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Approximate performance analysis of generalized join the

shortest queue routing

Jori Selen∗†, Ivo J.B.F. Adan∗†‡, Stella Kapodistria†

November 25, 2015

Abstract

In this paper we propose a highly accurate approximate performance analysis of a het-
erogeneous server system with a processor sharing (PS) service discipline and a general
job-size distribution under a generalized join the shortest queue (GJSQ) routing protocol.
The GJSQ routing protocol is a natural extension of the well-known join the shortest queue
(JSQ) routing policy that takes into account the non-identical service rates in addition to
the number of jobs at each server. The performance metrics that are of interest here are
the equilibrium distribution and the mean and standard deviation of the number of jobs at
each server. We show that the latter metrics are near-insensitive to the job-size distribution
using simulation experiments. By applying a single queue approximation (SQA) we model
each server as a single server queue with a state-dependent arrival process, independent
of other servers in the system, and derive the distribution of the number of jobs at the
server. These state-dependent arrival rates are intended to capture the inherent correlation
between servers in the original system and behave in a rather atypical way.

1 Introduction

1.1 Motivation

This work is motivated by web server farms. Server farms have gained popularity for pro-
viding scalable and reliable computing and web services. Most commonly the objective in
analyzing such a system lies in the determination of an optimal or near-optimal load balancing
routing protocol so as to maximize the performance of the system, see, e.g., [1, 6, 8], where
the performance of interest is usually the mean response time for an arbitrary job. In this
paper the objective is to report some interesting properties of the arrival flow to each server
and suggest an approximation approach for the GJSQ routing protocol. We consider farms
with heterogeneous servers, which is motivated by the different hardware and the wide variety
of computing capacities regarding processing power and memory access performance seen in
practice in server farms [13]. We assume that service requests arrive to the system according
to a Poisson process. Upon arrival, a front-end dispatcher routes the request to one of the
servers. After the request has been routed to the server, we assume that it cannot balk or
jokey. All requests routed to a server are sharing the provided service (think of bandwidth,
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CPU, or RAM). We assume a PS service discipline at each server since it closely approximates
the scheduling policies [7, 10] employed by most commodity operating systems (e.g., Linux
CPU time-sharing) and is a popular policy in computing centers (e.g., Cisco Local Director,
IBM Network Dispatcher and Microsoft Sharepoint, see [3] for a survey).

In [5] the authors consider a server farm consisting of homogeneous servers, where upon
arrival jobs are routed according to the JSQ routing protocol. This protocol in case of homo-
geneous servers, due to the PS service discipline, is performing near-optimal in terms of the
mean response time. However, as indicated by Whitt in [15], the JSQ policy is far from optimal
in case of heterogeneous servers. In [2] the authors comment on the performance of various
systems under different routing protocols and conclude that the shortest expected delay (SED)
routing protocol is near-optimal in terms of mean response time. The SED policy is a policy
that routes jobs upon arrival to the queue promising the minimum expected delay (which also
includes the processing time). In case of exponential job-size distributions, the GJSQ and SED
routing protocols are identical and in case of homogeneous servers GJSQ and JSQ are the
same. However, in case of general job-size distributions and heterogeneous servers we assume
that the only available information are the service rates and the number of jobs at each server,
i.e. we do not keep track of residual processing times.

Due to the complexity and the various challenges that the model at hand presents, we
restrict our analysis to the case of two heterogeneous servers with a general job-size distri-
bution under the GJSQ routing protocol. From here onwards we refer to this model as the
M/G(1, s)/2/GJSQ/PS system, abbreviated as the GJSQ model, where G is the job-size dis-
tribution and 1 and s are the service rates at servers 1 and 2, respectively. The approach
described in this paper can be seen as a first stepping stone towards the analysis of heteroge-
neous server farms with PS servers; a very broad area, full of interesting problems. Moreover,
the ideas presented here extend the work of Gupta et al. [5] on the analysis of the JSQ routing
for homogeneous web server farms.

1.2 Related work

To the best of our knowledge there is no previous mathematical analysis of the GJSQ system.
In [14], Selen et al. derive the joint equilibrium distribution of the number of jobs at each server
in the M/M(1, s)/2/SED/FCFS model. They prove that this distribution can be expressed
as an infinite series of product forms using the compensation approach. The benefit of that
approach is that it produces, by truncating the series expression, numerical results with an a
priori set accuracy level. Unfortunately, the compensation approach is not appropriate (in its
current setting) for multiple servers, nor for general job-size distributions. Before [14], very little
was known regarding the mathematical analysis of the SED policy. In [11], the authors suggest
two models that act as upper and lower bounds to the SED system. However, they do not
provide closed form expressions for the equilibrium distribution of these two bounding models,
but only an algorithmic approach based on matrix analytic methods. Furthermore, in [4, 9],
the authors show that the SED routing policy is asymptotically optimal in terms of the mean
response time and results in complete resource pooling in the heavy traffic limit. This heavy
traffic limit result may be used in a similar manner as in [12]. However, after a few numerical
experiments, we concluded that this approximation in our case results in poor estimates and
for this reason we did not proceed in this direction. On the contrary, the approach developed
by Gupta et al. [5] on approximating the distribution of the number of jobs at each server,
as we show in this paper, is appropriate for the GJSQ setting with heterogeneous servers.
More concretely, in [5], the authors develop the SQA method that accurately determines the
distribution of the number of jobs at each server by modeling each queue as an Mn/M/1/PS
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system with state-dependent arrival rates. These state-dependent arrival rates are referred
to as the conditional arrival rates and are constructed in such a way that they capture the
inherent correlated behavior of the complete server farm.

