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Model-based Segmentation and Classification of Trajectories∗

Sander P.A. Alewijnse† Kevin Buchin∗ Maike Buchin‡ Stef Sijben† Michel A. Westenberg∗

Abstract

We present efficient algorithms for segmenting and clas-
sifying a trajectory based on a parameterized movement
model like the Brownian bridge movement model. Seg-
mentation is the problem of subdividing a trajectory into
parts such that each part is homogeneous in its movement
characteristics. We formalize this using the likelihood of
the model parameter. We consider the case where a dis-
crete set of m parameter values is given and present an al-
gorithm to compute an optimal segmentation with respect
to an information criterion in O(nm) time for a trajectory
with n sampling points. Classification is the problem of
assigning trajectories to classes. We present an algorithm
for discrete classification given a set of trajectories. Our
algorithm computes the optimal classification with respect
to an information criterion inO(m2 +mk(logm+log k))
time for m parameter values and k trajectories, assuming
bitonic likelihood functions.

1 Introduction

Recent advances in tracking technology lead to increasing
amounts of movement data being collected. For instance,
animals are tracked to understand their movement behav-
ior, vehicles are tracked for analyzing traffic situations,
and sports players for analyzing their play. Movement
data is typically recorded as a sequence of time-stamped
positions, called trajectory. The analysis of large amounts
of these data requires efficient algorithms. Computational
movement analysis has emerged as a research field ad-
dressing this need [6].

Here we study two fundamental analysis tasks on tra-
jectory data: segmentation and classification. A segmenta-
tion of a trajectory is a partition of a trajectory into subtra-
jectories, i.e., contiguous subsequences, called segments.
These segments are disjoint –except for their endpoints,
which are called splitting points– and cover the whole tra-
jectory. A classification of a set of trajectories T is a par-
tition of T into disjoint classes that cover T .

Previous work on trajectory segmentation in computa-
tional geometry has focussed on criteria-based segmen-
tation, where each segment fulfills given spatio-temporal
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criteria. An optimal criteria-based segmentation is one
with a minimal number of segments. For this setting sev-
eral algorithms have been proposed. Buchin et al. [4] de-
veloped a framework that computes a segmentation given
a decreasing monotone criterion, that is a criterion which if
it holds on a certain segment, also holds on every subseg-
ment of that segment. In this framework a segmentation
can generally be computed in O(n log n) time, where n
is the number of sampling points. Although many natu-
ral criteria are decreasing monotone, not all are, and for
this case Aronov et al. [2] developed an algorithm that
runs in Θ(n2) time. Recently, Alewijnse [1] proposed
a framework that can efficiently handle both decreasing
and increasing monotone (defined analogously to decreas-
ing monotone) criteria in O(n log n) time. Criteria-based
segmentation can also be used for classification, by using
multiple criteria, one for each class. This setting has been
successfully applied to a data set of migrating geese [5].
Recently, Sankararamana et al. [9] proposed to segment a
trajectory by detecting similar subtrajectories1.

Criteria-based segmentation and classification partition
data based on pre-specified criteria. The motivation for
this –and other movement analysis tasks– is in many cases
to make inferences about the underlying movement pro-
cess. In the light of this objective it seems only natural to
take a more statistical perspective on these analysis tasks:
As we describe in more detail below, trajectory segmenta-
tion and classification can be seen as fitting a parameter-
ized movement model to the data.

Taking such an approach is essential when designing al-
gorithms for applications –as in ecology– that use move-
ment data in a statistical analysis. Therefore we now
discuss movement models used in ecology. Movement
models are used to infer a continuous motion from dis-
crete samples of the movement path. In ecology, mostly
random movement models [8], like the Brownian bridge
movement model (BBMM) [7], are used. Recently, the
BBMM has been introduced to computational movement
analysis [3]. In these movement models, a link l has an
associated log-likelihood function Ll(x) as a function of
the model parameter x. The log-likelihood of a parameter
value for a set of links B (e.g. a segment or trajectory) is
given by LB(x) =

∑
l∈B Ll(x). We emphasize that our

methods do not apply only to the BBMM, but to any pa-
rameterized movement model that defines a likelihood as
a function of the parameter value.

