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Rational design of functional and tunable
oscillating enzymatic networks
Sergey N. Semenov1†, Albert S. Y. Wong1†, R. Martijn van der Made1, Sjoerd G. J. Postma1,
Joost Groen1, Hendrik W. H. van Roekel2, Tom F. A. de Greef2 and Wilhelm T. S. Huck1*

Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction
networks. The operating principles of biology’s regulatory networks are known, but the in vitro assembly of out-of-
equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing
autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks
that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative
feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h.
Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are
obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a
general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

The response of living cells to physicochemical changes in their
environment is regulated by complex integrated networks of
reactions that control the functioning of biomolecules in

space and time. Time-keeping, chemical amplification and signal
modulation are examples of essential functions in signal transduc-
tion, vision, metabolic regulation and cell division in biological
systems1,2. These functions are ‘encoded’ in complex networks of
biochemical reactions that operate far from equilibrium3,4. In con-
trast, the dynamics of responsive synthetic materials are governed
by reversible processes and are therefore limited by the relaxation
towards chemical equilibrium5–7. Chemical reaction networks
(CRNs) arise out of the myriad interactions between the com-
ponents of the cell, and their characteristics transcend the properties
of individual molecules and reactions. In recent years it has become
possible to design synthetic gene networks to control some of the
fundamental properties of living systems8,9, but to create synthetic
dynamic molecular systems that capture the extraordinary richness
in behaviour displayed by living cells remains a major challenge.
Significant efforts have been made in applying the principal regulat-
ory motifs of biochemical reaction networks to dissipative systems
based on DNA replication and transcription10–14. Complex spatio-
temporal pattern formation has been observed in the classic
example of Belousov–Zhabotinsky (BZ) oscillations15 and, together
with related CRNs, these have been harnessed into a rich variety of
self-organizing systems16–19. Now, we wish to exploit the full power
of chemical synthesis to construct CRNs tuned by small molecules
approaching the tunability and functionality of living systems.
Although impressive progress in this direction has been made20–25,
we lack a general methodology based on rational design that inte-
grates the structure of (small) molecules with the tuning of the reac-
tion rates for each step in the network. We require a modular
approach using common building blocks and reaction conditions,
and the ability to program a functional output of the network.
Oscillations are a well-established hallmark of out-of-equilibrium
CRNs and, inspired by metabolic networks26,27, we present a meth-
odology for constructing tunable, oscillating reaction networks

based on enzymatic conversions of small molecules. Importantly,
the output of these CRNs is a periodically changing concentration
of a catalyst, and, by coupling multiple reactors, this chemical
signal can be modulated and processed further28.

Results
Choosing network topology and key components. Theoretical
analyses have revealed numerous regulatory motifs in biochemical
networks that give stable oscillations27,29,30. The design of our CRN
is based on a time-delayed negative feedback topology, combined
with a short positive feedback loop (Fig. 1a). To reduce our design
to practice, we selected enzymes whose activities can be modulated
by small molecules. Trypsin (Tr) is the key element in our CRN,
and positive feedback arises from the autocatalytic conversion of
the enzymatically inactive trypsinogen (Tg) into Tr31. To create the
negative feedback loop, an active inhibitor must be formed as a
result of the enzymatic activity of Tr. There are various known
inhibitors for Tr, and here we use the strong and irreversible
inhibitor 4-[2-aminoethyl]benzenesulfonyl fluoride (Inh, Fig. 1b) as
the key small molecule in our CRN as it can be modified easily. It
is essential that the negative feedback resulting in Tr inhibition is
delayed with respect to Tr production. We therefore split the
negative feedback loop into two orthogonal steps, each amenable to
rate-tuning. First, Tr cleaves the Lys residue of the proinhibitor, the
N-terminus of which was acetylated to yield a well-soluble
molecule and an endopeptidase substrate. Second, aminopeptidase
M (Ap) cleaves an amino acid residue from the intermediate
inhibitor, thereby activating the inhibitor.