1.3 Contributions

We believe that we provide the first approximate analysis of the equilibrium distribution and
moments of the number of jobs at each server in the GJSQ system (and by Little’s law also the
mean response time for an arbitrary job). Moreover, the approximation is highly accurate: we
encounter a maximum relative difference between the approximation and simulations of 2.2%.
In deriving these approximations, we provide three key contributions:

1. The mean and standard deviation of the number of jobs at each server and the conditional
arrival rates are near-insensitive to the job-size distribution. This allows us to study the
more tractable model with an exponential job-size distribution.

2. In case of an exponential job-size distribution, the SQA method yields the same equilib-
rium distribution for the number of jobs at each server as in the original GJSQ model.

3. For the application of the SQA method we present an approach for the derivation of the
conditional arrival rates. In particular, we show that the conditional arrival rates, say
λi(n), i = 1, 2, n ∈ N0, to server 1 satisfy

λ1(n)→ ρ1+s as n→∞, (1.1)

where ρ is the load on the system, see Section 2, and the conditional rates to server 2 for
large n oscillate between s different points. Note that the former result is similar to the
result obtained in [5] for the case s = 1, however the latter result is very atypical and is
discussed in greater detail in Section 2.3.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we give a detailed model description
and formally define and investigate the time-average and conditional arrival rates. Section 3 is
devoted to showing that the performance metrics of interest are near-insensitive to the job-size
distribution. We describe the SQA and determine the conditional arrival rates in Section 4.
The approximations are evaluated in Section 5. In Section 6 we present some conclusions.

2 Model description

2.1 Heterogeneous servers

We consider a system of two heterogeneous servers and a single dispatcher. The servers employ
a PS service discipline and can have different service rates, i.e. server 1 has service rate 1 and
server 2 has service rate s. Jobs arrive to the dispatcher according to a Poisson process with
rate λ and are routed immediately to one of the servers. Jobs cannot switch servers after being
routed. We detail the routing policy in Section 2.2. The size of a job is drawn from a general
distribution G. Without loss of generality we assume that the mean job size is 1. Note that,
for example, the (residual) processing time of a (residual) size G job that runs on server 2 that
is currently serving q2 jobs is given by Gq2/s.

3
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Figure 1: Simulated long-term fraction of jobs routed to server i as a function of the load
ρ, where s = 4 and the job-size distribution is exponential. Dashed lines represent expected
behavior.

In what follows we assume that s is a positive integer number. In the general case s ∈ R+

we can bound the corresponding system by two systems with service rates given by the closest
two integers to s.

2.2 Routing policy

The routing policy employed by the dispatcher is a state-aware policy, i.e. the dispatcher is
aware of the number of jobs at each server just before an arrival instant, q1 and q2, and the
service rates. The GJSQ routing policy routes an arriving job to the server with the smallest
index (qi + 1)/si, where si is the service rate at server i. In case of a tie, the job is randomly
routed to one of the servers. These indexes may be interpreted as an estimate of the expected
processing time for the arriving job, made by the dispatcher who is unaware of the job-size
distribution and the remaining processing times of the jobs currently in service, and furthermore
ignores future arrivals.

Under this routing policy, we define the load on this system as

ρ := λ/(1 + s). (2.1)

Throughout the rest of this paper we assume that ρ < 1.
Although not necessarily optimal, GJSQ routing outperforms JSQ routing when servers are

non-identical. GJSQ routing attempts to balance the load on the servers by taking into account
the different service rates in addition to the information on the current number of jobs at each
server. In Figure 1 we show that the long-term fraction of jobs routed to the two servers is a
function of the load ρ. In light traffic GJSQ assigns all jobs to the fast server and in heavy
traffic the load is divided proportionally according to the service rates. This is in contrast with
JSQ routing, which assigns a long-term fraction of the jobs to server 1 that decreases from 1/2
to 1/(1 + s) for increasing load ρ (verified through simulation).

2.3 Arrival rates

We briefly introduce two important concepts related to the (time-average) arrival rates to each
server. These concepts will be used throughout the paper.

Definition 2.1. In the GJSQ model, the time-average arrival rate to server i is defined as

λi := lim
t→∞

Ai(t)

t
, (2.2)
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Figure 2: The conditional arrival rates to server 2 oscillate between s points.

where Ai(t) is the number of arrivals at server i during the time interval [0, t].

