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Abstract — An authentication code can be constructed
with a family of ε-Almost strong universal (ε-ASU) hash

functions, with the index of hash functions as the authen-

tication key. This paper considers the performance of au-
thentication codes from ε-ASU, when the authentication

key is only partially secret. We show how to apply the re-
sult to privacy amplification against active attacks in the

scenario of two independent partially secret strings shared

between a sender and a receiver.

Key words — Information theory, Authentication code,

Privacy amplification, Unconditional security.

I. Introduction

Authentication theory was first formalized by
Simmons[1], who introduced the mathematical mode of
authentication in Ref.[2]. Authentication considers the
scenario that a transmitter sends a message over a public
communication channel to a receiver in the presence of
an active opponent who can modify the message or intro-
duce a fraudulent message over the channel. The goal of
authentication is to investigate a coding method such that
the receiver will detect the opponent’s active attack. Au-
thenticity can be achieved by Authentication codes (A-
codes): the transmitter and receiver first agree on an au-
thentication key k, taken from a finite set K. Each authen-
tication key k determines an encoding rule Ek(·), which
encodes a piece of plaintext s, hereafter called source
state, to a message m = Ek(s). If m = Ek(s) = (s, t)
with t = ek(s), we call z the tag or the authenticator, and
these codes are called Cartesian A-codes.

The active attacks by the opponent can be classi-

fied into two categories according to his cheating strate-
gies. The first is called impersonation attack in which the
opponent introduces a fraudulent message to the chan-
nel, hoping it to be accepted by the receiver. The other
is called substitution attack, in which the opponent inter-
cepts a message m and modifies it to a different message
m′, hoping it to be accepted by the receiver. Let PI and
PS be the probability of a successful impersonation attack
resp. substitution attack.

We study authentication codes with a partially secret
key S. This partial secrecy is characterized by the fact
that Eve’s min-entropy about S, given her information
Z = z, is less than the length of S. This quantity is de-
noted by H∞(S|Z = z).

Definition 1 Let X be a random variable over set
X . The Shannon entropy of the random variable X is de-
fined as H(X) = −∑

x∈X Pr[X = x] log Pr[X = x]. The
min-entropy of X is defined as H∞(X) =
− logmaxx∈X Pr[X = x].

It is easy to prove that 0 ≤ H∞(X) ≤ H(X) ≤
log |X | and the equality holds when X is uniformly dis-
tributed. By |X |, we denote the cardinality of the set X .

Throughout this paper, we denote log2(·) by log(·). Let
[a]r denote a substring which is comprised of any r bits of
a. We also assume that elements in GF (q) has a compact
expression of about log q bits.

II. Universal Hashing and A-codes

Results on A-codes are usually based on the assump-
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tion that the authentication key is unknown to Eve except
its length. Following the terminology of A-codes, let A de-
note the set of source states, H be the set of encoding rules
(authentication keys), and B be the set of authenticators.

Universal hash functions were first introduced for stor-
age and retrieval on keys by Carter and Wegman[3]. Fur-
ther study of hash function in authentication was done by
Wegman and Carter[4] and Stinson in Ref.[5]. In Ref.[6],
Stinson showed how to construct authentication codes
from ε-Almost strong universal (ASU) hash functions.

For a finite set H of hash functions, all from A to B,
for a1, a2 ∈ A, a1 �= a2, define δH(a1, a2) as the number
of hash function h ∈ H such that h(a1) = h(a2), i.e., it
counts the number of hash functions, for which a1 and a2

collide.
Definition 2 Let ε > 0. H : A → B is ε-ASU if (1)

for every a ∈ A and for every b ∈ B, |{h ∈ H : h(a) =
b}| = |H|/|B|; (2) for every a1, a2 ∈ A (a1 �= a2) and for
every b1, b2 ∈ B, |{h ∈ H : h(a1) = b1, h(a2) = b2}| ≤
ε|H|/|B|.

Definition 3 If H is ε-ASU with ε = 1/|B|, then H
is called strongly universal2 (SU2 for short).

Construction 1[6] For some positive integer v,
let A = {a = (a1, a2, . . . , av); a ∈ GF (q)v}, B =
GF (q). Let H = {hk = (hk,1, hk,2, . . . , hk,v+1); hk ∈
GF (q)v+1}. Then H : A → B defines a SU2 with hk(a) =
hk,1 · a1 + hk,2 · a2 + . . . + hk,v · av + hk,v+1.

