
 

Analysis of banded microstructures in multiphase steels
assisted by transformation-induced plasticity
Citation for published version (APA):
Yadegari, S., Turteltaub, S. R., Suiker, A. S. J., & Kok, P. J. J. (2014). Analysis of banded microstructures in
multiphase steels assisted by transformation-induced plasticity. Computational Materials Science, 84, 339-349.
https://doi.org/10.1016/j.commatsci.2013.12.002

DOI:
10.1016/j.commatsci.2013.12.002

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.commatsci.2013.12.002
https://doi.org/10.1016/j.commatsci.2013.12.002
https://research.tue.nl/en/publications/37d9a599-49b7-4ac9-8df0-ae953bcc9bff


Computational Materials Science 84 (2014) 339–349
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Analysis of banded microstructures in multiphase steels assisted
by transformation-induced plasticity
0927-0256/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.commatsci.2013.12.002

⇑ Corresponding author. Tel.: +31 152785360.
E-mail addresses: S.Yadegari@tudelft.nl (S. Yadegari), S.R.Turteltaub@tudelft.nl

(S. Turteltaub), A.S.J.Suiker@tue.nl (A.S.J. Suiker), Piet.Kok@tatasteel.com (P.J.J. Kok).
S. Yadegari a, S. Turteltaub a,⇑, A.S.J. Suiker b, P.J.J. Kok c

a Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands
b Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c Tata Steel Research and Development, P.O. Box 10000, 1970 CA IJmuiden, The Netherlands

a r t i c l e i n f o
Article history:
Received 15 May 2013
Received in revised form 19 October 2013
Accepted 2 December 2013

Keywords:
TRIP steel
Multilevel non-convex Voronoi tessellation
Numerical homogenization
Non-redundant periodic boundary
conditions
Banded microstructures
a b s t r a c t

The influence of the spatial distribution of the austenitic phase on the effective mechanical properties of a
multiphase steel assisted by transformation-induced plasticity is analyzed using a numerical homogeni-
zation scheme. Representative three-dimensional volume elements with distinct microstructures are cre-
ated applying a newly-developed algorithm based on the generation of a multilevel Voronoi tessellation;
this approach allows for straightforwardly incorporating grains with complex, non-convex shapes in the
microstructure. The effective macroscopic response of the samples is computed under the formulation of
a set of non-redundant, periodic boundary conditions, which warrants a consistent transition between
the microscopic and macroscopic scales. A sample in which austenitic grains are clustered within a fer-
ritic matrix by means of a band-like region is compared to a sample with austenitic grains being ran-
domly dispersed within the ferritic matrix. It is found that the banded microstructure may be
detrimental in comparison to the dispersed microstructure, since it allows substantial plastic localization
to occur in the ferritic matrix, which in turn diminishes the strengthening effect provided by the austen-
itic phase.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A thorough understanding of the link between the microstruc-
tural characteristics of a heterogeneous multiphase material and
its macroscale response is critical for the enhancement of its
mechanical properties. A specific class of technologically-impor-
tant multiphase materials are those assisted by the transforma-
tion-induced plasticity mechanism. This class of steels,
commonly referred to as TRIP steels, are characterized by a micro-
structure containing ferrite as the most dominant phase, comple-
mented by retained austenite, bainite, and occasionally a small
amount of thermal martensite, see e.g., [1–7]. The key constituent
for steels assisted by transformation-induced plasticity is the re-
tained austenite, which is metastable at room temperature, but
may transform into martensite under the application of mechani-
cal and/or thermal loading. The transformation process increases
the effective strength of the steel, since the martensitic product
phase is significantly harder than the austenitic parent phase and
the ferrite-based matrix. It further increases the ductility of the
steel, due to plastic deformations induced in the ferritic and
bainitic phases by a volumetric expansion of the transforming
austenitic phase. These two microstructural mechanisms essen-
tially characterize the TRIP-effect, and therefore have been taken
into account in various macroscopic and microscopic continuum
models developed during the last four decades [8–23].

The microstructure of a multiphase steel can be modified by
changing its processing route [24,25]. For TRIP steels this may sig-
nificantly improve the effective material properties, since specific
microstructural characteristics, such as the initial volume fraction
of austenite, the carbon concentration in the retained austenite,
and the crystallographic texture, appear to substantially influence
the stability of the retained austenite, and, consequently, the over-
all mechanical response [26]. The grain size also affects the macro-
scopic properties, as analyzed in detail by means of both
continuum models and discrete models [27,28].

Although the macroscopic properties of a multiphase steel
clearly show a dependency on the initial volume fraction of austen-
ite, it is not yet well understood how the spatial distribution of the
austenite grains contributes to this aspect. For this purpose, two
distinct, technologically-relevant microstructural morphologies
are analyzed and compared in the present communication, namely
(i) a benchmark microstructure with isolated, randomly-distrib-
uted austenitic grains embedded in a ferritic matrix and (ii) a
microstructure where austenitic grains are clustered in a plate-like
region (or band) within a ferritic matrix. The benchmark distribu-
tion is typically encountered in cold-rolled TRIP steels that are
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subsequently subjected to a two-step annealing (intercritical
annealing followed by isothermal heat treatment), where retained
austenite appears in grains wedged between ferritic grains. Con-
versely, austenitic grains clustered in a band-like region may ap-
pear during hot-rolling (i.e., high-temperature mechanical
deformation during processing), whenever the banded morphology
is not completely removed during further heat treatment, see [29].
The relevance of banded morphologies on the mechanical response
of ferrous alloys has been discussed in [30–32]. Their effect on the
effective strength was analyzed in [33] by means of a discrete dis-
location-transformation model, where it was found that a micro-
structure composed of randomly-distributed grains of austenite
is advantageous, as it delays the onset of plastic localization in
comparison to banded microstructures. The present study is based
upon a continuum approach which, compared with the above-
mentioned discrete model, allows to extend the analysis to a
three-dimensional setting as well as to a larger range of deforma-
tions, i.e., beyond the onset of plastic deformation. Accordingly, a
more comprehensive insight is obtained into the strengthening ef-
fect caused by the austenitic phase and the role played by its spa-
tial distribution.

