
to dissolve d districts such that at most ` of the remaining r districts lose. To this
end, assume that the districts v1, . . . , vn are ordered by increasing number of A-
supporters, that is, α(v1) ≤ α(v2) ≤ . . . ≤ α(vn) and let V` := {v1, . . . , v`}. Now,
if there exists an (r−`)-biased dissolution, then there also exists an (r−`)-biased
dissolution where the losing districts are exactly V`. This follows by repeated
application of the exchange arguments of Claim 1 and Claim 2(i). Hence, given `,
we have to check whether there is a set D ⊆ V \ V` of d districts that can be
dissolved in such a way that all non-dissolved districts in V \ (V` ∪D) win and
the districts in V` lose.

First, note that in order to achieve this, all districts in L \ V` have to be
dissolved because they cannot win in any way. Clearly, if |L \ V`| > d, then
it is simply not possible to lose only ` districts and we can immediately go
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to the next iteration with ` := ` + 1. Therefore, we assume that |L \ V`| ≤ d
and let d′ := d − |L \ V`| be the number of additional districts to dissolve
in V \ (L ∪ V`). By Claim 2(ii), it follows that we can assume that the d′

districts with the maximum number of A-supporters are dissolved, that is,
V d
′

:= {vn−d′+1, . . . , vn}. Thus, we set D := L \ V` ∪ V d
′

and check whether
there are enough A-supporters inD to let all r−` remaining districts in V \(V`∪D)
win.

Sorting the districts by the number of A-supporters (as preprocessing) requires
O(n log n) arithmetic operations. Then, for up to n values of `, to check whether
the remaining districts in V \(V`∪D) can win requires O(n) arithmetic operations
each. Thus, assuming constant-time arithmetics, we end up with a total running
time in O(n2).

5.3 Graphs of bounded treewidth

Yuster [22, Theorem 2.3] showed that the H-Factor problem is solvable in
linear time on graphs of bounded treewidth when the size of H is constant.
This includes the case of finding x-star partitions, that is, (x, 1)-dissolutions
resp. (1, x)-dissolutions, when x is constant. We can show that the more general
problem Biased Dissolution is solvable in linear time on graphs of bounded
treewidth when s and ∆s are constants. In terms of parameterized complexity
theory [7, 11, 18], this shows that Biased Dissolution is fixed-parameter
tractable with respect to the combined parameter (t, s,∆s), where t is the
treewidth of the neighborhood graph.

Theorem 6. Biased Dissolution is solvable in linear time on graphs of
bounded treewidth when s and ∆s are constant.

To prove Theorem 6, we exploit a general result that a maximum-cardinality
set satisfying a constant-size formula in monadic second-order logic for graphs
can be computed in linear time on graphs of bounded treewidth [2]. The set
whose size we want to maximize is the set Rα of winning districts.

Definition 3 (Monadic second-order logic for graphs). A formula φ of the
monadic second-order logic for graphs may consist of the logic operators ∨,∧,¬,
vertex variables, edge variables, set variables, quantifiers ∃ and ∀ over vertices,
edges, and sets, and the predicates

i) x ∈ X for a vertex or edge variable x and a set X,

ii) inc(e, v), being true if e is an edge incident to the vertex v,

iii) adj(v, w), being true if v and w are adjacent vertices,

iv) equality of vertex variables, edge variables, and set variables.

We point out that a constant-size formula in monadic second-order logic for
a problem does not only prove the mere existence of a linear-time algorithm
on graphs of bounded treewidth; the formula itself can be converted into a
linear-time algorithm [6, Chapter 6].
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Figure 9: Illustration of transforming a Biased Dissolution instance (left)
into an instance of the auxiliary graph problem (right).

