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Summary

Collective Dynamics of Dislocations

The main carriers of plastic flow in metallic materials are dislocations, i.e. line-like defects
in the crystal structure. Metals can contain up to 106 meters of dislocation lines per cubic
millimeter. Therefore, the collective dynamical behavior of dislocation line segments is
key in understanding the deformation behavior of metals.

For the dynamics of individual dislocations, it has been proven that linear response
models work well in a realistic regime of parameters. In contrast, the viscoplastic flow
rule in phenomenological, macroscopic models for crystal plasticity, which are based on
the dynamics of dislocations, have a strongly non-linear stress-dependence. The central
hypothesis of this thesis is:

“The collective, coarse-grained dynamics of dislocations reveals emergent phe-
nomena that dominate the macroscopic system response. ”

To assess this hypothesis, systematic coarse-graining was applied to the dynamics of a
model system of straight and parallel dislocations to obtain the dynamics of macroscopic
density profiles of these dislocations under mechanical load. To this end, the framework of
the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC)
was employed, together with its systematic coarse-graining procedure, based on statistical
mechanics and projection-operator techniques.

To study the static behavior of the system, the free energy of the system was derived.
The free energy is a functional of the dislocation density profile for each Burgers vector
separately, of the mechanical load applied at the boundary, and of the configurational
temperature. A finite system-size and the presence of glide planes have been accounted
for. First, the grand-canonical partition function for this system is derived using an inte-
gral over all possible dislocation configurations and a path-integral over all possible strain
fields. Then, a general expression was derived for the free energy by means of Legendre
transformation. The free energy consists of a mean-field elastic contribution, a statistical
contribution, and a many-body contribution that accounts for the screening of dislocation
interactions. Moreover, an explicit expression was derived for the special cases of single-
and multiple slip systems with edge dislocations.

Subsequently, evolution equations for the dislocation density profiles have been derived,
following the GENERIC framework for the systematic coarse-graining. A two-temperature
description was used to distinguish between the environmental temperature of the lattice
and the configurational temperature that governs the distribution of dislocations. It was
obtained that the transport of dislocations is not driven by the derivative of the previously
obtained free energy, but by a modification thereof, such that diffusion of dislocations is
governed by the environmental temperature, rather than by the configurational tempera-
ture. Moreover, an expression was obtained for the effective transport coefficient at the
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macroscopic level in terms of correlations of the fluctuations in the dislocation velocity.
The dependence of both the driving force and the effective, macroscopic transport

coefficient on the applied mechanical load were investigated using simplified Discrete
Dislocation Dynamics simulations. The resulting macroscopic dislocation flux depends
non-linearly on the applied mechanical load, which supports phenomenological flow rules
currently used in Crystal Plasticity models.

The overall conclusions of the thesis for a model system of straight and parallel dislo-
cations are the following:

• The driving force for dislocation dynamics has, besides a long-range mean field
contribution, a many-body contribution that depends on the total density of dislo-
cations per slip plane. The latter implies that the system cannot be described by
quantities based on the net dislocation content only, as was previously anticipated.
For the many-body contribution, an explicit expression was obtained using a Local
Density Approximation. Moreover, diffusion of dislocations is negligible compared
to the other transport processes.

• The emergent contribution to the macroscopic transport coefficient is dominant
over other contributions, and is load-dependent.

• The resulting macroscopic relation between applied mechanical load and dislocation
flux is clearly non-linear. As the relation between applied mechanical load and dislo-
cation velocity at the microscopic level is assumed to be linear, this thus constitutes
an emergent phenomenon.

It is expected that also for more realistic dislocation models, emergent behavior dominates
the dynamics of dislocation density profiles.



Chapter 1

Introduction
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1.1 Background and motivation

Already back in 1943, it was proposed by Orowan, Polanyi and Taylor [55] that the main
cause of plastic deformation in crystalline materials, such as metals, is caused by the
dynamics of line-like defects in the crystal structure, i.e. dislocations.
Well-annealed metals contain about ten meters of dislocation line per cubic millimeter,
while heavily cold-rolled metals can contain up to thousand kilometers of dislocation line
in the same volume. The amount of dislocations can thus vary over several orders of
magnitude, but is in any case large in realistic volumes.
Defects, such as dislocations, distort the lattice and thereby introduce stresses in the ma-
terial. Yet, dislocations also move due to stresses in the material and influence each other
via the varying stress field in the material. The stress field due to a dislocation segment
only decays over long distances. Consequently, a single dislocation segment is influenced
by the applied boundary conditions and by all other dislocation segments in the material.
The strong and long-range interactions and the large amount of dislocations together
imply that the plastic response of metals is determined by the collective behavior of dislo-
cations, rather than by the dynamics of single, isolated dislocations. However, computer
simulations of the dynamics of realistic amounts of dislocations are unfeasible because of
the long-range nature of the interaction. The subject of this thesis is therefore the deriva-
tion of the collective dynamics of dislocations by means of systematic coarse-graining.
This derivation might also explain the discrepancy in literature between the dynamics of
individual dislocations and their collective behavior. Namely, the velocity of individual
dislocations is generally assumed to be linearly proportional to the applied load, while the
plastic flow at the macroscopic level depends on the applied load in a strongly non-linear
manner.

Systematic coarse-graining techniques for dynamics have been applied to fluids, for exam-
ple to obtain the viscosity of complex fluids, but only to a limited extend to solids under
mechanical load, e.g. [56, 57]. They have been applied to (solid) glassy systems, but
the dynamics of these systems on the smallest scale is not well-known. On the contrary,
the dynamics of individual dislocations in metals is quite well-described in literature. The
coarse-graining of dislocation dynamics could therefore be an ideal test case for applying
these coarse-graining techniques to solids.

1.2 Hypothesis

The hypothesis in this thesis is that due to the strong and long-range interactions between
dislocations, new phenomena emerge when the collective dynamics of large amounts of
dislocations is considered. It is expected that the characteristic properties of the collective
dynamics of dislocations are not equal to the properties of the dynamics of individual
dislocations, and are therefore to be considered as emergent properties.
The central hypothesis of the thesis therefore reads:

“The collective, coarse-grained dynamics of dislocations reveals emergent phe-
nomena that dominate the macroscopic system response. ”
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1.3 Current approaches in literature
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Figure 1.1: Overview of the different scales used in mechanical simulations. Circles are
MD-simulations, squares are DDD-simulations and the rhombus is a mechanical test on
single crystal ferrite experiment.

A vast amount of research has been done on the dynamics of dislocations and on dynamical
coarse-graining. Here the results are summarized from literature on

• models at different scales capturing the mechanical properties of dislocations;

• 2D Coulomb particles, for which dislocations are a representative case;

• mathematical upscaling techniques applied to dislocations;

• dynamical coarse graining.

The mechanical properties of dislocations have been investigated on several length scales,
see Fig. 1.1. The smallest length scale is considered in Molecular Dynamics (MD) simula-
tions of the metal atoms in the crystal structure [86, 96]. These studies indicate that for
edge dislocations in Aluminium and Nickel for realistic strain rates, the relation between
dislocation velocity and applied mechanical load is nearly linear. The typical box size
considered in these studies is 5− 10 nm with fs timesteps.
A slightly larger scale is addressed when dislocations are considered as discrete line de-
fects in a continuous elastic material. The motion of the dislocations is described by a
linear drag law, and the Peach-Koehler force on dislocations results from both the exter-
nally applied load and the mutual interaction between dislocations. Using these evolution
equations, simulations have been performed within the framework of Discrete Dislocation
Dynamics (DDD), see e.g. [110]. For simplicity, these dislocations are sometimes as-
sumed to be straight and parallel. DDD simulations have for example been used to study
fatigue crack propagation [17] and the role of dislocations in hydrogen embrittlement of
aluminium [58]. The typical box size considered in these simulations is around 10 µm
with ns timesteps.
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To obtain the evolution equations for the dislocation density from the dynamics of dis-
crete dislocations, the BBGKY-hierarchy of equations with different closures on the two-
or three-body-density [32, 120, 34, 73, 16], and several variational approaches [35, 36]
have been proposed. Both approaches yield a linear relation between dislocation flux and
applied mechanical load. To describe the randomness in the system, both approaches need
a ‘configurational’ temperature to describe the dislocation distribution. This temperature
is not equal to the temperature of the environment, as the environmental temperature is
very low compared to the typical energy scale in the system, and hence it would hardly
have any influence.
At the engineering schale, phenomenological evolution equations for the dislocation den-
sity have been developed. In the work of Gurtin [40, 43], a thermodynamically consistent
higher-order gradient theory of crystal plasticity was derived from the principle of virtual
power, supplemented by constitutive equations for the dislocation flow. The plastic flow
in these models is either rate-independent, or it depends on the applied load in a strongly
non-linear manner, usually such that the material is hardly rate-dependent. These for-
mulations have been extended to account for grain boundaries as well [109]. Moreover,
in the work of El-Azab [20], kinetic equations for the evolution of the dislocation density
have been derived, which includes dislocation transport and reaction and multiplication of
dislocations. However, an explicit flow rule for the dislocations was not further specified
in this model.

Dislocations have been studied extensively in the context of the Kosterlitz-Thouless
phase transition and the sine-Gordon model [63, 81, 82, 104], where straight and long
dislocations can be considered as an example of two-dimensional Coulomb particles. This
transition predicts the unbinding of dislocation pairs above the critical temperature, and
hence explains dislocation-mediated melting of crystals. In the works of Mizushima [78],
Ninomiya [84], Yamamoto [118] and Burakovsky [11], this research has been extended to
account for 3D effects, i.e. the core energy, the effect of the dislocation network and the
non-overlapping condition for dislocations.
The disadvantage of these studies in a mechanical context is that the influence of exter-
nally applied loading and boundary conditions is not examined, and that the focus is on
the behavior around the critical (melting) temperature. Moreover, the anisotropic nature
of the interaction between edge dislocations is not accounted for.

Mathematicians have studied the behavior of large amounts of dislocations to in-
vestigate the relation between discrete and continuum descriptions of the system. The
mathematical difficulties arise from the peculiar, non-convex interactions between dis-
locations. For instance, dislocation walls are considered, as these have shown to be a
prototype for understanding the influence of the discrete nature of dislocations [98].
Techniques like Γ-convergence [99, 29, 112] and asymptotic analysis [45, 46, 47] have
been used to study the structure of dislocation pile-ups against impenetrable objects in
the limit of a large number of dislocations. These results have been extended to the evo-
lution equations of dislocations [111], the next-order corrections to the minimizers [27],
and the organization of dislocations in two dimensions [28].
The drawback of these works is that they all are performed in the absence of thermal noise,
and that in several cases, strong assumptions are made on the arrangement of dislocations.
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Collective dynamical behavior has been derived for other systems. The most well-
known example of this are the Green-Kubo relations [66], which relate time-correlations
of fluctuations in currents to transport coefficients close to equilibrium. These relations
have for example been used to calculate the viscosity of liquids and gasses, see e.g.
[52, 53, 103]. The Green-Kubo relations reflect that irreversibility is an emergent prop-
erty that arises not only from averaging over phase space, but also from correlations in
the fluctuating dynamical process.
Collective dynamics can be derived from the microscopic evolution equations in a more
systematic manner within the framework of the General Equations for the Non-Equilibrium
Reversible-Irreversible Coupling (GENERIC), see e.g. [31, 89, 88]. Within this framework,
the dynamics is split additively into a reversible and an irreversible contribution. Subse-
quently, these two contributions can both be split multiplicatively in a derivative of a
thermodynamic potential (energy or entropy) times a matrix that relates these derivatives
to fluxes. The four ingredients on the fine level, two thermodynamic potentials and two
matrices, can then be systematically coarse-grained to obtain the collective dynamics at
the coarse level. The relation between the two levels of description is established by pro-
jection operators and non-equilibrium statistical mechanics. The coarse-graining is not
only an average over phase space, but also entails a transition in timescale.
Dynamical coarse-graining within the GENERIC-framework has not been applied to solids,
apart from some considerations on polymers [56, 57]. An extension of this framework to
solids poses a challenge, as there is a strong influence of the boundary conditions, and
the role and nature of fluctuations in the system is not clear.

1.4 Scope of the thesis

The approach followed in this thesis is to investigate the collective dynamics of dislocations
by deriving them through the GENERIC framework, in order to identify the collective
effects. Attention is restricted to a simplified model of straight and parallel dislocations
that are not created or annihilated. DDD simulations have shown that simulations of such
a system yield reliable results. Moreover, it is expected that if emergent phenomena are
important for the collective dynamics of straight and parallel dislocations, that they are
also important for more realistic dislocation systems.
The fine scale description of the system considered coincides with the setup used in
DDD simulations, i.e. where dislocations are treated as discrete objects embedded in
a continuous linear elastic material. The coarse scale is characterized by a dislocation
density profile in the same elastic material. As in the BBGKY approaches, a configurational
temperature is used to describe the, usually disordered, dislocation distribution. Moreover,
the temperature of the environment is used to describe the thermodynamic state of the
elastic material.
Dislocation systems are in general far from equilibrium. More specifically, these systems
can be under strong applied mechanical loads, and the dislocation distribution is usually
not in thermal equilibrium with the environmental temperature. Namely, the energy
associated with thermal fluctuations in the lattice is very small compared to the interaction
energy of the dislocations, which implies that dislocations should occur in a rather ordered
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state. However, dislocations are usually distributed quite randomly, which corresponds to
a high temperature associated with the dislocation configuration. Hence, the dislocation
distribution is “frozen in” at this high configurational temperature, which is different from
the environmental temperature.
As the system is far from equilibrium, it is beneficial to use the GENERIC framework, as
GENERIC is not restricted to close-to-equilibrium systems, and the coarse-graining can
done in a systematic manner without a priori assumptions on the role of fluctuations.

statics
Chapter 2 Grand-canonical partition function
Chapter 3 Canonical free energy and the Local Density

Approximation (LDA) for a single slip system
Chapter 4 LDA for multiple slip systems

dynamics
Chapter 5 Macroscopic evolution equations
Chapter 6 Stress-dependence of the effective, macro-

scopic mobility

Table 1.1: Outline of the thesis

The thesis starts with a discussion of the thermodynamic potentials of the system in Chap.
2 to 4, as their derivatives act as driving forces for the dynamics in the system. In Chap.
2, the focus is on the derivation of the grand-canonical partition function for a given
local chemical potential of the dislocations, configurational temperature and deformation
of the boundary. An approximation is made that only holds far away from the critical
temperature. The new and innovative aspects of this work are that aspects that have
shown to be important for the mechanical response, such as a finite domain and applied
mechanical load, have been incorporated in the partition function.
Subsequently, the free energy is derived in Chap. 3 by performing a Legendre transform
of the grand-canonical partition function obtained in Chap. 2. This yields an implicit
expression for the free energy of the dislocation density profile at a given configurational
temperature and boundary deformation. This expression is made explicit by means of a
local density approximation for edge dislocations on a single slip system in this chapter,
and for edge dislocations on multiple slip systems in Chap. 4.
In Chap. 5, the thesis continues with a derivation of the collective dynamics. The
resulting evolution equation for the density is written as a driving force times an emergent
transport coefficient. The driving force can be split in the derivative of the configurational
free energy of the dislocation density profile at the configurational temperature, and a
correction that accounts for the difference between configurational and environmental
temperature. Note that for the former, the result of Chap. 2 to 4 can be used.
In Chap. 6, the emergent transport coefficient is studied by determining correlations of
fluctuations in DDD simulations. In this chapter, focus is put on the dependence of the
mobility on the applied mechanical load.
Finally, in Chap. 7 the results of the different chapters are summarized into a single set of
evolution equations. Subsequently, the main conclusions are drawn and recommendations
for further research are given.



Chapter 2

Collective behaviour of dislocations 
in a finite medium

Largely reproduced from: Kooiman, M., Hütter, M., and Geers, M.G.D., 
Collective behaviour of dislocations in a finite medium. Journal of Sta-
tistical Mechanics Theory and Experiment, P04028, 2014
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Abstract

We derive the grand-canonical partition function of straight and parallel dislocation lines
without making a priori assumptions on the temperature regime. Such a systematic
derivation for dislocations has, to our knowledge, not been carried out before, and several
conflicting assumptions on the free energy of dislocations have been made in the liter-
ature. Dislocations have gained interest as they are the carriers of plastic deformation
in crystalline materials and solid polymers, and they constitute a prototype system for
two-dimensional Coulomb particles. Our microscopic starting level is the description of
dislocations as used in the Discrete Dislocation Dynamics (DDD) framework. The macro-
scopic level of interest is characterized by the temperature, the boundary deformation and
the dislocation density profile. By integrating over state space, we obtain a field theoretic
partition function, which is a functional integral of the Boltzmann weight over an auxiliary
field. The Hamiltonian consists of a term quadratic in the field and an exponential of this
field. The partition function is strongly non-local, and reduces in special cases to the sine-
Gordon model. Moreover, we determine implicit expressions for the response functions
and the dominant scaling regime for metals, namely the low temperature regime.
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2.1 Introduction

Dislocations are lines along which there is a mismatch in crystal structure, see e.g. [55].
A dislocation can be represented by a discontinuity in the distortion field of the lattice.
Dislocations have attracted a lot of research interest in the context of mechanical engi-
neering and as a toy model in theoretical physics.
In mechanical engineering, dislocations are considered to be important for the underlying
mechanism of plastic deformation of metals. Under sufficient applied stress, dislocations
move, which causes plastic deformation. Often, focus is on straight and parallel dislo-
cations. Several approaches have been used to study the emergent behaviour of many
dislocations, as discussed in the following.
First, dislocations have been studied numerically within the framework of Discrete Dislo-
cation Dynamics (DDD) [110]. In this framework, dislocations are considered as disconti-
nuities in the displacement field. For a finite volume with given boundary conditions that
contains discrete dislocations, the displacement field is calculated numerically by means
of a superposition method. From the displacement, the stress and the resulting Peach-
Koehler force on the dislocations are calculated. Together with constitutive rules for the
motion, creation and annihilation of dislocations, this gives evolution equations for the
dislocations. Within this framework, important engineering phenomena, such as fatigue
loading and the effect of boundaries can be studied [17, 2, 67, 68]. Furthermore, these
calculations serve as a reference for many enriched continuum models [74, 119].
Second, the BBGKY hierarchy of equations is applied to dislocations [32]. This hierarchy
relates the n body density to the n+ 1 body density. This hierarchy can be closed by an
assumption for the n + 1 body density in terms of the n body density. In [32, 120, 73],
the mean-field-, the Kirkwood and the Bogliubov closure were proposed for the two and
three body correlations. In the long range, the resulting pair correlations seem to match
the pair correlation that is obtained numerically by DDD calculations. However, the short
range correlations are not checked in the numerical simulations. Besides that, the values
of the fitting parameters indicate a low temperature regime, in which the approximations
used are invalid. Furthermore, the two-body density has also been calculated numerically
within DDD, see e.g. [113]. This study indicates the arrangement of dislocations in small,
charge-neutral pairs, which indicates that short range correlations are important.
Third, strain gradient plasticity models were developed to describe dislocation mediated
plasticity phenomenologically, [24, 25, 6, 7]. In these models, the dislocation density is
directly related to gradients in the plastic strain. The evolution of dislocation density
profiles, and hence of strain gradients, is determined by the force on the dislocations. The
latter can either be calculated directly from the stress in the material [6], or from the
derivative of the free energy of dislocation density profiles [42].
In theoretical physics, dislocations are used as a toy model, as straight and parallel disloca-
tions are a prototype system of two dimensional (2D) particles with Coulomb interaction.
It was shown by Kosterlitz and Thouless and later by Nelson and Halperin [63, 81, 82] that
two dimensional crystals melt via the unbinding of dislocation pairs. At low temperature,
dislocations occur in pairs, and do not respond individually to the applied load. At high
temperature, the dislocations are free, and respond even to infinitesimally small loads.
Most calculations on 2D Coulomb-type particles were done in infinite space. Moreover,
only the isotropic, logarithmic part of the dislocation interaction was taken into account
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and the anisotropic part was neglected.
Despite all these efforts, there is no crystal plasticity model available that is obtained by
systematic coarse-graining from the rich microscopic description of discrete dislocations
to a macroscopic level. In this chapter, we calculate the partition function of parallel and
straight dislocations in a finite, three dimensional volume in the grand-canonical ensemble.
External mechanical loads were applied at the boundary of the system, as typically done
in DDD [110]. No a priori assumptions on the magnitude of the coupling parameters are
made.
Multiple slip systems were considered here. The treatment of multiple slip geometries has
proven to be problematic in the literature, while multiple slip is important in a realistic
description of crystal structures, see e.g. [24]. However, in the work presented here,
multiple slip systems could be incorporated in a systematic way.
In this contribution, the framework of equilibrium statistical mechanics is employed.
Within equilibrium statistical mechanics, microstates are summed in an ensemble of fixed
temperature, pressure and number of particles to obtain the partition function. However,
this set of macroscopic control variables can be extended to describe inhomogeneous dislo-
cation density profiles under applied boundary loading. A similar procedure is also applied
in classical DFT [23]. In this procedure, while the set of control variables is extended,
the subsequent counting of states that are commensurate with these control parameters
leads in the usual way to a partition function, see e.g. [31][89].
The system is here considered at a finite temperature, although it was realized in the
literature that the physical temperature of dislocations in metals at room temperature is
generally very low. The rationale behind this is that the behaviour of the system at zero
temperature is a special case of the behaviour at finite temperature, and could thus also
be obtained from an analysis at finite temperature. This issue is further addressed in the
discussion.
As straight and parallel dislocations are part of a wider class of problems of particles in
two dimensions with vector charges and as we make no assumptions on the temperature
regime, methods and results of this contribution can likely be extended to similar sys-
tems, such as defects in two dimensional crystals [93] and dislocations in colloidal crystals
[100, 48].
The chapter is organized as follows. In Sec. 4.3, a general expression for the partition
function is derived by systematic coarse-graining. The result is interpreted in Sec. 2.3. In
Sec. 2.4, approximations are used to obtain explicit expressions for the response functions
of the system in a special case. In Sec. 6.4, the results and limitations are discussed, and
an outlook on future work is given.

2.2 Derivation of the free energy expression

In this section, the grand-canonical partition function is derived. The main steps of this
derivation are listed in table 2.1. The coordinate system is introduced in Fig. ??.
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Figure 2.1: The coordinate system used in this chapter. The line direction ξ̂ is parallel to
the ẑ-direction. The vector r is used to indicate positions in three dimensional space, the
vector s is used to indicate the position in the plane perpendicular to the line-direction
ξ̂ = ẑ. The vector r can thus be written as r = s+ zξ̂.

Main steps in the calculation Conceptual Section
origin

Use of the grand-canonical ensemble with local che-
mical potential

DFT 2.2.1

Loading via an imposed deformation, applied at the
boundary

DDD 2.2.2

Discrete dislocations embedded in a continuous dis-
tortion field

DDD 2.2.2

Restriction to distortion fields that match the imposed
incompatibility using a delta functional

2.2.2

Thermodynamic relation between stiffness and free
energy derivative

Thermodynamics 2.3.2

Computational techniques
Source term for the distortion field Field Theory 2.2.4
Fourier representation of the delta functional [60] 2.2.4
Gaussian path integral over the distortion field Field Theory 2.2.4
Integration over dislocation positions [83] 2.2.4
Definition of discrete glide plane density 2.2.4
Shift of the potential to separate external loading DFT-inspired 2.2.4

and interaction effects
Rescaling of variables to obtain coupling parameters 2.3

Table 2.1: Main steps of the derivation of the partition function

2.2.1 Microscopic description of the system

In this study, long, straight and parallel dislocations are considered, that are embedded
in an elastic continuum with volume Ω. Dislocations are characterized by their line ori-
entation vector ξ̂ and Burgers vector b, the latter describing the closure fault vector in
the crystal lattice. As the dislocations are parallel, the line orientation vector ξ̂ is equal
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Figure 2.2: In Fig. 2.2(a) the local distortion of the lattice is depicted. The grey dots are
the equilibrium positions of the atoms with respect to the central atom, and the black dots
are the real positions. From such a detailed picture, the local value of the distortion field
can be calculated. This picture is a representation of the distortion field at the particle
level, whereas in the rest of the chapter, the distortion field is a function of space.
In Figs. 2.2(b) and 2.2(c), the (x, z) and (y, z)-components of the equilibrium distortion
field around a screw dislocation are depicted, see Eq. (2.3). In the white circles, the values
are very large (positive or negative), which indicates that the field is singular at the origin.
In these pictures, only the equilibrium distortion field is depicted, whereas in the sequel of
the chapter, all distortion fields are taken into account, as long as they have a singularity
at the origin that matches the incompatibility imposed by the dislocation.

for all dislocations. On the contrary, the Burgers vector is not necessarily the same for all
dislocations. Dislocations with equal Burgers vectors can be considered as dislocations of
the same species, in close analogy to chemical species.
In this study, we only consider the motion of dislocations on their glide plane. The ori-
entation of these planes is specific for the species of dislocations. As dislocations thus
stay at the glide plane on which they nucleate, e.g. through Frank-Read sources on that
plane, there is only a discrete set of glide planes {js} associated with each species s on
which dislocations of that species can occur.
For each species s and each glide plane js of that species, there are Nsjs dislocations
on this plane. In the derivation presented here, it is convenient to define the Nye tensor
α̂(s), as defined in [85], and the density profile ω̂s(s) of dislocations of species s as field
variables that are defined for every position in space. Defining the dislocation density as
a field variable was also done in for example [34]. The fields α̂(s) and ω̂s(s) are defined
as

α̂(s) =
∑

s∈species

∑
js∈glide planes

Nsjs∑
k=1

ξ̂bsδ
(2)(s− sk) ≡

∑
s∈species

ξ̂bsω̂s(s), (2.1)

where the position vector s is used for the position in the 2D plane perpendicular to the
line direction ξ̂. Note that the Nye tensor and the dislocation density can just have non-
zero values on the glide planes. Hence, the macroscopic partition function will depend on
the positions of the glide planes. However, the positions of the glide planes are considered
as material constants here. Therefore, the dependency on the glide plane positions is not
indicated explicitly.
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Besides through dislocation positions, the microscopic state of the system is character-
ized by the elastic distortion ∆ in the continuum. This distortion results from the local
deviation of the particle positions from the equilibrium lattice, and hence it can be seen
as the derivative of the displacement from the equilibrium lattice in the immediate neigh-
bourhood.
Only distortion fields that match the incompatibility imposed by the dislocations in the
material in every point should be allowed. An example of such a field is shown in Figs.
2.2(b) and 2.2(c). Distortion fields that match the incompatibility imposed by the dislo-
cations satisfy, see e.g. [64],

∇∧∆ = α̂, (2.2)

where v∧A is the cross product of vector v and second rank tensor A on the first index,
i.e. (v ∧A)ij = εiklvkAlj . Note that as the field α̂ is a collection of delta peaks, see
Eq. (2.1), that ∇ ∧∆ is singular at points where there is a dislocation present, and has
to vanish elsewhere.
As Eq. (2.2) is linear in both ∆ and α̂, the distortion field due to many dislocations
is simply the superposition of the distortion fields of the individual dislocations. The
distortion field that satisfies mechanical equilibrium and that corresponds to a single
screw dislocation in the origin with line direction vector ξ̂ = ẑ and Burgers vector b = bẑ
is (see e.g. [55])

∆(r) =
b

2π

 0 0
−ry
r2x+r2y

0 0 rx
r2x+r2y

0 0 0

 . (2.3)

Mechanical loading of the system is also considered, as mechanical loads influence the
distribution of dislocations. In this chapter, the focus is on boundary loads rather than
volumetric loading, which is more relevant in practice. Only displacement controlled
loading is considered here for convenience. To incorporate the loading, the space of
allowed elastic distortion field is restricted to those fields that match the imposed elastic
distortion along the boundary resulting from the loading. These are the fields that satisfy

n̂ ∧∆ = (n̂×∇)ub on the boundary, (2.4)

where n̂ is the boundary normal and × is the cross product between two vectors. Note
that ub is the displacement of the boundary, and hence this is a variable that is only
defined on the boundary and not in the bulk. Therefore, only the surface derivative is
well-defined and can be used to impose the loading. As (n̂×∇) is used, the components
of the derivative parallel to the surface normal do not appear in the above equation, and
hence the RHS is well-defined.
Note that (n̂×∇)ub = n̂∧(∇ub), and hence that in Eq. (2.4) the transversal components
of the distortion are ∆ have to be equal to the transversal components of the imposed
distortion ∇ub. However, ∇ub is only well-defined for an ub that is also defined in the
bulk, whereas Eq. (2.4) only involves surface derivatives, n̂×∇. Therefore, Eq. (2.4) is
not equivalent to ∆ = ∇ub.
The boundary conditions in Eq. (2.4) put a constraint on the overall net dislocation
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content of the system. Thus, to describe systems with a net dislocation content, the
boundary deformation ub should have jumps.
Elasticity problems are usually solved in terms of the displacement field, rather than the
distortion field. For elasticity problems without dislocations, the displacement field is
a natural variable, as the incompatibility Eq. (2.2) reduces to ∇ ∧ ∆ = 0, which is
automatically satisfied for ∆ = ∇u. For elasticity with dislocations, a system description
with distortion fields may be more convenient. Within DDD, even the elasticity problem
with dislocations is written in terms of the displacement as well. However, since the
RHS of the incompatibility Eq. (2.2) is non-zero, one should either use displacement
fields with branch cuts (see [49] and Eq. (3.10) and (3.47) therein), or define a total,
compatible distortion that can be split into an elastic and a plastic part. The choice for
both the branch cuts and the plastic distortion are not unique, as these are not measurable
quantities. This arbitrariness is circumvented here by using only the elastic distortion field
itself as a variable, rather than the displacement.
To conclude, the microstate is characterized by the position of all dislocations and the
distortion field in which they are embedded. The latter should match the incompatibility
imposed by the discrete dislocations and the boundary deformation, see Eq. (2.2) and
(2.4), respectively.
The energy of a microstate is the elastic strain energy

Eelas =
1

2

∫
Ω

d3r∆s(r) : C : ∆s(r), (2.5)

where C is the stiffness tensor and the superscript “s” stands for the symmetric part of
the tensor. Within the linear elastic regime, the stiffness tensor relates the stress to the
distortion, and is therefore a measurable quantity. Here, we make the choice not to use
a stiffness tensor that is symmetric in the last two indices. The advantage is that the
tensor C is invertible in this case. The disadvantage is that we should take into account
the symmetrization of ∆ into account explicitly.
As we will integrate over all elastic distortion fields that match the incompatibility due
to the dislocations, lattice vibrations around the energy minimum are taken into account
as well. Namely, the most likely distortion field ∆ is the field that minimizes the energy
under the incompatibility constraint. As shown in A.1, this corresponds to the mechani-
cal equilibrium solution. However, distortion fields with thermal fluctuations around the
minimum are considered as well, due to our focus on statistics at non-zero absolute tem-
peratures. The incorporation of microstates that do not satisfy mechanical equilibrium
implies that Eqs. (2.2) and (2.4) do not completely fix the distortion field ∆. Thus,
although the transversal component of ∆ is fixed on the boundary, all components of ∆
in the bulk can fluctuate locally. Note that fluctuations related to the presence of discrete
dislocations are already incorporated in the minimum energy contribution. Namely, the
distortion field at minimum energy has to satisfy the incompatibility Eq. (2.2) as well, see
also A.1.
In the energy expression (2.5), the interaction potential between dislocations is not incor-
porated explicitly, as opposed to what is done for example in reference [49, Eq. 5-16], and
reference [73]. The standard interaction potential between dislocations is usually derived
from the Peach-Koehler force on one dislocation due to the stress field generated by a
second dislocation and the virtual work needed for a small displacement of the dislocation
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segment. It turns out that in Eq. (2.5), the interaction energy is incorporated implicitly by
the incompatibility constraint for the elastic distortion field. Namely, in Sec. 2.3, it will be
shown that in the special case without loading and in infinite space, the partition function
obtained here is equivalent to the partition function of particles in 2D that interact via
the common dislocation interaction potential.
Besides that, the interaction potential used in literature is only valid in infinite space. As
the analysis presented here is also valid in finite space, it is incorrect to use this interaction
potential explicitly.

2.2.2 Macroscopic control variables

In this section, the macroscopic variables that control the state of the system are deter-
mined. First, the system is loaded mechanically. In this study, the microscopic deformation
of the boundary is equal to the macroscopically imposed boundary deformation for every
microstate. Hence the boundary deformation ub is a macroscopic control variable. This
means that no coarse-graining for the boundary conditions is considered here.
Second, the system is in thermal contact with the environment, and hence the average
energy is controlled by a Lagrange parameter β, which is related to the inverse tempera-
ture by β ≡ 1/kBT . The meaning of temperature is further addressed in the discussion.
Third, the average dislocation density profile is controlled by the local chemical poten-
tial of each species, µs(s). Using the chemical potential as a variable, rather than the
dislocation density profile itself, facilitates calculations. The use of the grand-canonical
ensemble implies that the number of dislocations in the volume can fluctuate. In a dis-
location system, this number can, for example, change due to creation and annihilation
processes. However, the result of the analysis presented here is independent of the details
of the dynamical processes that allow the number of dislocations to fluctuate. In the
context of dislocations, the grand-canonical ensemble was used before by Limkumnerd
and Van der Giessen [73].
The total ‘chemical energy’ of the dislocations is defined as

Ec = −
∑

s∈species

∫
d2sµs(s)ω̂s(s). (2.6)

The minus sign in this expression is a convention, which is also used in for example [14,
Eq. 3.1.8]. Note that both the chemical potential µs(s) and ω̂s(s) are only a function of

the position vector perpendicular to the line direction ξ̂. This follows naturally from the
fact that the dislocations are considered to be straight and infinitely long.
As both the boundary deformation ub and the average dislocation density profile are used
as macroscopic control variables, the resulting partition function does not only give the
free energy of the equilibrium dislocation density profile for a certain boundary loading,
but for all other density profiles as well. Thus, also the free energy of evolving dislocation
density profiles can in principle be determined from the partition function presented here.
The equilibrium dislocation density profile can be obtained by taking the partial derivative
of the free energy with respect to the local chemical potential.
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2.2.3 Upscaling method

To calculate the partition function, the grand-canonical Boltzmann weight is summed
over the space of microstates, see e.g. [14]. The Boltzmann weight of a state is the
exponential of the sum of the elastic energy and the chemical energy of the dislocations,
see Eqs. (2.5) and (2.6). The summation over microstates consists of a summation over
all possible numbers of dislocations on each glide plane. Hence if we denote N ≡ {Ns,js}
the matrix that contains for each species s and glide plane js the number of dislocations,
we sum over all possible N . Furthermore, the summation consists of an integration of the
dislocation position in the glide plane and of a functional integration over all distortion
fields that satisfy the incompatibility condition (2.2) and the macroscopically applied
boundary condition (2.4). The functional integral is denoted by

∫
D[∆]. This yields for

the partition function Z

Z[β, µs(s),ub] =

∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs

)
(2.7)

∫
D[∆]δΩ [∇∧∆− α̂(r)] δ∂Ω [n̂ ∧∆− (n̂×∇)ub]

exp

−β
2

∫
Ω

d3r∆s : C : ∆s + β
∑

s∈species

∫
Ω

d2sµs(s)ω̂s(s)

 ,

where
∑∞
N=0 denotes the summation of all numbers Nsjs from 0 to ∞ and where λth,s

is the thermal wavelength of dislocation species s. It is necessary to introduce a thermal
wavelength to be able to write a discrete summation over particle positions as a continuous
integration over space. The thermal wavelength is introduced analogous to the standard
procedure for the ideal gas, where the phase space is divided in bins with the same energy.
The integration over particle momenta then suggests that the thermal wavelength is
inversely proportional to the square-root of the temperature, see eg. [14].
The first line in Eq. (2.7) is the summation over dislocation positions and the second line
the functional integration over distortion fields that match the incompatibility imposed
by the dislocations. All spatial integrals and delta functionals are defined on the volume
of the body Ω. The dependence on the glide plane density is hidden in the dislocation
density ω̂s(s), as this density is only non-zero at the glide planes.
The delta functional to take into account the incompatibility is more conveniently used
in its Fourier representation, see reference [60] and Eq. (2.6b) therein:

δΩ [∇∧∆− α̂(r)] ∝
∫
D[Ψ] exp

[
−ıβ

∫
Ω

d3rΨ : (∇∧∆− α̂)

]
, (2.8)

where the integration over Ψ is over the space of real fields. The auxiliary field Ψ is
loosely speaking the analogue of the wave vector in an ordinary Fourier transform.
A common technique to calculate the expectation value of microscopic variables is to
add source terms [121, 104]. Hence, to calculate the expectation value of the microscopic
strain field, the integrand in the partition function (2.7) is multiplied by the source-related
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factor

fsrc = exp

[∫
Ω

d3rJ∆(r) : ∆s(r)

]
, (2.9)

where J∆ is the source-term related to ∆. This yields a partition function
Z[β, µs(s),ub,J∆(r)], where for J∆ = 0 the original partition function is found back.
The moments of the strain are then calculated as derivatives of the partition function
with respect to J∆:

〈∆s(r1) . . .∆s(rn)〉 =
1

Z
δnZ

δJ∆(r1) . . . δJ∆(rn)

∣∣∣∣
J∆=0

. (2.10)

Combining Eqs. (2.7), (2.8) and (2.9) yields

Z[β, µs(s),ub,J∆] =

∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs

)
(2.11)∫

D[∆]

∫
D[Ψ]δ∂Ω [n̂ ∧∆− (n̂×∇)ub] exp

[
−ıβ

∫
Ω

d3rΨ : (∇∧∆− α̂)

]

exp

−β
2

∫
Ω

d3r∆s : C : ∆s + β
∑

s∈species

∫
Ω

d2sµs(s)ω̂s(s) +

∫
Ω

d3rJ∆ : ∆s

 .

2.2.4 Performing the integrations

The integrand in Eq. (2.11) is a product of terms that depend either on the elastic
distortion ∆ or on dislocation positions. This split implies that the integrations over ∆
and over dislocation positions can be performed independently.
To split off the effect of loading, i.e. the term dependent on ub, it turns out to be
convenient to perform the shift ∆ = ∆̃ + ∆0, where ∆0 is defined by

∇∧∆0 = 0 (2.12)

∇ · (C : ∆s
0) = 0

n̂ ∧∆0 = n̂ ∧∇ub,

in the bulk and on the boundary respectively. Note that ∆0 is the mechanical equilibrium
solution for a linear elasticity problem without dislocations and with imposed boundary
deformation ub. As C : ∆s

0 is symmetric and divergence free, the field Ψ0 can be defined
as

∇∧Ψ0 = (∇∧Ψ0)
s

= ıC : ∆s
0. (2.13)

Note that Ψ0 is uniquely defined up to a divergence term. As C : ∆s
0 is the stress field

due to the distortion ∆0, Ψ0 is related to the Beltrami stress potential Φ, as used in [12],

namely by ∇
∧
∧ Φ = −ıΨ0(r), where v

∧
∧ A is the cross product between the vector v
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and the second order tensor A on the second index: εjmnvmAin.

After the shift in ∆, n̂ ∧ ∆̃ vanishes at the boundary. Then, partial integration can be
applied at the second term in the exponent containing ∇ ∧ ∆̃. After this, the integral
only depends on ∆̃ and not on its derivative. This implies that the functional integration
over ∆̃ at the boundary and over ∆̃a and ∆̃s in the bulk can be performed independently.
The superscript a stand for the anti-symmetric part of a tensor.
The functional integration over ∆̃ at the boundary gives an irrelevant multiplicative con-
stant. The integration over ∆a in the bulk is proportional to δΩ [(∇∧Ψ)a]. The inte-
gration over ∆s in the bulk can be performed by completing the squares. After this, the
integration over ∆s is purely Gaussian, and can thus be performed straightforwardly. See
A.2 for the details of the calculation. These steps finally yield

∫
D[∆]δ∂Ω [n̂ ∧∆− (n̂×∇)ub]

exp

[
−β

2

∫
Ω

d3r∆s : C : ∆s − ıβ
∫

Ω

d3rΨ : ∇∧∆ +

∫
Ω

d3rJ∆ : ∆s

]
. (2.14)

= CδΩ [(∇∧Ψ)a] exp

[
−β

2

∫
Ω

d3r∆s
0 : C : ∆s

0 +

∫
Ω

d3rJ s
∆ : ∆s

0

]
×

exp

[
−β

2

∫
Ω

d3r
(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s
: S :

(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s]
,

where C is a multiplicative constant that is independent of the loading and dislocation
positions. It can thus be ignored in the rest of the calculations.
The integration over dislocation positions can be performed analogous to Netz [83], see
Sec. 2 therein. When the dislocation density ω̂s(s) and the Nye tensor α̂(r) are explic-
itly written as a sum of delta peaks, the spatial integrations in the exponent are easily
performed. Then, the exponent can be written as a product of terms that depend on one
dislocation coordinate only. After slight reorganization of the terms, the series expansion
of the exponent, exp(x) =

∑∞
n=0

1
n!x

n, can be recognized.
It is convenient to express the result in terms of a field variable that indicates the positions
of the glide planes. To this end, the density of glide planes of species s is a collection of
delta peaks at the glide plane positions. This glide plane density ρgl,s(s) of species s is
defined by

ρgl,s(s) =
∑

js∈glide planes

δ(y − yjs). (2.15)
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Using this, the integration over dislocation positions yields

∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs

)
(2.16)

exp

β ∑
s∈species

∫
Ω

d2sµs(s)ω̂s(s) + ıβ

∫
Ω

d3rα̂(r) : Ψ(r)

 .

= exp

 ∑
s∈ species

1

λth,s

∫
Ω

d2sρgl,s(s) exp

[
β

(
µs(s) + ı(ξ̂bs) :

∫
dzΨ(s, z)

)] .
Details can be found in A.3.
Note that the functional integration over Ψ is invariant under constant shifts in Ψ. There-
fore, the field Ψ can be replaced by Ψ + Ψ0 in both Eq. (2.14) and (2.16). Combining
Eqs. (2.11), (2.14) and (2.16) yields

Z[β, µs(s),ub,J∆] = exp

[
−β

2

∫
Ω

d3r∆s
0 : C : ∆s

0 +

∫
Ω

d3rJ s
∆ : ∆s

0

]
(2.17)∫

D[Ψ]δΩ [(∇∧Ψ)
a
] exp

[
−β
2

∫
Ω

d3r(∇∧Ψ + ıβ−1J∆)s : S : (∇∧Ψ + ıβ−1J∆)s

]

× exp

 ∑
s∈ species

1

λth,s

∫
Ω

d2sρgl,s(s) exp

[
β

(
µs(s) + ı(ξ̂bs) :

∫
dz(Ψ + Ψ0)(s, z)

)] .
The path integral over Ψ cannot be performed analytically. Hence further simplifications
of the partition function will involve approximations. An example of such an approximation
is shown in Sec. 2.4. In the next section, properties of the full partition function are
discussed.