In order to establish a direct link between the spatial distribu-
tion of austenite and the macroscopic properties of a multiphase
steel, simulations are conducted on banded and dispersed micro-
structures while keeping all other relevant microstructural fea-
tures the same (i.e., initial volume fraction of austenite, average
crystallographic orientation, carbon content, etc.). The constitutive
models used for ferrite and austenite are summarized in Section 2.
A multilevel Voronoi algorithm for generating microstructural
computational samples of an aggregate of grains is presented in
Section 3. The samples are subjected to non-redundant, periodic
boundary conditions, which warrants a consistent transition be-
tween the microscopic and macroscopic scales. The samples are
used in a convergence analysis to establish the required size of a
representative volume element for the determination of the mac-
roscopic properties. The effect of a banded microstructure is ana-
lyzed in Section 4 based on a comparison with benchmark
simulations for dispersed microstructures. Conclusive remarks
are provided in Section 5.
2. Micromechanical modeling of multiphase TRIP steels

The microstructures considered in the present analysis consist
of an aggregate of ferritic grains (primary phase) and metastable
retained austenitic grains (secondary phase). Upon loading, the
austenitic grains may partially or totally transform into martensite.
The goal is to determine the collective response of the aggregate of
grains, where separate constitutive models are used for each phase.
The main characteristics of the models are summarized in this sec-
tion and the interested reader is referred to relevant publications
for further details.
2.1. Elasto-plastic-transformation model for austenitic grains

The elastoplastic response of the austenitic phase and its possi-
ble transformation into martensite is simulated using the model
originally developed by Turteltaub and Suiker [15–17] and subse-
quently extended by Tjahjanto et al. [34] and Yadegari et al. [35].
The model assumes that, upon loading, a region inside each grain
(i.e. at the sub-grain length scale) may undergo a plastic deforma-
tion through slip and/or a sudden change in crystalline structure
(i.e., a martensitic phase transformation). The transformation of
austenite, which possesses a face-centered cubic (FCC) structure,
into twinned martensite, composed of pairs of body-centered
tetragonal (BCT) martensitic variants, is described according to
the theory of martensitic transformations [36]. The distinct pairs
of (twinned) martensite, referred to as ‘‘transformation systems’’,
are characterized by two vectors, namely the habit plane normal
and the shape strain vector. The transformation model is coupled
to a crystal plasticity model to simulate sub-grain interactions in
the austenite caused by transformation and plastic deformation
[34]. Plastic deformation at the sub-grain level is described by slip
occurring along active slip systems. Following the approach used in
crystal plasticity, individual slip systems are characterized by a
pair of vectors that represent the slip plane normal and the slip
direction.

The sub-grain length scale behavior of a collection of slip sys-
tems and transformation systems is translated to the mesoscale
(grain-level) by considering the weighted average of the active
systems accounting for the corresponding inelastic mechanisms.
This averaging procedure is performed within sub-regions in the
grains, which allows for simulating non-homogeneous plastic
deformations and/or transformations inside individual grains.
The response contribution caused by the martensitic transforma-
tion is obtained upon time-integration of the rate of change of the
volume fractions of the individual transformation systems. This
set of rates is denoted as _n ¼ _nð1Þ; . . . ; _nðNÞ

� �
, where _nðaÞ represents

the rate of change of the volume fraction of the ath martensitic
system within a sub-region inside a grain and N is the total num-
ber of available transformation systems. The contribution of plas-
ticity to the deformation is determined from the rate of slip in
each system, i.e., from _c ¼ _cð1Þ; . . . ; _cðMÞ

� �
, where _cðiÞ denotes the

rate of slip in the ith system and M is the total number of slip sys-
tems in the underlying material. Although the martensite is as-
sumed to deform only elastically, the model takes into account
the amount of plastic slip that occurred in the austenite prior to
transformation.

The rates of change of transformation and plastic slip upon
loading are modeled using a formulation that is thermodynami-
cally-consistent with respect to the dissipation inequality. The
isothermal model used in the present simulations is derived
from a thermomechanical formulation using a constant homoge-
neous temperature such that the thermal deformation gradient is
equal to identity [35]. Combining the formalism proposed by
Onsager [37] with the so-called Coleman–Noll procedure [38],
the terms in the dissipation inequality are expressed as a sum
of products of affinities (i.e., driving forces) and fluxes (i.e., rates
of change of martensitic volume fractions and plastic slip) for
each inelastic mechanism. The model includes evolution equa-
tions between fluxes and affinities, known as the ‘‘kinetic rela-
tions’’. In particular, the transformation of the austenitic phase
into martensite is described by a tangent hyperbolic function
that relates the rate of transformation of each individual trans-
formation system to the driving force of the transformation sys-
tem. Similarly, the plastic deformation in the austenite is
governed by a power law that relates the plastic slip rate of each
individual slip system to the corresponding plastic driving force.
The evolution of plastic slip resistance is accounted for by a
hardening power law. The kinetic relations are complemented
by nucleation criteria describing the onset of inelastic deforma-
tion. Detailed expressions for the driving forces and the kinetic
relations can be found in [15,17,34,35].

