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Chapter 1

Introduction
Distributed optimization is a technique to partition a single, typically large system optimization
problem into a number of smaller optimization subproblems. A coordination algorithm is used to
drive the subproblem designs towards a solution that is optimal for the original problem.

Distributed optimization approaches are attractive for addressing the challenges that arise in the
optimal design of advanced engineering systems. The main motivation for the use of distributed
optimization is the organization of the design process itself. Since a single designer is not able
to oversee each relevant aspect, the design process is commonly distributed over a number of
design teams. Each team is responsible for a part of the system, and typically uses specialized
analysis and design tools to solve its design subproblems. Distributed optimization methods apply
naturally to such organizations since they provide a degree of decision autonomy to the different
design teams. Full disciplinary autonomy can rarely be obtained completely since the disciplinary
design subproblems involve some quantities from other disciplines related to the interdisciplinary
interaction. A coordination method is required to address these interactions.

Augmented Lagrangian Coordination (ALC) [14] has been proposed as a method for coordination
of these interaction. This user manual describes how the matlab toolbox of augmented Lagrangian
coordination (ALC) can be used with input files generated from specifications in theΨ format
[15]. It includes a brief description of ALC, a description of the matlab toolbox for ALC, and how
to generate matlab input files from partitioned problem specifications inΨ. Several examples are
included for illustration.
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Chapter 2

Augmented Lagrangian
coordination

The starting point for the augmented Lagrangian coordination (ALC) method [14] is the system
optimization problem given by:

min
y,x1,...,xM

f0(y,x1, . . . ,xM ) +
M∑

j=1

fj(y,xj)

subject to g0(y,x1, . . . ,xM ) ≤ 0
h0(y,x1, . . . ,xM ) = 0
gj(y,xj) ≤ 0 j = 1, . . . ,M
hj(y,xj) = 0 j = 1, . . . ,M

(2.1)

where the system consists ofM disciplines labeledj = 1, . . . ,M . The local variablesxj are
associated exclusively with disciplinej, and the linking variables denoted byy are relevant to
two or more disciplines. Similarly, objective and constraint functions are divided into coupling
functionsf0, g0, andh0 that depend on the local variables of more than one discipline, and local
functionsfj , gj , andhj that depend on only one subset of local variables.

1 Subproblem formulation

The augmented Lagrangian coordination algorithms require that all constraints are separable with
respect to the variables of the individual disciplines (i.e. depend only on the variables of a single
discipline); coupling through the objective function is allowed. To remove the coupling of the
constraints through the linking variablesy and coupling constraintsg0 andh0, two problem
transformation steps are used:

Step 1: Introduction of linking variable copiesyj as design variables at each discipline, and
the introduction of consistency constraintsc that force the introduced copies to take equal
valuesy1 = y2 = . . . = yM . The local constraintsgj andhj then only depend on
the variablesyj andxj of disciplinej. However, the introduced consistency constraints
c(y1,y2, . . . ,yM ) depend on the linking variables of more than one discipline, and are
therefore nonseparable coupling constraints, similar tog0 andh0. In general, the linking
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constraints between subproblemj and its neighborn is given by:

cjn = Sjnyj − Snjyn = 0 j = 1, . . . ,M, n ∈ Nj (2.2)

where the binary selection matrixSjn selects those copies of subproblemj that are linked
to the selected copies of its neighborn, andNj are the set of neighbors to which subprob-
lem j is coupled through the consistency constraintscjn.

Step 2: Relaxation of the linking constraintsq = [c,g0 + x0,h0] through an augmented La-
grangian penalty functionφ(q) = vT q+ ‖w ◦q‖2

2. Here,v andw are the penalty param-
eters of the augmented Lagrangian functions, andx0 ≥ 0 are slack variables that allowg0

to be treated as equality constraints. A penalty parameter update algorithm is required to
set the penalty parameters such that the relaxation error becomes zero.

After relaxation of the linking constraintsq, the remaining local constraintsgj andhj are sepa-
rable with respect to the disciplinary variablesyj andxj . The objective is not separable due to
the coupling objectivef0 and the augmented Lagrangian penaltyφ.

Now that the constraints are separable, ALC definesM disciplinary subproblemsPj , j = 1, . . . ,M .
The disciplinary optimization subproblemPj is defined as solving the relaxed problem for one
subset of variables[xj ,yj ]. SubproblemPj only includes those functions that depend on[xj ,yj ],
and is therefore given by:

min
xj ,yj(,x0)

fj(yj ,xj) + f0(x1,y1, . . . ,xM ,yM ) + φ(q(x1,y1, . . . ,xM ,yM ),x0)

subject to gj(yj ,xj) ≤ 0
hj(yj ,xj) = 0
x0 ≥ 0

(2.3)

Where the slack variablesx0 are included in the optimization variables of the first subproblem.
Note that the solution to subproblemj depends on the solution of the other subproblemsi 6= j,
since these appear in the coupling objectivef0 and the penalty functionφ.

2 Coordination algorithm

The coordination algorithm for ALC has two tasks:

1. To select appropriate penalty parametersv andw

2. To account for the coupling of subproblem objectives

The ALC coordination algorithm performs these tasks in a nested strategy that consists of inner
and outer loops [14]. The method of multipliers [3] is used in the outer loop to set the penalty pa-
rameters, and an alternating minimization approach [4] that sequentially solves the subproblems
accounts for the subproblem coupling in an inner loop. The coordination algorithm is illustrated
in Figure 2.1.

Outer loop: method of multipliers

In the outer loops, the method of multipliers sets the penalty parametersvk+1 for outer iteration
k + 1 using the following update formula [2, 3]:

vk+1 = vk + 2wk ◦wk ◦ qk (2.4)

8 Augmented Lagrangian coordination



i
i

“alc˙temp” — 2009/3/31 — 13:34 — page 1 — #1 i
i

i
i

i
i

converged?

yes

no

no

yes

stop

start

in
n
er lo

o
p

o
u
ter lo

o
p

converged?

penalty update

solve subproblems 

sequentially

Figure 2.1: Illustration of the coordination algorithm for ALC

whereqk are the values of the linking constraintsq at termination of the thek-th inner loop.
Since large penalty weights slow down the coordination algorithms and introduce ill-conditioning
of the subproblems, the penalty weightsw are increased a factorβ only when the reduction in
the linking constraint value is smaller than some fractionγ. If the reduction is larger, the penalty
weights are not updated. As a result, the penalty weights are only increased when the contribution
of the Lagrange multiplier update (2.4) did not lead to a large enough reduction in the violation
of the linking constraints. More formally, the penalty weightwi for the ith linking constraintqi

is updated as [3]

wk+1
i =

{
wk

i if |qk
i | ≤ γ|qk−1

i |
βwk

i if |qk
i | > γ|qk−1

i | (2.5)

whereβ > 1 and0 < γ < 1, and we observe thatβ = 2.2 andγ = 0.4 perform well in general.