2.3 Interpretation of the Partition Function (2.17)

2.3.1 The terms in the exponent

The free energy of the system can be determined from the partition function by F =
−β lnZ. Hence the exponents in the partition function (2.17) for J∆ = 0 can be
interpreted as different energy contributions.
The term quadratic in ∆0 is the energy contribution from the elastic deformation of the
material due to boundary loading. Namely, the field ∆0 is the elastic strain field one
would find without dislocations, and hence the term quadratic in ∆0 is the linear elastic
strain energy related to the background deformation.
The path integral is similar to the path integral of a system of charges [83], see Eq. (23)
therein, where Ψ plays the role of the elastostatic potential analogous to the electrostatic
potential φ. The term quadratic in (∇∧Ψ)s gives the ‘kinetic contribution’ to the path
integral, which can be interpreted as phonon energy, i.e. the energy of lattice vibrations
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or waves. The last line represents the contribution of the dislocations. Namely, when the
fugacity exp[βµs] would vanish for all species of dislocations, no dislocations would be
present in the material and this contribution vanishes as well.
The term ı(ξ̂bs) :

∫
dzΨ0(s, z) can be interpreted as the potential energy of dislocations

due to loading. Namely the Peach-Koehler force on a dislocation in the distortion field
∆0 is, using Eq. (2.13):

FPK =

∫
dz ((C : ∆0) · b)× ξ̂ = −ı

∫
dz∇× (Ψ0 · b)× ξ̂ (2.18)

= −ı
∫
dzξ̂ · ∇ (Ψ0 · b)−∇

(
ξ̂b : Ψ0

)
= ∇

∫
dzıξ̂b : Ψ0,

where the term proportional to ξ̂ · ∇ vanishes in the integration over z. The Peach-
Koehler force is thus minus the gradient of −ı

∫
dzξ̂b : Ψ0, and hence the latter can be

interpreted as the potential energy of a dislocation in the distortion field ∆0.

2.3.2 Thermodynamic relations in mechanical systems

The effective stiffness and compliance tensor of a mechanical system are related to
fluctuations in the strain. The compliance is the inverse of the stiffness, defined by
C : S = CijklSkli′j′ = δii′δjj′ . It was shown by Parrinello and Rahman [91] that the
variance of the strain in the stress-controlled ensemble is proportional to the compliance
S:

S(r, r′) = β (〈∆(r)∆(r′)〉σ − 〈∆(r)〉σ〈∆(r′)〉σ) . (2.19)

However, this expression cannot be applied straightforwardly to our case presented in
this chapter. In the work of Parrinello and Rahman, the strain can fluctuate in arbitrary
directions in function space, whereas we only consider strain fields that satisfy the incom-
patibility condition (2.2). This results in a relation different from (2.19), as explained in
the following.
For a linear elastic system without dislocations, the statistics of strain fluctuations is
described in the book of Chaikin and Lubenski [14], see Eq. (6.4.23) therein. As no dislo-
cations are present, the distortion field is curl-free according to Eq. (2.2), i.e. ∆ = ∇u,
and therefore, the displacement field u(r) can be used as a variable. The elastic energy is
then 1

2

∫
dq

(2π)3 (qũ(q)) : C : (qũ(−q)), and hence the distribution is Gaussian. Therefore,

the variance of the displacement field in Fourier space is

〈ũj(q)ũj′(−q)〉 − 〈ũj(q)〉〈ũj′(−q)〉 = β−1D−1
jj′ (q), (2.20)

with Djj′(q) ≡ qkqk′Ckjk′j′ . The variance of the elastic distortion that follows from this
expression is

〈∆s
ij(q)∆s

i′j′(−q)〉 − 〈∆s
ij(q)〉〈∆s

i′j′(−q)〉 = (2.21)

=
β−1

4

(
qiqi′D

−1
jj′ (q) + qjqi′D

−1
ij′ (q) + qiqj′D

−1
ji′ (q) + qjqj′D

−1
ii′ (q)

)
.
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In the case of an isotropic solid, this reduces to

〈∆s
ij(q)∆s

i′j′(−q)〉 − 〈∆s
ij(q)〉〈∆s

i′j′(−q)〉 = (2.22)

= β−1 (δilδjn −QilQjn)
1

2µ

(
δll′δnn′ − ν

1− ν
δlnδl′n′

)ls
(δi′l′δj′n′ −Qi′l′Qj′n′) ,

with Q the projection perpendicular to q, i.e. Qil ≡ δil − qiql/q2, and where the su-
perscript “ls” (left-symmetric) indicates the symmetric part with respect to the first two
indices, i.e. Als

iji′j′ = (Aiji′j′ +Ajii′j′)/2.
The compliance of an isotropic solid is Slnl′n′ = (δll′δnn′ − ν

1+ν δlnδl′n′)/2µ. Hence the
variance of the compatible distortion differs from the compliance by (i) multiplication with
a tensor (δilδjn −QilQjn) from left and right, and (ii) a factor ν

1−ν instead of ν
1+ν . This

is different from what was stated in Eq. (2.19) for general distortion fields. However,
it is possible to reconstruct parameters of the stiffness from the variance of compatible
distortions, as shown by Walz and Fuchs [115], see Eq. (91) therein.

2.3.3 Observables

From the partition function, general expressions for observables in the system can be
calculated. In this section, the expectation value of the strain field and the second moment
of strain will be determined from Eqs. (2.10) and (2.17), and the dislocation density and
pair correlation will be determined from derivatives of the free energy with respect to the
local chemical potential.
For the strain field, we find from Eq. (2.10) that

〈∆s(r)〉 = ∆s
0(r)− ıS : (∇∧ 〈Ψ(r)〉)s

. (2.23)

Note that the LHS of Eq. (2.23) is real, as this is an observable. Therefore the RHS should
also be real, which implies that 〈Ψ(r)〉 is purely imaginary. This is shown explicitly in A.4.
In this derivation, it is crucial to realize that the ‘probability density’ used to calculate
〈Ψ(r)〉 is not real-valued, see Eq. (2.11). It is not problematic to find a purely imaginary
expectation value for Ψ, as this field is an auxiliary field, and hence it is not a measurable
quantity.
Note that C : 〈∆s(r)〉, which can be interpreted as the stress field, is divergence free.
Therefore, the expectation value of the distortion satisfies mechanical equilibrium, which
was to be expected.
The variance of the distortion, which follows from Eq. (2.10), is

〈∆s(r)∆s(r′)〉 − 〈∆s(r)〉〈∆s(r′)〉 =
δ

δJ∆(r)

1

Z
δZ

δJ∆(r′)

∣∣∣∣
J∆=0

(2.24)

β−1Slsδ(r, r′)− (S : ∇∧)

(
S : ∇

∧
∧
∧

)
(〈Ψ(r)Ψ(r′)〉 − 〈Ψ(r)〉〈Ψ(r′)〉) .
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For the dislocation density profile, it follows that

〈ω̂s(s)〉 = − δF
δµs(s)

= β
1

Z
δZ

δµs(s)
(2.25)

=
eβµs(s)

λth,s
ρgl,s(s)e

ıβ(ξ̂bs):
∫
dzΨ0(s,z)〈eıβ(ξ̂bs):

∫
dzΨ(s,z)〉 ≡ ps(s)〈eıβ(ξ̂bs):

∫
dzΨ(s,z)〉,

where in the last expression, ps is shorthand notation for

ps = eβµs(s)

λth,s
ρgl,s(s)e

ıβ(ξ̂bs):
∫
dzΨ0(s,z). From expression (2.25), it follows that disloca-

tions indeed only occur on glide planes. The dependence on ub is both in Ψ0 in the
prefactor and in the averaging 〈. . .〉, as the partition function depends on Ψ0 as well.
For the two body dislocation density, we find that

〈ωs(s)ωs′(s′)〉 = β−2 1

Z
δ2Z

δµs(s)δµs′(s′)
(2.26)

= δss′δ(s− s′)〈ωs(s)〉+ ps(s)ps′(s
′)〈eıβ(ξ̂bs):

∫
dzΨ(s,z)eıβ(ξ̂bs′ ):

∫
dzΨ(s′,z)〉.

The first term is the autocorrelation of a dislocation with itself. The second term describes
the influence of dislocation-dislocation interactions. This term is the density squared times
the pair correlation function of dislocations.

2.3.4 Dislocations as interacting particles

In Sec. 2.2.1, it was stated that, in infinite space and without loading, the partition
function obtained here could also have been constructed using an interaction potential.
This implies that a microscopic description that uses the interaction potential between
dislocations yields the same macroscopic behaviour as the microscopic description used
here, i.e. a description with the distortion field and only the elastic energy, although the
latter contains fluctuations of the lattice as well.
In this section, this is shown explicitly by rewriting Eq. (2.17) to the grand-canonical
partition function for particles that interact with the dislocation interaction potential in
[49].
The first step is to expand Eq. (2.17) for J∆ = 0 in powers of λ−1

th,s. This yields an
infinite sum of Gaussian path integrals, see Eq. (A.11). The second step is to perform all
path integrations over Ψ. Up to a multiplicative constant, this yields

Z[β, µs(s)] =
∏

s∈ species

∞∑
Ns=0

1

Ns!

Ns∏
j=1

(∫
d2sj

ρgl,s(sj)

λth,s
eβ(µs(sj)+ı(ξ̂bs):

∫
dzΨ0(sj ,z))

)
(2.27)

exp

−β
2

∑
s,s′∈ species

Ns∑
j=1

Ns′∑
j′=1

(ξ̂bs) :

(∫
dzdz′G0((sj , z)− (s′j′ , z

′))

)
: (ξ̂bs′)

 ,
where the fourth order tensor G0 must satisfy the condition

Ψ(r) =

∫
d3r′(∇r′ ∧Ψ(r′))s : S : (∇r′ ∧ G0(r′, r))s, (2.28)
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where ∇r′ denotes the derivative with respect to r′. Details on G0(r′, r) can be found

in A.5. It is shown in A.6 that (ξ̂bs) :
(∫
dzdz′G0((sj , z)− (s′j′ , z

′))
)

: (ξ̂bs′) is the
conventional interaction potential between dislocations of species s and s′, as in the work
of Hirth and Lothe [49]. Hence Eq. (2.27) is the grand-canonical partition function of
particles in 2D that interact via the dislocation interaction potential.

2.3.5 Effect of the finite medium

Within DDD calculations, the effect of the finite medium is twofold: corrections to the
infinite-space solutions of the strain field should be added to account for the finite vol-
ume, and the loading is applied only at the boundary, but influences the behaviour of
dislocations inside the material. The starting level of our calculations was similar to the
DDD description, and therefore the two effects of the finite volume in these calculations
can also be recognized in the partition function (2.17) obtained here.
First, all spatial integrals in Eq. (2.17) are over the finite volume Ω. This implies that
the integration in the defining Eq. (2.28) for G0 is over the volume Ω as well. Therefore,
the resulting Green’s function will depend on this volume Ω and will thus differ from the
infinite space solution derived in A.6.
Second, the field Ψ0 depends on the boundary deformation ub, see Eq. (2.13). This
field shows up in a bulk integral in the exponential term in the partition function (2.17).
This implies that the effect of applied loading spans over the whole volume and influences
dislocations deep in the bulk as well.

2.3.6 Coupling parameters

The dominant behaviour of the system is identified by determining the typical values of
the coupling parameters. First, the coupling parameters are determined in infinite space
and without deformation of the boundary, i.e. for ub = 0 and hence Ψ0 = 0. Now, the
potential is written as Ψ = ψΨ̆ and all lengths are scaled as r = ζr̆. This also implies

that D[Ψ] ∝ D[Ψ̆] and δΩ [(∇∧Ψ)
a
] ∝ δΩ

[(
∇̆ ∧ Ψ̆

)a]
. The compliance is written as

S = c−1S̆, with S̆ a dimensionless tensor. The Burgers vector is written as bs = bb̂s
The volume integration in dimensionless variables reads

∫
d3r → ζ3

∫
d3r̆ = ζ3

∫
dx̆dy̆

∫ L/ζ

0

dz̆. (2.29)

The macroscopic control variables of the system, the local chemical potential µs(s) and
also the temperature, do not depend on the z-coordinate. Therefore, it is expected that
the z̆-integral is proportional to L/ζ, and hence that ζ

L

∫
d3r̆ is independent of the system

parameters.

Furthermore, the local dimensionless fugacity is defined by f̆s(s̆) ≡ ζ2

λth,s
ρgl,s(ζs̆)e

βµs(ζs̆).
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This yields for the partition function (2.17):

Z[β, f̆s(s̆)] ∝
∫
D[Ψ̆]δΩ

[(
∇̆ ∧ Ψ̆

)a]
exp

[
−βLψ

2

c

1

2

ζ

L

∫
d3r̆(∇̆ ∧ Ψ̆)s : S̆ : (∇̆ ∧ Ψ̆)s

]

× exp

 ∑
s∈ species

∫
d2s̆f̆s(s̆) exp

[
βbLψ ı(ξ̂b̂s) :

ζ

L

∫
dz̆Ψ̆(s̆, z̆)

] . (2.30)

It follows from this equation that there are three dimensionless groups in the system,
namely βLψ2/c, βbLψ and f̆(s̆). The typical value of the stiffness c is 2µ. The potential
scale ψ can now be chosen such that one of these groups is 1. To this end, we choose
ψ = (βbL)−1, and obtain the dimensionless coupling parameter Ξ defined by

Ξ ≡ β2µb2L. (2.31)

The coupling parameter Ξ can be interpreted as the interaction energy over the thermal
energy. Namely, µb2L is the prefactor of the interaction potential, see Eq. (A.19) and
β ≡ 1/kBT is one over the thermal energy. The partition function in terms of Ξ reads

Z[Ξ, f̆s(s̆)] ∝
∫
D[Ψ̆]δΩ

[(
∇̆ ∧ Ψ̆

)a]
exp

[
− 1

Ξ

1

2

ζ

L

∫
d3r̆(∇̆ ∧ Ψ̆)s : S̆ : (∇̆ ∧ Ψ̆)s

+
∑

s∈ species

∫
d2s̆f̆s(s̆) exp

[
ı(ξ̂b̂s) :

ζ

L

∫
dz̆Ψ̆(s̆, z̆)

] . (2.32)

Both coupling parameters Ξ and f̆s(s̆) depend on the temperature. The temperature
dependence of the former is easy, as Ξ ∝ β. For the latter, it is used that the thermal
wavelength behaves as λth,s ∝ β1/2 and that the glide plane density is independent
of temperature. Furthermore, the combination βµs(s) is considered to be independent
of the temperature, for the following reason. As can be seen in the partition function
(2.17), while the parameter to control the average elastic energy Eelas is given by β,
the parameter to control the average dislocation density profile is −βµs(s). Thus from
the perspective of statistical mechanics, −βµs(s) is a more natural quantity than µs(s).
This also surfaces in the context of thermodynamic potentials. While the microcanonical
partition function is related to the entropy, (generalized) canonical ensembles are related
to the Legendre-transforms of the entropy. From the differential of the thermodynamic
potential entropy

dS = βdE −
∫
d2sβµs(s)dωs(s) + . . . , (2.33)

slightly adapted from the equilibrium form, it is eminent that the pairs of conjugate vari-
ables are given by (β,E), and (−βµs(s), ωs(s)). This again underlines that −βµs(s)
should in our context be considered an independent variable. The symbol µs(s) is nev-
ertheless used throughout this chapter as it is a well-established and physically intuitive
quantity when discussing the control of populations of species. In summary, then, this
implies that the fugacity is proportional to the square-root of temperature; fs ∝ β−1/2,
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and hence that
√

Ξf̆ is independent of temperature.
The coupling parameter Ξ can be calculated from experimental data. For aluminium at
room temperature one finds Ξ = 102 × L[Å], where µ = 26 GPa, b = 2.9 Å (see [101]),
kBT = 4× 10−21 J at room temperature (298 K) and L[Å] is the persistence length of a
dislocation in Ångstrom. Although this length is hard to obtain experimentally, it can be
safely assumed that the dislocation length should be much larger than the Burgers vector,
i.e. L� b = 2.9 Å, as straight dislocations are modeled. It can thus be concluded that
Ξ� 1. This indicates that dislocations in aluminium at room temperature are in the low
temperature regime, where energy minimization determines the equilibrium behaviour,
rather then entropy maximization. Furthermore, this implies that the path integral in Eq.
(2.32) cannot be replaced by its maximum value, which is a saddle point approximation,
but that all fields contribute to the integral.
Note that the length scale ζ does not appear in the coupling parameter Ξ. Hence ζ can be
chosen such that the fugacity f̆s(s̆) is of order 1. This indicates that there is no intrinsic
length scale in the system other than the density, which was to be expected. Namely, the
bare interaction potential between dislocations is logarithmic, and has thus no intrinsic
length scale either.
Now, a system under loading is considered, i.e. where ub 6= 0 and thus Ψ0 6= 0. A length
scale can be associated with the potential Ψ0. Namely, from Eq. (2.13), it can be seen
that, with χ the typical length scale over which Ψ0 varies and |(n̂ × ∇)ub| the typical
value of the surface derivative of the imposed boundary displacement, one finds

1

2µ
χ−1ψ = |(n̂×∇)ub|; χ =

1

β2µbL|(n̂×∇)ub|
=

b

Ξ|(n̂×∇)ub|
, (2.34)

where |(n̂×∇)ub| is the typical elastic strain applied at the boundary.
The length χ can be interpreted as the length over which the energy of a dislocation
varies with kBT due to the Peach Koehler force resulting from external loading. Namely,
2µ|(n̂ × ∇)ub| is the typical value for the stress, and the Peach-Koehler force is linear
in b and L, so 2µ|(n̂ × ∇)ub|bLχ is the work done by the Peach-Koehler force on a
dislocation over distance χ. This is analogous to the Gouy-Chapman length for charges
in water.
In thermodynamic equilibrium, the thermal extension of a pile-up of dislocations against
a dislocation wall is expected to be of the order of χ, as further extensions cost more than
a few kBT in energy. As the coupling constant Ξ is large for metals, it is to be expected
for moderate loading (i.e. |(n̂×∇)ub| ≈ 0.1%), that χ . b. On this small length scale,
strong coupling effects between dislocations will probably dominate the structure of the
pile-up, rather than thermal effects. Moreover, linear elasticity, which was used to derive
the governing equations, is not valid on such small length scales.

2.4 Case study

In this section it is demonstrated how one can make use of the partition function obtained
in Eq. (2.17). It is shown that if the coupling parameter Ξ (and hence the temperature)
is either very low or very high, that the partition function can be approximated by a single
Gaussian.
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For notational convenience the partition function in Eq. (2.17) is slightly rewritten. First,
the local fugacity of each species s is defined by

fs(s) ≡
ρgl,s(s)

λth,s
exp

[
β(µs(s) + ı

∫
dzξ̂bs : Ψ0(s, z))

]
. (2.35)

Second, with the definition of the bare Green’s function G0 in Eq. (2.28), the quadratic
term in Ψ in the partition function (2.17) can be rewritten as

∫
d3rd3r′Ψ(r) :

G−1
0 (r, r′) : Ψ(r′).

Using the above notation in the partition function (2.17) reads

Z[β, fs(s)] =

∫
D[Ψ] exp

[
−β
2

∫
d3rd3r′Ψ(r) : G−1

0 (r − r′) : Ψ(r′)+ (2.36)

+
∑

s∈species

∫
d2sfs(s) exp

[
ıβ(ξ̂b) :

∫
dzΨ(s, z)

] ≡ ∫ D[Ψ]R[Ψ],

where the last equality defines the functional R[Ψ].

2.4.1 The effective Green’s function

The above path-integral (2.36) can not be performed exactly. However, it was shown
in A.7 that for the scalar analogue of this problem, a Gaussian approximation of the
integrand is accurate for low and high coupling constants Ξ, but not for intermediate Ξ.
Therefore, it is assumed that R[Ψ] can be approximated by a Gaussian functional RG[Ψ].
Then, the path integrations can be performed.
A single Gaussian is the simplest approximation that allows one to evaluate the functional
integral in Eq. (2.17). In literature, more advanced approximations, such as the Villain
approximation [61], are available. These are more accurate, but more computationally
expensive as well. Therefore, only the simplest approximation with a single Gaussian is
studied here to show the applicability of the obtained partition function.
The Gaussian probability density RG[Ψ] used here is defined by

ZG[β, f ] ≡
∫
D[Ψ]RG[Ψ] =

∫
D[Ψ] exp

[
−β
2

∫
d3rd3r′ (Ψ(r) + ıB(r)) (2.37)

: G−1(r − r′) : (Ψ(r′) + ıB(r′)) + γ
]

= exp

[
γ − 1

2
Tr
[
ln
(
βG−1

)]]
,

where γ is a scalar, B(r) is a second order tensor and the Green’s function G is a fourth
order tensor. For the last equality, the Gaussian path integral was performed as for exam-
ple in [104]. The trace is over both discrete and continuous indices, and the logarithm is
the logarithm of a tensor. This relation holds for all positive definite Hermitian matrices.
The parameters G, B and γ can now be chosen such thatRG[Ψ] approximatesR[Ψ] best.
As the Gaussian approximation is not necessarily accurate for all values of the coupling
parameters, the accuracy of the Gaussian approximation should be assessed afterwards.



Collective behaviour of dislocations in a finite medium 27

The Green’s function G, the tensor B and the scalar γ are chosen such that both distri-
butions have the same normalization and produce the same first and second moment:∫

D[Ψ]R[Ψ] =

∫
D[Ψ]RG[Ψ] (2.38)

〈Ψ(r)〉G = 〈Ψ(r)〉
〈Ψ(r)Ψ(r′)〉G = 〈Ψ(r)Ψ(r′)〉.

Physically, this means that R[Ψ] and RG[Ψ] produce the same first and second moment
of distortion, see Eqs. (2.23) and (2.24).
To evaluate the integrations in (2.38), it is assumed that when the Gaussian approxima-
tion is good, that either RG[Ψ] is small or that the exponents of RG[Ψ] and R[Ψ] are
almost equal. Therefore, a first order Taylor approximation in the difference between the
exponents of R[Ψ] and RG[Ψ] can be made, which reads

RG[Ψ]−R[Ψ] ≈ −RG[Ψ]

(
−β

2

∫
d3rd3r′Ψ(r) : G−1

0 (r, r′) : Ψ(r′) (2.39)

+
β

2

∫
d3rd3r′ (Ψ(r) + ıB(r)) : G−1(r − r′) : (Ψ(r′) + ıB(r′))− γ

+
∑

s∈species

∫
d2sfs(s) exp

[
ıβ(ξ̂b) :

∫
dzΨ(s, z)

] .

The accuracy of this approximation will be checked afterwards. With this approximation,
the functional integrals Eq. (2.38) can be performed. This yields three equations from
which governing equations for the parameters γ, B and G can be determined (see A.8
for details):∫

d3r′′B(r′′) : G−1
0 (r′′, r) = −

∑
s∈species

fs(r2D)ξ̂bs· (2.40)

· exp

[
β

∫
dzB(r2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs : G(r2D, z; r2D, z

′) : ξ̂bs

]
G−1(r − r′) = G−1

0 (r − r′) +
∑

s∈species

βfs(r2D)δ(r2D − r′2D)ξ̂bξ̂b·

· exp

[
β

∫
dzB(r2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs : G(r2D, z; r2D, z

′) : ξ̂bs

]
γ =

β

2

∫
d3rd3r′B(r) : G−1

0 (r, r′) : B(r′)− 1

2
Tr
[
G :
(
G−1

0 − G−1
)]

+

+
∑

s∈species

∫
d2sfs(s) exp

[
β

∫
dzB(s, z) : ξ̂b− β

2

∫
dzdz′ξ̂bs : G(s, z; s, z′) : ξ̂bs

]
.

In A.8, the quality of the approximations was evaluated for the special case of two species
of dislocations with opposite Burgers vector and spatially constant fugacity f .
First, the accuracy of Eq. (2.39) is assessed by expanding up to the second order in the dif-
ference between the exponents in R[Ψ] and RG[Ψ], and considering whether this affects
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the Green’s function G. It turns out that in the low temperature limit Ξ→∞, expanding
up to second order hardly changes the Green’s function G. Therefore, the approximation
in Eq. (2.39) is considered to be accurate enough in this regime.
Second, the validity of the Gaussian approximation was asessed by estimating the differ-
ence in the charge correlator that follows from R[Ψ] and RG[Ψ] using Eq. (2.39). This
difference turned out to be negligible in the low temperature regime, and therefore, the
Gaussian approximation is considered to be accurate as well.

2.4.2 Observables in a system of Statistically Stored Dislocations
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Figure 2.3: In these figures, (〈ωα(s)ωα′(s′)〉G − ωδαα′δ(s, s′)) /ω2 is plotted for two
dislocations with equal Burgers vector, see Eq. (2.43) for the explicit expression. In Fig.

2.3(a), a screw dislocation with parallel Burgers and line vector is considered; b̂ = ξ̂ = ẑ.
In Fig. 2.3(b), an edge dislocation with perpendicular Burgers and line vector is considered;

ξ̂ = ẑ and b̂ = x̂. The parameters used are Ξ = 10 and m = 0.3.

Using the Gaussian approximation, the expectation values of the observables in this system
can be determined. In this section, the observables will be determined for so-called
Statistically Stored Dislocations in a system without mechanical loading. This is done
by considering only two species of dislocations with opposite Burgers vector ±b and a
fugacity that is equal for both species and on each glide plane. Hence the fugacity can
be written as fs(s) = f1ρgl(s). By this means, it is expected that the dislocation density
of both species is equal, and hence that the net dislocation content of the system is zero.
In this special case, the sine-Gordon model is recovered.
The governing Eqs. (2.40) for B and G read for this special case∫

d3r′′B(r′′) : G−1
0 (r′′, r) = −2f1ρgl(r2D)ξ̂b (2.41)

exp

[
−β

2

∫
dzdz′ξ̂b : G(r2D, z; r2D, z

′) : ξ̂b

]
sin

[
β

∫
dzB(r2D, z) : ξ̂b

]
G−1(r − r′) = G−1

0 (r − r′) + 2βf1ρgl(r2D)δ(r2D − r′2D)ξ̂bξ̂b·

· exp

[
−β

2

∫
dzdz′ξ̂b : G(r2D, z; r2D, z

′) : ξ̂b

]
cos

[
β

∫
dzB(r2D, z) : ξ̂b

]
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The solution of Eq. (2.40) in the low temperature limit is B = 0 and G = G0, see A.8
for details.
The expectation values calculated from RG[Ψ] instead of R[Ψ] are denoted by 〈. . .〉G.
First, the dislocation density is determined from Eq. (2.23)

〈ω±(s)〉G = f1ρgl(s)

〈
exp

[
±ıβ(ξb) :

∫
dzΨ(s, z)

]〉
G

(2.42)

= f1ρgl(s) exp

[
−β

2

∫
dzdz′ξ̂b : G0(0, z − z′) : ξ̂b

]
≡ ωρgl(s)

The average dislocation density of both species of dislocations is thus equal and spatially
constant in the glide planes, which was to be expected. This implies that the net Burgers
vector of the system vanishes. The above equation also implies that for low temperatures,
and hence large β, the density of dislocations will be low.
Second, the two body dislocation density is calculated from the general expression in Eq.
(2.26);

〈ωα(s)ωα′(s′)〉G = ωρgl(s)δαα′δ(s, s′)+ (2.43)

+ ω2ρgl(s)ρgl(s
′) exp

[
−βαα′ξ̂b :

∫
dzdz′G0(s− s′, z − z′) : ξ̂b

]
.

where α, α′ = ±1 is the sign of the Burgers vector.
As explained in Sec. 2.3.3, the first term is the autocorrelation of a dislocation with
itself. The second term is the pair correlation of dislocations. The exponential term is
the Boltzmann weight of a dislocation pair that interacts with the effective interaction
potential ξ̂b :

∫
dzdz′G(s−s′, z−z′) : ξ̂b. Note that in G, the effect of other dislocations

via many body correlations is included as well.
We now study the pair correlation of dislocations in details. The second contribution in
the two body dislocation density (2.43) in terms of the fugacity reads

〈ωα(s)ωα′(s′)〉G − ωρgl(s)δαα′δ(s, s′) = (2.44)

= f2
1 ρgl(s)ρgl(s

′) exp

[
−βξ̂b :

∫
dzdz′ (G0(0, z − z′) + αα′G0(s− s′, z − z′)) : ξ̂b

]
.

As G0(s, z− z′) is a positive, monotonically decaying function of s (see A.6), this decays
exponentially for large values of the coupling parameter Ξ. Hence it is only non-zero when
the exponent vanishes, which is for α = −α′ and s = s′. This implies that it is thus likely
to find a dislocation with opposite Burgers vector close to each dislocation. This pairing
of dislocations was also found numerically by Vinogradov [113].
The exact position of two dislocations in a pair cannot be predicted using this theory. In
this region, the core energy of dislocations plays an important role. But at such small
length scales, linear elasticity is not valid. As linear elasticity was used to derive the
partition function in this chapter, no results can be derived for these small length scales.
In Fig. 2.3, the second term of Eq. (2.43) is plotted for two dislocations with equal
Burgers vector. The parameters m and Ξ are chosen such that the plot is not completely
dominated by the behaviour close to the origin. It can be seen that it is highly unlikely
to find two equal screw dislocations with equal Burgers vector close to each other, and



30 Chapter 2

that it is likely to find two equal edge dislocations above each other. This is in good
agreement with what was found by Groma [37].
Third, the macroscopic variance of the distortion can be determined from Eq. (2.24). Note
that from the Gaussian distribution in Eq. (2.37) it follows that 〈Ψ(r)〉 = −ıB(r) ≈ 0
and 〈Ψ(r)Ψ(r′)〉 = β−1G(r − r′) ≈ β−1G0(r − r′) in the low temperature limit. This
yields

〈∆s
ij(q)∆s

i′j′(q)〉 − 〈∆s
ij(q)〉〈∆s

i′j′(q)〉 = β−1Sls − (S : q∧)

(
S : q

∧
∧
∧

)
β−1G0(q)

(2.45)

= (δilδjn −QilQjn)
1

2µ

(
δll′δnn′ − ν

1− ν
δlnδl′n′

)ls
(δi′l′δj′n′ −Qi′l′Qj′n′) ,

see A.9 for details. This expression is the same as what would follow for an elasticity
problem with the same microscopic stiffness tensor but without dislocations, see Eq.
(2.22). Hence the stiffness does not change due to the presence of dislocations in the low
temperature limit.
We can thus conclude that the Gaussian approximation of the full partition function is a
useful tool to obtain explicit expressions for the observables of interest. In this section, it
was shown that for metals at room temperature, dislocations will form strongly bound pairs
that do not affect the compliance. It was also shown that the Gaussian approximation is
a good approximation away from the phase transition between low and high temperature
behaviour.

2.5 Summary and discussion

In this chapter, the partition function of a grand-canonical ensemble of dislocations in a
finite medium was derived. The microscopic state space consisted of discrete dislocations
embedded in an elastic continuum. The distortion field of the background is matches the
incompatibility imposed by the discrete dislocations. Mechanical boundary loading was
applied by imposing the deformation of the boundary. The grand-canonical Boltzmann
weight was integrated over the discrete dislocations and the elastic distortion fields to
obtain the partition function as a functional of the temperature, the local chemical poten-
tial and the boundary deformation, see Eq. (2.17) for the result. This obtained partition
function shows strong similarity with the widely studied sine-Gordon model.
The new aspects of the partition function, Eq. (2.17), derived in this chapter are:

• no a priori assumptions on temperature regime or specific dislocation arrangements;

• the incorporation of microscopic properties that have proven to be important for
the mechanics of dislocations, namely the finite system size, the presence of glide
planes, mechanical boundary loading and the tensorial character of the Nye tensor;

• the possibility to use a simple, Gaussian approximation to obtain explicitly the
dominant behaviour of dislocations in the low temperature regime.
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From the partition function, general expressions for the expectation value of the disloca-
tion density and the elastic distortion field were derived. Likewise, the dislocation pair
correlation and the compliance were calculated from derivatives of the partition function.
Besides that, the relevant coupling parameter Ξ ≡ β2µLb2 was identified from a scaling
analysis on the partition function. Numerical values for aluminium at room temperature
suggest that Ξ > 100, which indicates that dislocations in aluminium are in the low-
temperature regime. The same is expected to hold for other metals.
As the system is considered at finite temperature, fluctuations in the energy are accounted
for. In principle, the energy can be split in a contribution dependent on the dislocation
configuration and a contribution of small fluctuations around this configuration. In this
work, the distinction between these contributions is not made, and consequently, the tem-
perature associated with both energy contributions is the same and equal to the physical
temperature.
However, it is not always obvious that both energy contributions should be treated equally.
Namely, the relaxation of the small fluctuations can be much faster than the relaxation
of the configuration. In that case, the dislocations can be frozen in a glassy state. The
small fluctuations can then be described by a Boltzmann distribution characterized by
the physical temperature, while a second, phenomenological temperature is needed to de-
scribe the configuration. More literature on phenomenological temperatures can be found
in e.g. [10][94].
Often, dislocation systems are studied at zero temperature, where the driving forces for
dislocation dynamics do not have a random, fluctuating contribution. This is justified by
the value of the coupling parameter Ξ obtained in this contribution.
Our choice to treat the system nevertheless at finite temperature is in our opinion merely
a matter of taste. Namely, the limit T → 0 could be taken afterwards, which should yield
the same result. The advantage of an analysis at finite temperature is twofold: first, the
effect of a small-but-finite temperature or a finite phenomenological temperature could be
derived; and second, the calculation at finite temperature can be easier as the minimum
energy state does not have to be known exactly.
The main obstacle to use the partition function in Eq. (2.17) is the non-Gaussian func-
tional integral over the auxiliary field Ψ that can not be performed. As shown in Sec.
2.4, in the low temperature regime approximating the functional integral by a Gaussian
is a suitable approximation that allows one to determine accurate, explicit expressions for
the observables. From the Gaussian approximation, it was concluded that dislocations
in the low temperature regime combine into strongly bound pairs of dislocations with
opposite Burgers vector, as was also found by Vinogradov [113]. Moreover, the presence
of dislocations does not influence the compliance.
Future research should therefore focus on finding approximation methods that are valid
for a wider class of cases. Possible approximation techniques can be obtained from the
similarity between the partition function found in this chapter and that of other systems
with Coulombic interactions, for example ions in water, as obtained by Netz [83], charged
plasmas, see [114] and the sine-Gordon model. This suggests that widely studied approx-
imation techniques for electrostatics can be applicable to describe systems of dislocations
as well. Examples of such techniques are density functional theory [54], renormalization
group theory for the sine-Gordon model [116, 1], a saddle point approximation for the
partition function which yields Poisson-Boltzmann theory, see [95], and the Villain ap-
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proximation, see [61].
The difference between our partition function and electrostatics is that our field Ψ is a
tensor field instead of a scalar electric potential field. This difference originates from the
vector character of the ‘charge’ of a dislocation, namely the Burgers vector b, as opposed
to scalar values for the electric charge. Moreover, dislocations are coupled to the elastic
distortion field with a rotation as in Eq. (2.2), instead of the divergence-type coupling
between charges and the electric field in Gauss’ law. The anisotropy of the interaction
potential between dislocations, as determined in Eq. A.19, is a direct consequence of the
vectorial character of the dislocation ‘charge’. However, we expect that approximation
techniques used for electrostatics can be modified to make them applicable for tensor
fields as well.
The free energy expression of dislocations can be used as an ingredient to formulate the
dynamics of the system. Examples of free energy-based dynamic frameworks are the
strain gradient plasticity model of Gurtin [42], Ginzburg-Landau theory [108], the bracket
formalism of Beris and Edwards [8] and the GENERIC framework [31], [89]. In these,
derivatives of the free energy are used as driving forces for dislocation dynamics.
Besides that, explicit dislocation pair correlations can be determined from the partition
function obtained here. These can be used as a closure for the BBGKY hierarchy of dy-
namical dislocation equations. The pair correlation obtained here for statistically stored
dislocations can already be used as a reference case to check whether the proposed closure
has the correct limiting behaviour.
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Abstract

The dynamics of large amounts of dislocations is the governing mechanism in metal
plasticity. The free energy of a continuous dislocation density profile plays a crucial role
in the description of the dynamics of dislocations, as free energy derivatives act as the
driving forces of dislocation dynamics.
In this contribution, an explicit expression for the free energy of straight and parallel
dislocations with different Burgers vectors is derived. The free energy is determined using
systematic coarse-graining techniques from statistical mechanics. The starting point of
the derivation is the grand-canonical partition function derived in an earlier work, in which
we accounted for the finite system size, discrete glide planes and multiple slip systems.
In this chapter, the explicit free energy functional of the dislocation density is calculated
and has, to the best of our knowledge, not been derived before in the present form.
The free energy consists of a mean-field elastic contribution and a local defect energy,
that can be split into a statistical and a many-body contribution. These depend on
the density of positive and negative dislocations on each slip system separately, instead
of GND-based quantities only. Consequently, a crystal plasticity model based on the
here obtained free energy, should account for both statistically stored and geometrically
necessary dislocations.
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3.1 Introduction

The governing mechanism of metal plasticity is the dynamics of dislocations, which are
line-like defects in the crystal structure. Crystals can contain up to 109 dislocation lines
intersecting a square millimeter. Therefore, the collective behavior of many dislocations
together determines the mechanical properties associated with crystal plasticity.
A number of dynamical frameworks have been developed to describe the dynamics of dislo-
cation densities, in which the free energy plays a key role, see e.g. [32, 39, 41, 42, 43, 44].
Moreover, stationary states have been derived from the free energy, see eg. [35, 99, 29].
To obtain the equilibrium behavior and driving forces for dislocations on a macroscopic
scale, it is thus necessary to have a free energy expression that results from coarse-
graining the microscopic description of dislocations. Furthermore, a derivation from the
microscopic level could help in choosing proper macroscopic variables for a dynamical
model.
In the literature, several attempts have been made to retrieve the free energy of dis-
locations. First, different phenomenological assumptions are made to match different
macroscopic plasticity models, see eg. [21, 7, 105, 62, 4]. These free energy expressions
are all local or weakly non-local in terms of the dislocation densities.
Second, straight dislocations were considered as an example of two-dimensional Coulomb
particles that interact with a logarithmic interaction potential, see e.g. the work of Koster-
litz an Thouless [63, 81, 82], Mizushima [78], Ninomiya [84] and Yamamoto [118]. In
these papers, the free energy of systems with an homogeneous dislocation density was
derived. This system exhibits a dislocation mediated melting transition. Below the critical
temperature, dislocations occur in tightly bound pairs, but above this temperature, dislo-
cation pairs tend to unbind, and thereby destroy the long-range order in a two-dimensional
crystal. However, the anisotropic character of the dislocation interaction was not taken
into account in these works, and the effect of mechanical loading was not considered.
Third, the free energy of dislocations was derived by Groma and coworkers using a mean-
field assumption in the coarse-graining [33, 35, 36]. As the physical temperature of the
system is almost zero relative to the other characteristic energy scales at hand, a second,
phenomenological temperature is introduced to obtain a non-vanishing statistical contri-
bution, which results in screening.
Fourth, the equilibrium dislocation profile of a single slip system of dislocations was deter-
mined by means of Γ-convergence of the energy expression, see [99, 29]. In this work, it
was assumed that the dislocations are arranged in wall structures on equally spaced glide
planes and that the system is at zero temperature.
Despite all these efforts, no explicit free energy expression has been proposed yet, that is
derived from the microscopic properties of the system, and thus includes the anisotropy
of the dislocation interaction, the finite system size and the presence of glide planes, and
which is valid in different temperature regimes. The aim of this chapter is to obtain such
a free energy expression. In this contribution, we limit ourselves to straight dislocations
with parallel line orientation.
The free energy is derived by systematically coarse-graining the microscopic description of
dislocations as used in Discrete Dislocation Dynamics (DDD) simulations. In Chap. 2, we
derived the partition function of dislocations for a grand-canonical ensemble of straight
and parallel dislocations. In this contribution, we derive the Helmholtz free energy of
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dislocations from this by means of a Legendre transform. The obtained free energy con-
tains elastic energy and statistical terms, as found earlier by Groma [35], but yields also a
many-body contribution beyond these mean-field terms. It is, to our best knowledge, for
the first time that the free energy was derived by coarse-graining only.
The resulting free energy depends on densities of positive and negative dislocations sepa-
rately for each slip system. This implies that the defect forces in crystal plasticity models
(see e.g. [43]) cannot be determined in terms of GND densities alone.
The chapter is organized as follows. In Sec. 4.3, we discuss the microscopic and macro-
scopic descriptions of the system. Then, we briefly outline the derivation of the grand-
canonical partition function and perform a Legendre transform to obtain the canonical
free energy in Eq. (3.22). In Sec. 3.3, we discuss the interpretation and limitations of
the obtained free energy expression. In Sec. 3.4, three special cases are considered in
which the free energy expression simplifies considerably, namely a local density approxi-
mation (LDA), the zero temperature limit, and equally spaced glide planes. In Sec. 3.5,
the connection is made between this work and current dislocation-based crystal plasticity
models.

3.2 Derivation

3.2.1 Mathematical Preliminaries

Figure 3.1: Sketch of the coordinate system used in this chapter.

In this chapter, both two-dimensional and three-dimensional position vectors are used.
To avoid confusion, the two-dimensional position vector is denoted by s and consists of
an x and a y-coordinate. Integration over this vector is denoted by

∫
dA. On the other

hand, the three-dimensional position vector is denoted by r and consists of an x, y and
z-coordinate. Integration over the 3D position vector is denoted by

∫
dV .

The line direction ξ̂ of the straight and parallel dislocations is parallel to the ẑ-direction,
and the position in this direction is denoted by z. Thus, the vector r can be expressed in
s and z by r = s+ zξ̂, and analogously, the integration over 3D position vectors can be
expressed as

∫
dV =

∫
dA
∫
dz. See Fig. 3.1 for a sketch of the coordinate system.
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In this work, the cross product on a tensor is interpreted as the cross product on the first
index, so the cross product between vector v and second rank tensor A is (v ×A)ij =
εiklvkAlj , where ε is the anti-symmetric Levi-Cività tensor. A contraction of a second
rank tensor A and a fourth rank tensor B is defined by (A : B)kl = AijBijkl, and the
trace of a fourth rank tensor B is Tr [B] = Bijij . The symmetric and anti-symmetric parts
of a second rank tensor are indicated with a superscript s and a; (As,a)ij = (Aij±Aji)/2.
The ⊗-symbol is used to indicate a dyadic product.
In this work, round brackets indicate a function, and square brackets indicate a functional.
Furthermore, Fourier transforms are used multiple times in this contribution. We use the
non-unitarian convention here, and hence the 2D Fourier transform is defined by

F2D[f(s)](q2D) = f̃(q2D) =

∫
dAf(s)e−ıq2D·s, (3.1)

where q2D is the 2D wave-vector. Consequently, the inverse 2D Fourier transform is
defined by

F−1
2D [f̃(q2D)](s) =

∫
d2q2D

(2π)2
f̃(q2D)eıq2D·s. (3.2)

The Fourier transform in 3D is defined analogously.

3.2.2 Multiscale description of the problem

(a) (b) (c)

Figure 3.2: In Fig. 3.2(a), the microstate is depicted. The microstate is characterized by
the positions of discrete dislocations in an elastic body Ω subjected to a boundary defor-
mation ub. In Fig. 3.2(b), the macrostate is depicted. The macrostate is characterized
by the density of dislocations in the same elastic body Ω, subjected to the same boundary
deformation ub. The density of dislocations can be defined either on discrete glide planes
only, see e.g. Fig. 3.2(b), or on the whole space, see e.g. Fig. 3.2(c). The body is held
at a fixed temperature T .