At the mesoscale (grain-level), the kinematical description of
the austenitic phase is based on a large deformation framework
where the deformation gradient at a given material point is multi-
plicatively decomposed as

F ¼ FeFpFtr; ð1Þ

with Ftr is the transformation deformation gradient, Fp the plastic
deformation gradient and Fe is the elastic deformation gradient.
The mesoscale Cauchy stress tensor T is determined from the elas-
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tic deformation gradient and an effective stiffness for a mixture of
austenite and martensite, see [17] for details. The mesoscopic
Helmholtz energy, which contains contributions related to the
‘‘bulk’’ elastic strain energy, a surface energy and a lattice defect
energy, is described by a state function that depends on the elastic
Green–Lagrange strain defined as Ee ¼ ð1=2ÞðFT

eFe � IÞ and on inter-
nal state variables. The internal state variables are the volume
fractions of the transformation systems n and a so-called micro-
strain b that is meant to reflect local elastic distortions in the crys-
talline lattice due to the presence of dislocations, see [34,35] for
more details.

For evaluating the development of the martensitic transforma-
tion at the mesoscale, results are reported using the total martens-
itic volume fraction, defined as nM ¼

P
anðaÞ, with nM ¼ 1 being

reached for a fully-transformed sub-region inside an austenitic
grain. In order to monitor the overall plastic deformation in the
austenite, the accumulated amount of plastic slip is correlated to
the elastic microstrain bA in the austenitic phase, see [34] for more
details.
2.2. Elastoplastic model for ferritic grains

The elastoplastic deformation of the ferritic grains is simulated
using a crystal plasticity model suitable for the body-centered cu-
bic (BCC) phase. The model is similar to the one used for the
austenitic phase, except that it incorporates an additional term in
the resistance to slip that accounts for non-symmetric behavior
in the twinning and anti-twinning directions, see [39] for more de-
tails. At the mesoscale (grain-level), the kinematical description of
the ferritic phase is decomposed as

F ¼ FeFp; ð2Þ

where the plastic deformation gradient Fp is computed based on the
contributions of the active slip systems. It is worth pointing out that
the models used for the austenitic and ferritic phases are aniso-
tropic, and explicitly incorporate the orientation of the underlying
crystalline lattice.
Table 1
Composition and volume fraction of different microstructural samples used in the
RVE convergence study.

Sample # Austenitic grains Ferritic grains Volume fraction

1 1 7 12.0
2 8 56 12.1
3 12 88 12.2
4 24 176 11.9
5 56 394 12.0
6 72 525 12.0
7 100 700 11.9
3. Representative volume element

To establish a representative link between the mesoscale re-
sponse, characterized by the individual behavior of the grains,
and the macroscale response, governed by the collective behavior
of a large number of grains, a material volume element containing
a sufficiently large number of grains NG must be analyzed, such
that the average response of the aggregate does not vary as the
number of grains is further increased, i.e., the macroscale response
converges within a desired tolerance. A Representative Volume
Element (RVE), comprising at least NG grains, characterizes the
converged macroscopic bulk response of the material. Note that
the establishment of an RVE depends on the choice of the quanti-
ties used to monitor convergence. Since the current study aims at
establishing the macroscopic mechanical response, the major com-
ponents of the stress are chosen as the primary quantities of inter-
est for the establishment of an RVE. In a multiscale framework, the
upper scale does not contain an explicit constitutive relation; in-
stead, the response relies on information obtained from the lower
scale that is necessary to provide a macroscopic state of equilib-
rium under quasi-static loading conditions. In other words, the
average stress is directly computed from lower scale information.
In order to establish an RVE based on convergence of other quan-
tities, such as the crystallographic texture or the internal variables,
typically a different number of grains is required than when using
the macroscopic stress parameters.
3.1. Microstructural volume elements

For identifying the minimum number of grains required for
establishing an RVE, the responses of seven microstructural sam-
ples are analyzed. The samples consist of aggregates of ferritic
and austenitic grains with the total number of grains increasing
from 8 to 800, as indicated in Table 1. The volume fraction of the
secondary phase (austenite) in each sample is approximately
12%, which is a common value for multiphase TRIP steels, see,
e.g., [1,3]. The geometrical construction of the microstructures is
achieved with a newly-developed algorithm that is based on the
generation of Voronoi-shaped polyhedrons. A typical result of
this approach is illustrated in Table 2, representing the three-
dimensional samples used in the morphology study presented in
Section 4. The dispersed microstructures depicted in the first row
of Table 2 have comparable grain structures as the samples used
in the current convergence analysis, where it can be observed that
some of the grains have non-convex shapes. Standard Voronoi
cells, however, are convex, which limits their capacity to mimic
realistic metallic microstructures with arbitrary (convex and
non-convex) grain shapes. The specific geometries of these grains
result from complex grain growth and grain shrinkage interactions
activated during the thermal processing of a multiphase steel [40].
In order to account for non-convex grains in the numerical simula-
tion of a steel’s microstructure, a new algorithm, based on the gen-
eration of a multilevel Voronoi tessellation, has been developed.
Accordingly, at the first level a standard periodic Voronoi tessella-
tion is generated, i.e., seed points are chosen randomly within a cu-
bic region, and this local seed point field is fully replicated in 26
adjacent cubic regions, which together form a regular 3 � 3 � 3
stacking of cubes. As a next step, Voronoi cells are generated from
the complete, periodic seed point field in the stacking of 27 cubic
domains. The structure of the Voronoi cells is periodic over each
of the 27 cubes, where the cells intersecting with the 6 outer faces
of the stacking of cubes are cut to fit exactly within the overall do-
main. These first-level Voronoi cells are referred to as the fine tes-
sellation. At the second level, a coarser tessellation is created, also
with a randomly-chosen seed point field, but with a smaller seed
point density compared to the density of the first tessellation. Cells
from the coarse tessellation are used as master regions for the con-
struction of complex-shaped grains. To this end, all cells of the fi-
ner tessellation, whose seed points are located in the interior of
the same master cell, are merged to form a single grain. This pro-
cedure is illustrated in Fig. 1 for the two-dimensional case. By
modifying the point field densities at both levels (fine and coarse),
it is possible to generate a broad range of different shapes and sizes
of grains. With this approach, a good resemblance with complex,
realistic metallic microstructures may be obtained.

