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Detection of Correlations With Adaptive Sensing
Rui M. Castro, Gábor Lugosi, and Pierre-André Savalle

Abstract— The problem of detecting correlations from samples
of a high-dimensional Gaussian vector has recently received a
lot of attention. In most existing work, detection procedures are
provided with a full sample. However, following common wisdom
in experimental design, the experimenter may have the capacity
to make targeted measurements in an on-line and adaptive
manner. In this paper, we investigate such adaptive sensing
procedures for detecting positive correlations. It is shown that,
using the same number of measurements, adaptive procedures
are able to detect significantly weaker correlations than their
nonadaptive counterparts. We also establish minimax lower
bounds that show the limitations of any procedure.

Index Terms— Sequential testing, adaptive sensing, sparse
covariance matrices, sparse principal component analysis,
high-dimensional detection.

I. INTRODUCTION

IN THIS paper we consider a statistical testing problem
related to anomaly detection: the detection of correlations

between signals. In the general problem of anomaly detec-
tion, one aims to identify unexpected activity in data. It has
applications in numerous domains [14], such as finance [9],
computer security [21], health monitoring [29], or detection of
activity in sensor networks [24], [33], [39]. In many situations,
anomalies can be detected by looking at unusual signal values
at any of the sensors. For instance, a home security alarm is
usually comprised of various infrared or related sensors, and
an alert is raised as soon as a single sensor detects an unusual
signal. However, in other situations, when signals are “weak”,
they may never appear anomalous in isolation, and anomalies
may only be detected when considering the signals together
as a collection. This type of phenomena may be referred
to as either contextual anomaly detection [35], or collective
anomaly detection [34], depending on the setup. A prototypical
example of such a problem is the detection of Distributed
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Denial-of-Service (DDoS) attacks in computer networks,
which has become an important challenge in recent
years [32], [37], [40]. In a DDoS attack, the attacker usually
controls a large number of computers distributed around
the world. These machines are used to simultaneously send
requests to a target server, which is then flooded by the
amount of packets, and can become unavailable as a result.
As a side effect, this type of attack can produce high vol-
umes of traffic in various parts of the worldwide internet
infrastructure. However, packets sent by the attacker through
the machines that he/she controls cannot usually be detected as
anomalous in isolation [27], and detection of DDoS requires
to correlate signals obtained at different points in the net-
work. Collective anomalies also appear, for instance, in the
context of detection of the outbreak of diseases [28]. Another
important type of anomaly detection problem appears when
dealing with sensor data arranged on a two-dimensional grid
(e.g., loop detectors in lanes of road networks, or wireless
sensor networks [2]). In this case, collective anomalies may
be characterised by neighbouring signals being correlated.
Besides anomaly detection, detection of correlations is also of
interest to assess to what extent dimensionality reduction can
be performed on a data stream. Reduction of dimensionality
is a workhorse of data analysis, and there has been a strong
recent interest in modifying principal component analysis to
deal with high-dimensional data [10], [12], [26]. Testing when
this type of transformation is justified is thus an important
problem.

In this work, we consider a simple correlation model: given
multiple observations from a Gaussian multivariate distribution
we want to test whether the corresponding covariance matrix
is diagonal against non-diagonal alternatives. Such problems
have recently received a lot of attention in the literature, where
different models and choices of non-diagonal covariance alter-
natives were considered [4], [5], [10], [12], [20]. We consider
the detection of sparse positive correlations, which has been
treated in the case of a unique multivariate sample [4],
or of multiple samples [5]. However, this paper deviates from
the existing literature in that we consider an adaptive sensing
or sequential experimental design setting. More precisely,
data is collected in a sequential and adaptive way, where
data collected at earlier stages informs the collection of data
in future stages. Adaptive sensing has been studied in the
context of other detection and estimation problems, such as in
detection of a shift in the mean of a Gaussian vector [13], [19],
in compressed sensing [6], [13], [18], in experimental design,
optimization with Gaussian processes [36], and in active
learning [15]. Adaptive sensing procedures are quite flexible,
as the data collection procedure can be “steered” to ensure
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most collected data provides important information. As a
consequence, procedures based on adaptive sensing are often
associated with better detection or estimation performances
than those based on non-adaptive sensing with a similar mea-
surement budget. In this paper, our objective is to determine
whether this is also the case for detection of sparse positive
correlations, and if so, to quantify how much can be gained.

A. Model

Let Ut ∈ R
n , t = 1, 2, . . . be independent and identically

distributed (i.i.d.) normal random vectors with zero mean and
covariance matrix �S , where S is a subset of [n] = {1, . . . , n}.
Let ρ > 0 and define the covariance matrix as

(�S)i, j =
⎧
⎨

⎩

1, i = j
ρ, i �= j, with i, j ∈ S
0, otherwise.

Our main goal is to solve the hypothesis testing problem

H0 : S = ∅
H1 : S ∈ C,

where C is some class of non-empty subsets of {1, . . . , n},
each of size k. In other words, under the alternative hypothesis,
there exists an unknown subset S ∈ C such that corresponding
components are positively correlated with strength ρ > 0.
We often refer to the elements of S as the subset of conta-
minated coordinates. The model of correlations we consider
appears naturally in the problem of detecting a sparse signal
embedded in noise. Indeed, with (Y t

i ) and Nt being indepen-
dent standard normal random variables, and

Ut
i =

{
Y t

i , i /∈ S,√
1 − ρY t

i + √
ρNt , i ∈ S

for some S ∈ C, then the vectors Ut are independent multi-
variate zero-mean normal vectors with covariance matrix �S .
The variable Nt represent a common signal present at each
contaminated coordinate and Y t

i the additive white noise. In all
cases we assume that the cardinality of each S ∈ C is the same:
|S| = k. We consider the following types of classes C for the
contaminated coordinates:

• k-intervals: all sets of k contiguous coordinates, of the
form {z, z +1, . . . , z +k −1} for some 1 ≤ z ≤ n −k +1;
this class has size linear in n, and we denote it by C[k].

