EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Using the ALC matlab toolbox with input files generated from
Psi specifications

Citation for published version (APA):
Tosserams, S., Hofkamp, A. T., Etman, L. F. P., & Rooda, J. E. (2009). Using the ALC matlab toolbox with input
files generated from Psi specifications. (SE report; Vol. 2009-05). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e836a529-4276-4e19-8ed5-6682e1d6b1ce

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513

5600 MB Eindhoven

The Netherlands

http://se.wtb.tue.nl/

SE Report: Nr. 2009-05

Using the ALC matlab toolbox
with input files generated fronir
specifications
S. Tosserams, A.T. Hofkamp, L.F.P. Etman, J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2009-05
Eindhoven, June 2009
SE Reports are available via http://se.wtb.tue.nl/sereports

Caontents

1 Introduction

2 Augmented Lagrangian coordination

1 Subproblem formulation 0oL
2 Coordination algorithm

3 Matlab toolbox for ALC

4 Generating input files from ¥ specifications

1 Inputfiles

5 Examples

1 Geometric programmingo ..
2 Speedreducer
3 Portalframe

Bibliography

A Specification and generated outputs for examples

=

3 Contents

Example (4.1)
2 Geometric programming problem
3 Speedreducer
4 Portalframe

4 Contents

Chapter 1
Introduction

Distributed optimization is a technique to partition a single, typically large system optimization
problem into a number of smaller optimization subproblems. A coordination algorithm is used to
drive the subproblem designs towards a solution that is optimal for the original problem.

Distributed optimization approaches are attractive for addressing the challenges that arise in the
optimal design of advanced engineering systems. The main motivation for the use of distributed
optimization is the organization of the design process itself. Since a single designer is not able
to oversee each relevant aspect, the design process is commonly distributed over a number of
design teams. Each team is responsible for a part of the system, and typically uses specialized
analysis and design tools to solve its design subproblems. Distributed optimization methods apply
naturally to such organizations since they provide a degree of decision autonomy to the different
design teams. Full disciplinary autonomy can rarely be obtained completely since the disciplinary
design subproblems involve some quantities from other disciplines related to the interdisciplinary
interaction. A coordination method is required to address these interactions.

Augmented Lagrangian Coordination (ALC) [14] has been proposed as a method for coordination
of these interaction. This user manual describes how the matlab toolbox of augmented Lagrangian
coordination (ALC) can be used with input files generated from specifications i fleemat

[15]. Itincludes a brief description of ALC, a description of the matlab toolbox for ALC, and how

to generate matlab input files from partitioned problem specificatiokis Beveral examples are
included for illustration.

6 Introduction

Chapter 2
Augmented Lagrangian
coordination

The starting point for the augmented Lagrangian coordination (ALC) method [14] is the system
optimization problem given by:

min Jo(y,x1, .-, xm) + X0 fi(y,x5)
YoX1,.- XM j=1
SUbJeCt to g()(y,Xl7 ey M) <0 (21)
ho(y, x1, .. XM) =0
g;i(y,x;) < j=1,....M
hj(y,Xj):O]:].,,M
where the system consists &f disciplines labeleg = 1,..., M. The local variables; are

associated exclusively with discipling and the linking variables denoted lgyare relevant to

two or more disciplines. Similarly, objective and constraint functions are divided into coupling
functionsfy, go, andh, that depend on the local variables of more than one discipline, and local
functionsf;, g;, andh; that depend on only one subset of local variables.

1 Subproblem formulation

The augmented Lagrangian coordination algorithms require that all constraints are separable with
respect to the variables of the individual disciplines (i.e. depend only on the variables of a single
discipline); coupling through the objective function is allowed. To remove the coupling of the
constraints through the linking variablgsand coupling constraintg, and h, two problem
transformation steps are used:

Step 1: Introduction of linking variable copieg; as design variables at each discipline, and
the introduction of consistency constraiktthat force the introduced copies to take equal

valuesy; = y» = ... = yu. The local constraintg; andh; then only depend on
the variablegy; andx; of disciplinej. However, the introduced consistency constraints
c(y1,y2,.-.,ym) depend on the linking variables of more than one discipline, and are

therefore nonseparable coupling constraints, similgitandh,. In general, the linking

7 Subproblem formulation

constraints between subproblgrmand its neighbor. is given by:
cjn:Sjnyj—Snjyn:O j=1..., M, nE/\/j (22)
where the binary selection matr;,, selects those copies of subproblgrhat are linked

to the selected copies of its neighbgrand\V; are the set of neighbors to which subprob-
lem j is coupled through the consistency constrainis

Step 2: Relaxation of the linking constraintg = [c, gy + X0, ho| through an augmented La-
grangian penalty function(q) = v'q + ||w o q||2. Here,v andw are the penalty param-
eters of the augmented Lagrangian functions,an& 0 are slack variables that allogy
to be treated as equality constraints. A penalty parameter update algorithm is required to
set the penalty parameters such that the relaxation error becomes zero.

After relaxation of the linking constraintg, the remaining local constraings andh; are sepa-
rable with respect to the disciplinary variablgsandx;. The objective is not separable due to
the coupling objectivey and the augmented Lagrangian pendity

Now that the constraints are separable, ALC defifedisciplinary subproblem®;, j = 1,..., M.
The disciplinary optimization subproblefd; is defined as solving the relaxed problem for one
subset of variablefs;, y;]. Subproblen®; only includes those functions that depend=n y;],
and is therefore given by:

min) f](ijxj) +f()(X17y17"'7X]W?yM) +¢(Q(X1»Yh~-wXMy}’M),XO)

vaYJ(va
subjectto g;(y;,x;) < (2.3)
J(Yvaj)
X0 Z 0

Where the slack variableg, are included in the optimization variables of the first subproblem.
Note that the solution to subproblejrdepends on the solution of the other subproblengs;,
since these appear in the coupling objectfyand the penalty function.

2 Coordination algorithm

The coordination algorithm for ALC has two tasks:

1. To select appropriate penalty paramete@ndw

2. To account for the coupling of subproblem objectives

The ALC coordination algorithm performs these tasks in a nested strategy that consists of inner
and outer loops [14]. The method of multipliers [3] is used in the outer loop to set the penalty pa-
rameters, and an alternating minimization approach [4] that sequentially solves the subproblems
accounts for the subproblem coupling in an inner loop. The coordination algorithm is illustrated
in Figure 2.1.