Proof of Theorem 6. We only have to model Biased Dissolution as a formula
in monadic second-order logic. Since monadic second-order logic does not allow
us to count the number of voters moved from one district to another or to count
how many A-supporters a district contains, we first model Biased Dissolution
as a problem on an auxiliary graph. For constant s and ∆s, the transformation
of a Biased Dissolution instance to this auxiliary graph can be done in linear
time and works as follows:

1. For each input district of Biased Dissolution, introduce a vertex and
attach to it as many degree-one vertices as the district has A-supporters.

2. Between two neighboring districts, add s+ 1 parallel edges between their
representing vertices. The s+ 1 parallel edges represent potential moves of
voters from one district to another.

3. Finally, connect each pair of vertices representing a pair of neighboring
districts by s parallel subdivided edges. These represents potential moves
of A-supporters.

Note that, in the graph resulting from this construction, a vertex has degree
one if and only if it represents a party A-supporter; it belongs to the district
represented by its neighbor. Moreover, a vertex has degree two if and only if it
represents a possible movement of an A-supporter of one district to another.

A dissolution now does not contain a function z moving voters from one
district to another (see Definition 1), but a set Z of selected edges representing
such movements. Similarly, the A-supporter movement is no longer modelled as
a function zα (see Definition 2), but as a set of vertices Zα representing such
movements. Hence, we search for a maximum set Rα that satisfies the following
formula in monadic second-order logic of graphs:

maxRα s. t. ∃D∃Z∃Zα[movements(Z) ∧A-movements(Zα)

∧ districts(D) ∧ districts(Rα)

∧ a ∧ b ∧ c ∧ d ∧ e],
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where a, b, c, d, e will be predicates ensuring that the properties a–e of Definitions 1
and 2 are satisfied, D will be the set of dissolved districts, Z the set of voter
movements and Zα the set of A-supporter movements. To ensure this, we define

districts(X) := ∀x[x ∈ X =⇒ degree-greater-two(x)]

so that it is true if and only if all objects in X are districts, that is, vertices with
degree more than two, where

degree-greater-two(x) := ∃v1∃v2∃v3[ v1 6= v2 ∧ v1 6= v3 ∧ v2 6= v3

∧ adj(v1, x) ∧ adj(v2, x) ∧ adj(v3, x)]

is true if and only if x has at least three neighbors. Moreover, we define

movements(X) := ∀x[x ∈ X =⇒ ∃v1∃v2[inc(x, v1) ∧ inc(x, v2)

∧ degree-greater-two(v1) ∧ v1 ∈ D
∧ degree-greater-two(v2) ∧ v2 /∈ D]]

so that it is true if and only if each object in the set X is a movement and

A-movements(X) := ∀x[x ∈ X =⇒ ∃v1∃v2[adj(x, v1) ∧ adj(x, v2)

∧ v1 ∈ D ∧ v2 /∈ D ∧ ¬degree-greater-two(x)]]

so that it is true if and only if each object in the set X is a movement of a
A-supporter. It remains to give proper definitions of the predicates a, b, c, d,
and e. We define

a := ∀x[x ∈ D =⇒ ∃Z ′[cards(Z
′) ∧ (∀y[y ∈ Z ′ ⇐⇒ move-from(x, y)])]]

so that it is true if and only if there is a set with cardinality s of movements out
of each dissolved district x, where

move-from(x, y) := x ∈ D ∧ y ∈ Z ∧ inc(y, x)

is true if and only if y is a move out of x and

cardi(X) := ∃x1∃x2 . . . ∃xi

[( i∧
j=1

xi ∈ X
)
∧
( i∧
j=1

i∧
k=j+1

(xi 6= xj)
)

∧ ∀x
[
x ∈ X =⇒

i∨
j=1

xi = x
]]

for 1 ≤ i ≤ s is a constant size formula that is true if and only if the set X has
cardinality i. Next, we define

b := ∀x[ (degree-greater-two(x) ∧ x /∈ D) =⇒
∃Z ′[card∆s(Z ′) ∧ (∀y[y ∈ Z ′ ⇐⇒ move-to(x, y)])]]
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so that it is true if and only if there is a set Z ′ of moves to each non-dissolved
district x with cardinality ∆s, where

move-to(x, y) := x /∈ D ∧ y ∈ Z ∧ inc(y, x)

is true if and only if y is a move to x. Next, we define

c := ∀x∀y[x ∈ D =⇒ ∃Z ′∃Z ′α[smaller(Z ′α, Z
′)