Definition 2.2. In the GJSQ model, the conditional arrival rate to server i, given that server
i has n jobs, is defined as

λi(n) := lim
t→∞

Ai,n(t)

Ti,n(t)
, (2.3)

where Ai,n(t) is the number of arrivals at server i during the time interval [0, t] that see n jobs
at server i on arrival (excluding themselves), and Ti,n(t) is the total time spent by server i with
n jobs during the time interval [0, t].

The two definitions above are related. Assuming it exists, let πi(n) be the equilibrium
probability that there are n jobs at server i, then λi =

∑∞
n=0 λi(n)πi(n).

Figure 2 depicts the conditional arrival rates to server 2 for varying s. Intuitively it makes
sense that if a server has many jobs, the other server will probably have few jobs and thus it
is less likely that the dispatcher routes the job to that server. However, what we see here is
a peculiar repeating pattern that has s different points and does not align with this intuition.
We see that if server 2 has a multiple of s jobs (or one less), fewer jobs are routed to server 2.
This pattern is difficult to explain, but it is definitely related to the probability that server 1
has a lower index than server 2, given that server 2 currently has n jobs. We expect and indeed
verify that this probability also follows such a repeating pattern. Additionally, states in server
2 are somewhat similar if they differ by a multiple of s jobs, which can be derived from the
equilibrium distribution in [14].

3 Near-insensitivity

In [5] the authors establish a near-sensitivity property in the setting of a homogeneous server
farm with JSQ routing. In particular, the first and second moment of the number of jobs at
server i, Qi, and the conditional arrival rates are near-insensitive to the job-size distribution.
The near-insensitivity of these two metrics seems related to the insensitivity of the equilibrium
distribution to the job-size distribution in PS servers, see, e.g., [5, Theorem 4.2]; and the fact
that the routing policy only uses the number of jobs at each server when making a decision,
as opposed to, e.g., using residual processing times. The GJSQ routing decisions are based on
the dynamically changing number of jobs at each server as well as the service rates. Indeed,
one expects the near-insensitivity properties to extend also to the case of heterogeneous servers
and GJSQ routing. Establishing this near-insensitivity property is important, since it allows
us to limit our attention to the more tractable GJSQ system with an exponential job-size
distribution.
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Name Distribution Support Variance

uni Uniform [0, 2] 1/3
exp Exponential [0,∞) 1
weib Weibull (0,∞) 5
logn Log-normal (0,∞) 10

Table 1: Job-size distributions used in simulations.

Job-size distribution SQA
s ρ Metric uni exp weib logn Value Diff.

2 0.7 E[Q1] 0.9139 (0.0030) 0.9232 (0.0030) 0.9223 (0.0029) 0.9361 (0.0038) 0.9077 1.7%
σ(Q1) 1.0404 (0.0049) 1.0505 (0.0050) 1.0560 (0.0056) 1.0704 (0.0067) 1.0462 0.4%
E[Q2] 2.0111 (0.0059) 2.0289 (0.0061) 2.0222 (0.0057) 2.0519 (0.0074) 2.0329 −0.2%
σ(Q2) 2.0302 (0.0099) 2.0465 (0.0106) 2.0506 (0.0114) 2.0813 (0.0141) 2.0484 −0.1%

0.9 E[Q1] 3.2244 (0.0336) 3.2797 (0.0336) 3.2316 (0.0298) 3.2396 (0.0266) 3.2188 1.9%
σ(Q1) 3.2208 (0.0590) 3.2716 (0.0723) 3.2186 (0.0575) 3.2002 (0.0505) 3.2161 1.7%
E[Q2] 6.6841 (0.0676) 6.7915 (0.0674) 6.6834 (0.0587) 6.6988 (0.0524) 6.6424 2.2%
σ(Q2) 6.4289 (0.1185) 6.5288 (0.1453) 6.4186 (0.1141) 6.3828 (0.1016) 6.4091 1.9%

4 0.7 E[Q1] 0.4688 (0.0016) 0.4747 (0.0017) 0.4705 (0.0017) 0.4667 (0.0022) 0.4741 0.1%
σ(Q1) 0.6685 (0.0024) 0.6730 (0.0026) 0.6700 (0.0029) 0.6652 (0.0031) 0.6655 1.1%
E[Q2] 2.5386 (0.0063) 2.5507 (0.0069) 2.5177 (0.0070) 2.4997 (0.0067) 2.5866 −1.4%
σ(Q2) 2.5082 (0.0102) 2.5179 (0.0115) 2.4936 (0.0133) 2.4744 (0.0122) 2.5457 −1.1%

0.9 E[Q1] 1.8662 (0.0191) 1.8793 (0.0145) 1.8830 (0.0196) 1.9400 (0.0223) 1.8813 −0.1%
σ(Q1) 1.9404 (0.0338) 1.9539 (0.0314) 1.9801 (0.0444) 2.0394 (0.0408) 1.9566 −0.1%
E[Q2] 8.2405 (0.0769) 8.2773 (0.0597) 8.2631 (0.0783) 8.4863 (0.0861) 8.3642 −1.0%
σ(Q2) 7.6982 (0.1374) 7.7507 (0.1264) 7.8485 (0.1815) 8.0912 (0.1652) 7.7692 −0.2%

Table 2: Simulated mean and standard deviation of Qi, for the GJSQ system with various
s, ρ and job-size distributions. Sample standard deviation is shown in parentheses. Last two
columns show the value obtained by the SQA and the relative difference with respect to the
exponential case.