1For this they introduce a new model for similarity. The term model
is used in our paper in a different sense, namely as referring to statistical
models.
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We use the term partition to refer to either a segmen-
tation or classification, which additionally assigns a value
x(P ) of the model parameter to each part P (i.e. a segment
or class). A partition P has an associated log-likelihood

LP =
∑
P∈P

∑
e∈P

Le(x(P )). (1)

That is, the log-likelihood of each part P (i.e., segment or
class) is the sum over the log-likelihoods of its elements e
(i.e., single links or trajectories), while the log-likelihoods
of the parts are added to obtain the log-likelihood of P .
We could now define an optimal partition as one that max-
imizes the log-likelihood, but then it would be optimal to
put each link or trajectory into its own part, since that
allows optimizing the likelihood for each element sepa-
rately. One solution is to compute the optimal partition
with a fixed number of parts, but typically the number of
parts is not known beforehand. To determine a good num-
ber of segments or classes an information criterion like
Bayesian information criterion can be used.

To facilitate multi-scale analysis, we use a more general
notion of an information criterion (IC) to define the opti-
mal partition. An IC assigns a value to each partition based
on its likelihood and the complexity of the model (that is,
the number of parts). We consider ICs of the form

IC(P) = −2LP + |P| · p, (2)

where LP is the log-likelihood of the model instance and
|P| is the number of parts of the partition. The number p
is a penalty factor for adding complexity to the model that
counteracts overfitting.

We now define an optimal segmentation or classification
to be one that minimizes the value of the IC among all
segmentations or classifications and selections of model
parameter values for the given input.

In this paper we develop efficient algorithms to com-
pute such optimal segmentations and classifications. To
avoid further assumptions on the log-likelihood functions
and to simplify the problems we consider a discrete ver-
sion of both problems. We assume that the parameter val-
ues x(P ) are drawn from a finite set of candidate values
X = {x1, . . . , xm} (in sorted order) and that the log-
likelihood functions are given by listing the values they
take on x1, . . . , xm. As an indication for the effectiveness
of our methods, Figure 1 shows an example segmentation
resulting from our algorithm.

Overview. In Section 2 we give an efficient algorithm
for computing an optimal segmentation, and in Section 3
for computing an optimal classification.

Notation. We assume a trajectory τ is given by a se-
quence of n triples (xi, yi, ti) (1 ≤ i ≤ n), where
(xi, yi) =: τ(i) is the location of a moving entity at time
ti. A subtrajectory of τ starting at time ti and ending at
time tj we denote by τ [i, j]. We use k to denote the num-
ber of segments in a segmentation, and S1, . . . , Sk to de-
note the segments. Furthermore we denote with x(Si) the

Figure 1: Segmentation of a randomly generated trajec-
tory, with segments indicated by color.

model parameter for each segment Si. We use ` to denote
the number of classes and C1, . . . , C` ⊆ T to denote the
classes. Again, each class Ci has an associated value of
the model parameter x(Ci). Each trajectory τi ∈ T has
an associated log-likelihood function Li(x), which is the
sum of the log-likelihood functions of the links in τi.

2 Segmentation

We present a new algorithm for trajectory segmentation
based on a parameterized movement model, which com-
putes an optimal segmentation with respect to a given in-
formation criterion IC. We solve the problem using dy-
namic programming. Let Opt i denote the optimal seg-
mentation of τ [0, i] with respect to IC. We compute all
Opt i in increasing order of i. In order to compute Opt i
we maintain a two-dimensional table O. Each entry Oi,x

stores the optimal segmentation (minimizing the IC) of
subtrajectory τ [0, i] that ends with a segment Sk with pa-
rameter value x(Sk) = x.

Given Oi,x for all x ∈ X , it is straightforward to com-
pute Opt i: since every segment, in particular the last, has
a parameter value in X , Opt i is the entry Oi,x that has
minimal IC among all x ∈ X . The table O is computed
using the following greedy property.

Lemma 1 Oi,x is equal to one of the following options:

Append: Opt i−1 appended with the one-link segment
τ [i− 1, i].

Opti−1 i− 1 i

Extend: Oi−1,x with the last segment extended by
τ [i− 1, i].

i− 1 ij
Opt j

Oi−1,x

Lemma 1 implies that we can compute Oi,x in a dy-
namic programming fashion, looping over i and x. We
compute each new entry Oi,x using a comparison between
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two already computed table entries:

IC(Oi,x)

= min
(
IC(Oi−1,x), IC(Opt i−1) + p

)
− 2Li(x).

If IC(Opt i−1) + p is smaller, Oi,x is set according to the
append option. Otherwise it is set according to the extend
option.