• disjoint k-intervals: the class D[k] defined as

D[k] = {I1, . . . , I�n/k�}
where I j = {( j − 1)k + 1, . . . , jk}, j ∈ {1, . . . , �n/k�}.

• k-sets: all subsets of {1, . . . , n} of cardinality k.
We denote this class by Ck .

In addition, it is of interest for applications to consider settings
where the coordinates {1, . . . , n} are laid out according to a
two-dimensional grid [n1] × [n2] with n1n2 = n, similarly
to a spatially arranged array of sensors. Although k-sets still
make sense in this setting, the contaminated set can be further
assumed in this case to be connected and spatially localized
in some sense. The following example is most intuitive:

• (k1, k2)-rectangles: for k1k2 = k, this comprises all sets
of the form

{i0, . . . , i0 + k1 − 1} × { j0, . . . , j0 + k2 − 1}
for i0 ∈ [n1 − k1 + 1], j0 ∈ [n2 − k2 + 1].

Results for rectangles or similar two-dimensional shapes can
be obtained easily from our results for k-intervals, and are
identical up to constants. We omit the rather straightforward
details here.

For any t = 1, 2, . . . denote by P∅ the distribution of Ut

under the null, and by PS the distribution under the alternative
with contaminated set S ∈ C. In addition, for a positive
integer q , we denote by P

⊗q the product measure P⊗ . . .⊗P

with q factors. As previously, we let [q] = {1, . . . , q}.

B. Adaptive vs. Non-Adaptive Sensing and Testing

Clearly, the above hypothesis testing problem would be
trivial if one has access to an infinite number of i.i.d. sam-
ples (Ut )t∈{1,...,∞}. Therefore, one must include some further
restrictions on the data that is made available for testing.
In particular, we only consider testing procedures that make
use of at most M entries of the matrix (Ut

i )t∈{1,...,∞},i∈[n].
It is useful to regard this as a matrix with n columns and an
infinite number of rows.

The key idea of adaptive sensing is that information gleaned
from previous observations can be used to guide the collection
of future observations. To formalize this idea consider the
following notation: for any subset A ⊆ [n] we denote by
|A| the cardinality of A. When A is nonempty we write
UA = (Ui )i∈A ∈ R

|A| for the subvector of a vector U ∈ R
n

indexed by coordinates in A. Finally, if U is a random variable
taking values in R

n denote by P|A the distribution of UA.
Let S ∈ C ∪ {∅} be the set of contaminated coordinates,

and M ≥ 2 be an integer. In our model we are allowed to
collect information as follows. We consider successive rounds.
At round t ∈ N, one chooses a non-empty query subset
At ⊆ [n] of the components, and observes Ut

At . To avoid
technical difficulties later on, we define the observation made
at time t as Xt , so that Xt

At = Ut
At and Xt

[n]\At = 0. In words,
one observes the At coordinates of Ut , while the remaining
coordinates are completely uninformative. Each successive
round proceeds in the same fashion, under the requirement
that the budget constraint

∞∑

t=1

|At | ≤ M (1)

is satisfied. Note that clearly, the number of rounds is not larger
than M . Again, to avoid technical difficulties we assume the
total number of rounds to be M in what follows, even if this
means At = ∅ for some values of t . See Figure 1 for an
illustration.

In our setting, one can select the query sequence randomly
and sequentially, and hence, we write the query sequence
(a1, . . . , aM ) as a realization of a sequence (A1, . . . , AM )
of M random subsets of [n], some of which may be empty,
and such that

∑M
t=1 |At | ≤ M .
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Fig. 1. Adaptive sensing over a two dimensional grid of sensors. The
figure illustrates how information can be obtained within the sensing model
for n = 40 and k = 6, under the alternative hypothesis with S being a
(2, 3)-rectangle in a 8 × 5 grid. The correlated coordinates form a clique in
the graph of correlations, and this is shown through light edges. At every step,
the experimenter selects coordinates to be sensed, and these are shown circled.
At the first step, the experimenter samples all the coordinates, while at the
two subsequent steps, the experimenter reduced the amount of coordinates
sampled. This corresponds to a total budget of |A1| + |A2| + |A3| =
40 + 22 + 13 = 75 coordinate measurements.

A key aspect of adaptive sensing is that the query at
round T may depend on all the information available up
to that point. We assume At can depend on the history at
time t − 1, which we denote by H t−1 = (A j , X j ) j∈[t−1].
More precisely, we assume At is a measurable function of
H t−1, and possibly of additional randomization. We call the
collection of all the conditional distributions of At given H t−1

for t ∈ [M] the sensing strategy. In particular, if there is
no additional randomization, At is a deterministic function
of H t−1. We denote the set of all possible adaptive sensing
strategies with sensing budget M as AS(M).

At this point, it is important to formally clarify what is
meant by non-adaptive sensing. This is simply the scenario
where (At )t∈[M] is independent of (Ut

i )t∈[M], i ∈ [n]. In other
words, all the decisions regarding the collection of data
must be taken before any observations are made. The collec-
tion (At )t∈[M] is known as a non-adaptive sensing strategy.
A natural and important choice is uniform sensing, where
At = [n] for t = 1, . . . , M/n (assume M is divisible by n).
In words, one collects m = M/n i.i.d. samples from PS . This
problem has been thoroughly studied in [4]; we summarize
some of the main results of [4] in Section I-C.

Now that we have formalized how data is collected, we
can perform statistical tests. Formally, a test is a measurable
binary function φ : H M �→ φ(H M) ∈ {0, 1}, that is, a
binary function of all the information obtained by the (adaptive
or non-adaptive) sensing strategy. The result of the test is
φ(H M), and if this is one we declare the rejection of the
null hypothesis. Finally, an adaptive testing procedure is a
pair (A, φ) where A is a sensing strategy and φ is a test.

