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Abstract

In many practical applications we are asked to compute a nonblocking supervisor that
not only complies with some prescribed safety and liveness requirements but also achieve
a certain time optimal performance such as throughput. In this paper we first introduce
the concept of supremal minimum-time controllable sublanguage and define a minimum-
time supervisory control problem, where the plant is modeled as a finite collection of
finite-state automata, whose events are associated with weights, which represent their
respective execution time. Then we show that the supremal minimum-time controllable
sublanguage can be obtained by a terminable algorithm, where the execution time of each
string is computed by using a technique extended from the theory of heaps-of-pieces.



1 Introduction

Since the Ramadge-Wonham supervisory control paradigm [22] [30] was invented, a large
volume of research has been done on how to synthesize a nonblocking supervisor that
complies with the safety and liveness requirements. But in practical applications we are
also frequently asked to achieve a certain optimal performance, in particular, the time
optimal performance such as throughput [31]. In this paper we discuss time optimal
supervisory control. The system under our consideration consists of a finite collection
of components modeled as deterministic finite-state automata, whose events are associ-
ated with weights, representing their firing durations. The requirement is modeled by an
un-weighted deterministic finite-state automaton, which specifies the safety and liveness
properties. Such a requirement model carries certain timing information manifested by
the ordering of events specified in the requirement. In practical applications, it is possible
that a requirement may carry more constraints on timing, e.g. it may explicitly specify
the duration between two consecutive event firings, which forces a supervisor to take
appropriate delay actions. This type of explicitly timed requirements is not considered
in this paper. Since events have durations, event firings in different components may
overlap. By initiating event firings at appropriate moments in different components, a
supervisor may drive the system from the initial state to a desirable state within the
minimum duration that takes account the possible elongation caused by the firings of
uncontrollable events. For the time being we call such a minimum duration the makespan
of the supervisor, whose precise definition will be given later in this paper. The control
problem is to find the least restrictive nonblocking supervisor whose makespan is mini-
mum among those of all possible supervisors that comply with the prescribed requirement.

To solve the aforementioned control problem, we make three contributions in this pa-
per. First, we introduce the concept of supremal minimum-time controllable sublanguage
and provide a precise formulation of the supremal minimum-time nonblocking supervi-
sory control problem. Second, we present a novel timed supervisory control law that
can achieve the time optimal performance specified by the supremal minimum-time con-
trollable sublanguage. Finally, we present an algorithm that computes the supremal
minimum-time controllable sublanguage. The algorithm utilizes a novel algorithm to de-
termine the execution time of each string. The basic idea of our approach is to first solve
a standard nonblocking supervisory control problem without time, which results in a su-
permal controllable sublanguage satisfying the prescribed requirement. Then we bring
time information back in the obtained supremal controllable sublanguage, from which
we compute the supremal minimum-time controllable sublanguage. To determine the
execution time of each string, we first use the theory of heaps-of-pieces [27] [10] to build
an appropriate heap model, then apply the (max,+) automaton technique to determine
the hight of the heap, which is equal to the shortest possible execution time of that string.

A similar setting of timed discrete-event systems has been discussed in the literature about
performance evaluation. For example, in [23] [8] [28] [9], time information is described
by durations of events, and in [8] [9] the theory of heaps-of-pieces is used to analyze
execution time of specific schedules. In comparison with our work, the above mentioned
references are about analysis and not about synthesis. More explicitly, these references
do not tell how to modify a system’s behavior by using control in order to achieve certain
performance. In our case, we need to find a supervisor that can achieve time optimal
performance by simply using appropriate event disabling. Therefore, the problems in the
above mentioned references are different from ours. Furthermore, in their settings no
uncontrollable events are considered. Therefore, the concepts of controllability and least
restrictive supervisory control are not present in the mentioned references.
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By using an appropriate model conversion, the aforementioned time optimal control prob-
lem can be solved in the framework of timed automaton theory [1]. More explicitly, in
each component we split every event, say a, into two events: a start and a end, then
associating a clock with them such that the clock is reset when a start is fired and a end
can be fired only when the clock value is equal to the prescribed duration. Such a model
conversion has been discussed in, e.g. [11]. After the system is converted into a set of
timed automata, we can apply an appropriate supervisor synthesis approach described
in, e.g. [16] [3] [2] [26] [15], to compute a minimum-time supervisor. Nevertheless, such
a conversion has the following major shortcoming. Too many clocks may be introduced
during the conversion. As a result, the parallel composition of a large number of con-
verted timed automata contains a large number of clocks, which incurs high complexity
when a region automaton of the composition is constructed for subsequent analysis. This
is because the complexity of constructing a region automaton is exponential with respect
to the number of clocks. The concern of complexity is our main motivation to present
a new approach based on the theory of heaps-of-pieces in this paper. More explicitly, in
our approach the composition is only applied to untimed automata, and the execution
time of each string of the composed system can be computed later based on algebraic
operations. The advantage of this technique is that, the complexity caused by embed-
ding the time information can be postponed to the last stage of analysis, where some
appropriate greedy algorithms can be used so that the high complexity may be reduced
or never appear. As a contrast, in the timed automaton framework, time information
is explicitly embedded in each component model. As a result, the composition can be
prohibitively large for subsequent analysis before we can take any complexity reduction
procedure. Besides the difference on synthesis complexity, the supervisor synthesis tech-
niques in the aforementioned papers are different from ours. More explicitly, they use
game theoretical approach to deal with uncontrollable behaviors, and we simply adopt
the standard definition of controllability in the Ramadge-Wonham paradigm to handle
uncontrollable behaviors. By separating the time information from the system model in
our framework, we can derive a control law, which is robust in the following sense. When
the system does not act as fast as the supervisor expects, the supervisor still functions and
the performance of the supervised system simply degrades accordingly. As a contrast,
in the timed automaton framework a delay of the system’s response to a supervisory
control command may result in some behavior not specified by the corresponding time
optimal supervisor, making the subsequent supervisory control infeasible. Therefore, it
is a common assumption that every issued control command must be executed by the
system immediately to avoid any potential timing error. In our opinion, this assumption
is too strong to hold for many practical applications, which is the second motivation for
us not to use the timed automaton framework in this paper.

In [5] the authors also describe least restrictive supervisory control of timed discrete-
event systems in the Ramadge-Wonham paradigm. They adopt the Ostroff’s semantics
for timed transition models [19] for the plant and the controller. Time elapse is explicitly
modeled by ticks. The semantics can be treated as a special case of the timed automaton
theory, which contains only one universal clock. Besides the well known disadvantage as-
sociated with the discrete-time semantics, that is the limited modeling accuracy for time
owing to discreteness of time, the supervisor synthesis approach proposed in [5] cannot
be used to solve the problem described in this paper. This is because, explicitly enumer-
ating time instances as ticks as used in [5] for computation cannot effectively handle the
situation where event firings can be indefinitely delayed.

Supervisory control for time performance has also been discussed in the time/timed Petri
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nets. In [6] [7] the authors define supervisory controllers for enforcing deadlines on tran-
sition firings in time Petri nets. Their goal is to find a supervisor, which can fire a
designated transition within a prescribed deadline. Because of the existence of such a
deadline, they can unfold a net to enumerate all possible firing sequences within the
deadline. This makes their problem and approach significantly different from ours. In
our case, we do not have such a deadline. Instead, we need to first decide whether there
exists a controllable sublanguage, whose makespan is finite. Furthermore, the events in
their setting are associated with firing intervals instead of durations and no uncontrollable
transitions are present. In [25] the authors talk about maximally permissive control of
time Petri nets. The time information is described by intervals instead of durations, and
their control problem is about synthesizing a maximally permissive state-based feedback
controller such that some prescribed state requirements are satisfied. It is different from
ours because no time optimal performance is considered in their paper. In [12] [13] the
authors discuss supervisory control of hybrid systems by using timed Petri nets, where
time information is presented as transition holding time. But their control problem is
different from ours in the sense that no time optimal performance and least restrictive su-
pervision are under consideration. Furthermore, no uncontrollable transitions are present.