In our algorithm we store segmentations by storing only
the length l and parameter value x for the last segment
ending at τ(i). The previous segments can be worked
out by looking at Opt i−l. Furthermore, we store for each
segmentation the information according to IC. Using this
storage format computing Oi,x given Oi−1,x and Opt i−1
takes only constant time. The actual segmentation can be
retrieved from the tables in O(n) time. This leads to the
following result.

Theorem 2 The optimal segmentation of a trajectory τ
with respect to an information criterion IC can be com-
puted in O(nm) time, and O(n + m) space, where m is
the number of candidate values for the model parameter
and n the number of points on the trajectory.

Fixed number of segments. It is straightforward to
change the algorithm in such a way that it computes the
segmentation with a fixed number k of segments and max-
imal likelihood. All tables get an extra dimension: the
number of segments. Those tables can be computed using
a greedy property that is similar to Lemma 1. To com-
pute Oi,x,k (with k the number of segments) we choose
between either appending one link to Opt i−1,k−1 and ex-
tending the last segment of Oi−1,x,k by one link. Each
table entry is hence computed in constant time, which re-
sults in O(nmk) time and O((n + m)k) space. Note that
this does not only give the best segmentation with k seg-
ments, but also those with k − 1, k − 2, . . . , 1 segments.

Table compression. When studying the DP tables (for
BBMM) we made the following important observation:
Let last(S) denote the starting index of the last segment
of segmentation S. Given an ordered set of parameter val-
ues x1 < x2 < · · · < xm there seems to be only a constant
(with respect to m and n) number of values xj for which
last

(
Oi,xj

)
6= last

(
Oi,xj+1

)
.

We improve the algorithm by storing the DP table in a
compressed way. With compressed tables and under some
additional assumptions on the likelihood functions, the op-
timal segmentation can be computed in O(nw) time and
O(n+ w) space, where w is the maximum number of pa-
rameter values at which last(Oi,x) changes for any i.

Continuous model parameter. So far, we have con-
sidered the situation where the model parameter takes val-
ues from a discrete set of candidate values. We now con-
sider the case where the parameter can take any value from
a continuous domain (e.g. an interval on the real line). As-
sume that the optimum model parameter x(τ [i, j]) for a
segment τ [i, j] can be computed in F (j − i) time.

In this case, Opt1 is empty, since τ [1, 1] contains only
a single point. Optj for j > 1 consists of an optimal seg-
mentation of τ [1, i] for some i ∈ {1, . . . , j−1}, combined
with a single segment for τ [i, j]. The IC for each of the
j − 1 candidates for Optj can be computed in O(F (j))
time, since IC(Opt i) is stored in the table for Opt and
computing the optimum likelihood value for τ [i, j] takes
O(F (j)) time.

Thus, Optn, the optimal segmentation of τ , can be com-
puted in O(n2F (n)) time. We only need to store the Opt
table of size O(n), so the algorithm uses O(n) space, or
what is needed to optimize the parameter value for a can-
didate segment.

For many practical log-likelihood functions like the one
used in the BBMM, x(τ [i, j]) and the corresponding log-
likelihood can be computed to a fixed precision in linear
time and space, i.e. F (n) = O(n), leading to O(n3) time
and O(n) space. If the log-likelihood functions allow a
closed-form expression of constant complexity, we can op-
timize each subtrajectory in amortized constant time and
thus compute the optimal segmentation in O(n2) time.

3 Classification

In this section we present an algorithm for classifying a set
of trajectories by grouping those that exhibit similar be-
haviour according to the movement model. For example,
we can classify the segments resulting from the segmenta-
tion algorithm to detect recurring patterns in the data.

We now assume that the log-likelihood functions Li

are bitonic (first increasing to a maximum, then decreas-
ing). We also assume without loss of generality that the
functions are given in increasing order by the value at
which they reach their maximum. That is, if we define
Mi = arg maxx∈X(Li(x)), then i < j ⇒Mi ≤Mj .

We represent a classification C for L1, . . . , Lk by an ar-
ray of length k where C[i] is the value that the classifica-
tion assigns to the class of Li, or C[i] = NIL if C is a partial
classification that does not classify Li.

We compute the optimal classification by dynamic pro-
gramming. A natural approach would be to process the
segments in the order they are given. However it is not
necessarily the case that if Mi < Mj that this order is re-
flected in the classes they are associated with. Figure 2
shows an example. However, we can use the following
property to efficiently compute the optimal classification.