The outer loop, and thus the solution procedure, is terminated when two conditions are satisfied.
First, the change in the maximal linking constraint value for two consecutive outer loop iterations
must be smaller than some user-defined termination toleranceε > 0

‖qk − qk−1‖∞ < ε (2.6)

Second, the maximal linking constraint violation must also be smaller than toleranceε > 0

‖qk‖∞ < ε (2.7)

Inner loop: alternating optimization

In the inner loop, subproblems are solved sequentially for fixed penalty parametersv andw
using an alternating optimization approach [7, 4]. This procedure is terminated when the relative
change in the objective function valueF of the relaxed system design problem given by

F (x0,x1,y1, . . . ,xM ,yM ) =
M∑

j=1

fj(xj ,yj)

+f0(x1,y1, . . . ,xM ,yM ) + φ(q(x1,y1, . . . ,xM ,yM ),x0)

for two consecutive inner loop iterations is smaller than some user-defined termination tolerance
εinner > 0:

|F ξ − F ξ−1|
1 + |F ξ|

< εinner (2.8)
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whereξ denotes the inner loop iteration number. The division by1+ |F ξ| is used for proper scal-
ing of the criterion for very large as well as very small objectives [5]. The termination tolerance
εinner should be smaller than the outer loop termination toleranceε to assure sufficient accuracy
of the inner loop solution. We useεinner = ε/100.

An alternative inner loop termination strategy is to cut off the inner loop before actual conver-
gence during the first few iterations by using looser tolerances. More formally, such an inexact
approach uses a different toleranceεk

inner for each outer loop iteration. The main idea behind such
a strategy is that costly inner loop iterations are avoided when the penalty parameters are still far
from their optimal values. Convergence for the outer loop updates in case of an inexact inner
loop can still be guaranteed, as long as the sequence of termination tolerances{εk

inner} is non-
increasing, andεk

inner → 0 [3]. An extreme case of the above is the so-called alternating direction
method of multipliers that performs only a single iteration for each inner loop. More moderate
values forβ (smaller) andγ (larger) are advised for these inexact approaches.

Initial weight selection

Although the above algorithms converge for any positive initial weight, the performance of the
outer loop method of multipliers depends on the choice of the initial weightw. To select the
initial weights, the ALC toolbox includes an approach that chooses the weights such that the sum
of the penalty terms is a fractionα of the objective function value:φ ≈ α|f |.

This approach initially sets the Lagrange multipliers tov = 0, and takes all weights equalw = w,
such thatφ = w2qT q. The initial weights are then selected as

w =

√
α|f̂ |
q̂T q̂

(2.9)

wheref̂ andq̂ are estimates of typical objective function and the linking constraint values. For
many engineering problems, a reasonable (order of magnitude) estimate of the objective function
minimum in the optimum can often be given. ALC assumes that the estimate of the objective
is non-zero, which is often the case in engineering design. However, iff̂ happens to be zero,
a non-zero, conservative “typical value” should be taken for this estimate (since we require the
weights to be larger than zero).

The estimates for the linking constraintsq̂ are obtained by solving the decomposed problem for
a small weightsw = w0, and zero Lagrange multipliersv = 0. For these weights, the penalty
term will be small when compared to the objective function value. As a consequence, the allowed
linking constraint violations will be large, and the solution of the relaxed problem will produce
an estimatêq for the size of the linking constraint values.
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Chapter 3

Matlab toolbox for ALC
The ALC toolbox contains 13 files that together perform the coordination process for ALC. Ta-
ble 3.1 provides a brief description of these files, and Figure 3.1 depicts the relations between the
main toolbox files.

The general command to solve a partitioned problem using the ALC toolbox is

>> [Z, FVAL, EXITFLAG, OUTPUT] = alcsolve(’name’, Z0, ZLB, ZUB, ALG, par)

The required inputs are the name’name’ of the Matlab input file (which can be generated from a
Ψ specification), the initial guessZ0 for the design variables, and the lower and upper bounds on
the design variables,ZLB andZUBrespectively, whereZ0, ZLB, andZUBare all column vectors
of appropriate size. The user input file should be of the same format as described in Section 1.
TheALGandpar arguments are optional, and can be used to set non-default algorithmic settings
and to supply problem-specific fixed parameters, respectively. A description of the fields ofALG
and their default values are given in Table 3.2.

The outputZ contains the obtained solution,FVAL is the associated objective function value,
EXITFLAG is a convergence message that is 1 if the process terminated correctly, 0 if the max-
imum number of iterations was reached, and -1 if the algorithms terminated at a design that
violates one (or more) of the linking constraints.OUTPUTis a structure that includes detailed
information on the final solution and the convergence history. For a more detailed description of
OUTPUT, typehelp alcsolve at the Matlab command prompt.
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Table 3.1: Description of the 13 files in the ALC toolbox.
Filename Description
alcsolve Main routine
ALGdef Inserts default algorithmic settings
setup problem Initializes the problem and solution
convert ConvertsΨ generated input files into ALC input files
update penalty Updates penalty parametersv andw
solve innerloop Inner loop routine
solve subproblem Solves individual subproblems
sub obj Determines the value of the objective of a subproblem
sub con Determines the values of the constraints of a subproblem
get z Computes intermediate solutions in the inner loop
obj relaxed Computes the objective of the relaxed problem required for determining

termination of the inner loop
check cvrg outer Outer loop convergence check
none Placeholder used when an objective or constraint function is absent in

an input files

i
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Figure 3.1: File organization of the ALC toolbox
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Table 3.2: Description of the fields ofALG.
Field Description Default value
.maxiters Maximum number of cumulative

inner loop iterations
1000

.outer.tol Outer loop termination toleranceε 0.001

.outer.pen Initial penalty parametersv0 and
w0

[0, 0.001]