Our approach to find the supremal supervisors bears some similarity to optimal super-
visory control, e.g. [20] [4] [14] [24] [17] [21]. These approaches are aimed to find a
supervisor that can drive a deterministic plant from the initial state to a state within a
target set with the minimum cost, (part of) which is defined as a sum weight. Neverthe-
less, the sum weight is different from the time weight used in this paper. This can be
briefly explained as follows. We can use dynamic programming to determine an optimal
supervisor [4] based on the fact that, a local path, which is optimal in terms of the sum
weight, is guaranteed to be part of a globally optimal path that traverses the state as-
sociated with the locally optimal path. But this is typically not true for the timed case,
where a locally time optimal path need not be part of any globally time optimal path.
Thus, dynamic programming is in general not sufficient to be used for computing a time
optimal supervisor. Because of the different natures of sum weights and time weights,
their problem formulations are different from ours. As a result, their supervisor synthesis
techniques and control strategies are different from ours as well.

This paper is organized as follows. In Section II we first provide all relevant necessary
concepts about languages and time-weighted automata, then introduce a minimum-time
supervisory control problem. After that we present a terminable algorithm in Section III,
which computes the supremal minimum-time controllable sublanguages. Conclusions are
drawn in Section IV.

2 Minimum-Time Supervisory Control Problem

In this section we first review basic concepts of languages and time-weighted systems.
Then we present a minimum-time supervisory control problem and show that its solution,
if exists, can be implemented by a special type of timed supervisory control map.

2.1 Concept of time-weighted systems

The notations for languages and relevant operations in this paper follow those in [29].
Let Σ be a finite alphabet, we use Σ+ to denote the collection of all finite sequences of
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events taken from Σ, and use Σ∗ for the Kleene closure of Σ, i.e. Σ∗ := Σ+ ∪{ǫ}, where ǫ
is the empty string. Given two strings s, t ∈ Σ∗, s is called a prefix substring of t, written
as s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where ss′ denotes the concatenation
of s and s′. For all string s ∈ Σ∗, ǫs = sǫ = s. A subset L ⊆ Σ∗ is called a language.
L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is called the prefix closure of L. We call L prefix closed
if L = L. Given two languages L, L′ ⊆ Σ∗, let LL′ := {ss′ ∈ Σ∗|s ∈ L ∧ s′ ∈ L′} be the
concatenation of L and L′, which contains every string obtainable by concatenating one
string from L and one string from L′.

Let Σ′ ⊆ Σ. A map P : Σ∗ → Σ′∗ is called the natural projection with respect to (Σ, Σ′),
if

1. P (ǫ) = ǫ

2. (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise

3. (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}. The inverse image map of P is

P−1 : 2Σ′∗

→ 2Σ∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2) = {s ∈ (Σ1 ∪ Σ2)
∗|P1(s) ∈ L1 ∧ P2(s) ∈ L2}

where P1 : (Σ1 ∪ Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪ Σ2)
∗ → Σ∗

2 are natural projections. Clearly,
|| is commutative and associative.

A finite-state automaton is a 5-tuple G = (X, Σ, ξ, x0, Xm), where X stands for the
state set, Σ for the alphabet, x0 for the initial state, Xm ⊆ X for the marker state
set, and ξ : X × Σ → X for the (partial) transition function, which is extended to
X × Σ∗. For all x ∈ X and σ ∈ Σ, we use ξ(x, σ)! to denote that the transition
ξ(x, σ) is defined. Let L(G) := {s ∈ Σ∗|ξ(x0, s)!} be the closed behavior of G and
Lm(G) := {s ∈ L(G)|ξ(x0, s) ∈ Xm} for the marked behavior of G. We say G is non-

blocking if L(G) = Lm(G). Let φ(Σ) denote the set of all finite-state automata, whose
alphabets are Σ. Given a language K ⊆ Σ∗, suppose K is recognized by a finite-state

automaton G, i.e. Lm(G) = K and L(G) = Lm(G). Then we use κ(K) to denote the
canonical recognizer of K.

Let R
+ be the set of positive reals. We treat +∞ as a number, where

1. +∞ = +∞

2. (∀a ∈ R
+) a < +∞ ∧ +∞ + a = +∞

A time-weighted system is a 3-tuple (G = {Gi ∈ φ(Σi)|i ∈ I}, f, h), where I is a finite
index set, G is a collection of finite-state automata, f : ∪i∈IΣi → R

+ is the time-weighted
function on events, and h : (∪i∈IΣi) × (∪i∈IΣi) → {0, 1} is the mutual exclusion func-
tion, where h(σ, σ) = 1 for all σ ∈ ∪i∈IΣi. For each event σ ∈ ∪i∈IΣi, f(σ) denotes
the duration required for σ to be completed. For each (σ, σ′) ∈ (∪i∈IΣi) × (∪i∈IΣi),
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h(σ, σ′) = 1 if the firings of σ and σ′ are mutually exclusive, i.e. if one event is under
execution, the other event cannot be fired; otherwise, h(σ, σ′) = 0. Since mutual exclu-
sion is symmetric, we have h(σ, σ′) = h(σ′, σ). For notation simplicity, we write h(σ, σ′)
to denote both h(σ, σ′) and h(σ′, σ). Let L(G) := ||i∈IL(Gi) and Lm(G) := ||i∈ILm(Gi).
We call {Σi|i ∈ I} the alphabet of G, and use Φ({Σi|i ∈ I}) to denote the collection of all

time-weighted systems, whose alphabets are {Σi|i ∈ I}. We use Φ̃({Σi|i ∈ I}) to denote
the collection of such G’s without the time-weighted function f .

Definition 2.1. Given a time-weighted system (G = {Gi ∈ φ(Σi)|i ∈ I}, f, h), let
s ∈ L(G). Suppose s = σ1 · · ·σn for some n ∈ N. A time-stamp of s w.r.t. (G, f, h) is a
nondecreasing list,

w = (tsk ∈ R
+|k = 1, · · · , n)

where
(∀q, v ∈ {1, · · · , n}) q < v ∧ h(σq , σv) = 1 ⇒ tq + f(σq) ≤ tv

Let TG,f,h(w) := max{t1 + f(σ1), · · · , tn + f(σn)}. Let ΘG,f,h(s) be the collection of all
time-stamps for s. We call υG,f,h(s) := minw∈ΘG,f,h(s) TG,f,h(w) the execution time (or
makespan) of s in (G, f, h). For all W ⊆ Lm(G), let ω(G, f, h, W ) := sups∈W υG,f,h(s) be
the makespan of W with respect to (G, f, h). As a convention, let ω(G, f, h, ∅) := +∞.
�

Each tk in a time-stamp is interpreted as the starting moment of event σk being executed,
and tk + f(σk) is the ending moment for the execution of σk. If h(σq, σv) = 1 and q < v,
then we know that, to start executing σv, the execution of σq must have been finished
because of the firing mutual exclusion between σq and σv. Thus, we have tq + f(σq) ≤ tv.
The execution time υG,f,h(s) is interpreted as the minimum time required to finish the
execution of s. For example, suppose the time-weighted system is G = {G1, G2} with
Σ1 = {a, b} and Σ2 = {b, c}. Suppose f(a) = 2, f(b) = 3, f(c) = 1, h(a, b) = 1, h(b, c) = 1
and h(a, c) = 0. Let s = acb. Then the list w1 = (ta, tc, tb) = (0, 2, 3) is a time-stamp for
s because a, b ∈ Σ1, b, c ∈ Σ2 and ta + f(a) = 2 < 3 = tb, tc + f(c) = 3 ≤ 3 = tb. The
list w2 = (ta, tc, tb) = (0, 0, 2) is also a time-stamp for s because ta + f(a) = 2 ≤ 2 = tb
and tc + f(c) = 1 < 2 = tb. We can check that, there is no other time-stamp w such that
TG,f,h(w) < TG,f,h(w2). Thus, the execution time of s is υG,f,h(s) = tb +f(b) = 2+3 = 5.

Sometimes we can encode the mutual exclusion function h in the following simple way.
We call G asynchronous if for every string s = σ1 · · ·σn ∈ L(G) and every time stamp
w = (t1, · · · , tn) of s with respect to (G, f, h), we have

(∀q, v ∈ {1, · · · , n}) q < v ∧ (∃i ∈ I)σq ∈ Σi ∧ σv ∈ Σi ⇒ tq + f(σq) ≤ tv

which means, in each Gi (i ∈ I) at every time instant no more than one event is under
execution. The function h is called derivable from G if

(∀σ, σ′ ∈ ∪i∈IΣi)h(σ, σ′) = 1 ⇐⇒ (∃j ∈ I)σ ∈ Σj ∧ σ′ ∈ Σj

which means two events σ and σ′ are mutually exclusive if and only if there exists one
alphabet containing both events. In the above example, we can check that h is derivable
from G.