∧ (∀z[z ∈ Z ′ ⇐⇒ move-from(x, z)

∧move-to(y, z)])

∧ (∀z[z ∈ Z ′α ⇐⇒ A-move-from(x, z)

∧A-move-to(y, z)])]]

so that it is true if and only if the A-supporters moved from x to y are at most
the number of total moves from x to y, where

smaller(X,Y ) :=

s∨
i=1

s∨
j=i+1

(cardi(X) ∧ cardj(Y ))

is a constant-size formula that is true if and only if |X| ≤ |Y | and

A-move-from(x, y) := x ∈ D ∧ y ∈ Zα ∧ adj(x, y)

A-move-to(x, y) := x /∈ D ∧ y ∈ Zα ∧ adj(x, y)

are true if and only if y is an A-supporter move from or to x, respectively. Next,
we define

d := ∀x[x ∈ D =⇒ ∃Z ′α∃A[equal-card(Z ′α, A)

∧ ∀v[v ∈ A ⇐⇒ A-supporter-of(x, v)]

∧ ∀v[v ∈ Z ′α ⇐⇒ A-move-from(x, v)]]]

so that it is true if and only if the number of A-supporter moves out of a district v
equals the number of its A-supporters, where

equal-card(X,Y ) :=

s∨
i=1

(cardi(X) ∧ cardi(Y ))

is a constant-size formula that is true if and only if |X| = |Y | and

A-supporter-of(x, y) := adj(x, y) ∧ ∀v[adj(v, x) =⇒ v = y]

is true if and only if x is a A-supporter in district v. Finally, we define

e := ∀x[x ∈ Rα =⇒ ∃A[card>(s+∆s)/2(A)

∧ ∀v[v ∈ A ⇐⇒ A-supporter-of(x, v)

∨A-move-to(x, v)]]]
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so that it is true if and only if each district in Rα has more than (s + ∆s)/2
A-supporters, where

card>i(X) :=

s∨
j=bic+1

cardj(X).

We claim that one can also prove Theorem 6 using an explicit dynamic
programming algorithm that works on a so-called tree decomposition of a graph.
The algorithm runs in (∆s + s)O(t2) time, but it is very technical and its
correctness proof is very tedious, while its practical applicability still seems very
limited.

6 Conclusion

We initiated a graph-theoretic combinatorial approach to concrete redistribution
problems occurring in various application domains. Obviously, the two basic
problems Dissolution and Biased Dissolution concern highly simplified
situations and will not be able to model all interesting aspects of redistribution
scenarios. For instance, our constraint that before and after the dissolution all
vertex loads are perfectly balanced may be too restrictive for many applications.
We stress that even these simplistic problems are computationally intractable,
and that more general models will lead to even harder problems. All in all, we
consider our simple (and yet fairly realistic) models as a first step into a fruitful
research direction, that might yield a stronger linking of graph-theoretic concepts
with districting methods and other application scenarios.

We end with a few specific challenges for future research. We have left open
whether the P vs NP dichotomy for general graphs fully carries over to the
planar case: it might be possible that planar graphs allow for some further
tractable cases with respect to the relation between old and new district sizes.
Moreover, with redistricting applications in mind it might be of interest to study
special cases of planar graphs (such as grid-like structures) in quest of finding
polynomial-time solvable special cases of network-based dissolution problems.
Having identified several NP-hard special cases of Dissolution and Biased
Dissolution, it is a natural endeavor to investigate their polynomial-time
approximability and their parameterized complexity; in the latter case one also
needs to identify new, application-driven parameterizations.
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