.outer.preset Use initial weight selection strategy
’yes’ or ’no’

’yes’

.outer.beta Weight update parameterβ 2.2 if ALG.inner.tol = ’fix’
2.2 if ALG.inner.tol = ’inex-
act’
1.2 if ALG.inner.tol = ’none’

.outer.gamma Weight update parameterγ 0.4 if ALG.inner.tol = ’fix’
0.5 if ALG.inner.tol = ’inex-
act’
0.75 ifALG.inner.tol = ’none’

.inner.tol Inner loop termination type. ’fix’
for εinner = ε/100, ’inexact’ for de-
creasing{εk

inner}, and ’none’ for al-
ternating direction method of mul-
tipliers with a single iteration inner
loop.

’none’

.inner.iters (if ALG.inner.tol = ’inexact’).
Number of iterations in which the
{εk

inner} is reduced from 1 toε/100

10

.inner.sequence Sequence in which subproblems are
solved in the inner loop ’ascend’,
’descend’, ’random’

’ascend’

.preset.alpha Parameterα of the initial weight
setting strategy

0.1

.preset.typical f Parameterf̂ of the initial weight
setting strategy

1
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Chapter 4

Generating input files from
Ψ specifications

Generating input files for the ALC toolbox fromΨ specification is very straightforward. The first
step is to generate a normalized partition from aΨ specification. In the second step, a matlab file
is generated from this normalized partition.

To illustrate the generation of input files, consider the example optimization problem taken from
[12]

min
z1,...,z7

f(z1) + f(z2) = z2
1 + z2

2

subject to g1(z3, z4, z5) = (z−2
3 + z2

4)z−2
5 − 1 ≤ 0

g2(z5, z6, z7) = (z2
5 + z−2

6 )z−2
7 − 1 ≤ 0

h1(z1, z3, z4, z5) = (z2
3 + z−2

4 + z2
5)z−2

1 − 1 = 0
h2(z2, z5, z6, z7) = (z2

5 + z2
6 + z2

7)z−2
2 − 1 = 0

0.1 ≤ zi ≤ 10 i = 1, . . . , 7

(4.1)

The problem is partitioned into two subproblems. The first subproblem has local variablesx1 =
[z1, z3, z4], local objectivef(z1), and local constraintsg1, h1. The second subproblem has local
variablesx2 = [z2, z6, z7], local objectivef(z2), and local constraintsg2, h2. The subproblems
are coupled through the linking variabley = [z5]. TheΨ specification for this partition is given
below:

comp First =
|[ extvar z5

intvar z1, z3, z4

objfunc f(z1)
confunc g1(z3, z4, z5), h1(z1, z3, z4, z5)

]|

comp Second=
|[ extvar z5

intvar z2, z6, z7

objfunc f(z2)
confunc g2(z5, z6, z7), h2(z2, z5, z6, z7)

]|
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syst Geo1=
|[ sub A: First, B: Second

link A.z5 -- B.z5

]|

topsyst Geo1

The first step is to generate the normalized partition for this specification by running the command

$check-psi geo1.psi geo1.np

wheregeo1.psi contains theΨ specification, andgeo1.np is the file to which the normalized
partition is written. The second step is to generate a matlab input file from this normalized
partition with the command:

$np2ml geo1.np geo1.m

wheregeo1.m is the name of the generated matlab input file.

In its current implementation, the generator only allows only partitioned problems that do not
have response functions, and that contain a single system. Since ALC allows only scalar objective
functions, the total objective function is taken as the sum of the specified objective functions.

1 Input files

The generated Matlab input file is of a simple structure and appends information of the partitioned
problem to a structurePR initialized by the ALC toolbox. Since the input filename is called as
a function within the ALC toolbox, its first line is

PR = geo1(PR)

wheregeo1 refers to the name of the Matlab input file itself (geo1.m for this example).

An input file has to add two fields to thePR structure generated by the ALC toolbox: the
field PR.main for system-level properties, and the vector fieldPR.sub , whosej-th element
PR.sub( j) includes the properties for componentcomp j of the normalized partition.

Both the system-level and subproblem fields are based on the formulation of the decomposed
problem with subproblems (2.3). The decomposed formulation includes copies of the shared
variables, and has separable local objectives and constraints that depend only on the variables
of one of the subproblems. The system-wide functions may however depend on the variables of
two or more subproblems. Note that the decomposed formulation is different from the system
optimization problem (2.1) without shared variable copies.

Field PR.main has a number of sub-fields associated with the description of the problem, its
components, and their variables, together with sub-fields that define the coupling objectivesf0
and coupling constraintsg0 andh0.
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The fieldPR.main.name simply contains the name of the top-level system (i.e. the value asso-
ciated with thename key of sectionsyst 1). The sub-fieldPR.main.comp names contains an
array of names of the instantiated components, such that the operationPR.main.comp names( j)
yields the value of thename key of componentcomp j of the normalized partition. Similarly,
PR.main.z names is an array that contains the names of the variables such thatPR.main.z names( i)
yields the name of variablevar i. To distinguish between variables that have the same name but
belong to different components (which can occur for shared variable copies), the fieldPR.main.z comps
is introduced and contains the names of the instantiated components to which the variables belong
(i.e. the value of thename field of the component section that includesvar i as one of the values
of its variable keys). Hence, the operationPR.main.z comps( i) yields the name of the com-
ponent to which variablePR.main.z names(i) belongs. For the geometric programming
problem and its given partition, these main fields become1

PR.main.name = ’Geo1’
PR.main.comp_names = {’A’,’B’};
PR.main.z_names = {’z5’,’z1’,’z3’,’z4’,’z5’,’z2’,’z6’,’z7’};
PR.main.z_comps = {’A’,’A’,’A’,’A’,’B’,’B’,’B’,’B’};