2.2 Formulation of minimum-time supervisory control problem

Given {Σi|i ∈ I}, for each Σi let Σi = Σi,c ∪ Σi,uc, where disjoint subsets Σi,c and Σi,uc

denote respectively the set of controllable events and the set of uncontrollable events. For

6



notation simplicity, from now on let Σ := ∪i∈IΣi, Σc := ∪i∈IΣi,c and Σuc := Σ − Σc.

Definition 2.2. Given G ∈ Φ̃({Σi|i ∈ I}) and K ⊆ Lm(G), we say K is controllable with
respect to G if KΣuc ∩ L(G) ⊆ K. When G is a singleton, say G = {G ∈ φ(Σ)}, then we
simply say K is controllable with respect to G. �

The concept of controllability can be extended to time-weighted systems. For a time-
weighted system (G, f, h) ∈ Φ({Σi|i ∈ I}) and K ⊆ Lm(G), we say K is controllable with
respect to (G, f, h) if K is controllable with respect to G. Recall that, in the standard
Ramadge-Wonham control paradigm there are two basic assumptions: (1) the duration
of firing each event is zero; (2) the firings of different events must be sequentially ordered,
namely no more than one event can be fired at each time instance. When these two as-
sumptions are satisfied, each requirement E ∈ φ(∆) with ∆ ⊆ ∪i∈IΣi can be interpreted
as specifying the sequential orders of event firings. When each event has a nonzero firing
duration, the firings of two different events may overlap with each other. Thus, none of
those basic assumptions holds, which suggests that we should provide a new interpreta-
tion of a requirement E ∈ φ(∆) before we can talk about supervisory control. Given a
string, say ab ∈ Lm(E), we can interpret it in two ways: (1) the firing moment of a, which
is defined as the moment that a starts to be fired, must precede the firing moment of b;
or (2) the firing moment of b is after the moment that a finishes its firing. Fortunately,
with the help of the mutual exclusion function h, we do not need to distinguish these two
different scenarios. We always interpret E in the first way, but set h(a, b) = 0 for scenario
(1), and h(a, b) = 1 for scenario (2).

Given a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I}) and a requirement E := {Ej ∈

φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J} ∈ Φ̃({∆j |j ∈ J}), let

C(G, E) := {K ⊆ Lm(G)||Lm(E)|K is controllable with respect to G}

be the collection of all sublanguages of Lm(G)||Lm(E) which are controllable with respect
to G. Sometimes we call K a controllable sublanguage of G under E . Let

NS(G, f, h, E) := {K ∈ C(G, E)|ω(G, f, h, K) < ∞}

be the collection of all controllable sublanguages of G under the requirement E such that
their makespans are finite. We call each K ∈ NS(G, f, h, E) a finite-makespan controllable
sublanguage of (G, f, h) under E . It is possible that, NS(G, f, h, E) = ∅. Because

min
σ∈Σ

f(σ) > 0,

we can derive that, for all K ∈ NS(G, f, h, E) the set

{K ′ ∈ NS(G, f, h, E)|ω(G, f, h, K ′) ≤ ω(G, f, h, K)}

is finite. Thus, there exists K∗ ∈ NS(G, f, h, E) such that

(∀K ∈ NS(G, f, h, E))ω(G, f, h, K∗) ≤ ω(G, f, h, K)

Since controllability is closed under language union, we can check that, there exists K̂∗ ∈
NS(G, f, h, E) such that, for all K ∈ NS(G, f, h, E) the following hold,

1. ω(G, f, h, K̂∗) ≤ ω(G, f, h, K)

2. ω(G, f, h, K) = ω(G, f, h, K̂∗) ⇒ K ⊆ K̂∗
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We call K̂∗ the supremal minimum-time controllable sublanguage of (G, f, h) under E ,
denoted as supNS(G, f, h, E). For notation simplicity, from now on given a requirement

E ∈ Φ̃({∆j |j ∈ J}), we assume that ∆j ⊆ Σ. The supervisor synthesis problem is stated
as follows:

Problem 2.3. Given a time-weighted system (G, f, h) ∈ Φ({Σi|i ∈ I}) and a requirement

E ∈ Φ̃({∆j |j ∈ J}), how to compute supNS(G, f, h, E)? �

Before we discuss how to solve the above problem in the next section, we would like
to describe how to implement an existing supremal minimum-time controllable sublan-
guage by using an appropriate timed supervisory control map. This is important for the
application purpose.

2.3 Timed supervisory control map

Given a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I}), a finite run of (G, f, h) is a finite
sequence of 2-tuples µ = (σ1, t1) · · · (σn, tn) ∈ (Σ × R

+)∗, where s = σ1 · · ·σn ∈ L(G)
and (t1, · · · , tn) is a nondecreasing time sequence. From now on we use S(µ) to denote
σ1 · · ·σn, S(µ)↓ for σn and W(µ) for tn. When µ = ǫ, we simply let S(ǫ) := ǫ, S(ǫ)↓ := ǫ
and W(ǫ) = 0. We use Pσ(µ) to denote a finite run µ′, which is a prefix subrun of µ,
i.e. µ′ ≤ µ, and S(µ′)↓ = σ, and for all µ′′ ≤ µ, if µ′ ≤ µ′′ and µ′ 6= µ′′ then we have
S(µ′′)↓ 6= σ. In other words, Pσ(µ) is a prefix subrun of µ, whose last event is σ and
cannot be extended into another subrun of µ whose last event is σ. The timed closed
behavior of G, denoted as Lt(G), is the collection of all possible finite runs, and the timed
marked behavior of G, denoted as Lt

m(G), is the collection of all finite runs µ ∈ Lt(G)
such that S(µ) ∈ Lm(G).

Let E ∈ Φ̃({∆j |j ∈ J}) be a requirement, and suppose K is a controllable sublanguage
of (G, f, h) ∈ Φ({Σi|i ∈ I}) under E . We say h is control compatible if

(∀σ, σ′ ∈ Σ)h(σ, σ′) = 1 ⇒ [(∃i ∈ I)σ, σ′ ∈ Σi] ∨ [σ ∈ Σc ∧ σ′ ∈ Σc]

In other words, a control compatible function h imposes mutual exclusion on two events,
if either there exists one alphabet contains both events or both events are controllable.
If h is not control compatible, then there may not exist timed supervisory control that
achieves K and in the mean time respects the event mutual exclusion imposed by h.
To see this, suppose we have two components G1 and G2, whose controllable alphabets
are empty. Suppose the requirement E allows all possible behavior of G = {G1, G2}.
Clearly, K = Lm(G). But if h forces two uncontrollable events to be mutual exclusive,
then clearly, there is no timed supervisory control to achieve this. For each µ ∈ Lt(G) let
A(µ) := {σ ∈ Σ|S(µ)σ ∈ K}. Clearly, A(µ) is the set of all events that are allowed to be
fired after µ. For each time instant τ ∈ R

+, let

ζ(µ, τ) := {µ′ ≤ µ|µ′ 6= ǫ ∧ W(µ′) ≤ τ ∧ W(µ′) + f(S(µ′)↓) > τ}

be the collection of all active prefixed subruns of µ, whose last events are fired before
τ but have not been finished by τ . We define the following specific timed supervisory
control map g : Lt(G) × R

+ → 2Σ with respect to K∗, where for each µ ∈ Lt(G) and
τ ∈ R

+, let

g(µ, τ) :=

{

{σ ∈ A(µ) − Σuc|(∀µ′ ∈ ζ(µ, τ))h(S(µ′)↓, σ) = 0} ∪ Σuc if S(µ) ∈ K
Σ otherwise
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We can interpret g as follows. For every event σ ∈ Σ, if either it is uncontrollable, or it
is in A(µ)−Σuc such that there is no event in µ that is mutually exclusive with σ and is
still under execution at the instance τ , then σ is allowed by g at τ . The closed behavior
of (G, f, h) under g, denoted as Lt(g/G), is defined as follows:

1. ǫ ∈ Lt(g/G),

2. (∀µ ∈ Lt(g/G))(∀(σ, τ) ∈ Σ × R
+)µ(σ, τ) ∈ Lt(G) ∧ σ ∈ g(µ, τ) ⇒ µ(σ, τ) ∈

Lt(g/G),

3. All strings of Lt(g/G) are obtained from Steps (1) and (2).

We call Lt
m(g/G) := Lt(g/G) ∩ Lt

m(G) the marked behavior of (G, f, h) under g. Let

Lt
m(g/G, s) := {µ ∈ Lt

m(g/G)|S(µ) = s}

Clearly, for each s ∈ K there exists a finite run µ ∈ Lt(g/G) such that S(µ) = s. Let

V (g/G, f, h, K) := max
s∈K

min
µ∈Lt

m(g/G,s)
max
µ′≤µ

W(µ′) + f(S(µ′)↓)

For any µ ∈ Lt(g/G), in practical situations, computing g(µ) always takes nonzero time
and the firing of σ ∈ g(µ) also starts later than the moment of g(µ) being computed. We
say g is ideal if for all µ(σ, τ) ∈ Lt(g/G), we have

τ = max
σ′∈Σ: h(σ,σ′)=1

W(Pσ′(µ)) + f(σ′)

namely computing g(µ, τ) takes no time and every event allowed by g(µ, τ) starts to fire
immediately whenever it is eligible. We have the following result.