For any sensing strategy A and S ∈ C, define P
A
∅

(resp. P
A
S ) as the distribution under the null (resp. under the

alternative with contaminated set S) of the joint sequence
(A1, X1, . . . , AM , X M ) of queries and observations. The per-
formance of an adaptive testing procedure (A, φ) is evaluated
by comparing the worst-case risk

R(A, φ) = P
A
∅ (φ �= 0) + max

S∈C
P
A
S (φ �= 1)

to the corresponding minimax risk R∗
AS =

infA∈AS(M),φ R(A, φ), where the infimum is over all
adaptive testing procedures (A, φ) with a budget of M
coordinate measurements. The minimax risk R∗

AS depends
on M , although we do not write this dependence explicitly
for notational ease.

Let m = M/n be the equivalent number of full vector
measurements. In the following, we will just say m measure-
ments for simplicity. This change of parameters allows for
easier comparison with the special case of uniform sensing,
where a full vector of length n is measured m times. In particu-
lar, when m = M/n is an integer, uniform sensing corresponds
to the deterministic sensing procedure with At = [n] for
t ∈ [m], At = ∅ for t > m, and P

A
S = P

⊗m
S for S ∈ C ∪ {∅}.

We are interested in the high-dimensional setting, where
the ambient dimension n is high. All quantities such as the
correlation coefficient ρ, the contaminated set size k, and
the number of vector measurements m will thus be allowed
to depend on n. In particular, we always assume that n, k
and m all go to infinity simultaneously, albeit possibly at
different rates, and our main concern is to identify the range
of parameters in which it is possible to construct adaptive tests
whose risks converge to zero. We consider the sparse regime
where k = o(n). Although the case of fixed ρ is of interest,
most of our results will be concerned with the case where
ρ converges to zero with n. When ρ = 1, the problem is
trivial as detecting duplicate entries in a single sample vector
from the distribution allows one to perform detection perfectly,
while for fixed ρ < 1, the problem essentially becomes easier
as the measurement budget m increases.

C. Uniform Sensing and Testing

The simplest and most-natural type of non-adaptive sensing
strategy we can consider is uniform sensing. As stated before,
this corresponds to the choice At = [n] for t = 1, . . . , m
(recall that m = M/n), that is one collects m i.i.d. samples
from PS . The minimax risk and the performance of several
uniform sensing testing procedures have been analyzed in [4].
The authors of that work analyzed the performance of tests
based on the localized squared sum statistic

Tloc = max
S∈C

m∑

t=1

(
∑

i∈S

Xt
i

)2

,

which was shown to be near-optimal in a variety of scenarios.
The localized squared sum test that rejects the null hypothesis
when Tloc exceeds a properly chosen threshold was shown
to have an asymptotically vanishing risk when, for some
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positive constant c,

ρk ≥ c max

(√
log |C|

m
,

log |C|
m

)

. (2)

This condition was shown to be near-optimal in most regimes
for the classes of k-sets and k-intervals, unless k exceeds

√
n.

In this latter and rather easier case, the simple non-localized

squared sum statistic Ts = ∑m
t=1

(∑n
i=1 Xt

i

)2 is near optimal.
From (2), it is easy to see that the size of the class plays an
important role, as a smaller class C leads to a weaker sufficient
condition for detection. In particular, the localized squared sum
test has asymptotically vanishing risk when

k-sets: ρ ≥ c max

(√
log n

km
,

log n

m

)

,

k-intervals: ρ ≥ c max

(
1

k

√
log n

m
,

log n

km

)

.

Necessary conditions for detection almost matching the pre-
vious sufficient conditions have been derived in [4]. Although
the dependence on the ambient dimension n is only logarith-
mic, this can still be significant in regimes where n is large
but m is small.

D. Related Work

A closely related problem is that of detecting non zero
mean components of a Gaussian vector X , referred to as the
detection-of-means problem. This problem has received ample
attention in the literature, see, for instance, [1], [7], [8], [16],
[17], [22], [23] and references therein. The detection-of-means
problem can be formulated as the multiple hypothesis testing
problem

H0 : X ∼ N (0, In),

H1 : X ∼ N (μ1S, In), for some S ∈ C,

where 1S is the indicator vector of S, In is the identity matrix,
and μ �= 0. In other words, one needs to decide whether the
components of X are independent standard normal random
variables or they are independent normals with unit variance,
and there is a (unknown) subset S of k components that
have non-zero mean. The set of contaminated components
S is assumed to belong to a class C of subsets of [n].
The behavior of the minimax risk has been analyzed for
various class choices C [1], [7], [11], [22]. Detection and
estimation in this model has been analyzed under adaptive
sensing in [13] and [19], where it is shown that, perhaps
surprisingly, all sufficiently symmetric classes C lead to the
same almost matching necessary and sufficient conditions for
detection. This is quite different from the non-adaptive version
of the problem where size and structure of C influence, in a
significant way, possibilities of detection (see [1]).

Recall that the correlation model of Section I-A can be
rewritten as

H0 : Ut
i = Y t

i , i ∈ {1, . . . , n},

H1 : Ut
i =

{
Y t

i , i /∈ S,√
1 − ρY t

i + √
ρNt , i ∈ S

for some S ∈ C, with (Y t
i ), Nt independent standard normals,

and that, as a consequence, the correlation model can be
seen as a random mean shift model, with a slightly different
normalization. However, most results on adaptive sensing
for detection-of-means heavily hinge on the independence
assumption between coordinates, which is not applicable for
the detection of correlations. In particular, we shall see that
the picture is more subtle in the presence of correlations.