The properties of the coupling objectives and constraints are listed in the fieldsPR.main.obj
andPR.main.con . Each of these fields is a vector whose length equals the number of cou-
pling objective and coupling constraint functions, respectively. Each element of this vector
is a structure with two sub-fields. For example, the sub-fields for the first coupling objec-
tive arePR.main.obj(1).name that defines its name, andPR.main.obj(1).args that
includes the indices of its arguments. The argument indices operate on the list of variables
PR.main.z names such that the operationPR.main.z names(PR.main.obj(1).args)
yields the function’s arguments in the correct order. The name of a function refers to the name of
a Matlab function that takes the vector of arguments as inputs, and returns a scalar value of the
objective function as an output. Following Matlab’sfmincon preferences, constraint functions
yield two outputs upon evaluation: the first is a vector that contains the values of the inequality
constraints, and the second is a vector that contains the values of the equality constraints. If a
system does not have a coupling objective or a coupling constraint, then thenone function (part
of the toolbox) is used with an empty list of arguments. Example (4.1) does not have coupling
functions, such that

PR.main.obj(1).name = ’none’;
PR.main.obj(1).args = [];
PR.main.con(1).name = ’none’;
PR.main.con(1).args = [];

which completes thePR.main field for this example.

The component fieldsPR.sub( j) , j = 1, . . . ,M , contain definitions of a component’s vari-
ables, its functions, and its variable couplings. The fieldsPR.sub( j).y id andPR.sub( j).x id
contain the vectors of indices associated with the coupling variablesyj and local variablesxj ,
respectively, of componentcomp j. The coupling variables are given by the values of thecou-
pling var key, and the local variables are the values of thelocal var key of sectioncomp j. Note
that each variable can only be assigned to only one subproblem. The fieldsPR.sub( j).obj
andPR.sub( j).con for the local objective and constraint functions are defined similar to the
coupling functions inPR.main.obj andPR.main.con .

Couplings between the coupling variables of componentcomp j and its neighborscomp n,
n ∈ Nj are specified by selection matricesSjn that appear in the definition of the consistency

1All names are placed between quotes to comply with Matlab’s notational conventions for strings.
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constraintscjn of (2.2). These matrices are generated from thelink sections of the normalized
partition. For componentcomp j the matrixSjn is included in fieldPR.sub( j).to( n).Sij .
The selection matrices for components that are not neighbors ofj are defined as empty zero
matrices of appropriate size.

The generated Matlab definitions of the two components of Example (4.1) are given by

PR.sub(1).y_id = [1];
PR.sub(1).x_id = [2, 3, 4];
PR.sub(1).obj(1).name = ’f’;
PR.sub(1).obj(1).args = [2];
PR.sub(1).con(1).name = ’g1’;
PR.sub(1).con(1).args = [3, 4, 1];
PR.sub(1).con(2).name = ’h1’;
PR.sub(1).con(2).args = [2, 3, 4, 1];
PR.sub(1).to(2).Sij = [1];

PR.sub(2).y_id = [5];
PR.sub(2).x_id = [6, 7, 8];
PR.sub(2).obj(1).name = ’f’;
PR.sub(2).obj(1).args = [6];
PR.sub(2).con(1).name = ’g2’;
PR.sub(2).con(1).args = [5, 7, 8];
PR.sub(2).con(2).name = ’h2’;
PR.sub(2).con(2).args = [6, 5, 7, 8];
PR.sub(2).to(1).Sij = [1];

Assuming that the objective and constraint functions and the toolbox files are in the current di-
rectory or in Matlab’s path, the solution of Example (4.1) with ALC under default settings is
obtained by typing

>> Z0 = ones(8,1); ZLB = .1*Z0, ZUB = 10*Z0;
>> [Z, FVAL] = alcsolve(’geo1’, Z0, ZLB, ZUB)

in the Matlab command prompt. Note that the length of the initial guess and variable bounds is
larger than the number of original variables of Problem (4.1) since the initial guess and bounds
also include entries for each copy of the linking variablesy.
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Chapter 5

Examples
In this section, we demonstrate the use of the input file generator on a number of example prob-
lems and partitions taken from theΨ user manual [15]. Since the input file generator does not
allow response functions or multiple systems, the examples that do not satisfy these requirements
are reformulated appropriately. The first example is a geometric programming problems, the sec-
ond example is Golinski’s speed reducer design problem [6], the third example is the portal frame
design problem introduced by [11], and the fourth is the supersonic business jet example intro-
duced by [1]. The vehicle chassis design problem of [9] is not included here since its analysis
models are not available at this point. The partition specification files and generated ALC input
files are included in Appendix A.

1 Geometric programming

The first example is the geometric programming problem taken from [8, 12, 13]. The problem is
given by:

min
z1,...,z14

f(z1) + f(z2) = z2
1 + z2

2

subject to g1(z3, z4, z5) = (z−2
3 + z2

4)z−2
5 − 1 ≤ 0

g2(z5, z6, z7) = (z2
5 + z−2

6 )z−2
7 − 1 ≤ 0

g3(z8, z9, z11) = (z2
8 + z2

9)z−2
11 − 1 ≤ 0

g4(z8, z10, z11) = (z−2
8 + z2

10)z
−2
11 − 1 ≤ 0

g5(z11, z12, z13) = (z2
11 + z−2

12 )z−2
13 − 1 ≤ 0

g6(z11, z12, z14) = (z2
11 + z2

12)z
−2
14 − 1 ≤ 0

h1(z1, z3, z4, z5) = (z2
3 + z−2

4 + z2
5)z−2

1 − 1 = 0
h2(z2, z5, z6, z7) = (z2

5 + z2
6 + z2

7)z−2
2 − 1 = 0

h3(z3, z8, z9, z10, z11) = (z2
8 + z−2

9 + z−2
10 + z2

11)z
−2
3 − 1 = 0

h4(z6, z11, z12, z13, z14) = (z2
11 + z2

12 + z2
13 + z2

14)z
−2
6 − 1 = 0

0.1 ≤ zi ≤ 10 i = 1, . . . , 14

(5.1)

For this problem, we take the third partition of theΨ reference manual, illustrated in Figure 5.1.
The partition has four components that are coupled through the linking variablesz3, z5, z6, z11.