Finding conditions for sustained oscillations. Before we
assembled the network, individual, isolated reactions or small
parts of the network were studied using kinetic assays. A number
of derivatives of the intermediate inhibitor with different amino
acids conjugated to Inh were synthesized, showing different
enzymatic conversion rates (Supplementary Sections 2 and 3).
The Gln-derivative (H-Gln-Inh) showed the lowest background
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interaction with Tr and the fastest activation by Ap, giving a good
decoupling of the two cleavage steps. After this initial screening,
proinhibitor 1 (Ac-Lys-Gln-Inh, Fig. 1b) was used for tests of the
CRN in batch. Figure 1c shows how the positive and negative
feedback loops function as separate elements: autocatalytic Tg
activation by Tr shows an exponential increase in [Tr] (green
dots). Conversely, [Tr] drops rapidly in the isolated negative

feedback loop containing 1 and Ap (red triangles). However,
when all elements of the network are combined, there is no
significant response in the system (red squares) and [Tr] remains
low, indicating that the negative feedback loop either initiates too
quickly or is too fast.

The flexible design now allows us to balance the negative feed-
back loop by either changing the binding constant between the
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Figure 1 | Rational design and experimental assembly of a flow-based enzymatic oscillator. a, Schematic network layout of the enzymatic oscillator based
on autocatalytic production and delayed inhibition of an enzyme. Enzymatically inactive E1 is converted to active E1*. In a positive feedback loop, E1* catalyses
its own formation. In addition, E1* catalyses the first of a two-step sequence that unmasks an inhibitor of itself, with the second step being catalysed by a
second enzyme E2. This two-step process constitutes a negative feedback loop. The combination of positive and negative feedbacks results in an oscillating
system. b, Detailed reaction diagram of the CRN. c, Concentration of Tr versus time measured by assembling various parts of the network under batch
conditions: autocatalytic production of Tr from Tg (green), inhibition of Tr by Inh produced in the negative feedback loop (red/black triangles) and the
complete network (red/black squares). d, Schematic representation of the flow reactor. The concentration of Tr in the outflow is measured using a standard
Tr activity assay31. e, Concentration of Tr versus time measured by assembling the complete network under flow conditions at 23 °C. Error bars represent
95% confidence intervals and were calculated from relative experimental errors (Supplementary equations (13)–(15)).
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Figure 2 | Characterization of the flow-based enzymatic oscillator. a, Time traces showing the concentration of Tr, intermediate inhibitor H-Gln-Inh, and
inhibitor in the microfluidic reactor using conditions reported in Fig. 1e. b, Phase portrait showing that the dynamics of the flow-based enzymatic oscillator
display limit cycle oscillations.
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proinhibitor and Tr, thereby lowering the sensitivity of the feedback
loop to [Tr], or by changing [Ap] or the amino acid conjugated to
the inhibitor, thereby increasing the delayed inhibition. At this
point, it is imperative to combine the design of small molecules
with mathematical simulation of the complete network. To this
end, a set of ordinary differential equations (ODEs) was constructed
that accurately describes the reactions of the CRN using mass-action
kinetics (Supplementary Table 2). The kinetic parameters of all
known reactions in the CRN, including the background hydrolysis
of the fluorosulfonyl moiety of the inhibitor, were measured exper-
imentally (Supplementary Table 1) and used as inputs for the simu-
lation (Supplementary Section 4). We note that the proteolytic
degradation of enzymes is another potential side reaction. We ver-
ified that digestions of Tr and Ap by Tr as well as autodegradation
of Ap do not take place (at least not at sufficient rates, that is,
several hours) and so do not affect the kinetics of the network
under the conditions used in our experiments (Supplementary
Section 5.1.2). To guide the design of molecules for which a signifi-
cant response (Supplementary Fig. S14a) of the CRN will be
obtained, the model was used to determine the range in kinetic

parameters of the enzymatic reactions in the negative feedback
that lead to a single peak in [Tr] when the full network is combined
under batch conditions. The simulations (Supplementary Fig. 14b)
show that the rate of the Ap-catalysed step is in a range accessible by
choosing a suitable [Ap], but the enzymatic efficiency of Tr acting on
1 is too high (experimental value of kcat/KM > 3,300 mM−1 h−1,
where kcat is the turnover number and Km is the Michaelis constant
of trypsin, Supplementary Fig. 4), as a single peak only occurs if the
enzymatic efficiency of this enzymatic step is significantly reduced
(kcat/KM < 1,500 mM−1 h−1). It is known that methylation of the
ɛ-NH2 in Lys lowers the affinity between the substrate and Tr32,
providing a route to molecularly engineer a decreased sensitivity
of the negative feedback loop to Tr.