Theorem 2.4. Given a time-weighted system (G, f, h) ∈ Φ({Σi|i ∈ I}) and a requirement

E ∈ Φ̃({∆j |j ∈ J}), let K ∈ C(G, E) and suppose h is control compatible and G is
asynchronous. Then (1) for every finite run µ = (σ1, t1) · · · (σn, tn) ∈ Lt(g/G), the
time sequence (t1, · · · , tn) is a time stamp of s = σ1 · · ·σn with respect to (G, f, h); (2)
V (g/G, f, h, K) ≥ ω(G, f, h, K); (3) if g is ideal, then V (g/G, f, h, K) = ω(G, f, h, K). �

Proof: Suppose h is control compatible and G is asynchronous. (1) We need to show that

(∀q, v ∈ {1, · · · , n}) q < v ∧ h(σq, σv) = 1 ⇒ tq + f(σq) ≤ tv

Suppose this condition does not hold. Let (q, v) with q < v be the first pair that violates
the condition, namely h(σq , σv) = 1 and tq + f(σq) > tv. The term ‘first pair’ means
that, for any other pair (q′, v′) that violates the condition, we have either q < q′ or q = q′

and v < v′. Since h is control compatible, we have two cases to consider.
Case 1: σq, σv ∈ Σc. Let τv be the decision time instant, where g(µv, τv) is computed with
µv = (σ1, t1) · · · (σv, tv) and tq ≤ τv ≤ tv. Then by the definition of g we know that, for
all µ′ ≤ µv, if W(µ′) ≤ τv and W(µ′) + f(S(µ′)↓) > τv, then h(S(µ′)↓, σv) = 0. Clearly,
µq ≤ µv and W(µq) ≤ τv. Since tq + f(σq) > tv, we have W(µq) + f(S(µq)

↓) > tv ≥ τv.
But this is a contradiction because h(σq, σv) = 1 implies that W(µq) + f(S(µq)

↓) ≤ τv.
Case 2: there exists Σi such that σq, σv ∈ Σi. Since G is asynchronous, we have that
tq + f(σq) ≤ tv. But this contradicts the assumption that tq + f(σq) > tv. Since in either
case we obtains a contradiction, the time sequence is a time stamp of s with respect to
(G, f, h).
(2) Since Lt

m(g/G, s) 6= ∅ for all s ∈ K, and by (1) each time sequence allowed in Lt(g/G)
is a time stamp, we can derive that

υG,f,h(s) ≤ min
µ∈Lt

m(g/G,s)
max
µ′≤µ

W(µ′) + f(S(µ′)↓)
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which implies V (g/G, f, h, K) ≥ ω(G, f, h, K).
(3) Let s = σ1 · · ·σn ∈ K with (t1, · · · , tn) being the time-stamp with respect to G such
that

υG,f,h(s) = max
i

(ti + f(σi))

We want to show that, µ = (σ1, t1) · · · (σn, tn) ∈ Lt
m(g/G).

Clearly, σ1 · · ·σn ∈ Lm(G). Suppose µ = (σ1, t1) · · · (σn, tn) /∈ Lt
m(g/G). Then there

exists q such that, µ′ = (σ1, t1) · · · (σq , tq) ∈ Lt(g/G) but µ′(σq+1, tq+1) /∈ Lt(g/G).
Therefore, σq+1 /∈ g(µ′, τq+1) with tq ≤ τq+1 ≤ tq+1. Since τq+1 can be any value in
that range, we pick τq+1 = tq+1. This means

(∃µ′′ ∈ ζ(µ′, tq+1))h(S(µ′′), σq+1) = 1

Since µ′′ ∈ ζ(µ′, tq+1), we have that

W(µ′′) ≤ tq+1 ∧ W(µ′′) + f(S(µ′′)↓) > tq+1

Since g is ideal, we have that the firing moment t̂q+1 for σq+1 satisfies the following:

t̂q+1 = max
σ′∈Σ: h(σq+1,σ′)=1

W(Pσ′(µ′)) + f(σ′)

By the definition of time stamp, we have tq+1 ≥ t̂q+1. Since h(S(µ′′), σq+1) = 1 and
µ′′ ≤ µ′, we get that

W(µ′′) + f(S(µ′′)↓) ≤ t̂q+1 ≤ tq+1

But this contradicts the assumption that W(µ′′) + f(S(µ′′)↓) > tq+1. Thus, we have
µ ∈ Lt(g/G). Since µ ∈ Lm(G), we have µ ∈ Lt

m(g/G). Since g is ideal, we have

υG,f,h(s) = max
i

(tq + f(σq)) ≥ min
µ∈Lt

m(g/G,s)
max
µ′≤µ

W(µ′) + f(S(µ′)↓)

which implies V (g/G, f, h, K) ≤ ω(G, f, h, K). By (1), we have V (g/G, f, h, K) ≥ ω(G, f, h, K).
Thus, V (g/G, f, h, K) = ω(G, f, h, K). The theorem follows. �

Theorem 2.4 indicates that, when h is control compatible and G is asynchronous, the
supervisory control map g respects the event mutual exclusion imposed by h in the sense
that, the time sequence of every finite run of the supervised system g/G is a time stamp.
If additionally g is ideal, then the makespan of the minimum-time controllable sublan-
guage can be achieved by applying the proposed supervisory control map g. Although in
practical applications g is rarely ideal, as long as we can speed up computation of g(µ, τ)
and initiation the firing of σ ∈ g(µ, τ), the execution time of a finite run of G under the
supervision of g can always be shortened.

To illustrate the aforementioned control strategy, we present a simple example. Suppose
G = {G1 ∈ φ(Σ1), G2 ∈ φ(Σ2)}, where Σ1 = {a}, Σ2 = {b, c, d}, Lm(G1) = {a}, L(G1) =

Lm(G1), Lm(G2) = {bcd} and L(G2) = Lm(G2). The time-weighted function f is defined
as f(a) = 2, f(b) = f(c) = f(d) = 1, and the mutual exclusion function h is defined as
h(a, a) = h(b, b) = h(c, c) = h(d, d) = h(a, b) = h(c, d) = 1, h(b, c) = h(a, c) = 0. The
requirement is E = {E1 = {ac} ∈ φ({a, c})}. Suppose Σc = {a, b} and Σuc = {c, d}.
Clearly, h is control compatible. Then by using the standard procedure for supervisor
synthesis [22] we can get that, the supremal controllable sublanguage of G under E) is
K = {abcd}. The control sequence is computed as follows. At the initial instant τ = 0,
we have

ζ(ǫ, 0) = ∅, A(ǫ) = {a}
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Therefore, g(ǫ, 0) = {a} ∪ Σuc = {a, c, d}, which means a and c are allowed at τ = 0.
Suppose a is fired at ta = 0.1. Then at τ = 0.5 we have

ζ((a, 0.1), 0.5) = {(a, 0.1)}, A((a, 0.1)) = {b}

Since h(a, b) = 1, we get g((a, 0.1), 0.5) = Σuc = {c, d}. We can see that, although
b ∈ A((a, 0.1)), it cannot be fired because (a, 0.1) is still active at τ = 0.5, which prevents
b to be fired, owing to mutual exclusion. When τ = 2.1, we have

ζ((a, 0.1), 2.1) = ∅, A((a, 0.1)) = {b}

from which we have g((a, 0.1), 2.1) = {b} ∪Σuc = {b, c, d}. Suppose b is fired at tb = 2.2.
Then for all τ ≥ tb we have g((a, 0.1)(b, 2.2), τ) = {c, d}. Because h(b, c) = 0, the firing
of c can be at any moment after tb. Suppose c is fired at tc = 3. Then at τ = 3.2 we
have g((a, 0.1)(b, 2.2)(c, 3), 3.2) = {c, d}. If G is not asynchronous, then d can be fired at
any moment after τ = 3.2, which clearly violates the mutual exclusion h(c, d) = 1. This
shows that, without the condition of G being asynchronous, Theorem 2.4 may not hold.
Suppose G is asynchronous, then d can only be fired after c is done. Suppose td = 4.
Then we have a time sequence (ta = 0.1, tb = 2.2, tc = 3, td = 4) for s = abcd. Clearly,
the time sequence is a time stamp of s with respect to (G, f, h). The final execution time
of s is

νG,f,h(s) = max{ta + f(a), tb + f(b), tc + f(c), td + f(d)} = 5

If g is ideal, then the smallest value for ta is 0, for tb is 2, for tc is 2 and for td is 3. The
corresponding execution time of s is 4.