Construction 2 Almost the same as Construc-
tion 1, the only difference is H : A → {0, 1}r, where
0 < r ≤ log(q), and the hash value is given by any r

bits of the hash value of Construction 1, i.e., hk(a) =
[hk,1 · a1 + hk,2 · a2 + . . . + hk,v · av + hk,v+1]r, with
H = {hk = (hk,1, hk,2, . . . , hk,v+1); hk ∈ GF (q)v+1}.

Lemma 1 The family of the hash functions H : A →
{0, 1}r, where 0 < r ≤ log2(q), in Construction 2 is also
a SU2 family of hash functions.

Proof 1 Recall the SU2 in Construction 1, for hk =
(hk,1, hk,2, · · · , hk,v) ∈ H, the hash value is given by
b = hk,1 · a1 + hk,2 · a2 + . . . + hk,v · av + hk,v+1. Hence
given ((a1, · · · , av), b), there are |H|/|B| = qv+1/q = qv

hash functions.
Now in Construction 2, the hash value is hk(a) =

[b]r. Let b̃ = [b]r be fixed, then there are q/2r possible
values of b corresponds to b̃. Therefore, there are totally
qv+1/2r = |H|/|B|, where B = {0, 1}r.

For the SU2 in Construction 1, we know that there
are qv−1 hash function in H mapping (a1, · · · , av) to b

and (a′
1, · · · , a′

v) to b′, where (a1, · · · , av) �= (a′
1, · · · , a′

v).
Let b̃ = [b]r and b̃′ = [b′]r, there are q/2r possi-

ble values of b corresponds to b̃ and q/2r possible val-
ues of b′ corresponds to b̃′. Therefore, there are at most

qv−1 · q

2r
· q

2r
=

qv+1

22r
= |H|/|B|2 functions mapping

(a1, · · · , av) to b̃ and (a′
1, · · · , a′

v) to b̃′ in this construc-

tion.
Construction 3 (den Boer[7]) Let A =

(GF (q))v . For any a = (a1, a2, . . . , av) ∈ A. Define
a polynomial a(x) = a1x + a2x

2 + . . . + avx
v. It is

a mapping from GF (q) to itself. Let H = {hk =
(hk,1, hk,2); hk ∈ GF (q)2}. Then H : A → B defines
an ε-ASU with ε = v/q, with hk(a) = hk,1 + a(hk,2) =
hk,1 + a1 · hk,2 + a2 · (hk,2)2 + . . . + av · (hk,2)v, where
hk = (hk,1, hk,2) ∈ H and a = (a1, a2, . . . , av) ∈ A.

Construction 4 Almost the same as Construction
3, the only difference is that B = {0, 1}r, where 0 <

r ≤ log(q). H : A → B evaluates the hash value by
any r bits of the hash value of Construction 1, i.e.,
hk(a) = [hk,1 + a(hk,2)]r, where hk = (hk,1, hk,2) ∈ H
and a = (a1, a2, . . . , av) ∈ A.

Lemma 2 The family of the hash functions H : A →
{0, 1}r, where 0 < r ≤ log(q), in Construction 4 defines
an ε-ASU with ε = v/2r.

The proof is similar to that of Lemma 1. We omit it.
In Ref.[8], Stinson introduced concepts of ε-ASU, gave

some general constructions for ε-ASU, and showed how to
construct A-codes from ε-ASU. Given an ε-ASU: H : A →
B, Let A be the set of source states, B be the set of authen-
ticators, and each hash function H ∈ H be the encoding
rule. We get an authentication code with PI = 1/|B| and
PS ≤ ε, as shown in Theorem 1.

Theorem 1[8] If there exists an ε-ASU class of hash
functions H from A to B, then there exists an authentica-
tion code for |A| source states, having |B| authenticators
and |H| encoding rules, such that PI = 1/|B| and PS ≤ ε.

Consequently, we have A-codes from the above four
constructions, which are summarized in Table 1.

Table 1. A-codes with a totally secret

authentication key

A-codes |H| |A| |B| PI PS

Const 1 qv+1 qv q 1/q 1/q

Const 2 qv+1 qv 2r 1/2r 1/2r

Const 3 q2 qv q 1/q v/q

Const 4 q2 qv 2r 1/2r v/2r

III. A-Codes with Partial Secret

from ε-ASU

However, previous results on authentication codes are
usually based on the assumption that the authentication
key is totally secret to the opponent Eve.