The next step is to assign a specific phase to each grain con-
structed. In the present study, two phases are distributed within
the microstructure, namely ferrite and austenite, where their vol-
ume fractions are defined a priori. For the samples indicated in
Table 1, the spatial distribution of the secondary phase (austenite)
inside the matrix (ferrite) is performed randomly. An iterative



Fig. 1. Two-dimensional illustration of a microstructure obtained from a multilevel
Voronoi tessellation. The first level (fine tessellation) contains 200 cells and the
second level (coarse tessellation) is characterized by 30 cells. The thin white lines
and small circles show, respectively, the cells and Voronoi seed points of the first-
level tessellation. The thin black lines show the cells of the second-level tessella-
tion. The bold black lines illustrate the resulting complex-shaped grain structure.
The grain size is largely determined by the coarse tessellation while the fine
tessellation controls the grain morphology, particularly the grain boundaries.
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procedure is employed for approaching the specified volume frac-
tions of the phases (i.e., 12% austenite, 88% ferrite) within a small
tolerance. Subsequently, a finite element model is constructed for
simulating the material behavior of this microstructure, where
the specific phase and crystal orientation for each finite element
are assigned in accordance with the location of the element cen-
troid in the underlying multilevel Voronoi tessellation. Since the
structure of the finite element mesh generally does not exactly fol-
low the orientations of the grain boundaries in the multilevel Voro-
noi tessellation, some discrepancies are introduced in the local
stress and deformation fields near grain boundaries. However,
these discrepancies automatically diminish under mesh refine-
ment, and therefore generate a negligible effect on the accuracy
of the simulation result if the finite element mesh is chosen suffi-
ciently fine. Specific details of a mesh refinement study are pre-
sented in Section 3.3. Furthermore, since local grain boundary
effects, such as dislocation pile-up, intergranular fracture, and void
nucleation, are not considered in the present study, the exact mod-
eling of the grain boundary geometry may be presumed to be of
lower relevance.
3.2. Crystallographic orientation

In the present study the orientation distribution of an aggregate
of grains is assumed to be isotropic for both the austenitic and fer-
ritic phases. The orientation of the crystalline lattice of an individ-
ual grain with respect to a global vector basis is described in terms
of three Euler angles, by applying the 313 rotation sequence about
the three corresponding axes of rotation. In order to cover the
whole orientation space without using the symmetry properties
of the underlying crystalline structure, the three Euler angles
range, respectively, from 0 to 2p, 0 to p and 0 to 2p. For a suffi-
ciently large number of grains, a uniform (isotropic) orientation
distribution can be achieved by choosing the three Euler angles
as, respectively, 2pa; cos�1 2b� 1ð Þ, and 2pc, where a; b and c are
random variables ranging between 0 and 1. Note that the
expression used for the second Euler angle guarantees an unbiased
orientation distribution by decoupling the composite Euler rota-
tions. For each of the samples indicated in Table 1, four distinct
random orientation distributions are chosen to study the influence
of the grain orientation. Typical distributions, displayed as ½100�-
pole figures, are shown in Fig. 2 for the first, fourth and seventh
sample listed in Table 1.

3.3. Numerical simulations

All samples are subjected to an average simple shear deforma-
tion F ¼ Iþ �ce1 � e3 where �c is the amount of shear, ei with
i ¼ 1;2;3 is an orthonormal basis aligned with the cubic samples,
and � denotes the tensor product. The samples are quasi-statically
loaded up to �c ¼ 0:2 with an applied rate of deformation equal to
10�4 s�1. Simple shear is chosen as the governing deformation
mode here, because previous simulations performed on single
crystals of austenite indicated that the activation of transformation
by shear, somewhat counter intuitively, leads to the development
of substantial normal stresses, see [17]. In the present study this
transformation mechanism is examined in detail for different
microstructures, thereby illustrating its effect on the untrans-
formed austenite and the ferritic matrix in terms of the generated
plastic deformation, i.e., the TRIP-effect. In addition, damage effects
not included in the present model, such as void nucleation and
intergranular fracture, are less sensitive to simple shear than to
other elementary types of loading, such as uniaxial tension or
hydrostatic tension. For simplicity reasons, it is thus allowed to
ignore these effects in the present study, and essentially focus
upon the interplay between transformation and plasticity. Details
on the extension of the phase transformation model with the effect
of anisotropic crystalline damage, however, can be found in
[41,42].

On the outer surfaces of the cubic sample the boundary condi-
tions are modeled as periodic, which ensures that the average
deformation gradient corresponds to the prescribed value F during
loading, i.e., hFi ¼ F, where h�i denotes the volume average. The de-
tails of the numerical implementation of a non-redundant set of
periodic boundary conditions are presented in A. It is worth men-
tioning that simulations carried out with periodic boundary condi-
tions generally provide a softer response – and usually a physically
more meaningful prediction – compared to simulations based on
pointwise affine boundary conditions. All simulations are per-
formed with a regular finite element mesh of 30� 30� 30
(=27,000) elements, using linearcubical elements with reduced
integration. A mesh refinement analysis (not presented here) has
indicated that this mesh density is sufficiently fine for capturing
the effective response of the sample in an accurate fashion; for
an arbitrarily chosen microstructure a further refinement towards
a regular mesh of 40� 40� 40 (=64,000) elements increased the
accuracy of the effective (shear) stress response by at most 2%,
and further did not have a qualitative effect on the results found
for four distinct random orientation distributions.