3 Computing Supremal Minimum-Time Nonblock-

ing Supervisors

In this section we first briefly introduce the concepts of heaps-of-pieces. Then we present
a heaps-of-pieces-based algorithm to compute the supremal minimum-time nonblocking
supervisor.

3.1 Concepts of heaps-of-pieces

Recall that, in the previous section we define a map υG,f,h(s) := minw∈ΘG,f,h(s) TG,f,h(w),
whose value is the execution time of s in a time-weighted automaton (G, f, h). There are
several ways to compute υG,f,h(s), one of which is by using the theory of heaps-of-pieces
[27].

The name “heaps-of-pieces” comes from the following informal interpretation [9]. Imagine
that there is a horizontal axis with a finite number of slots. We have a finite number of
geometric objects called pieces, each of which is a solid (possibly not connected) “block”
occupying some of the slots, with staircase-shaped upper and lower contours. With an
ordered sequence of pieces, we associate a heap by piling up the pieces, starting from
a horizontal ground. This piling occurs in the intuitive way: a piece is only subject to
vertical translations and occupies the lowest possible position, provided it is above the
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ground and the pieces previously piled up. A formal definition is provided below.

Definition 3.1. A heap model is a 5-tuple H = (T ,R, R, l, u), where

1. T is a finite set whose elements are called pieces ;

2. R is a finite set whose elements are called slots ;

3. R : T → 2R associates a piece with a subset of slots. We assume R(a) 6= ∅ for all
a ∈ T ;

4. l : T ×R → R
+ ∪ {0,−∞} gives the height of the lower contour of a piece;

5. u : T ×R → R
+ ∪ {0,−∞} gives the height of the upper contour of a piece.

By convention, l(a, r) = u(a, r) = −∞ if r /∈ R(a), and minr∈R(a) l(a, r) = 0. �

Each slot r ∈ R is interpreted as a resource. For a piece a ∈ T and a slot r ∈ R(a),
we interpret the difference u(a, r) − l(a, r) as the occupation time of a over r. In the
simplest case, we have l(a, r) = 0 for all a ∈ T and r ∈ R(a), namely, each piece is a
rectangular bar, not necessarily connected. Given a string s = a1 · · · ak ∈ T ∗ with k ∈ N,
we associate with each aq (q = 1, · · · , k) a nonnegative real tq. We say s is a heap with
respect to w = (t1, · · · , tk), if

(∀q, v ∈ {1, · · · , k}) q < v ⇒ (∀r ∈ R(aq) ∩ R(av)) tq + u(aq, r) ≤ tv

In other words, the piece av, which appears after aq, should pile upon aq. We call w a
hight-stamp of s. Suppose R = {r1, · · · , rn}. The upper contour of s with respect to w
is a row vector xH(s, w) = (x1, · · · , xn), where

(∀q ∈ {1, · · · , n})xq = max
v∈{1,··· ,k}

tv + u(av, rq)

The height of s with respect to w is

yH(s, w) := max
q∈{1,··· ,n}

xq

Suppose Ξs is the collection of all hight-stamps of s. Then the height of s is

yH(s) := min
w∈Ξs

yH(s, w)

If we interpret ti in a hight-stamp w as the firing moment of the piece ai, then the height
yH(s) corresponds to the minimum time that is required to complete s, which requires a
piece to be executed as soon as all relevant resources are available.

Definition 3.2. The (max,+) semiring Rmax is the set R ∪ {−∞}, equipped with the
operation max, written additively (i.e. a ⊕ b = max{a, b}), and the usual sum, written
multiplicatively (i.e. a ⊗ b = a + b). In this semiring, the zero element 0 is −∞, and the
unit element 1 is 0. �

The matrix operations are induced by the semiring structure as follows. For matrixes A
and B of appropriate dimentions,

(A ⊕ B)qv := Aqv ⊕ Bqvj = max{Aqv, Bqv}
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and
(A ⊗ B)qv := ⊕k(Aqk ⊗ Bkv) = max

k
(Aqk + Bkv)

For a scalar a ∈ R∪ {−∞}, (a⊗A)ij := a⊗ Aij = a + Aij . From now on we omit the ⊗
sign, and directly use AB to denote A⊗B. By the definition of semiring we get that, the
matrix multiplication is associative, i.e. (AB)C = A(BC). Let R

R,R
max be the collection of

all matrices, whose dimensions are |R| × |R|. Let M : T ∗ → R
R,R
max, where

(∀a ∈ T )M(a)qv :=







1 if q = v and q /∈ R(a)
u(a, v) − l(a, q) if q, v ∈ R(a)
0 otherwise

and for all s = s′s′′ ∈ T ∗, M(s) := M(s′)M(s′′) with M(ǫ) being the unit matrix I

(i.e. all diagonal entries are 1 and all other entries are 0). Thus, if s = a1 · · ·ak, then
M(s) = M(a1) · · ·M(ak). Clearly, M is a morphism between T ∗ and R

R,R
max. We say M

is induced from H. Let 1R be the 1× |R| dimension column vector, whose entries are all
equal to 1. We use 1t

R to denote the transpose of 1R, which is a row vector. From [9] we
have the following,

(∀s ∈ T ∗) yH(s) = 1t
RM(s)1R (1)

Once a heap model H is given, the morphism M is uniquely determined. Thus, the height
of each string s ∈ T ∗ can be computed. We call xH(s) := 1t

RM(s) the upper contour of s.

Given a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I}), we first build an undirected graph
Gr(G, f, h) = (Ver, Edg), where Ver := Σ is the vertex set and Edg is the edge set such
that,

(∀σ, σ′ ∈ Σ) (σ, σ′) ∈ Edg ⇐⇒ h(σ, σ′) = 1 ∧ σ 6= σ′

which means we only use an edge to connect two different events, which are mutually
exclusive. Although h(σ, σ) = 1 for all σ ∈ Σ, we do not want to add selfloops in the
graph. A subgraph of Gr(G, f, h) is complete if every pair of vertices in the subgraph are
connected by an edge. A complete subgraph is maximal if it is not contained in any larger
complete subgraph. A clique cover of Gr(G, f, h) is a collection of (maximal) complete
subgraphs such that every edge of Gr(G, f, h) is contained in at least one (maximal)
complete subgraph. Such a clique cover need not be unique. It has been shown in [18]
that, finding a clique cover whose size is no more than a given value is NP-hard, which
implies that, finding a clique cover with the minimum size is also NP-hard. Let Λ(G, f, h)
be a clique cover of Gr(G, f, h). For each (maximal) complete subgraph λ ∈ Λ(G, f, h), we
use Verλ to denote its vertex set. We build the following heap model H = (T ,R, R, l, u)
associated with (G, f, h), where

1. T := Σ and R := Λ(G, f, h)

2. R : T → 2R : σ 7→ R(σ) := {λ ∈ R|σ ∈ Verλ}

3. l(σ, r) = 0, and u(σ, r) =

{

f(σ) if r ∈ R(σ)
0 otherwise

In this heap model, each resource r ∈ R is a maximal complete subgraph of Gr(G, f, h),
meaning that any pair of events in the vertex set of r are mutually exclusive.