3.1 Simulation settings

To support our claims, we simulate the GJSQ model. A simulation consists of 2 · 106 job
departures and each simulation is repeated 50 times. Statistics are only computed for departed
jobs, i.e. data of jobs that are still in service at the end of the simulation are discarded. In
Table 1 we list the four job-size distributions considered in this paper.

3.2 Near-insensitivity results

In Table 2 we show simulated statistics on the mean and standard deviation σ(·) of Qi for
the GJSQ model with various job-size distributions. For the settings considered in Table 2,
the mean number of jobs at server i deviates by no more than 3.6% from the exponential
case, while the standard deviation deviates by at most 4.4%. The largest deviations from the
exponential case occur for the log-normal job-size distribution. This is as expected, since this
job-size distribution has a variance that is 10 times higher than the variance of the exponential
job-size distribution. Although the results are not as strong as those shown in [5, Figure 3], we
conclude that the more volatile environment of heterogeneous servers and GJSQ routing also
has the near-insensitivity property for E[Qi] and σ(Qi). Moreover, the performance in terms
of the mean response time is also near-insensitive to the job-size distributions by Little’s law.

Concerning the conditional arrival rates, we see in Figure 3 that the simulated values for
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Figure 3: Simulated conditional arrival rates in the GJSQ system with various job-size dis-
tributions. The dotted curves represent values determined by the algorithm in [14] for the
exponential job-size distribution.

the job-size distributions of Table 1 match the results of the algorithm for the exponential case
[14]. Simulated values for states where the sample standard deviation is not too high differ by
at most 5% from the results for the exponential case. So, also the conditional arrival rates are
near-insensitive to the job-size distribution.

4 Single queue approximation

We have established near-insensitivity of E[Qi], σ(Qi) and the conditional arrival rates to the
job-size distributions. Thus, we may limit our attention to systems with an exponential job-
size distribution. In this section we derive an approximation for the distribution of the number
of jobs at each server using the SQA, which models server i as an Mn/Mi/1/PS queue with
state-dependent arrival rates λi(n), see also [5, Section 3]. SQA is exact when the job-size
distribution is exponential and the routing belongs to a specific class of routing policies; the
following theorem is a version of [5, Theorem 3.1] that is applicable to the GJSQ model.

Definition 4.1. A stationary state-aware routing policy is a time-stationary routing policy
that only uses information about the number of jobs at the servers and the service rates at the
instant of an arrival. The decisions may be made probabilistically, possibly biased in favor of
certain servers.

Theorem 4.2. Consider the M/M(1, s)/2/R/S queueing model, where R is any station-
ary state-aware routing policy, e.g. GJSQ, and S is any stationary, size-independent, work-
conserving service discipline, e.g. PS. Consider server i in this model. Then SQA with the
exact conditional arrival rates λi(·) yields the same equilibrium distribution for the number of
jobs at each server as in the original model.

It remains to specify the conditional arrival rates λi(n) for both servers. We combine exact
limiting results for n ≥ Ni and approximation results for n < Ni, where N1 = 3 and N2 = 2s.
These choices for Ni result in accurate approximations.

We note that Theorem 4.2 implies that in order to determine the conditional arrival rates,
we may assume a FCFS service discipline.

In Figure 2 we have seen that the conditional arrival rates λi(n) exhibit a repeating pattern
from some n and onwards. We rigorously characterize this limiting repeating pattern in the
next theorem.
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Theorem 4.3. For the M/M(1, s)/2/GJSQ/PS queueing model with s ∈ N,

λlim1 := lim
n→∞

λ1(n) = ρ1+s, (4.1)

λlim2 (r) := lim
n→∞

λ2(sn+ r) =

{
sA(r+1)

A(r) , r = 0, 1, . . . , s− 2,

sρ1+s A(0)
A(s−1) , r = s− 1,

(4.2)

where

A(r) =

s∑
i=1

ηi
βi

ρ1+s − βi
i+(ρ1+s, βi, r) + h(r) +

βs+1

1− βs+1
i−(ρ1+s, βs+1, r), (4.3)

and the variables β1, β2, . . . , βs+1, η1, η2, . . . , ηs, and the functions h(·), i+(·), i−(·) are defined
in Appendix A.