19 Geometric programming



i
i

“geo2c˙temp” — 2009/3/30 — 10:02 — page 1 — #1 i
i

i
i

i
i

Second2Second1

z8 z9 z10
g3 g4 h3

z3

z12 z13 z14
g5 g6 h4

z6

z11

Geo2c

First2First1

z1 z4
f g1 h1

z2 z7
f g2 h2

z5

Figure 5.1: Partition of geometric programming problem

TheΨ specification and the generated input file for the ALC toolbox are given in Appendix 2.

The problem’s solution can be invoked by entering

>> Z0 = ones(18,1); ZLB = .1*Z0, ZUB = 10*Z0;
>> [Z, FVAL] = alcsolve(’geo2c’, Z0, ZLB, ZUB)

in the matlab command prompt. Again, the initial guesses and bound values are also included for
the four variable copies introduced for the linking variables.

2 Speed reducer

The second example is the speed reducer design problem taken from [6, 10, 13]. The objective
of this problem is to minimize the volume of a speed reducer, subjected to stress, deflection, and
geometric constraints. The design variables are the dimensions of the gear itself (x1, x2, x3), and
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Figure 5.2: Partition for the speed reducer problem.

both the shafts (x4, x6 andx5, x7). The design problem for the speed reducer is defined by:

min
x1,...,x7

[F1(x1, x2, x3), F2(x1, x6), F3(x1, x7), F4(x6), F5(x7), F6(x4, x6), F7(x5, x7)]

subject to g1(x2, x3, x4, x6) = 1
110x3

6

√(
745x4
x2x3

)2

+ 1.69 · 107 − 1 ≤ 0

g2(x2, x3, x5, x7) = 1
85x3

7

√(
745x5
x2x3

)2

+ 1.575 · 108 − 1 ≤ 0

g3(x4, x6) = 1.5x6+1.9
x4

− 1 ≤ 0
g4(x5, x7) = 1.1x7+1.9

x5
− 1 ≤ 0

g5(x1, x2, x3) = 27
x1x2

2x3
− 1 ≤ 0

g6(x1, x2, x3) = 397.5
x1x2

2x2
3
− 1 ≤ 0

g7(x2, x3, x4, x6) = 1.93x3
4

x2x3x4
6
− 1 ≤ 0

g8(x2, x3, x5, x7) = 1.93x3
5

x2x3x4
7
− 1 ≤ 0

g9(x2, x3) = x2x3
40 − 1 ≤ 0

g10(x1, x2) = 5x2
x1

− 1 ≤ 0
g11(x1, x2) = x1

12x2
− 1 ≤ 0

2.6 ≤ x1 ≤ 3.6 7.3 ≤ x5 ≤ 8.3
0.7 ≤ x2 ≤ 0.8 2.9 ≤ x6 ≤ 3.9
17 ≤ x3 ≤ 28 5.0 ≤ x7 ≤ 5.5
7.3 ≤ x4 ≤ 8.3

where F1 = 0.7854x1x
2
2(3.3333x2

3 + 14.9335x3 − 43.0934)
F2 = −1.5079x1x

2
6, F3 = −1.5079x1x

2
7, F4 = 7.477x3

6

F5 = 7.477x3
7, F6 = 0.7854x4x

2
6, F7 = 0.7854x5x

2
7

(5.2)
The second partition of theΨ reference manual is taken for this problem. This partition is illus-
trated in Figure 5.2 and has three components coupled through the linking variablesx2 andx3

and the coupling objectivesF2 andF3. TheΨ specification and matlab input file are given in
Appendix 3.

The problem’s solution can be invoked by entering

>> ZLB = [ 0.7, 17, 2.6, 0.7, 17, 7.3, 2.9, 0.7, 17, 7.3, 5.0]’;
>> ZUB = [ 0.8, 28, 3.6, 0.8, 28, 8.3, 3.9, 0.8, 17, 8.3, 5.5]’;
>> Z0 = (ZLB + ZUB)./2;
>> [Z, FVAL] = alcsolve(’speed2’, Z0, ZLB, ZUB)
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Figure 5.3: Partition for the portal frame example

in the matlab command prompt. Again, the initial guesses and bound values are also included for
the four variable copies introduced for the linking variables.

3 Portal frame

The third example is the structural optimization of a portal frame subjected to an external load.
The portal frame consists of three I-beamsi = 1, 2, 3, each with six cross-sectional dimensions
zi = [h, w1, w2, b, t1, t2]i as design variables. As response variables, the areAi and moment of
inertiaIi are introduced for each beam, as well as the reaction forcesFi = [X1, Y1,M1, X2, Y2,M2]i.
The portal frame optimization problem is defined by

find z1, z2, z3, A1, A2, A3, I1, I2, I3,
u,F1,F2,F3,σ1,σ2,σ3

min mass(A1, A2, A3)
s.t. gframe(F1,F2,F3, A1, A2, A3, I1, I2, I3) ≤ 0

gi
beam(F

i, zi) ≤ 0 i = 1, 2, 3
gi

cross(z
i) ≤ 0 i = 1, 2, 3

hcross(Ai, Ii, zi) = (Ai, Ii)− across(zi) = 0 i = 1, 2, 3

(5.3)

where both design and response variables are included as optimization variables. Here, the con-
straintsgbeamare stress constraints,gcrossare cross-sectional constraints, and the constraintshcross

are introduced to reformulate the response functions forA andI as equality constraints. Note
that the intermediate stress and frame analysis functionsabeam andaframe are integrated in the
constraintsgbeamandgframe, respectively.

For the portal frame example, we take a partition similar to the one described in theΨ user
manual. The partition has one system-level component and one component for each beam (Fig-
ure 5.3). The specification inΨ and the generated input file are given in Appendix 4.

The problem’s solution can be invoked by running the scriptexamples/portal/run portalalc.m
from the Matlab command line. The script includes the definition of problem-specific parameters,
an appropriate initial guess, and lower and upper bounds on the optimization variables. To pre-
vent ill-conditioning of the problem, the variables are scaled such that they have the same order
of magnitude.
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Appendix A

Specification and
generated outputs for
examples

This appendix includes the actual input files and generated outputs for the examples presented in
the user manual.

