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Abstract

The goal of this project is to design a new sensor to measure contact
forces of train wheels with the track. This will be done in terms of a
beam which will deform when a force by the wheel is applied. Due to the
profile of the bottom of the train wheel, the shape of the beam is chosen
to be cylindrical, with a smaller cylinder on top. The center of this small
cylinder lies below the surface of the large cylinder to decrease the stress
level. Also two cavities are created, one at each end of the beam, to allow
constraints. The beam is dimensioned in such a way that the maximum
stress in the beam does not exceed the Yield strength and that the max-
imum deflection is small enough.

When looking at a simply supported beam, the applied force in vertical
direction is equal to the sum of the shear forces at the left and at the
right of this applied force. To measure these shear forces, eight strains
are registered. If one also wants to be able to measure forces applied un-
der an angle, so considering a horizontal and a vertical force at the same
time, sixteen strains need to be measured. Eight gauges are used and each
gauge measures two strains, both under an angle of 45 degrees with the
neutral axis. The gauges are placed on both ends of the horizontal and
vertical neutral surface, at the left and right side of the applied force.

The forces can be applied at different z-positions on the small cylinder
and under angles varying from 0 to π. To this end a grid is made and
on these grid points, the relation between an applied force and all sixteen
measured strains is determined, leading to sixteen equations. During a
measurement the four unknowns, being the z-position, the angle, the force
in vertical direction and the force in horizontal direction, are determined
by minimizing the error in the sixteen known relations. When a force is
not precisely exerted on a grid point, interpolation is used to solve the
equations. This procedure is verified by simulations using ANSYS.

A sensitivity analysis showed that if all strains have the same percental
error, this error can also be found in the calculated force. When all gauges
have a different, normal distributed error, the error in the calculated forces
is also normally distributed, with a standard deviation dependent on the
size of the forces and linear dependent on the standard deviation of the
error in the measured strains. The same conclusions can be drawn when
there is no error in the strains, but an error in the grid. When both pos-
sible errors are combined, it turned out that if all errors are equal, they
cancel out. If not, the error in the calculated forces is normally distributed
with a standard deviation dependent on the sizes of the applied forces.

Finally the beam as described above is built and tested. Due to time
reasons, only vertical forces are considered and thus only four gauges are
used. To this end the Wheatstone bridge is applied and the theoretical
linear relation between the output voltage and the applied force is deter-
mined. Experiments do show a linear relation, but with a slightly differing
slope. Furthermore the experiments showed a different relationship when
applying the force at a different location, while this is not the case in
the theoretical model. This tells that there are still some errors in the
placement of the gauges. Further examination can focus on eliminating
this error and adding horizontal forces.
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1 Problem description

A new instrument for measuring contact forces of train wheels with the track
needs to be designed. This instrument must be able to measure forces up to
20.000 Newton. It needs to measure forces that are applied under an angle
and at different positions. The instrument must be able to measure at as much
points along the bottom of the train wheel as possible. To this end a beam will
be designed, which will deform when forces are applied. These deformations will
be registered and through these deformations, the applied force can be retrieved.

The instrument must be designed and algorithms should be provided to calcu-
late the applied force. This all must be verified using simulations with ANSYS
and by using a real test set-up. Furthermore a sensitivity analysis must be
made.
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2 Analytical relations

To measure deformations when a force is applied on the beam, strain gauges
will be used. Strain gauges can be placed along a beam and can measure the
local strain. This shear strain can be related to shear force, which can then be
related to the applied force. First of all, these analytical relationships must be
found.

2.1 Relating the point load to shear force

Consider a simply supported beam of length L as depicted in figure 1. For
simplicity, we first assume only one vertical point load is exerted. This point
load, P, acts somewhere on the beam, indicated by distances a en b. The beam
is constrained in its utmost left node in all three degrees of freedom, while the
right end can still freely move in one direction.

a b
P

L

A B

Figure 1: A simply supported beam

To calculate the shear forces at any section of the beam, the reaction forces
in nodes A and B need to be known. These forces can be found by using two
equations for equilibrium, being the equilibrium of moments and the equilibrium
of forces in y-direction: ∑

M = 0 (1)

and ∑
Fy = 0. (2)

For the situation of figure 1, equation 1 can be written into the following two
equations: ∑

MA = Pa−RBL = 0 (3)

and ∑
MB = −Pb+RAL = 0. (4)

Using the same analogy, equation 2 becomes∑
F = RA +RB − P = 0. (5)
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Here RA and RB indicate the reaction forces in the left and right support
respectively, both pointed upwards. With only RA and RB as unknowns, this
problem can be solved, leading to the following expressions for the reaction
forces:

RA = Pb/L (6)

and

RB = Pa/L. (7)

How these forces are related to the shear force V can be seen when cutting a
piece from the beam, as done in figure 2.

V

RA

x

Figure 2: A beam cut in half

The variable x indicates the distance from the left support to the place where
the shear force is measured. When x is smaller than a, we get the situation of
figure 2. Again, the sum of the forces in y-direction needs to be zero, so the
shear force at the left side of the point load must be equal to RA, so Pb/L.
From similar calculations the conclusion can be drawn that the shear force at
the right side of the point load, so when x is larger than a, is equal to -Pa/L.
The total force can then be found by adding the shear force at the left and right
side of the point load. This all is depicted in figure 3.

La

V

x

Pb/L

-Pa/L

Figure 3: The shear force diagram
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2.2 Relating shear force to shear strain

The shear force as described in the previous section can be related to the shear
stress. According to [3], these quantities are coupled via the following equation:

τ = V Q/Ib. (8)

In this equation τ is the shear stress, V the shear force, Q the first moment of
area, I the moment of inertia and b is the width of the beam.