A second problem, perhaps even more related, is that of
detection in sparse principal component analysis (sparse PCA)
within the rank one spiked covariance model, defined as the
testing problem

H0 : X ∼ N (0, In),

H1 : X ∼ N (0, In + θuuT ),

for some u ∈ R
n with ‖u‖0 = k, ‖u‖2 = 1, where ‖u‖0

is the number of nonzero elements of u, and ‖u‖2 is the
Euclidean norm of u. There is, also for this problem, a growing
literature, see [10], [12], [26]. Note that when the coordinates
of u are constrained in {0, 1/

√
k}, we recover a problem

akin to that of detection of positive correlations, but with
unnormalized variances over the contaminated set. The related
problem of support estimation has been considered in [3] under
the similar assumption that coordinates of u are constrained
in

{
0,±1/

√
k
}

.

E. Results and Contributions

The main contribution of this paper is to show that adaptive
sensing procedures can significantly outperform the best non-
adaptive tests for the model in Section I-A. We tackle the
classes of k-intervals and k-sets. For k-intervals, necessary and
sufficient conditions are almost matching. In particular, the
number of measurements m necessary and sufficient to ensure
that the risk approaches zero has almost no dependence on
the signal dimension n. This is in stark contrast with the non-
adaptive sensing results, where it is necessary for m to grow
logarithmically with n.

For k-sets, we obtain sufficient conditions that still depend
logarithmically in n, but which improve nonetheless upon
uniform sensing in some regimes. Although not uniform, the
proposed sensing strategy is still non-adaptive. In addition
to this, in a slightly different model akin to that of sparse
PCA mentioned above, we show that all previous results
(both non-adaptive and adaptive) carry on, and we obtain a
tighter sufficient condition for detection of k-sets, that is nearly
independent of the dimension n, and also improves signifi-
cantly over non-adaptive sensing. Our results are summarized
in Table I. The paper is structured as follows. We obtain a
general lower bound in Section II, and study various classes
of contaminated sets. In Section III, we propose procedures
for k-sets and k-intervals. In Section IV, we prove a tighter
sufficient condition under a slightly different model, for k-sets.
Finally, we conclude with a discussion in Section V.

F. Notation

We denote by EP the expectation with respect to a distrib-
ution P. The Kullback-Leibler (KL) divergence between two
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TABLE I

SUMMARY OF RESULTS (CONSTANTS OMITTED)

probability distributions P and Q such that P is absolutely con-
tinuous with respect to Q is KL(P || Q) = EP

[
log (dP/dQ)

]
,

with dP/dQ the Radon-Nikodym derivative of P with respect
to Q. When P and Q admit densities f and g, respectively,
with respect to the same dominating measure, we write
KL(P || Q) = KL( f || g). We denote by 1A the indicator
function of an event or condition A.

II. LOWER BOUNDS

We say that a sequence z = (a1, x1, . . . , aM , x M ) ∈
(
2[n] × R

n
)M

is M-admissible if
∑M

t=1 |at | ≤ M . Consider
an adaptive testing procedure (A, φ), with query sequence
(A1, . . . , AM ) ∈ (

2[n])M
, and (X1, . . . , X M ) ∈ (Rn)M the

corresponding sequence of observations. Let S ∈ C ∪ {∅}
be the set of contaminated coordinates. For t ∈ [M], we
denote by fAt | Ht−1(· | ht−1) the probability mass function of
At given H t−1 = ht−1, and by fXt | At ; S(·|at ) the density of
Xt | At = at over R

n with respect to a suitable dominating
measure over R

n (e.g., the product of the Lebesgue measure
and a point mass at 0). Therefore, the joint sequence Z =
(A1, X1, . . . , AM , X M ) admits a density fS with respect to
some appropriate dominating measure. For any M-admissible
sequence (a1, x1, . . . , aM , x M ), this density factorizes as

fS(a1, x1, . . . , aM , x M )

=
M∏

t=1

fAt | Ht−1(at | a1, x1, . . . , at−1, xt−1) fXt | At ; S(xt | at ).

For concreteness, let the density fS be zero on any joint
subsequence that is not M-admissible. It is crucial to note
that all the terms in the factorization corresponding to the
sensing strategy (i.e., corresponding to the selection of At

given the history) do not depend on S. This is central to our
arguments, as likelihood ratios simplify. More precisely, for
any M-admissible sequence (a1, x1, . . . , aM , x M ),

f∅(a1, x1, . . . , aM , x M )

fS(a1, x1, . . . , aM , x M )
=

M∏

t=1

fXt | At ; ∅(xt | at)

fXt | At ; S(xt | at)

=
M∏

t=1

fXt
At | At ; ∅(xt

at | at)

fXt
At | At ; S(xt

at | at)
,

where the second equality follows from the sensing model.

Likelihood ratios play a crucial role in the characterization
of testing performance. In particular, a classical argument
(see [38, Lemma 2.6]) shows that, for any distributions P, Q

over a common measurable space � and any measurable
function φ : � → {0, 1},

P(φ �= 0) + Q(φ �= 1) ≥ 1

4
exp (− KL(P || Q)).

Therefore

R∗ = inf
(A,φ)

[

P
A
0 (φ �= 0) + max

S∈C
P
A
S (φ �= 1)

]

= inf
(A,φ)

max
S∈C

[
P
A
0 (φ �= 0) + P

A
S (φ �= 1)

]

≥ inf
A

max
S∈C

[
1

4
exp(− KL(PA

0 || PA
S ))

]

= 1

4
exp(− sup

A
min
S∈C

KL(PA
0 || PA

S )).

This entails that the minimax risk under adaptive sensing can
be lower bounded by upper bounding the maximin KL diver-
gence. Here, in order to bound the maximum KL divergence,
we will take an approach similar to [13] for detection-of-means
under adaptive sensing, although our setup differs slightly.
In [13], the testing procedures measure a single coordinate
at a time, while we need multiple measures per step in
order to capture correlations. We have the following necessary
condition.

Theorem 1: Let C be either the class of k-sets or k-intervals
or disjoint k-intervals, and define

D(ρ, k) = min

[
ρ

2(1 − ρ)
, ρ2(k + 1)

]

.

Then the minimax risk R∗
AS of adaptive testing procedures

with a measurement budget of M = mn coordinates is lower
bounded as

R∗
AS ≥ exp (−mk D(ρ, k))

4
.