In the simulations, the computation of the Cauchy stress, stiff-
ness and internal variables in individual material points is per-
formed incrementally in time by using an implicit iterative
update scheme formulated within a large deformation framework.
The details of this numerical implementation can be found in [16].
A complete list of the material parameters adopted in the constitu-
tive models for the different phases can be found in Table 1 of ref-
erence [35]. This list shows that the martensite is modeled as the
stiffest phase, followed by the austenite and, slightly below, the
ferritic phase. For the austenite the ultimate slip resistance used
in the crystal plasticity model equals 579 MPa, which is about
1.4 times the value adopted for the softer ferritic phase
(412 MPa). As mentioned previously, the martensite in TRIP steels
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is relatively hard, and therefore may be assumed to deform purely
elastically.

The results of a typical set of simulations for four distinct, ran-
domly-chosen crystal orientation distributions (indicated as O1,
O2, O3 and O4) that are successively used in the same volume ele-
ment (in this case sample 4 listed in Table 1) are shown in Fig. 3 as
a function of the average amount of shear �c. Fig. 3(a) and (b) indi-
cates the average Cauchy stress components T31 and T11, respec-
tively, with the average determined over all grains (ferrite and
austenite). Fig. 3(c) shows the average microstrain in the ferrite
(averaged over ferritic grains only) and Fig. 3(d) shows the average
total volume fraction of martensite �nM (averaged over austenitic
grains only). For sample 4, the influence of the crystal orientation
distribution on the plastic response of the ferritic matrix, which
is monitored using the average microstrain �bF, is relatively small
as shown in Fig. 3(c). However, the crystal orientation has a rela-
tively important effect on the response of the austenitic grains (sec-
ondary phase) as may be inferred from Fig. 3(d), showing the
evolution of the average normalized martensitic volume fraction
�nM. Since sample 4 contains 176 grains of ferrite but only 24 grains
of austenite, it is expected that the scatter of the responses of the
secondary phase is larger than for the primary phase. Due to the
distinct evolutions of the martensitic phase transformation in the
secondary phase for different crystal orientation distributions,
the average Cauchy stress component T11 also evolves quantita-
tively differently as may be observed from Fig. 3(b). Similar results
(not shown here) were obtained for the average stress components
T22 and T33. Nevertheless, the influence of the crystal orientation is
less noticeable for the main average Cauchy shear stress compo-
nent T31, as can be seen in Fig. 3(a). This trend can be ascribed to
the fact that a phase transformation induces a (local) volumetric
expansion, which needs to be compensated for by a volumetric
contraction elsewhere in the domain, i.e., in the untransformed
austenite and/or the ferritic matrix. This is, since the imposed aver-
age simple shear deformation is isochoric. Because the normal
components are affected by the (average) bulk properties, this dila-
tation has a stronger effect on the average normal stresses
Tii; i ¼ 1;2;3, than on the average shear stress T31. The dilatation
of the secondary phase is thus responsible for both the negative
values for the average normal stresses, as well as for a larger scat-
ter in their responses compared to the average shear stress. In par-
ticular, observe that the normal (compressive) stress T11 for
orientation O1 is the largest (in absolute value) of all orientations
analyzed, which correlates with the highest amount of transforma-
tion �nM obtained for the same orientation. The influence of the
crystal orientation on the response of the computational samples
is analyzed further in the next section.

3.4. Convergence analysis

In order to establish a lower bound for the number of grains re-
quired for an RVE, the final states of the simulations (i.e., at �c ¼ 0:2)
for the seven volume elements indicated in Table 1 are plotted in
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Fig. 4. This is done in terms of average Cauchy stress components
and in Fig. 5 in terms of the average plastic deformation (which di-
rectly relates to the average microstrain b, see [34]) in the ferritic
and austenitic grains and the average volume fraction of martens-
ite. In Figs. 4 and 5 the results are shown as a function of the total
number of grains in the samples (which are also labeled with the
corresponding sample numbers indicated in Table 1). For each
sample, the four data points, shown as crosses, correspond to the
results of four distinct random crystal orientations. To better visu-
alize these results, an interpolated area bounded by the upper and
lower simulation values is shaded in gray and the interpolated
mean value of the four orientation distributions is shown by a dot-
ted line.

From Fig. 4(a), it can be observed that the main shear stress
component T31 converges, within an acceptable tolerance, for sam-
ples comprising about 200 grains or more. The plastic deformation
in the ferritic matrix also converges for a similar number of grains,
as can be seen in Fig. 5(a) in terms of the microstrain �bF. However,
the convergence of the normal stress components Tii; i ¼ 1;2;3, is
relatively low as shown in Fig. 4. The low rate of convergence on
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the normal stress components can be traced back to the low rate
of convergence of the response of the secondary phase, austenite,
as discussed in Section 3.3. Indeed, as can be inferred from
Fig. 5(b) and (c), the inelastic response of the secondary phase,
measured in terms of the amount of plastic deformation in the aus-
tenite and its transformation into martensite, shows a scatter due
to the limited number of austenitic grains in the samples, see
Table 1. Nevertheless, as may be observed in Figs. 4 and 5, three
out of the four simulations for the largest sample (sample 7, with
100 grains of austenite) already show a reasonable convergence
as these results are clustered closely around the mean value.