We subsequently studied the response of a CRN based on the
modified proinhibitor 2 (Fig. 1b) and, although the difference in
the rate of Tr (43 µM) inhibition by 1 or 2 (free or methylated
Lys) in the presence of Ap is small (Fig. 1c), networks composed
of 2 do indeed give a single oscillation (Fig. 1c, black squares).
Similar simulations (Supplementary Fig. 15) were performed
under flow conditions (by taking into account the continuous
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in- and outflow of species in the network, Supplementary Section 4)
to support reactions carried out in an open reactor. A fluidic con-
tinuously stirred tank reactor (CSTR) was used, with four inlets con-
taining Tg, Ap, 2 and a catalytic amount of Tr (Fig. 1d). We
experimentally determined the composition of the reactor by
sampling the outflow at regular intervals (14 min), and [Tr] was
established using a standard Tr activity assay (Supplementary
Section 5). Guided by simulations, which indicated that [Ap]
should fall within the range 0.011–0.638 U ml−1, with a flow rate

over volume of >0.005 h−1, and in combination with scoping exper-
iments (Supplementary Fig. 25), we determined conditions under
which sustained oscillations in [Tr] were observed with a period
of 6.5 h and an amplitude of 6.6 µM (Fig. 1e).

Properties of the enzymatic oscillator. To determine
unambiguously the state of the system, the variation in [Inh] and
[H-Gln-Inh] with time were followed using HPLC (Supplementary
Section 5). Figure 2a shows that the concentrations of each of these
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components of the network oscillate with time. The progress of these
variables during the reaction is plotted in the phase portrait in Fig. 2b,
which shows a trajectory that initially approaches the steady state of
the system but never reaches it. Instead, the system performs self-
sustained oscillations corresponding to the development of a
periodic orbit surrounding the steady state in the phase portrait.
This isolated trajectory is called a limit cycle, and shows that the
behaviour is inherent to the nonlinear CRN and is not caused by
an external periodic forcing15.

Biological systems show robustness and tunability33. Here, we
tested our network for robustness—the persistence of sustained
oscillations under external perturbations—by changing global par-
ameters such as the overall flow rate or reaction temperature.
Furthermore, varying local or internal parameters such as [Ap] or
other individual components of the CRN allowed us to tune the
period and amplitude of the oscillations. The experiments in
Fig. 3a show the behaviour of the system as a function of [Ap]
and flow rate for experiments carried out at 23 °C. The heat map
shows the broad range of concentrations and flow rates for which
sustained oscillations are obtained; outside this range the oscil-
lations are damped and the system reaches a steady state. A
further exploration of robustness was carried out by probing the
temperature dependence of the CRN. Figure 3b shows that the
network is capable of performing sustained oscillations at least in
the temperature range of 18–37 °C, with periods decreasing from
∼7.5 h to ∼3.5 h.

Calibrating the model to the data sets for sustained oscillations
allowed us to extract kinetic parameters for the complete network
(with all reactions interacting). Using a genetic algorithm34 in
which the fitness function is extended by implementing additional
constraints, we obtain an optimized set of constants
(Supplementary Table 3). The mathematical model with optimized
rate constants for the CRN allowed us to compute the phase
diagram as shown in Fig. 3a. The computed phase diagram shows
the regime in which the sustained oscillations can be found and,
although the simulations predict a slightly larger sustained regime,
they strongly agree with experimentally observed amplitudes and
periods and the overall shape of the phase diagram.

The model also allowed us to expand our analyses by varying
other initial concentrations (for example, [Tg]0 and [2]0) in our
system and to probe the influence of the kinetic parameters of indi-
vidual reactions (inhibition, activation and delay rate constants) on
the CRN. Supplementary Fig. 19 presents the parameter value
window, amplitude and period of sustained oscillations upon chan-
ging selected parameters from 0.1 to 10 times the initial values. For
example, the amplitude of sustained oscillations changes by over a
factor of 5, and the period nearly halves, when [Tg] is changed
from 0.78 to 3.44 of the initial [Tg], while damped oscillations
will be obtained outside this region. Changing the initial [2]
has very little effect, whereas changing the delay of the
feedback loop (KM,delay) leads to complex excursions in amplitude
and period.