As a consequence, for the risk R∗
AS to converge to zero, it is

necessary that mk D(ρ, k) → ∞.
Proof: First remark the following: for ρ ≤ 1/2, and for

any A ⊆ [n],
KL(P0|A || PS|A) ≤ D(ρ, k) |A ∩ S|.
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The proof is given in Appendix A-B. The KL divergence
between the joint probability models can we written as

KL(PA
0 | PA

S )

=
M∑

t=1

E
P
A
0

[

E
P
A
0

[

log
fXt

At |At ; ∅(xt
At |At)

fXt
At |At ; S(xt

At |At )

∣
∣
∣
∣A

t

]]

=
M∑

t=1

E
P
A
0

[
KL( fXt

At |At ; ∅(·|At) || fXt
At |At ; S(·|At ))

]

=
M∑

t=1

E
P
A
0

[KL(P0|At || PS|At )]

≤ D(ρ, k)

M∑

t=1

E
P
A
0

[|At ∩ S|]

= D(ρ, k)
∑

i∈S

bi

using the shorthand bi = ∑M
t=1 E

P
A
0

[1i∈At ]. Hence,

sup
A

min
S∈C

KL(PA
0 || PA

S ) ≤ D(ρ, k) sup
A

min
S∈C

∑

i∈S

bi .

Define the class complexity

C(C, M) = sup
A∈AS

{

min
S∈C

∑

i∈S

bi : b ∈ R
n+,

n∑

i=1

bi ≤ M

}

.

For any sensing strategy A, it holds that

n∑

i=1

bi =
M∑

t=1

E
P
A
0

[|At ∩ S|] ≤ M,

such that

sup
A

min
S∈C

KL(PA
0 || PA

S ) ≤ D(ρ, k) C(C, M).

From [13, Lemma 3.1], we conclude that, for the both classes
Ck and D[k], respectively k-sets and disjoint k-intervals we
have C(Ck, M) = C(D[k], M) = Mk

n = mk (assuming
without loss of generality for disjoint k-intervals that n/k is an
integer.1) As C(·, M) is decreasing with respect to set inclusion
for any fixed M , C(C[k], M) = mk as well, and the result
follows. �

The lower bound argument in Theorem 1 yields the same
lower bound for detection using any of the three classes
of interest. This phenomenon is akin to what was observed
in the context of detection-of-means under adaptive sensing,
where the lower bounds are the same provided the classes
of contaminated components are symmetric. In this setting,
it was shown in addition in [13] that the condition in the
lower bound is essentially sufficient and therefore, unlike in
the non-adaptive counterpart of the problem, knowledge of the
structure of C does not make the detection problem any easier.
However, the problem of detection of correlations considered
here seems to be more subtle in that one lacks matching
upper bounds for all cases. Namely, we do not know whether:

1If n/k is not an integer, one can directly show that C(D[k], M) ≤ 2mk
and the result of the theorem for this class follows with mk replaced by 2mk.

(a) for detection-of-correlations structure does not help; or
(b) the lower bound is loose for some classes, in particular
the class of k-sets.

Recall that we are interested in the characterization of
the regimes for which the risk R∗

AS converges to zero as
m, k, n → ∞. Clearly, if ρ decays at a rate no faster
than 1/k, the previous necessary condition for the risk to
vanish asymptotically is always satisfied. Nevertheless, the
lower bound gives an indication about the rate at which the risk
converges to zero. However, when ρ = o (1/k) the situation
is different, and Theorem 1 leads to the following necessary
condition.

Corollary 1: Let C denote either the class of k-sets,
k-intervals or disjoint k-intervals, and suppose ρ = o (1/k).
For R∗

AS to converge to zero it is necessary that ρk
√

m → ∞.
Proof: From the previous results, it is necessary that

mk min

[
ρ

2(1 − ρ)
, ρ2(k + 1)

]

goes to infinity for the risk to converge to zero. This quantity
is asymptotically equivalent to mρ2k2, and mρ2k2 → ∞ if
and only if ρk

√
m → ∞. �

Recall that a sufficient condition for non-adaptive detection
of k-intervals with the localized squared sum test is

ρk
√

m > c
√

log(n) and ρkm > c log(n).

When ρ = o(1/k) one has, asymptotically, ρk < 1 and
the first condition is stronger than the second. Non-adaptive
detection with k-intervals is thus possible asymptotically for
ρk

√
m > c

√
log(n). This corresponds to the condition of

Corollary 1 up to a logarithmic factor in n, which implies
that in the case of k-intervals, one can improve at most by
a factor logarithmic in n with adaptive sensing. This can be
still quite significant, and we show in Section III that this can
indeed be achieved.

III. ADAPTIVE TESTS

A. The Case of k-Intervals

In this section, we study the case of the class C[k] of
intervals of length k. It is sufficient to work with the class D[k]
of disjoint intervals for the following reason: assume that
one has a procedure for detection of disjoint k-intervals.
Then, for detection of general k-intervals, this procedure
can be applied as if the objective was detection of disjoint
k/2-intervals. Indeed, if S is any k-interval, there exist at
most two sets in D[k/2] that intersect S, and at least one
of them, say S′, has a full intersection with S, i.e., |S ∩
S′| = k/2. As a consequence, under mild conditions on the
procedure, this leads to a sufficient condition for detection of
k-intervals identical up to constants to that associated with the
original procedure for disjoint k-intervals. Since up to two of
the disjoint intervals can contain contaminated coordinates,
the theoretical analysis still has to be slightly amended,
but these technical modifications are straightforward for the
methods that we propose. To keep the presentation simple, we
only show how to perform detection in the case of disjoint
k-intervals. Recall that D[k] = {I1, . . . , I�n/k�}, where
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I j = {( j − 1)k + 1, . . . , jk} for j ∈ [�n/k�]. For simplicity,
we assume that n/k is an integer. As the intervals are disjoint,
the problem is equivalent to n/k independent hypothesis
testing problems, each of them over vectors in R

k that are
mutually independent. Formally, this can be cast as a testing
problem over a matrix Z ∈ R

n
k ×k , where Z has independent

standard Gaussian entries except under the alternative where
Z has a single row whose entries are mutually correlated
standard Gaussian random variables with correlation ρ. In this
framework, each row corresponds to one of the n/k disjoint
k-intervals.