The convergence analysis indicates that the macroscopic shear
stress in a multiphase steel under simple shear may be determined
with a relatively small number of total grains (e.g., 200 grains, in
accordance with sample 4 listed in Table 1), but the macroscopic
normal stress components require a larger number of grains of
the secondary phase. Reasonable results may be expected with
about 100 grains of the secondary phase and 800 grains in total,
i.e., sample 7 listed in Table 1. These guidelines are used in the next
section to study the effect of the spatial distribution of the second-
ary phase on the overall response of a multiphase steel.
4. Effect of a banded microstructure on the response of a
multiphase steel

The influence of the spatial distribution of the secondary
phase (austenite) on the macroscopic properties of a multiphase
steel is analyzed. For this purpose, the mechanical behavior of a
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material where the austenitic grains are clustered in a plate-like
region (band) is compared with the response of a benchmark
microstructure where the austenitic grains are randomly scat-
tered within the ferritic matrix. These two microstructures are
henceforth referred to as the banded and the dispersed micro-
structures, respectively.
e3

e1 e2

(a)

Transverse shear

(b)

In-plane shear

Fig. 6. Simple shear naming convention with respect to the band’s plane: (a)
transverse shearing case and (b) in-plane shearing case. The dark gray band
represents the region where the austenitic grains are clustered.
4.1. Volume elements with banded microstructure

The analysis is carried out for three pairs of banded and dis-
persed microstructures with austenitic volume fractions of 10%,
20% and 30%, as shown in Table 2. The microstructural samples
were generated using the same multi-level periodic Voronoi tessel-
lation as described in Section 3. The banded microstructures were
created by defining a banded region and, within that region,
assigning grains to the austenitic phase iteratively until the overall
volume fraction of austenite approximately matched the target va-
lue prescribed a priori. As indicated in Table 2, all microstructures
contain more than 200 grains in total, which was identified in Sec-
tion 3.4 as the threshold for an RVE deduced from the macroscopic
shear stress. The microstructures contain between 47 and 144
grains of the secondary phase (austenite), which should provide
reasonable to accurate predictions for the normal stresses and
the internal variables. As a result of the application of a multilevel
Voronoi tessellation, there are less grains of austenite in the
banded microstructures than in the dispersed microstructures.
Hence, nominally the austenitic grains in the banded microstruc-
tures are larger than those in the dispersed microstructures.The
difference in average austenitic grain size of the banded and dis-
persed microstructures ranges from 13% to 22%, which is relatively
small. Moreover, since the purpose of the present analysis is to
study the effect of the spatial distribution of the austenite rather
than to study grain size effects, a length scale parameter in the
model that is related to the grain size (see [27] for more details)
was kept the same for all simulations.
Table 2
Microstructures constructed from a multilevel Voronoi tessellation, using three distinct initi
dark gray while ferritic grains are shown in light gray. The microstructures with randomly-d
are indicated in the bottom row. The number of austenitic and ferritic grains is indicated

10% Volume fraction 20% Volume fracti

Austenite: 77 Austenite: 122
Ferrite: 194 Ferrite: 193

Austenite: 47 Austenite: 67
Ferrite: 197 Ferrite: 178
4.2. Numerical simulations with banded microstructures

As in Section 3, all microstructures considered are subjected to a
macroscopic simple shear of �c ¼ 0:2. The loading rate and periodic
boundary conditions are the same as those of the simulations dis-
cussed in Section 3.3. Randomly-chosen crystal orientations, as ex-
plained in Section 3.2, are used in the simulations. Although some
fluctuations in the response may still occur for distinct randomly-
chosen crystal orientations, based on the number of grains used in
the samples, see Table 2, it is expected from the convergence study
in Section 3.4 that these do not strongly affect the result.

As opposed to a dispersed microstructure, which is essentially
macroscopically isotropic, a banded microstructure may be
sheared in distinct ways depending on the orientation of the shear-
ing direction and shearing plane with respect to the band-like re-
gion in which the secondary phase is clustered. This motivates
separate simulations and comparisons of the samples for different
shear loading cases. Two extreme shear loading cases are shown in
Fig. 6, where the plate-like austenitic region is represented as an
al volume fractions of austenite of 10%, 20% and 30%. Austenitic grains are displayed in
ispersed austenitic grains are shown in the top row while the banded microstructures
below each sample.

on 30% Volume fraction

Austenite: 144
Ferrite: 187

Austenite: 99
Ferrite: 160
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idealized band in the middle of a cubic-sample. The two loading
cases are referred to as transverse and in-plane shearing, respec-
tively. Other possible shearing directions have been omitted for
brevity because their responses are bounded by the results of the
in-plane and transverse shear loading cases.

The average Cauchy shear stress component T31, the average nor-
malized martensitic volume fraction �nM and the average ferritic
microstrain �bF are shown as functions of the average amount of
shear �c in Fig. 7 for the transverse shear loading case and in Fig. 8
for the in-plane shear loading case. The results for the banded micro-
structures are indicated by the black curves and for the benchmark
dispersed microstructures by the gray curves. Dotted, dashed and
solid lines are used to represent the results for microstructures with,
respectively, 10%, 20% and 30% volume fraction of austenite.
4.3. Influence of the initial austenitic volume fraction

From Fig. 7(a), which corresponds to the transverse shear
loading case, it can be observed that for the microstructures with
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Fig. 7. Evolution under transverse shear loading of (a) the average main Cauchy
shear stress, (b) the average martensitic volume fraction and (c) the average ferritic
microstrain as functions of the macroscopic amount of shear. Graph (d) contains the
relative difference between the response at �c ¼ 0:2 of the banded and dispersed
microstructures.
dispersed grains of austenite (gray lines) the shear strength in-
creases with increasing initial volume fraction of austenite. How-
ever, for the banded microstructures (black lines), the trend is
not monotonic as the response of the sample with 10% austenite
has a slightly higher strength than the sample with 20% austenite.
Essentially, an increase of the shear strength by a higher initial vol-
ume fraction of austenite in the banded microstructure only be-
comes noticeable when further increasing the initial volume
fraction to 30% austenite. In contrast, under in-plane shearing the
dependence of the shear strength on the austenitic volume fraction
is similar for the dispersed and banded microstructures, see
Fig. 8(a). In this case the shear strength always increases with an
increasing initial volume fraction of austenite.