Outer loop: method of multipliers

In the outer loops, the method of multipliers sets the penalty parametétsfor outer iteration
k + 1 using the following update formula [2, 3]:
vl = vk Lowk owF o ¢f (2.4)

8 Augmented Lagrangian coordination

start)

A 4
1‘
solve suybpreblems
sequientially
n
yes

penalty update

dooj 1ouur

door 1010

no
converged?

Figure 2.1: lllustration of the coordination algorithm for ALC

whereq”® are the values of the linking constrainjsat termination of the thé-th inner loop.

Since large penalty weights slow down the coordination algorithms and introduce ill-conditioning
of the subproblems, the penalty weightsare increased a factagr only when the reduction in

the linking constraint value is smaller than some fractjoitf the reduction is larger, the penalty
weights are not updated. As a result, the penalty weights are only increased when the contribution
of the Lagrange multiplier update (2.4) did not lead to a large enough reduction in the violation
of the linking constraints. More formally, the penalty weightfor theith linking constrainty;

is updated as [3]

k . k k—1
Wkl — { wy it [g7] < ’Y‘qi | (2.5)

i puf it |gf] > lg
where > 1 and0 < v < 1, and we observe that = 2.2 and~ = 0.4 perform well in general.

The outer loop, and thus the solution procedure, is terminated when two conditions are satisfied.
First, the change in the maximal linking constraint value for two consecutive outer loop iterations
must be smaller than some user-defined termination tolerance

la* —a" e < (2.6)
Second, the maximal linking constraint violation must also be smaller than tolerance
1" loe <€ 2.7)

Inner loop: alternating optimization

In the inner loop, subproblems are solved sequentially for fixed penalty paranreserd w
using an alternating optimization approach [7, 4]. This procedure is terminated when the relative
change in the objective function valdeof the relaxed system design problem given by

M
F<X0aX17Y17 .. 7XMaYJ\4) = E fJ(XJaYJ)
j=1
+fo(x1,¥1,- X, yur) + d(A(X1, Y1, - X0, Y M) Xo)
for two consecutive inner loop iterations is smaller than some user-defined termination tolerance
Einner > 0:
[FE - P

1+ |F5| < Einner (2-8)

9 Coordination algorithm

where¢ denotes the inner loop iteration number. The divisior by| F¢| is used for proper scal-

ing of the criterion for very large as well as very small objectives [5]. The termination tolerance
einner Should be smaller than the outer loop termination tolerartteassure sufficient accuracy

of the inner loop solution. We usgner = /100.

An alternative inner loop termination strategy is to cut off the inner loop before actual conver-
gence during the first few iterations by using looser tolerances. More formally, such an inexact
approach uses a different tolerangg,, for each outer loop iteration. The main idea behind such

a strategy is that costly inner loop iterations are avoided when the penalty parameters are still far
from their optimal values. Convergence for the outer loop updates in case of an inexact inner
loop can still be guaranteed, as long as the sequence of termination tolefafjceks is non-
increasing, and?, .., — 0 [3]. An extreme case of the above is the so-called alternating direction
method of multipliers that performs only a single iteration for each inner loop. More moderate
values forg (smaller) andy (larger) are advised for these inexact approaches.

Initial weight selection

Although the above algorithms converge for any positive initial weight, the performance of the
outer loop method of multipliers depends on the choice of the initial weighflTo select the

initial weights, the ALC toolbox includes an approach that chooses the weights such that the sum
of the penalty terms is a fractianof the objective function valueb ~ «| f|.

This approach initially sets the Lagrange multiplierste- 0, and takes all weights equal = w,
such thayy = w?q”q. The initial weights are then selected as

alf]
a’q

where f andq are estimates of typical objective function and the linking constraint values. For
many engineering problems, a reasonable (order of magnitude) estimate of the objective function
minimum in the optimum can often be given. ALC assumes that the estimate of the objective
is non-zero, which is often the case in engineering design. Howevérh#ppens to be zero,

a non-zero, conservative “typical value” should be taken for this estimate (since we require the
weights to be larger than zero).

w =

(2.9)

The estimates for the linking constrairifsare obtained by solving the decomposed problem for

a small weightsy = w°, and zero Lagrange multipliess = 0. For these weights, the penalty
term will be small when compared to the objective function value. As a consequence, the allowed
linking constraint violations will be large, and the solution of the relaxed problem will produce
an estimatej for the size of the linking constraint values.

10 Augmented Lagrangian coordination

Chapter 3
Matlab toolbox for ALC

11

The ALC toolbox contains 13 files that together perform the coordination process for ALC. Ta-
ble 3.1 provides a brief description of these files, and Figure 3.1 depicts the relations between the
main toolbox files.

The general command to solve a partitioned problem using the ALC toolbox is

>> [Z, FVAL, EXITFLAG, OUTPUT] = alcsolve(’name’, Z0, ZLB, ZUB, ALG, par)

The required inputs are the nammame’ of the Matlab input file (which can be generated from a

¥ specification), the initial gues&0 for the design variables, and the lower and upper bounds on
the design variableZLB andZUBrespectively, wher&0, ZLB, andZUBare all column vectors

of appropriate size. The user input file should be of the same format as described in Section 1.
TheALGandpar arguments are optional, and can be used to set non-default algorithmic settings
and to supply problem-specific fixed parameters, respectively. A description of the fidld&of

and their default values are given in Table 3.2.

The outputZ contains the obtained solutioRVAL is the associated objective function value,
EXITFLAG is a convergence message that is 1 if the process terminated correctly, O if the max-
imum number of iterations was reached, and -1 if the algorithms terminated at a design that
violates one (or more) of the linking constrain®@UTPUTis a structure that includes detailed
information on the final solution and the convergence history. For a more detailed description of
OUTPUTtypehelp alcsolve at the Matlab command prompt.

12

Table 3.1: Description of the 13 files in the ALC toolbox.