1 Example (4.1)

Partition specification inΨ:

# Geometric programming problem 1
#
# vars: z1 z2 z3 z4 z5 z6 z7
#
# objs: f(z1), f(z2)
# cons: g1(z3,z4,z5), g2(z5,z6,z7), h1(z1,z3,z4,z5), h2(z2,z5,z6,z7)

comp First =
|[ extvar z5

intvar z1, z3, z4
objfunc f(z1)
confunc g1(z3,z4,z5)

, h1(z1,z3,z4,z5)
]|

comp Second =
|[ extvar z5

intvar z2, z6, z7
objfunc f(z2)
confunc g2(z5,z6,z7)
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, h2(z2,z5,z6,z7)
]|

syst Geo1 =
|[ sub A: First, B: Second

link A.z5 -- B.z5
]|

topsyst Geo1

Generated matlab file:

%
% Generated by np2alc
%
function PR = geo1(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8];
PR.main.z_names = {’z1’, ’z3’, ’z4’, ’z5’, ’z2’, ’z6’, ’z7’, ’z5’};
PR.main.z_comps = {’First’, ’First’, ’First’, ’First’, ’Second’, ’Second’, ’Second’, ’Second’};

PR.main.m = 2;
PR.main.comp_id = [1, 2];
PR.main.comp_names = {’A’, ’B’};

PR.main.obj(1).name = ’none’;
PR.main.obj(1).args = [];

PR.main.con(1).name = ’none’;
PR.main.con(1).args = [];

PR.sub(1).x_id = [1, 2, 3];
PR.sub(1).y_id = [4];

PR.sub(1).obj(1).name = ’f’;
PR.sub(1).obj(1).args = [1];

PR.sub(1).con(1).name = ’g1’;
PR.sub(1).con(1).args = [2, 3, 4];
PR.sub(1).con(2).name = ’h1’;
PR.sub(1).con(2).args = [1, 2, 3, 4];

PR.sub(1).to(2).Sij = [1];

PR.sub(2).x_id = [5, 6, 7];
PR.sub(2).y_id = [8];

PR.sub(2).obj(1).name = ’f’;
PR.sub(2).obj(1).args = [5];

PR.sub(2).con(1).name = ’g2’;
PR.sub(2).con(1).args = [8, 6, 7];
PR.sub(2).con(2).name = ’h2’;
PR.sub(2).con(2).args = [5, 8, 6, 7];

PR.sub(2).to(1).Sij = [1];

2 Geometric programming problem

Partition specification inΨ:

comp First1 =
|[ extvar z3, z5

intvar z1, z4
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objfunc f(z1)
confunc g1(z3,z4,z5)

, h1(z1,z3,z4,z5)
]|

comp First2 =
|[ extvar z5, z6

intvar z2, z7
objfunc f(z2)
confunc g2(z5,z6,z7)

, h2(z2,z5,z6,z7)
]|

comp Second1 =
|[ extvar z3, z11

intvar z8, z9, z10
confunc g3(z8,z9,z11)

, g4(z8,z10,z11)
, h3(z3,z8,z9,z10,z11)

]|

comp Second2 =
|[ extvar z6, z11

intvar z12, z13, z14
confunc g5(z11,z12,z13)

, g6(z11,z12,z14)
, h4(z6,z11,z12,z13,z14)

]|

syst Geo2c =
|[ sub A1: First1, A2: First2, B1: Second1, B2: Second2

link A1.z3 -- B1.z3, A2.z6 -- B2.z6, B1.z11 -- B2.z11, A1.z5 -- A2.z5
]|

topsyst Geo2c

Generated matlab file:

%
% Generated by np2alc
%
function PR = geo2c(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18];
PR.main.z_names = {’z1’, ’z4’, ’z3’, ’z5’, ’z2’, ’z7’, ’z5’, ’z6’, ’z8’, ’z9’, ’z10’, ’z3’, ’z11’, ’z12’, ’z13’, ’z14’, ’z6’, ’z11’};
PR.main.z_comps = {’First1’, ’First1’, ’First1’, ’First1’, ’First2’, ’First2’, ’First2’, ’First2’, ’Second1’, ’Second1’, ’Second1’, ’Second1’, ’Second1’, ’Second2’, ’Second2’, ’Second2’, ’Second2’, ’Second2’};

PR.main.m = 4;
PR.main.comp_id = [1, 2, 3, 4];
PR.main.comp_names = {’A1’, ’A2’, ’B1’, ’B2’};

PR.main.obj(1).name = ’none’;
PR.main.obj(1).args = [];

PR.main.con(1).name = ’none’;
PR.main.con(1).args = [];

PR.sub(1).x_id = [1, 2];
PR.sub(1).y_id = [3, 4];

PR.sub(1).obj(1).name = ’f’;
PR.sub(1).obj(1).args = [1];

PR.sub(1).con(1).name = ’g1’;
PR.sub(1).con(1).args = [3, 2, 4];
PR.sub(1).con(2).name = ’h1’;
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PR.sub(1).con(2).args = [1, 3, 2, 4];

PR.sub(1).to(2).Sij = [0,1];
PR.sub(1).to(3).Sij = [1,0];
PR.sub(1).to(4).Sij = zeros(0, 2);

PR.sub(2).x_id = [5, 6];
PR.sub(2).y_id = [7, 8];

PR.sub(2).obj(1).name = ’f’;
PR.sub(2).obj(1).args = [5];

PR.sub(2).con(1).name = ’g2’;
PR.sub(2).con(1).args = [7, 8, 6];
PR.sub(2).con(2).name = ’h2’;
PR.sub(2).con(2).args = [5, 7, 8, 6];

PR.sub(2).to(1).Sij = [1,0];
PR.sub(2).to(3).Sij = zeros(0, 2);
PR.sub(2).to(4).Sij = [0,1];

PR.sub(3).x_id = [9, 10, 11];
PR.sub(3).y_id = [12, 13];

PR.sub(3).obj(1).name = ’none’;
PR.sub(3).obj(1).args = [];

PR.sub(3).con(1).name = ’g3’;
PR.sub(3).con(1).args = [9, 10, 13];
PR.sub(3).con(2).name = ’g4’;
PR.sub(3).con(2).args = [9, 11, 13];
PR.sub(3).con(3).name = ’h3’;
PR.sub(3).con(3).args = [12, 9, 10, 11, 13];

PR.sub(3).to(1).Sij = [1,0];
PR.sub(3).to(2).Sij = zeros(0, 2);
PR.sub(3).to(4).Sij = [0,1];