Although strictly speaking there is no monotonic dependence of
the martensitic transformation rate on the initial volume fraction
of austenite, from Figs. 7(b) and 8(b) it may be concluded that
the general trend is that the martensitic transformation rate under
simple shear decreases with increasing austenitic volume fraction.
This trend applies to both the transverse and in-plane shear load-
ing cases. Note, however, that this trend refers to the amount of
martensite formed in the austenitic grains and not to the total
amount of martensite in the sample, which depends on the initial
volume fraction of austenite. Indeed, despite that the transforma-
tion rate becomes smaller with increasing initial volume fraction
of austenite, the total amount of martensite formed during defor-
mation increases with an increasing initial volume of austenite. Be-
cause the martensite is a relatively hard phase, this effect increases
the effective shear strength of the sample, see Figs. 7(a) and 8(a).

The plastic deformation in the ferrite appears to be rather
insensitive to the initial volume fraction of austenite, except for
the banded microstructure under transverse shear loading, where
the plastic deformation in the ferrite slightly increases with
increasing initial volume fraction of austenite, see Fig. 7(c).

4.4. Influence of the spatial distribution of austenite

In order to compare the responses of the banded and dispersed
microstructures for samples with an equal amount of austenite, the
relative differences between the shear stress, martensitic volume
fraction and microstrains of the banded and dispersed microstruc-
tures at the end of the simulations are graphically summarized in
Figs. 7(d) and 8(d) for the transverse and in-plane shear loading
cases, respectively. The relative difference for the effective shear
stress is defined as

DT31 ¼
Tbanded

31 � Tdispersed
31

Tdispersed
31

�����
�c¼0:2

;

and similar formulas are used for the internal variables.
It can be observed from Fig. 7(d) that for all austenitic volume

fractions analyzed the banded microstructures have a lower shear
strength than the dispersed ones under transverse shear, i.e., the
values of DT31 are negative. Moreover, the absolute value of the rel-
ative difference in shear strength, as indicated by j DT31 j, increases
with an increasing initial volume fraction of austenite. This trend
may be correlated to the response of the secondary phase (austen-
ite) and its effect on the primary phase (ferrite). Indeed, as illus-
trated in Fig. 7(d), the amount of transformation as well as the
plastic deformation in the austenite are significantly lower in the
banded microstructures than in the dispersed microstructures
(up to 50% difference). Observe that within the austenitic phase a
decrease in transformation is not compensated for by an increase
in plastic deformation. Rather, both inelastic mechanisms within
the austenite show the same decreasing trend, i.e., less plastic
deformation and less transformation for the banded microstruc-
ture compared with the dispersed microstructure. This indicates
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Fig. 9. Deformed shape at �c ¼ 0:2 of banded microstructure for (a) transverse shear
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that the austenite tends to deform less when it is clustered around
a band-like region compared with microstructures with randomly
distributed grains of austenite inside the ferritic matrix. Corre-
spondingly, in order to achieve the same imposed average shear
deformation, the ferritic matrix tends to deform more for the
banded microstructures than for the dispersed microstructures.
This behavior can be confirmed from the values of D�bF, which mea-
sures the differences between the microstrains in the ferritic ma-
trix of the banded and dispersed microstructures, as shown in
Fig. 7(d). Indeed, the amount of plastic deformation in the ferritic
matrix is higher for banded microstructures than for dispersed
ones, which in relative terms diminishes the contribution to the
overall strength of the (harder) secondary phase in banded micro-
structures. This prediction of the simulations is consistent with
experimental observations reported in [29], albeit for tensile tests.
In the experiments a significant portion of the deformation was
carried by the ferritic matrix while the austenite in the banded re-
gions experienced a smaller deformation and, consequently, a rel-
atively small transformation rate. The authors attributed the
reduction in transformation rate to unfavorable crystal orienta-
tions with respect to the external loading; however, the present
simulations suggest that a low transformation rate in the austenit-
ic band-like region may be ascribed to a relatively high plastic
deformation of the ferritic matrix.

For the in-plane shear loading case, the shear strength of the
banded microstructures is somewhat similar to the strength of
the corresponding dispersed microstructures, as can be observed
from Fig. 8(a) and 8(d). In contrast to the transverse shear loading
case, under in-plane shear loading there is more transformation
and plastic deformation in the austenite for the banded micro-
structures than for the dispersed microstructures, see Fig. 8(b)
and (d). Correspondingly, there is less plastic deformation in the
ferrite for banded microstructures than for dispersed microstruc-
tures, see Fig. 8(c) and (d). Nevertheless, the distinct behavior of
the banded and dispersed microstructures under in-plane shear
is not sufficient to reach significantly different shear strengths.

In order to gain a better insight in the different responses of
banded microstructures under transverse and in-plane shearing,
the deformed shapes of the samples are shown in Fig. 9 (see also
the sketch in Fig. 6). The samples depicted in the figure correspond
to 30% initial volume fraction of austenite. As illustrated in
Fig. 9(a), the austenitic region deforms less than the ferritic matrix
under transverse shear loading. In this case the softer ferritic ma-
trix carries most of the deformation. In contrast, the deformation
under in-plane shear loading is more homogeneous, hence the
shear deformation is more evenly distributed between the ferrite
and austenite. Correspondingly, the austenitic region carries a rel-
atively smaller amount of the load under transverse shear than un-
der in-plane shear. Indeed, the average shear stress in the
austenite, TA

31, at the end of the simulation is 400 MPa for the trans-
verse shear loading case and 537 MPa for the in-plane shear load-
ing case. The corresponding average shear stresses in the ferrite,
TF