The aforementioned way of computing yH(s) cannot be directly used to compute the
execution time of s because the latter requires that the time stamp should be a nonde-
creasing list, which may not hold in the formulation of yH(s). We will see this shortly
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in Example 1. To prevent such an undesirable situation from happening, we propose the
following algorithm to compute the execution time of s:

1. Input: a heap model Hq based on G and E , and s = σ1 · · ·σn ∈ Σ∗.

2. Initialization:

(a) C1 := 1t
RM(σ1)

(b) For each σq (q = 1, · · · , n), define two |R|-dimensional row vectors Q̃q and Q̌q,
where

(∀r ∈ R) Q̃q,r :=

{

f(σq) if r ∈ R(σq)
1 otherwise

and

(∀r ∈ R) Q̌q,r :=

{

−f(σq) if r ∈ R(σq)
0 otherwise

3. For each k = 2, 3, · · · , n − 1

(a) Ĉk := Ck−1M(σk)

(b) Ck := Ĉk ⊕ ((ĈkQ̌t
k)Q̃k)

or equivalently, Ck := Ck−1M(σk)[I ⊕ (Q̌t
kQ̃k)].

4. ŷH(s) := Cn−1M(σn)[I⊕(Q̌t
kQ̃k)]1R and the upper contour is x̂H(s) = Cn−1M(σn)

�

In Step (3.b) the term (ĈkQ̌t
k) is used to determine the height of the bottom edge of

the piece associated with σk on the heap, which is interpreted as the earliest possible
firing moment of σk. Then the term Ĉk ⊕ ((ĈkQ̌t

k)Q̃k) is used to set the upper contour
before the piece associated with σk+1 can be piled on. We can check that, the minimum
height of such a contour is at least the same as the height of the bottom edge of the piece
associated with σk, namely the bottom edge of the piece associated with σk+1 will not
be lower than the bottom edge of the piece associated with σk - in other words, the firing
moment of σk+1 cannot be earlier than the firing moment of σk. This will guarantee that,
the firing moments of those events in the heap can form an order specified by the original
string s = σ1 · · ·σn. A formal argument is provided as follow. Let tk+1 := Ĉk+1Q̌

t
k+1,

which is interpreted as the firing moment of event σk+1. Then we have

tk+1 = Ĉk+1Q̌
t
k+1

= CkM(σk+1)Q̌
t
k+1

= (Ĉk ⊕ ((ĈkQ̌t
k)Q̃k))M(σk+1)Q̌

t
k+1

= ĈkM(σk+1)Q̌
t
k+1 ⊕ (ĈkQ̌t

k)Q̃kM(σk+1)Q̌
t
k+1

≥ ĈkQ̌t
k because M(σk+1)Q̌

t
k+1 is a nonnegative column vector

= tk

which means the sequence of firing moments t1, · · · , tn is a nondecreasing sequence.

Given a nondecreasing height stamp w = (t1, · · · , tn), by the theory of heaps-of-pieces,
we get that

(∀q, v ∈ {1, · · · , n}) q < v ⇒ (∀r ∈ R(σq) ∩ R(σv)) tq + u(σq, r) ≤ tv
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By the definition of the heap model H, we know that, if r ∈ R(σq) ∩ R(σv), then
h(σq, σv) = 1. Since u(σq, r) = f(σq) if r ∈ R(Σq), we have

(∀q, v ∈ {1, · · · , n}) q < v ⇒ [h(σq , σv) = 1 ⇒ tq + f(σq) ≤ tv]

or equivalently,

(∀q, v ∈ {1, · · · , n}) q < v ∧ h(σq, σv) = 1 ⇒ tq + f(σq) ≤ tv

which means the height stamp (t1, · · · , tn) is actually a time stamp of s with respect to
(G, f, h). By using a similar argument, we can show that a time stamp of s with respect
to (G, f, h) is actually a height stamp of s in the associated heap model H. From this
fact we can derive that

υG,f,h(s) = ŷH(s)

and for all W ⊆ Lm(G) we have

ω(G, f, h, W ) = max
s∈W

ŷH(s)

Thus, by using the heap model we can compute the execution time of each string and
the makespan of a sublanguage. This fact will be used in the next section to compute
supremal minimum-time nonblocking supervisors.

We use a simple example to illustrate the aforementioned concepts and results. Suppose
we have a time-weighted plant (G = {G1, G2, G3}, f, h), where

Σ1 = {a, b}, Σ2 = {c}, Σ3 = {c}, f(a) = 2, f(b) = 3, f(c) = 1

and h is derivable from G. Suppose Lm(G1) = (ab)∗, Lm(G2) = c∗ and Lm(G3) = c∗.
Since h(a, b) = 1 and h(a, c) = h(b, c) = 0, we can easily check that Λ(G, f, h) contains
two maximal complete subgraphs r1 and r2 of Gr(G, f, h), where the vertex set of r1 is
{a, b}, and the vertex set of r2 is {c}. We build the heap model H, where

1. T := {a, b, c} and R := {r1, r2}

2. R(a) = {r1}, R(b) = {r1}, R(c) = {r2}

3. u(a, r1) = f(a) = 2, u(a, r2) = 0, l(a, r1) = l(a, r2) = 0
u(b, r1) = f(b) = 3, u(b, r2) = 0, l(b, r1) = l(b, r2) = 0
u(c, r1) = 0, u(c, r2) = f(c) = 1, l(c, r1) = l(c, r2) = 0

Figure 1 depicts the relevant pieces. The associated morphism M is described as follows:

M(a) =

[

2 −∞
−∞ 0

]

, M(b) =

[

3 −∞
−∞ 0

]

, M(c) =

[

0 −∞
−∞ 1

]

From the model of G, we know that s = abc ∈ Lm(G) = Lm(G1)||Lm(G2)||Lm(G3). The
execution time of s is ŷH(s), which can be computed as follows:

1. Initialization: C1 = 1tM(a) = [2 0], Q̃a = [2 0], Q̌a = [−2 − ∞], Q̃b = [3 0],

Q̌b = [−3 −∞], Q̃c = [0 1], Q̌c = [−∞ − 1]

2. Iterate on k = 2

(a) Ĉ2 = C1M(b) = [5 0]

(b) C2 = [5 0] ⊕ (([5 0] ⊗ [−3 −∞]t) ⊗ [3 0]) = [5 2]

3. ŷH(s) = C2M(c)1R = [5 3][0 0]t = 5 and x̂H(s) = [5 3]
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Figure 1: Example 1: Pieces for a, b and c

Figure 2: Example 1: Heap of ŷH(abc) (left) and heap of yH(abc) (right)

The heap of ŷH(abc) is depicted in the left picture of Figure 2. As a comparison, we
apply the standard heaps-of-pieces theory to compute yH(s), which is shown as follows:

yH(abc) = 1tM(a)M(b)M(c)1

= [0 0]

[

2 −∞
−∞ 0

] [

3 −∞
−∞ 0

] [

0 −∞
−∞ 1

] [

0
0

]

= [5 1]

[

0
0

]

= 5

The upper contour is xH(abc) = [5 1]. The heap of yH(abc) is depicted in the right
picture of Figure 2. In this example we can see the difference between ŷH(s) and yH(s),
where the former one takes into account the fact that, the starting moments of a, b and
c form a nondecreasing order, but in the latter c starts firing before b, which does not
reflect the actual firing order.
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3.2 Computation of supremal minimum-time controllable sublanguages

We provide the following procedure to compute the supremal minimum-time controllable
sublanguage supNS(G, f, E).

Procedure for Supremal Minimum-Time Controllable Sublanguage (SMT):

1. Input:

(a) a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I})

(b) a requirement E ∈ Φ̃({∆j |j ∈ J})

2. Initialization:

(a) Compute K = supC(G, E). If K = ∅ then set K∗ := ∅ and go to step (6).