The width of the beam, the first moment of area and the moment of inertia are
dependent on the shape of the beam. For the situations in which this beam will
be used, a circular beam is most practical. This will be explained further on in
this report. For a circular beam, [3] states that the moment of inertia is equal
to

I =
π

4
R4. (9)

To calculate the first moment of area, first the point of measurement needs to
be determined. For the best results one must measure strains at the place where
they are the highest. This is at the neutral axis of a beam, the plane trough
the center of the cylinder. The first moment of area can then be defined as the
area above the neutral axis multiplied with the distance from the centroid of
this area to the neutral axis. This is also depicted in figure 4.

y´

R

Figure 4: How to determine the first moment of area

Captured in formulas this becomes

Q =
1

2
πR2y′, (10)

where [3] states that

y′ =
4

3π
R. (11)

Combining these equations leads to one expression for the moment of area:
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Q =
2

3
R3. (12)

By using our expressions for Q,I and b, equation 8 can be simplified to

V =
3

4
τA. (13)

This way the shear stress is directly related to the shear force (and thus the
point load). One extra step is needed, since our gauges measure strain, not
stress. The shear strain γ and shear stress τ are coupled through one formula,
being

γ = τ/G. (14)

Here G is the shear modulus. This constant is material dependent and can be
calculated using Youngs modulus E and Poisson ratio ν in the following way:

G =
E

2(1 + ν)
. (15)

To find the shear strain γ, three strains under an angle of 45 degrees need to be
measured, as illustrated in figure 5.

ex

ey e45

45o

Figure 5: Depiction of the three strains that need to be measured

Here ex and ey represent the strain in x- and y-direction respectively. The third
arrow, e45, represents the strain measured under an angle of 45 degrees. When
these three strains are known, the shear strain γxy can be calculated using

γxy = 2e45 − (ex + ey). (16)

However, simulations showed that the strains in x- and y-direction are so small
compared to the strain under an angle of 45 degrees, that they can be omitted.
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All equations from this section can then be combined into one single equation,
being

V =
3

2
AGe45. (17)

This way the shear force in any part of the beam can be found by looking at
the strain under an angle of 45 degrees in that part.

2.3 Calculating applied forces through strain gauges

The force which will be exerted by the train wheel will not necessary touch the
beam exactly in the middle. As seen earlier in this section, the force can thus be
determined by adding the shear force at the left and right of the applied force.
In the next picture, the beam is cut in half. On each part two strain gauges are
placed, which each measure two strains under an angle of 45 degrees:

1

2

5

6

3

4

7

8

P

P

Figure 6: Beam with four strain gauges, cut in half

All strain gauges are placed on the neutral axis in such a way that they measure
two strains which are both under an angle of 45 degrees with this axis. Two
gauges are placed on one end of the neutral surface, the other two are placed
on the other end of the neutral surface. According to [5], the shear strain in the
left configuration is equal to

γleft = e1 + e5 − e2 − e6. (18)

The shear strain in the right side, which is in the same configuration, but then
mirrored, can be expressed in a similar way as

γright = e8 + e4 − e7 − e3. (19)

Since the total force can be found by adding both shear forces and knowing
there is a linear relation between shear strain and shear force, one can say that

P ∼ e1 + e4 + e5 + e8 − e2 − e3 − e6 − e7. (20)
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In our experiment also a horizontal force will occur. A horizontal force can be
compared with the current situation, but then rotated for ninety degrees. That
is why four more strain gauges are added, this time on the vertical neutral axis.
These gauges, measuring strains e9 to e16, are added in a similar order as in
the picture above. One can thus conclude that when applying only a horizontal
force Q, this force is linearly related to the strains in the following way:

Q ∼ e9 + e12 + e13 + e16 − e10 − e11 − e14 − e15. (21)

The way these strains are related to the exerted force, depends on where the
force is applied. This will be discussed in a next section. First the complete
design of the beam is discussed.
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3 Design of the beam

The beam must be designed in such a way that forces at different positions of
the train wheel can be measured. That is why one must take into account the
shape of the train wheel. Furthermore some overall requirements must be met,
such as the maximum stress and the maximum deflection of the beam.

3.1 Two-cylindrical shape of the beam

Where a normal cylinder has an equal radius along its length, a train wheel
has a varying diameter. This is necessary for trains to stay on the track. The
bottom of a trainwheel is thus not flat, as can be seen in figure 7, where a
standard wheelset of a train is depicted. The dashed circle is not a part of the
wheel set.

 

Figure 7: Front view of a wheelset of a train

As can be seen, the radius is the smallest on the outside of the train. For
determining the shape of the beam, this bottom profile of the train wheel is of
importance. That is why this bottom profile is modeled and for the right wheel
of figure 7, the bottom profile in the dashed circle is depicted in more detail in
figure 8.
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Figure 8: Profile of the bottom of the train wheel
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Looking at this picture, a rectangular beam can immediately be eliminated. Us-
ing a rectangular beam, the force will never be applied on the top of the beam.
A circular beam is a better choice. Since the beam must be able to measure
at all x-positions along the bottom surface of the train wheel, a circular beam
with a small radius is needed, so it can also measure in the curve around the
x-position of 40 mm.

A circular beam with a small diameter however is not ideal. That is why the
choice is made for a circular beam with a bigger diameter, which has a smaller
cylinder added on top. This way forces can be measured at almost every x-
position along the bottom of the wheel and the force only has a small surface
of contact with the beam. This is depicted below in figure 9.

−60 −40 −20 0 20 40 60

−80
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−40
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Figure 9: Profile of the train wheel with the two-cylindrical design of the beam

3.2 Dimensioning the beam

The first question that must be answered is how the beam will be constrained.
Until this point a simply supported beam was assumed, but when applying
both horizontal and vertical forces, this is not possible anymore. That is why
the large cylinder is modeled with two cavities, one at each end of the beam.
By making cavities, the cylinder has a flat bottom surface at each end, which
can then be constrained in all degrees of freedom. In reality the beam will be
constrained by attaching this flat surface to the fixed world, using a screw that
goes from the bottom of the cavity to the neutral axis. These cavities can be
seen in the design of the beam in figure 10.
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Figure 10: Illustration of the cavities needed to constrain the beam

The criterion for choosing dimensions is that the beam can measure the largest
range of positions along the wheel. Besides of that, high strains are required
for the best measurement results. However, at all times the maximum stress
must be lower than the Yield strength and the deflections must be small enough.