Microscale The microscopic description of our system is closely related to the descrip-
tion of crystals with dislocations used in DDD simulations, see e.g. [110].
A linear elastic body is considered. The volume of the body is denoted by Ω, and the
elastic properties of the matrix material are governed by the fourth order stiffness tensor C
that relates the stress to the strain. For convenience, the fourth order compliance tensor
S is also defined as the inverse of the stiffness tensor: CijklSkli′j′ = δii′δjj′ , where the
Einstein summation convention is used.
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In this linear elastic body, straight and parallel dislocations are embedded. Each dislo-
cation is characterized by its Burgers vector b and the direction of its line vector ξ̂. As
straight and parallel dislocations are considered, the line vector is equal for all dislocations.
In this study, climb of dislocations is not accounted for. For the static states of the sys-
tem, this implies that dislocation can only be positioned on discrete glide planes.
The elastic body is furthermore subjected to a boundary deformation ub. The dependence
of the free energy on the boundary deformation obtained in Chap. 2 is implicit. There-
fore, two quantities related to ub are defined here. Since the positions of the dislocations
are independent of the z-coordinate, it only makes sense to consider deformations of the
boundary that are independent of z as well.
Hypothetical strain- and stress fields ∆0 and σ0 can be defined as the strain- and stress
field one would find in the same elastic body Ω with the same boundary deformation ub,
but without dislocations. These fields have to satisfy mechanical equilibrium in the bulk,
and it has to match the imposed boundary deformation ub:

∆0 ≡ (∇u)s (3.3a)

σ0 ≡ C : ∆0 (3.3b)

∇ · (σ0) = 0 (3.3c)

u = ub. (3.3d)

Due to Eq. (3.3c), a second field Ψ0 can be defined by

∇×Ψ0 ≡ σ0. (3.4)

The field Ψ0 is thus uniquely defined up to a gradient. The Beltrami stress potential Φ0,
as used in [12], is related to Ψ0 by Ψ0 = (∇×Φ0)T, where T indicates the transpose.
Note that, as ub is independent of the z-coordinate, both ∆0 and Ψ0 are independent
of the z-coordinate as well.
The field Ψ0 turns out to be convenient to work with, as it is related to the Peach-Koehler
force on a dislocation line. Namely, a dislocation with Burgers vector b would experience
the following Peach-Koehler force in the hypothetical strain field ∆0:

FPK,0 =

∫
dz (σ0(s) · b)× ξ̂ =

∫
dz (∇×Ψ0(s) · b)× ξ̂

=

∫
dz(ξ̂ · ∇)Ψ0(s) · b−∇

(
ξ̂ ⊗ b : Ψ0(s)

)
, (3.5)

which is the integral of the Peach-Koehler force on a dislocation line element, see e.g.
[71], integrated along the line. The first term vanishes as Ψ0 is independent of the z-

coordinate, and hence (ξ̂ · ∇)Ψ0(s) = ∂zΨ0(s) = 0. Then this expression implies that∫
dzξ̂ ⊗ b : Ψ0(s, z) can be interpreted as the potential energy of a dislocation with

Burgers vector b in the strain field ∆0. Therefore, we define the Peach-Koehler potential
for dislocations with Burgers vector b by

Vb,0(s) =

∫
dzξ̂ ⊗ b : Ψ0(s). (3.6)
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This potential is uniquely defined up to a constant. The free energy will only depend on
ub via ∆0 and Vb,0.
Finally, microstates are characterized by the strain field ∆ in the body. This strain field
has to match the incompatibility imposed by the dislocations and the applied boundary
deformation ub, but it does not have to be in mechanical equilibrium. This implies that
we allow for elastic waves or phonons in the material, on top of a mechanical equilibrium
state.

Macroscale On the macroscopic level, the same elastic body Ω with the same bare
stiffness tensor C is considered. This body is subjected to the same boundary deforma-
tion ub. Therefore, in view of Eqs. (3.3) and (3.6), ∆0 and Vb,0 are also defined on the
macroscopic scale. Hence no coarse-graining of the boundary conditions is considered.
But rather than discrete dislocation positions, the coarse-grained density profile of dislo-
cations with Burgers vector b, ρb(s), is used as a variable on the macroscopic level.
For the coarse-graining procedure it is more convenient to control the average of the dislo-
cation density profile by controlling the local chemical potential µb(s) of dislocations with
Burgers vector b. This is called the grand-canonical ensemble. We refer the reader to [14]
for more details. It can be proven that the relation between µb(s) and ρb(s) is unique,
see e.g. [23]. This means that for every density profile one can find the corresponding
local chemical potential, and that every local chemical potential corresponds to just one
dislocation density profile. Hence once the free energy is known as a functional of the
local chemical potential, it can also be obtained in terms of the density profile.
The coarse-graining of dislocation positions can be performed in two ways. First, one
can average the density in the glide plane, but keep the discrete character of the glide
planes, as depicted in Fig. 3.2(b). The glide plane positions should then be considered as
material parameters. An example of this is worked out in Sec. 3.4.2, where it is assumed
that glide planes are equally spaced, and the spacing h is a material parameter.
Second, the averaging can be done both in the glide plane and in the direction perpen-
dicular to it, as depicted in Fig. 3.2(c). Then, the glide plane distribution is no longer a
material parameter. An example of this averaging is worked out in Sec. 3.4.1.
In both cases, the free energy can be determined by the expression obtained in this chap-
ter. In the first case, the density should be zero in between the glide planes, and only
take non-zero values at these glide planes. In the second case, there are no restrictions
on the density profile.
One could also consider a hybrid version of the above two averaging techniques, where
glide planes are smeared out, but not necessarily to a homogeneous profile. This would
imply that some regions are almost empty (these are the regions in between the smeared
out glide planes), whilst others are more likely to contain a lot of dislocations. Such a
hybrid version is not considered here.

3.2.3 Coarse-graining method

In this contribution, the coupling between the microscale and the macroscale is made
with averaging techniques from statistical physics. This means that the macroscopic free
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energy F can be determined from the so-called partition function Z, see e.g. [14]:

F = −kBT lnZ. (3.7)

The partition sum is a sum over all microstates weighted with their Boltzmann weight,
and hence it can, in principle, be calculated from the microscopic system description.
The Boltzmann weight depends on the macroscopic state variables and is defined as the
exponent of minus the energy Emicro of the microstate divided by the thermal energy;
exp(−Emicro/kBT ). Here, kB is the Boltzmann constant, equal to 1.4 × 10−23J/K,
and T is the absolute temperature. The Boltzmann weight is a measure for how likely a
microstate is; microstates with lower energy are more likely, and this preference is stronger
at lower temperature T . So to conclude, the partition function reads:

Z =
∑

microstates

exp(−Emicro/kBT ). (3.8)

In Chap. 2, we already determined an expression for the partition function of a crystal
with dislocations. In this chapter, this partition sum is used to obtain an explicit expres-
sion for the free energy as a function of the dislocation density.
When the free energy is calculated as in Eq. (3.7), local organization of dislocations is
also accounted for. Namely, microstates in which dislocations locally organize themselves
in low energy states are more likely, and hence contribute more to the partition function.
This lowers the overall free energy in the system.
In this work, average quantities should be interpreted as the statistical average, as opposed
to for example a spatial or time averages. Thus, if one would be able to consider multiple
microscopic realizations of the same macroscopic system, this is the average one would
find. For perfectly ergodic systems, the statistical average matches the time average by
definition.
It has been suggested that the ergodicity assumption might not be valid on realistic
timescales for dislocation systems. Namely, the behavior in discrete dislocation simula-
tions is very sensitive to the initial dislocation distribution, as the system exhibits high
energy barriers. However, it has been shown recently, see [59], that the statistical average
of the behavior in discrete dislocation simulations over many randomly selected initial
dislocation distributions gives realistic predictions for the response of large systems.
Therefore, it is assumed here that a statistical average is representative for the macro-
scopically observed behavior.

3.2.4 The partition sum

To evaluate the partition function in Eq. (3.8), one should sum the Boltzmann weight
over all possible microstates. The summation over microstates involves an integration
over the positions of the dislocations in the glide-plane, and a summation over all possible
numbers of dislocations from zero to infinity in each glide plane.
Furthermore, the summation involves an integration over all possible strain fields ∆ that
match the incompatibility imposed by the dislocations and the applied deformation of the
boundary. The integration over fields can be performed by means of a path integral.
The Boltzmann weight follows from the energy of a microstate, see Eq. (3.8). This energy
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consists of the elastic strain energy and the so-called chemical energy of dislocations. The
elastic energy reads

Eelas =
1

2

∫
dV∆ : C : ∆. (3.9)

This automatically incorporates the energy due to the dislocations and due to boundary
conditions, as the elastic strain field in the body matches the incompatibility of the
dislocations and the imposed boundary conditions.
The chemical energy of a dislocation with Burgers vector b at position s is minus the
chemical potential µb(s) at that position. The total chemical energy of the dislocations
together is thus

Echem = −
∑
b

(
Nb∑
k=1

µb(sk)

)
, (3.10)

where Nb is the number of dislocations with Burgers vector b and sk is the position of
the kth dislocation.
The summation over microstates, as described in the previous paragraph, was performed
analytically in our earlier work. The only approximation that was made in the derivation
is that the system is far from its transition point. In Sec. 3.3.3, we will comment further
on the implications of this approximation. In this section, the results for the partition
function and dislocation density of Chap. 2 are summarized.
The partition function is most conveniently expressed in terms of the average dislocation

Figure 3.3: When glide planes are defined on the macroscopic scale (as in Fig. 3.2(b)), the
parameter ρb,0(s) indicates the presence of glide planes (solid line). When glide planes
are not defined (as in Fig. 3.2(c)), ρb,0(s) is a spatial constant (dashed line).

density, although it is a functional of the chemical potential, and not of the dislocation
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density. The partition function and dislocation density obtained in Chap. 2 read

Z[µb(s),ub, T ] = exp

[
1

2kBT

∫
dV∆0 : C : ∆0 +

∑
b

∫
dAρb(s)+ (3.11a)

+
1

2kBT

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′) +

∑
b

1

2kBT

∫
dAρb(s)ueff,b,b(0)

−1

2
Tr

[
ln

[
Iδ(s− s′) +

1

kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b

]]]

ρb(s) = ρb,0(s) exp

[
µb(s)− Vb,0(s)

kBT
(3.11b)

− 1

kBT

∑
b′

∫
dAub,b′(s, s

′)ρb′(s
′)− 1

2kBT
ueff,b,b(0)

]

where ρb,0(s) is a parameter indicating glide planes when these are defined on the macro-
scopic scale. In this case, ρb,0(s) is zero in those points where there is no discrete
glide plane for dislocations with Burgers vector b and a Dirac delta function at the glide
planes, see Fig. 3.3. When no discrete glide planes are considered, as in Fig. 3.2(c), the
parameter ρb,0(s) is a spatial constant. The trace runs over both discrete and contin-
uous indices. The natural logarithm in the last term is the logarithm of an operator,
and not just the logarithm of the components. This means that the last term in Eq.
(3.11a) can be written as the sum of the logarithm of all eigenvalues of the operator

Iδ(s− s′) + 1
kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b.
The dependence on the boundary deformation ub is via Vb,0, and the functions G0(r; r′),
ub,b′(s, s

′) and ueff,b,b′(s, s
′) are the bare Greens function and the bare and effective

interaction between dislocations, that will be defined next.
The function ub,b′(s, s

′) is the interaction energy of two dislocations with Burgers vec-
tor b and b′ at positions s and s′ in finite space. The interaction energy is the extra
energy that is needed to create a dislocation in the material while another dislocation is
already present. The interaction energy can be written in terms of the Green’s function
G0,ijkl(r, r

′) by

ub,b′(s, s
′) =

∫
dzdz′ξ̂ ⊗ b : G0,iji′j′(s, z; s

′, z′) : ξ̂ ⊗ b′. (3.12)

In Chap. 2, it was found that the fourth order tensor G0(r, r′) is such that, for all fields
Ψ(r) that are divergence free (∇ ·Ψ = 0) and for which ∇ ×Ψ(r) is symmetric, one
finds ∫

dV∇×Ψ(r) : S : ∇×Ψ(r) =

∫
dV dV ′Ψ(r) : G−1

0 (r, r′) : Ψ(r′). (3.13)

Furthermore, G−1
0 (r, r′) is defined such that the RHS of this equation is infinite for all

fields that are either not divergence free or for which ∇ ×Ψ(r) is not symmetric. The
defining equation (3.13) of G−1

0 (r, r′) is thus rather implicit and cannot be written in an
easier form. Namely, the spatial integration acts over a finite volume, and hence the above
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cannot be written in a partial differential equation for G0(r, r′). However, in this form,
Eq. (3.13) incorporates the effect of finite space and can be used to derive a differential
equation for the dislocation density profile.
It was shown that in infinite space and for an isotropic material, Eqs. (3.12) and (3.13)
yield the interaction energy per unit length between dislocations as known from literature,
see e.g. [49, 97]:

G̃0,ijkl(q) =
µ

q2

(
QikQjl +RilRjk +

2ν

1− ν
RijRkl

)
, (3.14a)

⇒ ub,b′(∆s)

L
=

µ

2π

((
b · ξ̂b′ · ξ̂ +

(b× ξ̂) · (b′ × ξ̂)

1− ν

)
ln

(
|∆s|
s0

)
(3.14b)

+
(b× ξ̂) ·∆s(b′ × ξ̂) ·∆s

(1− ν)|∆s|2

)

where Qij = δij − qiqj/q2 and Rij = εijkqk/q, where εijk is the anti-symmetric Levi-
Cività tensor. Furthermore, µ is the shear modulus, and ν is the Poisson’s ratio, such
that the isotropic compliance tensor reads Siji′j′ = 2µ(δii′δjj′ − ν

1+ν δijδi′j′).
The function ueff,b,b′(s, s

′) in Eq. (3.11b) can be interpreted as the effective interaction
energy between two dislocations, in which the effect of screening is incorporated as well.
It can analogously be written as

ueff,b,b′(s, s
′) =

∫
dzdz′ξ̂ ⊗ b : Giji′j′(s, z; s

′, z′) : ξ̂ ⊗ b′, (3.15)

where it was shown in Eq. (2.40) that the two tensors G0 and G are related by the implicit
relation

G(r, r′) = G0(r, r′) (3.16)

+
∑
b

∫
dzdz′

∫
dA′′G(r; s′′, z) : ρb(s

′′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b : G0(s′′, z′; r′).

Then, ueff,b,b(0)/2 can be interpreted as the effective self-energy of a dislocation with
Burgers vector b. Note that the relation between ρb(s) and µb(s) in Eq. (3.11b) is an
implicit expression as the terms in the exponent depend on the density. The dependence
of Z on the local chemical potential µb(s) in Eq. (3.11a) is therefore implicit as well.
The average density profile for a given chemical potential can be determined directly
from Eq. (3.11b) without using a free energy expression in terms of the density profile.
However, the free energy does not only yield the equilibrium dislocation configuration, but
also other static properties of the system, and the driving forces for dislocation dynamics.
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From Eq. (3.7) and (3.11a), the thermodynamic potential can be determined:

Ω[µb(s),ub, T ] ≡ −kBT ln (Z[µb(s),ub, T ]) =
1

2

∫
dV∆0 : C : ∆0− (3.17)

− 1

2

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′)

− kBT
∑
b

∫
dAρb(s)−

1

2

∑
b

∫
dAρb(s)ueff,b,b(0)

+
kBT

2
Tr

[
ln

(
Iδ(s− s′) +

1

kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b

)]
.

3.2.5 Legendre transform

To obtain the free energy from the thermodynamic potential of the grand-canonical en-
semble, the following Legendre transform is applied

F [ρb(s),ub, T ] = Ω[µb[ρb(s),ub, T ; s],ub, T ] +
∑
b

∫
dAρb(s)µb[ρb(s),ub, T ; s],

(3.18)

where δΩ
δµb(s) = ρb(s). It can be checked that this is indeed the case by taking the

derivative with respect to µb(s) in Eq. (3.17). To perform this transformation, it is thus
necessary to find the chemical potential in terms of the dislocation density profile. This
can be done by inverting Eq. (3.11b):

µb(s) = kBT ln

(
ρb(s)

ρ0,b(s)

)
+ Vb,0(s) +

∑
b′

∫
dA′ub,b′(s, s

′)ρb′(s
′) +

1

2
ueff,b,b(0).

(3.19)

Combining Eqs. (3.17), (3.18) and (3.19) yields:

F [ρb(s),ub, T ] =
1

2

∫
dV∆0 : C : ∆0 +

1

2

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′)

(3.20)

+
∑
b

∫
dAρb(s)Vb,0(s) + kBT

∑
b

∫
dAρb(s)

(
log

(
ρb(s)

ρb,0

)
− 1

)

+
kBT

2
Tr

[
ln

(
Iδ(s− s′) +

1

kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b

)]
.

The first three terms can be recombined in a single term that captures the mean-field
contributions of the system. This term can be written in terms of the mean-field elastic
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strain, ∆mf, defined by

∇× βp = −
∑
b ξ̂bρb(s)

∆mf = (∇u− βp)s

σmf = C : ∆mf

∇ · σmf = 0

 in the bulk (3.21a)

u = ub
βp = 0

}
on the boundary. (3.21b)

Note that ∆mf(r) is a strongly non-local functional of the dislocation density profiles
ρb(s), as a dislocation at position s causes a strain field in the whole volume, and not
only at s. The free energy in terms of ∆mf reads (see B.1 for the derivation):

F [ρb(s),ub, T ] =
1

2

∫
dV∆mf : C : ∆mf + kBT

∑
b

∫
dAρb(s)

(
log

(
ρb(s)

ρb,0

)
− 1

)
(3.22)

+
kBT

2
Tr

[
ln

(
Iδ(s− s′) +

1

kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b

)]
.

The dependence of the free energy on the boundary deformation ub in this expression
enters via the boundary conditions on ∆mf in Eqs. (3.21). The dependence on the finite
volume is via ∆mf and G0(r; r′), as the finite volume appears explicitly in the definitions
in Eqs. (3.21) and (3.13) respectively. Analogously, the free energy expression in Eq.
(3.20) depends on the loading via Vb,0(s), and on the finite volume via both Vb,0(s) and
G0(r; r′).
The expressions in Eqs. (3.20) and (3.22) are equivalent. The advantage of the former
is that it is an explicit functional of the dislocation density profiles ρb(s). Namely, the
interaction potential ub,b′(s, s

′) and the Green’s function G0(r, r), as implicitly defined in
Eqs. (3.12) and (3.13), are independent of the dislocation density profile. The advantage
of the latter is that the first contribution in terms of the mean-field elastic strain, is quite
common in literature. For example, this term is equivalent to the contribution to the
internal power in the work of Gurtin, see Eq. (3.1) in [43] that relates stress to the
rate of elastic distortion. Therefore, the latter will be used primarily for comparison with
literature. The rest of the chapter is devoted to the interpretation of the free energy
expressions in Eqs. (3.20) and (3.22), and examples of how they can be used.

3.3 Interpretation of the free energy expression

3.3.1 Interpretation of different contributions

In this section, the different terms of the obtained expression for the free energy, Eq.
(3.22), are interpreted.
The first term in Eq. (3.22) can be interpreted as the mean-field elastic energy:

Felas ≡
1

2

∫
dV∆mf : C : ∆mf. (3.23)
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The strain field ∆mf is the strain field in the body due to boundary loading and the average
dislocation density. Consequently, Felas contains three effects: first, the elastic energy,
due to loading, which is there when no dislocations are present, second, the interaction
between net amounts of dislocations due to the strain field that they produce, and third
the influence of mechanical loading on dislocations. These three effects are separated in
Eq. (3.20), and one can define the background elastic energy, the two-body interaction
energy and the loading energy by

Fbackground ≡
1

2

∫
dV∆0 : C : ∆0 (3.24a)

F2b ≡
1

2

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′) (3.24b)

Floading ≡
∑
b

∫
dAρb(s)Vb,0(s). (3.24c)

The definition of the two-body contribution F2b is motivated by ub,b′(s, s
′), which is the

interaction energy of two discrete dislocations with Burgers vector b and b′ at positions s
and s′, respectively. This expression for the two-body interaction is a mean-field expres-
sion, as the two-body density is written as the product of one-body densities, see eg. [32].
The mean-field contribution is expected to be the leading order term for the interaction
between dislocations.
Furthermore, the definition of the loading contribution Floading is motivated by Eq. (3.6),
which shows that Vb,0(s) is the potential energy corresponding to the Peach-Koehler force
that a dislocation would feel in an otherwise dislocation-free body where ub is the imposed
boundary deformation. Hence Vb,0(s) is the work that the external Peach-Koehler force
has performed to move a dislocation with Burgers vector b from infinity to position s.
The second term in Eq. (3.22) is a statistical contribution of the dislocations. This is
what the free energy of the dislocations would be if they would not interact (i.e. if it
would be a sort of an ideal gas). Following the work of Evans for inhomogeneous systems
[23], this contribution reads

Fstat ≡ kBT
∑
b

∫
dAρb(s)

(
log

(
ρb(s)

ρb,0

)
− 1

)
. (3.25)

A similar contribution is also accounted for by Groma [35], based on phenomenological
arguments.
The third term in Eq. (3.22) is a truly many-body contribution that arises from the coarse
description of the system:

Fmb ≡
kBT

2
Tr

[
ln

(
Iδ(s− s′) +

1

kBT

∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗ b⊗ ξ̂ ⊗ b

)]
(3.26)

This term accounts for the effect of the local arrangement of dislocations. As we found
in Chap. 2, Statistically Stored Dislocations are likely to arrange themselves in pairs,
which are low energy structures. This was confirmed by DDD simulations in [37]. The
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local arrangement of dislocations can reduce the energy of the system, and thus yields
a correction to the two-body interaction term that accounts only for the leading order
mean-field term. This correction is what is accounted for in the many-body contribution.

3.3.2 Influence of dislocation length

In the derivation in Chap. 2, and hence in the above derivation, it was used that the
dislocations are straight and of infinite length. The question thus arises to what extent
the results obtained in this chapter are also applicable to dislocations that are curved.
To this end, we consider a slab of the material with a thickness L in which dislocations
can be considered approximately straight. To be more precise, we consider the case where
the radius of curvature of the dislocation line is substantially larger than the slab thickness
L.
The dependence on the slab thickness L of the free energy expression in Eq. (3.22) is
non-trivial, as both volume and surface integrals are present. These differ by a factor
L. The origin of this different dependency is that on the microscale, the elastic energy
scales linearly with the dislocation length, see Eq. (3.9), while the chemical energy in
Eq. (3.10) and the number of possible arrangements are independent of the dislocation
length, as the arrangement of straight and parallel dislocations is described by points in
a two-dimensional plane (independent of the z-coordinate).
There is no experimental value for the typical radius of curvature of dislocations, as mea-
surements on individual dislocations are notoriously difficult. Even so, one can give a
rough estimate on the absolute lower bound for this radius. Namely, this radius could
not be shorter than the lattice spacing, and moreover, it would not make sense to model
dislocations with a radius of curvature shorter than a few Burgers’ vectors as straight and
infinitely long. Therefore, one can safely assume that the slab thickness L is longer than
one Burgers’ vector: |b| < L.
To study the influence of L on the qualitative behavior of the system, it is most conve-
nient to study the free energy expression in Eq. (3.22) in units of kBT . When no external
loading is applied, the elastic contribution Felas reduces to the two-body contribution F2b,

see Eqs. (3.24), which is proportional to Ξ ≡ µb2L
kBT

, cf. Eq. (3.14b). It can be shown that
also in the many body contribution, the term in the logarithm depends on the coupling
parameter Ξ. The overall prefactor of both the statistical and many body contribution is
1. Physical results thus only depend on the value of the coupling parameter Ξ.
The parameter Ξ is a dimensionless coupling parameter that compares the typical interac-
tion energy with the thermal energy. When Ξ is much larger than 1, the energetic effects
are more important than thermal fluctuations. As for aluminium at room temperature,
the shear modulus, the length of the Burgers vector and kBT are known1. Therefore,
the lower bound of Ξ is Ξ > 1.6 × 102 (from the lower bound of L estimated above).
This implies that, in aluminum at room temperature, the characteristic energy of the
dislocation interaction (µb2L) dominates over the characteristic energy of the thermal
lattice vibrations (kBT ), even at the lower bound for L. It is expected that this holds for
other metals as well. Therefore, the exact value of the slab thickness L will not affect
qualitatively the behavior of dislocations.

1For aluminium at room temperature, µ = 26 GPa, ν = .33, b = 2.9 Å (see [101]) and kBT =
4 × 10−21 J at 298 K.
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In the limit of infinitely long dislocations, Ξ goes to infinity. As Ξ is already large for
dislocations in a reasonably thick slab, it can be concluded that they will behave as if
they are infinitely long.

3.3.3 Limitations

The grand-canonical partition function in Eq. (3.11a) was derived using a Gaussian ap-
proximation for the partition function. This approximation is accurate far away from
transition points, around which the macroscopic behaviour of the material changes qual-
itatively. An example of a transition point in this model is dislocation-mediated melting,
see for example the work of Kosterlitz and Thouless [63] and Mizushima [78]. Below a
certain critical temperature, dislocations tend to arrange themselves in tightly bound pairs
and the material is considered to be solid. Above this temperature, dislocations are able
to move more or less freely through the crystal.
Another example is of a transition point is the change from elastic to plastic material
response.
The proposed free energy expression is, because of this Gaussian approximation, inaccu-
rate close to transition points of dislocation systems. To study the properties of the system
close to the transition, it is better to use the more involved partition function without
Gaussian approximation obtained in Chap. 2. For example, renormalization group theory
can be used to study transition points, even for complicated partition functions. Another
option is to use more sophisticated approximation techniques instead of a single Gaussian
approximation. For example, the Villain approximation [61] is accurate in a much larger
range of parameters, but this approximation is computationally more involved.

3.4 Application to specific cases

In this section, the free energy expression in Eq. (3.22) will be applied to three specific
cases. First, a Local Density Approximation (LDA) will be considered, as this is often
assumed in literature. The validity of the LDA is examined and the resulting energy
expression is compared to literature. Then, the dislocation density profile and the total
energy are determined for simple shear loading within the LDA. Second, the zero tem-
perature limit of the free energy will be studied. And third, a completely regular, equally
spaced arrangement of glide planes will be considered in the zero temperature limit.

3.4.1 Local Density Approximation (LDA)

In several dynamical models, a local form is assumed for the free energy. This means that
the free energy is the spatial integral of a free energy density, where the latter is only
a function of the dislocation density at that point, rather than a functional of the full
dislocation density profile. Such an expression is easier to work with. Furthermore, the
exact position of glide planes is not used as a material parameter in these models, and
moreover, these are almost impossible to obtain experimentally.
In this section, local approximations and gradient corrections for the two body- and the
many body contribution are determined from standard expressions from density functional
theory, introduced in Eqs. (3.27) and (3.28). The glide planes are smeared out completely,
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as depicted in Fig. 3.2(c). For simplicity, only a single slip system is considered. Fur-
thermore, it is assumed that the infinite space solution can be used for the interaction
potential ub,b′(s− s′) and for the Green’s function G0(r− r′). Namely, no explicit posi-
tion dependence is expected within the LDA. Then, the explicit expressions in Eqs. (3.14)
can be used.
First, it is shown that for the two body contribution, the gradient corrections dominate
over the local term, and hence a local approximation for this term is not accurate. Second,
the local approximation of the many body contribution is derived in Eq. (3.38) and it is
shown that the gradient corrections do not dominate over the local term, provided that
the density varies slowly enough.
In general, the local density approximation of a free energy functional F and its gradient
corrections can be written as, see e.g. [23],

F [ρ(s)] =

∫
dA
(
f(ρ(s)) +∇ρ(s) · F2(ρ(s)) · ∇ρ(s) +O(∇4)

)
, (3.27)

where f(ρ) is a scalar-valued function, which gives the free energy density of a homo-
geneous system with density ρ. Furthermore, F2(ρ) is a tensor-valued function given
by

F2(ρ) =
−1

4

∫
dAs⊗ s δ2F [ρ(s)]

δρ(0)δρ(s)

∣∣∣∣
ρ(s)=ρ

. (3.28)

This expression could be obtained by a Taylor expansion of ρ(s) around s and an expansion
of F [ρ(s)] in powers of ∇.
It is assumed that it is sensible to make a local approximation, provided that both terms
f(ρ) and F2(ρ) are finite, and the gradient correction does not dominate over the first
term. The latter sets a lower limit for the typical length scale on which the density profile
varies.

Single slip system

The system is simplified by only considering one slip system with only two possible Burgers
vectors, namely edge dislocations with opposite Burgers vector. Hence without loss of
generality, one can say that ξ̂ = ẑ and b = ±bx̂. Using this simplification, the free energy
expression in Eq. (3.20) reads

F [ρ+(s), ρ−(s),ub, T ] =
1

2

∫
dV∆0 : C : ∆0 (3.29)

+
1

2

∫
dAdA′(ρ+(s)− ρ−(s))uedge(s− s′)(ρ+(s′)− ρ−(s′))

+

∫
dA(ρ+(s)− ρ−(s))V0,edge(s) + kBT

∑
+,−

∫
dAρ±(s)

(
ln

(
ρ±(s)

ρ±,0

)
− 1

)
+
kBT

2
Tr

[
ln (Iδ(s− s′)

+
1

kBT

∫
dzdz′G0(s− s′, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ b(ρ+(s′) + ρ−(s′))

)]
,
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where Vedge,0(s) ≡ Vbx̂,0(s) is the Peach Koehler potential that the edge dislocations
feel, and where uedge(s − s′) ≡ ubx̂,bx̂(s, s′) is the interaction potential between two
equal edge dislocations. It is convenient to use the interaction potential in Fourier space.
Using Eqs. (3.14), this reads:

ũedge(q) = b2
∫
dA

∫
dzdz′ξ̂ ⊗ x̂ : G0,iji′j′(s− s′, z − z′) : ξ̂ ⊗ x̂e−ıq2D·(s−s

′)

=
2µb2L

1− ν
q2
y

q4
, (3.30)

where qy is the y-component of q: qy = q · ŷ, and where q is the length of q: q = |q|.
The parameter L is the typical persistence length of a dislocation, as introduced in Sec.
3.3.2.

LDA and gradient corrections of the two body contribution

In this section, the first and second term in Eq. (3.27) are determined for the two-
body contribution. First, the local term is determined from the two-body energy of a
homogeneous system with a GND density ρGND:∫

dAf2b(ρGND) = F2b[ρGND] =
1

2

∫
dAdA′ρ2

GNDuedge(s− s′) (3.31)

=
1

2

∫
dAρ2

GNDũedge(q2D = 0) =
ρ2
GND

2

(
2µb2L

1− ν
q2
y

q4

)∣∣∣∣∣
q=0

A,

where A is the surface area. The term in parenthesis on the RHS diverges with q−2 for
small q. The smallest wave number in the system in inversely proportional to the largest
length scale, which is the system size R. The energy density thus diverges as R2.
Second, the gradient correction of the two-body contribution is determined using Eq.
(3.28):

F2,2b =
−1

4

∫
dAs⊗ suedge(s) =

1

4

∫
dA

d

dq
⊗ d

dq
(exp[−ıq · s])

∣∣∣∣
q=0

uedge(s)

=
1

4

d

dq
⊗ d

dq
ũedge(q2D)

∣∣∣∣
q=0

=
1

4

d

dq
⊗ d

dq

2µb2L

1− ν
q2
y

q4

∣∣∣∣∣
q=0

, (3.32)

where the second equality is just a mathematical identity that is introduced for conve-
nience. The RHS now diverges with q−4, and hence it diverges as R4 with the system
size.
It can thus be concluded that (i) the local contribution is large for large systems and
diverges with the system size, and (ii) that the gradient correction dominates over the
local contribution when the typical length scale of density fluctuations is smaller than the
system size. Therefore, the local density approximation is inaccurate for the two body
contribution. This agrees with what was found by Mesarovic [76].
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LDA and gradient corrections of the many body contribution

In this section, the local density approximation of the many body term will be deter-
mined by calculating the many-body contribution for a homogeneous system with total
dislocation density ρtot = ρ+ + ρ−. To this end, first, the eigenvalues of the matrix in
the logarithm will be determined, and second, the summation over the logarithm of all
eigenvalues will be performed to obtain the trace. This yields the local expression in Eq.
(3.38).
The first step is thus to determine the eigenvalues of 1

kBT

∫
dzdz′G0(s − s′, z − z′) :

ξ̂⊗ b⊗ ξ̂⊗ bρtot. Note that this tensor is a convolution, and therefore, it can be read as
a product in Fourier space. Therefore, it turns out to be more convenient to determine
the eigenvalue in Fourier space. The eigenvalue in Fourier space reads

λ̃U (q2D)Ũ(q2D) =

(
ρtot
kBT

F
[∫

dzdz′G0(s− s′, z − z′)
]

(q2D) : ξ̂ ⊗ b
)

·
(
ξ̂ ⊗ b : Ũ(q2D)

)
, (3.33)

where q2D is the 2D wave-vector. Note that the term in the second bracket on the RHS
is a scalar and that the term in the first bracket is a second order tensor independent
of U(q2D). This implies that either the eigenvalue is 0, or that, up to a multiplicative

constant, Ũ(q2D) = G̃0(q2D) : ξ̂ ⊗ b. Inserting this in Eq. (3.33) implies that the only
non-zero eigenvalue is

λ(q) =
ρtot
kBT

ξ̂ ⊗ b : G̃0(q2D) : ξ̂ ⊗ b = ρtot
2µb2L

kBT (1− ν)

q2
y

q4
. (3.34)

The second step is to calculate the many body contribution from these eigenval-
ues. The logarithm in Eq. (3.29) is the sum of logarithm of the eigenvalues of

Iδ(s− s′) + 1
kBT

∫
dzdz′G0(s− s′, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ bρtot, which is 1 + λ(q) in

Fourier space. The trace over the continuous index can be taken by integrating over
the wave vector q2D and by integrating over real space. This yields

Fmb(ρtot, T ) =
kBT

2

∫
dA

∫
d2q2D

(2π)2
ln

(
1 + ρtot

2µb2L

kBT (1− ν)

q2
y

q4

)
. (3.35)

In this explicit form, the integral over q2D can be performed exactly. For readibility,

the shorthand notation a ≡ ρtot2µb
2L

kBT (1−ν) is introduced. Note that a has the dimension of

density. Then, using polar coordinates for the integration over q, the free energy density
as introduced in Eq. (3.27) reads

fmb(ρtot, T ) =
1

(2π)2

kBT

2

∫ ∞
0

dq

∫ 2π

0

dφ q ln

(
1 + a

sin2 φ

q2

)
(3.36)

=
kBT

8π2

∫ 2π

0

dφ

[
q2

2
ln

(
1 +

a sin2 φ

q2

)
+
a sin2 φ

2
ln
(
q2 + a sin2 φ

)]∞
q=0

.

At the lower boundary q = 0, the term in square brackets is equal to a sin2 φ
2 ln

(
a sin2 φ

)
,

and hence it is finite. However, for large q it diverges. Large values of the wave vector
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q correspond to small length scales. Integrating over q up to infinity thus corresponds
to incorporating phenomena at very small length scales. However, at very small length
scales, comparable to the atom spacing in the crystal, we already know that linear elas-
ticity theory breaks down. Hence integrating q up to infinity is physically speaking not
admissible, and one should introduce a large cutoff Λ0 for the integration over q, such
that |q2D| ∈ [0,Λ0]. However, physical results should not depend on the exact value
of the cutoff Λ0, since they do not depend on the exact length scale at which elasticity
theory breaks down.
It is now assumed that Λ2

0 is much larger than a. This yields for the many body contri-
bution:

fmb(ρtot, T ) =
kBT

8π2

∫ 2π

0

dφ
a sin2 φ

2

(
− ln

(
a sin2 φ

Λ2
0

)
+ 1

)
. (3.37)

The integration over φ can now be performed straightforwardly using a symbolic toolbox.
This finally yields for the free energy density

fmb(ρtot, T ) = −kBT
8π2

a ln

(
a

4Λ2
0

)
= − µb2L

8π(1− ν)
ρtot ln

(
ρtot

Λ2(T )

)
, (3.38)

where Λ is introduced for convenience: Λ2 ≡ kBT (1−ν)
2µb2L 4Λ2

0. Note that Λ has the dimen-

sion of inverse length, and that Λ2 � ρtot, which follows directly from Λ2
0 � a. This

implies that the cutoff length Λ−1 should be much smaller than the typical dislocation
spacing. Hence the many-body contribution is non-zero if ρtot is non-zero.
As the free energy density fmb(ρtot, T ) depends only on the logarithm of Λ, all physical
quantities are independent of the exact value of the cutoff Λ0. Namely, if we would take

the cutoff twice as large, the free energy would increase by an amount µb2L
8π(1−ν)ρtot ln 4,

which is a constant times the density. The constant can thus be interpreted as an additive
constant to the chemical potential, which has no physical meaning.
Now, the gradient correction, as introduced in Eq. (3.27), is determined for the many
body contribution, see Eq. (3.40) for the result. From this expression, it is then de-
termined under which conditions the gradient correction is small compared to the local
contribution, see Eqs. (3.41) and (3.42).
To determine the gradient correction, the second derivative of the free energy with re-
spect to the density profile is needed, see Eq. (3.27). For the many body correction, this
derivative is

δ2Fmb[ρtot(s′), T ]

δρtot(0)δρtot(s)

∣∣∣∣
ρtot(s)=ρtot

= (3.39)

= −Tr

[(
Iδ(s1 − s2) +

1

kBT

∫
dzdz′G0(s1 − s2, z − z′) :

: ξ̂ ⊗ b⊗ ξ̂ ⊗ bρtot
)

:
1

kBT

∫
dzdz′G0(s2 − s3, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ b :

:

(
Iδ(s3 − s4) +

1

kBT

∫
dzdz′G0(s3 − s4, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ bρtot

)
:

:
1

kBT

∫
dzdz′G0(s4 − s1, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ b

]
δ(s1)δ(s3 − s).
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This is again a convolution, which results in a product in Fourier space. This can be
expressed in the eigenvalues λ(q) from the previous section. Again, the integration over
the wave vector can be performed using a symbolic toolbox. Details of this derivation can
be found in B.2. This yields for the gradient correction:

F2,mB(ρtot, T ) =
1

24π

kBT

ρ2
tot

(
1 0

0 −1 +
3
√
ρtotR

8

√
2µb2L

kBT (1−ν)

)
, (3.40)

where R is the system size. Derivatives in the x-direction do therefore not dominate over
the local term provided that

1

24π

kBT

ρ2
tot

|∂xρtot(s)|2 �
µb2L

8π(1− ν)
ρtot

∣∣∣∣ln( ρtot
Λ2(T )

)∣∣∣∣ (3.41)

⇒
(
|∂xρtot(s)|

ρtot

)2

� 3
Ξ

1− ν
ρtot

∣∣∣∣ln( ρtot
Λ2(T )

)∣∣∣∣ ,
where the parameter Ξ is defined in Sec. 3.3.2, and it is typically much larger than 1.

Moreover,
∣∣∣ln( ρtot

Λ2(T )

)∣∣∣ is much larger than one, as Λ2 � ρtot.

It can thus be concluded that the LDA is valid if the typical length scale of variations of
the total dislocation density in x-direction, ρtot/|∂xρtot|, is much longer than the average

dislocation spacing 1/
√
ρtot. As both Ξ and

∣∣∣ln( ρtot
Λ2(T )

)∣∣∣ are large, the condition in Eq.

(3.41) is not very restrictive.
However, when the total dislocation density varies in the y-direction, the gradient does
not dominate over the local term provided that

1

64π

kBT

ρ
3/2
tot

R

√
2µb2L

kBT (1− ν)
|∂yρtot(s)|2 �

µb2L

8π(1− ν)
ρtot

∣∣∣∣ln( ρtot
Λ2(T )

)∣∣∣∣ (3.42)

⇒
(
|∂yρtot(s)|

ρtot

)2

� 4

√
2Ξ

1− ν

√
ρtot

R

∣∣∣∣ln( ρtot
Λ2(T )

)∣∣∣∣ .
The LDA is thus valid if the typical length scale of variations in the y-direction,
ρtot/|∂yρtot|, is much larger than

√
R/
√
ρtot, which is much larger than the average

dislocation spacing. If the system is infinitely large, Eq. (3.42) implies that no variations
in the y-direction are allowed. Furthermore, the RHS of Eq. (3.42) is only inversely pro-
portional to the square-root of Ξ. Therefore, the condition in Eq. (3.42) is much more
restrictive than in Eq. (3.41).
The difference between variations in x- and y-direction originates from the difference in

screening in both directions. As can be seen in Fig. 3.4, in the x-direction, dislocations
with opposite Burgers vector are attracted. These dislocations screen the effect of the
dislocation at the origin. However, in the y-direction, dislocations with equal Burgers vec-
tor are attracted. These dislocations enhance the effect of the dislocation at the origin.
The restriction on the variations in density in the y-direction also restricts the possible
choice for the glide-plane distribution. Namely, if a dislocation density profile is consid-
ered which is only nonzero at discrete glide-planes, this implies that the derivative of
the density in y-direction is large, and hence that the condition in Eq. (3.42) is violated.
Therefore, only profiles that are more or less homogeneous in the y-direction are allowed
for. This means that the glide planes are smeared-out.
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Figure 3.4: In the white regions, edge dislocations with opposite Burgers vector are at-
tracted by the dislocation in the origin, and thereby they screen the effect of the central
dislocation. In the shaded regions, edge dislocations with equal Burgers vector are at-
tracted, which strengthens the effect of the central dislocation.

Conclusions about the LDA and comparison to literature

It was found in this section that the LDA is applicable for the many-body contribution,
provided that the density profile varies slow enough, but that the LDA is not applicable
for the two body contribution. As in Eq. (3.22), the background, two-body and loading
contributions can be combined into the elastic contribution. This results in the following
semi-local free energy expression:

FLDA[ρ+(s), ρ−(s),ub, T ] =
1

2

∫
dV∆mf : C : ∆mf (3.43)

+ kBT
∑
+,−

∫
dAρ±(s)

(
ln

(
ρ±(s)

ρ±,0

)
− 1

)

− µb2L

8π(1− ν)

∫
dA (ρ+(s) + ρ−(s)) ln

(
ρ+(s) + ρ−(s)

Λ2

)
.