(b) Let G = κ(K) = (Z, Σ = ∪i∈IΣi, δ, z0, Zm) with Σuc := ∪i∈IΣi,uc, Σc =
Σ − Σuc

(c) For each z ∈ Zm, set

W0(z) =

{

0 if µ(z) ⊆ Σc

+∞ otherwise

and for each z ∈ Z − Zm, define Q0(z) := +∞

3. Iterate on k = 1, 2, · · · , as follows:

(a) For each z ∈ Z we have

Qk(z) :=







maxσ∈Σuc
(f(σ) + Qk−1(δ(z, σ))) if µG(z) ∩ Σuc 6= ∅

min{minσ∈µG(z)(f(σ) + Qk−1(δ(z, σ))), Qk−1(z)} if ∅ 6= µG(z) ⊆ Σc

Qk−1(z) otherwise

(b) Termination when: (∃r ∈ N)(∀z ∈ Z)Qr−1(z) = Qr(z)

4. If Qr(z0) = +∞, K∗ := ∅ and go to (6). Otherwise, let

K ′ := {s ∈ Lm(G)|υG,f,h(s) ≤ Qr(z0)}

and K̂ := supC(G, κ(K ′)). Since K̂ is finite, we construct a tree automaton S,

which recognizes Lm(K̂), i.e. Lm(S) = Lm(K̂) and L(S) = Lm(S). Suppose
S = (Z ′, Σ, δ′, z′0, Z

′
m).

5. We perform the following iteration on S:

(a) Initialization: for each z ∈ Z ′, if z ∈ Z ′
m and µS(z) ⊆ Σc, then set η0(z) :=

υG,f (s), where δ′(z′0, s) = z; otherwise, set η0(z) := +∞

(b) Iterate on k = 1, 2, · · · , l, where l is the length of the longest path in S,

(∀z ∈ Z ′) ηk(z) :=







maxσ∈Σuc
ηk−1(δ

′(z, σ)) if µS(z) ∩ Σuc 6= ∅

min{minσ∈µG(z) ηk−1(δ
′(z, σ)), ηk−1(z)} if ∅ 6= µS(z) ⊆ Σc

ηk−1(z) otherwise

(c) Let S′ = (Z ′, Σ, δ′′, z′0, Z
′
m) with δ′′ : Z ′×Σ → Z ′, where for all (z, σ) ∈ Z ′×Σ,

δ′′(z, σ) :=

{

δ′(z, σ) if δ(z, σ)! and ηl(z) ≤ ηl(z
′
0) and ηl(δ

′(z, σ)) ≤ ηl(z
′
0)

undefined otherwise

Let K∗ := Lm(S′).
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6. Output: K∗
�

We first briefly explain what SMT does. It first computes the supremal controllable
sublanguage K ∈ C(G, E) in Step (2). If K = ∅, then clearly NS(G, f, h, E) = ∅.
Suppose K 6= ∅. Then the computation in Step (3) is used to determine whether

minK̃∈NS(G,f,h,E) ω(G, f, h, K̃) is finite, whose validity is shown in Lemma 3.3 below,

which also indicates that the makespan of the supremal minimum-time controllable sub-
language is no more than the weight of the initial state Qr(z0). Thus, if Qr(z0) < +∞
then the sublanguage K ′ in Step (4) must contain the supremal minimum-time con-

trollable sublanguage. Since K̂ is the supremal controllable sublanguage of K ′, it must
contain the supremal minimum-time controllable sublanguage. Step (5) is used to find
such a supremal language. The idea is that, each marker state of S is associated with the
execution time of the string that leads to the marker state. The string is unique because S
is a tree automaton. Then we apply an algorithm similar to the one in [4], except that we
do not count edge weights anymore. By doing this we can guarantee that, the resulting
sub-automaton S′ recognizes a controllable sublanguage of K̂ (the proof of controllability
is similar to the one in [4]) such that its makespan is minimum among all controllable
sublanguages. This result will be shown shortly in Theorem 3.4. We can easily check that
SMT terminates for each pair of G and E , because, from [4] we know that the iteration

at Step (3) always terminates, and clearly K̂ is finite. The complexity of Step (3) has
been shown in [4] to be polynomial. Similarly, in Step (5) the complexity of iteration is
polynomial with respect to the number of states and transitions of S. But constructing S
requires enumerating all possible strings, whose execution times are smaller than Qr(z0).
It can be shown that searching the supremal minimum-time controllable sublanguage is
NP-hard. Owing to the limited space, we will not provide the proof in this paper. It will
be presented in another paper, which addresses the computational issues. To show that
K∗ is the supremal minimum-time controllable sublanguage, we need the following lemma.

Given a time-weighted plant (G = {Gi ∈ φ(Σi)|i ∈ I}, f, h) and a requirement E , let
(G, f, h′) be another time-weighted plant, where for every σ, σ ∈ Σ, h′(σ, σ′) = 1. In
other words, every pair of events in (G, f, h′) is mutually exclusive. We can easily check
that, the corresponding graph Gr(G, f, h′) is complete, which means in the resulting heap
model H′, the resource set R′ is a singleton. For each s = σ1 · · ·σn ∈ Lm(G)||Lm(E),
we can derive that, yH′(s) =

∑n
i=1 f(σi), which means the time-weights associated with

(G, f, h′) become ordinary weights, as described in, e.g. [4]. We call (G, f, h′) induced
from (G, f, h).

Lemma 3.3. Given a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I}), let (G, f, h′) be in-

duced from (G, f, h). Let E ∈ Φ̃({∆j |j ∈ J}) be a requirement. Then (1) NS(G, f, h, E) 6=
∅ iff NS(G, f, h′, E) 6= ∅; (2) If NS(G, f, h, E) 6= ∅, then

min
K∈NS(G,f,h,E)

ω(G, f, h, K) ≤ min
K∈NS(G,f,h′,E)

ω(G, f, h′, K)

�

Proof: ω(G, f, h, K) < +∞ implies that K is finite, which means ω(G, f, h′, K) <
+∞. Similarly, ω(G, f, h′, K) < +∞ implies ω(G, f, h, K) < +∞. Thus, we have K ∈
NS(G, f, h, E) iff K ∈ NS(G, f, h′, E), which means NS(G, f, h, E) 6= ∅ iff NS(G, f, h′, E) 6=
∅.
(2) Suppose NS(G, f, h, E) 6= ∅. By (1) we have NS(G, f, h, E) = NS(G, f, h′, E). From
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the definition of heap model, we can derive that,

(∀K ∈ NS(G, f, h, E))ω(G, f, h, K) ≤ ω(G, f, h′, K)

Apply minimization on both sides and we get

min
K∈NS(G,f,h,E)

ω(G, f, h, K) ≤ min
K∈NS(G,f,h′,E)

ω(G, f, h′, K)

Thus, the lemma is true. �

Lemma 3.3 says that, we can decide the emptiness of NS(G, f, h, E) by checking the
emptiness of NS(G, f, h′, E). Since the latter is equivalent to decide whether there ex-
ists a controllable sublanguage, whose weight in terms of the maximum sum weight of a
string in that sublanguage is finite, it can be effectively checked by using the algorithm
presented in [4] (see Step (3) in SMT). It is interesting to point it out that, the algorithm
presented in [4], which is a type of dynamic programming, can not be directly used to
decide whether NS(G, f, E) is empty because a time optimal path from a state, say x,
to a marker state, need not be time optimal with respect to all pathes that traverse x,
in other words, optimality of a global solution cannot be found by extending an existent
local optimal solution, which is the key requirement of dynamic programming. Lemma
3.3 also says that, the smallest makespan of controllable sublanguages of (G, f, h) under
E is no more than the smallest makespan of controllable sublanguages of (G, f, h′) un-
der E . Since the latter can be effectively computed, Lemma 3.3 allows us to construct
a finite language, that guarantees to contain the supremal minimum-time controllable
sublanguage of (G, f, h) under E . Since the language is finite, we can represent it by a
finite-state tree automaton and compute the supremal minimum-time controllable sub-
language by a polynomial algorithm. This is described in Step (4) and Step (5). Next,
we present our main result.

Theorem 3.4. Given a time-weighted plant (G, f, h) ∈ Φ({Σi|i ∈ I}) and a requirement

E ∈ Φ̃({∆j |j ∈ J}), suppose K∗ is computed in SMT. Then we have the following results:
(1) If K∗ 6= ∅ then K∗ = supNS(G, f, h, E); (2) if K∗ = ∅ then NS(G, f, h, E) = ∅. �

Proof: (1) Suppose K∗ 6= ∅. We first show that K∗ ∈ NS(G, f, h, E), namely K∗ is
controllable with respect to L(G), and ω(G, f, h, K∗) < +∞. The latter is clearly true.
In Step (5) we can check that, at each state z all uncontrollable events are allowed. Thus,

K∗ is controllable with respect to K̂ = Lm(S). Since K̂ is controllable with respect to
L(G), which is controllable with respect to L(G), we get that K∗ is controllable with
respect to L(G). Therefore, K∗ ∈ NS(G, f, h, E), meaning that supNS(G, f, h, E) exists.