First the radius and length of the large beam are determined. Models are
made with a radius of 0.03 meter, 0.04 meter and 0.05 meter. The length is
varied from 0.4 to 0.8 meters. The final design is a cylinder with a length of
0.4 meters and a radius of 0.03 meters. Varying the dimensions of the small
cylinder turned out to have little influence on the occuring stresses and strains.
The length is varied from 0.06 to 0.1 meters and the radius from 0.01 to 0.02
meters. Since the dimensions had little influence, the design is chosen in which
the small cylinder fits the train wheel the best and has the smallest length. The
final dimensions are determined to be a length of 0.06 meters and a radius of
0.017 meters.

The depth of the cavities is varied between 0.0075 and 0.015 meters and the
conclusion is that the best results are retrieved when the cavities are the deep-
est. However, 0.015 meters is considered as maximum depth to save the shape
of a cylinder. Also the width of the cavities is varied between 0.04 and 0.06
meters. The best results were retrieved with the smallest cavities. That is why
the cavities finally have a width of 0.04 meters and a depth of 0.0075 meters.

The center of the small cylinder is not on top of the large cylinder, but a
bit lower. It turned out that the lower the center is, the lower the stresses are
that occur. However, to have a large enough surface to apply a force on, the
center cannot be too low. That is why the center is placed at a distance of 2.7
centimeters from the center of the large cylinder.

With these dimensions one can measure almost everywhere along the bottom of
the wheel. All dimensions can be found in appendix A.
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3.3 Additional requirements

As shortly mentioned above, the stresses that occur must always be lower than
the Yield strength, to prevent the beam from going into the range of plastic
deformation. Calculations regarding the stresses in the beam when applying a
point load can be made by hand. These stresses are the highest in the bottom
fibers and according to [3], for a simply supported beam they can be found using

σ =
Mz

I
. (22)

Here z represents the distance from the neutral axis to the point of measurement
of the stress, so in our case z=r. I is again the moment of inertia, being π

4R
4.

As stated in [3], the moment for a simply supported beam is equal to

M =
Pl

4
. (23)

The maximum stress in the beam is thus equal to

σ =
Pl

πR3
. (24)

When neglecting the small cylinder on top and assuming one only wants to
measure vertical forces up to 20.000 Newton, the material must have a Yield
strength of 95 MPa or higher. Using Ansys, the maximum stress found in the
beam when applying a vertical force of 20.000 Newton is 105 MPa. This differ-
ence is likely due to the adaption of the beam with cavities and a small cylinder.

Furthermore attention must be paid to the maximum deflection of the beam.
In previous calculations the x- and y-directions are stated, but these directions
will change due to the deflection of the beam. However, as can be found in [3],

the maximum angle due to deflection is equal to − 0.0642l2

EI P . In a similar way,

the maximum deflection in y-direction is equal to − l2

48EIP . When designing
the beam, one must take into account that these deflections stay small. If the
dimensions as stated above are used, the maximum angle and deflection will be
-0.0015 radians and -4.99e−4 meter respectively, when applying a force of 20.000
Newton.
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4 Final algorithm

The beams dimensions are determined and the position of the strain gauges
is known. Earlier the conclusion is made that sixteen strains are sufficient to
determine the applied forces. This section will describe the method to determine
these applied forces.

4.1 Applying a grid

When looking back at figure 9, one can see that the force from the train wheel
will not be applied completely vertical or completely horizontal on the beam,
but that it will be applied under an angle. For the ease of calculations, this
force will be split into a vertical and horizontal force. Furthermore, for each
new measurement at a different position along the bottom of the train wheel,
the point where this force acts on the beam may be different. This influences
the measured strains. That is why the place where these forces Fx and Fy are
applied on the beam needs to be taken into account. Hereto this point is defined
by angle α and distance z as depicted below:

Fx

Fy
z

Figure 11: Front and side view of the beam with definitions of variables

From figure 9 it can be concluded that forces can be exerted on a quarter of the
outer surface of the small cylinder. On this surface a grid is made of elements
of equal size. They differ in z- and α-position as depicted in the next figure.

zmin zmax

�min 

�max 

Figure 12: Illustration of grid applied on small cylinder

As determined earlier, a combination of strains is linearly related to the shear
force. The relations presented earlier are only exactly correct if there is only a
horizontal or vertical force and if this force is applied at the middle of the beam
at α = 0. To examine what the relation is in case of combined forces which are
applied at a different place, each of the sixteen strains is observed individually.
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When applying a horizontal force of 1 Newton on one of the grid points with
coordinates zi and αj , sixteen strains are registered. These strains are called
C1x(zi, αj) to C16x(zi, αj). The same is done when applying a vertical force of -1
Newton, leading to strains C1y(zi, αj) to C16y(zi, αj). The strain when applying
both a horizontal and vertical force is the sum of both individual strains. This
leads to the following matrix equation for grid point zi, αj :

e1
e2
...
e16

 =


C1x(zi, αj) C1y(zi, αj)
C2x(zi, αj) C2y(zi, αj)

...
...

C16x(zi, αj) C16y(zi, αj)


(
Fx
Fy

)
. (25)

To be able to calculate forces at all grid points, the coefficients in the middle
matrix are determined for z=0,0.01,...,0.06 and α=0, 18π,..., 12π. By rewriting this
equation, one can calculate the applied forces from the measured strains, if the
coefficients are known (that is: if the forces are applied on a grid point). The
equation for this is (

Fx
Fy

)
= (CTC)−1CT e. (26)

Here e is the column with all sixteen strains (16x1) and C is the middle matrix
from equation 25, holding all coefficients Ckl for a certain z and α (16x2). Note
that this method only works when z and α are known. When one wants to
measure at a point which is not exactly a grid point, the values of coefficients
Ckl are determined by interpolation, using the values of coefficients Ckl from
the surrounding grid points.

4.2 Least square method

A problem occurs when z and α are unknown, which is the case in our real
test set-up. Since the coefficients Ckl depend on z and α, our problem has four
unknowns. The easiest way of solving this problem is using the least square
method.