Processing of oscillations by coupling multiple CSTRs. Networks
in complex systems are often interlinked, with enzymes playing key
roles in multiple processes. To avoid unwanted crosstalk between
networks, these are typically separated in space (via
compartmentalization in different organelles) or time (by timing
the expression of different enzymes). The modular nature of both
the network and fluidic reactors offers opportunities to assemble
more complex functional networks by linking the output of a first
reactor to the inlet of a second reactor. Figure 4a,b show a
feedforward design of amplification and thresholding of the signal
produced by the first reactor. The oscillator in CSTR 1 produces
variations in [Tr] within a very narrow band. This ‘signal’ can be
amplified 50-fold when Tr is used to activate chymotrypsinogen

in the second reactor, and the activity of the chymotrypsin
formed is measured. Alternatively, the output can be ‘filtered’ by
introducing 2.5 µM soybean trypsin inhibitor (STI, a strong
inhibitor for Tr), in the second reactor, which buffers all Tr
activity below this value. Above the threshold concentration, Tr
can convert a substrate into a fluorescent product, converting the
initial oscillation into a switch-like output.

Finally, we show how an out-of-equilibrium enzymatic network
can be coupled to an equilibrium process, by studying the assembly
and disassembly of complex coacervates formed between oppositely
charged polyelectrolytes35. We formed coacervates from polygluta-
mic acid and a lysine–serine polycation (Supplementary Section 5)
that can be cleaved by Tr. Degradation of the polycation with
increasing [Tr] triggers disassembly, and this process can be fol-
lowed both by measuring the turbidity of the solution and by
microscopy (Fig. 4c). The addition of small amounts of STI again
leads to switch-like assembly and disassembly of coacervates,
depending on the phase of the oscillating CRN.

Discussion
Our studies not only show the complex responsiveness of an enzy-
matic reaction network showing sustained oscillations, but also
provide a new, modular retrosynthetic approach to translate a
complex network topology into positive and negative feedback
loops with rates tailored by the chemical structures of small mol-
ecules. This approach yields detailed criteria for the chemical struc-
ture and corresponding reaction rates of each of the components of
the network and can be used to program a specific, functional
output. The CRNs obtained are robust and maintain sustained oscil-
lations within a certain range of global parameters such as tempera-
ture and flow rate. Furthermore, the amplitude and period of the
oscillator can be tuned over a relatively broad range and this
signal can be further processed by coupling multiple reactor
modules, each with a specific enzymatic reaction network.

We anticipate that a suite of more complex network topologies
(for example, allowing for homeostasis, adaptation or biosynthetic
pathways) can now be designed and synthesized, ultimately creating
a broad repertoire of functional CRNs sharing common motifs. The
production of an oscillatory concentration of an active enzyme
holds considerable potential for coupling to stimuli-responsive
gels and other smart materials, which opens up applications in
tissue engineering and soft robotics23. Our work forms the basis
of a bottom-up synthetic biology approach to the development of
complex synthetic systems that operate according to the principles
of life.

Methods
Full details of the synthesis and characterization of all compounds, screening of
(intermediate) proinhibitors to optimize the CRN, kinetic studies, computational
simulations and CSTR experiments are provided in the Supplementary Sections 1–5.

Batch experiments. Either proinhibitor 1 or 2 (258 µM) was mixed with
trypsinogen (129 µM), trypsin (43 µM) and aminopeptidase (0.830 U ml−1) in
100 mM Tris buffer, pH 7.7, containing 20 mM CaCl2. Aliquots were taken from the
reaction mixture to monitor trypsin activity by a fluorogenic assay (vide infra). Batch
experiments with the isolated negative feedback loops were performed under the
same conditions as for the full CRN, but no trypsinogen was present in the reaction
mixture. For the isolated positive feedback loop, trypsinogen (129 µM) was mixed
with a catalytic amount of trypsin.