Proof. See Appendix B.

For the rates λ1(n), n < 3 and λ2(n), n < 2s we provide approximations that are functions
of s and ρ. For server 1 we use a multiple linear regression model to fit an approximate function
for the conditional arrival rates on data obtained from the algorithm in [14] for s = 1, 2, 3, 4
and ρ from 0.3 to 0.99. Obviously, one can also use conditional arrival rates obtained by
simulation for these fitting purposes. We carefully select a set of 5 independent variables for
each conditional arrival rate. This leads to the following approximate conditional arrival rates
for server 1:

λ1(0)

ρ1+s
≈
[
sρ s s

ρ 1 ρ2

s2

] [
0.669 −1.90 1.23 1.86 −0.192

]T
, (4.4)

λ1(1)

ρ1+s
≈
[
sρ2 1 1

ρ
1
sρ ρ1/s

] [
−0.00856 1.37 −0.0578 0.123 −0.254

]T
, (4.5)

λ1(2)

ρ1+s
≈ 1 +

[
sρ 1

sρ
ρ
s2

1
s2

ρ1/s
] 1

100

[
−0.131 −0.820 −6.48 10.4 0.893

]T
(4.6)

with xT the transpose of a vector x. For s = 1, one should consider λ1(·) = λ2(·) and use the
approximations presented in (4.4)-(4.6).

For server 2, let us note that λ2(n) = λ, n = 0, . . . , s−2 due to the GJSQ routing. Using a
multiple regression model in this case is more difficult, since the number of states for which we
need to obtain a fit increases with s. To circumvent a possibly complex fitting procedure, we
establish a relation between the conditional arrival rates for the states n = s− 1, s, . . . , 2s− 1
and the limiting conditional arrival rates determined in Theorem 2. Namely,

λ2(n) ≈
(

1 +
(1

s
− ρ

2s− 1

) 1

2n−(s−1)

)
λlim2 (n− s), (4.7)

where for convenience λlim2 (−1) = λlim2 (s−1). The approximations (4.4)-(4.7) behave in various
limiting regimes as expected:

Proposition 4.4.

1. For s→∞, we have that λ1(n) ↓ 0 and λ2(n) = λ for all n ∈ N0. No job will join server
1, since the processing times in server 2 are instantaneous.

2. In the light-traffic regime, i.e. ρ ↓ 0, we find that λ1(n) ↓ 0, n ∈ N0 and λ2(n) ↓ 0, n ≥
s− 1.
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Figure 4: Comparison of conditional arrival rates determined by the algorithm in [14] (lines)
and our approximations (marks) for ρ = 0.4 ( , ), ρ = 0.7 ( , ), and ρ = 0.9 ( , ).

3. In the heavy-traffic regime, i.e. ρ ↑ 1, we establish that λ1/λ = 1/(1 + s) and λ2/λ =
s/(1 + s) which is consistent with the findings in Figure 1.

Proof. 1. Follows straightforwardly by taking the limit s→∞ in (4.4)-(4.6) while taking into
account that ρ = λ/(1 + s). Furthermore, observe that λ2(n) = λ, n = 0, . . . , s − 2, so that
lims→∞ λ2(n) = λ, n ∈ N0.
2. See Appendix C.
3. From the approximate conditional arrival rates λ1(·) one can derive (approximate) equi-
librium probabilities π1(·). Then, λ1 =

∑∞
n=0 λ1(n)π1(n) =

∑∞
n=0 π1(n + 1) = 1 − π1(0)

by exploiting the balance equations. For ρ ↑ 1 it can be verified that π1(0) ↓ 0, so that
limρ↑1 λ1/λ = 1/(1 + s). The result for server 2 follows analogously.

5 Evaluating the approximation

We are now in a position to evaluate the proposed approximations. First, we show that
the approximations for the conditional arrival rates follow closely the exact values, which were
determined using the algorithm [14]. Second, we establish that the mean and standard deviation
of the number of jobs at each server is also well approximated.

Figure 4 compares the conditional arrival rates obtained from the algorithm in [14] and
the approximations derived in the previous section. For the cases considered in the figure, the
maximum relative difference of the approximation with respect to the values determined by the
algorithm is 1.5% for λ1(·) and 4.1% for λ2(·). Since both methods consider exponential job-size
distributions, the difference is due to the fitting error introduced in the approximations of the
conditional arrival rates in Section 4 and the truncation error in the algorithm in [14]. However,
since the truncation error has been chosen to be of the order 10−5, it has little influence.

In the two rightmost columns of Table 2 we provide the mean and standard deviation of the
number of jobs at both servers determined using the SQA. We report highly accurate approxi-
mations that deviate less than 2.2% from the case with an exponential job-size distribution for

9



0 5 10 15

0

1

2

3

n

Figure 5: Simulated conditional arrival rates for a system with three servers with service rates
1 ( ), 2 ( ), and 5 ( ), with ρ = 0.7.

the listed values of s and ρ. Although our approximations are not aimed at the case s = 1, we
report accurate approximations also in this setting with maximum relative differences of the
same order as in [5, Section 6.1].