Let K̃ := supNS(G, f, h, E). By Lemma 3.3 we have

ω(G, f, h, K̃) = min
K′′∈NS(G,f,h,E)

ω(G, f, h, K ′′) ≤ min
K′′∈NS(G,f,h,E)

ω(G, f, h′, K ′′)

By [4] we have
min

K′′∈NS(G,f,h,E)
ω(G, f, h′, K ′′) = Qr(z0)

Thus, K̃ ⊆ K ′. Since K̂ := supC(G, κ(K ′)), we get K̃ ⊆ K̂ = Lm(S). By using a similar
argument as in [4] we can derive that,

ω(G, f, h, K∗) = min
K′∈C(G,{S})

ω(G, f, h, K ′) = ηl(z0)

Thus, ω(G, f, h, K̃) ≥ ω(G, f, h, K∗). Since K̃ is the supremal minimum-time control-

lable sublanguage, we have ω(G, f, h, K̃) = ω(G, f, h, K∗). Since S is a tree automaton,
we can derive that K∗ contains every controllable sublanguage K ′ ∈ C(G, {S}) with

ω(G, f, h, K ′) ≤ ω(G, f, h, K∗). In particular, K̃ ⊆ K∗. But since K̃ is supremal, we have
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K̃ = K∗.
(2) If Qr(z0) < +∞, by [4] we know that, there exists a controllable sublanguage of
(G, f, h′) under E , whose weight is finite. Thus, by Lemma 3.3, there must exist a con-
trollable sublanguage of G under E , whose makespan is finite and no more than Qr(z0).

Thus, K̂ 6= ∅, which means K∗ 6= ∅. Therefore, when K∗ = ∅, we only need to
consider two cases. Case 1: K = supC(G, E) = ∅. by the convention rule, we have
ω(G, f, h, ∅) = +∞. Thus, NS(G, f, h, E) = ∅. Case 2: Qr(z0) = +∞. This means
NS(G, f, h′, E) = ∅, where (G, f, h′) is induced from (G, f, h). Then, by Lemma 3.3, we
have NS(G, f, h, E) = ∅. �

As an illustration, we apply the aforementioned technique to a simplified cluster tool
example depicted in Figure 3, which consists of one load/exit lock (LEL) for feeding
unprocessed wafers into the system and pulling processed wafers out of the system, two
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Figure 3: Example 4: The simplified cluster tool

processing chambers (PC1 and PC2) for processing wafers, two robots (R1 and R2) for
transporting wafers inside the system, and one buffer (B) for swapping wafers between
two robots. We assume that B has one slot. Figure 4 depicts the time-weighted plant
model, where the time weight of each event is 1, except for Process1 and Process2, whose

Figure 4: Example 4: Time-weighted component models of LEL, R1, R2, PC1, PC2, B

weights are 12 (because processing usually takes more time). All events are controllable,
except for Process1 and Process2. The requirements are depicted in Figure 5, where
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Figure 5: Example 4: Requirement models

requirements E1-E5 specify that, each wafer needs to go through the following routine
sequence: LEL → PC1 → B → PC2 → B → LEL. The requirement E6 specifies that
there are only two wafers per each batch, which is for the purpose of illustration. We can
certainly add more wafers in each batch, as shown in Table 1. We assume that the mutual
exclusion function h is derivable from G, which is asynchronous. The rationality of such
an assumption can be explained as follows. Clearly, both robot models are asynchronous
because each robot can only perform one action at each time instant. The LEL model
contains only R1’s events. Thus, it is also asynchronous. Although PCi (i = 1, 2) and
B contain events from both R1 and R2, their legal behaviors (i.e. the nonblocking part)
are strictly asynchronous. For example, in B only after R1 drops, R2 can pick; and after
R2 drops, R1 can pick – in other words, pick and drop actions cannot be executed at the
same time instant. Thus, all component models are asynchronous. From the requirement
models we can see that, each requirement contains events from only one component au-
tomaton, thus, it does not introduce any new mutual exclusion pairs.

We apply SMT on the system to compute the supremal minimum-time controllable
sublanguage of (G, f, h). By standard supervisor synthesis we can check that, K =
supC(G, E) 6= ∅. Step (3) terminates with Qr(z0) = 68. We then create a tree automaton
S according to SMT. Finally, the result of Step (5) is obtained, whose makespan is 54.
This number matches our expectation based on manual calculation. A recognizer of K∗

is depicted in Figure 6. Since h is control compatible and G is asynchronous, by Theorem
2.4 we know that, a timed supervisory control map g exists that can achieve K∗ and
respects the mutual exclusion imposed by h. From Figure 6 we can see that, the key to
the minimum-time supervision is to process the second wafer in PC1 along with the first
wafer being handled by R2, namely R1 and R2 handle two wafers in parallel. To test
the effectiveness of SMT, we increase the batch size to different values and the results
are summarized in Table 1. As we have expected, the unfolding part of SMT (i.e. the
construction of the tree automaton S) is computationally intense. A possible solution to
avoid constructing S is to use a greedy algorithm to compute a suboptimal timed super-
visory control map. Owing to limited space we leave such a greedy algorithm to another
paper that addresses the computational aspect of time optimal supervisory control. From
the data in Table 1 we can derive the following formula T : N → R

+,

Table 1
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s1

s23

s17

R1_pick_LEL

s21

R2_pick_B

s12

s19

R2_drop_B

s31

s8

Process2

s0

s15

R1_pick_LEL

s7

R1_drop_PC1

s3

s13

process2

s5

R1_drop_PC1

s4

s27

R1_pick_PC1

s28

R1_drop_B

s30

Process1

R2_pick_PC2

s6

Process2

s24

Process1

Process2

s29

Process1

s16

R1_pick_PC1

s26

R2_pick_PC2

s18

R2_drop_B

s9

R1_drop_LEL

s10

R1_drop_LEL

s11

R2_drop_PC2

R1_pick_B

s14

Process2 R1_drop_PC1

R1_drop_B

s25

R2_pick_B

R2_drop_PC2

R1_pick_B

s20

R1_pick_LEL

s22

Process2

R1_pick_LEL

R1_pick_LELR2_drop_PC2

R2_pick_B

Figure 6: Example 4: Automaton κ(K∗)

Batch Size (BS) Minimum Makespan (MM) Throughput (BS/MM)

2 54 0.0370

3 74 0.0405

4 94 0.0426

5 114 0.0439

6 134 0.0448

7 154 0.0455

8 174 0.0460

which maps the batch size n ∈ N to the corresponding minimum makespan T (n) ∈ R
+,

T (n) = 54 + 20(n − 2), where n ≥ 2

Owing to limited space, a formal analysis of the correctness of this formula for an arbitrary
value n ≥ 2 is skipped here. An informal explanation is that, the system can hold at
most 2 wafers at each time instant. Thus, when the batch size is equal to or more than 2,
the system has reached its steady state. Thus, the inter arrival time of wafers becomes a
constant, which is 20. As a byproduct, from this formula we can derive the steady-state
throughput, which is

lim
n→+∞

n

T (n)
= lim

n→+∞

n

54 + 20(n− 2)
= 0.05

4 Conclusions

In this paper we first present a minimum-time supervisory control problem, where the
plant is described by a time-weighted system and the requirement is un-weighted. After
that, we provide a terminable algorithm SMT to compute the supremal minimum-time
controllable sublanguage, whose overall computational complexity is determined by the
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complexity of creating a tree automaton because the rest of steps are polynomial. We
have also shown that, the computed supremal minimum-time controllable sublanguage is
guaranteed to be implementable by a timed supervisory control map if the mutual exclu-
sion function is control compatible and the system model is asynchronous. In an ideal
situation, where the computation of the control law takes no time and each eligible event
fires immediately without any delay, the timed supervisory control map can achieve the
minimum-time supervision. It is an open question whether a similar treatment can be
applied to the case, where partial observation may be present. The supervisory control
problem in this paper is formulated in a centralized manner, namely we have one product
plant and one product requirement. In reality, we may encounter high computational
complexity during synthesis. Thus, it is of our primary interest to investigate whether
there is a similar minimum-time supervisory control framework applicable to a hierarchi-
cal and distributed setting, which will be addressed in our future papers.
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