Filename Description

alcsolve Main routine

ALGdef Inserts default algorithmic settings

setup _problem Initializes the problem and solution

convert Converts¥ generated input files into ALC input files

update _penalty
solve _innerloop
solve _subproblem

Updates penalty parametersandw
Inner loop routine
Solves individual subproblems

sub _obj Determines the value of the objective of a subproblem

sub _con Determines the values of the constraints of a subproblem

get z Computes intermediate solutions in the inner loop

obj _relaxed Computes the objective of the relaxed problem required for determining

termination of the inner loop

Outer loop convergence check

Placeholder used when an objective or constraint function is absent in
an input files

check _cvrg _outer
none

user input

|
|
| 20, zLB, zUB, ALG
|
|
|

. -
solve_alc , solve_innerloop . solve_subproblem
/
/ N < sub_con
v , - -~
date penalt; / v

update p y converged? no

v /
solve_innerloop ‘

v N yes

check_cvrg_outer ‘

Figure 3.1: File organization of the ALC toolbox

Matlab toolbox for ALC

13

Table 3.2: Description of the fields &8iLG

Field Description Default value
.maxiters Maximum number of cumulative 1000
inner loop iterations
.outer.tol Outer loop termination tolerange 0.001
.outer.pen Initial penalty parameters® and [0, 0.001]
0

.outer.preset

.outer.beta

.outer.gamma

.inner.tol

.inner.iters

.inner.sequence

.preset.alpha

.preset.typical f

w

Use initial weight selection strategyyes’
'yes' or 'no’

Weight update parametgr 2.2 if ALG.inner.tol
2.2 if ALG.inner.tol
act’

1.2 if ALG.inner.tol

Weight update parameter 0.4 if ALG.inner.tol
0.5 if ALG.inner.tol
act’
0.75if ALG.inner.tol

Inner loop termination type. ’fix’ 'none’
for einner = /100, 'inexact’ for de-
creasing{ck .}, and 'none’ for al-
ternating direction method of mul-
tipliers with a single iteration inner

loop.

(if ALG.inner.tol ='inexact’). 10
Number of iterations in which the
{ek et} is reduced from 1 te /100

Sequence in which subproblems arascend’
solved in the inner loop 'ascend’,
‘descend’, 'random’

Parametera, of the initial weight 0.1
setting strategy

Parameterf of the initial weight 1
setting strategy

=fix’
= 'inex-

='none’

fix
= 'inex-

=’'none’

14 Matlab toolbox for ALC

Chapter 4
Generating input files from
¥ specifications

Generating input files for the ALC toolbox frofa specification is very straightforward. The first
step is to generate a normalized partition from apecification. In the second step, a matlab file
is generated from this normalized partition.

To illustrate the generation of input files, consider the example optimization problem taken from

[12]
min f(21) + f(z2) = 27 + 23
214445327
subjectto gy(23,24,25) = (232 +23)25 2 —1<0
g2(25, 26, 27) = (25 + 2 °)27 * =1 < 0 (4.1)

hi(z1,23,24,25) = (23 + 2,2 + 28)27 2 — 1 =0

hg(Zg, 25,2’6,27) = (Zg + Zg + 25)22_2 —1=0

0.1 <z <10 i=1,...,7
The problem is partitioned into two subproblems. The first subproblem has local vatabtes
[21, 23, 24], local objectivef(z1), and local constraintg,, ;. The second subproblem has local
variablesxs = [29, 26, 27, local objectivef (z3), and local constraintg,, ho. The subproblems
are coupled through the linking variabye= [z5]. The ¥ specification for this partition is given
below:

comp First =
|[extvar zs
intvar zi, 23, z4
objfunc f(z1)
confunc g1 (2’3, 24, 2’5). hl(zh 235 %4, 25)

|

comp Second=
|[extvar zs
intvar 29,26, 27
objfunc f(z3)
confunc go(zs, 26, 27), ha(22, 25, 26, 27)

15

syst Geol=
|[sub A: First, B: Second
link A.z5 -- B.zg

I

topsyst Geol
The first step is to generate the normalized partition for this specification by running the command
$check-psi geol.psi geol.np

wheregeol.psi contains thel specification, andeol.np is the file to which the normalized
partition is written. The second step is to generate a matlab input file from this normalized
partition with the command:

$np2ml geol.np geol.m

wheregeol.m is the name of the generated matlab input file.

In its current implementation, the generator only allows only partitioned problems that do not
have response functions, and that contain a single system. Since ALC allows only scalar objective
functions, the total objective function is taken as the sum of the specified objective functions.

1 Input files

The generated Matlab input file is of a simple structure and appends information of the partitioned
problem to a structurPRinitialized by the ALC toolbox. Since the input filtame is called as
a function within the ALC toolbox, its first line is

PR = geol(PR)

wheregeol refers to the name of the Matlab input file itsaje01.m for this example).

An input file has to add two fields to theR structure generated by the ALC toolbox: the
field PR.main for system-level properties, and the vector fielg.sub , whosej-th element
PR.sub(j) includes the properties for componeaimp_j of the normalized partition.

Both the system-level and subproblem fields are based on the formulation of the decomposed
problem with subproblems (2.3). The decomposed formulation includes copies of the shared
variables, and has separable local objectives and constraints that depend only on the variables
of one of the subproblems. The system-wide functions may however depend on the variables of
two or more subproblems. Note that the decomposed formulation is different from the system
optimization problem (2.1) without shared variable copies.

Field PR.main has a number of sub-fields associated with the description of the problem, its
components, and their variables, together with sub-fields that define the coupling objéctives
and coupling constraingg andh,.

16 Generating input files from ¥ specifications

17

The fieldPR.main.name simply contains the name of the top-level system (i.e. the value asso-
ciated with thename key of sectiorsyst_1). The sub-field?R.main.comp _names contains an

array of names of the instantiated components, such that the opd?*&iorain.comp _names(j)

yields the value of theame key of componentomp_j of the normalized partition. Similarly,
PR.main.z _namesis an array that contains the names of the variables sucREhatain.z _names()
yields the name of variablar_i. To distinguish between variables that have the same name but
belong to different components (which can occur for shared variable copies), tHeRigichin.z _comps
is introduced and contains the names of the instantiated components to which the variables belong
(i.e. the value of th@ame field of the component section that includes_i as one of the values

of its variable keys). Hence, the operati®BR.main.z _comps(i) yields the name of the com-
ponent to which variabl®R.main.z _names(i) belongs. For the geometric programming
problem and its given partition, these main fields become

PR.main.name = 'Geol’

PR.main.comp_names = {'A’/B’};

PR.main.z_names = {z5'z21''23''24','25",'22','26','27"};
PR.main.z_comps = {{A’A'AA''B''B’'B','B};

The properties of the coupling objectives and constraints are listed in theRiRldsain.obj
andPR.main.con . Each of these fields is a vector whose length equals the number of cou-
pling objective and coupling constraint functions, respectively. Each element of this vector
is a structure with two sub-fields. For example, the sub-fields for the first coupling objec-
tive arePR.main.obj(1).name that defines its name, aftR.main.obj(1).args that
includes the indices of its arguments. The argument indices operate on the list of variables
PR.main.z _names such that the operatidPR.main.z _names(PR.main.obj(1).args)

yields the function’s arguments in the correct order. The name of a function refers to the name of
a Matlab function that takes the vector of arguments as inputs, and returns a scalar value of the
objective function as an output. Following Matlalfireincon preferences, constraint functions
yield two outputs upon evaluation: the first is a vector that contains the values of the inequality
constraints, and the second is a vector that contains the values of the equality constraints. If a
system does not have a coupling objective or a coupling constraint, theornleefunction (part

of the toolbox) is used with an empty list of arguments. Example (4.1) does not have coupling
functions, such that

PR.main.obj(1).name = ’none’;
PR.main.obj(1).args = [];
PR.main.con(l).name = ’'none’;
PR.main.con(1).args = [];

which completes thBR.main field for this example.