This expression might seem local at first glance, as it is written as a single spatial integral.
However, one should realize that the free energy is not to be interpreted as a functional
of the mean-field strain ∆mf, but rather of the dislocation density profiles ρ+(s) and
ρ−(s), and the displacement ub of the boundary. The mean-field strain itself is a strongly
non-local functional of the dislocation density, see Eq. (3.21).
In the work of Mesarovic [76], it was also shown that the two-body interaction energy
cannot be approximated by a local expression. Moreover, in later work [77], it was shown
that the contribution due to coarsening can be approximated by a local form provided
that the typical length over which the dislocation density profile varies is much longer
than the average dislocation spacing. This agrees with the explicit expression obtained
here.
In the work of Groma [38], it was argued that no new internal length scale should arise
from coarse-graining, as the interaction between dislocations is scale-free. The free en-
ergy obtained here satisfies this constraint, as the many-body contribution depends only
logarithmically on the cutoff Λ.
The free energy of a system with spatially constant dislocation density was determined
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by Mizushima [78], Ninomiya [84], Yamamoto [118] and Burakovsky [11]. The systems
considered in their work do not have a net dislocation content, and the free energy expres-
sions were used to explain the melting transition of crystals. The suggested expressions all
entail a −ρ ln ρ-term with a prefactor proportional to the shear modulus and the Burgers
vector squared, but independent of temperature, which is analogous to the expression for
Fmb found here.
Additional terms proportional to ρ, ρ3/2 and ρ2 were suggested in [78, 84, 118, 11].
The terms linear in the density result from the energy of individual dislocation lines. In
our study, self-energy contributions are neglected, and hence the linear contributions are
absorbed in the chemical potential. The term proportional to ρ3/2 results from the config-
urational entropy of dislocation networks. This term is not found in our work, as joggs and
connections between dislocations do not occur in systems with only straight and parallel
dislocations. The term quadratic in the density in [118] resulted from a non-overlapping
condition for dislocations. This was not accounted for in our analysis, and hence such a
term is not found.
In the work of Svendsen, [62, 4, 105], the free energy is separated in a linear elastic part,
and another contribution that is written as a power series in the GND and SSD density
separately. In later work [106], forms other than polynomials were also considered for this
second term. Here it was shown that a local expression is indeed possible for the many
body contribution, and a series expansion of the local expression obtained here could be
valid in a certain regime.
In the work of Panyukov and Rabin [90], the free energy of a system of dislocation loops
was determined. In that work, the density of dislocations was assumed to be indepen-
dent of the Burgers vector, and hence no net dislocation was considered, both locally
and globally. Despite the differences in problem setup with our analysis, the free energy
expression found in [90, Eq. (65)] is remarkably similar to what we found in Eq. (3.35). As
in our work, only straight and infinitely long dislocations are considered, it was possible to
perform the integration over the wave vector in Eq. (3.35) explicitly, which was impossible
in the work of Panyukov and Rabin [90].

3.4.2 Zero temperature

In this work, the coarse-graining was performed at non-zero temperature, and the temper-
ature dependence in Eq. (3.22) is explicit. On the contrary, in literature, the temperature
dependence is often not clear, as the system is considered at isothermal conditions. Some-
times, an explicit split is made between energetic and entropic contributions, for example
in [35, 36]. In this section, we determined the zero temperature limit of our free energy
expression, to see what the effect of working at non-zero temperature is. The result will
be compared to literature.
To study the zero temperature limit of the free energy expression in Eq. (3.22), it is first
noted that the mean-field elastic contribution Felas as defined in Eq. (3.23), is indepen-
dent of the temperature, and hence does not change in the limit.
Second, the statistical contribution defined in Eq. (3.25) is proportional to the tempera-
ture. Therefore, it vanishes in the zero temperature limit limT→0 Fstat = 0. And finally,
the many body contribution as defined in Eq. (3.26) is considered. This term can be
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written as

Fmb =
kBT

2

∫
dA

9∑
m=1

ln

(
1 +

1

kBT
λm(s)

)
, (3.44)

where λm(s) is the mth eigenvalue of the matrix
∑
b

∫
dzdz′G0(s, z; s′, z′) : ρb(s

′)ξ̂ ⊗
b⊗ ξ̂⊗ b, and the sum runs over all eigenvalues. As G0(s, z; s′, z′) is independent of the
temperature T , the eigenvalues λm(s) are independent of temperature as well. Thus, in
the zero temperature limit, the many body contribution reads

lim
T→0

Fmb =

∫
dA

9∑
m=1

lim
T→0

kBT

2
ln

(
1 +

1

kBT
λm(s)

)
=

∫
dA

9∑
m=1

0 = 0, (3.45)

and hence vanishes.
At first glance, this result is contradictory with the explicit result that was obtained for a
spatially homogeneous dislocation density in Eq. (3.38). Namely, that many body contri-
bution is non-zero when the dislocation density is non-zero. However, in the derivation, it
was used just before Eq. (3.38) that one can choose a cutoff wave number Λ0 such that

Λ2
0 �

ρtot2µb
2L

kBT (1−ν) , which is clearly impossible in the zero temperature limit.

Hence once the LDA is made at finite temperature, the zero temperature limit cannot be
taken anymore. Other approximation techniques for the free energy might also involve ad-
ditional assumptions on the temperature. Therefore, we think that in general one should
be careful in taking the zero temperature limit when approximations are made.
So to conclude, the free energy at T = 0 can be expressed as

F [ρb(s),ub, T = 0] = Felas[ρb(s),ub]. (3.46)

It is tempting to interpret the free energy at zero temperature as the internal energy U
of the system, as F = U − TS. However, the internal energy should formally be deter-
mined by first calculating the entropy from S = −∂F∂T and subsequently using the relation
U = F + TS. When this is done using the free energy expression in Eq. (3.22), it turns
out that the internal energy U differs from (3.46) by a contribution that vanishes only
at zero temperature. Therefore, the internal energy U at T > 0 is not given by the free
energy at zero temperature.
It was recognized in the work of Groma [35, 36] and Limkumnerd [73] that the physical
temperature of the system is close to zero, which means that the statistical contribution
Fstat is much smaller than the energetic contribution. Hence it was concluded that it
plays no role. However, another ‘phenomenological temperature’ was introduced to cover
many body effects. In our work here, it was indeed found that many body effects vanish
at zero temperature. However, at small but finite temperature, many body effects appear
naturally and in a scale-free form, as was anticipated in [38].
In the crystal plasticity model of Bammann [3], the temperature dependence is explicit.
Three important differences with our model can be distinguished. First, the elastic con-
stants depend on temperature. In our work, this dependence was not put in the model
on the microscopic level, and therefore, it is not present in the result either. An exten-
sion to temperature dependence on the microscopic level could be made. Second, in the
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work of Bammann, an energy contribution is found that depends only on temperature,
and not on the strain of the material. This energy contribution is perhaps related to the
phonon energy in the crystal. The mechanical response of the system was found to be
independent of this energy contribution. In the work presented here, the focus was on
deriving the free energy due to mechanical loading. Therefore, phonon energy was inter-
preted as an irrelevant constant contribution, and was therefore neglected. Third, the free
energy expression obtained here comprises an statistical and a many body contribution
that depends both on temperature and on dislocation density. Comparable terms were
not proposed by Bammann. This is probably because these contributions are due to the
effect of non-zero temperature on dislocation distributions, rather than only the effect of
the temperature on the lattice.

Equally spaced glide planes

The free energy at zero temperature can be further simplified for dislocations on equally
spaced glide planes. As shown in several papers [99, 29, 5], this geometry simplifies the
mathematical analysis of the problem considerably and the coarse graining can be done
using Γ-convergence, see [99, 29]. In this section, the free energy at zero temperature in
Eq. (3.46) is evaluated in this special geometry, and the results are compared with those
obtained using Γ-convergence. This case can be considered as an example in which the
discrete glide planes are still resolved on the macroscopic level.

(a) (b)

Figure 3.5: The geometry studied in this section: positive dislocations on equally spaced
glide planes that pile-up against a wall at x = 0 (fig. (a)), and the interaction potential
between two dislocation walls, as in Eq. (3.49) (fig. (b)).

The exact geometry that is used is depicted in Fig. 3.5(a). The glide planes are
oriented in x̂-direction and the dislocations pile up against an infinitely long, vertical wall
at x = 0. The glide plane spacing is h, and, as in [99, 29], only positive dislocations are
considered. Moreover, it is assumed that the loading is the same on each glide plane and
hence ∆0 and Vedge are both only functions of x.
Because of the symmetry of the system and loading under a translation over a distance
h in ŷ-direction, the density of dislocations in the glide plane is independent of the y-
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coordinate of the glide plane. Therefore, the density of dislocations can be written as

ρ+(s) = ρ(x)

∞∑
n=−∞

δ(y − hn), (3.47)

where the summation runs over all integers, and where the delta function indicates the
positions of the glide planes as in Fig. 3.3. Hence, the density is zero if there is no
glide plane, and ρ(x) in the glide plane. Note that both δ(y − hn) and ρ(x) have the
dimension of inverse length. The background energy was not accounted for in [99, 29],
and will thus be left out here as well. Using Eq. (3.47) in Eq. (3.46) for the free energy
at zero temperature yields

F [ρb(s),ub, T = 0] =

∫
dAρ(x)

∞∑
n=−∞

δ(y − hn)Vedge(x) (3.48)

+
1

2

∫
dAdA′ρ(x)

∞∑
n=−∞

δ(y − hn)ub,b′(s, s
′)ρ(x′)

∞∑
n′=−∞

δ(y′ − hn′).

This expression can be rewritten by performing the summations over n and the integrations
over y and y′. The energy can then be expressed in terms of the number of glide planes
Ny and the interaction energy of a regular wall of dislocations with a single dislocations,
uwall(∆x), which reads

uwall(∆x) =
µb2L

2(1− ν)

(
∆x

h
coth

(
π

∆x

h

)
− π−1 ln

(
2 sinh

(
π

∆x

h

)))
, (3.49)

as shown in B.3. The potential uwall(∆x) is plotted in Fig. 3.5(b). The free energy per
glide plane thus reads

F [ρb(s),ub, T = 0]

Ny
=

∫
dxρ(x)Vedge(x) +

1

2

∫
dxdx′ρ(x)uwall(x− x′)ρ(x′). (3.50)

As shown in Fig. 3.5(b), the interaction potential is not long-ranged anymore, as opposed
to the original interaction potential uedge. Therefore, the two body term can be approxi-
mated by a local expression as in Eq. (3.27), as long as the length scale associated with
density fluctuations is small enough. This is clear by considering the LDA of Eq. (3.50)
explicitly using the expressions in Eqs. (3.27) and (3.28). The free energy density of the
homogeneous system reads

f2b(ρ)

Ny
= ρ22

∫ ∞
0

dx− x′uwall(x− x′) =
µb2L

2(1− ν)
ρ2h

3
, (3.51)

and the gradient correction term reads

F2,2b

Ny
=
−1

4
2

∫ ∞
0

dx x2uwall(x) =
−1

4

µb2L

2π(1− ν)

h3π

45
, (3.52)
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where both integrals were evaluated straightforwardly using a symbolic toolbox. The
gradient correction is thus much smaller than the local contribution as long as

πh

3
ρ2 � h3π

180
|ρ′(x)|2 ⇒ 60

h2
�
(
|ρ′(x)|
ρ

)2

, (3.53)

so when the typical length scale of density changes ρ/|ρ′(x)| is much larger than the glide
plane spacing h. The energy in Eq. (3.48) can thus be rewritten as

F [ρb(s),ub, T = 0]

Ny
=


∫
dxρ(x)Vedge(x) + h

12
µb2L
(1−ν)ρ(x)2 if

(
|ρ′(x)|
ρ

)2

� 60
h2∫

dxρ(x)Vedge(x) + 1
2

∫
dxdx′ρ(x)ρ(x′)uwall(x− x′) else.

(3.54)

Now, the result in Eq. (3.54) is compared to what was found in [99, 29]. In these papers,
three parameter regimes were distinguished in which different asymptotic forms of the
energy expression were found. The exact separation of these regimes depend on the
details of the coarse-graining method, and can thus not be compared with the result
obtained here. However, in the three regimes good agreement with the expression in Eq.
(3.54) is found.
In the so-called subcritical parameter regime, the glide plane spacing is large compared to
the typical thickness of the pile-up. Therefore, the influence of different glide planes on
each other is assumed to be negligible in [99, 29], and hence it is the ”single glide plane
regime”. The scaling implies that the second case in Eq. (3.54) should be considered. The
interaction energy uwall(x− x′) is logarithmic at small distances, and hence the obtained
expression is equivalent to Eq. (24) in [99].
In the intermediate parameter regime, the thickness of the pile-up is much longer than the
glide plane spacing, but the typical distance between dislocations in x-direction is smaller
than h. This implies that the first case in Eq. (3.54) should be considered. And indeed,
this energy expression is equivalent to Eq. (40) in [99].
In the supercritical parameter regime, the typical distance between dislocations in x-
direction is larger than h. This implies again that the second case in Eq. (3.54) should
be considered. To study the extreme case, the limit h → 0 should be taken. The result
of this limit depends on the behavior of ρ(x) in this limit. If ρ(x) increases slower than
h−1/2 if h goes to 0, the second term in Eq. (3.54) vanishes. On the contrary, if ρ(x)
increases faster than h−1/2, the second term blows up and dominates the integral. This
extreme case is what was found in [99, 29]. However, the behavior under the limit h→ 0
is only a mathematical limit that cannot be achieved in an experimental setting.
An important difference between the coarse-graining using Γ-convergence, as performed
in [99, 29], and the method employed in this work is that for the former, dislocations align
in so-called tilt walls. This means that the discrete dislocation density is the same for
all glide planes. In the latter procedure presented here, it is only assumed after coarse-
graining that the average density of dislocations is independent of the glide plane. It
is remarkable that despite this difference between the two coarse-graining methods, the
resulting energy expressions are equivalent.
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3.5 Implication for crystal plasticity

The free energy plays a crucial role in most crystal plasticity frameworks. In this section,
the implications for crystal plasticity that follow from the free energy derivation presented
in this chapter are presented. For clarity, our work is only compared with [43].
The free energy used in the work of Gurtin is “given by standard elastic strain energy,
augmented by a defect energy Ψ(ρ)”, where
ρ = {ρ1

GND,e, . . . , ρ
N
GND,e, ρ

1
GND,s, . . . , ρ

N
GND,s} with ρiGND,e and ρiGND,s the densities of

geometrically necessary edge and screw dislocations on slip system i, respectively. The
free energy density thus reads

ψ =
1

2
Ee : CEe + Ψ(ρ). (3.55)

The derivative of the defect energy with respect to the dislocation densities are used as
a closure for the dynamic equations. These derivatives are referred to as the energetic
defect forces.
The split between standard (mean-field) elastic energy and a local contribution that only
depends on dislocation density, can also be recognized in our result in Eq. (3.38). The
defect energy for a single slip system with only edge dislocations that follows from Eq.
(3.38), reads

Ψ(ρ+, ρ−) = kBT
∑
+,−

ρ±

(
ln

(
ρ±
ρ±,0

)
− 1

)
− µb2L

8π(1− ν)
(ρ+ + ρ−) ln

(
ρ+ + ρ−

Λ2

)
(3.56)

= kBT
∑
+,−

ρtot ± ρGND

2

(
ln

(
ρtot ± ρGND

2ρ±,0

)
− 1

)
− µb2L

8π(1− ν)
(ρtot) ln

(ρtot

Λ2

)
,

where ρtot = ρ+ + ρ− and ρGND = ρ+ − ρ− are the total and GND density, respectively.
The energetic defect forces are then different for positive and negative dislocations and
read:

f±(ρ+, ρ−) ≡ ∂Ψ(ρ+, ρ−)

∂ρ±
= kBT ln

(
ρ±
ρ±,0

)
− µb2L

8π(1− ν)

(
ln
(ρtot

Λ2

)
+ 1
)
. (3.57)

The striking difference between Eqs. (3.55) and (3.56) is that in the former, the defect
energy only depends on GND densities, while in the latter, the defect energy depends
on both positive and negative density independently. To use the free energy expression
obtained here, the modeling as performed in [43] should thus be extended to positive and
negative densities separately.
At first sight, it is remarkable that the macroscopic free energy depends also on the
total dislocation density, and not only on the GND density, whereas the driving force on
microscopic level, i.e. the Peach-Koehler force, can be written in terms of GNDs only.
However, the total density appears in the many body contribution, which is the screening
correction to the leading order mean-field contribution, see the discussion in Sec. 3.3.1.
Screening arises as a dislocation influences its environment, i.e. it is more likely to find
positive dislocations in the immediate neighborhood of a negative dislocation, than to
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find negative ones. Screening effects usually depend on the total dislocation density, and
not on the GND density, see e.g. [73]. On the microscopic level there is no screening, as
the positions of the dislocations are prescribed.
So to conclude, the research presented here implies that for a single slip system, a crystal
plasticity model should incorporate the density and current of both positive and negative
dislocations, and not just the net density. It is expected that the same holds for multiple
slip systems. It is however beyond the scope of this research to decide whether it is more
appropriate in a dynamical framework to use the total and GND density of dislocations for
each slip system as a modeling variable, or to use densities of dislocations with different
Burgers vectors.
Previously, it was indicated by Svendsen and Bargmann [106] that thermodynamically
consistent crystal plasticity models based on the free energy are not restricted to the use
of GND densities only. However, most models treated in that work use either only the
GND density [69, 24, 25, 7, 21] or use a form of the free energy that can be split additively
into a part depending on the GND or SSD density [19].
Another difference between this work and [43], is that here, it was shown that the full
free energy expression in Eq. (3.38) is strongly non-local, and hence that local forms of
thermodynamic laws do not apply. On the contrary, in the work of Gurtin [43], a local
form of the second law, the local free energy imbalance, is used.

3.6 Summary and discussion

In this work, an explicit expression is derived for the free energy of a coarse-grained dislo-
cation density profile in a finite medium, subjected to a prescribed boundary deformation.
The free energy was determined by using statistical mechanics tools to average over many
microscopic realizations of the system to retrieve the coarse-grained system properties.
The main result of this chapter is the free energy expression in Eq. (3.22). This has been
obtained from the grand-canonical partition function, derived in Chap. 2. In the present
chapter, a Legendre transform to the canonical ensemble is performed, which results in
the free energy expression in terms of the dislocation density, Eq. (3.22). The obtained
expression is an explicit functional of the dislocation density profile, the mechanical load-
ing at the boundary and the temperature. The free energy depends on the finite volume
as the elastic energy density is only integrated over a finite volume, and as the interaction
between dislocations is determined in a finite medium.
The free energy in Eq. (3.22) comprises three terms: the mean-field elastic energy, the
statistical contribution of the dislocations and the many-body contribution that results
from the local arrangement of dislocations. Explicit expressions for these three terms arise
naturally from the coarse-graining procedure.
For the statistical and many-body contribution, the local density approximation (LDA)
can be used to obtain the semi-local expression in Eq. (3.38) in terms of the dislocation
density, provided that the density profile does not vary too much on small length scales
(see Sec. 3.4.1 for a detailed discussion). These two contributions together form the
so-called defect energy, used in crystal plasticity models. From this, explicit expressions
for the defect forces were derived, see Eq. (3.57).
The most prominent difference between the defect energy from most crystal plasticity
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models and the defect energy derived here, is that the former depends usually only on
GND densities, while the latter depends on the density of both positive and negative
dislocations separately. This implies that a microscopically based crystal plasticity model
should incorporate the density and current of both positive and negative dislocations for
slip system, rather than the GND-related quantities only.
Furthermore, it was shown that the statistical and many-body contribution vanish at zero
temperature. However, at low but finite temperature, the many-body contribution cannot
be neglected.
The energy at zero temperature is simplified further for a system with equally spaced glide
planes. In this specific case, the coarse-graining was also done using Γ-convergence in
the literature. It is concluded here that coarse-graining using statistical physics yields the
same result as Γ-convergence.
The free energy was derived by systematic coarse-graining of microstates, characterized
by a finite volume subjected to given boundary deformations which contains discrete dis-
locations with different possible Burgers vectors b on discrete glide planes. The averaging
is then performed over all possible numbers and positions of dislocations, and over all
strain fields that match the incompatibility imposed by the dislocations and the applied
deformation at the boundary.
The main approximation in the derivation is that the system is far away from criticality.
This implies that the obtained free energy expression is only accurate far away from tran-
sition points. Examples of such points are the unbinding transition of dislocations and
the transition from elastic to plastic material response.
So to conclude, the new and innovative aspects of the free energy expression in Eq. (3.22)
are the following:

• The free energy expression originates from statistically averaging straight and par-
allel, discrete dislocations in a finite volume. Apart from the straight and parallel
nature of the dislocations, no assumptions on the dislocation arrangement were
made.

• Properties that have proven to be important for the mechanical behavior have been
included, namely the presence of glide planes and the finite volume.

• In several special cases the free energy expression reduces to a simple expression that
can be implemented efficiently in a numerical scheme. The special cases considered
here are a local density approximation for a single slip system, the zero temperature
limit, and equally spaced glide planes.

• This free energy expression yields microscopically derived expressions for energetic
defect forces in crystal plasticity models [43]. Moreover, the derivation implies that
crystal plasticity models can better be formulated in terms of densities and currents
of both positive and negative dislocations on each slip system, rather than in terms
of GND-related quantities only.

For future research, it would be interesting to weaken the limitations as described in Sec.
3.3.3. This can be done by replacing the Gaussian approximation by a more accurate one,
for example the Villain approximation [61]. Then, the free energy expression could also
be used to study the melting transition, as was also studied by Mizushima [78], Ninomiya
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[84], Yamamoto [118] and Burakovsky [11].
Besides that, it may be possible to derive along the same lines a free energy expression
for dislocations that are not straight and not parallel. Such an extended phase space was
also argued for by Hochrainer [51]. A comparable analysis for a homogeneous system of
curved dislocations was performed before by Panyukov and Rabin [90].
Furthermore, new simple expressions can be obtained by considering other special cases.
For example, the local density approximation can be determined for multiple slip systems.
From such an expression and the resulting dislocation density profiles, the importance of
the different slip systems and their mutual influence can be determined.
As we have shown that the zero temperature limit is very sensitive to approximations made
in the derivation of the free energy, it would be worthwhile to extend the mathematical
coarse-graining procedure of Γ-convergence to non-zero temperatures to obtain results
that are more generally valid.
Based on this work, crystal plasticity models should be improved by extending the set of
variables, such that the obtained free energy expression could be used. Particularly, the
extension concerns including the densities for both positive and negative dislocations on
each slip system, rather than only the GND-related quantities. The current derivation
also suggests that, as the free energy is a strongly non-local functional, only the global
version of the dissipation inequality should be used in the derivation of crystal plasticity
models. It would be worthwhile to compare such a new crystal plasticity model with DDD
simulations and, ultimately, experiments.
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Abstract

The collective dynamics of dislocations is the underlying mechanism of plastic deforma-
tion in metallic crystals. Dislocation motion in metals generally occurs on multiple slip
systems. The simultaneous activation of different slip systems plays a crucial role in crys-
tal plasticity models. In this contribution, we study the energetic interactions between
dislocations on different slip systems by deriving the free energy in a multi-slip geometry.
In this, we restrict ourselves to straight and parallel edge dislocations.
The obtained free energy has a long-range mean-field contribution, a statistical contri-
bution and a many body contribution. The many body contribution is a local function
of the total dislocation density on each slip system, and can therefore not be written in
terms of the net dislocation density only. Moreover, this function is a strongly non-linear
and non-convex function of the density on different slip systems, and hence the coupling
between slip systems is of great importance.
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4.1 Introduction

The plastic deformation of metallic crystals is governed by the dynamics of dislocations, i.e.
line-like defects in the crystal structure. As dislocations can contain many dislocations,
up to 106 meters of dislocation line per cubic millimeter, the collective dynamics of
dislocations determines the plastic response of the crystal.
Dislocations can occur on different crystallographic slip systems. The activation of the
different slip systems is an important factor in any crystal plasticity theory. Hence, the
mutual influence of the different slip systems significantly affects the resulting elasto-
plastic behavior of the material.
In this contribution, an explicit expression for the free energy of dislocations on different
slip systems is derived, based on the implicit free energy expression derived in Chap. 2 and
3. Here, we restrict ourselves to straight and parallel edge dislocations. The resulting free
energy is a functional of the dislocation density profile on each slip system, the applied
deformation on the boundary and the temperature.
The chapter is organized as follows. In Sec. 4.2, the previous work is summarized and in
Sec. 4.3, the local, explicit expression for the many body contribution is derived. Then,
the properties of the resulting expression are discussed in Sec. 6.4.

4.2 Summary of previous results

In Chap. 2 and 3, the free energy of a dislocation density profile in a finite volume was
considered. To this end, a finite body with a surface Ω and a thickness L in the ẑ-direction
was considered. In the body, straight and parallel edge dislocations were embedded, of
which the line direction corresponds to the ẑ-direction. The density profile of dislocations
with Burgers’ vector b was considered for each possible Burgers’ vector separately. Hence,
we do not consider the net amount of dislocations only. With each possible Burgers’ vector
b a slip system can be identified, of which the glide planes are spanned by the Burgers’
vector and the line direction.
The body has a stiffness tensor C at a temperature T , and mechanical loading was applied
by imposing an arbitrary boundary deformation ub on ∂Ω.
The resulting free energy consists of three contributions. First, there is a mean-field
elastic contribution, which accounts for the long-range interactions between dislocations,
which does not account for the local organization of the dislocations. Second, there is a
statistical contribution that accounts for the entropy of dislocations. This term is present
even if they do not interact. The same term was encountered by Groma [35], based on
phenomenological arguments. Third, there is a many body contribution that corrects for
the local organization of dislocations.
The free energy as a functional of the boundary deformation ub, temperature T and
dislocation density profile ρb(S) for each Burgers’ vector b reads

F [ρb(S),ub, T ] =
L

2

∫
Ω

dA∆mf(S) : C : ∆mf(S) (4.1)

+ kBT
∑
b

{∫
Ω

dAρb(S)

(
log

(
ρb(S)

ρb,0

)
− 1

)}
+

∫
Ω

dAfmb(ρb(S), T ),
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where kB is the Boltzmann constant, S indicates the position vector in the (x, y)-plane
and where ρb,0 is the constant background density of dislocations, of which the exact value
is irrelevant as it only appears in the logarithm. The tensor ∆mf is the mean-field strain
due to the coarse-grained dislocation density and the imposed boundary deformation ub.
This can be calculated by the incompatibility- and mechanical equilibrium equations:

∇× βp = −
∑
b ξ̂bρb(s)

∆mf = (∇u− βp)s

σmf = C : ∆mf

∇ · σmf = 0

 in the bulk (4.2a)

u = ub
βp = 0

}
on the boundary. (4.2b)

Note that the mean-field strain is a strongly non-local functional of the dislocation posi-
tions because of the rotation in the first equation. This is because a dislocation causes
strain in the whole volume.
The many body free energy density fmb(ρb(S), T ) can be expressed as

fmb(ρb(S), T ) =
kBT

2

9∑
k=1

∫
d2q

(2π)2
ln(1 + λk(q)), (4.3)

where λk(q) (k ranging from 1 to 9) are the eigenvalues of the fourth order tensor
L
kBT

G̃0(q) : (
∑
b ρb(S)ẑ ⊗ b⊗ ẑ ⊗ b) and where q is the two-dimensional wave vector

in the (x, y)-plane. Note that only non-zero eigenvalues contribute. For the fourth order
tensor G̃0(q) an explicit expression is available in infinite space, which reads

G̃0,ijkl(q) =
µ

q2

(
QikQjl +RilRkj +

2ν

1− ν
RijRkl

)
. (4.4)

Here, q is the length of q, Q and R are three-dimensional second order tensors, which
read Qij = δij − qiqj/q2 and Rij ≡ εijkqk/q with εijk the anti-symmetric Levi-Cività
tensor. In real space, the tensor G0(R − R′) should be interpreted as the interaction
potential in infinite space between dislocations with different Burgers’ vectors.

4.3 Derivation of the many body contribution for mul-
tiple slip systems

In this section, we will derive an explicit expression for the local many body contribution
in Eq. (4.3) for multiple slip systems with straight and parallel edge dislocations. The
angle between the Burgers’ vector b and the x-axis is denoted by θb, see Fig. 4.1. Note
that θ−b = π + θb.
To determine the many body contribution explicitly, we will first determine the non-zero
eigenvalues λk(q). Subsequently, we will perform the integration over q in Eq. (4.3).
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Figure 4.1: The multi-slip geometry for two slip systems.

4.3.1 Eigenvalues

To find the eigenvalues λk(q), we will show that the fourth order tensor L
kBT

G̃0(q) :
(
∑
b ρb(S)ẑ ⊗ b⊗ ẑ ⊗ b) can be rewritten as the diadic product of two second order

tensors. Analogous to a matrix equal to the diadic product of two vectors, this form
implies that there is only one non-zero eigenvalue, which is equal to the contraction of
the two second order tensors.
For the simplification, we use that Qij(q) = ẑiẑj + εiklqk ẑl

q
εjmnqmẑn

q and that Rij(q) =

ẑi
εjmnqmẑn

q − εiklqk ẑl
q ẑj . In these expressions, it has been used that q is perpendicular to

ẑ. This, and the fact that we consider only edge dislocations, i.e. for which b ⊥ ẑ, yields
after some algebra

L

kBT
δ(qz)G̃0,ijkl(q)

(∑
b

ρbẑkblẑi′bj′

)
= (4.5)

=
µL

kBTq2

[
2ẑi

εjmnqmẑn
q

+
2ν

1− ν
Rij

][
ẑi′
εlrsqr ẑs

q

(∑
b

ρbblbj′

)]
.

Hence the only non-zero eigenvalue is the contraction of the two second order tensors in
the square brackets:

λ(q) =
2µL

(1− ν)kBT

1

q2

∑
b

ρb

((
q × ξ̂
q

)
· b

)2

(4.6)

=
2µL

(1− ν)kBT

1

q2

[∑
b

ρb|b|2 sin2 (φ− θb)

]
≡ 2µL

(1− ν)kBT

1

2q2
[α− β cos(2(φ− φ0))]

with α =
∑
b

ρb|b|2 and β2 =
∑
b,b′

ρbρb′ |b|2|b′|2 cos(2(θb − θb′)),

where φ is the angle between q and the x̂-axis. The second line was obtained by
first using that sin2 φ = (1 − cos(2φ))/2 for all φ, and second realizing that the sum
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of cosine functions with a period π is again a cosine function with period π, and
hence of the form β cos(2(φ − φ0)). The value of β2 was obtained by integrating(∑

b ρb|b|2 cos (2(φ− θb))
)2

over φ ∈ [0, 2π] (note that α2 ≥ β2). The value of φ0

was not determined explicitly, since it will turn out to be irrelevant.

4.3.2 Integration over wave vector

In this section, the integration in Eq. (4.3) over q will be performed. Using the non-zero

eigenvalue obtained in Eq. (4.6), the substitution p =
√

(1−ν)kBT
2µL q and employing polar

coordinates yields

fmb(ρb, T ) =
µL

(1− ν)4π2

∫ 2π

0

dφ

∫ ∞
0

dp p ln

[
α+ 2p2

2p2

(
1− β cos(2(φ− φ0))

α+ 2p2

)]
.

(4.7)

To perform the angular integral over φ, it is convenient to split the logarithm in the sum
of two logarithms, and to expand the above expression in a power series in β/(α + 2p2)
around 0 up to infinite order. Note that this series converges as |α| > |β|. In this way,
the following identity can be used∫

dφ ln

[
1− β cos(2(φ− φ0))

α+ 2p2

]
= −

∞∑
n=1

1

n

∫ 2π

0

dφ

(
β cos(2(φ− φ0))

α+ 2p2

)n
(4.8)

= −
∞∑
n=1

1

2n

(
β

α+ 2p2

)2n
2
√
πΓ(n+ 1/2)

n!
= 2π ln

1

2

1 +

√
1−

(
β

α+ 2p2

)2
 ,

where it was used for the second line that
∫ 2π

0
dφ cosn(2φ) =

∫ 2π

0
dφ sinn(2φ) vanishes

for odd values of n, while for even values, it is equal to 2
√
πΓ(n + 1/2)/n!. Combining

Eqs. (4.7) and (4.8) yields for the many body contribution

fmb(ρb, T ) =
µL

(1− ν)2π

∫ ∞
0

dp p ln

(
α+ 2p2 +

√
(α+ 2p2)2 − β2

4p2

)
(4.9)

=
µb2L

(1− ν)8π

[
2p2 −

√
(α+ 2p2)2 − β2 + 2p2 ln

[
α+ 2p2 +

√
(α+ 2p2)2 − β2

4p2

]
+

+α ln
[
α+ 2p2 +

√
(α+ 2p2)2 − β2

]]∞
0
,

Note that the last term in the square brackets diverges for large p. Therefore a large
cutoff wavelength Λ0 is introduced and the p-integration caries over the interval [0,Λ0].
Note that a cutoff for large wavevectors corresponds to a cutoff for small length scales.
This means that phenomena smaller than a certain length scale are neglected. This cutoff
can be justified by noting that linear elasticity, which was used to derive Eq. (4.1), is not
valid at length scales smaller than the lattice spacing. However, physical results should
not depend on the exact value of the cutoff.
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Finally, this yields for the many body contribution

fmb(ρb, T ) =
µL

(1− ν)8π

[√
α2 − β2 − α ln

(
α+

√
α2 − β2

4Λ2
0

)]
(4.10)

=
µL

(1− ν)8π

√2
∑
b,b′

ρbρb′ |b× b′|2

−

(∑
b

ρb|b|2
)

ln

(∑b ρb|b|2
)

+
√

2
∑
b,b′ ρbρb′ |b× b′|2

4Λ2
0

 .

where we used that 1− cos(2φ) = 2 sin2(φ) to rewrite α2−β2. Note that this expression
only depends on the logarithm of Λ0. Consequently, changes in the cutoff wavelength
result in an additional term in the free energy, which is only linear in the density. This
correspond to a constant shift of the chemical potential, which is not a physical quantity.
Hence physical quantities do not depend on the value of this cutoff.

4.4 Conclusion and discussion

By combining Eqs. (4.1) and (4.10), the following free energy is obtained for edge
dislocations on multiple slip systems

F [ρb(S),ub, T ] =
1

2

∫
dV∆mf : C : ∆mf + kBT

∑
b

∫
dAρb(S)

(
log

(
ρb(S)

ρb,0

)
− 1

)

+
µL

(1− ν)8π

∫
dA

√2
∑
b,b′

ρbρb′ |b× b′|2 (4.11)

−

(∑
b

ρb|b|2
)

ln

(∑b ρb|b|2
)

+
√

2
∑
b,b′ ρbρb′ |b× b′|2

4Λ2
0

 .

The many body contribution is written in terms of the total density of all disloca-
tions

∑
b ρb and the square of the perpendicular components of each two slip systems∑

b,b′ ρbρb′ |b×b′|2. Both can be written in terms of the total density on each slip system.

For the latter, it should be used that |(−b) × b′|2 = |b × b′|2. Therefore, this term can
be rewritten as∑

b,b′

ρbρb′ |b× b′|2 =
∑
b,b′

ρbρb′ + ρbρ−b′ + ρ−bρb′ + ρ−bρ−b′

4
|b× b′|2

=
∑

s,s′∈slip systems

ρtot,sρtot,s′ |bs × bs′ |2,

Hence the free energy is also a functional of the total density on each slip system.
Moreover, note that the many body contribution is a non-convex function of the disloca-
tion density. For example, when the above expression is worked out for two slip systems
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under an angle of 60◦ with Burgers’ vectors of equal length, and the total density on the
first slip system is kept fixed, the many body free energy density as a function of ρ2/ρ1

reads

fmb(ρ2/ρ1, T ) =
µb2L

(1− ν)8π
ρ1


√√√√2

(
1 +

(
ρ2

ρ1

)2

+
3

2

ρ2

ρ1

)
(4.12)

−
(

1 +
ρ2

ρ1

)
ln

1 +
ρ2

ρ1
+

√√√√2

(
1 +

(
ρ2

ρ1

)2

+
3

2

ρ2

ρ1

)− (1 +
ρ2

ρ1

)
ln

[
ρ1

Λ0

] .

Note that the last term depends on ρ1 and Λ0. However, it is linear in ρ2/ρ1, and hence
does not change the convex/concave form of the equation. The first two contributions
are plotted in fig. 4.2. As one can see, this graph is not convex.

Non-convex free energy functions were used in the literature [62, 117] to explain inho-
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Figure 4.2: Many body free energy density as a function of the dislocation density. As
one can see, this function is non-convex.

mogeneities in the strain distribution. The non-convex many body term will also yield
inhomogeneous dislocation densities, and hence inhomogeneities in the strain distribution.
A term depending on the gradient of the dislocation density was not derived here. This
could in principle be derived from Eq. (4.1) as in Sec. 3.4.1, by means of an expansion
in terms of the gradient. This would yield a weakly non-local expression in terms of the
dislocation density.
Finally, one could wonder whether the the interaction between slip systems derived here
could be approximated by a simple quadratic coupling as proposed by Gurtin [43]. To
this end, one would have to expand the above expression around a reference density up to
quadratic order. This is not feasible for two reasons. First, the many body contribution
is non-convex, which implies that such a coupling would be negative, and hence that one
expands around a maximum, rather than a minimum. Second, the obtained many body
contribution is strongly non-linear in the dislocation density, and hence a series expansion
would be an oversimplification.
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Abstract

The dynamics of large amounts of dislocations governs the plastic response of crystalline
materials. In this contribution we discuss the relation between the mobility of discrete
dislocations and the resulting flow rule for coarse-grained dislocation densities. The mo-
bilities used in literature on these levels are quite different, for example in terms of their
intrinsic stress dependence. To establish the relation across the scales, we have derived
the macroscopic evolution equations of dislocation densities from the equations of motion
of individual dislocations by means of systematic coarse-graining. From this, we can iden-
tify a memory kernel relating the driving force and the flux of dislocations. This kernel
can be considered as an effective macroscopic mobility with two contributions; a direct
contribution related to the overdamped motion of individual dislocations, and an emer-
gent contribution that arises from time correlations of fluctuations in the Peach-Koehler
force. Scaling analysis shows that the latter contribution is dominant for dislocations in
metals at room temperature. We also discuss several concerns related to the separation
of timescales.



Effective mobility of dislocations from systematic coarse-graining 75

5.1 Introduction

The main carriers of plastic flow in metallic materials are dislocations, i.e. line-like de-
fects in the crystal structure. Metals can contain up to 106 meters of dislocation lines
per cubic millimiter. Therefore, the understanding of the collective dynamical behavior
of dislocation densities is critical in developing a crystal plasticity model that is based on
the underlying mechanism of dislocation transport. This chapter focusses on collective
effects in the dynamical response. For simplicity, we will restrict ourselves to straight and
parallel dislocations.
The transport relations used for individual dislocations are quite different from those gen-
erally used for dislocation densities. On the one hand, in discrete dislocation dynamics
(DDD) simulations [110], the motion of dislocations is overdamped, and hence the veloc-
ity of dislocations is taken linearly proportional to the Peach-Koehler force on them. This
assumption is supported by molecular dynamics simulations [65, 86, 96], where dislocation
velocity is linearly proportional to the applied load in a quite large regime. On the other
hand, a viscoplastic flow rule is commonly used in phenomenological modeling to relate
the stress to the plastic flow of the material. This flow rule is often of power-law form
[40, 43] to mimic rate-independent plasticity with a dynamic activation of different slip
systems. The exponent is mostly not equal to one, and consequently, the flow is not
linearly proportional to the stress. The exponent of this power-law is often chosen such
that the material is almost rate independent: the material will only flow when a certain
threshold value of the stress is reached.
The question thus arises how the microscopic and macroscopic evolution equations are
related. Recent coarse-graining attempts focus on closures of the BBGKY-hierarchy of
equations that relate the evolution of the n-body density to an integral of the n+ 1-body
density, see e.g. [32, 120, 34]. Yet, these calculations do not result in a different mobility
on macroscopic level. The reason for this is that the BBGKY-hierarcy is obtained by
integrating out microscopic degrees of freedom, and hence there is only averaging over
phase space, but a transition in observation-timescale is not involved. In other words, the
BBGKY-hierarchy concentrates on the spatial correlation effects, while time-correlations
are not examined.
An alternative approach to obtain macroscopic dynamics and transport coefficients are
the Green-Kubo relations, where the macroscopic transport coefficient is the time-integral
of correlations of fluctuations in the microscopic flux, see e.g. [66, 52, 53, 103]. This
procedure thus includes both averaging over phase space and over correlations in the
fluctuating dynamical processes, which results in a qualitatively different transport co-
efficient on macroscopic level. Green-Kubo relations thus demonstrate how (additional)
irreversibility emerges when going to coarser levels of description.
It would be worthwhile to apply Green-Kubo relations to dislocation systems. However,
these relations have originally been derived near equilibrium while dislocation distributions
are far from equilibrium. Namely, they are not necessarily in thermal equilibrium with the
environment and are mostly subjected to a mechanical load. As a result, the role and
magnitude of the different kinds of fluctuations in the system are not clear. Therefore, we
use in this contribution a systematic coarse graining method within the framework of the
General Equations for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC-
framework), see [89, 31, 87, 88], to derive macroscopic evolution equations for the dislo-
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cation density based on the microscopic evolution equations, as shown in detail below.
The new and innovative aspect of the study presented here is that, for the first time, the
macroscopic mobility of dislocations is derived by systematic coarse-graining, where also
time-correlations are taken into account. By this means, an emergent contribution in the
response functions of the dislocation density profile has been identified, which turns out
to be dominant for dislocations in metals at room temperature. This could explain the
apparent difference between the microscopic and macroscopic mobilities currently used in
literature, but additional numerical investigations are needed to properly elucidate this.
Furthermore, it was shown that the Markovian approximation is not appropriate to de-
scribe the dynamics of dislocation densities.
The chapter is organized as follows: in Sec. 5.2 we introduce the GENERIC framework
that will be employed in this work. In Sec. 5.3.1, we discuss the evolution equations on
the microscopic level of individual dislocations. In Sec. 5.3.2, we describe the macroscopic
variables of interest, and their connection to the microscopic variables. Next, we derive
the macroscopic evolution equation for the dislocation density profile in Eq. (5.22). In
Sec. 5.4, we interpret our result and compare it to other approaches in literature. In Sec.
5.5, we discuss the effective, macroscopic mobility. In Sec. 5.6, we present a summary
and an outlook for future work.