6 Conclusion

In this paper, we provide an approximate performance analysis of a queueing system consisting
of two heterogeneous PS servers with service rates 1 and s ∈ N, respectively, a general job-
size distribution and GJSQ routing. More concretely, we derived the approximate equilibrium
distribution of the number of jobs at each server using the SQA method. In order to apply
SQA, we established that the GJSQ system is near-insensitive to the job-size distribution
and thus we approximated the system at hand with exponentially distributed job-sizes. We
then approximated the conditional arrival rates for the exponential case, by combining exact
limiting results for large number of jobs and approximation results, which were obtained using
a multiple linear regression model, for small number of jobs. Ultimately, the aforementioned
approach resulted in approximations that are highly accurate; we reported a maximum relative
difference with respect to exact or simulation results of 4.1% for the conditional arrival rates
and 2.2% for the mean and standard deviation of the number of jobs at each server.

In this paper we set the groundwork for the analysis of server farms with heterogeneous
servers under the GJSQ routing policy by analyzing the case of two servers. Of course, server
farms consist of multiple servers so it is in our future plans to extend the analysis presented
in this paper to more than two servers. The most difficult aspect of this task would be the
derivation of the conditional arrival rates, which possibly has to rely on simulation data, since
the approach in [14] is in its current setting restricted to two servers. In Figure 5 we present an
example of the simulated conditional arrival rates in case of three servers with service rates 1,
2 and 5. Note that the structure of the conditional arrival rates is as expected, i.e. the number
of points in the repeating pattern is directly related to the rate of service, but the exact values
of these points differ from the values obtained by formulas (4.1) and (4.2).
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A Definition of the variables and functions in Theorem 4.3

The definitions can be found in [14, Lemma 5.11], but we summarize them here. We denote
α = ρ1+s.

The functions i+(·) and i−(·) are vectors of size s and have their first element equal to 1,
i.e. i+(α, β, 0) = i−(α, β, 0) = 1. Furthermore, the vectors satisfy

i+(α, β, r)

i+(α, β, 0)
=
(αβ(1 + s)(ρ+ 1)− β2(1 + s)ρ− α2

αβs

)r
, r = 0, 1, . . . , s− 1 (A.1)

and

i−(α, β, r)

i−(α, β, 0)
=

Ψ(α, β, ψ−(β))ψ+(β)r −Ψ(α, β, ψ+(β))ψ−(β)r

Ψ(α, β, ψ−(β))−Ψ(α, β, ψ+(β))
, r = 0, 1, . . . , s− 1 (A.2)

with

ψ±(β) =
(1 + s)(ρ+ 1)− β ±

√
(β − (1 + s)(ρ+ 1))2 − 4s(1 + s)ρ

2s
(A.3)

and

Ψ(α, β, ψ) = β − (1 + s)(ρ+ 1) + sψ +
β

α
(1 + s)ρψs−1 = (1 + s)ρψ−1

(β
α
ψs − 1

)
. (A.4)

The variables β1, β2, . . . , βs are the s roots that satisfy |βi| < |α|, i = 1, 2, . . . , s of the
equation (

αβ(1 + s)(ρ+ 1)− β2(1 + s)ρ− α2
)s − β(αβs)s = 0, (A.5)

and βs+1 with |βs+1| < |α| is the single root of

α2ss + β2((1 + s)ρ)s − αβss(ψ+(β)s + ψ−(β)s) = 0. (A.6)

The vector h = (h(0), h(1), . . . , h(s− 1)) is given by

h = α
(1

2
(1 + s)ρM (0,s−1) + αI

)−1 s∑
i=1

ηii+(α, βi), (A.7)

where the coefficients η1, η2, . . . , ηs satisfy

s∑
i=1

ηi

(
βi
(
(1 + s)ρI + αsM (s−1,0))

+ α2
(
−(1 + s)(ρ+ 1)I + sLT + (1 + s)ρL

)(1

2
(1 + s)ρM (0,s−1) + αI

)−1)
i+(α, βi)

= −βs+1

(
(1 + s)ρM (0,s−1) + αI

)
i−(α, βs+1), (A.8)

where I is the s× s identity matrix, M (x,y) is the s× s binary matrix with element (x, y) equal
to one and zeros elsewhere, and L is an s× s subdiagonal matrix with elements (x, x− 1), x =
1, 2, . . . , s − 1 equal to one and zeros elsewhere. For consistency with indexing of all vectors,
the indexing of a matrix starts at 0.
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B Proof of Theorem 4.3

The proof is based on the exact results of the related M/M(1, s)/2/SED/FCFS system, with
s ∈ N, presented in [14]. Although we obtain similar results for the limiting conditional arrival
rates for server 1 as in [5], we use here a completely different approach in deriving the limits.