In the context of support recovery from signals with
independent entries using adaptive sensing, [30], [31] have
proposed the sequential thresholding (ST) procedure, which
is based on an intuitive bisection idea. Although initially
introduced for support estimation, ST can be easily adapted
to detection, and we present such results here. In addition,
we present a slight generalization to signals with independent
vector entries, which will allow us to apply the modified
procedure to the disjoint k-intervals problem. We will also
use the original ST procedure in Section IV-B, and for this
reason, we first present the method using general notations
here. Let Q0 and Q1 be two probability distributions over R

d̃ ,
and let Z ∈ R

ñ×d̃ be a random matrix. Consider the multiple
testing problem defined as follows. Under the null, Z has rows
identically distributed according to Q0. Under the alternative, a
small unknown subset of k̃ rows of Z are distributed according
to Q1, while the remaining rows are distributed according
to Q0. In both cases, all rows are independent. More formally,
denote by Z1, . . . , Zñ the rows of Z , such that the testing
problem is

H0 : Z ∼ Q
⊗ñ
0 ,

H1 : Zi ∼ Q0 for i /∈ S, Zi ∼ Q1 for i ∈ S,

for some S ∈ C with |S| = k̃, where, as already mentioned, all
rows are independent in both cases. We refer to this testing
problem as that of detection from signals with independent
(vector) entries. The framework of adaptive sensing introduced
in Section I-B can be easily adapted to this model. In this
case, in order to allow for vector entries, we consider that
the experimenter is allowed to obtain samples from rows
of Z , and that he can select which rows to query in a
sequential manner as previously, under the constraint that the
total number of rows measured be less than M . We also refer to
this straightforward extension as adaptive sensing, and we say
that m̃ = M/ñ is the number of measurements (i.e., m̃ is the
equivalent number of times the full matrix Z was observed).

Sequential thresholding is a procedure for testing with adap-
tive sensing within the type of model just mentioned. Assume
that Q0 and Q1 admit densities f0 and f1, respectively, with
respect to some common dominating measure, and for i ∈ [n],
denote by

L R( f1| f0; z1
i , . . . , zm̃

i ) =
∏m̃

t=1 f0(zt
i )

∏m̃
t=1 f1(zt

i )

the likelihood ratio associated to i.i.d. observations
z1

i , . . . , zm̃
i ∈ R

d̃ of Zi , the i -th row of Z . ST proceeds

Fig. 2. Illustration of sequential thresholding with k = 10, n = 60: conta-
minated coordinates are the first ten on the left. Bars depict likelihood ratios
associated with each coordinate: at each step, coordinates with likelihood
ratio below a threshold are thrown away. First step shown in top row, last
step shown in bottom row.

Fig. 3. Sequential thresholding procedure.

as outlined in Figure 3. Initially, ST measures all ñ rows
m̄ = m̃/4 times, and throws away a fraction (of about half
under the null) of the ñ rows based on the values of the
likelihood ratios. This is repeated with the remaining rows a
number of times logarithmic in ñ, at which point ST calls
detection if some coordinates have not been thrown away.
This is illustrated in Figure 2.

The following result is easily deduced from the analysis of
ST for support estimation.

Proposition 1: [Sufficient Condition for ST] Assume
k̃/ñ → 0, and

lim inf
ñ→∞

m̃ KL( f0 || f1)

4 log log2 ñ
> 1,

then the sequential thresholding procedure with a budget of m̃
measurements has risk tending to zero as ñ goes to infinity.

1Here, z1
1, . . . , zm̄

1 denote without loss of generality observations of the first
row, as rows are exchangeable under the null.
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Proof: We begin by showing that the event of termination
upon

∑K
r=0 |Sr | > ñ has an asymptotically vanishing probabil-

ity. Assume the alternative hypothesis with contaminated set S.
Then, similarly as in [13, Proposition 4.1], using Bernstein’s
inequality for sums of truncated hypergeometric variables,

P

(
K∑

r=0

|Sr | > ñ

)

≤ exp

(

− ñ/4 − k̃

4 + 2K
3

)

,

which converges to zero. The application of the Chernoff-Stein
lemma as in [30] allows us to bound the probability of error
as follows. The type I error of the procedure is bounded by

ñ − k̃

2K
.

Let Ei,t denote the event that the likelihood ratio is below γ
for coordinate i at step t (in which case, coordinate i will
not be included in St ). Without loss of generality, assume that
1 ∈ S. The type II error is

Q1
( ∩i∈S

( ∪K
t=1 Ei,t

)) ≤ (
K Q1

(
E1,1

))k̃
.

We write a
.= e−m̄ D for limm̄→∞ log a

m̄ = D. From the
Chernoff-Stein lemma,

Q1
(
E1,1

) .= e−m̄ KL( f0 || f1).

Hence, for K = (1 + ε1) log2 n and ε2 > 0, there exists m̄0
such that for m̄ ≥ m̄0, the type II error is bounded by
(

K e−m̄(KL( f0 || f1)−ε2)
)k̃

= exp
(

k̃ log
[
(1 + ε1) log2 n

] − m̄k̃(KL( f0 || f1) − ε2)
)
.

Hence, the risk goes to zero if for some ε1, ε2 > 0, it holds
that

lim inf
ñ→∞

m̄(KL( f0 || f1) − ε2)

log
[
(1 + ε1) log2 n

] > 1.

As a consequence, for the risk to go to zero, it is sufficient
that

lim inf
ñ→∞

m̄ KL( f0 || f1)

log log2 n
> 1.