Observation 1 Assume an optimal classification assigns
the parameter values x(C1) < · · · < x(C`) to the classes.
Then a trajectory that reaches its maximum likelihood in
the interval [x(Cj), x(Cj+1)) will be either assigned toCj

orCj+1 by the bitonicity of the likelihood function. In par-
ticular if we know that some x(Ci) is selected then x(Cj)
with j < i does not depend on any of the trajectories with
maximum larger or equal to x(Ci).

Consider a set of log-likelihood functions {L1, . . . , Lk}
and candidate parameter values {x1, . . . , xm}. We add
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x1 x2

L1

L2 L3

L4

Figure 2: The optimal classification does not respect the
order in which trajectories obtain their maximum likeli-
hood. If the penalty factor is low, there will be two classes
C1 = {L1, L3} and C2 = {L2, L4} with x(C1) = x1 and
x(C2) = x2.

dummy values x0 := −∞ and xm+1 := ∞. Let Li,j :=
{Ll | xi ≤Ml < xj} with 0 ≤ i < j ≤ m+ 1 denote the
set of functions that reach their maximum value between
xi and xj . We now show that Algorithm 1 computes the
optimal classification with respect to IC.

We define Opt i as the optimal classification of L0,i, i.e.
the input functions that reach their maximum likelihood at
a value smaller than xi, conditioned on the fact that the
last class C` of Opt i has parameter value x(C`) = xi.

We can iteratively construct Opt i for i = 1, 2, . . . ,m
by observing that the second to last class (if Opt i con-
tains at least two classes) has a parameter value xj ∈
{x1, x2, . . . , xi−1}. Thus, using Observation 1, Opt i con-
sists of Optj extended with a new class C` with x(C`) =
xi. The functions that were already classified in Optj stay
in the class they were assigned to, and the functions in
Li,j are assigned to either C`−1 or C`, whichever results
in the highest likelihood. The algorithm computes Opt i
by trying all possible values of j and selecting the result-
ing classification that has the lowest IC.

The optimal classification C of the whole input has a last
class C` with x(C`) = xi for some i ∈ {1, . . . ,m}. Then,
C consists of an optimal classification of L0,i, conditioned
on x(C`) = xi, and the remaining functions in Li,m+1 are
assigned to C` by Observation 1. This optimal classifica-
tion of L0,i is exactly Opt i, and we compute a candidate
classification Ci from it by assigning all remaining func-
tions to the last class. Then, C is the classification among
the Ci that has minimum IC, which is what the algorithm
returns.

Theorem 3 Algorithm 1 computes the optimal classifica-
tion of k trajectories with respect to an information crite-
rion in O(km2) time and O(km) space, where m is the
number of candidate parameter values.

Improved running time. By reusing the values of Oj

and the corresponding IC computed in previous iterations
of the outer loop, the running time of the classification al-
gorithm can be reduced to O(m2 + km(logm+ log k)).

Continuous model parameter. We recently showed,
that when the parameter values are taken from a continu-
ous domain, finding the optimal classification is NP-hard

DISCRETECLASSIFICATION((L1, . . . , Lk), (x1, . . . , xm))

1 Opt0 ← An array with all k elements set to NIL
2 C ← An arbitrary classification of L1, . . . , Lk

3 for i← 1 to m
4 do for j ← 0 to i− 1
5 do Oj ← Optj
6 for Ll ∈ Lj,i

7 do Oj [l]← arg max
x∈{xj ,xi}

(Ll(x))

8 Opt i ← arg min
{Oj |0≤j<i}

ICi(Oj)

9 Ci ← Opt i with all NILs replaced by xi
10 if IC(Ci) < IC(C)
11 then C ← Ci
12 return C

Algorithm 1: Discrete classification.

for arbitrary bitonic functions. However, in many cases of
practical interest, such as the BBMM, the optimal classifi-
cation can be computed in polynomial time.
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and Brownian movement patterns of marine predators. Na-
ture, 465:1066–1069, 2010.

[9] S. Sankararaman, P. K. Agarwal, T. Mølhave, J. Pan, and
A. Boedihardjo. Model-driven matching and segmentation
of trajectories. In Proc. 21st Internat. Conf. Advances in
Geogr. Inf. Syst. ACM, 2013.


	Introduction
	Segmentation
	Classification