In [14], the state space {(q1, q2) | (q1, q2) ∈ N2
0} of the Markov process is transformed to

the state space {(m,n, r) | m ∈ N0, n ∈ Z, r = 0, 1, . . . , s − 1} where m = min(q1, b q2s c),
n = b q2s c − q1 and r = mod(q2, s). Let us denote the equilibrium probabilities for the three-
dimensional state space as p(m,n, r). The equilibrium probability p(m,n, r) has a series ex-
pression, i.e. p(m,n, r) =

∑∞
l=0 x(l,m, n, r), namely, for m ≥ 0, n ≥ 1,

p(m,n, r) = C
∞∑
l=0

(s+1)l∑
i=1

s∑
j=1

βnl,d(i)+j
(
ηl,d(i)+jα

m
l,i

+ νl+1,d(i)+jα
m
l+1,d(i)+j

)
i+(αl,i, βl,d(i)+j , r). (B.1)

For m ≥ 0,

p(m, 0, r) = C
∞∑
l=0

(s+1)l∑
i=1

αml,ihl,i(r). (B.2)

For m ≥ 0, n ≤ −1,

p(m,n, r) = C
∞∑
l=0

(s+1)l∑
i=1

ηl,i(s+1)α
m
l,iβ
−n
l,i(s+1)i−(αl,i, βl,i(s+1), r)

+ C
∞∑
l=0

(s+1)l∑
i=1

νl+1,i(s+1)α
m
l+1,i(s+1)β

−n
l,i(s+1)i−(αl+1,i(s+1), βl,i(s+1), r). (B.3)

For the exact interpretation of each variable we refer the reader to [14]. In [14] the authors
establish the following properties:

1. There exists a positive integer N such that the series in (B.1) and (B.3) converge abso-
lutely for all m ≥ 0, |n| ≥ 1 with m+ |n| > N and the series (B.2) converges absolutely
for all m ≥ N .

2. For m+ |n| > N , we have |x(l,m, n, r)| < u(l) and
∑∞

l=0 u(l) <∞.

3. The series
∑

m+|n|>N p(m,n, r), r = 0, 1, . . . , s− 1 converges absolutely.

4. |αl,i| > |βl,d(i)+j | and |βl,i| > |αl+1,i| with α0,1 = ρ1+s < 1.

In this proof we make use of the dominated convergence theorem for complex-valued functions.

B.1 Server 1

The limiting conditional arrival rate to server 1 can be determined from

lim
n→∞

λ1(n) = lim
n→∞

π1(n+ 1)/αn+1
0,1

π1(n)/αn0,1
α0,1. (B.4)

12



The marginal distribution for server 1 is given by, where m = b q2s c and r = mod(q2, s),

π1(n) =

∞∑
m=0

s−1∑
r=0

p(min(n,m),m− n, r)

=

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r) +

s−1∑
r=0

p(n, 0, r) +

∞∑
m=1

s−1∑
r=0

p(n,m, r). (B.5)

Furthermore,

lim
n→∞

π1(n)

αn0,1
= lim

n→∞

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r)
αn0,1

+
s−1∑
r=0

lim
n→∞

p(n, 0, r)

αn0,1
+
∞∑
m=1

s−1∑
r=0

lim
n→∞

p(n,m, r)

αn0,1
, (B.6)

where the interchange of the limit and the series for the third term on the right-hand side of
(B.6) is allowed by the dominated convergence theorem, because one can bound p(n,m, r) from
above by p(0,m, r) and

∑∞
m=0 p(0,m, r) < ∞ since it is a subseries of

∑
m+|n|>N p(m,n, r),

which converges absolutely by property 3. Furthermore, we know that limm→∞ p(m,n, r) =
limm→∞

∑∞
l=0 x(l,m, n, r) which is equal to

∑∞
l=0 limm→∞ x(l,m, n, r) by the dominated con-

vergence theorem for complex-valued functions in combination with property 2. This allows us
to compute the second and third term on the right-hand side of (B.6). The first term on the
right-hand side of (B.6) can be determined as follows

lim
n→∞

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r)
αn0,1

= C
(

lim
n→∞

∞∑
l=0

(s+1)l∑
i=1

ηl,i(s+1)

(
αl,i

α0,1

)n
−
(
βl,i(s+1)

α0,1

)n
αl,i

βl,i(s+1)
− 1

s−1∑
r=0

i−(αl,i, βl,i(s+1), r)

+ lim
n→∞

∞∑
l=0

(s+1)l∑
i=1

νl+1,i(s+1)

(
βl,i(s+1)

α0,1

)n
−
(
αl+1,i(s+1)

α0,1

)n
1− αl+1,i(s+1)

βl,i(s+1)

s−1∑
r=0

i−(αl+1,i(s+1), βl,i(s+1), r)
)

= C
η0,s+1
α0,1

β0,s+1
− 1

s−1∑
r=0

i−(α0,1, β0,s+1, r). (B.7)