The component field®R.sub(j), 5 = 1,..., M, contain definitions of a component’s vari-
ables, its functions, and its variable couplings. The fi@lRssub(j).y -id andPR.sub(j).x _id
contain the vectors of indices associated with the coupling varighlesd local variables;,
respectively, of componerbmp_j. The coupling variables are given by the values ofdbe-
pling_var key, and the local variables are the values ofltlval_var key of sectiorcomp_j. Note

that each variable can only be assigned to only one subproblem. TheHigldab(j).obj
andPR.sub(j).con for the local objective and constraint functions are defined similar to the
coupling functions irPR.main.obj andPR.main.con

Couplings between the coupling variables of comporeamp_j and its neighborgomp_n,
n € Nj; are specified by selection matric8s, that appear in the definition of the consistency

1Al names are placed between quotes to comply with Matlab’s notational conventions for strings.

Input files

constraintsc;,, of (2.2). These matrices are generated fromlitie sections of the normalized
partition. For componertomp_j the matrixS;,, is included in fieldPR.sub(j).to(n).Sij

The selection matrices for components that are not neighbojsaoé defined as empty zero
matrices of appropriate size.

The generated Matlab definitions of the two components of Example (4.1) are given by

PR.sub(1).y_id [1];

PR.sub(1).x_id [2, 3, 4]
PR.sub(1).0bj(1).name = 'f;
PR.sub(1).0bj(1).args = [2];
PR.sub(1).con(1l).name = ’'gl’;
PR.sub(1).con(1).args = [3, 4, 1];
PR.sub(1).con(2).name = ’'hl’;
PR.sub(1).con(2).args = [2, 3, 4, 1];
PR.sub(1).to(2).Sij = [1];

PR.sub(2).y_id = [5];

PR.sub(2).x_id [6, 7, 8];
PR.sub(2).0bj(1).name = 'f’
PR.sub(2).obj(1).args = [6];
PR.sub(2).con(1).name = 'g2’;
PR.sub(2).con(1).args = [5, 7, 8];
PR.sub(2).con(2).name = ’'h2’;
PR.sub(2).con(2).args = [6, 5, 7, 8];
PR.sub(2).to(2).Sij = [1];

Assuming that the objective and constraint functions and the toolbox files are in the current di-
rectory or in Matlab’s path, the solution of Example (4.1) with ALC under default settings is
obtained by typing

>> 70 = ones(8,1); ZLB = .1*Z0, ZUB = 10*Z0;
>> [Z, FVAL] = alcsolve('geol’, 20, ZLB, ZUB)

in the Matlab command prompt. Note that the length of the initial guess and variable bounds is
larger than the number of original variables of Problem (4.1) since the initial guess and bounds
also include entries for each copy of the linking variabtes

18 Generating input files from ¥ specifications

Chapter 5
Examples

In this section, we demonstrate the use of the input file generator on a number of example prob-
lems and partitions taken from thie user manual [15]. Since the input file generator does not
allow response functions or multiple systems, the examples that do not satisfy these requirements
are reformulated appropriately. The first example is a geometric programming problems, the sec-
ond example is Golinski's speed reducer design problem [6], the third example is the portal frame
design problem introduced by [11], and the fourth is the supersonic business jet example intro-
duced by [1]. The vehicle chassis design problem of [9] is not included here since its analysis
models are not available at this point. The partition specification files and generated ALC input
files are included in Appendix A.

1 Geometric programming

The first example is the geometric programming problem taken from [8, 12, 13]. The problem is
given by:
min f(z1) + f(z2) = 27 + 23

Z13:0+3214
subjectto gy(23,24,25) = (232 +23)252 —1<0
g2(z5, 26, 27) = (22 + 25 2)272 =1 <0

g3(z8, 20, 211) = (22 + 28)2;2 — 1 <0
ga(28, 210, 211) = (Z§2 + zfo)zﬁz -1<0
g5(211, 219, 213) = (23 + 2152) 212 — 1 <0 (5.1)
g6(211, 212, 214) = (23 + 235) 277 — 1 <0
hi(z1,23,24,25) = (22 + 2] + 22)2, 2 =1 =0
ho(zo, 25,26, 27) = (22 + 28 + 22)25° =1 =0
(

>=
w

-2 —2 —2
2’3728,2’9,210,2’11) = (Zg + Z9 +ZlO + 2%1)23 —1=0
—2
h4(26, 211, 212, 213, 214) = (2’%1 + Z%Q + Z%B + 2%4)26 —1=0
01<2 <10 t=1,...,14

For this problem, we take the third partition of tikereference manual, illustrated in Figure 5.1.
The partition has four components that are coupled through the linking variahles zg, 211 .

19 Geometric programming

20

Geo2c
First, First,
Z1 Z4 o z7
Zs
Sgih fgah
23 Z6
Second, Second,
28 29 Z10 Z12 213214
zn
g3 84h3 g5 86 ha

Figure 5.1: Partition of geometric programming problem

The ¥ specification and the generated input file for the ALC toolbox are given in Appendix 2.

The problem’s solution can be invoked by entering

>> 70 = ones(18,1); ZLB = .1*Z0, ZUB = 10*Z0;
>> [Z, FVAL] = alcsolve('geo2c’, Z0, ZLB, ZUB)

in the matlab command prompt. Again, the initial guesses and bound values are also included for
the four variable copies introduced for the linking variables.