PR.sub(4).x_id = [14, 15, 16];
PR.sub(4).y_id = [17, 18];

PR.sub(4).obj(1).name = ’none’;
PR.sub(4).obj(1).args = [];

PR.sub(4).con(1).name = ’g5’;
PR.sub(4).con(1).args = [18, 14, 15];
PR.sub(4).con(2).name = ’g6’;
PR.sub(4).con(2).args = [18, 14, 16];
PR.sub(4).con(3).name = ’h4’;
PR.sub(4).con(3).args = [17, 18, 14, 15, 16];

PR.sub(4).to(1).Sij = zeros(0, 2);
PR.sub(4).to(2).Sij = [1,0];
PR.sub(4).to(3).Sij = [0,1];

3 Speed reducer

Partition specification inΨ:

comp Gear =
|[ extvar x1, x2, x3

objfunc F1(x1,x2,x3)
confunc g5(x1,x2,x3)

, g6(x1,x2,x3)
, g9(x2,x3)
, g10(x1,x2)
, g11(x1,x2)

]|

comp ShaftA2 =
|[ extvar x2, x3, x6

intvar x4
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objfunc F4(x6)
, F6(x4,x6)

confunc g1(x2,x3,x4,x6)
, g3(x4,x6)
, g7(x2,x3,x4,x6)

]|

comp ShaftB2 =
|[ extvar x2, x3, x7

intvar x5
objfunc F5(x7)

, F7(x5,x7)
confunc g2(x2,x3,x5,x7)

, g4(x5,x7)
, g8(x2,x3,x5,x7)

]|

syst SpeedReducer2 =
|[ sub G: Gear, S1: ShaftA2, S2: ShaftB2

objfunc F2(G.x1,S1.x6)
, F3(G.x1,S2.x7)

link G.x2 -- {S1.x2, S2.x2}
, G.x3 -- {S1.x3, S2.x3}

]|

topsyst SpeedReducer2

Generated matlab file:

%
% Generated by np2alc
%
function PR = speed2(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
PR.main.z_names = {’x1’, ’x2’, ’x3’, ’x4’, ’x2’, ’x3’, ’x6’, ’x5’, ’x2’, ’x3’, ’x7’};
PR.main.z_comps = {’Gear’, ’Gear’, ’Gear’, ’ShaftA2’, ’ShaftA2’, ’ShaftA2’, ’ShaftA2’, ’ShaftB2’, ’ShaftB2’, ’ShaftB2’, ’ShaftB2’};

PR.main.m = 3;
PR.main.comp_id = [1, 2, 3];
PR.main.comp_names = {’G’, ’S1’, ’S2’};

PR.main.obj(1).name = ’F2’;
PR.main.obj(1).args = [1, 7];
PR.main.obj(2).name = ’F3’;
PR.main.obj(2).args = [1, 11];

PR.main.con(1).name = ’none’;
PR.main.con(1).args = [];

PR.sub(1).x_id = [1];
PR.sub(1).y_id = [2, 3];

PR.sub(1).obj(1).name = ’F1’;
PR.sub(1).obj(1).args = [1, 2, 3];

PR.sub(1).con(1).name = ’g5’;
PR.sub(1).con(1).args = [1, 2, 3];
PR.sub(1).con(2).name = ’g6’;
PR.sub(1).con(2).args = [1, 2, 3];
PR.sub(1).con(3).name = ’g9’;
PR.sub(1).con(3).args = [2, 3];
PR.sub(1).con(4).name = ’g10’;
PR.sub(1).con(4).args = [1, 2];
PR.sub(1).con(5).name = ’g11’;
PR.sub(1).con(5).args = [1, 2];

PR.sub(1).to(2).Sij = [1,0; 0,1];
PR.sub(1).to(3).Sij = [0,1; 1,0];

PR.sub(2).x_id = [4, 7];
PR.sub(2).y_id = [5, 6];

PR.sub(2).obj(1).name = ’F4’;
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PR.sub(2).obj(1).args = [7];
PR.sub(2).obj(2).name = ’F6’;
PR.sub(2).obj(2).args = [4, 7];

PR.sub(2).con(1).name = ’g1’;
PR.sub(2).con(1).args = [5, 6, 4, 7];
PR.sub(2).con(2).name = ’g3’;
PR.sub(2).con(2).args = [4, 7];
PR.sub(2).con(3).name = ’g7’;
PR.sub(2).con(3).args = [5, 6, 4, 7];

PR.sub(2).to(1).Sij = [1,0; 0,1];
PR.sub(2).to(3).Sij = zeros(0, 2);

PR.sub(3).x_id = [8, 11];
PR.sub(3).y_id = [9, 10];

PR.sub(3).obj(1).name = ’F5’;
PR.sub(3).obj(1).args = [11];
PR.sub(3).obj(2).name = ’F7’;
PR.sub(3).obj(2).args = [8, 11];

PR.sub(3).con(1).name = ’g2’;
PR.sub(3).con(1).args = [9, 10, 8, 11];
PR.sub(3).con(2).name = ’g4’;
PR.sub(3).con(2).args = [8, 11];
PR.sub(3).con(3).name = ’g8’;
PR.sub(3).con(3).args = [9, 10, 8, 11];

PR.sub(3).to(1).Sij = [0,1; 1,0];
PR.sub(3).to(2).Sij = zeros(0, 2);

4 Portal frame

Partition specification inΨ:

comp Frame =
|[ extvar A1, A2, A3, I1, I2, I3

, X11, Y11, M11, X12, Y12, M12
, X21, Y21, M21, X22, Y22, M22
, X31, Y31, M31, X32, Y32, M32

objfunc mass(A1, A2, A3)
confunc gframe( X11, Y11, M11, X12, Y12, M12

, X21, Y21, M21, X22, Y22, M22
, X31, Y31, M31, X32, Y32, M32
, A1, A2, A3, I1, I2, I3)

]|

comp Beam =
|[ extvar A, I, X1, Y1, M1, X2, Y2, M2

intvar h, w1, w2, d, t1, t2
confunc gbeam(X1, Y1, M1, X2, Y2, M2, h, w1, w2, d, t1, t2)

, gcross(h, w1, w2, d, t1, t2)
, hcross(A, I, h, w1, w2, d, t1, t2)