To this end, equation 25 is rewritten into sixteen individual equations which
all must be equal to 0:

e1 − C1x(z, α)Fx − C1y(z, α)Fy = 0
e2 − C2x(z, α)Fx − C2y(z, α)Fy = 0

...
e16 − C16x(z, α)Fx − C16y(z, α)Fy = 0.

(27)

In an experiment, all sixteen strains are measured and thus known. The four
unknowns must be chosen such that all equations are zero. Since it will be hard
to find coefficients for which all equations are exactly 0, one must try to bring
all equations as close to zero as possible. This is done by introducing Γi, which
is defined as

Γi = (ei − Cix(z, α)Fx − Ciy(z, α)Fy)2. (28)
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The best solution is found when all equations are close to zero. That is why we
want to minimize

16∑
i=1

Γi (29)

for all unknowns. This can be done using Matlabs function ’minimize’ and
Matlab then returns the values for z, α, Fx and Fy for which equation 29 is
minimized:

min(z, α, Fx, Fy)

16∑
i=1

Γi. (30)

As an initial guess for z and α one must choose values corresponding to the
situation of testing. As initial guesses for Fx and Fy the formulas are used with
which they could be determined if there was only a vertical or only a horizontal
load applied at the middle of the beam, being

Fx =
e9 + e12 + e13 + e16 − e10 − e11 − e14 − e15

C9x + C12x + C13x + C16x − C10x − C11x − C14x − C15x
(31)

and

Fy =
e1 + e4 + e5 + e8 − e2 − e3 − e6 − e7

C1y + C4y + C5y + C8y − C2y − C3y − C6y − C7y
, (32)

where the coefficients of C are thus based on z = 0.03 and α = 0.

4.3 Alternative calculation using the method of Newton-
Raphson

Another way of solving this problem is using the method of Newton-Raphson
with four equations. The first two equations can be built from equation 26.
When defining the matrix (CTC)−1CT as matrix D, the equation can be rewrit-
ten into

(
Fx
Fy

)
=

(
D1,1(z, α) D1,2(z, α) · · · D1,16(z, α)
D2,1(z, α) D2,2(z, α) · · · D2,16(z, α)

)
e1
e2
...
e16

 , (33)

which can then be split into two individual equations, being

Fx =
(
D1,1(z, α) D1,2(z, α) · · · D1,16(z, α)

)

e1
e2
...
e16

 (34)

Fy =
(
D2,1(z, α) D2,2(z, α) · · · D2,16(z, α)

)

e1
e2
...
e16

 . (35)
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The third equation can be found by combining the strains in the horizontal
neutral plane, as discussed earlier. The following relation namely holds:

ee3 =
(
CC3x(z, α) CC3y(z, α)

)(Fx
Fy

)
, (36)

where

ee3 = e1 + e4 + e5 + e8 − e2 − e3 − e6 − e7,
CC3x(z, α) = C1x(z, α) + C4x(z, α) + C5x(z, α) + C8x(z, α)−

C2x(z, α)− C3x(z, α)− C6x(z, α)− C7x(z, α),
and

CC3y(z, α) = C1y(z, α) + C4y(z, α) + C5y(z, α) + C8y(z, α)−
C2y(z, α)− C3y(z, α)− C6y(z, α)− C7y(z, α).

A similar equation can be formulated with the eight strains in the vertical
neutral plane, being

ee4 =
(
CC4x(z, α) CC4y(z, α)

)(Fx
Fy

)
, (37)

where

ee4 = e9 + e12 + e13 + e16 − e10 − e11 − e14 − e15,
CC4x(z, α) = C9x(z, α) + C12x(z, α) + C13x(z, α) + C16x(z, α)−

C10x(z, α)− C11x(z, α)− C14x(z, α)− C15x(z, α),
and

CC4y(z, α) = C9y(z, α) + C12y(z, α) + C13y(z, α) + C16y(z, α)−
C10y(z, α)− C11y(z, α)− C14y(z, α)− C15y(z, α).

In this way four equations result which are only dependent on four unknowns.

To use the method of Newton-Raphson, the four unknowns will be placed in a
single matrix, being x=(z,α,Fx,Fy). Furthermore the four equations need to be
defined in the form of ϕi = 0. This results in:

ϕ1 =
(
D1,1(x1, x2) D1,2(x1, x2) · · · D1,16(x1, x2)

)

e1
e2
...
e16

− x3 (38)

ϕ2 =
(
D2,1(x1, x2) D2,2(x1, x2) · · · D2,16(x1, x2)

)

e1
e2
...
e16

− x4 (39)

ϕ3 = ee3 −
(
CC3x(x1, x2) CC3y(x1, x2)

)(x3
x4

)
(40)

ϕ4 = ee4 −
(
CC4x(x1, x2) CC4y(x1, x2)

)(x3
x4

)
. (41)
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With these definitions we can state the method of Newton-Raphson, which will
make x converge to a constant value, where expressions ϕ1 to ϕ4 are approxi-
mately zero. This algorithm is stated as follows:

xk+1 = −[J ]−1ϕ(xk) + xk. (42)

Here ϕ is the column of expressions ϕ1 to ϕ4 and J denotes the Jacobian of
matrix ϕ. The Jacobian is defined as follows:

J =


δϕ1

δx1
· · · δϕ1

δx4

...
. . .

...
δϕ4

δx1
· · · δϕ4

δx4

 . (43)

Since we are working with numerical expressions, derivatives are approximated
in the following way:

δϕi
δxj

=
ϕi(x+ δxj)− ϕi(x)

δxj
, (44)

where δxj must be chosen small enough.

The iteration procedure then consists of the following four steps:

1. Make a guess for the initial value of x. The first two values, being z and
α, can be estimated accurate, since by experimenting it is clear around
which point the forces are applied. The initial values for Fx and Fy are
determined in the same way as described in section 4.2.

2. Using these values for x, matrix ϕ is calculated. If the values of z and α
are not equal to those of a grid point, the values for Cij at this point are
determined through interpolation from the closest grid points.