Speed reducer

The second example is the speed reducer design problem taken from [6, 10, 13]. The objective
of this problem is to minimize the volume of a speed reducer, subjected to stress, deflection, and
geometric constraints. The design variables are the dimensions of the gearitself 3), and

Generating input files from W specifications

SpeedReducer,

Gear
X1
F1g58589 g0 &n

Ve AN
X2X3 /7 F, F3 NJ\X2 %3
Z
Shaftd, ShafiB,
X4 X¢ X5 X7
FyFsg1 8387 FsF72:848s

Figure 5.2: Partition for the speed reducer problem.

both the shaftsay, x4 andxs, x7). The design problem for the speed reducer is defined by:

min [Fy(x1, 22, x3), Fa(x1, x6), F3(x1, 7)), Fa(ws), F5(x7), F6(x4, x6), Fr (x5, 27)]

T1ye-e 7

2
subjectto g1 (w2, 3,24, 76) = 11313 \/(745?4) +1.69-107 -1 <0

T2X3

80m7 Tox3
g3(z4,):15JL6+19 1<O

T4
galxs, x7) = Lizz4+1.9 1 <

2
g2 (@, T3, 25, 27) = = \/(7459”) L 1575-108—1<0

99(562,3?3) = “83 -1<0
gio(z1,22) = 22 —=1<0
g1(z1,22) = 155~ —1<0
26<12, <36 7.3< x5 <83
0.7 < 3 < 0.8 2.9 < x5 < 3.9
17<25<28 5.0<a7 <55
73 <z4 <83
where Fy = 0.78547,23(3.333322 + 14.93355 — 43.0934)
Fy = —1.50793:11‘%, F3 = —1.5079x1x$, Fy = 7.47733%
Fy = TATT23, Fs = 0.7854z402, Fy = 0.7854z522

(5.2)
The second partition of th& reference manual is taken for this problem. This patrtition is illus-
trated in Figure 5.2 and has three components coupled through the linking variatded z3

and the coupling objectiveB, and F3. The ¥ specification and matlab input file are given in
Appendix 3.

The problem’s solution can be invoked by entering
>> 7ZLB = [0.7, 17, 26, 0.7, 17, 7.3, 29, 0.7, 17, 7.3, 5.0];
>> 7ZUB = [0.8, 28, 3.6, 0.8, 28, 83, 39, 0.8, 17, 8.3, 55];
>> 70 = (ZLB + ZUB)./2;
>> [Z, FVAL] = alcsolve('speed2’, Z0, ZLB, ZUB)

21 Speed reducer

Portal

ALF

1

Frame
mass

g frame

A

2 22
LLFy

\fﬁ P

Beam
z, hcross
gbeama gcross

Beam
z, hcross
gbeama gcross

Beam
z, hcross
gbeama gcross

Figure 5.3: Partition for the portal frame example

in the matlab command prompt. Again, the initial guesses and bound values are also included for
the four variable copies introduced for the linking variables.

3 Portal frame

The third example is the structural optimization of a portal frame subjected to an external load.
The portal frame consists of three I-beains 1,2, 3, each with six cross-sectional dimensions

z' = [h, w1, we,b, t1,t2]* as design variables. As response variables, thelasnd moment of
inertial® are introduced for each beam, as well as the reaction fétces|[X1, Y1, M;, Xo, Yo, Ms)'.
The portal frame optimization problem is defined by

find z', 22,23, AL A% A3 TV 1213,
u,F1,F2. F3 ol o2, 03
min masgAl, A%, A3)

St grame(FL,F2 F3 AL A2 A3 [V 12 13) <0
8hearlF'2') < 0 i
gérosézz) < 0) o _ i
herosd A%, I, 2%) = (AY, IY) — agrosd2’) =0 4
where both design and response variables are included as optimization variables. Here, the con-
straintsgpeamare stress constrainggossare cross-sectional constraints, and the constrhyyis
are introduced to reformulate the response functionsdf@and I as equality constraints. Note
that the intermediate stress and frame analysis functggs, and agame are integrated in the
constraintpeamandgiame respectively.

(5.3)

1,2,3
1,2,3
1,2,3

)

)

For the portal frame example, we take a partition similar to the one described i theer
manual. The partition has one system-level component and one component for each beam (Fig-
ure 5.3). The specification i and the generated input file are given in Appendix 4.

The problem’s solution can be invoked by running the sexatmples/portal/run _portalalc.m
from the Matlab command line. The script includes the definition of problem-specific parameters,
an appropriate initial guess, and lower and upper bounds on the optimization variables. To pre-
vent ill-conditioning of the problem, the variables are scaled such that they have the same order
of magnitude.

22 Generating input files from ¥ specifications

b I

[1] J. S. Agte, J. Sobieszczanski-Sobieski, and R. R. Jr. Sandusky. Supersonic business jet
design through bi-level integrated system synthesisPrboteedings of the World Aviation
ConferenceSan Fransisco, CA, 1999. MCB Press, SAE paper 1999-01-5622.

[2] D. P. BertsekasConstrained Optimization and Lagrange Multiplier Methodscademic
Press, New York, NY, 1982.

[3] D. P. BertsekasNonlinear Programming Athena Scientific, Belmont, MA, 2nd edition,
2003. 2nd printing.

[4] J. C. Bezdek and R.J. Hathaway. Some notes on alternating optimiza&oture Notes in
Computer Scien¢®275:288-300, January 2002.

[5] P. E. Gill, W. Murray, and M. H. WrightPractical Optimization Academic Press, London,
UK, 1981.

[6] J. Golinski. Optimal synthesis problems solved by means of nonlinear programming and
random methodslournal of Mechanism$:287-309, 1970.

[7] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear Gauss-Seidel
method under convex constrain@@perations Research Lettei26(3):127-136, 2000.

[8] H. M. Kim. Target Cascading in Optimal System Desi§hD thesis, University of Michi-
gan, 2001.

[9] H. M. Kim, N. F. Michelena, P. Y. Papalambros, and T. Jiang. Target cascading in optimal
system designASME Journal of Mechanical Desigh25(3):474—-480, 2003.

[10] S. L. Padula, N. M. Alexandrov, and L. L. Green. MDO test suite at nasa langley research
center. InProceedings of the 6th AIAA/JUSAF/NASA/ISSMO Multidisciplinary Analysis and
Optimization ConferenceBellevue, WA, 4-6 September 1996. AIAA paper 1996-4028.
Website http://www.eng.buffalo.edu/Research/MODEL/mdotestsuite.html.

[11] J. Sobieszczanski-Sobieski, B. B. James, and A. R. Dovi. Structural optimization by multi-
level decomposition. AIAA paper 1983-0832, May 1983.