5.2 Introduction to GENERIC

In this section, the GENERIC framework is described, since it is used to derive the evo-
lution equations for the macroscopic variables from the microscopic evolution equations.
For more detailed information, we refer to e.g. [31, 89, 88].
A necessary condition for the applicability of the GENERIC framework is that the mi-
crostates are in quasi-equilibrium with the macroscopic control parameters, which is the
analog of the ergodicity requirement in equilibrium thermodynamics. This however does
not imply that the ensemble should be considered “as an exact representation of the true
state of the atomistic system” [88], but rather as the best choice when only some average
macroscopic variables are experimentally accessible.
It has been questioned previously whether the ergodicity assumption applies to dislocation
systems. However, it has been shown recently [59] that statistical averages over many
small dislocation systems yield a realistic macroscopic behavior. It is therefore assumed
that the GENERIC framework can be applied to dislocation systems.
Microscopic variables are denoted with a subscript 1, and macroscopic variables with a
subscript 2. The explicit connection between the two sets of independent variables, {x1}
and {x2}, is given by a map Π : {x1} 7→ {x2} that maps the set of microstates {x1}
onto the set of macrostates {x2}. In other words, it associates a macrostate x2 with
each microstate x1. Furthermore, a probability density ρx2

(x1) is defined on the space
of microstates. This gives the probability to find a certain microstate x1, given that the
macroscopic system is in the state x2. The probability density should be normalized to 1.
Both the microscopic and macroscopic variables are assumed to describe a closed system.
It is assumed that on the microscopic level, the Markovian approximation holds. Then,
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the time-evolution equations at the microscopic level can be written in the following form

ẋ1 = L1[x1] · δE1[x1]

δx1
+M1[x1] · δS1[x1]

δx1
, (5.1)

where the inner product denotes a contraction over all components of microscopic variables
x1. If x1 entails field variables, this product also entails a spatial integral. Furthermore,
E1 and S1 are the total energy and entropy function(al)s at the microscopic level, L1[x1]
is the Poisson matrix that represents the geometric structure, and M1[x1] is the friction
matrix describing dissipative material properties. The first term on the RHS represents
the reversible evolution, and the second term the irreversible evolution.
In general, the dynamic matrices L1 and M1 should have certain properties to describe
a thermodynamically consistent model. First, the Poisson matrix should satisfy the so-
called Jacobi’s Identity, and it should be anti-symmetric in a generalized operator sense.
Second, the friction matrix should be positive semi-definite and symmetric. Third, the
following degeneracy conditions have to be fulfilled

L1 ·
δS1

δx1
= 0 ; M1 ·

δE1

δx1
= 0. (5.2)

The first degeneracy condition expresses the fact that reversible processes (governed by
L1) do not produce entropy, and the second ensures, together with the anti-symmetry
of L1, the conservation of total energy in the system. Combined with the degeneracy
condition, the symmetric and positive-definite nature of M1 reflects the fact that the
entropy production is always positive.
In the following, it will be assumed that the microscopic dynamics of the system of
interest is completely irreversible, as this simplifies the notation. It will be shown that
this assumption is true for the dislocation system studied here. The evolution equations
of the macroscopic system can then be expressed as follows, see [88, 22]

ẋ2 = M ′
2[x2] · δS2[x2(t)]

δx2
+

1

kB

∫ τ

0

d∆tK2[x2; ∆t] · δS2[x2(t−∆t)]

δx2
, (5.3)

where S2 is the macroscopic entropy functional, and M ′
2 and K2 contain the dynamical

response functions of the macroscopic system. The matrix M ′
2 arises from the direct

upscaling of the microscopic dynamics, while K2 captures the emerging irreversibility
upon changing model-level from fast variables x1 to slow averaged variables x2.
The timescale τ is the timescale on which K2 decays to zero. Note that the Markovian
approximation is not used at the macroscopic level, as it is not a priori sure whether
there is separation of timescales. When separation of timescales does apply, the entropy
derivative at time t−∆t can replaced by the derivative at time t. In that case, Eq. (5.3)
has the same GENERIC form as Eq. (5.1) with M2 = M ′

2 + 1
kB

∫ τ
0
d∆tK2.

The building blocks on the RHS of Eq. (5.3) can be derived from the microscopic building
blocks by (this is a straightforward modification of [88, Sec. 6.4.3])

S2[x2] =
〈
S1(x1)− kB ln [ρx2

(x1)]
〉
x2

(5.4a)

M ′
2(x2) =

〈
δΠ

δx1
·M1(x1) · δΠ

δx1

〉
x2

(5.4b)

K2(x2; ∆t) = 〈〈DΠ(x1, 0), DΠ(x1,∆t)〉〉 (5.4c)
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with

DΠ(x1) =
δΠ

δx1
·
(
M1(x1) · δS1

δx1
+ kB

δ

δx1
·M1(x1)

)
+ kBM1(x1) :

δ2Π

δx1δx1

where kB is Boltzmann constant, and where the double dot denotes a double contraction
over all components of x1, so for an arbitrary matrix A it is M1 : A = M1,αβγδAγδ.
The single and double angular brackets are defined by〈

Â(x1)
〉
x2

=

∫
dx1ρx2

(x1)Â(x1) (5.5a)〈〈
Â(x1, 0), B̂(x1,∆t)

〉〉
=

〈〈(
Â(x1(0))−

〈
Â(x1(0))

〉
x2

)
(5.5b)(

B̂(x1(∆t))−
〈
B̂(x1(∆t))

〉
x2

)〉
Wiener

〉
x2

,

for two observables Â(x1) and B̂(x1), that are function(al)s of the microscopic variables
x1. The single bracket thus denotes an ensemble average, and the double brackets denote
the average over the time-correlations of fluctuations. Note that the double bracket entails
two averages: an average over the stochastic Wiener process that governs the microscopic
dynamics and an ensemble average over the ensemble of initial states.

5.3 Evolution equations

5.3.1 Microscale evolution equations

The objective of this contribution is to derive the evolution equations of dislocation density
profiles under mechanical loading directly from the evolution equations of individual dis-
locations. From this, the dynamical response at the macroscopic level can be determined.
As explained, we will restrict ourselves to straight and parallel dislocations for simplicity.
As most of the dislocation transport is through the bulk, the focus of this work is on
the dynamical response in the bulk. It is assumed that these are equal to the transport
coefficients in an infinite, macroscopically homogeneous single crystal slab of material
with the same properties and with a thickness L in the direction of the dislocation lines.
The microscale system of interest thus consists of an infinite medium with a given, spa-
tially constant elastic compilance tensor S. In this medium, an arbitrarily large number
N of straight and parallel dislocations is embedded. The dislocations could have all pos-
sible Burgers vectors allowed by the crystallographic planes. Moreover, we do not only
consider net dislocations. As we restrict ourselves to straight and parallel dislocations,
the system can be described as an effective two-dimensional system where the position
of the dislocation lines are given by their intersection points with a plane perpendicular
to the dislocation line direction. The position of the ith dislocation is therefore denoted
by the two-dimensional vector R(i) and its Burgers’ vector by b(i). In this chapter, a
Lagrangian frame of reference is used. Furthermore, the infinite medium is subjected to
a macroscopic stress, which is the volume average of the total stress field:

Σ ≡ 1

V

∫
dV σ, (5.6)
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where V is the total volume. Note that the volume average of the stress due to a single
dislocation is zero in the infinite, macroscopically homogeneous single crystal slab of
material considered here. The total stress field σ could then be written as a sum of the
macroscopic stress field Σ and the stress fields of the individual dislocations. The stress
field due to a single dislocation in infinite space is given by e.g. Hirth and Lothe [49], and
is denoted by σ̃(i) for the ith dislocation. The total stress field thus reads

σ = Σ +
∑
i

σ̃(i). (5.7)

The dislocations in this medium are assumed to move according to a linear drag relation,
and the stochastic force on dislocations is neglected. Dislocations only move in their
glide plane, i.e. the plane spanned by the Burgers vector and the line direction. This slip
direction is indicated by ŝb. Note that climb of dislocations is thus excluded. The velocity
of the dislocations is linearly proportional to the component of the Peach-Koehler force
in the slip direction, and hence

dR(i)

dt
=

ŝb(i)

Bb(i)(T )

ŝb(i) · Fpk(i)

L
, (5.8)

where Bb(T ) is the temperature-dependent mobility. It follows from MD simulations that,
to a good approximation, Bb(T ) ∝ T , see e.g. [86]. Note that the mobility could be
different for dislocations with different Burgers vectors. Namely, it has been reported in
literature [96], that the mobility of edge and screw dislocations can be quite different.
Furthermore, Fpk(i)/L is the Peach-Koehler force per unit length of dislocation line on

the ith dislocation. This is given by (σ(R(i)) · b(i)) × ξ̂, where ξ̂ is the line direction,
and where σ(R(i)) is the stress field at the position of the ith dislocation. It is thus not
equal to σ̃(i), which is the stress field due to the ith dislocation.
We will now rewrite the evolution equation (5.8) in the GENERIC framework. As the
GENERIC-framework is only applicable for closed systems, see [31], the heat bath should
be modeled as well. For this system, the lattice will act as a thermal reservoir, as the
energy that is dissipated by the overdamped motion of dislocations will heat up the lattice.
To characterize the state of the lattice, one could model either temperature, lattice energy
or lattice entropy. For convenience, we choose the lattice entropy Slat as a variable. The
microscopic GENERIC variables are thus the positions of the N dislocations and the
lattice entropy; x1 = {R(1), . . . ,R(N), Slat}, where R(1), . . . ,R(N) denotes the set of
position vectors.
Now, the GENERIC building blocks (i.e. the energy, entropy and friction matrix) that
are consistent with the evolution equation (5.8) can be determined. The microscopic
entropy S1(x1) is just the entropy of the lattice, and the microscopic energy E1(x1) is
the sum of the thermal energy of the lattice and the elastic energy that follows from
the total stress field σ. It is assumed that the elasticity of the material is of energetic
nature (i.e. that the stiffness is independent of the temperature), which is the case for
metals. This implies that the derivative of the energy with respect to strain or stress
is independent of temperature (and hence of Slat). Consequently, the energy has two
decoupled contributions, namely, the elastic energy, which is independent of Slat and the
thermal energy of the lattice, which is independent of dislocation positions or mechanical
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loading.
So to conclude, the microscopic entropy and energy, and their respective derivatives read

S1(x1) = Slat ;
δS1

δx1
= (0, 1) (5.9)

E1(x1) = Elat(Slat) +
1

2

∫
dV σ : S : σ ;

δE1

δx1
= (−Fpk(1), . . . ,−Fpk(N), Tlat) ,

where the lattice temperature Tlat is defined by Tlat ≡ dElat

dSlat
, and where

Fpk(1), . . . ,Fpk(N) denotes the set of Peach-Koehler forces on each dislocation. The
derivation of dE1

dR(i) = −Fpk(i) was worked out previously in the literature, see e.g. [75,

110].
The microscopic friction matrix M1(x1) should model the drag of dislocations through
the lattice, as given in Eq. (5.8), and the resulting change in lattice entropy. Using the
symmetry and degeneracy of the friction matrix, Eqs. (5.2), yields for the friction matrix

M1(x1) =

(
ŝb(i)

ŝb(i)·Fpk(i)

Tlat

)
Tlat

LBb(i)(Tlat)
δii′

(
ŝb(i′),

ŝb(i′) · Fpk(i′)

Tlat

)
. (5.10)

It can be verified that dx1

dt = M1(x1) · δS1

δx1
yields Eq. (5.8) for the evolution of dislocation

positions. The resulting evolution of the lattice entropy is given by

dSlat

dt
=

1

Tlat

∑
i

Fpk(i) · dR(i)

dt
. (5.11)

This equation can be interpreted as follows: Fpk(i)· dR(i)
dt is the force on the ith dislocation

times its velocity, and hence the power dissipated by this dislocation. The sum over all
dislocations is thus the total dissipated power. As the system is closed, this is equal to the
increase of the lattice energy per unit of time. The temperature Tlat ≡ dElat

dSlat
indicates

how the lattice energy changes as the lattice entropy changes.

5.3.2 Macroscopic evolution equations

The microscopic GENERIC building blocks can be coarse-grained to obtain macroscopic
evolution equations. To do the upscaling, the macroscopic variables, the projection oper-
ators between the microscopic and macroscopic level, and the probability density on phase
space need to be defined first, see Sec. 5.2.
The first macroscopic state variable is the average dislocation density profile ρb(R), which
is defined for family of dislocations with the same Burgers vector b(i) = b separately. Note
that we do thus not only consider net densities of dislocations.As dislocations on the mi-
croscopic level are assumed to move only in their glide plane and will thus not climb,
the dislocation density will be zero in between these glide planes. The positions of the
glide planes are considered to be fixed in the material, and do thus not change during the
evolution.
The other two macroscopic state variables are related to the temperature of the material.
As mentioned in the introduction, the spatial distribution of dislocations is in general
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far from thermal equilibrium with the environment as their dynamics is slow. A similar
problem arises in glassy systems, where configurational degrees of freedom are not in
equilibrium with the environmental temperature. To overcome this problem, systems out
of thermal equilibrium could be described by two temperatures, see e.g. [15, 72, 10]. To
this end, the energy landscape is virtually split in different basins of attraction associated
with local minima in the energy. The first temperature is then equal to the environmental
temperature, and controls the vibrational energy of the system around local energy min-
ima. The second temperature controls the distribution over the different local minima.
These temperatures are only different if the energy barriers between the local minima
are high, such that the transitions between different minima take place on a timescale
much longer than the timescale of interest. A similar distinction between the ‘physical’
heat bath temperature and the configurational was made in the context of dislocations
by Limkumnerd and Van der Giessen [73], and by Groma [35].
The first temperature used here is the temperature of the heat bath, TB, that governs the
average energy associated with thermal fluctuations, which is the average of the lattice
energy Elat(Slat) in Eq. (5.9). The second temperature is the effective temperature of
the configuration, TC, that governs the average energy associated with the interaction
energy of dislocations. This is the elastic contribution in Eq. (5.9).
As macroscopic state variables we thus use the average dislocation density profiles, the
average energy of the lattice, EB, and the average configurational energy of the disloca-
tions, EC, so x2 = {{ρb(R)}, EB, EC}. The latter two are controlled by the temperature
of the heat bath and the configurational temperature respectively.
The next step is to define the mapping Π : {x1} 7→ {x2} between microscopic and
macroscopic variables. Analogous to [56, Ch. 5], the projection and its derivative are
defined by

Π =

 Πρb(R)
ΠEB

ΠEC

 =

 ∑
i,b(i)=b δ(R(i)−R)

Elat(Slat)
1
2

∫
dV σ : S : σ

 (5.12)

δΠ

δx1
=

 −δb(1),b∇Rδ(R(1)−R) . . .− δb(N),b∇Rδ(R(N)−R) 0
0 Tlat

−Fpk(i) . . .− Fpk(N) 0

 ,

where the summation denotes a sum over all dislocations i for which b(i) = b.
The last step is to define the probability density on phase space. As only average quantities
are used as macroscopic variables, it is most convenient to work in a generalized canonical
ensemble. To this end, three Lagrange parameters are defined, namely the local chemical
potential µb(R) (defined for each Burgers vector separately), the temperature of the heat
bath TB and the configurational temperature TC. The probability density then reads (see
e.g. [88])

ρx2
(x1) =

exp
[
Slat

kB
−

ΠEB
(Slat)

kBTB

]
ZB[TB]

exp
[
−

ΠEC
(R(i))

kBTC
+ 1

kBTC

∑
b

∫
dRµb(R)Πρb(R)

]
ZC[µb(R), TC]

,

(5.13)

where ZB[TB] and ZC[µb(R), TC] are the partition functions of the lattice and disloca-
tions, respectively. The latter depends on the macroscopic mechanical loading Σ, as the
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configurational energy depends on the loading. The partition functions are determined
by the normalization of the first and second term on the RHS separately. For the first,
one should integrate over the lattice entropy, and for the second, one should sum over all
possible numbers of dislocations and integrate over dislocation positions.
The multiplicative split in the probability density results from the additive split of the
microscopic energy in Eq. (5.9) into two parts that depend either on Slat or on {R(i)}.
This split also implies that ensemble averages can be split multiplicatively. Hence, for two
arbitrary functions g1(Slat) and g2(R(i)), one finds

〈g1(Slat)g2(R(i))〉x2
= 〈g1(Slat)〉TB

〈g2(R(i))〉µb(R),TC
. (5.14)

The Lagrange parameters are implicitly defined in terms of the macroscopic variables by

EB =
〈
ΠEB

〉
TB

; EC =
〈
ΠEC

〉
µb(R),TC

; ρb(R) = 〈Πρb(R)〉µb(R),TC
. (5.15)

Together with the multiplicative split in Eq. (5.14), these definitions imply that the tem-
perature of the heat bath TB only depends on EB, and moreover that the configurational
temperature TC and the local chemical potential µb(R) are independent of EB, and hence
of the temperature of the heat bath. This once more illustrates the split of the system
into two different subsystems.
Now, the macroscopic GENERIC building blocks S2, M2 and K2 can be derived system-
atically. The macroscopic entropy is by definition a Legendre transform of the thermody-
namic potential that follows from the partition functions in Eq. (5.13), see [88, Eq. (6.57)].
Hence the macroscopic entropy reads, see C.1 for details

S2(x2) =
−FB(TB) + EB

TB
+
−FC[ρb(R), TC] + EC

TC
, (5.16)

where FB and FC follow from ZB and ZC. FB(TB) should be interpreted as the free
energy of the lattice at temperature TB and FC[ρb(R), TC] as the free energy of the
dislocation density profile ρb(R) at a configurational temperature TC. Note that the
latter also depends on the volume-average stress Σ, as ΠEC

depends on Σ. To work
with this entropy in practice, a free energy functional is thus needed for both the lattice
and the dislocation density. For more details on the determination of the free energy of
dislocations, we refer to Chap. 2-4.
To determine the entropy derivative with respect to the macroscopic variables, one should
note that both temperatures are implicit functionals of the macroscopic variables by Eq.
(5.15). Hence the chain rule should be used to obtain these derivatives. However, the
explicit relation in Eq. (5.15) turns out not to be necessary in the derivation. Instead,
the thermodynamic relations dFB

dTB
= −SB(TB) and dFC

dTC
= −SC(TC) only, are sufficient

to obtain the following entropy derivatives:

δS2

δx2
=

(
−T−1

C

δFC
δρb(R)

∣∣∣∣
TC

, T−1
B , T−1

C

)
, (5.17)

where the free energy derivative in the first component is at constant configura-
tional temperature, rather than at constant configurational energy. By combining Eqs.
(5.4b), (5.10) and (5.12), one finds that the matrix M ′

2 can be written as

M ′
2(x2) = C2 ·D′2(x2) ·CT

2 (5.18)
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with

CT
2 =

(
−ŝb · ∇R(δ(R′′ −R)) 0 0

0 1 −1

)

D′2(x2) = TB

 δ(R′′−R′′′)δb,b′ρb(R′′)

LBb(TB)

〈∑i,b(i)=b′ δ(R(i)−R′′)ŝb′ ·Fpk(i)〉
x2

LBb′ (TB)

〈∑i,b(i)=b δ(R(i)−R′′′)ŝb·Fpk(i)〉
x2

LBb(TB)

∑
i

〈
(ŝb(i)·Fpk(i))

2
〉
x2

LBb(i)(TB)

 ,

where the multiplicative split of Eq. (5.14) was used, and the fact that Tlat/Bb(Tlat)
is almost independent of temperature. Therefore, 〈Tlat/Bb(Tlat)〉TB

was replaced by its
value at the most likely value of Slat, namely where Tlat = TB. The off-diagonal terms

in this matrix can be rewritten using that Fpk(i) = −
dΠEC

dR(i) , see Eq. (5.9), and by using

the definitions in Eqs. (5.13) and (5.15), see C.2 for details. This yields〈 ∑
i,b(i)=b

δ(R(i)−R)Fpk(i)

〉
x2

= −ρb(R)∇R
δFC

δρb(R)
+ kBTC∇Rρb(R) (5.19)

To determine K2, the forward time derivative DΠ is needed, which follows from Eqs.

(5.4c), (5.9) and (5.10). The vector DΠ contains the derivative kB
dBb(Tlat)

dSlat
. Since

Bb(Tlat) is almost linearly proportional to Tlat, this can be rewritten in terms of the heat
capacity of the lattice. Typical values for the heat capacity of metallic latices then suggest

that kB
dBb(Tlat)

dSlat
� Bb(Tlat), and hence this contribution can be neglected. Details of

the derivation can be found in C.3. It is thus found that

DΠ = C2 ·

(
Jb(R′′)

Q−
∑
b

∫
RJb(R)ŝb · ∇R

(
δFC

δρb(R) − kBTC log
[
ρb(R)

Λ2
b

]) )
(5.20)

≡ C2 ·
(
Jb(R′′)
P

)
with

Jb(R) ≡
∑
i,b(i)=b (δ(R(i, t)−R)ŝb · Fpk(i, t))− kBTlat(ŝb · ∇R)Πρb(R, t)

LBb(Tlat)

δFpk(i) ≡ Fpk(i) + ∇R
(

δFC

δρb(R)
− kBTC log

[
ρb(R)

Λ2
b

])∣∣∣∣
R=R(i)

Q ≡
∑
i

kBTlat

(
ŝb(i) · d

dR1(i)

) (
ŝb(i) · δFpk(i)

)
+
(
ŝb(i) · Fpk(i)

) (
ŝb(i) · δFpk(i)

)
LBb(i)(Tlat)

.

The interpretation of these terms is as follows; it will follow from the evolution equation
of the dislocation density that 〈Jb(R)〉x2

is the direct average of the dislocation flux, and
hence Jb(R) should be interpreted as the instantaneous dislocation flux of a microstate;

−∇R
(

δFC

δρb(R) − kBTC log
[
ρb(R)

Λ2
b

])
is the expectation value of the Peach-Koehler force at

R, and hence δFpk(i) is the fluctuation in the Peach-Koehler force on the ith dislocation;
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〈P〉x2
will turn out to be the direct average of the energy flux from the configurational

subsystem to the lattice. The power P was split into Q and a term proportional to Jb as
this facilitates rewriting the final result. The term proportional to Jb should be interpreted
as the flux times the expectation value of the force. Then Q contains only the correlation
effects between the force and flux on dislocations.
The expression for DΠ yields for the matrix K2

K2(x2) = C2 ·D′′2 (x2) ·CT
2 (5.21)

with D′′2 (x2) =

(
〈〈Jb(R, 0),Jb′(R′,∆t)〉〉 〈〈Jb(R, 0),P(∆t)〉〉
〈〈P(0),Jb′(R′,∆t)〉〉 〈〈P(0),P(∆t)〉〉

)
.

Finally, inserting Eqs. (5.17-5.21) into the GENERIC framework in Eq. (5.3) yields the
macroscopic evolution equations for the density:

∂ρb(R)

∂t
= −ŝb · ∇R

(
ρb(R)

LBb(TB)

(
−ŝb · ∇R

δF̃

δρb(R)

)
(5.22)

+
∑
b′

∫
dR′

∫ τ2

0

d∆t
〈〈Jb(R, 0),Jb′(R′,∆t)〉〉

kBTB

(
−ŝb′ · ∇R′

δF̃ (t−∆t)

δρb′(R′)

)

+

∫ τ ′
2

0

d∆t 〈〈Jb(R, 0),Q(∆t)〉〉
(

1

kBTB
− 1

kBTC

)
(t−∆t)

)

with

F̃ [ρb(R), TC, TB] ≡ FC[ρb(R), TC]− kB(TC − TB)

∫
dRρb(R)

(
log

[
ρb(R)

Λ2
b

]
− 1

)
,

where τ2 and τ ′2 are the decay times of the corresponding correlation functions, and
where Λ2

b is in principle arbitrary, but it is needed for dimensional reasons. The evolution
equation of the density is given in C.4.

5.4 Interpretation and comparison to literature

In this section, Eq. (5.22) will be interpreted. The first line results from direct averaging
of the microscopic evolution, which does not yield a new mobility.
The second and third line in Eq. (5.22) represent the emergent contribution to the macro-
scopic mobility, that results from time-correlations in the fluctuating microscopic dynami-
cal processes. As in the Green-Kubo relations, this contribution is equal to correlations of
fluctuations in fluxes. This can be seen in Eq. (5.21), where the emergent, macroscopic
transport coefficients are written as correlations of fluctuations in dislocation- and heat
fluxes, Jb and P.
Note that the emergent contribution is in principle non-local in both space and time. This
means that the driving force in position R′ influences the flow in position R directly, and
that the relations are in principle non-Markovian. We will discuss the importance of the
non-local character in the next section.
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The driving force for dislocation dynamics is the derivative of a modified free en-
ergy F̃ [ρb(R), TC, TB], which differs from the configurational free energy FC[ρb(R), TC]

by −kB(TC − TB)
∫
dRρb(R)

(
log
[
ρb(R)

Λ2
b

]
− 1
)

. The configurational free energy

FC obtained in the work of Groma [35, 36] and in Chap. 2-4 contains a similar

“statistical” or “ideal gas” contribution kBTC

∫
dRρb(R)

(
log
[
ρb(R)

Λ2
b

]
− 1
)

. Conse-

quently, the modified free energy F̃ [ρb(R), TC, TB] has a modified statistical contribu-

tion kBTB

∫
dRρb(R)

(
log
[
ρb(R)

Λ2
b

]
− 1
)

. When this contribution is inserted in the first

line of Eq. (5.22), a diffusive term in the density evolution is obtained: ∂ρb(R)
∂t

∣∣∣
diff

=

kBTB

LBb(TB)∇
2ρb(R). Therefore, the correction to the free energy should be interpreted as

that the driving force for diffusion is representative for the state of the system held at TB,
while the rest of the driving force is representative for the state of the system held at TC.
We will now discuss in which limit the obtained evolution equations reduce to results from
literature. To this end, we will compare our work with the variational approach proposed
in [36], and to the BBGKY-like hierarchies of equations proposed in [32, 120, 34]. We
will show that our result reduces to these works in the limit in which the interaction forces
between dislocations are relatively weak compared to the other forces on dislocations,
such as mechanical loading of the sample.
First, note that in this limit correlations of fluctuations are small, and hence the last two
lines of the density evolution equation are not important. The only difference with for
example [36] is then the notion of a second, configurational temperature in the driving
force. To elucidate this better, the evolution equation of the configurational temperature
is considered:

dTC

dt
=

∂TC

∂EC

∣∣∣∣
ρb(R)

dEC

dt
+
∑
b

∫
dR

∂TC

∂ρb(R)

∣∣∣∣
EC

dρb(R)

dt
. (5.23)

Note that ∂TC

∂EC

∣∣∣
ρb(R)

is the inverse of the heat capacity of the configurational subsys-

tem. Yet, the heat capacity is small when the interaction strength is small, and hence
∂TC

∂EC

∣∣∣
ρb(R)

is large. For similar reasons, one could argue that ∂TC

∂ρb(R)

∣∣∣
EC

is large, see C.5.

However, in the limit of weak interactions, dEC

dt and dρb(R)
dt do not decrease to zero, which

implies that
∣∣dTC

dt

∣∣ is large. The configurational temperature will thus cool down quickly
to the environmental temperature, and hence temperature differences are prohibited when
the interaction forces are relatively weak.
So to conclude: in the absence of significant correlation effects, the macroscopic evolution
of the dislocation density reduces to the equations proposed in [36, Eq. (37-43)], where
the free energy derivative plays the role of the driving force, and where the macroscopic
mobility is simply equal to the microscopic mobility.
In this limit, our result also matches the results obtained by Groma [32, 34] and Zaiser
[120], where the dislocation flux is proportional to the expectation value of the Peach-
Koehler force. To see the equivalence, one should realize that the free energy derivative
in Eq. (5.22) is approximately equal to the expectation value of the Peach-Koehler force
when TC is equal to TB, see Eq. (5.19).
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ρb(R) = R−2ρ̆b(R̆) typical dislocation density

R = ξR̆ ξ =
√

2/ΞCR typical length on which correla-
tions still exist, see [73] for the
relation

Tlat = TBT̆lat typical lattice temperature

δFpk,b(R) = FδF̆pk,b(R̆) F = µb2L
(1−ν)ζ typical value of force fluctua-

tions

Fpk,b(R) = SF̆pk,b(R̆) S = max(F, bΣL) typical value of force

Bb(T ) = BB̆b(T̆ ) typical microscopic mobility

∆t = τ∆̆t typical decay time of fluctua-
tions

Table 5.1: Rescaling of the parameters. Quantities indicated with a ˘ are of order unity.

However, we would like to stress that the limit of weak interactions is most likely not ap-
plicable to most dislocation systems, as dislocations tend to strongly organize themselves
in low-energy structures.

5.5 Macroscopic mobility

5.5.1 Dominant contribution to the scaling analysis

To determine which contributions in Jb and Q in Eq. (5.22) are dominant, a scaling
analysis is performed. All variables are rescaled to dimensionless quantities of order unity,
as summarized in table 5.1. The typical length scale over which correlations could exist
is expected to be equal to the typical length scale associated with the pair correlation of
dislocations, see e.g. [73].
For the scaling, it is necessary to get a feeling for the relation between TB and TC. It is
most likely that during the slow relaxation of the configurational degrees of freedom, the
configurational energy will decrease, and that this energy flows towards the heat bath.
As energy flows from high to low temperature, we thus conclude that TC > TB. This
assumption is supported by literature on dislocation systems, see e.g. [73, 35].
To determine the typical magnitude of the terms in Jb, the typical magnitude of force
fluctuations, rather than the total force is needed. We expect that fluctuations in the
Peach-Koehler force are due to density fluctuations, and hence due to interactions between
dislocations, and not due to the macroscopically imposed stress Σ. Therefore, the typical
value of fluctuations in the Peach-Koehler force is expected to scale with the typical
interaction energy between dislocations, µb2L/(1− ν), divided by a yet unknown length
ζ. The typical magnitude of the Peach-Koehler force S is the maximum of the typical
force due to loading, bΣL, and the typical strength of interaction forces F .
It will turn out to be convenient to define two dimensionless coupling constants ΞB ≡

µb2L
(1−ν)kBTB

and ΞC ≡ ΞBTB/TC. These coupling constants compare the typical energy

associated with dislocation interactions via the Peach-Koehler force (µb2L/(1− ν)) with
the thermal energies (kBTB and kBTC, respectively). It was shown in Sec. 3.3.2 that
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ΞB � 1 for metals at room temperature, at least when the slab thickness L is larger than
a single Burgers vector.
It can now be determined which contribution in Jb and Q are dominant:

Jb(R) =
F

LB

1

R2

∑
i,b(i)=b

(
δ(R̆(i)− R̆)ŝb · F̆pk(i)

)
− Ξ−1

B
ζ
ξ

˘Tlat(ŝb · ∇̆R)Π̆ρ̆b(R̆)

B̆b( ˘Tlat)

(5.24a)

Q =
FS

LB

ξ2

R2

∑
i

kBTB

ξS

(
ŝb(i) · d

dR1(i)

) (
ŝb(i) · δFpk(i)

)
+ (ŝb(i) · F̆pk(i))(ŝb(i) · δF̆pk(i))

B̆b(i)( ˘Tlat)

(5.24b)

where the delta function and Πρb in Eq. (5.24a) scale with R−2. Moreover, it was assumed

for the second contribution that ∇R = ξ−1∇̆R̆. Namely, the spatial derivative can be
taken out of the ensemble average. Then this derivative acts on correlations of density
fluctuations, for which the typical length scale is ξ. The factor ξ2/R2 in Eq. 5.24b should
be interpreted as the number of dislocations in a (2D-)volume of size ξ, which is the
volume in which correlations are expected to be non-zero.
The typical size of the two contributions in Jb thus differ by a factor Ξ−1

B
ζ
ξ . The typical

length scale ζ associated the Peach-Koehler force is not known, but it is not expected
to be orders of magnitude larger than either the dislocation spacing R or the correlation

length ξ. In the first case, the factor reads Ξ−1
B

√
ΞC/2 = Ξ

−1/2
B

√
TB/TC, whereas in the

second case, the factor is simply Ξ−1
B . As TB/TC < 1 and ΞB � 1 for metals at room

temperature, the factor is small in both cases and hence the first term is dominant. This
implies that 〈〈Jb,Jb′〉〉 can be determined from fluctuations in the Peach-Koehler force
only, and fluctuations in the gradient of the density can safely be ignored.
The typical size of the contributions in Q differ by a factor equal to the minimum of
kBTB

ξF = Ξ−1
B

ζ
ξ and kBTB

ξΣbL . The former is already small, and hence the second contribution
to Q is dominant.
Furthermore, note that

(
ŝb(i) · Fpk(i)

) (
ŝb(i) · δFpk(i)

)
could be split in a linear and a

quadratic term in δF̆pk(i), while Jb is linear in δFpk(i). Therefore, the leading order
term in 〈〈Jb,Q〉〉 has a quadratic and a cubic term in δFpk(i). As the latter is odd in the
fluctuation, this will probably be small after averaging, and hence the leading order term
in 〈〈Jb,Q〉〉 could in principle be expressed in terms of 〈〈Jb,Jb′〉〉.
Now, the flux in the RHS of Eq. (5.22) could be rescaled, to determine which term is
dominant:

S

LBR2

ρ̆b(R)

B̆b(T̆B)

(
−ŝb · ∇̆R̆

δ ˘̃F

δρ̆b(R̆)

)
(5.25)

+
ξ2Sτ

kBTB

(
F

LBR2

)2∑
b′

∫
dR̆′

∫ τ2/τ

0

d∆̆t
〈〈
J̆b(R̆, 0), J̆b′(R̆′, ∆̆t)

〉〉(
−ŝb′ · ∇̆R̆′

δ ˘̃F

δρ̆b′(R̆′)

)

+
ξ2Sτ

kBTB

(
F

LBR2

)2 ∫ τ ′
2/τ

0

d∆̆t
〈〈
J̆b(R, 0), Q̆(∆̆t)

〉〉(
1− TB

TC

)
(t̆− ∆̆t),
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where it was used that the typical size of the driving force −ŝb · ∇̆R̆
δ ˘̃F

δρ̆b(R̆)
is S, see

Eq. (5.19). The second and third term are thus equally important. Moreover, the ratio

between the first and second contribution equals τ
kBTB

2
ΞC

F 2

LB = TC

TB

τF
LBζ . The term F

LB
can be interpreted as the typical dislocation velocity due to fluctuation in the Peach-
Koehler force. Hence, τF

LB is the “free-glide distance” that a dislocation typically travels
due to fluctuations. This implies that the emergent contributions are dominant when the
free-glide distance is not much shorter than ζ, especially when TC � TB. This can be
verified numerically, but it is to be expected that the emergent contributions are indeed
dominant.
Note that from the microscopic evolution equations, Eq. (5.8), it follows that the typical
timescale τ is linearly proportional with B, and hence the free-glide distance is independent
of the microscopic mobility. This implies that the macroscopic mobility scales linearly with
the microscopic mobility, which was to be expected.

5.5.2 The non-local character of the memory kernel

Now, the non-local character of 〈〈Jb,Jb′〉〉 will be discussed. It is expected that this
nonlocality is only important when the typical length scale over which the driving force
varies is much shorter than the typical length scale over which 〈〈Jb(R, 0),Jb′(R′,∆t)〉〉 is

non-zero. Therefore, the driving force ŝb′ · ∇R′

(
δF̃

δρb′ (R
′)

)
in Eq. (5.22) is considered as

a function of R′ and will be expanded around R. This yields for the second contribution
to the dislocation flux

∞∑
n=0

1

n!

∫ τ2

0

d∆t
∑
b′

H
(n)
bb′ (∆t)

n
: (∇R)⊗nŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

)

with H
(n)
bb′ (∆t) ≡

∫
dR′
〈〈Jb(R, 0),Jb′(R′,∆t)〉〉

kBTB
(R′ −R)⊗n, (5.26)

where ⊗n denotes a diadic product of n copies, and
n
: denotes a contraction of n indices. It

is expected that 〈〈Jb(R, 0),Jb′(R′,∆t)〉〉 only depends onR−R′ and that it is symmetric

in R−R′, and hence that the odd coefficients H
(n)
bb′ (∆t) vanish.

This local expression only makes sense when the coefficients H
(n)
bb′ (∆t) exist, and is only

useful if it can be truncated after the zeroth order term. For this, the higher order
terms should be sufficiently smaller than the zeroth order term, which in turn depends on
the typical length scale over which the driving force changes. Numerical comparison of

H
(0)
bb′(∆t) and H

(2)
bb′(∆t) provides a minimum for this length scale.

5.5.3 Separation of timescales

The last question that arises from the evolution in Eq. (5.22) is whether the memory
kernels 〈〈Jb,Jb′〉〉 and 〈〈Jb,Q〉〉 could be replaced by a single coefficient, or equiva-
lently, whether there is separation of timescales on the macroscopic level. Separation of
timescales applies when the driving forces corresponding to these memory kernels hardly
changes during the typical timescales τ2 and τ ′2 on which the memory kernel is non-zero.
By expanding the driving force at t−∆t up to first order in ∆t around zero, conditions
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could be derived under which separation of timescales applies. For 〈〈Jb,Jb′〉〉, separation
of timescales applies if for each order n the following inequality holds:

−
[∫ τ2

0

d∆tH
(n)
bb′ (∆t)∆t

]
n
:

d

dt
(∇R)⊗nŝb′ · ∇R

(
δF̃ (t)

δρb′(R)

)
(5.27)

�
[∫ τ2

0

d(∆t)H
(n)
bb′ (∆t)

]
n
: (∇R)⊗nŝb′ · ∇R

(
δF̃ (t)

δρb′(R)

)
.

Comparing the terms in angular brackets on the LHS and RHS of this equation yields a

typical timescale. If the driving force ŝb′ · ∇R
(

δF̃ (t)
δρb′ (R)

)
does not change significantly

within this time, separation of timescales applies.
Analogously, one finds for 〈〈Jb,Q〉〉 that separation of timescales applies if the following
inequality holds

−

[∫ τ ′

0

d∆t 〈〈Jb(R, 0),Q(∆t)〉〉∆t

]
d

dt

(
1

kBTB
− 1

kBTC

)
(5.28)

�

[∫ τ ′

0

d∆t 〈〈Jb(R, 0),Q(∆t)〉〉

](
1

kBTB
− 1

kBTC

)
.

Again, comparing the terms in angular brackets yields a typical timescale. If the temper-
ature difference does not change significantly within this time, separation of timescales
applies for 〈〈Jb,Q〉〉.
Thus, to check whether separation of timescales applies, one should determine a typi-
cal timescale by comparing the terms in angular brackets on the LHS and RHS of Eqs.
(5.27) and (5.28), and check whether changes in the corresponding driving force are slow
compared to this timescale.

5.6 Summary and outlook

In this contribution, the dynamical response functions of the dislocation density were
derived from the evolution equations of individual dislocations, see Eq. (5.22) for the
result. This research was motivated by the difference between the microscopic mobility
of dislocations observed in MD simulations [65, 86, 96], and the macroscopic mobility
of dislocations used in phenomenological crystal plasticity models [40, 43]. For example,
the stress-dependence of the two mobilities is qualitatively different, for which a good
justification seems to be lacking.
Current approaches to link microscopic and macroscopic dynamics focus only on the
averaging over phase space using BBGKY-hierarchies of equations, see e.g. [32, 120, 34],
in which a transition in timescale is not involved. Therefore, such an approach does not
yield an emergent, macroscopic mobility. To overcome this, we have used the GENERIC-
framework of non-equilibrium thermodynamics to derive macroscopic evolution equations
based on the microscopic dynamics.
The main characteristics of the obtained dynamical response function of the dislocation
density are:
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• Apart from a direct contribution arising from the microscopic irreversible dynamics,
it was found that the dynamical response function of the dislocation density entails
an emergent contribution in the form of a memory kernel.

• The emergent memory kernel is probably dominant over the contribution from mi-
croscopic irreversible dynamics. The emergent contribution may therefore be used
to explain the apparent qualitative difference between microscopic and macroscopic
mobilities in literature.

• As in the Green-Kubo relations, the emergent contribution in the transport coeffi-
cient follows from time-correlations of fluctuations in the dislocations flux.

• Separation of timescales on macroscopic level only arises when the typical timescale
on which the driving force changes is much smaller then the timescale on which
fluctuations in the driving forces decay, see the conditions in Eqs. (5.27) and
(5.28). Whether and when this is satisfied is not trivial and should be investigated
in a numerical study.

The emergent memory kernel can, most likely, not be evaluated further analytically. How-
ever, computer simulations may be used to determine the dependence of the effective
macroscopic mobility on the heat bath- and configurational temperature, the dislocation
density and the macroscopically imposed average stress Σ. These dependencies could be
far from trivial, and it would be worthwhile to compare these to macroscopic plasticity
models.
Moreover, the current upscaling procedure can also be applied to more advanced dynam-
ical equations at the microlevel. For example, for screw dislocations in α-Fe below a
certain transition stress, the relation between stress and strain is not linear, but rather
exponential, see e.g. [30, 107]. Moreover, climb of dislocations could also be included.
Finally, we expect that the procedure applied to dislocations presented here could be
extended to other systems quite easily. Indeed, the derivation presented here did not
make use of special properties of the Peach-Koehler force, and hence the generalization
to particle systems governed by other forces should be straightforward. The fact that the
emergent contribution determines the mechanical response of dislocation systems suggests
that such an emergent contribution might also be non-negligible for other systems.