When the opponent’s entropy about K is less than
log |K|, the length of K, the key K is only partially se-
cret to him. Now that we characterize the uncertainty by
min-entropy, we have H∞(K) < log |K|. When a side in-
formation B = b is exposed to the opponent, a general
upper bound on the reduction of the min-entropy of K is
given by Ref.[9].
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Lemma 3[9] Let K and B be random variables and let
s > 0. Then with probability at least 1− 2−s (taken over
b ∈ B), we have H∞(K) − H∞(K|B = b) ≤ log |B| + s.

The following theorem shows the performance of A-
codes with only a partially secret key where this partial
secrecy is characterized by the fact that Eve’s uncertainty
about K is less than log |K|, the length of K.

Theorem 2 Suppose that the authentication key K,
which determines hash function Hk in an ε-ASU class
of hash functions H : A → B, is only partially se-
cret. Let the opponent’s information about K be char-
acterized by H∞(K) ≥ t log |K|, where 0 < t < 1. Then
the corresponding A-code constructed from the ε-ASU has

PI ≤ |K|1−t

|B| , PS ≤ ε · |K|1−t.

Proof 2 First, we want to estimate the probability
of a successful impersonation attack by Eve, i.e., to de-
termine the probability that Eve, who has partial knowl-
edge about the authentication key K shared between Al-
ice and Bob, can successfully guess a pair (a, b) such that
b = hK(a), a ∈ A, b ∈ B. According to the properties of
ε−ASU , given a pair (a, b), the number of encoding rules
satisfying b = HK(a) is |K|/|B|.

Let Z = z denote all knowledge Eve knows about K

before she sees any valid pair. Let pi, 1 ≤ i ≤ |S|, denote
the probabilities that Eve has assigned to all encoding
rules. Without loss of generality, let the first |K|/|B| en-
coding rules give a valid pair (a, b). Then PI =

∑|K|/|B|
i=1 pi.

Since H∞(K|Z = z) ≥ t log |K|, we know pi ≤
2−t log |K|. So PI =

∑|K|/|B|
i=1 pi ≤ ∑|K|/|B|

i=1 2−t log |K| =
|K|/|B| · 2−t log |K| = |K|1−t/|B|.

A successful substitution attack means that the op-
ponent has guessed a correct pair (a′, b′) after having
seen a valid pair (a, b), where a′ �= a, b = hk(a) and
b′ = hk(a′). The number of encoding rules that give rise
to both pairs is upper bounded by ε · |K|/|B| according to
the definition of ε − ASU , i.e.,

|{k : b = hk(a) & b′ = hk(a′)}| ≤ ε · |K|/|B| (1)

Given any (a, b) with b = hk(a), the probability that the
opponent presents a valid pair (a′, b′) is as follows.

Pr[a �= a′, b′ = hk(a′) | a, b = hk(a)]
=

∑
k∈K Pr[a �= a′, b′ = hk(a′) | a, b = hk(a), K =

k] · Pr[K = k | a, b = hk(a)]
=

∑
k∈K Pr[a �= a′, b′ = hk(a′), b = hk(a) | a, K =

k] · Pr[K = k | a, b = hk(a)]
≤ ∑

k∈K Pr[a �= a′, a, b′ = hk(a′), b = hk(a) | a, K =
k] · 2−t log |K|+log |B|

≤ ε · |K|/|B| · 2−t log |K|+log |B| = ε · |K|1−t. Therefore,

PS = max
a,b,a′,b′

Pr[a �= a′, b′ = hk(a′) | a, b = hk(a)] = ε·|K|1−t.

In the proof, we use the following facts.

(1) Pr[a �= a′, b′ = hk(a′), b = hk(a) | a, K = k]

=Pr[a �= a′, b′ = hk(a′) | a, b = hk(a), K = k]

·Pr[b = hk(a)|a, K = k]

and Pr[b = hk(a) | a, K = k] = 1.
(2) Since the source state a is independent to the au-

thentication key K, we have

Pr[K = k | a, b = hk(a)] = Pr[K = k | b = hk(a)],

hence H∞(K | a, b = hk(a)) = H∞(K | b = hk(a)).
(3) According to Lemma 3, we have H∞(K | b =

hk(a)) ≥ t log |K|−log |B|. Consequently, we know Pr[K =
k | a, b = hk(a)] ≤ 2−t log |K|+log |B|.

Now applying Theorem 2 to the four Constructions
for A-codes from ε-ASU in the last section, we get the
following facts.

Suppose that the opponent’s uncertainty about the
authentication key K satisfies H∞(K) ≥ t log |K|. Now
applying Theorem 2 to the four Constructions for A-codes
gives Table 2.