[12] S. Tosserams, L. F. P. Etman, P. Y. Papalambros, and J. E. Rooda. An augmented La-
grangian relaxation for analytical target cascading using the alternating direction method of
multipliers. Structural and Multidisciplinary Optimizatiqr81(3):176-189, 2006.

[13] S. Tosserams, L. F. P. Etman, and J. E. Rooda. An augmented Lagrangian decomposition
method for quasi-separable problems in MD&ructural and Multidisciplinary Optimiza-
tion, 34(3):211-227, 2007.

[14] S. Tosserams, L. F. P. Etman, and J. E. Rooda. Augmented Lagrangian coordination for
distributed optimal design in MDQnternational Journal for Numerical Methods in Engi-
neering 73(13):1885-1910, 2008.

[15] S. Tosserams, A. T. Hofkamp, and L. F. P. Etmanreference manual. SE-report, Eind-
hoven University of Technology, 2009.

23

24 Bibliography

Appendix A

Specification and
generated outputs for
examples

This appendix includes the actual input files and generated outputs for the examples presented in
the user manual.

1 Example (4.1)

Partition specification inv:

Geometric programming problem 1
vars: z1 z2 z3 z4 z5 z6 z7

objs: f(z1), f(z2)
cons: g1(z3,z4,z5), 92(z5,26,27), h1(z1,z3,z4,z5), h2(z2,25,26,27)

HOHH KR

comp First =
[extvar z5
intvar z1, z3, z4
objfunc f(z1)
confunc g1(z3,z4,z5)
, h1(z1,z3,z4,z5)
1l

comp Second =

[extvar z5
intvar z2, z6, z7
objfunc f(z2)
confunc g2(z5,z26,27)

25 Example (4.1)

26

, h2(z2,25,26,27)
1l

syst Geol =
[sub A: First, B: Second
link A.z5 -- B.z5

1

topsyst Geol

Generated matlab file:

%
% Generated by np2alc
%
function PR = geol(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8];

PR.main.z_names = {zl1', 'z3, 'z4, 'z5, 'z2', 'z6', 'z7', 'z5%;

PR.main.z_comps = {First’, 'First’, 'First’, 'First’, 'Second’, 'Second’, 'Second’, 'Second’};
PR.main.m = 2;

PR.main.comp_id = [1, 2J;
PR.main.comp_names = {A’, 'B};

PR.main.obj(1).name = ’'none’;
PR.main.obj(1).args = [J;

PR.main.con(1).name = ’none’;
PR.main.con(1).args = [|;

PR.sub(1).x_id
PR.sub(1).y_id

=1, 2 3
= [

PR.sub(1).0bj(1).name = 'f;
PR.sub(1).obj(1).args = [1];

PR.sub(1).con(l).name = 'gl’;
PR.sub(1).con(l).args = [2, 3, 4];
PR.sub(1).con(2).name = 'hl’;
PR.sub(1).con(2).args = [1, 2, 3, 4];

PR.sub(1).to(2).Sij = [1];

PR.sub(2).x_id = [5, 6, 7];
PR.sub(2).y_id = [8];

PR.sub(2).0bj(1).name = 'f;
PR.sub(2).obj(1).args = [5];

PR.sub(2).con(1).name = 'g2’;
PR.sub(2).con(1).args = [8, 6, 7]
PR.sub(2).con(2).name = 'h2’;
PR.sub(2).con(2).args = [5, 8, 6, 7;

PR.sub(2).to(1).Sij = [1];

Geometric programming problem

Partition specification ir:

comp Firstl =
[extvar z3, z5
intvar z1, z4

Specification and generated outputs for examples

objfunc f(z1)
confunc g1(z3,z4,z5)
, h1(z1,z3,z4,25)

I
comp First2 =
[extvar z5, z6

intvar z2, z7

objfunc f(z2)

confunc g2(z5,z26,27)

, h2(z2,25,26,z7)

|

comp Secondl =
[extvar z3, z11
intvar z8, z9, z10
confunc g3(z8,z9,z11)
, 94(z8,210,z11)
, h3(z3,28,29,210,z11)
|

comp Second2 =
[extvar z6, z11
intvar z12, z13, z14
confunc g5(z11,z12,z13)
, 96(z11,z12,z14)
, h4(z6,211,212,713,214)
I

syst Geo2c =
[sub Al: Firstl, A2: First2, B1: Secondl, B2: Second2

link A1.z3 -- B1.z3, A2.z6 -- B2.z6, B1.z11 -- B2.z11, Al1.z5 -- A2.z5
1l

topsyst Geo2c

Generated matlab file:

%
% Generated by np2alc
%
function PR = geo2c(PR)

PRmainz_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18];

PR.main.z_names = {z1', 'z4', 'z3', 'z5', 'z2', 'z7', 'z5, 'z6', 'z8, 'z9, 'z10', 'z3, 'z11', 'z12', 'z13', 'z14', 'z6’, 'z11};

PR.main.z_comps = {Firstl’, 'Firstl’, 'Firstl’, 'Firstl’, 'First2’, 'First2’, 'First2’, 'First2’, 'Secondl’, 'Secondl’, 'Secondl’, 'Secondl’, 'Secondl’, 'Second2’, 'Second2’, 'Second2’, 'Second2’, 'Second2’};
PR.main.m = 4;

PR.main.comp_id = [1, 2, 3, 4];
PR.main.comp_names = {'Al’, 'A2', 'B1’, 'B2'};

PR.main.obj(1).name = ’'none’;
PR.main.obj(1).args = [;

PR.main.con(l).name = 'none’;
PR.main.con(1).args = [J;

PR.sub(1).x_id
PR.sub(1).y_id

=[L 2%
= [3, 4%
PR.sub(1).0bj(1).name = 'f;
PR.sub(1).obj(1).args = [1];

PR.sub(1).con(1).name = 'gl’;

PR.sub(1).con(l).args = [3, 2, 4];
PR.sub(1).con(2).name = ’hl’;

Geometric programming problem

28

PR.sub(1).con(2).args = [1, 3, 2, 4];

PR.sub(1).to(2).Sij = [0,1];
PR.sub(1).to(3).Sij = [1,0];
PR.sub(1).to(4).Sij = zeros(0, 2);

PR.sub(2).x_id = [5, 6];
PR.sub(2).y_id = [7, 8];

PR.sub(2).0bj(1).name = 'f;
PR.sub(2).obj(1).args = [5];