Chapter 6

Viscoplastic flow rule for  dislocation-mediated 
plasticity from systematic coarse-graining

Largely reproduced from: Kooiman, M., Hütter, M., and Geers, M.G.D.,  
Viscoplastic flow rule for dislocation-mediated plasticity from systematic 
coarse-graining (submitted for publication)
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Abstract

The plastic response of metals is determined by the collective, coarse-grained dynamics
dynamics of dislocations, rather than by the dynamics of individual dislocations. The
evolution equations at both levels are quite different, for example considering their de-
pendence on the applied mechanical load. On the one hand, the relation between load
and dislocation velocity for individual dislocations is linear. On the other hand, in phe-
nomenological crystal plasticity models, the relation between load and plastic slip is highly
non-linear and often taken of power-law form. In this work, it is shown that this differ-
ence is justified and a consequence of emergent effects. In Chap. 5, an expression for the
macroscopic dislocation flux was derived by systematic coarse graining. This expression
has been evaluated numerically in this chapter. The resulting relation between dislocation
flux and applied mechanical load is found to be of power-law form with an exponent 3.7,
while the underlying Discrete Dislocation Dynamics has a linear flux-load relation.
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6.1 Introduction

The transport of dislocations, i.e. line-like defects in a crystal structure, is the underlying
mechanism of plastic deformation of metals. As metals can contain many dislocations
(up to 1000 km of dislocation line per cubic millimeter), capturing the collective behavior
of dislocations is key in modeling plastic deformation of metals. For simplicity, attention
in this work is restricted to straight and parallel dislocations.
For single dislocations, a linear response, i.e. the dislocation velocity is linearly proportional
to the applied load, has shown to be appropriate in a large range of load conditions and
temperatures, see e.g. [65, 86, 96]. In contrast, in crystal plasticity models based on the
dynamics of dislocation densities [40, 43], the relation between plastic flow and applied
mechanical load is generally assumed to be strongly non-linear. The dependence of these
transport relations on the imposed mechanical load is thus quite different between the
two levels of description.
Previously, the connection between evolution equations of individual dislocations and that
of the dislocation density has been made by means of the BBGKY-hierarchy of equations
[32, 120, 34], where one averages over phase space. However, these do not yield an
emergent mobility, as no transition in observation-timescale is made.
Recently, we have derived evolution equations for the dislocation density, see Chap. 5.
This was done by means of systematic coarse-graining using the General Equation for
the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC), in which a transition in
observation timescale is one of the key features. The evolution equation could be written
as a driving force times a transport coefficient. The latter is dominated by an emergent
contribution of Green-Kubo type, i.e. which results from correlations in fluctuations of
the dislocation velocity. Our hypothesis is that the non-linear stress dependence of the
transport relations of large amounts of dislocations is an emergent phenomenon.
In this contribution, this hypothesis is assessed by considering the stress dependence of the
emergent transport coefficient by means of numerical simulations. To this end, Discrete
Dislocation Dynamics (DDD) simulations of an ensemble of dislocation configurations are
considered, and both the average driving force and the correlations in fluctuations of the
dislocation velocity are quantified.
The new and innovative aspect of this work is that, for the first time, we are able to
explain the apparent difference in stress dependence of the transport relations at the level
of discrete dislocations compared to that of dislocation densities.
The chapter is organized as follows: in Sec. 6.2.1 previous work is summarized and the
details of the ensemble are explained. In Sec. 6.2.2, the numerical scheme is elaborated.
Subsequently, the results of the simulations are presented in Sec. 6.3, and discussed in
Sec. 6.4.
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6.2 Methods

6.2.1 Theoretical Background

Summary of previous results

In this section, we summarize the results obtained in Chap. 5, in which we have derived
the evolution equation of the dislocation density by systematic coarse-graining of the
evolution equations of individual, discrete dislocations. From now on, we will refer to the
scale of individual dislocations as the microscale, and to the scale of dislocation densities
as the macroscale.
The microscale system consists of an arbitrary large number N of straight and parallel
edge dislocations of length L. The position of each dislocation is indicated by R(i) and
its Burgers vector by b(i). These dislocations are embedded in a body with an infinite
surface, a thickness L and a stiffness C, held at a temperature TB, on which a volume-
average stress Σ is imposed. It is assumed that the mechanical response in this infinite
volume is representative for the bulk.
Only dislocation glide is considered. Hence dislocations only move in the slip direction
corresponding to their Burgers vector, ŝb. Discrete dislocations move when a Peach-
Koehler force is exerted on them. This force results from stresses due to externally
imposed mechanical loading and due to the presence of other dislocations, as described
in [110]. The evolution equation for the positions of the dislocations then reads

dR(i)

dt
= ŝb(i)v(i) ; v(i) =

ŝb(i) · Fpk(i)

LBb(i)(TB)
, (6.1)

where v(i) is the velocity of the ith dislocation and where Bb(i)(TB) is the mobility of a
discrete dislocation segment, which depends on the temperature but not on the applied
mechanical load. The linear drag law is motivated by Molecular Dynamics simulations of
single dislocations [65, 86, 96].
The macroscale system consists of the same body with the same stiffness, temperature
and volume-average stress. However, instead of discrete dislocations, we now consider
dislocation density profiles ρb(R) for each possible Burgers vector b. In addition to the
dislocation density profiles, an additional configurational temperature is needed to describe
the state of the dislocations. Particularly, it turns out that the dislocation distributions
emerging from solutions of Eq. (6.1) are not in thermal equilibrium with the environment.
A similar problem arises in glasses, where configurational degrees of freedom are frozen
in at a higher, configurational temperature because of high energy barriers in the system.
In this context, the idea of a second, configurational temperature was developed, see e.g.
[15, 72, 10]. It is thereby assumed that the system stays for a long time in a basin of
attraction around a local minimum. Vibrations of the system in this basin are assumed
to be in equilibrium with the environmental temperature TB, while the distribution of
microstates over the different basins of attraction is described by a higher, configurational
temperature TC. For dislocations, the concept of a configurational temperature was also
used in other work, see e.g. [73, 35].
As derived in Chap. 5, the leading order terms in the obtained evolution equation for the
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dislocation dislocation density read (see appendix D.1)

∂ρb(R)

∂t
= −ŝb · ∇R

(∫ ∞
0

d∆t
∑
b′

H
(0)
bb′(∆t)

kBTB

(
−ŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

)))
(6.2)

with

H
(0)
bb′(∆t) ≡

2

Ω

〈 ∑
i,b(i)=b

δv(i, 0)
∑

i′,b(i′)=b′

δv(i′,∆t)

〉
, (6.3)

where the angular brackets 〈. . .〉 indicate an ensemble average at constant configurational
temperature and density, where δv(i) ≡ v(i, 0)− 〈v(i)〉 is the fluctuation in the velocity
of the ith dislocation and where Ω is the cross sectional area.
In Eq. (6.2), F̃ [ρb(R), TC, TB] is the free energy, whose derivative acts as a driving force
for the dynamics. This driving force also includes the influence of the applied mechanical
load. It was shown in Chap. 5 that the driving force can also be calculated numerically
from the average force per dislocation, see also Eq. (D.4):

−ŝb · ∇R

(
δF̃

δρb(R)

)
= 〈ŝb · Fpk(i)〉 − ŝb · ∇R

(
kBTB log

[
ρb(R)

Λ2
b

])
, (6.4)

where 〈ŝb · Fpk(i)〉 is the average Peach-Koehler force per dislocations, equal to

N−1
b

〈∑
i,b(i)=b ŝb · Fpk(i)

〉
. The second term on the RHS of Eq. (6.4) should be in-

terpreted as a diffusive force. As the energy associated with the heat bath temperature,
kBTB, is small compared to the other energy scales in the system, this term will be ne-
glected in the rest of this chapter.

The memory kernel H
(0)
bb′(∆t) is expressed as a correlation of fluctuations in the velocity

of dislocations. This expression could therefore be interpreted as a Green-Kubo relation

that relates correlations of fluctuations to transport coefficients. Note that H
(0)
bb′(∆t) has

the dimension of inverse time squared.
In this work, both the driving force and the memory kernel will be determined numerically.
The flux of dislocations follows from these two quantities.
To derive Eq. (6.2) two assumptions were made, which will be verified numerically, see
Sec. 6.3.1 and 6.4.1. First, separation of length scales is assumed. The velocity of a
dislocation is only correlated with that of dislocations in its close neighborhood. For the
separation of length scales, the typical dimensions of this neighborhood should be smaller
than the length scale over which the driving force on the macroscale typically varies. An
estimate for the size of this neighborhood follows from the field Hbb′(∆R,∆t), defined
by

Hbb′(∆R,∆t) ≡
2

Ω

〈 ∑
i,b(i)=b

∑
i′,b(i′)=b′

δ(R(i)−R(i′))δv(i, 0)δv(i′,∆t)

〉
. (6.5)

Note that the spatial integral of this field over ∆R is equal to H
(0)
bb′(∆t = 0). The field

Hbb′(∆R,∆t) should thus be interpreted as the contribution to the memory kernel from
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pairs at a certain distance ∆R.
Second, it was assumed that expectation values of odd powers of the fluctuations can be
neglected. To verify this, the following condition should hold:〈 ∑

i,b(i)=b

δv(i, 0)
∑

i′,b(i′)=b′

(
δv(i′,∆t)2 −

〈
δv(i′,∆t)2

〉)〉

�

〈 ∑
i,b(i)=b

δv(i, 0)
∑

i′,b(i′)=b′

δv(i′,∆t)

〉
〈v(i)〉 , (6.6)

where the LHS is cubic in the fluctuation, while the RHS is quadratic. Note that the RHS
can be rewritten in terms of H(0)(∆t).
One may question whether the memory kernel in Eq. (6.2) is really needed. In steady
state, where the driving force is independent of time, the evolution equation reads

∂ρb(R)

∂t
= −ŝb · ∇R (Jb) (6.7a)

with Jb ≡
∑
b′

Γeff,bb′

kBTB

(
−ŝb′ · ∇R

(
δF̃ (t)

δρb′(R)

))
(6.7b)

Γeff,bb′ ≡
∫ τdecay

0

d∆tH
(0)
bb′(∆t). (6.7c)

The advantage of this equation is that it allows to interpret Γeff,bb′ as the effective,
macroscopic mobility and Jb as the steady state current, and that no convolution is
needed.
Eq. (6.7) could also be used when the driving force changes sufficiently slow. To this end,

one should compare the typical timescale τcorr on which H
(0)
bb′(∆t) decays with the typical

timescale τrelax on which small perturbations in the density profile decay. The correlation
time τcorr can be determined numerically, and is defined as:

τcorr ≡
(∫ τ2

0

d∆tH
(0)
bb′(∆t)

)/
H

(0)
bb′(∆t = 0). (6.8)

The typical time on which fluctuations decay can be determined by considering fluctuations
in the density on top of a steady-state solution of Eq. (6.7a) and by expanding the driving
force around the steady-state. To this end, we considered as a steady-state solution a
spatially constant density profile ρ0 that is equal for all possible Burgers vectors, such that
the system has no net dislocation content. As a fluctuation, we considered for one Burgers
vector b a density fluctuation, such that ρb(R) = ρ0 +δρ(R). The free energy expression
from Chap. 3 was used in the scaling analysis, where the dominant contribution in the
force results from the Peach-Koehler force. Then, the typical timescale for the dynamics
of this fluctuation is, see Appendix D.2

τrelax =
1

Γeff,bb′µb2L/kBTB
, (6.9)

where Γeff,bb′ should be determined at the appropriate mechanical load.
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Some important remarks on ensemble averages

For dislocations in metals, it is a legitimate question whether the system is ergodic,
and hence whether statistical, average measures are relevant. Energy barriers are high
compared to the thermal energy of the environment, kBTB, and hence the system will not
evolve by passing barriers in phase space, but rather stay in its own basin of attraction.
It has been shown [59] that statistical averages of many small dislocation systems yield a
realistic macroscopic behavior. We therefore assume that the ensemble average over the

whole phase space of H
(0)
bb′,basin(∆t) in each basin of attraction yields H

(0)
bb′(∆t) for the

entire ensemble, and hence the macroscopic transport coefficient Γbb′,eff.

However, to obtain H
(0)
bb′,basin(∆t), one cannot use the ensemble average over the whole

phase space to obtain 〈v(i)〉, but one should rather use the ensemble average in the basin
of attraction only. Unfortunately, as the phase space is high-dimensional, averages for each
basin of attraction separately cannot be obtained. To overcome this, long-time averages
of each trajectory will be used, which are close to, but not equal to the basin-ensemble
average. In fig. 6.1(a), the different averages are sketched for a two-dimensional phase
space.

To write H
(0)
bb′(∆t) in terms of long-time averages, we write

ensemble average

basin-ensemble average

long-time average

example trajectory

(a)

d

d

(b)

Figure 6.1: (a) Sketch of a two-dimensional phase space with different basins of attraction,
the ensemble average, the ensemble average in each basin of attraction and the long-time
average for an example trajectory. (b) A sketch of a microstate with positive and negative
dislocations on different slip systems. Periodic boundary conditions are imposed.

H
(0)
bb′(∆t)

2Ω−1
=

〈〈 ∑
i,b(i)=b

(v(i, 0)− 〈v(i)〉time + 〈v(i)〉time − 〈v(i)〉basin-ens.) (6.10)

·
∑

i′,b(i′)=b′

(v(i′,∆t)− 〈v(i′)〉time + 〈v(i′)〉time − 〈v(i′)〉basin-ens.)

〉
basin-ens.

〉
ensemble

=

〈 ∑
i,b(i)=b

(v(i, 0)− 〈v(i)〉time)
∑

i′,b(i′)=b′

(v(i′,∆t)− 〈v(i′)〉time)

〉
ensemble

+

〈 ∑
i,b(i)=b

(〈v(i)〉time − 〈v(i)〉basin-ens.)

2〉
ensemble

,



98 Chapter 6

where for the second equality, it was used that the subsequent ensemble average within a
basin and over the whole ensemble is simply equal to the ensemble average.
The first term in Eq. (6.10) is independent of the basin-average, and hence can be de-
termined in a straightforward manner. To obtain a value for the second term, first note
that this is the expectation value of the square of the difference between long-time and
(basin-)ensemble average. This is inversely proportional to the number of independent
measurements, see e.g. [26], and hence to the measurement time. This implies that the
second term is positive and that its time-integral is non-negligible.
Second, note that the correlation of fluctuations in the velocity around the basin-ensemble
average after a long time is zero. As the second term is square and thus positive, the first
term will attain a constant, negative value after a long time. This value is therefore equal
to minus the second term in Eq. (6.10).
In the above, it is assumed that the deviation of the first contribution from zero is only
due to the difference in long-time and basin-ensemble averages. It is thus silently assumed
that there are no other systematic errors that cause a constant shift. To verify this, we
can make use of the fact that the second contribution is inversely proportional to the mea-
surement time. Namely, the first contribution can be determined for several measurement
times τ2 and the second contribution for one of these times. The second contribution for
the other measurement times then follows immediately, as it is inversely proportional to
the measurement time. The resulting curves for H(0)(∆t) for the different measurement
times should then collapse, if no other systematic errors are made.
Moreover, it is assumed that the average force per dislocation and the transport coeffi-
cient in each basin are not correlated. Namely, the ensemble average of the transport
coefficient and the driving force are taken separately, while one could also have taken the
ensemble-average of the flux in each basin. This assumption is verified in Sec. 6.3.1.

6.2.2 Numerical implementation

In this study, the influence of applied stresses on the effective, macroscopic mobility is
studied, but the influence of the overall dislocation density and the two temperatures
TC and TB is not further examined. For this reason, the overall dislocation density is
fixed at a representative value of 1µm−2 = 1012m−2. In the numerical simulations, the
thermal noise has been neglected, as it has been shown in Chap. 2 that the typical energy
associated with thermal fluctuations in the heat bath, kBTB, is negligible compared to
the typical interaction energy between dislocations. In the simulations, we therefore set
TB = 0. The configurational temperature TC is fixed at ∞, as it has been shown that
the ensemble-average of the dynamics of random dislocation configurations yields physi-
cal results that are representative for the dynamics of many dislocations[59]. An infinite
configurational temperature results in a random dislocation distribution.
The effective, macroscopic transport coefficient is obtained from the evolution of 336
random dislocation configurations under applied mechanical load. See Fig. 6.1(b) for an
example sketch of a microstate. For simplicity, only one slip system is considered. Each
microstate contains 144 dislocations in a square periodic unit cell, of which 72 have a
positive Burgers vector and 72 a negative one. Note that, as there is only one slip system
and no net dislocation content, the total force on all dislocations with positive Burgers
vector is equal to minus the force on all dislocations with negative Burgers vector. As a
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consequence, the sum of all v(i) is equal for dislocations with either positive or negative

Burgers vector, which implies that H
(0)
++ = H

(0)
+− = H

(0)
−+ = H

(0)
− ≡ H(0). Therefore,

only H(0) will be considered.
Periodic boundary conditions are applied to mimic the bulk behavior of dislocations. The
glide planes are slightly tilted with respect to the direction of periodicity. If the glide
planes would be horizontal, dislocations would end up in their initial position only after
short time. This would cause spurious autocorrelations, which are largely avoided using
tilted glide planes. The tilt angle is chosen to be φ = arctan(1/12) ≈ 4.8◦.
Two dimensionless parameters arise in the expression for the force on a dislocation. For
convenience, all forces are measured in units of Fint ≡ µb2L/(1−ν)R, which is the inter-
action force between two dislocations at a distance R. R is the typical dislocation spacing,
which for the density considered (1012m−2) equals R = 1µm. The first dimensionless
parameter is S ≡ ΣresbL/Fint, which is the Peach-Koehler force due to the applied me-

chanical load in units of Fint. The second dimensionless parameter is τ ≡ R2Bb(TB)(1−ν)
µb2 ,

which is the typical timescale during which a dislocation travels the typical dislocation
spacing R due to loading at S = 1. Due to the periodic boundary conditions, the force on
each dislocation is the sum of the Peach-Koehler component due to applied mechanical
load and the components due to the other dislocations and their periodic copies. The
former is equal to bLΣres, where Σres is the resolved shear stress. For the latter, we use
the stress field for a periodic array of dislocations, as determined by Kuykendall and Cai
[70], to derive the Peach Koehler force due to a dislocation and all its periodic copies, see
Appendix D.3. This yields

τ

R
v(i) = S +

R

2d

∑
i′

∞∑
k=−∞

b(i′)

|b(i′)|

(
sin(∆x̆ii′)

cosh(∆y̆kii′)− cos(∆x̆ii′)
cos(φ) cos(2φ)+ (6.11)

− ∆y̆kii′ sinh(∆y̆kii′) sin(∆x̆ii′)(
cosh(∆y̆kii′)− cos(∆x̆ii′)

)2 cos(3φ) + ∆y̆kii′
1− cosh(∆y̆kii′) cos(∆x̆ii′)(
cosh(∆y̆kii′)− cos(∆x̆ii′)

)2 sin(φ)+

+
sinh(∆y̆kii′)

cosh(∆y̆kii′)− cos(∆x̆ii′)
cos(φ) sin(2φ)

)
,

where ∆x̆ii′ =
2π(xi−x′

i)
d and ∆y̆kii′ =

2π(xi−x′
i+kd)

d are the position differences. In prac-
tice for the summation over k, it is sufficient to use three rows of dislocations below and
on top, see fig. D.1 in Appendix D.1.
When two dislocations with opposite Burgers vector are on a very short distance, the force
between them is large and attractive. This force is unphysical, as these dislocations tend
to annihilate in a real metal. To avoid such forces, only predefined glide planes are con-
sidered, on which only dislocations with either positive or negative Burgers vector occur.
The spacing between these glide planes used here is 50 nm, or 0.05R, which is the typical
annihilation distance for dislocations in several different metals at room temperature [92].
Moreover, there is an initial relaxation towards the steady state solution. Namely, the
initial random configuration of dislocations is in thermal equilibrium with the infinite con-
figurational temperature. However, one would expect that within each basin of attraction,
the dislocation configuration would be in thermal equilibrium with the environmental tem-
perature, which is set to zero here. Therefore, we are only interested in the steady state,
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and hence an initial relaxation time is needed. The length of this will be determined from
the results.

6.3 Simulation results

6.3.1 Illustration of the procedure
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Figure 6.2: (a)The average force per dislocation. (b) A detailed picture of the tail of
the first contribution to H(0)(∆t) in Eq. (6.10) and (c) H(0)(∆t) with the correction as
described in Sec. 6.2.1, both for interval lengths of 350τ (thick), 262τ (solid) and 218τ
(dashed). (d) The LHS (solid) and RHS (thick) of Eq. (6.6). (e) The average force per
dislocation and the transport coefficient for each microstate. The dashed lines indicate
the averages. The errorbars in (a) and (d) indicate the standard deviation.
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In this subsection, the numerical results at a loading of S = 3.0 will be discussed as a
representative example. In Fig. 6.2(a), the average force per dislocation as a function of
time is plotted. The initial relaxation is less than 150τ until a constant, steady force is
reached. The average force experienced by a dislocation is far below 〈ŝb · Fpk(i)〉 /Fint =
S, which would be the force in the absence of interactions. The influence of interactions
at this load is thus quite strong.
In fig. 6.2(b), the tail of the first contribution to H(0)(∆t) in Eq. (6.10) is plotted for
several measurement times. After long time, all three graphs saturate at a slightly negative
value, as expected. In fig. 6.2(c), H(0)(∆t) is plotted, where the second contribution in
Eq. (6.10) was determined from the longest curve only, as described in Sec. 6.2.1. The
first halves of the three curves collapse, which suggests that it is possible to determine
H(0)(∆t) using the long-time average of each trajectory, as described in Sec. 6.2.1.
In fig. 6.2(d), the left- and right hand side of Eq. (6.6) are plotted. Clearly, the odd
power of the fluctuations (solid line) is much smaller than the even power (thick line),
and moreover, the odd power does not differ significantly from zero. It is therefore justified
to neglect odd powers of the fluctuations.
In fig. 6.2(e), the average force per dislocation and the transport coefficient Γeff are
plotted. No clear trend is visible in these data, and the correlation between both quantities
is 17%, which is weak. This implies that one can take averages of the average force per
dislocation and the transport coefficient separately, as was assumed in Sec. 6.2.1.
We have checked that our results are insensitive to a refinement of the time step. However,
the our quantitative results are sensitive to a change in glide plane spacing. This is
probably because the maximum strength of the interaction changes when the minimum
distance between dislocations changes, which implies that the influence of interactions
that lowers the mean velocity is different. However, the qualitative trends described in
the next section are not affected.

6.3.2 Effective mobility
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Figure 6.3: The mean force per dislocations in units of the interaction force at a distance R
for several values of the load S. The dashed line corresponds to the case where interactions
between dislocations are neglected. The errorbars indicate the standard deviation in the
ensemble and the connecting solid lines are a guide to the eye.

In Fig. 6.3, the average force per dislocation is plotted against the applied load. The
dashed line is the line 〈ŝb · Fpk(i)〉 /Fint = S, which would be the average force per
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dislocation in the absence of interactions. Hence, the difference between the measured
values and the dashed line is the reduction of the average force due to interactions between
dislocations.

In Fig. 6.4(a), the memory kernel is plotted as a function of the time interval ∆t for
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Figure 6.4: (a) The memory kernel H(0)(∆t) for different values of the load (0.5 (green),
1.5 (blue), 3.0 (purple), 4.5 (red), 7.5 (black)). (b) The effective mobility Γeff defined in
Eq. (6.7c). The errorbars indicate the 95% confidence interval.
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Figure 6.5: The dislocation current J as defined in Eq. (6.7b). The dashed line is a
power-law fit with exponent 3.7. The errorbars indicate the 95% confidence interval and
the connecting lines are for visualization purposes only.

several values of the applied load. The value at ∆t = 0 seems to increase with increasing
applied load up to S = 4.5, but the value for S = 7.5 is again lower.
In Fig. 6.4(b), the integral of the memory kernel is plotted, which can be interpreted as
the effective, macroscopic mobility. The resulting steady state current is the product of
the effective, macroscopic mobility Γeff and the driving force. This quantity is plotted
in fig. 6.5. The current is thus stress-dependent. For small loads (S ≤ 3), the current
increases in a strongly non-linear manner with the applied load. For larger loads (S ≥ 3),
the relation between applied load and current is more or less linear.
For further use, we have determined the typical correlation time- and length. In Fig. 6.6,
the correlation times as defined in Eq. (6.8) are plotted. The correlation time decreases
with increasing applied load, but seems to saturate at a value of 10τ . In Fig. 6.7, the
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distance-dependence of the field H at ∆t = 0 is plotted. Inspection of the field shows
that correlations are strongest in the x-direction, and therefore only these are depicted.
The H++-field is dominated by autocorrelations of the dislocations with themselves. At
∆x ≈ ±2R, small secondary peaks are visible, but correlations are not apparent beyond
∆x = 3R. The H+−-field is mainly determined by correlations within pairs of dislocations.
Correlations beyond 4R are not present, but they are by far the largest at S = 1.5. It
might be that this intermediate value of the load is strong enough to stretch dislocation
pairs significantly, but not strong enough to separate them. As a result, correlations span
relatively long distances.
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Figure 6.6: The correlation times. The lines are a for visualization purposes only. The
errorbars indicate the 95% confidence interval.
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Figure 6.7: The field H in the x-direction, normalized by its value at ∆R = 0. Solid
line is at ∆y = 0 and dashed line at ∆y = 0.96R. Colors indicate different values of
the load (0.5 (green), 1.5 (blue), 3.0 (purple), 4.5 (red), 7.5 (black)). The lines are for
visualization purposes only and the errorbars indicate the noise level in the far field.

6.4 Interpretation and comparison to literature

6.4.1 Examination of the separation of length- and timescales

In this subsection, we discuss the separation of length- and timescales. Considering the
separation of length scales, we have obtained correlations that do not span over a distance
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larger than 4R. This implies that when the driving force does not vary significantly
over distances smaller than four dislocation spacings, there is separation of length scales.
The driving force only changes when ρb(R) changes. On length scales as small as four
dislocation spacings, it is not likely that the ensemble average of the dislocation density
changes in the bulk, and hence the local expression in Eq. (6.2) is a good approximation.
To compare the timescales τcorr and τrelax in Eqs. (6.8) and (6.9), we exploit the fact
that τcorr is at least 10τ , see fig. (6.6), and that Γeff is larger than 0.2τ−1, which is
the value at S = 0.5, see fig. 6.4(b). Moreover, the dimensionless quantity µb2L/kBTB,
which is needed to determine τrelax (see Eq. (6.9)), can be estimated using typical values
for aluminium. This indicates that µb2L/kBTB > 2.4 × 102. Hence, τcorr/τrelax ≥ 470,
which indicates that the decay time of the correlation function is much longer than the
typical time a density fluctuation exists. Therefore, the temporal convolution in Eq. (6.2)
can in general not be approximated by a product as in Eq. (6.7a). Therefore, Eq. (6.7a)
can only be used to determine the steady state currents.

6.4.2 Hypothesis

The central hypothesis behind this work is that the observed non-linear load-dependence
at the macroscopic level is an emergent phenomenon. It is shown in this work that both
the expectation value of the average force per dislocation and the effective, macroscopic
mobility depend non-linearly on the applied mechanical load, see figs. 6.3 and 6.4. At
the level of discrete dislocations, the force on an individual dislocation is linearly propor-
tional to the applied load, whereby the microscopic mobility of dislocations Bb(TB) is
independent of the applied load. The obtained non-linear dependency on the applied load
at the macroscopic level therefore constitutes an emergent phenomenon, which confirms
our hypothesis.
The non-linear dependence of the driving force on the applied load obtained from the
numerical simulations in Fig. 6.3 would not result from the expression in Eq. (6.4) when
free energy expressions from Chap. 2 and 3 are used, as these predict a linear dependence
on the applied mechanical load.
A first possible cause of this is that the modeling of the configurational temperature in
Chap. 5 does not agree with the numerical simulations performed here. Namely in the
simulations, the organization of dislocations is locally in a minimum energy state, but
globally homogeneous. On the contrary, a dislocation distribution at a high configura-
tional temperature TC, as modeled in 5, is both locally and globally homogeneous. To
solve this problem, another split should be made between the configurational energy and
the energy of the heat bath. A different split was also suggested in literature [10] in the
context of the thermodynamics of the system. However, this split was not worked out
further in literature.
A second possible cause of the discrepancy between the driving force obtained here nu-
merically, and the free energy expressions in Chap. 2-4, is that the free energy expression
in those works is asymptotically correct far away from criticality. A load-induced transition
may be regarded as a critical phenomenon, which limits the applicability of the obtained
expression. To solve this problem, the free energy expression may be systematically im-
proved by using the Villain approximation [61], as also discussed Chap. 2.



Viscoplastic flow rule for dislocation-mediated plasticity from systematic coarse-graining 105

6.4.3 Relation to literature

The difference between the applied load and the average force experienced by dislocations
has also been discussed in literature [43, 119]. In this work, no gradients in the GND- or
total density of dislocations were considered. Yet, we have obtained a non-linear relation
between the applied load and the average force, in fig. 6.3. We therefore think that cur-
rent phenomenological models can be improved by accounting for an internal stress that
depends explicitly on the applied mechanical load, and not only implicitly via gradients in
the dislocation density.
This contribution to the average force could be explained by the stretching of dislocation
pairs due to load. Namely, pairs of dislocations with opposite Burgers vectors will stretch
in the direction of the load, which induces a force between the dislocations in the opposite
direction. This was also hinted upon by Zaiser and coworkers [120].
The obtained force-flux relation in fig. 6.5 can also be related to current strain gradi-
ent crystal plasticity models [43]. Namely, in these models the following relationship is
assumed between the driving force τ and the slip rate γ̇:

γ̇ ∝ R
(
|Σres|

Σ0

)
sign(Σres) (6.12)

where R(0) = 0 and R(|Σres|/Σ0) > 0 for Σres 6= 0. Often, the function R is assumed to
be of power-law form. The slip rate can also be expressed as γ̇ = b(jb − j−b), where jb
is the flux of dislocations with Burgers vector b. Hence the function R can be obtained
from fig. 6.5.
In fig. 6.5, two regimes can be identified. In the high load regime (S ≥ 3), force and flux
are approximately linearly related. In the low load regime (S ≤ 3), the relation is strongly
non-linear. The dashed line is a power-law fit with exponent 3.7.
For aluminium1 with a dislocation density of 1µm−2, S = 1 corresponds to a resolved
shear stress of Σres = 11 MPa, which is of the same order as the yield stress for pure
aluminium (7− 11 MPa). This suggests that the low load regime, in which the relation
between force and flux is strongly non-linear, is most relevant in practical cases. It should
however be emphasized that the current model is highly idealized, and hence that one
should therefore focus on qualitative aspects only.
The exponent typically used in crystal plasticity models ranges from 10 to 100. The
powerlaw relation in these models is often only used to mimic an elasto-plastic flow
relation with a threshold stress above which the material deforms entirely plastic. The
viscous response is then only introduced to circumvent numerical problems.
In this work, a much lower value for exponent (namely 3.7) is obtained. On the one
hand, the microscopic evolution treated here is undoubtedly oversimplified. When more
interaction mechanisms and creation and annihilation of dislocations is accounted for, the
effect of interactions is stronger. As interactions are the cause of the non-linearity, it is
expected that the exponent increases upon including these effects. On the other hand,
the result obtained here might also suggest that there is a physical basis for the viscous
contribution in the dynamics, and that viscous terms should thus be accounted for.

1For aluminium, µ = 26 GPa, ν = .33, b = 2.9 Å (see [101]).
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6.5 Summary and outlook

In this work, the dependence of the macroscopic transport relations for dislocation systems
on the applied mechanical load is studied. It has been shown in Chap. 5 that the macro-
scopic transport coefficient has, on top of the simply “translated” microscopic transport
coefficient, an additional contribution that results from the transition in timescale from
the microscopic to the macroscopic level. The latter results from correlations in the rapid
fluctuations. Moreover, it was shown that the driving force for dislocation dynamics equals
the average force experienced by the dislocations. Both quantities have been evaluated
numerically in this work using steady-state Discrete Dislocation Dynamics simulations.
The main conclusions of this work are the following:

• The driving force for dislocation dynamics depends on the applied load in a non-
linear manner, which implies that there is a load-dependent internal stress.

• The effective, macroscopic transport coefficient is load-dependent, while the micro-
scopic mobility is independent of the load.

• The resulting dislocation flux depends non-linearly on the applied load in the relevant
regime, which is in agreement with current crystal plasticity models.

• The obtained non-linearity is an emergent phenomenon and does thus not result
from non-linearities at the microscopic level.

• In this system, there is no separation of timescales. This implies that the dynamics
at the macroscopic level is non-Markovian, and hence that a memory kernel is
needed to describe the dynamics of dislocation density profiles accurately.

This study indicates that the dominant term in the macroscopic mobility of dislocation
systems is the additional irreversibility that arises from going to a coarser level of descrip-
tion ánd making a transition in timescale. The latter implies that we have accounted for
correlations of fluctuations in the fast dynamics, which gives rise to a transport coefficient
of Green-Kubo type. Therefore, the transition in timescale should as well be part of other
coarse-graining schemes for dislocation systems.
The same coarse-graining procedure as employed in Chap. 5 and this chapter could be
extended to more realistic microscopic descriptions of dislocation motion, which include
for example production and annihilation of dislocations or curved dislocations that are not
necessarily parallel.
The results of this study could also be used in phenomenological Crystal Plasticity model-
ing. To improve these models, we would suggest to account for a direct load-dependence
of the internal stress, and not only for an indirect dependence via the gradient of total-
and GND densities. Moreover, we have given a microscopically based argument for the
non-linear relation between driving force and plastic slip. The relation obtained here
might suggest that there is a physical basis for including viscous effects in the evolution
equation.



Chapter 7

Conclusions and discussion
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7.1 Conclusions

The work presented in this thesis confirms the central hypothesis:

“The collective, coarse-grained dynamics of dislocations reveals emergent phe-
nomena that dominate the macroscopic system response. ”

The implications of the obtained results will now be discussed in more detail. The
work of this thesis can be split into a part on the statics of the system, and a part on the
dynamics.
The part on statics, Chap. 2-4, starts with systematic coarse-graining, specifically the
calculation of the derivation of the grand-canonical partition function using systematic
coarse-graining. The work was limited to straight and parallel dislocations, such that the
problem is effectively two-dimensional. In the derivation, microscopic properties that have
proven to be important in dislocation systems are accounted for, namely the finite system-
size, the presence of glide planes, an applied deformation of the boundary (denoted by
ub), the configurational temperature of the dislocations that is a measure for the energy
associated with density fluctuations (denoted by TC), the anisotropy of the stress field of
edge dislocations and an inhomogeneous dislocation density profile ρb(R). The key step
in calculating the grand-canonical partition function was to extend the phase space, such
that the integration over phase space also entails a path integral over the elastic field. In
the absence of mechanical loading, the obtained partition function reduces to the well-
studied Sine-Gordon model, that describes the Kosterlitz-Thouless phase transition. The
obtained partition function has been simplified using a Gaussian approximation, which is
valid far away from criticality.
Subsequently, the canonical free energy functional FC was obtained by means of a Leg-
endre transform of the grand potential:

FC[ρb(R),ub, TC] = L

∫
dR∆mf : C : ∆mf︸ ︷︷ ︸

mean-field contribution Fmf

(7.1)

− kBTC

∑
b

∫
dRρb(R)

(
log

[
ρb(R)

ρb,0

]
− 1

)
︸ ︷︷ ︸

statistical contribution

+

∫
dRfmb(ρb(R), TC)︸ ︷︷ ︸

many-body contribution Fmb

,

where L is the typical length of a straight dislocation, where the spatial integral is over
the cross-sectional area, and where ρb,0 is a reference density.
The first contribution on the RHS is the strain energy due to the mean-field strain ∆mf,
which is the strain field due to the applied boundary deformation and the other dislocations
when correlations between dislocation positions are neglected. The second contribution
on the RHS is the statistical contribution that results from the counting of states. The
third contribution on the RHS is the many-body contribution, which results from the
screening of dislocation interactions. Explicit expressions were found for the many-body
free energy density fmb(ρb(R), TC) for two special cases, see Eqs. (3.43) and (4.11).
The main conclusion about the statics of the system are:
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• The many-body contribution is an emergent contribution to the free energy that
can not be neglected, see Sec. 3.4

• For the many-body contribution, explicit expressions can be obtained by using a
Local Density Approximation (LDA), see Sec. 3.4.1. It was shown that such a local
approximation is applicable to dislocation systems, provided that the dislocation
density varies over distances much larger than the average dislocation spacing.

• The many-body contribution vanishes at zero temperature, but quickly approaches
a plateau value for finite temperatures. It was therefore concluded that the free
energy at a finite temperature is qualitatively different from the energy at zero
temperature, even for very low temperatures, see Sec. 3.4.2

• The many-body contribution depends on the total density per slip plane, see Sec.
3.5. Such a dependence has no counterpart at the microscopic level, where a
complete anti-symmetry in the dislocation interaction potential exists between dis-
locations with opposite Burgers vectors. Based on this, it has been assumed in
literature that the free energy only depends on the density of Geometrically Nec-
essary Dislocations (GND’s). The dependence of the macroscopic free energy on
both the GND and the total density recovered here is therefore an emergent prop-
erty of the system. This dependence should also be used in strain-gradient Crystal
Plasticity models. In that case, and assuming that the Local Density Approxima-
tion holds, the current free energy expression could be used to determine energetic
defect forces.

The dynamics part of this thesis, Chap. 5 and 6, starts with the derivation of the evolution
equations for the dislocation density profile ρb(R) and the configurational and heat bath
temperatures, TC and TB. The evolution equation for the density is given by:

∂ρb(R)

∂t
= − ŝb · ∇R

︸ ︷︷ ︸
divergence


∑
b′

∫
d∆t

memory kernel︷ ︸︸ ︷
H

(0)
bb′(∆t)

kBTB

driving force︷ ︸︸ ︷(
−ŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

))
︸ ︷︷ ︸

dislocation flux

(7.2)

with

F̃ [ρb(R),ub, TC, TB] = FC[ρb(R),ub, TC] (7.3)

+ kB(TC − TB)
∑
b

∫
dRρb(R)

(
log

[
ρb(R)

ρb,0

]
− 1

)
.

The time derivative of the dislocation density is the divergence of the dislocation flux. The
total number of dislocations is thus conserved, which reflects the fact that no production
or annihilation of dislocations is considered at the microscopic level. The dislocation
flux is the convolution of a driving force with a memory kernel. The former can be
determined from the previously obtained free energy. For the memory kernel, the dominant
contribution can be written as time-correlations of fluctuations of the dislocation velocity,
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which depends in principle on the applied deformation, the dislocation density and both
temperatures.
The evolution equation for the configurational temperature reads

dTC

dt
=

1

kB
∑
b

Nb︸ ︷︷ ︸
Configurational heat capacity

(7.4)


∫

dR


(∑
b′

∫
d∆t

H
(0)
bb′(∆t)

kBTB

(
−ŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

)))
︸ ︷︷ ︸

dislocation flux

·
(
−ŝb · ∇R

(
δFmf + Fmb
δρb(R)

))
︸ ︷︷ ︸

average force



+

∫
d∆t K(∆t)︸ ︷︷ ︸

Transport coefficient
for the heat flow

(
1

kBTC(t−∆t)
− 1

kBTB(t−∆t)

)
︸ ︷︷ ︸

Driving force
for the heat flow


.

The inverse of the configurational heat capacity indicates how much the configurational
temperature TC changes upon changing the configurational energy of the system. The
terms in the curly brackets should therefore be interpreted as the change in configurational
energy. The first contribution is the expected dislocation flux times the average force on
a dislocation, i.e. the expected dissipated power. The second contribution relates to the
heat flow from the configurational subsystem to the heat bath. This term results from
the energy that is dissipated due to fluctuations in the velocity.
The main conclusions from this derivation are the following:

• On top of the a direct contribution arising from the microscopic irreversible dynam-
ics, the dynamical response function for the dislocation density entails an emergent
contribution in the form of a memory kernel. Scaling analysis indicates that the
latter is dominant.

• The transport coefficient for the heat flow is an emergent term.

• The use of two temperatures influences the driving force as follows: using Eqs. (7.2)
and (7.3), it can be shown that the diffusion of dislocations (due to the statistical
contribution to the free energy) acts as if the system is at the heat bath temperature
TB, while the rest of the driving force (due to the mean-field and the many-body
contributions in the free energy) acts as if the system is at the configurational
temperature TC.
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Figure 7.1: The macroscopic dislocation current J as a function of the applied mechanical
load S. The dashed line is a power-law fit with exponent 3.7. The errorbars indicate the
95% confidence interval.

The macroscopic response function H(0)(∆t) and the driving force were examined nu-
merically. The key step in performing the numerical simulations was to realize that the
phase space can be separated in different basins of attraction, separated by energy barriers
that cannot be overcome by diffusion on the timescales considered here. Therefore, fluc-
tuations should be calculated with respect to the ensemble average in the corresponding
basin of attraction. This average can be approximated by the long-time average. The
obtained relation between the dislocation flux J and the applied mechanical load S is
shown in Fig. 7.1. The main conclusions from this numerical study are the following:

• Both the driving force and the macroscopic response function H(0)(∆t) depend on
the applied mechanical load in a non-linear manner.

• As a result, a nonlinear dependence of the dislocation flux on the applied mechanical
load emerges in the regime of engineering relevance, which is in agreement with
viscoplastic flow rules used in many Crystal Plasticity models.

• The dynamics of the dislocation density is non-Markovian, i.e. there is no separation
of timescales.

7.2 Outlook

The research presented in this thesis has revealed new insights in the collective dynamics
of dislocations, but also triggers new, unresolved questions. Considering the statics of the
system, the following open questions and suggestions for future research are identified:

• In the derivation of the free energy, a Gaussian approximation was used, which is
only valid far away from criticality. Using an analog of the Villain approximation [61]
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instead of a Gaussian one will extend the temperature- and loading regime in which
the free energy functional is valid. It would be particularly interesting to consider
the load-dependence of the many-body contribution, as the numerical simulations
suggest a non-linear dependence of the driving force on the mean-field stress, while
the current expression predicts a linear dependence, see Chap. 3.

• The Sine-Gordon model is used to study dislocation-mediated melting. As a modi-
fication of the Sine-Gordon model due to loading was derived here, see Eq. (2.17),
it might be possible to study the phase diagram of dislocations under applied me-
chanical load. If there would be a load-induced phase transition, this might be
interpreted as the transition from elastic to plastic material behavior.

• In the dynamics part of the research presented here, two relevant temperatures have
been identified in the dislocation system, namely the configurational temperature of
the dislocations and the heat bath temperature. It could be worthwhile to investigate
whether the phase behavior of dislocations is affected by using two temperatures
instead of one.

• In this thesis, the attention was restricted to straight and parallel dislocations. It
would be challenging to extend the current research to curved dislocations. To
derive a free energy expression, a good starting point would be to combine the
current approach with the work of [90]. However, one could also follow a more
phenomenological approach by anticipating a free energy with a similar structure
as obtained here, namely: a split in three contributions as in Eq. (7.1) and a local
many-body free energy density that is scale-free and depends on the total dislocation
density per slip system.

• The free energy at low but finite temperature is qualitatively different from the
energy at zero temperature. Therefore, it might be interesting to introduce the
concept of temperature and the corresponding randomness in other coarse-graining
methods applied to dislocation systems, such as Γ-convergence [99, 29, 112].

Considering the dynamics part of the research presented here, the following recommen-
dations for future work are made:

• Numerical simulations can be used to study the temperature- and density depen-
dence of the macroscopic response function H(0)(∆t). Moreover, the response
function for the energy flow, K(∆t), can determined.

• Current strain-gradient Crystal Plasticity models can be improved by using the
lessons learned in this research. More specifically, the dislocation density should be
modeled for each possible Burgers vector separately, rather than using only GND-
based quantities. The free energy, which yields the driving force for dynamics,
should have the same properties as obtained here, namely it should depend on both
the total and the GND density of dislocations, and it should be scale-free.

• A further suggestion for improving Crystal Plasticity models is to use a powerlaw
to relate the applied deformation to the dislocation flux. Viscoplastic powerlaw
relations are already applied in current Crystal Plasticity models, but the exponent
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is assumed to be much higher that the value 3.7 obtained in this work, as their
main purpose is to mimic elasto-plastic behavior. As noted earlier, no quantitative
predictions could be made from the idealized model treated here, and hence the
value 3.7 could very well be larger for less idealized models. Nevertheless, the
viscous nature of the obtained relation might also be relevant to incorporate in
Crystal Plasticity models.

• The current microscopic dynamics that is used in this thesis is undoubtedly oversim-
plified. In more realistic two-dimensional DDD-simulations of straight and parallel
dislocations, constitutive rules are used to describe pinning and depinning of disloca-
tions by obstacles, and to account for multiplication and annihilation of dislocations.
It would be worthwhile to incorporate these rules in the GENERIC upscaling pro-
cedure to make the system more realistic. An expected difficulty for this might be
that some constitutive rules have some form of memory. For example, dislocation
multiplication only occurs when the stress has been above a certain threshold for a
certain time. This complicates the use of the GENERIC framework.
Alternatively, one could incorporate these effects in a phenomenological manner
in the macroscopic evolution equations for the dislocation density, for example by
introducing a stress-dependent dislocation production term to mimic dislocation
multiplication, see e.g. [20, 16].

• Moreover, the dynamics may be extended to curved dislocations as well. As a
starting point, a three-dimensional DDD-simulation can be used as a microscopic
description, see e.g. [79]. To define the macroscopic variables, one could use the
variables used by Hochrainer [50, 51], and the corresponding kinematic relations.

• To account for two different temperatures, TB and TC, the energy of the system
has to be split in two independent parts that are controlled by the different temper-
atures. Here, the Hamiltonian was split in the thermal energy of the lattice, which
is controlled by the heat bath temperature TB, and the strain energy, which is con-
trolled by the configurational temperature TC. However, another split can also be
considered, where small deviations of the dislocation positions are also controlled
by the heat bath temperature TB. Conceptually, this was anticipated in the work of
Bouchbinder on the thermodynamics of systems with two temperatures [72, 9, 10],
but such a split was not defined in practice before, and is probably complicated.

• With the current set of macroscopic variables, there is no separation of timescales
and hence the evolution is written in terms of a memory kernel. This is inconvenient
in a numerical implementation. However, the memory in the system might only
be apparent if there is some hidden microstructural evolution. Namely, when the
microstructure slowly responds to changes in the driving force, this appears as
memory of the system when too much microstructural information is integrated
out. To solve this, an extra variable should be introduced that accurately describes
the microstructure. Then, the slow response of the microstructure is modeled as
well, and no memory is needed to describe the dynamics.
Structural variables have been used before to explain apparent memory in complex
fluid systems, see e.g. [88, 8]. In this work, the local organization of the dislocations
is determined by the dislocation density and the configurational temperature. More
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accurate modeling of the configurational temperature (as described in the previous
bullet) may thus solve the problem. However, it might also be that extra tensorial-
or field variables are needed to describe the microstructure accurately.