Table 2. A-codes with a partially secret key

A-codes |H| |A| |B| PI PS

Const 1 qv+1 qv q q−(v+1)t+v q−(v+1)t+v

Const 2 qv+1 qv 2r q−(v+1)t+v+1/2r q−(v+1)t+v+1/2r

Const 3 q2 qv q q−2t+1 v · q−2t+1

Const 4 q2 qv 2r q2(1−t)/2r v · q2(1−t)/2r

Table 2 has shown that there is a compromise between
the number of encoding rules, the number of source states,
PI , and PS . Now that the encoding rule (authentication
key) is only partially known to the opponent, the oppo-
nent’s knowledge about the encoding rules also plays a
role in the compromise, as shown in Table 2. To make
PS < 1, we have to impose different requirements on t. For
example, t > v/(v + 1), t > 1− r

(v + 1) log q
, t > 1/2 and

t > 1 − r

2 log q
are required in Construction 1, 2, 3, 4 re-

spectively.

IV. Application to Privacy Amplification

Privacy amplification[10] distills a shorter but highly
secret string from a partially secret string. Privacy
amplification can be implemented by universal hash
functions[10,11]. Given a partially secret string W , the
length of the distilled secret key is determined by the
min-entropy of W and a parameter ε, which measures
how uniform the secret key is.

More precisely, if the sender and receiver share a bi-
nary string W of length n. To implement privacy ampli-
fication, the sender randomly chooses a function g from a
universal class of hash functions and sends the description
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of this function to the receiver over a public channel. Then
both the sender and receiver computes K = g(W ) as their
secret key. When the public channel is authentic, i.e.,
when the opponent is only able to carry out a passive
attack, the length of the final, distilled secret key is ap-
proximately determined by the min-entropy about S. If
partially secrecy of W is measured with H∞(W ) ≤ tn

(0 < t ≤ 1), then the length of K can be as large as
tn + 2 − 2 log 1/ε.

On the other hand, if the public channel is not au-
thentic, i.e., when Eve can also perform an active attack,
then we can detect Eve’s active attacks in the following
way.

Here we consider a simple scenario: the sender and the
receiver share two independent partially secret strings,
SI and SII . We will use the shorter one for both au-
thentication and distillation, and the other for distilla-
tion. Surprisingly, the independence of two partially se-
cret strings gains a lot. According to the A-Codes from
Construction 3, as long as the opponent’s min-entropy
about SI (of bit-length n′) is larger than n′/2, i.e.,
H∞(SI |Z = z) > n′/2, active attacks can be detected
with A-Codes and privacy amplification can distill a se-
cret key of H∞(SII |Z = z) + 2 − 2 log 1/ε bits from SII .

V. Conclusion

This paper studies how to construct authentication
codes with ε-ASU hash function, but with partially se-
cret authentication key. Our result explicitly presents the
compromise between the number of encoding rules, the
number of source states, and probabilities of imperson-
ation attack and substitution attack. This result gives an
immediate application to privacy amplification against ac-
tive attacks.

References

[1] G.J. Simmons, “Authentication theory/coding theory”,

G.R. Blakley and D. Chaum, eds., Advances in Cryptology,

Proc. Crypto’84, New York, Vol.196, pp.411–431, 1985.

[2] G.J. Simmons, “ A game theory model of digital message au-
thentication”, Congr. Numer., Vol.34, pp.413–424, 1992.

[3] J.L. Carter and M.N. Wegman, “Universal classes of hash func-

tions”, Journal of Computer and System Sciences, Vol.18, No.2,
pp.143–154, 1979.

[4] M.N. Wegman and J.L. Carter, “New hash functions and their
use in authentication and set equality”, Journal of Computer

and System Sciences, Vol.22, No.3, pp.265–279, 1981.

[5] D.R. Stinson, “Combinatorial techniques for universal hash-
ing”, Journal of Computer and System Sciences, Vol.48, No.2,

pp.337–346, 1994.

[6] D.R. Stinson, “Universal hashing and authentication codes”,

Designs, Codes and Cryptography, Vol.4, No.4, pp.369–380,

1994.

[7] B. den Boer, “A simple and key-economical unconditional au-
thentication scheme”, Journal of Computer Security, Vol.2,

No.1, pp.65–71, 1993.

[8] D.R. Stinson, “ Universal hashing and auhtentication codes”,

Advances in Cryptology-CRYPTO’91, Vol.576, pp.74–85, 1992.

[9] S. Wolf, Information-theoretically and Computationally Secure
Key Agreement in Cryptography, ETH Dissertation, No.13138,

ETH Zurich, 1999.

[10] C.H. Bennett, G. Brassard, C. Crépeau, et al., “Generalized
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