PR.sub(2).con(l).name = 'g2’;
PR.sub(2).con(1).args = [7, 8, 6];
PR.sub(2).con(2).name = 'h2’;
PR.sub(2).con(2).args = [5, 7, 8, 6];

PR.sub(2).to(1).Sij = [1,0];
PR.sub(2).to(3).Sij = zeros(0, 2);
PR.sub(2).to(4).Sij = [0,1];

PR.sub(3).x_id = [9, 10, 11J;
PR.sub(3)y_id = [12, 13];

PR.sub(3).obj(1).name = 'none’;
PR.sub(3).0bj(1).args = [];

PR.sub(3).con(1).name = 'g3’;
PR.sub(3).con(l).args = [9 10, 13];
PR.sub(3).con(2).name = 'g4’;
PR.sub(3).con(2).args = [9 11, 13];
PR.sub(3).con(3).name = 'h3’;
PR.sub(3).con(3).args = [12, 9, 10, 11, 13];

PR.sub(3).to(1).Sij = [1,0];
PR.sub(3).to(2).Sij = zeros(0, 2);
PR.sub(3).to(4).Sij = [0,1];

PR.sub(4).x_id = [14, 15, 16];
PR.sub(4).y_id = [17, 18];

PR.sub(4).0bj(1).name = 'none’;
PR.sub(4).obj(1).args = [;

PR.sub(4).con(l).name = 'g5’;
PR.sub(4).con(1).args = [18, 14, 15];
PR.sub(4).con(2).name = 'g6’;
PR.sub(4).con(2).args = [18 14, 16];
PR.sub(4).con(3).name = 'h4’;
PR.sub(4).con(3).args = [17, 18, 14, 15, 16];

PR.sub(4).to(1).Sij = zeros(0, 2);
PR.sub(4).to(2).Sij = [1,0];
PR.sub(4).to(3).Sij = [0,1];

Speed reducer

Partition specification ir:

comp Gear =
[extvar x1, x2, x3
objfunc F1(x1,x2,x3)
confunc g5(x1,x2,x3)
, 06(x1,x2,x3)
, 09(x2,x3)
, 910(x1,x2)
, 011(x1,x2)
|

comp ShaftA2
[extvar x2, x3, x6
intvar x4

Specification and generated outputs for examples

objfunc F4(x6)
, F6(x4,x6)
confunc g1(x2,x3,x4,x6)
, g3(x4,x6)
, 97(x2,x3,x4,x6)
|

comp ShaftB2 =
[extvar x2, x3, X7
intvar x5
objfunc F5(x7)
, F7(x5,x7)
confunc g2(x2,x3,x5,x7)
, 94(x5,x7)
, 98(x2,x3,x5,x7)
1l

syst SpeedReducer2 =
[sub G: Gear, S1: ShaftA2, S2: ShaftB2
objfunc F2(G.x1,S1.x6)
, F3(G.x1,S2.x7)
link G.x2 -- {S1.x2, S2.x2}
, G.x3 -- {S1.x3, S2.x3}

Il

topsyst SpeedReducer2

Generated matlab file:

%

% Generated by np2alc
%

function PR = speed2(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
PR.main.z_names = {'x1', 'x2', 'x3', 'x4', 'x2', 'x3', 'x6', 'x&, 'x2', 'x3', X7’}
PR.main.z_comps = {'Gear, 'Gear’, 'Gear, 'ShaftA2', 'ShaftA2', 'ShaftA2’, 'ShaftA2’, 'ShaftB2’, 'ShaftB2’, 'ShaftB2', 'ShaftB2};

PR.main.m = 3;
PR.main.comp_id = [1, 2, 3];
PR.main.comp_names = {G', 'S1’, 'S2’};

PR.main.obj(1).name = 'F2;
PR.main.obj(1).args = [1, 7];
PR.main.obj(2).name = 'F3";
PR.main.obj(2).args = [1, 11];

PR.main.con(l).name = 'none’;
PR.main.con(1).args = [|;

PR.sub(1).x_id
PR.sub(1).y_id

= [15;

=235
PR.sub(1).obj(1).name = 'F1’;
PR.sub(1).0bj(1).args = [1, 2, 3];

PR.sub(1).con(l).name = 'g5’;
PR.sub(1).con(l).args = [1, 2, 3];
PR.sub(1).con(2).name = 'g6’;
PR.sub(1).con(2).args = [1, 2, 3];
PR.sub(1).con(3).name = 'g9’;
PR.sub(1).con(3).args = [2, 3];
PR.sub(1).con(4).name = 'g10’;
PR.sub(1).con(4).args = [1, 2];
PR.sub(1).con(5).name = ’'gll’;
PR.sub(1).con(5).args = [1, 2];

PR.sub(1).to(2).Sij
PR.sub(1).to(3).Sij

[1,0; 0,1];
[0,1; 1,0];

PR.sub(2).x_id = [4, 7];
PR.sub(2).y_id = [5, 6];

PR.sub(2).0bj(1).name = 'F4’;

Speed reducer

PR.sub(2).obj(1).args = [7];
PR.sub(2).0bj(2).name = 'F6’;
PR.sub(2).0bj(2).args = [4, 7];

PR.sub(2).con(1).name = 'gl’;
PR.sub(2).con(1).args = [5, 6, 4, 7];
PR.sub(2).con(2).name = 'g3’;
PR.sub(2).con(2).args = [4, 7];
PR.sub(2).con(3).name = 'g7’;
PR.sub(2).con(3).args = [5, 6, 4, 7];

PR.sub(2).to(1).Sij = [1,0; 0,1];
PR.sub(2).to(3).Sij = zeros(0, 2);

PR.sub(3).x_id = [8, 11];
PR.sub(3).y_id = [9, 10];

PR.sub(3).obj(1).name = 'F5’;
PR.sub(3).0bj(1).args = [11];
PR.sub(3).0bj(2).name = 'F7’;
PR.sub(3).0bj(2).args = [8, 11];

PR.sub(3).con(l).name = 'g2’;
PR.sub(3).con(1).args = [9, 10, 8, 11];
PR.sub(3).con(2).name = 'g4’;
PR.sub(3).con(2).args = [8, 11];
PR.sub(3).con(3).name = 'g8’;
PR.sub(3).con(3).args = [9, 10, 8, 11];

PR.sub(3).to(1).Sij = [0,1; 1,0];
PR.sub(3).to(2).Sij = zeros(0, 2);