CSTR experiments. Four glass syringes were loaded with trypsinogen (8 mg ml−1,
338 µM in 4 mM HCl, 36 mM CaCl2), trypsin (27 µg ml−1, 1.16 µM in 500 mM
Tris-HCl, 20.5 mM CaCl2, pH 7.7), proinhibitor 2 (4.72 mg ml−1, 7.68 mM in
2 mM HCl) and aminopeptidase (ten times the desired final concentration in the
CSTR, which varies, in 10 mM Tris-HCl, 10 mM MgCl2, pH 7.7) and connected
with tubing to the four inlets of a 250 µl polydimethylsiloxane (PDMS) reactor.
Fractions of the total flow rate were 0.5 for trypsinogen (that is, 27.5 µl h−1 at a total
flow of 55 µl h−1), 0.2 for both trypsin and proinhibitor 2 and 0.1 for
aminopeptidase. Aliquots of the reaction mixture were diluted with 150 µl of an
aqueous 0.1 M KHSO4 solution to quench all reactions.
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Trypsin activity assay. Trypsin activity was measured by mixing 100 µl of the
quenched reaction mixture with 3 ml of 5 µg ml−1 bis-(Cbz-L-Arg)-rhodamine
fluorogenic substrate in 50 mM Tris-HCl, pH 7.7. The increase in fluorescence
intensity (λex = 450 nm, λem = 520 nm) was monitored for 40 s and the initial, linear
slope was compared to a calibration curve to find the concentration of active trypsin.

Determination of inhibitor species concentration. A volume of 50 µl of the
quenched reaction mixture was filtered to remove all enzymes and the filtrate was
mixed with tryptophan as an internal standard. The organic compounds in the
filtrate were separated by analytical HPLC and were monitored in time with
ultraviolet detection at 265 nm. Appropriate peaks were integrated and a calibration
curve was used to determine the concentration of inhibitor species.

Amplification of trypsin signal. In addition to the experimental set-up in Fig. 1c, a
small, 63 µl CSTR was placed in series after the main 250 µl CSTR. The latter was fed
with trypsinogen, trypsin, aminopeptidase (3.30 U ml−1, concentration in syringe)
and proinhibitor 2 at a total flow rate of 55 µl h−1. In addition to the inflow from the
first CSTR, chymotrypsinogen (concentration in syringe 935 µM in 4 mMHCl, flow
rate 55 µl h−1) was fed into the second reactor. Outflowing droplets from the second
reactor were diluted with 150 µl 0.1 M KHSO4 to quench all reactions.
Chymotrypsin activity was monitored by a chromogenic assay (λabs = 410 nm) using
the substrate N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (0.30 µM in 50 mM Tris,
pH 7.7). The increase in absorbance was measured for 60 s. The initial slope was
linear and was compared to a calibration curve to determine chymotrypsin activity.

Modulation of trypsin signal. In addition to the experimental set-up in Fig. 1c, a
small, unstirred 35 µl reactor was placed in series after the main 250 µl CSTR. The
latter was fed with trypsinogen, trypsin, aminopeptidase (3.30 U ml−1,
concentration in syringe) and proinhibitor 2 at a total flow rate of 55 µl h−1. One
additional inlet was inserted into the second reactor through which both STI
(concentration in syringe 7.7 µM in 0.1 M Tris pH 7.7, flow rate 27.5 µl h−1) and the
fluorogenic substrate bis-(Cbz-L-Arg)-Rhodamine (concentration in syringe
10.1 µM in 0.1 M Tris pH 7.7, flow rate 160 µl h−1) were supplied. The outlet
tubing of the second reactor was imaged from below by fluorescence microscopy
(λex = 488 nm, λem = 520 nm) to probe the conversion of the fluorogenic substrate.

Control over complex coacervation. A 250 µl CSTR was fed with trypsinogen,
trypsin, aminopeptidase (3.30 U ml−1, concentration in syringe) and proinhibitor 2
at a total flow rate of 55 µl h−1. From every second fraction collected from the outflow of
the CSTR, 5 µl was added to a batch reactor containing 25 µl of a complex coacervate
solution (final concentrations of 6.25 mM polycation (Ac-(Lys-Ser)6-Lys-OH),
0.535 mM polyanion (H-Glu(Glu)20-99-OH) and 0.23 µM STI). Samples were
vortexed and incubated for 10 min at room temperature before analysis. After
analysing the contents of the CSTR for 18 h, the final concentration of STI was
increased to 0.47 µM. The presence of coacervates was determined by optical
microscopy and turbidity measurements using a NanoDrop spectrophotometer.
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