The result follows by substituting m̄ with m̃
4 . �

Note that the ST procedure does not require knowledge of k̃.
ST can be applied to the case of k-intervals, as we demonstrate
in the next section.

We now show how the previous procedure can be used
for adaptive detection with disjoint k-intervals. As before,
we assume that n/k is an integer. Define ñ = n/k, k̃ = 1,
m̃ = m, and d̃ = k. Let Q0 = P0|I1 be the joint probability
distribution over an interval under the null, and Q1 = PS |S be
the joint probability distribution over the contaminated interval
under the alternative with contaminated interval S ∈ D[k].
Here, the choice of the interval used in Q0 does not mat-
ter, as intervals are exchangeable under the null hypothesis.
We refer to the corresponding sequential thresholding proce-
dure as ST for disjoint k-intervals. This procedure is illustrated
in Figure 4. This provides the following sufficient condition
for detection of disjoint k-intervals.

Fig. 4. Illustration of sequential thresholding for k-intervals, with n/k = 6
intervals of size k. Bars depict likelihood ratios associated with the intervals.

Proposition 2: Assume that ρ converges to zero. There
exists numerical constants C3 and C4 such that, when either

ρk → ∞ and m log(1 + ρk) ≥ C3 log log(n/k),

or

ρk → 0 and ρk
√

m ≥ C4
√

log log(n/k),

the sequential thresholding procedure for disjoint k-intervals
has risk converging to zero.

Proof: The detailed computations can be found in
Appendix A-C. Assume that ρk > 1, then

KL(Q0 || Q1) ≥ log(1 + ρk)

10
.

Similarly, when ρk < 1/2 and k > 32,

KL(Q0 || Q1) ≥ ρ2k2

16
.

Combined with Proposition 1, this gives the desired result. �
Consider the case where ρk → ∞. In that case, omitting

constant factors, sequential thresholding would succeed for
m ≥ log log(n)

log(1+ρk) . Recall that uniform non-adaptive testing is

possible for m ≥ c log n
ρk . When ρk > log(n) asymptotically,

both conditions are trivially satisfied for m constant, while
when ρk < log(n), we already improve upon non-adaptive
tests. In spite of this, the dependence on ρk of our sufficient
condition when ρk → ∞ is logarithmic, while it is only linear
for ρk → 0. This may appear surprising, as one may argue
the former case corresponds to a regime where the signal
is stronger (and so the problem should be easier). However,
this surprising fact is solely an artifact from the sequential
thresholding procedure, and from the fact that ST does not
require knowledge of k. This results in a sufficient condition
that is independent of k. In particular, it does not become easier
to satisfy as k increases, but it can be fixed through a small



CASTRO et al.: DETECTION OF CORRELATIONS WITH ADAPTIVE SENSING 7921

Fig. 5. Optimal p as a function of ρ, for k = 100.

modification of the sensing methodology that we present in
the following.

In order to recover the same linear dependence in both cases,
we propose to add a subsampling stage prior to sequential
thresholding. This subsampling can be decided before any data
is collected, and thus can be viewed as a non-adaptive aspect
of the entire procedure. Consider the simple deterministic
subsampling scheme wherein one keeps the first p coordinates
per interval, for some p ∈ {2, . . . , k}, and measures each
p-tuple

⌊
mn

pn/k

⌋
=

⌊
mk
p

⌋
times. This prompts the following

question: is there a value of p that allows one to detect
more easily? Define the p-truncated intervals as I p

j = {( j −
1)k + 1, . . . , ( j − 1)k + p} for j ∈ [n/k]. Formally, we
consider the deterministic sensing strategy Ap = (At ) where

for t ∈
[⌊

mk
p

⌋]
,

At =
⋃

j∈[n/k]
I p

j .

As this involves one simple testing problem per interval, the
difficulty of testing is essentially characterized by the KL

divergence KL(P
Ap
0 || PAp

S ) between the distributions under
the null and the alternative. In this section, we make explicit
the dependence of PS on p by using the notation P

p
S . Consider

any fixed S ∈ D[k], then the best KL divergence that can be
obtained is

max
p∈{2,...,k} KL

(
P
Ap
0 || PAp

S

)
= max

p∈{2,...,k}

⌊
mk
p

⌋

∑

t=1

KL(P
p
0 || Pp

S )

=
⌊

mk

p

⌋

max
p∈{2,...,k} KL(P

p
0 || Pp

S ),

which is independent of S. Due to nonlinearity in the KL
divergence the optimal value of p is generally different
than k, as illustrated in Figure 5. The optimal p and cor-
responding optimal value seem hard to compute analytically,
but numerical evidence shows that, for ρ away from zero,
the optimal p is of the order of ρ−1. This observation is
sufficient for our purposes, and is formalized below. Remark
that when ρk < 1, the optimal value of p is clamped
to k.

Equipped with this subsampling stage when ρk → ∞, we
can now modify the ST for k-intervals procedure as follows:
when ρk → ∞, set m̃ =

⌊
mk
p

⌋
, d̃ =

⌈
1
ρ

⌉
, and use

only observations corresponding to d̃ coordinates per interval.
We refer to this new procedure as the modified sequential
thresholding for disjoint k-intervals.

Proposition 3: Assume that ρ converges to zero. There
exists numerical constants C5 and C6 such that, when
either

ρk → ∞ and ρkm ≥ C5 log log(n/k),

or

ρk → 0 and ρk
√

m ≥ C6
√

log log(n/k),

the modified sequential thresholding procedure for disjoint
k-intervals has risk converging to zero.

Proof: We have the following straightforward new lower
bound: with p =

⌈
1
ρ

⌉
, when ρk > 1, we have

⌈
1
ρ

⌉
< k + 1,

and as a consequence,

KL(P
p
0 || Pp

S ) ≥ log 2 − 1/2

2
≥ 1

11
.