Portal frame

Partition specification inv:

comp Frame =
[extvar Al, A2, A3, I1, 12, I3
, X11, Y11, M11, X12, Y12, M12
, X21, Y21, M21, X22, Y22, M22
, X31, Y31, M31, X32, Y32, M32
objfunc mass(Al, A2, A3)
confunc gframe(X11, Y11, M11, X12, Y12, M12
, X21, Y21, M21, X22, Y22, M22
, X31, Y31, M31, X32, Y32, M32
, Al, A2, A3, 11, 12, I3)
Il

comp Beam =
[extvar A, I, X1, Y1, M1, X2, Y2, M2
intvar h, wil, w2, d, tl1, t2
confunc gbheam(X1, Y1, M1, X2, Y2, M2, h, wl, w2, d, t1, t2)
, gcross(h, wl, w2, d, t1, t2)
, hcross(A, I, h, wl, w2, d, t1, t2)
1l

syst Portal =
[sub F: Frame, B1,B2,B3: Beam
link FA1 -- BLA , FI1 - Bll
, F.X11 -- B1.X1 , F.X12 -- B1.X2
, F.Yil -- B1.Y1l , F.Y12 -- B1.Y2
, F.M11 -- B1.M1 , F.M12 -- B1.M2

Specification and generated outputs for examples

31

, FA2 - B2A |, FI2 -- B2l

, F.X21 - B2.X1 , F.X22 -- B2.X2
, F.Y21 - B2.Y1 , F.Y22 - B2.Y2
, F.M21 -- B2.M1 , F.M22 -- B2.M2
, FA3 - B3.A , FI3 - B3l

, F.X31 -- B3.X1 , F.X32 -- B3.X2
, F.Y31 -- B3.Y1 , F.Y32 -- B3.Y2
, F.M31 -- B3.M1 , F.M32 -- B3.M2

Il

topsyst Portal

Generated matlab file:

%

% Generated by np2alc

%

function PR = portallalc(PR)

PRmain.z_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
PR.main.z_names = {/Al’, 'A2", 'A3’, "I, "12, 13", 'X11', 'Y11', 'M11’, 'X12, 'Y12', 'M12', 'X21', 'Y21', 'M21’', 'X22', 'Y22', 'M22’, 'X31', 'Y31’, 'M31’, 'X32', 'Y32', 'M32', 'h’, "wl’, 'w2', 'd’, 't1’, 't2’, 'A’
PR.main.z_comps = {'Frame’, 'Fr

PR.main.m = 4;
PR.main.comp_id = [1, 2, 3, 4];
PR.main.comp_names = {F’, 'B1', 'B2', 'B3’}

PR.main.obj(1).name = 'none’;
PR.main.obj(1).args =

PR.main.con(1).name = 'none’;
PR.main.con(l).args = [J;

PR.sub(1).x_id = [J;
PR.sub(l)y id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24];

PR.sub(1).0bj(1).name = 'mass’;
PR.sub(1).0bj(1).args = [1, 2, 3];

PR.sub(1).con(1).name = 'gframe’;
PR.sub(1).con(1).args = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 1, 2, 3, 4, 5, 6];

PR.sub(1).to(2).Sij = [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,1,0; 1,0; 0,0,0,C
PR.sub(1).to(3).Sij = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,C
PR.sub(1).to(4).Sij = [0,1,0; 0,1,0,0,0; 0,1,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0; 0,0,0,C

=3

PR.sub(2).x_id = [25, 26, 27, 28, 29, 30];
PR.sub(2).y_id = [31, 32, 33, 34, 35, 36, 37, 38];

PR.sub(2).obj(1).name = 'none’;
PR.sub(2).obj(1).args = [I;

PR.sub(2).con(1).name = 'gbeam’;

PR.sub(2).con(1).args = [33, 34, 35, 36, 37, 38, 25, 26, 27, 28, 29, 30];
PR.sub(2).con(2).name = 'gcross’;

PR.sub(2).con(2).args = [25, 26, 27, 28, 29, 30];

PR.sub(2).con(3).name = ‘hcross’;

PR.sub(2).con(3).args = [31, 32, 25, 26, 27, 28, 29, 30];

PR.sub(2).to(1).Sij = [0,0,0,0,0,0,0,1; 0,0,1,0,0,0,0,0; 0,1,0,0,0,0,0,0; 1,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0; 0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0];
PR.sub(2).to(3).Sij = zeros(0, 8);
PR.sub(2).to(4).Sij = zeros(0, 8);

PR.sub(3).x_id = [39, 40, 41, 42, 43, 44];
PR.sub(3).y_id = [45, 46, 47, 48, 49, 50, 51, 52];

PR.sub(3).0bj(1).name 'none’;
PR.sub(3).obj(1).args = [];

PR.sub(3).con(1).name = 'gbeam’;

PR.sub(3).con(1).args = [47, 48, 49, 50, 51, 52, 39, 40, 41, 42, 43, 44];
PR.sub(3).con(2).name = 'gcross’;

PR.sub(3).con(2).args = [39, 40, 41, 42, 43, 44];

PR.sub(3).con(3).name = ’hcross’;

PR.sub(3).con(3).args = [45, 46, 39, 40, 41, 42, 43, 44];

PR.sub(3).to(1).Sij = [0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0; 0,0,1,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,1; 0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0; 1,0,0,0,0,0,0,0];
PR.sub(3).to(2).Sij = zeros(0, 8);
PR.sub(3).to(4).Sij = zeros(0, 8);

PR.sub(4).x_id = [53, 54, 55, 56, 57, 58];
PR.sub(4).y_id = [59, 60, 61, 62, 63, 64, 65, 66];

PR.sub(4).0bj(1).name = 'none’;
PR.sub(4).obj(1).args = [I;

Portal frame

PR.sub(4).con(1).name = 'gheam’;

PR.sub(4).con(1).args = [61, 62, 63, 64, 65, 66, 53, 54, 55, 56, 57, 58];
PR.sub(4).con(2).name = ’gcross’;

PR.sub(4).con(2).args = [53, 54, 55, 56, 57, 58];

PR.sub(4).con(3).name = ’hcross’;

PR.sub(4).con(3).args = [59, 60, 53, 54, 55, 56, 57, 58];

PR.sub(4).to(1).Sij =
PR.sub(4).to(2).Sij = zeros(0, 8);
PR.sub(4).to(3).Sij = zeros(0, 8);

32 Specification and generated outputs for examples