]|

syst Portal =
|[ sub F: Frame, B1,B2,B3: Beam

link F.A1 -- B1.A , F.I1 -- B1.I
, F.X11 -- B1.X1 , F.X12 -- B1.X2
, F.Y11 -- B1.Y1 , F.Y12 -- B1.Y2
, F.M11 -- B1.M1 , F.M12 -- B1.M2
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, F.A2 -- B2.A , F.I2 -- B2.I
, F.X21 -- B2.X1 , F.X22 -- B2.X2
, F.Y21 -- B2.Y1 , F.Y22 -- B2.Y2
, F.M21 -- B2.M1 , F.M22 -- B2.M2
, F.A3 -- B3.A , F.I3 -- B3.I
, F.X31 -- B3.X1 , F.X32 -- B3.X2
, F.Y31 -- B3.Y1 , F.Y32 -- B3.Y2
, F.M31 -- B3.M1 , F.M32 -- B3.M2

]|

topsyst Portal

Generated matlab file:

%
% Generated by np2alc
%
function PR = portal1alc(PR)

PR.main.z_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66];
PR.main.z_names = {’A1’, ’A2’, ’A3’, ’I1’, ’I2’, ’I3’, ’X11’, ’Y11’, ’M11’, ’X12’, ’Y12’, ’M12’, ’X21’, ’Y21’, ’M21’, ’X22’, ’Y22’, ’M22’, ’X31’, ’Y31’, ’M31’, ’X32’, ’Y32’, ’M32’, ’h’, ’w1’, ’w2’, ’d’, ’t1’, ’t2’, ’A’, ’I’, ’X1’, ’Y1’, ’M1’, ’X2’, ’Y2’, ’M2’, ’h’, ’w1’, ’w2’, ’d’, ’t1’, ’t2’, ’A’, ’I’, ’X1’, ’Y1’, ’M1’, ’X2’, ’Y2’, ’M2’, ’h’, ’w1’, ’w2’, ’d’, ’t1’, ’t2’, ’A’, ’I’, ’X1’, ’Y1’, ’M1’, ’X2’, ’Y2’, ’M2’};
PR.main.z_comps = {’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Frame’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’, ’Beam’};

PR.main.m = 4;
PR.main.comp_id = [1, 2, 3, 4];
PR.main.comp_names = {’F’, ’B1’, ’B2’, ’B3’};

PR.main.obj(1).name = ’none’;
PR.main.obj(1).args = [];

PR.main.con(1).name = ’none’;
PR.main.con(1).args = [];

PR.sub(1).x_id = [];
PR.sub(1).y_id = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24];

PR.sub(1).obj(1).name = ’mass’;
PR.sub(1).obj(1).args = [1, 2, 3];

PR.sub(1).con(1).name = ’gframe’;
PR.sub(1).con(1).args = [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 1, 2, 3, 4, 5, 6];

PR.sub(1).to(2).Sij = [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
PR.sub(1).to(3).Sij = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0; 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
PR.sub(1).to(4).Sij = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0; 0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];

PR.sub(2).x_id = [25, 26, 27, 28, 29, 30];
PR.sub(2).y_id = [31, 32, 33, 34, 35, 36, 37, 38];

PR.sub(2).obj(1).name = ’none’;
PR.sub(2).obj(1).args = [];

PR.sub(2).con(1).name = ’gbeam’;
PR.sub(2).con(1).args = [33, 34, 35, 36, 37, 38, 25, 26, 27, 28, 29, 30];
PR.sub(2).con(2).name = ’gcross’;
PR.sub(2).con(2).args = [25, 26, 27, 28, 29, 30];
PR.sub(2).con(3).name = ’hcross’;
PR.sub(2).con(3).args = [31, 32, 25, 26, 27, 28, 29, 30];

PR.sub(2).to(1).Sij = [0,0,0,0,0,0,0,1; 0,0,1,0,0,0,0,0; 0,1,0,0,0,0,0,0; 1,0,0,0,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0; 0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0];
PR.sub(2).to(3).Sij = zeros(0, 8);
PR.sub(2).to(4).Sij = zeros(0, 8);

PR.sub(3).x_id = [39, 40, 41, 42, 43, 44];
PR.sub(3).y_id = [45, 46, 47, 48, 49, 50, 51, 52];

PR.sub(3).obj(1).name = ’none’;
PR.sub(3).obj(1).args = [];

PR.sub(3).con(1).name = ’gbeam’;
PR.sub(3).con(1).args = [47, 48, 49, 50, 51, 52, 39, 40, 41, 42, 43, 44];
PR.sub(3).con(2).name = ’gcross’;
PR.sub(3).con(2).args = [39, 40, 41, 42, 43, 44];
PR.sub(3).con(3).name = ’hcross’;
PR.sub(3).con(3).args = [45, 46, 39, 40, 41, 42, 43, 44];

PR.sub(3).to(1).Sij = [0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0; 0,0,1,0,0,0,0,0; 0,1,0,0,0,0,0,0; 0,0,0,0,0,0,0,1; 0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0; 1,0,0,0,0,0,0,0];
PR.sub(3).to(2).Sij = zeros(0, 8);
PR.sub(3).to(4).Sij = zeros(0, 8);

PR.sub(4).x_id = [53, 54, 55, 56, 57, 58];
PR.sub(4).y_id = [59, 60, 61, 62, 63, 64, 65, 66];

PR.sub(4).obj(1).name = ’none’;
PR.sub(4).obj(1).args = [];
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PR.sub(4).con(1).name = ’gbeam’;
PR.sub(4).con(1).args = [61, 62, 63, 64, 65, 66, 53, 54, 55, 56, 57, 58];
PR.sub(4).con(2).name = ’gcross’;
PR.sub(4).con(2).args = [53, 54, 55, 56, 57, 58];
PR.sub(4).con(3).name = ’hcross’;
PR.sub(4).con(3).args = [59, 60, 53, 54, 55, 56, 57, 58];

PR.sub(4).to(1).Sij = [0,0,0,0,0,0,1,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,0,0,0,1; 1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,1,0,0,0,0,0,0];
PR.sub(4).to(2).Sij = zeros(0, 8);
PR.sub(4).to(3).Sij = zeros(0, 8);
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