3. After solving equation 42, we retrieve a new value for matrix x, which
then will be used as input for a new iteration.

4. Steps 2 and 3 are repeated until x is converged, that is when |xk+1−xk| <
1e−4.

4.4 Simulation results

Using both procedures, a few simulations are done with our model in ANSYS.
A combination of a horizontal and vertical force is applied and the sixteen
strains are registered. After this, the applied force is calculated from these
sixteen strains using both procedures as described above. In the tables below
the results can be found of ten measurements. A random combination of forces
is applied at a random point on the beam. However, in the first five tests, the
forces are applied at a grid point. In the latter five, this is not the case and the
results are based on interpolation.
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Table 1: Simulation results for calculating Fx

Fx applied Fx measured least square Fx measured Newton
Test 1 4.0000 N 3.9999 N 3.9999 N
Test 2 2.0000 N 2.0000 N 1.9999 N
Test 3 3.0000 N 3.0000 N 3.0000 N
Test 4 5.0000 N 5.0000 N 5.0000 N
Test 5 4.0000 N 4.0000 N 4.0000 N
Test 6 4.0000 N 4.0002 N 4.0001 N
Test 7 2.0000 N 2.0005 N 2.0001 N
Test 8 3.0000 N 3.0001 N 3.0001 N
Test 9 5.0000 N 5.0004 N 5.0000 N
Test 10 4.0000 N 4.0000 N 4.0000 N

Table 2: Simulation results for calculating Fy

Fy applied Fy measured least square Fy measured Newton
Test 1 10.0000 N 10.0000 N 10.0000 N
Test 2 8.0000 N 8.0000 N 7.9999 N
Test 3 7.0000 N 7.0001 N 7.0001 N
Test 4 5.0000 N 5.0000 N 5.0000 N
Test 5 9.0000 N 8.9999 N 8.9999 N
Test 6 10.0000 N 10.0017 N 10.0000 N
Test 7 8.0000 N 8.0026 N 8.0000 N
Test 8 7.0000 N 7.0002 N 7.0000 N
Test 9 5.0000 N 5.0004 N 5.0000 N
Test 10 9.0000 N 9.0022 N 9.0002 N

All measured forces are close to the actual forces. When applying a force on
a grid point, the maximum error is only 0.0001 Newton. When using interpo-
lations, the errors are a bit bigger. However, for the Newton-Raphson method
these errors are within the tolerance set by the user.

When looking only at this table, one must conclude that using the method
of Newton-Raphson leads to the best results. A big advantage of the least-
square method is that it always gives a result. The Newton-Raphson method
only gives a result if the initial values for z and α are close to their real values.
Since these values can be guessed quite accurate when performing tests, this is
not a big problem.

Assuming the z-position can be estimated with an accuracy of +-0.01 meters
and that angle α can be determined with an accuracy of +-0.2 radians, also con-
clusions can be drawn on the computing time. Taking the worst-case scenario,
the least-square method can take up to 4.22 seconds to compute the forces,
whereas the method of Newton-Raphson converges within 0.39 seconds.
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5 Sensitivity analysis

The calculations in the previous section are all based on the assumption that
the strain gauges can measure strain accurate up to 4 digits. However, in reality
this is of course not the case. There will be some errors in the measurements.
To check how this influences the final results, this section will focus on the sen-
sitivity of our instruments.

5.1 Error in measured strains

First of all we assume that our model completely corresponds to the real test
set-up. This means that the values of the grid are correct. However, an error
is applied to the measured strains, since this is most likely to occur. Since the
forces are based on these strains, an error in the strain will definitely lead to an
error in the calculated force. To check this, the following experiment is done.

First, a random position and force is chosen. With the formulas derived ear-
lier (equation 25), the corresponding strains will be determined. After this, all
strains will be given the same percental error. This is done by multiplying the
strain with δ, where δ is defined as 1+N(0,p/100). This last term indicates a
Gaussian distribution with an average value of zero and a standard deviation of
percentage p. In our experiments, this percentage will be 1,2 and 4.

When all strains are multiplied with this value, both procedures of chapter
4 are used to calculate the applied forces. Since the exact applied forces are
known, one can determine the error in the calculated forces. For a fixed per-
centage p, this procedure is repeated 2000 times. This way the errors in the
strains will follow a normal distribution. Since also 2000 errors in both forces
are calculated, one can check if these also follow a normal distribution.

As an example, below the distributions are shown when using the least square
method and a percentage of 2%. The error in the strain can be seen in figure 13.
As expected, both Fx(figure 14) and Fy(figure 15) follow the same distribution.
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Figure 13: Normal distributed error in strains
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Figure 14: Normal distributed error in Fx
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Figure 15: Normal distributed error in Fy

When repeating the same procedure for standard deviations of 1% and 4%, the
following table with the results of both procedures can be created.
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Table 3: Standard deviations of errors for an equal error in all strains

σ(error e) σ(error Fx) σ(error Fy) σ(error Fx) σ(error Fy)
Least square Least square Newton-Rap. Newton-Rap.

0.0090 0.0090 0.0090 0.0090 0.0090
0.0207 0.0207 0.0207 0.0207 0.0207
0.0395 0.0395 0.0395 NaN NaN

Some important conclusions can be made by looking at this experiment. First
of all one can conclude that a Gaussian distribution of errors in the measured
strain indeed results in a Gaussian distributed error in the calculated forces. As
can be seen in table 3, the standard deviation of the error in the calculated Fx
and Fy are both equal to the standard deviation of the error in the strain.

Another big conclusion that can be drawn has to do with the expression ’NaN’,
which can be found in table 3. When adding errors to the strains, the method of
Newton-Raphson does not always lead to a proper result. When these errors are
too big, the solution will not converge, but diverge leading to a singular matrix.
In those cases the problem cannot be solved. When this happens in real life, the
problem can be fixed by adjusting the initial guesses. During the simulations
this is not possible with as effect that in those cases the standard deviation is
not a number (NaN). To increase the robustness of the Newton-Raphson algo-
rithm, regularization as suggested in [2] is applied. However, this still led to a
singular matrix in some cases. Even if one works with larger numbers in this
experiment, a singular matrix can result. When errors are getting bigger, one
must thus rely on the least square method.