Interchange of the limit and series is again allowed here since one can bound the absolute value
of the summands from above by v(l) for sufficiently large n and

∑∞
l=0 v(l) <∞. One can finally

establish that

lim
n→∞

π1(n)

αn0,1
= C

( η0,s+1
α0,1

β0,s+1
− 1

s−1∑
r=0

i−(α0,1, β0,s+1, r)

+
s−1∑
r=0

h0,1(r) +
s∑
j=1

η0,jβ0,j
1− β0,j

s−1∑
r=0

i+(α0,1, β0,j , r)
)
. (B.8)

Thus, by (B.4) and (B.8), limn→∞ λ1(n) = α0,1 = ρ1+s.
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B.2 Server 2

The limiting conditional arrival rate to server 2 can be determined from

lim
n→∞

λ2(sn+ r) =

limn→∞ s
π2(sn+r+1)/αn

0,1

π2(sn+r)/αn
0,1

, r = 0, 1, . . . , s− 2,

limn→∞ s
π2(sn+r+1)/αn+1

0,1

π2(sn+r)/αn
0,1

α0,1, r = s− 1.
(B.9)

The marginal distribution for server 2 is given by, for r = 0, 1, . . . , s− 1,

π2(sn+ r) =

∞∑
q1=0

p(min(q1, b
sn+ r

s
c), bsn+ r

s
c − q1,mod(sn+ r, s))

=
∞∑
q1=0

p(min(q1, n), n− q1, r)

=

n−1∑
q1=0

p(q1, n− q1, r) + p(n, 0, r) +

∞∑
q1=1

p(n,−q1, r). (B.10)

For π2(sn+ r+ 1), r = s− 1 we should replace n by n+ 1 and r by 0 in (B.10). Furthermore,
for r = 0, 1, . . . , s− 1,

lim
n→∞

π2(sn+ r)

αn0,1
= lim

n→∞

n−1∑
q1=0

p(q1, n− q1, r)
αn0,1

+ lim
n→∞

p(n, 0, r)

αn0,1
+ lim
n→∞

∞∑
q1=1

p(n,−q1, r)
αn0,1

. (B.11)

Using identical arguments as for the limiting conditional arrival rate for server 1, we establish

lim
n→∞

π2(sn+ r)

αn0,1
= A(r), r = 0, 1, . . . , s− 1, (B.12)

where A(r) is given in (4.3). Finally, combining (B.9) and (B.12) proves (4.2).

C Proof of Proposition 4.4, point 2

By letting ρ ↓ 0 in (4.4)-(4.6) and λ1(n) ≈ ρ1+s, n ≥ 3 we immediately find that λ1(n) ↓ 0, n ∈
N0.

We note that in (4.7) the factors on the right-hand side in front of λlim2 (n−s) go to a constant
for ρ ↓ 0. So, what remains is that we establish that limρ↓0 λ

lim
2 (r) = 0, r = 0, 1, . . . , s − 1.

This part of the proof relies heavily on the asymptotic results of [14]. We denote α = ρ1+s and
investigate for r = 0, 1, . . . , s− 1,

A(α, r)

αr/s
=

s∑
i=1

ηi
βi/α

1− βi/α
ui
(βi
α

)r/s
+ α1/s h(r)

α(r+1)/s
+ α1−r/s βs+1/α

1− βs+1
i−(α, βs+1, r), (C.1)

where we used that i+(α, βi, r) = uiβ
r/s
i with ui the i-th unit root of us = 1, which is established

in [14, Lemma 5.6]. Now,

lim
α↓0

A(α, r)

αr/s
= c(r), (C.2)

where c(r) is some constant. In the following we denote ci as some constant that can be
a function of r. Equation (C.2) follows from the fact that for α ↓ 0 we have that βi/α →

14



c1 < 1, i = 1, 2, . . . , s, βs+1/α → c2 [14, Lemma 5.15(i)(a) and (i)(c)]; h(r)/α(r+1)/s → c3(r)
[14, Appendix B, part (c)]; i−(α, βs+1, r) → c4(r) [14, Lemma 5.15(i)(d)]; βs+1 → 0 [14,
Corollary 5.14]; and

∑s
i=1 ηiui → c5 (α ↓ 0 in (5.46) of [14]).

Finally, for r = 0, 1, . . . , s− 2,

lim
α↓0

A(α, r + 1)

A(α, r)
= lim

α↓0

α(r+1)/s

αr/s
A(α, r + 1)/α(r+1)/s

A(α, r)/αr/s
= lim

α↓0
α1/s c(r + 1)

c(r)
= 0 (C.3)

and for r = s− 1,

lim
α↓0

α
A(α, 0)

A(α, s− 1)
= lim

α↓0

α

α(s−1)/s
A(α, 0)

A(α, r)/α(s−1)/s = lim
α↓0

α1/s c(0)

c(s− 1)
= 0. (C.4)

This concludes the proof.
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