• The dislocation system studied here is quite simple, in the sense that it is a system
of interacting point particles in two dimensions. Still, non-trivial collective effects
were obtained for both the static and dynamic behavior of dislocations. It could
therefore be worthwhile to apply the GENERIC upscaling procedure to other systems
in order to get a thermodynamics view on emergent phenomena.
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Details about calculations in Chap. 2

A.1 Energy minimum

In this section, it is shown that the distortion field that minimizes the elastic energy, Eq.
(2.5), under the incompatibility constraint, Eq. (2.2), satisfies mechanical equilibrium.
From an ensemble-perspective, this means that the mechanical equilibrium distortion
field is also the most probable one.
To demonstrate this,the incompatibility constraint is incorporated using a Lagrange multi-
plier. Therefore, the following expression is minimized with respect to ∆ and the Lagrange
multiplier κ:

E′ =
1

2

∫
Ω

d3r∆s : C : ∆s −
∫

Ω

d3r (∇∧∆− α̂) : κ. (A.1)

Minimizing yields

0 = Cls : ∆s −∇ ∧ κ, (A.2)

0 = ∇∧∆− α̂,

where Cls is C symmetrized in the first two indices; Clsiji′j′ = (Ciji′j′ + Cjii′j′)/2. The
divergence of the first equation is mechanical equilibrium, and the second equation is in-
compatibility. Therefore, the most probable field ∆ is the standard mechanical equilibrium
solution.

A.2 Integration over strain fields

In this section, Eq. (2.14) is derived by evaluating

I∆ ≡
∫
D[∆]δ∂Ω [n̂ ∧∆− (n̂×∇)ub] exp

[
−β

2

∫
Ω

d3r∆s : C : ∆s (A.3)

−ıβ
∫

Ω

d3rΨ : ∇∧∆ +

∫
Ω

d3rJ∆ : ∆s

]
.

First, the shift ∆→ ∆̃+∆0 is performed, where ∆0 is defined in Eq. (2.12). Then partial
integration is applied on the second term in the exponent. The boundary contribution
vanishes because of the delta functional at the boundary. This yields

I∆ =

∫
D[∆̃]δ∂Ω

[
n̂ ∧ ∆̃

]
exp

[
−β

2

∫
Ω

d3r(∆̃s + ∆s
0) : C : (∆̃s + ∆s

0) (A.4)

−ıβ
∫

Ω

d3r∇∧Ψ :
(
∆̃a + ∆̃s

)
+

∫
Ω

d3rJ∆ : (∆̃s + ∆s
0)

]
,
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where the superscript a indicates the anti-symmetric part of a second rank tensor.
As the integrand only depends on ∆̃ and not on its spatial derivatives, the functional
integration over ∆̃ at the boundary and over ∆̃ in the bulk can be performed indepen-
dently. The first is independent of the boundary deformation ub and the auxiliary field
Ψ. Therefore it can be considered as an irrelevant multiplicative constant.
The functional integration over ∆̃ in the bulk can be split further in an integration over ∆̃a

and ∆̃s. From Eq. (2.8), it can be seen that the former is proportional to δΩ [(∇∧Ψ)a].
For the latter, we proceed by completing the squares in the above expression for I∆:

I∆ ∝ δΩ [(∇∧Ψ)a]

∫
bulk

D[∆̃s] exp

[
−β

2

∫
Ω

d3r
(
∆̃ + ∆0 + ı(∇∧Ψ) : S− β−1J∆ : S

)s

:

: C :
(
∆̃ + ∆0 + ıS : (∇∧Ψ)− β−1S : J∆

)s]
× (A.5)

exp

[
−β

2

∫
Ω

d3r
(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s
: S :

(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s]×
exp

[
−β

2

∫
Ω

d3r∆s
0 : C : ∆s

0 +

∫
Ω

d3rJ s
∆ : ∆s

0

]
,

where
∫

bulk
D[∆̃s] denotes the functional integration over fields that only live in the bulk.

Now, the following variable substitution can be made: ∆̃s = ∆̄s−∆s
0−ıS : (∇∧Ψ)

s
+S :

J s
∆. Then, the integration over ∆s in the bulk is independent of the boundary deformation
ub and the auxiliary field Ψ, and hence it is a multiplicative constant. This finally yields

I∆ ∝ δΩ [(∇∧Ψ)a] exp

[
−β

2

∫
Ω

d3r∆s
0 : C : ∆s

0 +

∫
Ω

d3rJ s
∆ : ∆s

0

]
× (A.6)

exp

[
−β

2

∫
Ω

d3r
(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s
: S :

(
∇∧ (Ψ−Ψ0) + ıβ−1J∆

)s]
.

This is Eq. (2.14).

A.3 Integration over dislocation positions

In this section, Eq. (2.16) is derived by evaluating

Iω̂ ≡
∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs

)
(A.7)

exp

[
β

∫
Ω

d2sµs(s)ω̂s(s) + ıβ

∫
Ω

d3rα(r) : Ψ(r)

]}
.

The spatial integrations in the exponent can be performed easily, as the densities ω̂s(s)

are sums of delta peaks: ω̂s(r) =
∑
js∈glideplanes

∑Nsjs
k=1 δ(x − xk)δ(y − yjs), and that
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the dislocation density tensor is related to these densities, see Eq. (2.1). This yields

Iω̂ ≡
∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs (A.8)

exp

β Nsjs∑
k=1

µs(xk, yjs) + ıβ

∫
dz(ξ̂bs) : Ψ(xk, yjs , z)


≡
∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

1

Nsjs !(
1

λth,s

∫
dx exp

[
βµs(x, yjs) + ıβ

∫
dz(ξ̂bs) : Ψ(x, yjs , z)

])Nsjs}

Further simplification is possible using the series expansion of the exponent,
exp(x) =

∑∞
n=0

1
n!x

n:

Iω̂ =
∏

s∈species

∏
j∈glide planes

exp

(
1

λth,s

∫
dx exp

[
β

(
µs(x, yj) + ı(ξ̂bs) :

∫
dzΨ(x, yj , z)

)])

= exp

 ∑
s∈species

1

λth,s

∑
j∈glide planes

∫
dx exp

[
β

(
µs(x, yj) + ı(ξ̂bs) :

∫
dzΨ(x, yj , z)

)] .

Finally, using the definition of the glide plane distribution, Eq. (2.15), yields

Iω̂ = exp

 ∑
s∈species

1

λth,s

∫
d2sρgl,s(s) exp

[
β

(
µs(s) + ı(ξ̂bs) :

∫
dzΨ(s, z)

)] .

(A.9)



118 Appendix A

A.4 Imaginary expectation value of Ψ

In this section it is shown that 〈Ψ(r)〉 is purely imaginary. Starting from Eq. (2.11), it is
found that

〈Ψ〉 =
1

Z

∞∑
N=0

 ∏
s∈species

∏
js∈glide planes

(
1

Nsjs !

1

λ
Nsjs
th,s

∫
dx1 . . . dxNsjs

)
(A.10)

∫
D[∆]

∫
D[Ψ]Ψδ∂Ω [n̂ ∧∆− (n̂×∇)ub] exp

[
−ıβ

∫
Ω

d3rΨ : (∇∧∆− α̂)

]

exp

−β
2

∫
Ω

d3r∆s : C : ∆s + β
∑

s∈species

∫
Ω

d2sµs(s)ω̂s(s)

 .

∝ ı

β

δ

δ(∇∧∆− α̂)

∫
D[Ψ] exp

[
−ıβ

∫
d3rΨ : (∇∧∆− α̂)

]
∝ ı

β
δ′Ω [∇∧∆− α̂] ,

where δ′ is the functional derivative of the delta functional. Note that all quantities,
except ı are real, and hence the expectation value of Ψ is purely imaginary.

A.5 Equivalence to the grand-canonical partition func-
tion

In this section, Eq. (2.17) is rewritten to the grand canonical partition function corre-
sponding to particles in 2D with the dislocation interaction potential [49]. To this end,
Eq. (2.17) is expanded in powers of λ−1

th,s. This yields

Z[β, µs(s)] =

∫
D[Ψ]δ [(∇∧Ψ)

a
] exp

[
−β
2

∫
d3r(∇∧Ψ)s : S : (∇∧Ψ)s

]
(A.11)

×
∏

s∈ species

∞∑
Ns=0

1

Ns!

Ns∏
j=1

(∫
d2sj

ρgl,s(sj)

λth,s
eβ(µs(sj)+ı(ξ̂bs):

∫
dzΨ0(sj ,z))

)

exp

ıβ ∑
s∈ species

Ns∑
j=1

(ξ̂bs) :

∫
dzΨ(sj , z)


As will be shown in A.6, the quadratic term in Ψ can be written as∫

d3rd3r′Ψ(r) : G−1
0 (r − r′) : Ψ(r′). (A.12)
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Completing the squares yields

Z[β, µs(s)] =
∏

s∈ species

∞∑
Ns=0

1

Ns!

Ns∏
j=1

(∫
d2sj

ρgl,s(sj)

λth,s
eβ(µs(sj)+ı(ξ̂bs):

∫
dzΨ0(sj ,z))

)
∫
D[Ψ] exp

−β
2

∫
d3rd3r′

Ψ(r)− ı
∑

s∈ species

Ns∑
j=1

(ξ̂bs) :

∫
dzG0((sj , z)− r)

 :

: G−1
0 (r − r′) :

Ψ(r′)− ı
∑

s′∈ species

Ns′∑
j′=1

(ξ̂bs′) :

∫
dz′G0(r′ − (s′j′ , z

′))


exp

−β
2

∑
s,s′∈ species

Ns∑
j=1

Ns′∑
j′=1

(ξ̂bs) :

(∫
dzdz′G0((sj , z)− (s′j′ , z

′))

)
: (ξ̂bs′)

 .
(A.13)

The middle two lines are independent of the dislocation positions and constitute therefore
an irrelevant multiplicative prefactor. All together, this proves Eq. (2.27).

A.6 The dislocation interaction potential

The goal of this paragraph is to find an expression for the ‘bare’ Green’s function G0, as
defined in Eq. (2.28), but in infinite space. This Green’s function can be used in the term
quadratic in Ψ in the partition function, which is the second line of Eq. (2.17).
The exponent in Eq. (2.17) is invariant under certain gauge transformations, which should
thus be fixed. This is also done in the Green’s function.
First, the action is invariant under the transformation Ψ → Ψ + ∇γ. This gauge is
fixed by restricting the integration to fields that satisfy ∇ ·Ψ = 0. Second, the action
is invariant under a constant shift in Ψ. Therefore, a small ‘mass term’ m is needed to
make the Green’s function invertible. In the end, m can be sent to 0.
For convenience, the tensors Q and R are defined in terms of the wave vector q

Qij(q) ≡ δij − qiqj/q2 Rik(q) ≡ εiklql/q. (A.14)

Note that these have the following group properties: Q ·Q = Q, Q ·R = R ·Q = R
and R ·R = −Q. The quadratic part of the partition function thus reads

∫
constr.

D[Ψ] exp[−βF0[Ψ]] =

∫
D[Ψ]δ[(∇∧Ψ)a]δ[∇ ·Ψ] (A.15)

exp

[
−β

2

∫
d3r(∇∧Ψ)s : S : (∇∧Ψ)s +

m2

2µ
Ψ2

]
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= lim
ζ→0

lim
η→0

∫
D[Ψ] exp

[
− β

2 · 2µ
ζ−1

∫
d3r(∇∧Ψ) : Ila : (∇∧Ψ)

]
exp

[
− β

4 · 2µ
η−1

∫
d3r(∇ ·Ψ) · (∇ ·Ψ)

]
exp

[
−β

2

∫
d3r(∇∧Ψ) : Sls : (∇∧Ψ) +

m2

2 · 2µ
Ψ2

]
= lim
ζ→0

lim
η→0

∫
D[Ψ] exp

[
−β

2

∫
d3q

(2π)3
Ψkj(q) :

[
q2RikSlsiji′j′Ri′k′

+ζ−1 q
2

2µ
RikIlaiji′j′Ri′k′ + η−1 q2

2 · 2µ
qkqk′

q2
δjj′ +

m2

2µ
δkk′δjj′

]
: Ψk′j′(−q)

]
≡ lim
ζ→0

lim
η→0

∫
D[Ψ] exp

[
−β

2

∫
d3q

(2π3)
Ψkj(q) : G−1

0,kjk′j′(q) : Ψk′j′(−q)

]
,

where the superscript “ls” and “la” stand for symmetry and antisymmetry with respect
to the first two indices of a fourth order tensor: Als

iji′j′ = (Aiji′j′ ±Ajii′j′)/2.

The nascent delta functional representation δ(x) ∝ limε→0 e
−x2/2ε/

√
ε was used to im-

pose the symmetry and divergence free conditions in the second equality. Using the

isotropic compliance tensor Siji′j′ = 1
2µ

(
δii′δjj′ − ν

1+ν δijδi′j′
)

, the inverse of the Green’s

function reads

G−1
0,kjk′j′(q) ≡ 1

2µ

[
q2

2

(
(1 + ζ−1)Qkk′δjj′ + (1− ζ−1)Rjk′Rj′k (A.16)

− 2ν

1 + ν
RjkRj′k′ + η−1 qkqk′

q2
δjj′

)
+m2δkk′δjj′

]
.

It is tedious but straightforward to check that

G0,k′j′k′′j′′(q) = 2µ

(
2ζ

q2+2m2ζ+q2ζ
Qk′k′′δj′j′′ +

2η

q2+2m2η

qk′qk′′

q2
δj′j′′+ (A.17)

+
q4(ζ − 1)2

2(q2+m2)(q2+m2ζ)(q2+2m2ζ+q2ζ)
Qj′j′′Qk′k′′+

+
q2ν

(m2+q2)(m2(1+ν)+q2(1−ν))
Rj′k′Rj′′k′′ +

q2(1− ζ)

2(m2+q2)(m2ζ+q2)
Rj′′k′Rj′k′′

)
.

The limits ζ → 0 and η → 0 can be taken straightforwardly. However, the limit m → 0
is more subtle, as this causes divergencies for q = 0. Therefore, this limit is postponed.
The resulting expression for G0 is then

G0,k′j′k′′j′′(q) =
2µ

2(q2 +m2)
· (A.18)(

Qj′j′′Qk′k′′ +Rj′′k′Rj′k′′ +
2q2ν

q2(1− ν) +m2(1 + ν)
Rj′k′Rj′′k′′

)
.

From the ‘bare’ Green’s function, the interaction potential between dislocations can be
derived. The form of the interaction potential is suggested by Eq. (2.27). Combined with
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Eq. (A.18) for m = 0 this yields the well-known interaction potential between parallel
dislocations [49, equation 5-16]:

Vs,s′(s, s
′) = (ξ̂bs) :

(∫
dzdz′G0((s, z)− (s′, z′))

)
: (ξ̂bs′) (A.19)

=

∫
dzdz′

∫
d3q

(2π)3
(ξ̂bs) : G0(q) : (ξ̂bs′)e

ıq·((s,z)−(s′,z′))

=

∫
d3q

(2π)2
δ(qz)

2µL

2q2

(
(ξ̂ξ̂) : Q(bsbs′) : Q+

1 + ν

1− ν

(
ξ̂bs : R

)(
ξ̂bs′ : R

))
eıq2D·(s−s

′)

=

∫
d2q2D

(2π)2

µL

q2

(ξ̂ · bs)(ξ̂ · bs′)+
2
(

(ξ̂ × bs′) · q
)(

(ξ̂ × bs) · q
)

(1− ν)q2

 eıq2D·(s−s
′)

= −µL
2π

((
ξ̂ · bs

)(
ξ̂ · bs′

)
ln

(
|s− s′|
s0

)
+

1

1− ν

(
(ξ̂ × bs′) · (ξ̂ × bs) ln

(
|s− s′|
s0

)

+

(
(ξ̂ × bs′) · (s− s′)

)(
(ξ̂ × bs) · (s− s′)

)
|s− s′|2

 .

This interaction potential diverges for |s−s′| → 0, which is at short distances close to the
dislocation core. However, linear elasticity as used here is not valid at such small distances.
Therefore, to avoid these divergencies, the core energy should be treated separately as in
[13]. When the interaction potential close to the origin is used, a regularization procedure
is needed, see eg. [80].
The interaction potential diverges for |s − s′| → ∞. This is due to the divergence as
q → 0 in Fourier space, which arises from setting m = 0 at an intermediate step.

A.7 Motivation of the Gaussian approximation

In this section, the Gaussian approximation in Eq. (2.37) is motivated by studying the
analogous probability density for scalars. The scalar analog of Eqs. (2.36) and (2.37) is
respectively

p(x; Ξ, fs, αs) = exp

−Ξ

2
x2/g0 +

∑
s∈species

fs/
√

Ξ exp [ıαsx]

 (A.20)

pg(x; g, b) = exp

[
−Ξ

2
(x+ ıb)2/g + γ

]
,

where the scaling of Sec. 2.3.6 was used, and where it was already realized that the
thermal wavelength scales with β1/2 ∝ Ξ1/2.
First, the special, ‘symmetric’ case f± = 1 and α± = ±1 is considered. In this case
p(x; Ξ, fs, αs) is real-valued, and therefore b = 0 in pg(g, b) for all Ξ.
In Fig. A.3(a), p(x; Ξ) is plotted for different values of Ξ. For low and high values of Ξ,



122 Appendix A

the curves are bell-shaped. However, for an intermediate value Ξ = 14, the bell-shape is
not found. As can be seen in Fig. A.3(b), the bell-shape is a Gaussian, as

√
− ln(p(x; Ξ))

is a straight line.
In Fig. A.2(a), the least mean square residual of the Gaussian fit is plotted against Ξ.
This curve has a peak around Ξ ≈ 14, which indeed indicates that the fit is not accurate
around this value, but is fairly good away from it.
In Fig. A.2(b), the fitting parameter g is plotted against Ξ. Note that g changes suddenly
around Ξ ≈ 14. This is a sign of a phase transition.
Second, the special case with only one dislocation species is considered: fs = 1 and
αs = 1. In this case p(x; Ξ, fs, αs) is complex-valued.
In Fig. A.3, the absolute value and the argument of p(x; Ξ) are plotted for different values
of Ξ. Again, for low and for high values of Ξ, the absolute value is a bell-shaped curve,
but this is not true for intermediate values. The argument is linear in x for high values
of Ξ, and vanishes for low values of Ξ. This agrees with the form of pg(g, b). However,
for intermediate values of Ξ, the argument is not at all linear in x, and therefore, the
approximation pg(g, b) is inaccurate in this regime.
From these two examples, it is expected that, also for the full partition function, the
Gaussian approximation is accurate away from criticality, but fails close to the transition. It
should be mentioned that, as the Gaussian approximation is invalid around the transition,
no quantitative conclusions about the transition point can be drawn from the analysis
presented here.
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Figure A.1: The black lines are plots of p(x). The parameters used are g0 = 1, fs = 1
and αs = ±1 for all curves, and Ξ = 0.1, 14, 106 for the dashed, solid and dot-dashed
line respectively. The thick grey line is pg(x) for g = 1. As one can see, a Gaussian
approximation is accurate for Ξ = 0.1 and Ξ = 106, but not for Ξ = 14.
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Figure A.2: In Fig. A.2(a), the least mean square (LMS) residual of the Gaussian fit
pg(g) is plotted against Ξ for g0 = 1, fs = 1 and αs = ±1. The residual is maximal
around Ξ ≈ 14, and negligible far away from Ξ = 14. This confirms the hypothesis that
a Gaussian fit is good for low and high values of Ξ, and bad for intermediate values.
In Fig. A.2(b), the fitted value of g is plotted against Ξ. The step around Ξ = 14 indicates
a phase transition around this point.

X1�2 x

ÈpHxLÈ

(a)

X1�2 x

ArgHpHxLL

(b)

Figure A.3: These are plots of the absolute value and argument of p(x). The parameters
used are g0 = 1, f = 1 and αs = 1 for all curves, and Ξ = 0.1, 14, 106 for the dashed, solid
and dot-dashed line respectively. As one can see, the Gaussian approximation pg(g, b) is
accurate for Ξ = 0.1 and Ξ = 106, but not for Ξ = 14.
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A.8 The effective Green’s function

In this section, Eqs. (2.38) and (2.39) are combined to find the governing equation for
the Green’s function, Eq. (2.40). Equating the normalizations of R and RG yields

0 =

∫
D[Ψ]RG[Ψ]−R[Ψ] (A.21)

≈ −ZG

〈
−β

2

∫
d3rd3r′Ψ(r) : G−1

0 (r, r′) : Ψ(r′)+

+
∑

s∈species

∫
d2sfs(s) exp

[
ıβ(ξ̂b) :

∫
dzΨ(s, z)

]
+

+
β

2

∫
d3rd3r′ (Ψ(r) + ıB(r)) : G−1(r − r′) : (Ψ(r′) + ıB(r′))− γ

〉
G

= −ZG

(
β

2

∫
d3rd3r′B(r) : G−1

0 (r, r′) : B(r′)− 1

2
Tr
[
G :
(
G−1

0 − G−1
)]
− γ

+
∑

s∈species

∫
d2sfs(s) exp

[
β

∫
dzB(s, z) : ξ̂b− β

2

∫
dzdz′ξ̂bs : G(s, z; s, z′) : ξ̂bs

] ,

where the Gaussian integrations are performed in the last step and where the trace is a
summation over the discrete indices and an integration over coordinates. In a similar way,
equating the first moments of Ψ yields

0 =

∫
D[Ψ]Ψ(r) (RG[Ψ]−R[Ψ]) (A.22)

≈ −ZG

〈
Ψ(r)

(
−β

2

∫
d3rd3r′Ψ(r) :G−1

0 (r, r′) :Ψ(r′)

+
∑

s∈species

∫
d2sfs(s) exp

[
ıβ(ξ̂b) :

∫
dzΨ(s, z)

]

+
β

2

∫
d3rd3r′ (Ψ(r) + ıB(r)) :G−1(r − r′) : (Ψ(r′) + ıB(r′))− γ

)〉
G

= −ZG

(
−ıB(r)

(
β

2

∫
d3r′d3r′′B(r′) :G−1

0 (r′, r′′) :B(r′′)− 1

2
Tr
[
G :
(
G−1

0 − G−1
)]
− γ

+
∑

s∈species

∫
d2sfs(s) exp

[
β

∫
dzB(s, z) : ξ̂b− β

2

∫
dzdz′ξ̂bs :G(s, z; s, z′) : ξ̂bs

]
+ ı

∫
d3r′G(r, r′) :

∫ d3r′′G−1
0 (r′, r′′) :B(r′′) +

∑
s∈species

fs(r
′
2D)ξ̂bs·

exp

[
β

∫
dzB(r′2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs :G(r′2D, z; r

′
2D, z

′) : ξ̂bs

]))
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and equating the second moments yields

0 = −ZG

((
β−1G(r, r′)−B(r)B(r′)

)
(A.23)(

β

2

∫
d3r′′d3r′′′B(r′′) :G−1

0 (r′′, r′′′) :B(r′′′)− 1

2
Tr
[
G :
(
G−1

0 − G−1
)]
− γ

+
∑

s∈species

∫
d2sfs(s) exp

[
β

∫
dzB(s, z) : ξ̂b− β

2

∫
dzdz′ξ̂bs :G(s, z; s, z′) : ξ̂bs

]
−B(r′)

∫
d3r′′

∫ d3r′′′B(r′′′) :G−1
0 (r′′′, r′′) +

∑
s∈species

fs(r
′′
2D)ξ̂bs·

exp

[
β

∫
dzB(r′′2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs :G(r′′2D, z; r

′′
2D, z

′) : ξ̂bs

])
:G(r′′, r)

−B(r)

∫
d3r′′

∫ d3r′′′B(r′′′) :G−1
0 (r′′′, r′′) +

∑
s∈species

fs(r
′′
2D)ξ̂bs·

exp

[
β

∫
dzB(r′′2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs :G(r′′2D, z; r

′′
2D, z

′) : ξ̂bs

])
:G(r′′, r′)

+ β−1

∫
d3r′′d3r′′′G(r, r′′) :

(
G−1(r′′, r′′′)− G−1

0 (r′′, r′′′)

− β
∑

s∈species

fs(r
′′
2D)δ(r′′2D − r′′′2D)ξ̂bsξ̂bs·

exp

[
β

∫
dzB(r′′2D, z) : ξ̂bs −

β

2

∫
dzdz′ξ̂bs :G(r′′2D, z; r

′′
2D, z

′) : ξ̂bs

])
:G(r′′′, r′).

Recombining the above equations results in Eqs. (2.40).

A.8.1 Validity of the assumptions

In this section it is first checked whether Eq. (2.39) is a good approximation. For simplicity,
only two species of dislocations with opposite Burgers vector ±b and spatially constant
fugacity f are considered. To this end, Eqs. (A.22) and (A.23) are evaluated again, but
with a second order series expansion in the exponent, instead of a first order expansion. It
is then tested whether the solution of the second order equations is approximately equal
to the solution of the first order equations, Eqs. (A.22) and (A.23).
The second order series expansion in the exponent reads

RG[Ψ]−R[Ψ] ≈ −RG[Ψ]

((
β

2

∫
d3rd3r′Ψ(r) :

(
G−1(r, r′)− G−1

0 (r, r′)
)

:Ψ(r′)

+2f

∫
d2s cos

[
β(ξb) :

∫
dzΨ(s, z)

]
− γ
)

+
1

2

(
2f

∫
d2s cos

[
β(ξb) :

∫
dzΨ(s, z)

]
−γ +

β

2

∫
d3rd3r′Ψ(r) :

(
G−1(r, r′)− G−1

0 (r, r′)
)

:Ψ(r′)

)2
)
. (A.24)



126 Appendix A

In an analogous way as for the first order expansion, a governing equation for
G can be derived. The steps are equal to those taken in the beginning of this
appendix, except for using Eq. (A.24) instead of Eq. (2.39). With the tensor

Σ(r, r′) ≡ 2βf ξ̂bξ̂bδ(r2D − r′2D) exp
[
−β
2

∫
dzdz′(ξ̂b) : G(0, z − z′) : (ξ̂b)

]
this yields

0 = G−1 − G−1
0 −Σ +

(
G−1 − G−1

0 −Σ
)(1

2
Tr
[(

G−1 − G−1
0

)
: G
]

(A.25)

+2f

∫
d2s exp

[
−β
2

∫
dzdz′(ξ̂b) : G(0, z − z′) : (ξ̂b)

]
− γ
)

+
(
G−1 − G−1

0 −Σ
)

: G :
(
G−1 − G−1

0 −Σ
)
−Σ : G : Σ

− 2fΣ

∫
d2s

(
exp

[
−β
2

∫
dzdz′(ξ̂b) : G(0, z − z′) : (ξ̂b)

])
×(

cosh

[
β

∫
dzdz′(ξ̂b) : G(s, z − z′) : (ξ̂b)

]
− 1

)
− 2f(2βf)

(
exp

[
−β
2

∫
dzdz′(ξ̂b) : G(0, z − z′) : (ξ̂b)

])2

×

cosh

[
β

∫
dzdz′(ξ̂b) : G(r2D − r′2D, z − z′) : (ξ̂b)

]
ξ̂bξ̂b

To see whether using Eq. (A.24) changes the Green’s function, G is written as G =
G(1) + δG, where G(1) satisfies Eqs. (A.22) and (A.23), and expanded up to first order in
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δG. In rescaled form, this reads

0 = −
(

Ğ
−1

(1) − Ğ
−1

0

)
: Ğ(1) :

(
Ğ
−1

(1) − Ğ
−1

0

)
(A.26)

− (2f̆)2Ξδ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂

∫
d2s̆

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×(
cosh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(s̆, z̆ − z̆′) : (ξ̂b̂)

]
− 1

)
− (2f̆)2Ξξ̂b̂ξ̂b̂

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×

cosh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(r̆2D − r̆′2D, z̆ − z̆′) : (ξ̂b̂)

]
+ Ğ

−1

(1) : δĞ : Ğ
−1

(1) +
(

Ğ
−1

(1) − Ğ
−1

0

) Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : δĞ(0, z̆ − z̆′) : (ξ̂b̂)

+ Ξ

∫
dz̆dz̆′(ξ̂b̂) : δĞ(0, z̆ − z̆′) : (ξ̂b̂)

(
Ğ
−1

(1) − Ğ
−1

0

)
: Ğ(1) :

(
Ğ
−1

(1) − Ğ
−1

0

)
−
(

Ğ
−1

(1) − Ğ
−1

0

)
: δĞ :

(
Ğ
−1

(1) − Ğ
−1

0

)
+ (2f̆)2Ξ2δ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂

∫
d2s̆

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×(
cosh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(s̆, z̆ − z̆′) : (ξ̂b̂)

]
− 1

)∫
dz̆dz̆′(ξ̂b̂) : δĞ(0, z̆ − z̆′) : (ξ̂b̂)

− (2f̆)2Ξ2δ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂

∫
d2s̆

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×(
sinh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(s̆, z̆ − z̆′) : (ξ̂b̂)

])∫
dz̆dz̆′(ξ̂b̂) : δĞ(s̆, z̆ − z̆′) : (ξ̂b̂)

+ (2f̆)2Ξ2ξ̂b̂ξ̂b̂

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×

cosh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(r̆2D − r̆′2D, z̆ − z̆′) : (ξ̂b̂)

] ∫
dz̆dz̆′(ξ̂b̂) : δĞ(0, z̆ − z̆′) : (ξ̂b̂)

− (2f̆)2Ξ2ξ̂b̂ξ̂b̂

(
exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×

sinh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(r̆2D − r̆′2D, z̆ − z̆′) : (ξ̂b̂)

]
×∫

dz̆dz̆′(ξ̂b̂) : δĞ(r̆2D − r̆′2D, z̆ − z̆′) : (ξ̂b̂).
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To determine the dominant terms in the low temparature limit Ξ → ∞, it can be used
that for large Ξ(

exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×(
cosh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(s̆, z̆ − z̆′) : (ξ̂b̂)

]
− 1

)
≈
(

exp

[
−Ξ

2

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(0, z̆ − z̆′) : (ξ̂b̂)

])2

×

sinh

[
Ξ

∫
dz̆dz̆′(ξ̂b̂) : Ğ(1)(s̆, z̆ − z̆′) : (ξ̂b̂)

]
≈ exp

[
−Ξ

∫
dz̆dz̆′(ξ̂b̂) :

(
Ğ(1)(0, z̆ − z̆′)− Ğ(1)(s̆, z̆ − z̆′)

)
: (ξ̂b̂)

]
. (A.27)

Furthermore, it can be used that Ğ
−1

(1) − Ğ
−1

0 has no algebraic corrections in Ξ−1. This
yields for the dominant terms in Eq. (A.28)

0 = −(2f̆)2Ξδ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂× (A.28)∫
d2s̆ exp

[
−Ξ

∫
dz̆dz̆′(ξ̂b̂) :

(
Ğ(1)(0, z̆ − z̆′)− Ğ(1)(s̆, z̆ − z̆′)

)
: (ξ̂b̂)

]
− (2f̆)2Ξξ̂b̂ξ̂b̂ exp

[
−Ξ

∫
dz̆dz̆′(ξ̂b̂) :

(
Ğ(1)(0, z̆ − z̆′)− Ğ(1)(r̆2D − r̆′2D, z̆ − z̆′)

)
: (ξ̂b̂)

]
+ Ğ

−1

(1) :δĞ : Ğ
−1

(1)

+ (2f̆)2Ξ2δ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂

∫
d2s̆

∫
dz̆dz̆′(ξ̂b̂) :

(
δĞ(0, z̆ − z̆′)− δĞ(s̆, z̆ − z̆′)

)
: (ξ̂b̂)×

exp

[
−Ξ

∫
dz̆dz̆′(ξ̂b̂) :

(
Ğ(1)(0, z̆ − z̆′)− Ğ(1)(s̆, z̆ − z̆′)

)
: (ξ̂b̂)

]
+ (2f̆)2Ξ2ξ̂b̂ξ̂b̂

∫
dz̆dz̆′(ξ̂b̂) :

(
δĞ(0, z̆ − z̆′)− δĞ(r̆2D − r̆′2D, z̆ − z̆′)

)
: (ξ̂b̂)×

exp

[
−Ξ

∫
dz̆dz̆′(ξ̂b̂) :

(
Ğ(1)(0, z̆ − z̆′)− Ğ(1)(r̆2D − r̆′2D, z̆ − z̆′)

)
: (ξ̂b̂)

]
Now, the nascent delta function representation δ(x) ∝ limε→∞ ex

2/2εε−1/2 and the prod-
uct rule for limits can be used to rewrite the exponents. This implies that in the limit
Ξ→∞ the last term has contributions just when Ğ(1)(0, z̆−z̆′) = Ğ(1)(r̆2D−r̆′2D, z̆−z̆′),
which implies that 0 = r̆2D − r̆′2D. Therefore this term vanishes. The same holds for the
second last term.
This furthermore implies that the first two lines are proportional to −(2f̆)2Ξ1/2δ(r̆2D −
r̆′2D)ξ̂b̂ξ̂b̂, which finally yields

δĞ : Ğ
−1

(1) ∝ (2f̆)2Ξ1/2Ğ(1) : ξ̂b̂ξ̂b̂δ(r̆2D − r̆′2D). (A.29)

The RHS of this equation vanishes with Ξ−1/2 in the limit Ξ→∞ with
√

Ξf̆ constant.
The LHS can be interpreted as the relative change of the Green’s function, which thus
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vanishes in this limit. From this, it is concluded that the approximation in Eq. (2.39) is
good in the low temperature limit.
The second approximation that has to be tested is the assumption that the Green’s func-
tion is Gaussian. This is tested by comparing the difference 〈α(s)α(s′)〉G− 〈α(s)α(s′)〉
with 〈α(s)α(s′)〉G using the approximation in Eq. (2.39). The difference in rescaled form
is:

〈ᾰ(s̆)ᾰ(s̆′)〉G − 〈ᾰ(s̆)ᾰ(s̆′)〉 ≈ (A.30)

≈ −
〈
ᾰ(s̆)ᾰ(s̆′)

(
1

2Ξ

∫
dŭdŭ′Ψ̆(ŭ) :

(
G−1(ŭ, ŭ′)− G−1

0 (ŭ, ŭ′)
)

: Ψ̆(ŭ′)

+2f̆

∫
d2s̆′′ cos

[
(ξb̂) :

∫
dz̆Ψ̆(s̆′′, z̆)

]
− γ
)〉

G

= −〈ᾰ(s̆)ᾰ(s̆′)〉Ğ

(
Ξ

2

∫
dz̆dz̆′ξ̂b̂ : Ğ :

(
Ğ
−1
− Ğ

−1

0

)
: Ğ : ξ̂b̂(s̆, z̆; s̆, z̆)

+
Ξ

2

∫
dz̆dz̆′ξ̂b̂ : Ğ :

(
Ğ
−1
− Ğ

−1

0

)
: Ğ : ξ̂b̂(s̆′, z̆; s̆′, z̆)

−
Ξ
∫
dz̆dz̆′ξ̂b̂ : Ğ :

(
Ğ
−1
− Ğ

−1

0

)
: Ğ : ξ̂b̂(s̆, z̆; s̆′, z̆)

tanh
[
Ξ
∫
dz̆
∫
dz̆′ξ̂b̂ : Ğ(s̆− s̆′, z̆ − z̆′) : ξ̂b̂

]
+ 2f̆

∫
d2s̆′′ exp

[
−Ξ

2

∫
dz̆

∫
dz̆′ξ̂b̂ : Ğ(0, z̆ − z̆′) : ξ̂b̂

]
(
−1 + cosh

[
Ξ

∫
dz̆

∫
dz̆′ξ̂b̂ : Ğ(s̆− s̆′′, z̆ − z̆′) : ξ̂b̂

]
×

cosh

[
Ξ

∫
dz̆

∫
dz̆′ξ̂b̂ : Ğ(s̆′ − s̆′′, z̆ − z̆′) : ξ̂b̂

]
− sinh

[
Ξ

∫
dz̆

∫
dz̆′ξ̂b̂ : Ğ(s̆− s̆′′, z̆ − z̆′) : ξ̂b̂

]
×

sinh
[
Ξ
∫
dz̆
∫
dz̆′ξ̂b̂ : Ğ(s̆′ − s̆′′, z̆ − z̆′) : ξ̂b̂

]
tanh

[
Ξ
∫
dz̆
∫
dz̆′ξ̂b̂ : Ğ(s̆− s̆′, z̆ − z̆′) : ξ̂b̂

]
 .

The term between brackets is minus one in the limit Ξ → ∞. Namely, the tanh term
goes to one, and hence the sinh and cosh terms in the last four lines cancel. Furthermore,

Ğ
−1

(1) − Ğ
−1

0 has no algebraic corrections in Ξ−1, so the first three terms vanish as well.
This implies that the prediction of the charge correlator using the Gaussian approximation
is equal to the ‘real’ charge correlator from the full partition function. This justifies the
Gaussian approximation.
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A.8.2 Approximated solution

To find an approximate solution to Eq. (2.41) in the dominant scaling regime, the equation
is rescaled using the scales introduced in Sec. 2.3. To find the scaling of G−1

0 , note that∫
d3r′G−1

0 (r − r′) : Ψ(r′) = ∇∧ S : ∇∧Ψ(r)

(ζ2L)
∣∣G−1

0

∣∣ = ζ−2(2µ)−1, (A.31)

where
∣∣G−1

0

∣∣ is the typical size of G−1
0 . Hence the inverse Green’s function scales with

(2µζ4L)−1, and hence the Green’s function scales with 2µ/L. It is assumed that G scales
in the same way. This yields for the rescaling of Eq. (2.41)

β

∫
dzB(s, z) : ξ̂b̂ = −2Ξf

ζ

L

∫
dr̆
ζ

L

∫
dz̆ξ̂b̂ : G(r̆; s̆, z̆) : ξ̂b̂· (A.32)

· exp

[
−Ξ

2

ζ

L

∫
d(z̆ − z̆′)ξ̂b̂ : Ğ(0, z̆ − z̆′) : ξ̂b

]
sin

[
β

∫
dzB(r2D, z) : ξ̂b

]
Ğ
−1

(r̆ − r̆′) = Ğ
−1

0 (r̆ − r̆′) + 2Ξf̆ δ(r̆2D − r̆′2D)ξ̂b̂ξ̂b̂·

· exp

[
−Ξ

2

ζ

L

∫
d(z̆ − z̆′)(ξ̂b̂) : Ğ(0, z̆ − z̆′) : (ξ̂b̂)

]
cos

[
β

∫
dzB(r2D, z) : ξ̂b

]
.

The solution of this equation in the low temperature limit Ξ → ∞ where
√

Ξf̆ is kept

constant is β
∫
dzB(s, z) : ξ̂b̂ = 0 and Ğ

−1
= Ğ

−1

0 , and hence B = 0 and G = G0.
There are no algebraic corrections in Ξ−1.

A.9 Compliance

The variance of the distortion in the low temperature limit, Eq. (2.45), was derived as
follows:

〈∆s
ij(q)∆s

i′j′(q)〉 − 〈∆s
ij(q)〉〈∆s

i′j′(q)〉 = Slsiji′j′ − (qSijklCkn) (qSi′j′k′l′Ck′n′)

2µ

2q2

(
Qll′Qnn′ +Cl′nCln′ +

2ν

1− ν
ClnCl′n′

)
(A.33)

= Slsiji′j′ −
2µ

2
SijklSi′j′k′l′

(
Qll′Qkk′ +Ql′kQlk′ +

2ν

1− ν
QlkQl′k′

)
= Slsiji′j′ −

1

2µ

(
1

2
Qii′Qjj′ +

1

2
Qij′Qi′j −

ν

1− ν
δijQi′j′ −

ν

1− ν
Qijδi′j′

+2
ν

1− ν
ν

1 + ν
δijδi′j′ +

ν

1− ν
QijQi′j′

)
=

1

2µ

1

2
(δii′δjj′ −Qii′Qjj′ + δij′δji′ −Qij′Qji′

− 2ν

1− ν
(δijδi′j′ +QijQi′j′ − δijQi′j′ −Qijδi′j′)

)
= (δilδjn −QilQjn)

1

2

1

2µ

(
δll′δnn′ + δln′δl′n −

2ν

1− ν
δlnδl′n′

)
(δi′l′δj′n′ −Qi′l′Qj′n′) .
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Details about calculations in Chap. 3

B.1 The mean-field elastic energy

In this section, the first three contributions of Eq. (3.20) are combined into a single expres-
sion in terms of ∆mf, as defined in Eq. (3.21). To this end, the first three contributions
of Eq. (3.20) are rewritten using the definitions in Eqs. (3.6) and (3.12)

1

2

∫
dV∆0 : C : ∆0 +

1

2

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′) +

∑
b

∫
dAρb(s)Vb,0(s)

=
1

2

∫
dV

(
∆0 +

(
∇×

∫
dV ′G0(r, r′) :

∑
b

ξ̂ ⊗ bρb(r′2D)

)
: S

)
: C :

:

(
∆0 +

(
∇×

∫
dV ′G0(r, r′′) :

∑
b

ξ̂ ⊗ bρb(r′′2D)

)
: S

)
. (B.1)

To rewrite this equation, it should be used that the following combination is divergence
free and symmetric:

C :

(
∆0 +

(
∇×

∫
dV ′G0(r, r′) :

∑
b

ξ̂ ⊗ bρb(r′2D)

)
: S

)
. (B.2)

These two properties will first be shown. First, the divergence free character of C : ∆0

follows immediately by Eq. (3.3), and ∇×
∫
dV ′G0(r, r′) :

∑
b ξ̂⊗bρb(r′2D) is a rotation,

and hence it is divergence free by definition.
Second, this combination is symmetric. For C : ∆0, this is immediately clear. For
∇ ×

∫
dV ′G0(r, r′) :

∑
b ξ̂ ⊗ bρb(r′2D), this is more subtle. As mentioned below Eq.

(3.13),
∫
dV ′G−1

0 (r, r′) : Ψ(r′) is infinite if ∇ × Ψ(r) is not symmetric. Therefore,
∇ × G0(r, r′) should be symmetric in the first two indices. One can check that this is
indeed the case for the infinite space solution for G0 in Eq. (3.14).
From these two properties, the following relationship can be derived for any arbitrary
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second order tensor field h(r) for which ∇× h(r) is symmetric:∫
dV

(
∆0 +

(
∇×

∫
dV ′G0(r, r′) :

∑
b

ξ̂ ⊗ bρb(r′2D)

)
: S

)
: ∇× h(r) =

=

∫
dV

(
∆0 : ∇× h(r) +

∑
b

ξ̂ ⊗ bρb(r′2D) : h(r)

)
(B.3)

=

∫
dV (∆0 : ∇× h(r)−∇× βp : h(r))

=

∫
dV (∆0 : ∇× h(r)− (βp)s : ∇× h(r)) =

∫
dV∆mf : ∇× h(r)

where in the first step the definition of G−1
0 in Eq. (3.13) is used, in the second the

definition of βp in Eq. (3.21), in the third Gauss’ theorem and the symmetry of ∇×h(r)
and in the fourth step the definition of ∆mf in Eq. (3.21). By applying this identity twice
in Eq. (B.1), it is found that

1

2

∫
dV∆0 : C : ∆0 +

1

2

∑
b,b′

∫
dAdA′ρb(s)ub,b′(s, s

′)ρb′(s
′) +

∑
b

∫
dAρb(s)Vb,0(s)

=
1

2

∫
dV∆mf : C : ∆mf. (B.4)

This expression is used in Eq. (3.22).