In real life it is very unlikely that all strain gauges have the same error in a
measurement. That is why it is better to give all sixteen strains a different
error, determined by the same Gaussian distribution. Again, if the errors in the
strain are normally distributed, the resulting errors in the forces are normally
distributed too. However, in this case the resulting standard deviations cannot
be explained easily. If the error is only in gauges one to eight, there will be only
an error in the calculated Fy. The standard deviation of this calculated force
is no longer equal to the one of the error in the strain, but they are linearly
related. The same holds for errors in gauges nine to sixteen with respect to Fx.
If all gauges have an error, we get the combined situation of above.

In this situation a new problem arises: the standard deviations in the calcu-
lated forces are dependent on the ratio between Fx and Fy. This does not come
as a surprise, since Fx and Fy have different relations with the sixteen strains.
If both forces become twice as large, the standard deviations in the calculated
forces stay the same. However, if only one of the two forces changes, the stan-
dard deviation of the error in this changed, calculated force will also change. In
the realistic case of sixteen different errors, a more accurate sensitivity analysis
is needed to draw conclusions on the effect of errors in the measurement on
the calculated forces. When all sixteen errors are the same, one can conclude
that using the least square method the applied forces are calculated within the
accuracy of the measurement instruments.
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5.2 Error in grid

Another situation to examine is the one in which the coefficients of the grid are
incorrect. The grid is namely determined using ANSYS and the values will thus
always differ from reality. To this end, the assumption is made that the strain
gauges meassure correctly. Again, all coefficients of the grid are first multiplied
with the same error, being an error determined from a Gaussian distribution.
The percentages that are used are the same as in the previous section. This
experiment is repeated 2000 times and as can be seen below for a standard
deviation of 0.01, the error in the calculated forces is also normally distributed.
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Figure 16: Normal distributed error in grid values

−0.04 −0.02 0 0.02 0.04
0

50

100

150

200

250

300

percental error in F
x

fr
eq

ue
nc

y

Figure 17: Normal distributed error in Fx
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Figure 18: Normal distributed error in Fy

When repeating this for different standard deviations, again a table of the results
is made.

Table 4: Standard deviations of calculated forces for a constant grid error

σ(error grid) σ(error Fx) σ(error Fy) σ(error Fx) σ(error Fy)
Least square Least square Newton-Rap. Newton-Rap.

0.0100 0.0100 0.0100 0.0100 0.0100
0.0192 0.0191 0.0191 NaN NaN
0.0391 0.0394 0.0394 NaN NaN

The conclusions that can be drawn here are the same as in the previous section.
If all coefficients have the same normally distributed error, the calculated forces
will also have a normally distributed error, with the same standard deviation
as the one of the error in the coefficients of the grid. Again, when using the
method of Newton-Raphson, the expression ’NaN’ appears if the errors become
too big. It is very unlikely that the error in all coefficients will be equal. That
is why a second experiment is done, in which all coefficients of the grid have a
different error.

Again one can conclude that a Gaussian distribution of an error in one of the
inputs, in this case the coefficients of the grid, leads to a Gaussian distribution
of the errors in the calculated forces. The standard deviation of the error in
the calculated forces is again dependent on the ratio of the forces and linearly
related to the standard deviation of the errors applied on the grid. A larger
and more accurate sensitivity analysis is needed to say more about the effect of
errors in the coefficients of the grid.

When all grid coefficients have the same error, the least square method cal-
culates the applied forces within the accuracy of the errors in the grid.
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5.3 Combining errors

The worst-case scenario is of course the situation in which both the strains
and the grid-coefficients are incorrect. This is also tested in two steps. First,
both all strains and all grid coefficients are multiplied with the same Gaussian
distribution with average 1 and standard deviation of 1, 2 and 4 percent. The
results of this experiment can be found in the table below.

Table 5: Standard deviations of calculated forces for a constant error in grid
and strains

σ(error) σ(error Fx) σ(error Fy) σ(error Fx) σ(error Fy)
Least square Least square Newton-Rap. Newton-Rap.

0.010 0 0 1.64e−11 9.01e−12

0.020 0 0 1.62e−11 8.61e−12

0.0397 0 0 1.62e−11 8.87e−12

As can be seen, the errors cancel out if all inputs have the same error. In this
situation, both methods calculate the applied forces correctly. Again, and this
is perhaps the most interesting scenario, all inputs will be given a different error
within this Gaussian distribution. In that case it is again impossible to find
an expression for the standard deviation of the error in the calculated forces.
Experiments do show that this standard deviation is linearly related to the
standard deviation of the applied errors and that it is dependent on the size
of the applied forces. If one wants to find a trend, a more accurate and more
expanded sensitivity analysis is needed.
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6 Experiments

The beam, with dimensions as determined in section 3.2, is produced and can
be used for testing. However, due to time reasons, a simplification is made. In
the test set-up, only vertical forces are considered and therefor only strains 1
to 8 will be measured. The beam is prepared and calibration takes place, after
which the actual testing can be done.

6.1 Preparation of the beam

The gauges that will be used in our experiments are the gauges of figure 19.
The gauge consists of three numbered sensors. All three sensors can measure
a strain, but in a different direction. In our case the strains under an angle of
45 degrees must be measured, which is why parts 1 and 3 are used. Since only
vertical forces are considered, four gauges are needed. Gauge 1 measures strains
1 and 2, gauge 2 measures strains 3 and 4, etcetera.

Figure 19: Illustration of the strain gauges used

Before the beam can be used for testing, several steps need to be done to prepare
the beam. Some of these steps have a huge influence on the resulting accuracy,
so it is of importance that these steps are handled with care. First of all, the
position of the gauges needs to be determined. The gauges are mounted at the
central axis, so at a height of 30 millimeters from the top. One gauge is placed
at 1/4 of the length of the beam, which is 100 millimeters from one end, and
another gauge is placed at 3/4 of the length of the beam, which is 300 millime-
ters from this same end. The height is determined with a tool which measures
distance with an accuracy of 0.005 millimeters, while the distance in horizontal
direction is found using a ruler with an accuracy of 0.5 millimeters. The same
is done to place two gauges at the other side of the beam.