31, are 367 MPa for the transverse shear loading case and
359 MPa for the in-plane shear loading case. Since for both loading
cases the average stresses in the ferrite are similar, the shear stress
T31 averaged over the whole domain is lower under transverse
loading (377 MPa) than under in-plane loading (413 MPa).
5. Conclusions

A convergence analysis was carried out to establish the size of
representative volume elements for multiscale simulations using
non-convex grain shapes that are generated from a multilevel
Voronoi tessellation. From the numerical simulations of micro-
structures with banded and dispersed austenitic grains, it was
found that:
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� The shear strength of a TRIP steel increases with increasing vol-
ume fraction of austenite for microstructures with grains of
austenite being randomly dispersed within a ferritic matrix.
For microstructures with clustered austenitic grains in band-
like regions, the shear strength does not necessarily increase
with an increasing volume fraction of austenite.
� For a TRIP steel sample that contains a banded microstructure

and is loaded under transverse shear the plastic deformation
localizes in the softer ferritic matrix, which diminishes the
strength contribution of the secondary austenitic phase.
� The shear strength of a TRIP steel with clustered grains of aus-

tenite in a band-like region may be lower than the shear
strength of a steel with a similar composition but with the
austenitic grains being dispersed in the ferritic matrix.

From the above findings it may be concluded that clustering of
the austenite in band-like regions in general has a negative effect
on its contribution to the effective hardening of the sample.
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Appendix A. Non-redundant periodic boundary conditions

In order to have a consistent transition between two different
scales, the volume average of the deformation gradient in a given
microstructural volume element should be equal to the prescribed
deformation gradient F from the upper scale, i.e.,

hFi :¼ 1
j X j

Z
X

Fdv ¼ F; ðA:1Þ

where j X j denotes the volume of the microstructural domain.
Since F is constant over the domain, (A.1) can be written asZ

X
r u� F� I

� �
x

� �
dv ¼ 0; ðA:2Þ

with u being the displacement field, I the identity tensor and x a
material point in the reference configuration. A straightforward
application of the divergence theorem results in the following
expression:Z
@X

n� u� F� I
� �

x
� �

ds ¼ 0; ðA:3Þ

where @X is the external surface of the domain and n is the out-
ward unit normal vector. Henceforth, it is assumed that the
microstructural domain X is a cube of edge length h and the edges
are aligned with a global basis ei; i ¼ 1;2;3, as shown in Fig. A.10.
Sufficient conditions for (A.1) to hold can be inferred from (A.3) in
terms of the relative displacements of parallel faces of the cube,
i.e.,

uF1 � uF2 ¼ a1 :¼ F� I
� �

he1;

uF3 � uF4 ¼ a2 :¼ F� I
� �

he2;

uF5 � uF6 ¼ a3 :¼ F� I
� �

he3;

ðA:4Þ

where uFi, with i ¼ 1; . . . ;6, denote the surface displacement for
points on the ith surface of the cube, see Fig. A.10. The vectors
a1;a2 and a3, defined in (A.4), are assumed to be known. While
Eqs. (A.4) are sufficient for satisfying the periodicity condition on
the external boundary of the domain, this system of equations con-
tains redundant information for points on the external corners and
edges of the cube, which may potentially cause problems in
numerical implementations. To avoid this redundancy, one has to
establish the minimum number of independent relations (corner-
to-corner and edge-to-edge relations) that preserve periodicity.

For the corner points, there are 12 relations that can be
obtained from (A.4), namely

uC5 � uC1 ¼ a1;

uC6 � uC5 ¼ a2;

uC7 � uC6 ¼ a3;

..

.

ðA:5Þ

with other relations between corner points obtained in a similar
fashion. In (A.5), uCi, with i ¼ 1; . . . ;8, denotes the displacement of
the ith corner point. This system of equations has a rank deficiency
of five (only seven independent corner-to-corner relations can be
described). A non-redundant set of relations can be established by
solving (A.5) in terms of the displacement of a given corner point.
Choosing corner C1 as a reference point yields the following
solution:

uC2 ¼ uC1 þ a2;

uC3 ¼ uC1 þ a2 þ a3;

uC4 ¼ uC1 þ a3;

uC5 ¼ uC1 þ a1;

uC6 ¼ uC1 þ a1 þ a2;

uC7 ¼ uC1 þ a1 þ a2 þ a3;

uC8 ¼ uC1 þ a1 þ a3:

ðA:6Þ

Observe that the value of the displacement uC1 of corner C1
can be chosen arbitrarily as the material response is invariant
under a rigid body translation. Consequently, choosing uC1 ¼ 0,
the displacements of all corner points can be obtained from
(A.6).

For the edges of the cube, Eqs. (A.4) are used again to write 12
displacement constraints between periodic edges. The resulting
system has a rank deficiency of three (only nine independent
edge-to-edge relations can be described). One possible solution is
to solve the system in terms of uE7;uE8 and uE9, the displacement
fields of points along edges E7, E8 and E9, respectively, see
Fig. A.10. This yields the following set of relations for the edges
of the cube:
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uE1 ¼ uE7 þ a1 � a3;

uE2 ¼ uE8 þ a2 � a3;

uE3 ¼ uE7 � a3;

uE4 ¼ uE8 � a3;

uE5 ¼ uE7 þ a1;

uE6 ¼ uE8 þ a2;

uE10 ¼ uE9 þ a2;

uE11 ¼ uE9 þ a2 � a1;

uE12 ¼ uE9 � a1:

ðA:7Þ

In summary, a set of non-redundant periodic boundary condi-
tions may be prescribed using Eqs. (A.6) to fully specify the dis-
placements of the corner points, Eqs. (A.7) to constrain the
displacements of points on the edges (excluding corner points)
and finally Eqs. (A.4) to constrain the displacements of points on
the external faces (excluding the edges).
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