B.2 The Gradient correction in the LDA

In this section, the gradient correction for the many body contribution is calculated using
Eq. (3.28). To this end, the second derivative of the gradient correction with respect to
the density profile is determined first:

δ2Fmb[ρtot(s′), T ]

δρtot(0)δρtot(s)

∣∣∣∣
ρtot(s)=ρtot

= −Tr

[(
Iδ(s1 − s2) +

1

kBT

∫
dzdz′G0(s1 − s2, z − z′) :

: ξ̂ ⊗ b⊗ ξ̂ ⊗ bρtot
)

:
1

kBT

∫
dzdz′G0(s2 − s3, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ b :

:

(
Iδ(s3 − s4) +

1

kBT

∫
dzdz′G0(s3 − s4, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ bρtot

)
:

:
1

kBT

∫
dzdz′G0(s4 − s1, z − z′) : ξ̂ ⊗ b⊗ ξ̂ ⊗ b

]
δ(s1)δ(s3 − s). (B.5)

The convolution on the RHS can be written as a product in Fourier space. Therefore,
this expression reads, using the eigenvalues λ̃(q) in Eq. (3.34),

δ2Fmb[ρSSD(s), T ]

ρSSD(0)ρSSD(s)

∣∣∣∣
ρSSD

= − 1

ρ2
SSD

kBT

2

1

(2π)4

∫
d2qd2q′eı(q

′−q)·s λ̃(q)

1 + λ̃(q)

λ̃(q′)

1 + λ̃(q′)
.

(B.6)
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The integrations over q and q′ can be performed independently. The function j(s) is
used as shorthand notation for the integral over q:

j(s) ≡ − 1

(2π)2

∫
d2qe−ıq·s

λ̃(q)

1 + λ̃(q)
=

1

ρSSD

1

(2π)2

∫
d2qe−ıq·s

aq2
y

q4 + aq2
y

(B.7)

where, as in the main text, a is the shorthand notation for a = ρSSD2µb2L
kBT (1−ν) . Eq. (B.6) can

thus be written as

δ2Fmb[ρSSD(s), T ]

δρSSD(0)δρSSD(s)

∣∣∣∣
ρSSD

= −kBT
2

j(s)j(−s) = −kBT
2

j(s)2, (B.8)

where the symmetry of j(s) was used. Hence the matrix F2,mB(ρSSD), as expressed in
Eq. (3.28), reads

F2,mB(ρSSD, T ) =
kBT

8

∫
dAs⊗ sj(s)2. (B.9)

This can be rewritten as follows:

F2,mB(ρSSD, T ) =
kBT

8

∫
dAs⊗ sj(s)2eıq·s

∣∣∣∣
q=0

(B.10)

= −kBT
8

d

dq
⊗ d

dq
F
[
j(s)2

]
(q)
∣∣
q=0

= −kBT
8

d

dq
⊗ d

dq

1

(2π)2

∫
dq′j̃(q′)j̃(q − q′)

∣∣∣∣
q=0

=
kBT

8

1

(2π)2

a2

ρ2
SSD

∫
dq′

d

dq′
j̃(q′)⊗ d

dq′
j̃(−q′)

=
kBT

8

1

(2π)2

a2

ρ2
SSD

∫
dq′

−4
q′xq

′
y
2q′2

(q′4+aq′y
2)2

2
q′y(q′x

4−q′y
4)

(q′4+aq′y
2)2

⊗
−4

q′xq
′
y
2q′2

(q′4+aq′y
2)2

2
q′y(q′x

4−q′y
4)

(q′4+aq′y
2)2

 ,

where in the third line, the inverse of the convolution theorem was used, and where for the
last equality, the explicit form of j̃(q) in Eq. (B.7) was used. These integrations can now
be performed. Note that the qx derivative is antisymmetric in qx, and the qy derivative is
antisymmetric in qy. Therefore, the off-diagonal terms in the matrix vanish. Using polar
coordinates for the q′-integral, this yields

F2,mB(ρSSD, T ) =
kBT

8

1

(2π)2

4a2

ρ2
SSD

(B.11)∫
dq′q′

∫ 2π

0

dφ
q′

2
cos2 φ

(q′2 + a cos2 φ)4

(
4 cos2 φ sin2 φ 0

0 (sin4 φ− cos4 φ)2

)
=
kBT

8

1

(2π)2

4a2

ρ2
SSD

∫
dq′

(
π

2(q′2+a)5/2
0

0 π(4q′2+a2)
8q′2(q′2+a)7/2

)

=
kBT

8

1

(2π)2

4a2

ρ2
SSD

( π
3a2 0
0 − π

3a2 + π
8a3/2q0

)
=

1

24π

kBT

ρ2
SSD

(
1 0

0 −1 +
3
√
ρSSD
8q0

√
2µb2L

kBT (1−ν)

)
,



134 Appendix B

where q0 is the lower bound of the q′-integral. The lower bound q0 is inversely proportional
to the largest length scale in the system, which is the system size R.

B.3 Summation over glide planes

In this appendix, the integrations over the y-coordinate and the summations over n in
Eq. (3.48) are performed. First, the summation in the first term can be evaluated:∫

dy

∞∑
n=−∞

δ(y − hn) =

∞∑
n=−∞

1 ≡ Ny, (B.12)

where the latter equality is the definition of Ny. The number Ny can be interpreted as
the number of glide planes. In the geometry considered here, this number is in principle
infinite. However, it will be shown later that it is a common prefactor of all terms in Eq.
(3.48).
Second, the summation in the second term can be evaluated using the explicit expression
of the interaction potential in Eq. (3.14b):∫

dy

∫
dy′

∑
n,n′∈N

δ(y − hn)δ(y′ − hn′)uedge(x− x′, y − y′) = (B.13)

=

∞∑
n=−∞

∞∑
∆n=−∞

uedge(x− x′, h∆n)

= −Ny
µb2L

2π(1− ν)

∞∑
∆n=−∞

(
ln

(√
(x− x′)2 + h2∆n2

s0

)
+

h2∆n2

(x− x′)2 + h2∆n2

)

= −Ny
µb2L

2π(1− ν)

(
2

∞∑
∆n=1

(
ln

(√
(x− x′)2 + h2∆n2

h|∆n|

)
+ ln

(
h|∆n|
s0

)))

+ ln

(
|x− x′|
s0

)
−Ny

µb2L

2π(1− ν)

∞∑
∆n=−∞

(
1− (x− x′)2

(x− x′)2 + h2∆n2

)
,

where in the first line ∆n is shorthand notation for n − n′. To evaluate further, it is
convenient to define A by

A ≡ 2

∞∑
∆n=1

ln

(
h|∆n|
s0

)
, (B.14)

which is a constant independent of x − x′. The summation does not converge as the
number of glide planes is infinite. However, it will be shown later that the dislocation
density profile is independent of A. Furthermore, the following identities can be used:

2

∞∑
∆n=1

ln

(√
∆x2 + h2∆n2

h|∆n|

)
= ln

(
h

π∆x
sinh

(
π

∆x

h

))
(B.15)

∞∑
∆n=−∞

∆x2

∆x2 + h2∆n2
= π

∆x

h
coth

(
π

∆x

h

)
.
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This finally yields∫
dy

∫
dy′

∑
n,n′∈N

δ(y − hn)δ(y′ − hn′)uedge(x− x′, y − y′) = (B.16)

= Ny
µb2L

2π(1− ν)

(
π

∆x

h
coth

(
π

∆x

h

)
− ln

(
2 sinh

(
π

∆x

h

)))
−Ny

µb2L

2π(1− ν)

(
Ny +A+ ln

(
h

2πs0

))
,

where the last line is a constant independent of x − x′. An additive constant in the
interaction potential has no physical meaning. Therefore, it will be neglected further on.
The interaction potential in the second line of Eq. (B.16) is equal to the interaction energy
used in [99, 29] and will be denoted by uwall(∆x) further on.
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Details about calculations in Chap. 5

C.1 Macroscopic entropy

The first aim of this appendix is to determine the macroscopic entropy in Eq. 5.16.
Combining Eqs. (5.4a), (5.9), (5.13) and (5.15) yields for the macroscopic entropy

S2(x2) =
kBTB ln

[
ZB[TB]

]
+ EB

TB
(C.1)

+
kBTC ln

[
ZC[µb(R), TC]

]
−
∑
b

∫
dRµb(R)ρb(R) + EC

TC
.

We now recognize −kBTB ln
[
ZB[TB]

]
as the free energy of the lattice, denoted by

FB(TB). Morever, −kBTC ln
[
ZC[µb(R), TC]

]
is the grand potential of a dislocation

system, controlled by the local chemical potential and the temperature. A Legendre
transform to the dislocation density as a variable can be recognized in the above expres-
sion, see [23], such that we can identify

FC[ρb(R), TC] = −kBTC ln
[
ZC[µb(R), TC]

]
+
∑
b

∫
dRµb(R)ρb(R), (C.2)

where FC[ρb(R), TC] is the free energy at a given dislocation density profile and config-
urational temperature. This directly yields Eq. (5.16).

C.2 Derivation of Eq. (5.19)

The aim of this paragraph is to derive Eq. (5.19). To this end, we calculate

∇R (ρb(R)) =

∫
dx1

∑
i,b(i)=b

∇R (δ(R(i)−R)) ρx2(x1)

=

∫
dx1

∑
i,b(i)=b

δ(R(i)−R)∇R(i) (ρx2
(x1))

=

∫
dx1

∑
i,b(i)=b

δ(R(i)−R)
−
∂ΠEC

∂R(i) +∇R (µb[ρb, TC;R])

kBTC
ρx2(x1)

=
1

kBTC

〈 ∑
i,b(i)=b

δ(R(i)−R)Fpk(i)

〉
x2

+
1

kBTC
ρb(R)∇R

(
δF

δρb(R)

)
,
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where in the first equality, we used the definition of ρb in Eq. (5.15), in the second equality,
we performed a partial integration, in the third equality, we used the expression for the
phase space density in Eq. (5.13), and in the fourth that δF

δρb(R) = µb[ρb, TC;R] and that
dΠEC

dR(i) = −Fpk(i) as in Eq. (5.9). This is the identity in Eq. (5.19).

C.3 Macroscopic response function

To determine the second dynamical response function, K2, the vector DΠ(x1) defined
in Eq. (5.4c), is needed. Using Eqs. (5.9), (5.10) and (5.12), it is found that

δ

δx1
·M1(x1) =

(
d

dSlat

(
1

LBb(i)(Tlat)

)
ŝb(i)

(
ŝb(i) · Fpk(i)

)
,

,
∑
i

(
ŝb(i) · d

dR(i)

) (
ŝb(i) · Fpk(i)

)
LBb(i)(Tlat)

+
∑
i

d

dSlat

(
1

TlatLBb(i)(Tlat)

)(
ŝb(i) · Fpk(i)

)2)T

M1(x1) :
δ2Π

δx1δx1
=


∑

i

b(i)=b

Tlat

LBb(i)(Tlat)
(ŝb(i) · ∇)2δ(R(i)−R)

dTlat

dSlat

∑
i

1
TlatLBb(i)(Tlat)

(
ŝb(i) · Fpk(i)

)2∑
i

Tlat

LBb(i)(Tlat)

(
ŝb(i) · d

dR(i)

) (
ŝb(i) · Fpk(i)

)
 ,

which yields

DΠ(x1) = (−ŝb · ∇ (Jb) ,P,−P)
T (C.3)

with

1

B̃b(Tlat)
≡ 1

Bb(Tlat)
+ kB

d

dSlat

(
1

Bb(Tlat)

)

Jb ≡
1

LB̃b(Tlat)

 ∑
i,b(i)=b

δ(R(i)−R) (ŝb · Fpk(i))

− kBTlat

LBb(Tlat)
ŝb · ∇Πρb(R)

P ≡
∑
i

kBTlat

LBb(i)(Tlat)

(
ŝb(i) ·

d

dR(i)

)(
ŝb(i) · Fpk(i)

)
+
∑
i

1

LB̃b(i)(Tlat)

(
ŝb(i) · Fpk(i)

)2
.

B̃b can be evaluated by using the good approximation that Bb(Tlat) depends linearly on
Tlat, and hence that

kB
d

dSlat

(
1

Bb(Tlat)

)
≈ −kB

dTlat

dSlat

1

TlatBb(Tlat)
= −kB

C

1

Bb(Tlat)
, (C.4)

where C is the heat capacity of the lattice. This was obtained using the thermodynamic
definition C ≡ Tlat

dSlat

dTlat
. For aluminium at room temperature, C = 24JK−1mole−1

[102], and hence kB/C = 5.8× 10−25/R, where R is the number of atoms in the lattice
in mole. This implies that the difference between Bb and B̃b is negligible.
It will turn out to be convenient to rewrite P. To this end, we define Fpk(i) ≡ δFpk(i) +〈∑

i,b(i)=b δ(R(i)−R)Fpk(i)
〉
x2

/ρb(R). Inserting this in the above expression for P
yields the expression in terms of Q and Jb in Eq. (5.20).
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C.4 Energy evolution

The evolution equations for the energies that follow from Eqs. (5.17), (5.18) and (5.21)
read

dEB

dt
=
∑
b

∫
dR

(
−ŝb · ∇R

(
δFC

δρb(R)
− kBTC log

[
ρb(R)

Λ2
b

]))
(C.5)

ρb(R)

LBb(TB)

(
−ŝb · ∇R

(
δFC

δρb(R)

))
− kB(TC − TB)

∑
b

∫
dR

ŝb · (Σ · b× ξ̂)

LBb(Tlat)
ŝb · ∇Rρb(R)

− kB(TC − TB)
∑
bb′

∫
dRdR′

ŝb · F bb
′

int (R,R′)

LBb(Tlat)
ŝb · ∇Rρ(2)

bb′(R,R
′)

+
1

kBTC

∑
b′

∫ τ ′

0

d∆t 〈〈P(0),Jb′(R′,∆t)〉〉
(
−ŝb′ · ∇R′

(
δFC(t−∆t)

δρb′(R′)

))

+

∫ τ ′′

0

d∆t 〈〈P(0),P(∆t)〉〉
(

1

kBTB(t−∆t)
− 1

kBTC(t−∆t)

)
dEC

dt
= −dEB

dt
, (C.6)

where we have used the following identity to rewrite
〈∑

i,b(i)=b (ŝb · Fpk(i))
2
〉
x2

:

0 = (kBTC)2

∫
dx1

∑
i,b(i)=b

(
ŝb ·

∂

∂R(i)

)2

ρx2
(x1) (C.7)

=

∫
dx1

∑
i,b(i)=b

(
ŝb · Fpk(i) +

∫
dRŝb · ∇R (µb(R)) δ(R(i)−R)

)2

ρx2(x1)

+ kBTC

∫
dx1

 ∑
i,b(i)=b

ŝb ·
∂

∂R(i)
(ŝb · Fpk(i))

−
∫
dRŝb · ∇R (µb(R)) ŝb · ∇Rδ(R(i)−R)

 ρx2
(x1) (C.8)

=

〈 ∑
i,b(i)=b

(ŝb · Fpk(i))
2

〉
x2

+

∫
dRŝb · ∇R (µb(R))

〈 ∑
i,b(i)=b

δ(R(i)−R)Fpk(i)

〉
x2

+ kBTC

〈 ∑
i,b(i)=b

ŝb ·
∂

∂R(i)
(ŝb · Fpk(i))

〉
x2

. (C.9)

For Eq. (C.8), we performed the derivative wrt. R(i) and for Eq. (C.9), we did the
averaging and used Eq. (5.19). The last contribution can be rewritten further using a
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split of the Peach-Koehler force into a part due to loading and a part due to interactions
between dislocations. This yields〈 ∑

i,b(i)=b

ŝb ·
∂

∂R(i)
(ŝb · Fpk(i))

〉
x2

=

〈 ∑
i,b(i)=b

ŝb ·
∂

∂R(i)

(∫
dRδ(R(i)−R)ŝb · (Σ · b× ξ̂)

+
∑
b

∑
i′,b(i′)=b′

∫
dRdR′ŝb · F bb

′

int (R,R′)δ(R(i)−R)δ(R(i′)−R′)

〉
x2

= −
∫
dRŝb · (Σ · b× ξ̂)ŝb · ∇Rρb(R)

−
∑
b′

∫
dRdR′ŝb · F bb

′

int (R,R′)ŝb · ∇Rρ(2)
bb′(R,R

′),

where F bb
′

int (R,R′) is the force of a dislocation with Burgers vector b′ atR′, and where the

two-point density is defined by ρ
(2)
bb′(R,R

′) =
〈∑

i,i′,i6=i′ δ(R(i)−R)δ(R(i′)−R′)
〉
x2

.

The different terms in Eq. (C.5) can be interpreted as follows: the first line is the average
Peach-Koehler force times the flux due to free energy gradients. The second and third
line reflect the correlation in driving force and flux. The fourth line is an emergent heat
flux due to correlations in fluctuations of the heat- and dislocation flux, and the fifth line
is the energy flux due to differences in inverse temperature between the two reservoirs.

C.5 A thermodynamic identity

The aim of this section is to show that ∂TC

∂ρb(R)

∣∣∣
EC

is large in the limit of weak fluctuations.

To this end, we write

∂TC

∂ρb(R)

∣∣∣∣
EC

= −
∂EC

∂ρb(R)

∣∣∣
TC

∂EC

∂TC

∣∣∣
ρb(R)

= −
∫
dR′

∂EC

∂µb(R′)

∣∣∣
TC

∂ρb(R)
∂µb(R′)

∣∣∣
TC

∂EC

∂TC

∣∣∣
ρb(R)

.

These three derivatives can be determines straightforwardly using Eqs. (5.13) and (5.15):

∂EC

∂µb(R′)

∣∣∣∣
TC

=
(〈

ΠEC
Πρb(R′)

〉
−
〈
ΠEC

〉
〈Πρb(R′)〉

)
/kBTC

∂ρb(R)

∂µb(R′)

∣∣∣∣
TC

= (〈Πρb(R)Πρb(R′)〉 − 〈Πρb(R)〉 〈Πρb(R′)〉) /kBTC

∂EC

∂TC

∣∣∣∣
ρb(R)

=
(〈

ΠEC
ΠEC

〉
−
〈
ΠEC

〉 〈
ΠEC

〉)
/kBT

2
C.
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When the correlations are weak, these three derivatives are all small, and hence ∂TC

∂ρb(R)

∣∣∣
EC

is large.
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Details about calculations in Chap. 6

D.1 Derivation of the density evolution equation

In this section, Eq. (6.2) is derived from the results in Chap. 5. In that work, the dominant
contributions to the evolution equation of the dislocation density read, see Eq. (5.22)

∂ρb(R)

∂t
= −ŝb · ∇R

∫ τ2

0

d∆t

{∑
b′

∫
dR′
〈〈Jb(R, 0),Jb′(R′,∆t)〉〉

kBTC
(D.1)(

−ŝb′ · ∇R′
δFC(t−∆t)

δρb′(R′)

∣∣∣∣
TC

)

+ 〈〈Jb(R, 0),P(∆t)〉〉
(

1

kBTB(t−∆t)
− 1

kBTC(t−∆t)

)}
,

with Jb(R) =
∑
i,b(i)=b δ(R(i) − R)v(i) and P =

∑
b

∑
i,b(i)=b

(ŝb·Fpk(i))2

LBb(TB) , where

the double brackets 〈〈. . . , . . .〉〉 denote the correlation of fluctuations; 〈〈A,B〉〉 = 〈(A −
〈A〉), (B− 〈B〉)〉. In Chap. 5, this equation was further simplified using a decomposition
of P. Here however a slightly different decomposition is chosen, which is more convenient
in a numerical setting.
The first contribution in Eq. (D.1) can be simplified by using a local approximation, in
which we write∫

dR′
〈〈Jb(R, 0),Jb′(R′,∆t)〉〉

kBTC

(
−ŝb′ · ∇R′

δFC(t−∆t)

δρb′(R′)

)
(D.2)

≈
H

(0)
bb′(∆t)

2kBTC

(
−ŝb · ∇R

δFC(t−∆t)

δρb(R)

)
with

H
(0)
bb′(∆t) ≡ 2

∫
dR′ 〈〈Jb(R, 0),Jb′(R′,∆t)〉〉 .

Furthermore, using translational invariance, H
(0)
bb′(∆t) can be rewritten as

H
(0)
bb′(∆t) =

2

Ω

∫
dR

∫
dR′ 〈〈Jb(R, 0),Jb′(R′,∆t)〉〉

=
2

Ω

〈〈 ∑
i,b(i)=b

v(i, 0),
∑

i′,b(i′)=b′

v(i′,∆t)

〉〉
,
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which is equal to the definition in Eq. (6.3). To simplify 〈〈Jb(R, 0),P(∆t)〉〉, use is made
of

P − 〈P〉 = 2
∑
b

〈ŝb · Fpk〉
∑

i,b(i)=b

(v(i)− 〈v(i)〉) +
∑
b

Rb − 〈Rb〉

with Rb =
∑

i,b(i)=b

(v(i)− 〈v〉)(ŝb · Fpk(i)− ŝb · 〈Fpk〉).

This implies, together with translational invariance, that

〈〈Jb(R, 0),P(∆t)〉〉 =
∑
b

H
(0)
bb′(∆t) 〈ŝb · Fpk〉+

2

Ω

∑
b

〈〈 ∑
i,b(i)=b

v(i, 0),Rb(∆t)

〉〉
.

(D.3)

Note that v(i) − 〈v〉 is linear in the velocity fluctuations, while Rb − 〈Rb〉 is quadratic
in these fluctuations. Therefore, the second contribution is odd in the fluctuations, and
is expected to vanish. This has been verified numerically.
To simplify further, we use a relation between the expectation value of the Peach-Koehler
force and the free energy derivative. By integrating Eq. 5.19 over space and by assuming
that the system is translationally invariant, it is found that

〈ŝb · Fpk〉 = −ŝb · ∇R

(
δFC(t−∆t)

δρb(R)

∣∣∣∣
TC

− kBTC log

[
ρb(R)

Λ2
b

])
. (D.4)

Combining Eqs. (D.1,D.2,D.3) then yields

∂ρb(R)

∂t
= −ŝb · ∇R

∫ τ2

0

d∆t
∑
b′

∫
dR′H

(0)
bb′(∆t) (D.5)(

−ŝb · ∇R

((
1

kBTB
− 1

2kBTC

)
δFC(t−∆t)

δρb(R)

∣∣∣∣
TC

− kB(TC − TB) log

[
ρb(R)

Λ2
b

]))
.

Accounting for TC � TB, and by defining δF̃
δρb(R) = δFC(t−∆t)

δρb(R)

∣∣∣
TC

− kB(TC −

TB) log
[
ρb(R)

Λ2
b

]
, this yields Eq. (6.2).

D.2 Derivation of τrelax

The aim of this section is to derive τrelax in Eq. (6.9). To this end, the free energy
expression for a single slip system as in Chap. 3 Eq. (4.17) is used. The density of
dislocations with Burgers vector b is ρb(R) = ρ0 + δρ(R), and ρ−b(R) = ρ0. Then, the
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driving force for dislocation dynamics reads

−ŝb · ∇R

(
δF̃ (t)

δρb(R)

)
= Lŝb · ((Σ + δσ(R)) · b× ẑ)− µb2L

(1− ν)

1

2ρ0
ŝb · ∇Rδρ(R)

+
kBTB

ρ0(R)
ŝb · ∇Rδρ(R) (D.6)

−ŝ−b · ∇R

(
δF̃ (t)

δρ−b(R)

)
= Lŝb · ((Σ + δσ(R)) · b× ẑ) +

µb2L

(1− ν)

1

2ρ0
ŝb · ∇Rδρ(R),

where Σ is the macroscopically imposed stress field and δσ(R) is the stress field induced
by δρ(R), and where it was used that ŝb = −ŝ−b. Using this, the first order terms in
δρ(R) in Eq. (6.7a) read

∂δρ(R)

∂t
= −ŝb · ∇R

(∑
b′

Γeff,bb′

kBTB

(
−ŝb′ · ∇R

(
δF̃ (t)

δρb′(R)

)))
(D.7)

=
1

kBTB

dΓeff

dρb(R)
(−ŝb · ∇Rδρ(R)) (2Lŝb · (Σ · b× ẑ))

+
Γeff

kBTB

(
−ŝb · ∇R (2Lŝb · δσ(R) · b× ẑ)− kBTB

ρ0
(ŝb · ∇R)2δρ(R)

)
,

where we have used that Γeff,bb = Γeff,b−b. To proceed, we assume that dΓeff/dρb(R)
is of order Γeff/ρb(R), which is the case when Γeff depends on ρb(R) via a powerlaw.
Furthermore, one could argue that the typical magnitude of | − ŝb · ∇R (σ(R)) | ≈
2µ|∇ ∧∆| = 2µbδρb(R), where ∆ is the elastic strain field. Finally, the typical length
scale associated with the density fluctuation is denoted by κ−1. This finally yields∣∣∣∣∂δρ(R)

∂t

∣∣∣∣ = Γeff

(
2bLΣresκ

kBTBρ0
+

2µb2L

kBTB
+
κ2

ρ0

)
|δρb(R)| . (D.8)

To estimate which of the three terms in the bracket on the RHS is dominant, we first
note that κ−1 > R, as the dislocation density cannot vary on distances smaller than
the dislocation spacing. The ratio between the first two terms is then SκR/(1 − ν),
which is smaller than 1 (note that S is most likely of order 1, see discussion in Sec. 6.4.3).
Moreover, one could estimate that µb2L/kBTB > 2.4×102 (see Sec. 6.4.1), which implies
that the second term is larger than the third. We thus conclude that the second term is

dominant, and that τ−1
relax = Γeff

2µb2L
kBTB

.

D.3 Derivation of the force between dislocations

In this section, Eq. (D.10) is derived from [70]. To this end, the Peach-Koehler force
on a dislocation resulting from an infinite array of dislocations as depicted in fig. D.1 is
determined first. The stress field due to an infinite, horizontal array of tilted dislocations
was determined in [70]. The Peach-Koehler force on the dislocation as a result of this
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Horizontal array

of dislocations

Sufficient for summation

d

d

Figure D.1: Sketch of the grids of dislocations. Horizontal arrays of dislocations are
indicated. The aim of this appendix is to determine the interaction force and energy
between the marked dislocation and the infinite array of dislocations.

stress reads

FPK,array(∆x̆ii′ ,∆y̆ii′) = b(i) · σarray(R(i))× ẑ =
µb(i)b(i′)L

2(1− ν)d

((
sin(∆x̆ii′ )

cosh(∆y̆ii′ )−cos(∆x̆ii′ )
sinh(∆y̆ii′ )

cosh(∆y̆ii′ )−cos(∆x̆ii′ )

)

+ cos(2φ)

(
− sin(∆x̆ii′ )∆y̆ii′ sinh(∆y̆ii′ )

(cosh(∆y̆ii′ )−cos(∆x̆ii′ ))
2

−∆y̆ii′ (cosh(∆y̆ii′ ) cos(∆x̆ii′ )−1)
(cosh(∆y̆ii′ )−cos(∆x̆ii′ ))

2 + sinh(∆y̆ii′ )
cosh(∆y̆ii′ )−cos(∆x̆ii′ )

)

+ sin(2φ)

(
−∆y̆ii′ (cosh(∆y̆ii′ ) cos(∆x̆ii′ )−1)

(cosh(∆y̆ii′ )−cos(∆x̆ii′ ))
2

sin(∆x̆ii′ )∆y̆ii′ sinh(∆y̆ii′ )
(cosh(∆y̆ii′ )−cos(∆x̆ii′ ))

2 − sin(∆x̆ii′ )
cosh(∆y̆ii′ )−cos(∆x̆ii′ )

))
(D.9)

where ∆x̆ii′ =
2π(xi−x′

i)
d and ∆y̆ii′ =

2π(xi−x′
i)

d are the position differences. Obviously,
this function is periodic in ∆x̆ii′ , as expected.
Now, to obtain the force due to the grid of dislocations, these forces are summed over
multiple horizontal arrays with an equal number of arrays on the top and bottom side,
as in fig. D.1. It was indicated by Kuykendall and Cai [70] that it is in practice therefore
sufficient to sum over only three planes up and down.
The velocity in the glide plane due to this force is due to the component of the force in
the slip direction ŝ± = ±(cos(φ), sin(φ)). Hence the velocity of the ith dislocation due
to the applied load and the other dislocations reads:

v(i) =
bΣres

Bb(i)(TB)
(D.10)

+
µb2

2(1− ν)dBb(i)(TB)

∑
i′

∞∑
k=−∞

b(i′)

|b(i′)|

(
sin(∆x̆ii′)

cosh(∆y̆kii′)− cos(∆x̆ii′)
cos(φ) cos(2φ)

− ∆y̆kii′ sinh(∆y̆kii′) sin(∆x̆ii′)(
cosh(∆y̆kii′)− cos(∆x̆ii′)

)2 cos(3φ) +
sinh(∆y̆kii′)

cosh(∆y̆kii′)− cos(∆x̆ii′)
cos(φ) sin(2φ)

+ ∆y̆kii′
1− cosh(∆y̆kii′) cos(∆x̆ii′)(
cosh(∆y̆kii′)− cos(∆x̆ii′)

)2 sin(φ)(1 + 2 cos(2φ))

)
,

where ∆y̆kii′ =
2π(xi−x′

i+kd)
d .
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Details about the complete set of evolution
equations

E.1 Temperature evolution

In this appendix, the evolution equations for the configurational temperature TC will
be derived to obtain the complete set of evolution equations as presented in 7.1. To
this end, the decomposition proposed in Appendix D.1 is employed. First, we rewrite
〈〈P(0),P(∆t)〉〉, which reads upon ignoring the odd terms in the fluctuations:

〈〈P(0),P(∆t)〉〉 = 2Ω
∑
b,b′

〈ŝb · Fpk(0)〉H(0)
bb′(∆t) 〈ŝb′ · Fpk(∆t)〉+K(∆t), (E.1)

where K(∆t) ≡
∑
b,b′ 〈〈Rb,Rb′〉〉. The evolution equation for the configurational energy

then follow by combining Eqs. (5.16-5.21) and D.3:

dEC

dt
=

2

TB

∑
b,b′

∫
dR 〈ŝb · Fpk(t)〉H(0)

bb′(∆t)ŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

)
(E.2)

−K(∆t)

(
1

TB
− 1

TC

)
.

The evolution of TC now follows from the chain rule:

dTC

dt
=

∂TC

∂EC

∣∣∣∣
ρb

dEC

dt
+
∑
b

∫
dR

δTC

δρb(R)

∣∣∣∣
EC

∂ρb(R)

∂t
. (E.3)

To proceed, we use δTC

δρb(R)

∣∣∣
EC

= − δEC

δρb(R)

∣∣∣
TC

/
dEC

dTC

∣∣∣
ρb(R)

and Eq. (6.2) to arrive at

dTC

dt
=

∑
b,b′

∫
dR

(
2 〈ŝb · Fpk(t)〉+ ŝb′ · ∇R

(
δEC

δρb(R)

∣∣∣∣
TC

))
H

(0)
bb′(∆t)

TB
(E.4)

ŝb′ · ∇R

(
δF̃ (t−∆t)

δρb′(R)

)
−K(∆t)

(
1

TB
− 1

TC

)]/
∂EC

∂TC

∣∣∣∣
ρb

.

Now, we can use the thermodynamic relation EC = FC[ρb(R), TC] − TC
dFC

dTC

∣∣∣
ρb(R)

,

the decomposition of the free energy in a mean-field, a statistical and a many-body
contribution (see section 4.3), and the fact that the many-body contribution is almost
independent of the temperature (see Eqs. (3.43) and (4.11)). First, this implies that the



148 Appendix E

configurational heat capacity is the heat capacity of the ideal gas in two dimensions, i.e.
∂EC

∂TC

∣∣∣
ρb

= kB
∑
bNb. Second, this can be used to derive

ŝb′ · ∇R

(
δEC

δρb(R)

∣∣∣∣
TC

)
= ŝb′ · ∇R

(
δFC

δρb(R)

∣∣∣∣
TC

− kBTC log

[
ρb(R)

ρb,0

])
(E.5)

= −〈ŝb · Fpk(t)〉 .

Combining this finally yields the evolution equation for TC presented in section 7.1.
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De collectieve dynamica van dislocaties

Staal wordt veel gebruikt in de wereld om ons heen: denk bijvoorbeeld aan bruggen, paper-
clips en onderdelen in een mobiele telefoon. Aan het staal in verschillende toepassingen
worden heel verschillende eisen gesteld. Staal in gereedschap (bijvoorbeeld een boor)
moet erg hard zijn en nauwelijks vervormen, terwijl staal voor blikjes sterk vervormd moet
kunnen worden tijdens de productie zonder dat het kapot gaat. De verschillen tussen
deze soorten staal zijn het resultaat van verschillen in de microstructuur van het staal: de
manier waarop het staal is opgebouwd op het kleinste niveau.
Hoewel staal al lang gebruikt wordt, worden er nog steeds nieuwe soorten ontwikkeld.
Nieuwe soorten staal hebben een andere microstructuur die zorgt voor een betere sterkte
en/of verbeterde vervormingseigenschappen van het staal. Het zoeken naar een micro-
structuur die de gewenste sterkte en vervormingseigenschappen geeft, is helaas nog een
kwestie van uitproberen. Het effect van de microstructuur op de vervormingseigenschap-
pen van staal en andere metalen is nog onvoldoende begrepen om het effect vooraf te
kunnen voorspellen. Daarom wordt er veel onderzoek gedaan naar de vervormingsmecha-
nismen van metalen op microniveau.

Dislocaties en vervorming

De atomen in metalen zijn geordend in een rooster. Deze structuur ontstaat wanneer het
metaal stolt. Vaak treden hierbij en bij de bewerking van het metaal imperfecties op,
waardoor er onder andere lijnvormige defecten in het rooster ontstaan: de zogenoemde
dislocaties (zie figuur 1). Een dislocatie wordt gekenmerkt door de lijnrichting en de vector
die de vervorming van het rooster aangeeft: de Burgers’ vector. Rondom dislocaties is
het rooster vervormd.

Figure 1: Twee voorbeelden van dislocaties. De oranje lijnen geven de lijnrichting van de
dislocaties aan. De rode vectoren zijn de Burgers’ vectoren. Dit zijn de vectoren die nodig
zijn om de blauwe lus om de dislocatie heen te sluiten. Een dislocatie waarvan de Burgers’
vector loodrecht staat op de lijnrichting heet een randdislocatie (links), en n waarvan de
Burgers’ vector parallel is aan de lijnrichting heet een schroefdislocatie (rechts).
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Dislocaties spelen een belangrijke rol bij de vervorming van het metaal. Namelijk, wanneer
er een kleine kracht op het materiaal wordt uitgeoefend, wordt het rooster wat opgerekt.
We spreken van een elastische vervorming wanneer het materiaal terugvervormt zodra de
kracht wordt losgelaten. De dislocatie blijft dan op z’n oorspronkelijke plaats.
Bij een wat grotere opgelegde vervorming kunnen dislocaties gaan bewegen, zich ver-
menigvuldigen of samensmelten, zie bijvoorbeeld figuur 2. Dislocaties bewegen in dit
geval vaak niet terug wanneer de opgelegde kracht wordt losgelaten. We spreken dan van
een permanente vervorming.

Figure 2: Een randdislocatie in een vervormd rooster. De dislocatie beweegt door de
interne spanning in het rooster naar rechts, en bereikt uiteindelijk de rand van het rooster.
De dislocatie zal niet terugbewegen, en dus is het materiaal permanent vervormd.

Emergentie

Het effect van een enkele dislocatie op de mechanische eigenschappen van een metaal
(elastisch of permanent vervormen) is dus redelijk goed begrepen. Echter, metalen be-
vatten vaak veel dislocaties (tot wel 1000 kilometer dislocatie-lijn per kubieke millimeter),
die elkaar bovendien sterk benvloeden. Een dislocatie vervormt namelijk het rooster, maar
gaat ook bewegen als gevolg van vervormingen van het rooster, en dus bëınvloeden dis-
locaties elkaar. Het is daarom mogelijk dat het gezamenlijke gedrag van alle dislocaties
samen kenmerken heeft die niet terug te voeren zijn op het gedrag van één gëısoleerde
dislocatie. Dit is een voorbeeld van emergentie. Voor de start van dit onderzoek werd al
vermoed dat emergente fenomenen belangrijk zijn. Daarom is de hypothese die onder-
zocht wordt in dit proefschrift:

“Emergente fenomenen in de dynamica van dislocaties bepalen de
mechanische eigenschappen van een metaal, meer dan de

dynamica van individuele dislocaties.”

Aanpak in dit proefschrift

Om deze hypothese te toetsen is in dit proefschrift de gezamenlijke beweging van alle
dislocaties (de zogenoemde collectieve dynamica) afgeleid uit de bekende bewegings-
vergelijkingen van individuele dislocaties, en bepaald in hoeverre emergente fenomenen
een rol spelen. Voor de afleiding is de GENERIC-methode gebruikt (General Equation
for the Non-Equilibrium Reversible-Irreversible Coupling: algemene vergelijking voor de
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reversibele-irreversibele koppeling buiten evenwicht). Met deze methode kan op een sys-
tematische manier de collectieve dynamica afgeleid worden uit de beweging van de indi-
viduele deeltjes.
Het gebruik van de GENERIC-methode voor een specifiek systeem is geen sinecure.
Daarom is er in dit proefschrift voor gekozen om te werken met een vereenvoudigd mo-
delsysteem van oneindig lange, parallelle dislocaties. Enerzijds maakt dit de berekening
wat makkelijker omdat de dislocatie beschreven kan worden als een punt in een twee-
dimensionale dwarsdoorsnede in plaats van een lijn in drie dimensies. Anderzijds blijkt
uit computersimulaties van dit modelsysteem in de literatuur dat er, ondanks de ver-
eenvoudiging, nog wel realistische resultaten te verwachten zijn. Het nadeel van een
vereenvoudigd modelsysteem is echter dat er geen kwantitatieve, maar alleen kwalitatieve
uitspraken gedaan kunnen worden over het collectieve gedrag van dislocaties. Met andere
woorden: we kunnen alleen bepalen óf emergente fenomenen belangrijk zijn, en niet hoe
die er precies uitzien.

Drijvende krachten

De eerste stap van een berekening binnen de GENERIC-methode is het bepalen van de
verwachte energie en entropie (mate van wanorde) van alle dislocaties samen. Hiervoor
kan gebruikgemaakt worden van statistische mechanica, waarin wordt gewerkt met kansen
en verwachtingswaarden. Met behulp van de energie en entropie kan de drijvende kracht
voor de dynamica bepaald worden. In dit proefschrift is deze kracht zowel analytisch (met
pen en papier) uitgerekend als met een computersimulatie.
De drijvende kracht die hier is berekend voor het modelsysteem van dislocaties bestaat uit
drie verschillende bijdragen. De eerste bijdrage is de zogenoemde gemiddelde-veldbijdrage.
In deze bijdrage wordt alleen de gemiddelde kracht van alle andere dislocaties en de van
buiten opgelegde kracht meegenomen. De tweede bijdrage is een statistische bijdrage,
die voortkomt uit het tellen van toestanden. Deze beide bijdragen werden al gebruikt
voor dislocaties in de literatuur. Uit de berekening in dit proefschrift blijkt echter dat de
statistische bijdrage verwaarloosbaar klein is.
De derde bijdrage is de veeldeeltjes-bijdrage. Omdat dislocaties met tegenovergestelde
Burgers’ vectoren elkaar aantrekken, is het waarschijnlijk dat er vlakbij een dislocatie nog
een dislocatie met tegenovergestelde Burgers’ vector gevonden wordt. Dit bëınvloedt
de krachten die de eerste dislocatie voelt, en dat wordt meegenomen in de veeldeeltjes-
bijdrage. Deze bijdrage hangt af van de opgelegde kracht en de totale hoeveelheid dis-
locaties, en is in de literatuur nog niet eerder gevonden. Bovendien is deze bijdrage van
dezelfde orde van grootte als de gemiddelde-veldbijdrage, en kan daarom niet verwaar-
loosd worden. Deze component in de kracht is niet terug te vinden als je alleen naar
individuele dislocaties kijkt, en dus is dit een emergente bijdrage aan de kracht.

Transport van dislocaties

De tweede stap van de berekening bestaat uit het bepalen van het transport van dislocaties
ten gevolge van de kracht. Hiervoor is een transportcoëfficiënt nodig, die de stroom van
dislocaties relateert aan de drijvende kracht. Deze transportcoëfficiënt bestaat uit twee
bijdragen: de transportcoëfficiënt van individuele deeltjes en een term als gevolg van
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correlaties in fluctuaties van de snelheid van individuele dislocaties. Uit de berekeningen
in dit proefschrift blijkt dat de tweede bijdrage veel groter is dan de eerste. Ook dit is
een emergente bijdrage.

Resultaten en conclusies

We kunnen concluderen dat zowel voor de drijvende kracht als voor de transportcoëfficiënt
emergente bijdragen belangrijk zijn. Dit bevestigt onze centrale hypothese.
Om het resultaat van de berekening te vergelijken met de literatuur, is in dit onder-
zoek gekeken naar de stroom van dislocaties voor verschillende waarden van de opgelegde
kracht. Het model dat gebruikt is in dit proefschrift voorspelt dat het verband tussen de
opgelegde kracht en de stroom van dislocaties sterker dan lineair is. Dat betekent dat de
stroom veel meer dan twee keer zo groot wordt als de opgelegde kracht wordt verdubbeld.
Dat betekent ook dat de permanente vervorming, die het gevolg is van de beweging van
dislocaties, bij een kleine opgelegde kracht heel erg klein is en plotseling sterk toeneemt
als de kracht toeneemt.
In de literatuur wordt zo’n sterk niet-lineair verband ook gebruikt in empirische modellen
voor vervorming van metaal (de zogenoemde kristalplasticiteitsmodellen). Het resultaat
van de berekening in dit proefschrift komt dus kwalitatief goed overeen met deze bestaande
modellen, wat suggereert dat de GENERIC-methode een goede manier is om dynamica
van dislocaties te beschrijven.
Er is wel een behoorlijk kwantitatief verschil met de empirische relaties uit de literatuur: de
plotselinge toename van de dislocatiestroom is nog veel sterker in de empirische relaties.
Dit verschil verandert vooral de tijdsafhankelijkheid van het materiaal (i.e. hoe snel het
materiaal vervormt). Aan de ene kant kan het zo zijn dat een berekening met een meer
realistische beschrijving van dislocaties een sterkere plotselinge toename oplevert dan het
vereenvoudigde model dat we hier hebben gebruikt. Aan de andere kant zou het kunnen
zijn dat de toename in de literatuur overschat wordt. De berekeningen die hier gepresen-
teerd worden kunnen dan helpen de tijdsafhankelijkheid van de kristalplasticiteitsmodellen
uit de literatuur te verbeteren. Maar in ieder geval kan worden geconcludeerd dat emer-
gente fenomenen cruciaal zijn om de vervorming van metaal goed te beschrijven.
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