Around the exact position for the strain gauges, the surface is prepared. This
consists of removing the paint and sanding the surface. After this, the surface
is cleaned using aceton. The four gauges are then glued on the surface of the
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beam, together with a pad. After this, wires are soldered from the gauges to
their corresponding pads. The wires used here are as thin as possible. To keep
the measurement error as low as possible, one should use as less wire as possible.
Furthermore it is desirable that wires are close together and that they have the
same length. When all gauges are connected to their pads, the pads must be
connected in a correct way. To this end, one must first know the Wheatstone
bridge.

6.2 Wheatstone bridge

The Wheatstone bridge is an electrical circuit which consists of four resistances.
A current Vin is applied and between two points a current Vout is measured, as
can be seen in the next picture.

Vin

Vout

Figure 20: Basic Wheatstone bridge

When applying a known voltage Vin, one can measure the output voltage Vout,
which clearly is dependent on the four resistances. In our case these are the
resistances of the strain gauges, which are related to the strain in the beam
and thus related to the applied force. When using the full-bridge configuration,
which means that all four elements in figure 20 have a varying resistance, the
output voltage is directly proportional to the applied force.

To find out where to attach which gauge, one must look back at formula 20,
derived earlier, in section 2.3. This formula relates the eight strains with the
applied load in the following way:

P ∼ e1 + e4 + e5 + e8 − e2 − e3 − e6 − e7. (45)
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Since in this case eight strains are measured, each element in the basic Wheat-
stone bridge of figure 20 must consist of two sensors. To this end, each element is
the summation of the resistances of two sensors with the same configuration, but
both on a different side of the neural axis. This way the resistances of sensors 1
and 5 are added, as well as the resistances of sensors 2 and 6, 3 and 7 and 4 and 8.

To decide which sensor needs to be placed where in this circuit, one requirement
of [1] must be met. When looking at figure 20, all adjacent elements must have
a different sign (tension or compression) from their neighbours. Keeping this
requirement in mind and using the numbering of strains 1 to 8 again, the final
configuration of the Wheatstone bridge is depicted below.

Vin

Vout

12

56

4 3

78

Figure 21: Wheatstone bridge for our test set-up

The output voltage is, as stated earlier, in this case linearly relate to the applied
force. The relationship between the output voltage and the eight strains is the
following:

Vout = GE ∗ 1

4
∗ Fg ∗ (

e1 + e5
2

+
e4 + e8

2
− e2 + e6

2
− e3 + e7

2
). (46)

In this equation GE is a constant which depends on the input voltage and the
values of the amplifier. Fg is the Gauge Factor and this factor tells something
about the change in resistance of a gauge due to strain. With our grid as de-
rived in section 4.1, one can find all eight strains when the applied force and
its position is known. In this way a relation is found to calculate the expected
output voltage from an applied known force.
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The constant GE can be found by using the amplifier. When one is sure it
is warmed up, the output voltage when no strain is applied, can be registered.
Then, on the amplifier a strain is applied, which is in the same order of magni-
tude as the strain in the final tests. The new output voltage is registered and
the difference between this voltage and the initial value of the output voltage is
called δV . With this difference the value of GE can be determined using

GE =
δV ∗ 4

F ∗g ∗ ε
. (47)

In this equation F ∗g is the theoretical value of the Gauge Factor and ε the ap-
plied strain.

Only in case of so called ’balancing legs’, when R1

R2
= R3

R4
when the system

is in rest, equation 46 initially leads to an output voltage of zero. However,
with the amplifier used, one can set the initial output voltage to zero even if the
resistances are not ’balancing’.

6.3 Calculate Force-Voltage curve

Using our predefined grid and equation 46, one can determine how the eight
strains are related to the applied force. When a vertical force is applied in the
middle of the beam, these relations are as follows:

e1 = 1.0297e−9* F
e2 =-1.8272e−9* F
e3 =-1.8272e−9* F
e4 = 1.0297e−9* F
e5 = 1.0293e−9* F
e6 =-1.8249e−9* F
e7 =-1.8249e−9* F
e8 = 1.0293e−9* F

Furthermore the value of GE is determined. When not applying any strain on
the amplifier, the output voltage is 45 mV. When applying a strain of 60 e−6,
the output voltage is 1252 mV. This means that δV is equal to 1207 mV and
when using the theoretical value of the Gauge Factor, which is 2.00, equation 47
leads to a value of 40233.33 for GE. The actual Gauge Factor is given by the
fabricator and for these gauges it is 2.01 +- 1%.

When all these values are known, equation 46 can be used to determine the
theoretical relation between an applied force and the output voltage. This is
also done for forces applied at positions z=0.016 and z=0.044. As can be seen
in the picture below, this relation is linear with a slope of 1.15e−4 and is inde-
pendent of the position where the force is applied.
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Figure 22: Theoretical relation between applied forces and output voltages for
different positions

6.4 Results

Before starting measuring, all equipment is connected in a proper way and some
time is taken to let the equipment get warm. When the initial output voltage
reaches a stable value, measurements can be started. A press is used to exert
forces on the beam. Since this press consists of a large surface through which
force is applied, an extra aluminium rod is used to make sure the force is only
applied at a small part of the beam, namely the middle of the beam. The force
is increased from 0 to 20.000 Newton and every 2000 Newton the voltage is
registered. The results of this first test can be found in the table below.

Table 6: Measured output voltage for an applied force

δ F[N] F[N] U [mV]
0 0 117

2071 2071 327
2102 4173 529
2113 6286 707
2007 8293 780
1960 10253 786

At a force of 10.253 Newton the experiment is stopped. One can see that in the
first two steps the voltage increases linearly with +- 200 mV. When applying
8000 Newton the meter shows a voltage of around 930 mV, but then directly
drops down to 780 mV. One assumption is that this is due to the plastic defor-
mation of the aluminium rod. That is why this rod is replaced for an iron rod
and the experiment is repeated. However, the same effect occurs.
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It turns out that when applying forces larger than 5000 Newton, the press
has problems to keep this force applied for a time long enough to register the
voltage. When the right force is reached the machine ’relaxes’ and retracts a
bit, leading to a lower force and thus a lower voltage. This is why the experi-
ment is continued for forces up to 5000 Newton, with a stepsize of 1000 Newton.
This procedure is repeated three times with the force applied in the middle of
the beam. After this, the procedure is repeated three times when applying the
force at the left and right side of the middle of the beam. The averages of three
measurements at each position are depicted below. All data can be found in
Appendix B.

Table 7: Average output voltages for an applied force at different positions

F[N] U(z=0.03) [mV] U(z=0.016) [mV] U(z=0.044) [mV]
0 111.0 111.0 111.0

1001 216.3 217 215.7
2002 318.7 322 318.3
3003 420.7 424.7 419.7
4004 520.7 525 517.7
5005 615.3 622.3 612.3

For each position a graph is drawn. In this graph the measurement data and a
line that fits these data best is plotted, together with the theoretical values. The
next three figures show the results from measurements at z=0.03 m, z=0.016 m
and z=0.044 m respectively.
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Figure 23: Theoretical and experimental results compared for z=0.03
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Figure 24: Theoretical and experimental results compared for z=0.016
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Figure 25: Theoretical and experimental results compared for z=0.044

One can clearly see that the experimental relation is indeed linear, but that
the slope of the experimental lines is a bit different from the theoretical values.
Since during testing the initial offset equaled 0.111 Volts, all test data are sub-
tracted with 0.111 Volts, so they can be compared with the theoretical model.

Also a fourth graph is drawn, which is the experimental version of figure 22.
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Figure 26: Experimental results for different positions compared

As can be seen in figure 26, the experimental curves defer a little bit when the
load is not exactly applied in the middle. This can be seen best when looking
at high forces. Since all the measurements had the same initial output volt-
age, there is no problem with the ’warming-up’ of the equipment. However,
the change in curves could be due to an error in the positioning of the gauges.
Probably one or more of the gauges is not placed exactly horizontal, leading to
strains that are not exactly under an angle of 45 degrees, resulting in different
results when the force is applied elsewhere.

Furthermore the computer displays the displacement of the beam, which, for
an applied force of 5000 Newton, is around 0.1 mm. Calculations in section 3.3
showed a displacement of 0.125 mm at this force, so this is another sign that
our model corresponds to the actual situation.
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7 Conclusion

The goal of this research was finding a way to measure contact forces of train
wheels with the track. To this end a new force sensor had to be designed. A
circular beam is designed with dimensions such that it fits the bottom profile of
the train wheel and such that the Yield strength of the material is not exceeded
when vertical forces up to 20.000 Newton are applied. This condition is also
checked using ANSYS. Both vertical and horizontal forces that are exerted on
the beam lead to deformations in the beam, which can be measured.

To this end, sixteen strains need to be measured, all under an angle of 45 de-
grees with the neutral axis. The theoretical relation between these strains and
the applied forces is determined and two algorithms are made for calculating
the applied forces from the measured strain, when the position of application is
unknown. To this end a grid is applied on the small cylinder and some reference
data is needed. The resulting set of equations can be solved either by using the
method of minimizing the error or by using Newton-Raphson iteration. Both
procedures are tested and verified using the model in ANSYS.

The sensitivity analysis showed that the method of Newton-Raphson does not
work properly when there are errors in the measurement or in the tools. When
using the method of minimizing the error, it turned out that an error in the
measured strain effected the calculated force. If all strain gauges have the same
error, this exact error will also be in the calculated forces. When all gauges have
a different, normal distributed error, the error in the calculated forces is also
normally distributed, where the standard deviation is dependent on the size of
the forces. The same holds for errors in the values of the grid.

For experimenting, the problem is adapted and the beam only needs to measure
vertical applied forces. When working with a Wheatstone bridge, the output
voltage should be linearly related to the applied force. It turned out that this
was the case, but that the slope was different from the theoretical value. Fur-
thermore the slope was dependent on the position where the force is applied,
which tells that the placement of the gauges is not perfect.

A further research could have as goal to indeed test the actual algorithm. In
that case all 16 strains should be registered. These strains could then be used
to solve our set of equations by minimizing the error. In that case a combi-
nation of a horizontal and vertical force could be applied somewhere along the
small cylinder. Also the same beam could be tested again after replacing the
strain gauges, to see if the error is indeed due to the misplacing of the gauges.
Furthermore one could examine how to make the method of Newton-Raphson
more robust. A final possibility for further examination is to perform a larger
and more accurate sensitivity analysis.
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A Dimensions of the beam
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B Test data

Table 8: Measured output voltage for an applied force at z=0.03

δ F[N] U1 [mV] δ F[N] U2 [mV] δ F[N] U3 [mV]
0 111 0 111 0 111

1000 216 1001 216 1001 217
1001 318 1000 318 1000 320
1001 420 1001 419 1001 423
1002 520 1002 518 1001 524
1002 615 1002 612 1000 619

Table 9: Measured output voltage for an applied force at z=0.016

δ F[N] U1 [mV] δ F[N] U2 [mV] δ F[N] U3 [mV]
0 111 0 111 0 111

1001 217 1002 217 1000 217
1002 321 1002 322 1000 323
1001 423 1000 424 1001 427
1002 522 1001 526 1001 527
1001 619 1001 624 1000 624

Table 10: Measured output voltage for an applied force at z=0.044

δ F[N] U1 [mV] δ F[N] U2 [mV] δ F[N] U3 [mV]
0 111 0 111 0 111

1001 215 1002 216 1002 216
1000 315 1001 320 1002 320
1001 414 1001 423 1001 422
1001 512 1000 520 1000 521
1003 605 1001 615 1001 617
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