Although the lower bound appears weaker than previously,
this corresponds to a setting where more measurements can
be carried out. The sufficient condition for ST leads to the
result. �

The adaptive procedure allows us to obtain a mild depen-
dence on the original dimension n of the problem. When
ρ = o(1/k), this sufficient condition almost matches the lower
bound of Corollary 1, while when ρk → ∞, the sufficient
condition is already satisfied for m = log log(n/k).

B. The Case of k-Sets: Randomized Subsampling

In this section, we consider the class Ck of k-sets. In this
case, we do not currently know whether a procedure along the
lines of ST can be successfully applied. However, the idea of
subsampling the coordinates can still be used to yield modest
but important performance gains. While for disjoint k-intervals
a deterministic subsampling was sufficient, this is not the case
for k-sets, where any deterministic subsampling that selects
less than about n−k coordinates cannot have risk converging to
zero. For this reason, we consider a randomized subsampling
of the coordinates.

Consider a sample B of
⌊

2np
k

⌋
elements drawn without

replacement from [n] for some p ≥ 2. Let θ : R
�2np/k� →

{0, 1} be the localized squared sum test with ambient dimen-
sion

⌊
2np

k

⌋
, and contaminated sets C = C�p� of size �p�, and

consider the sensing strategy defined by

A1 = · · · = A

⌊
mk
2p

⌋

= B.

We refer to the adaptive sensing procedure ((At ), θ) as
the randomized testing procedure. Define Y = |B ∩ S|
(resp. Y = 0) under the alternative with contaminated S ∈ Ck

(resp. under the null), which is the number of contaminated
elements in the subsample. Clearly Y is a hypergeometric
random variable with expectation k

n

⌊2n
k p

⌋ ∈ [2 p − k/n, 2 p].
In words, we consider a subsample of the coordinates, with
about 2 p contaminated coordinates (in expectation) under the
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alternative, and we apply the (non-adaptive) localized squared
sum test.

Note that the procedure is strictly non-adaptive, as the
subsampling can be decided in advance. However, this
sensing strategy is a bit different than uniform sensing, as
not all coordinates are measured. Nonetheless, this allows
one to detect under weaker conditions than with uniform
non-adaptive sensing when k is large enough.

Proposition 4: Let 2 ≤ p ≤ k such that p goes to infinity.
Assume that ρ converges to zero and that

ρmk ≥ C1 log 2pn
k[

1 − 1
m − 1

k

] , and ρ
√

mk ≥
C1

√

log 2pn
k

√

1 − 1
m − 1

k

,

for some constant C1, then the randomized testing procedure
has risk converging to zero.

Proof: Let ηI (resp. ηI I ) be the risk of type I (resp. of
type II) for θ . The type I error of the randomized testing pro-
cedure is pI = ηI . Let p+ = P(Y ≥ �p�) the probability of
the sample containing at least �p� contaminated elements, and

p− = 1 − p+. Note that since 2np
k

k
n = 2 p goes to infinity, we

can assume that Y is distributed according to a Poisson distrib-
ution with parameter 2 p, as this is asymptotically equivalent to
the hypergeometric distribution. Hence, we havep− = P(Y <

�p�) ≤
(

1 + p(2p)p

p!
)

exp(−2 p). Using p! ≥ √
2πp

( p
e

)p
, we

have that p− ≤ exp(−2 p)+√
p exp(−p/4), which converges

to zero. The type II error of the randomized testing procedure
is pI I = p+ηI I + p−(1 −ηI ) ≤ ηI I + p−. It remains to show
that ηI and ηI I both go to zero. This follows from the suffi-
cient conditions for the localized squared sum test, and from

�p�
⌊

mk
2p

⌋
≥ mk

2

[
1 − 1/p + 2(1−p)

mk

]
≥ mk

2 [1 − 1/p − 1/m] .

Hence, the sufficient conditions for the localized squared sum
test θ provides the result. �

In particular, for p = log log n, it is sufficient that, omitting
constants,

ρmk ≥ log
n

k
, ρ

√
mk ≥

√

log
n

k
,

to ensure the detection risk converges to zero. This does
not match the adaptive lower bound, and the dependence
on n is still logarithmic. However, this already improves
upon the setting of uniform non-adaptive sensing when
k ≥ m

log n . Indeed, recall that using uniform sensing, the
sufficient condition is

ρm ≥ log n, ρ
√

mk ≥ √
log n.

The first condition is insensitive to subsampling, due to the
dependence in mk, and we do not improve with respect to it.
The second condition, however, only depends on m, and does
not get easier to satisfy when k is large. Hence, our result
shows that it is more efficient when k is large enough to reduce
to a problem with an almost constant contaminated set size,
but with an increased budget of full vector measurements.

IV. UNNORMALIZED CORRELATION MODEL

A. Model and Extensions of Previous Results

An alternative choice to the previous correlation model is
the following unnormalized model with covariance matrix

(�̄S)i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, i = j, i /∈ S,

1 + ρ, i = j, i ∈ S,

ρ, i �= j, and i, j ∈ S,

0 otherwise.

under the alternative with contaminated set S ∈ C. This model
is a special case of the rank one spiked covariance model
introduced in [25]. Observe that this correlation model can
also be rewritten as

H0 : Xt
i = Y t

i , i ∈ {1, . . . , n},

H1 : Xt
i =

{
Y t

i , i /∈ S,

Y t
i + √

ρNt , i ∈ S
for some S ∈ C,

with (Y t
i ), Nt independent standard normals. This can thus

be interpreted as a random additive noise model, as for the
model of Section I-A. Observe that our original correlation
detection model is obtained by normalizing each component
such that the components have unit variance. This is a minor
difference that does not essentially change the difficulty of
detection in the non-adaptive setting (indeed all upper and
lower bounds proved in [4] can be reproved for this model with
minor modifications). Interestingly, however, under adaptive
sensing the information provided by the higher variance in
the contaminated components can be exploited to give a major
improvement over the normalized model. This may be done by
applying the sequential thresholding algorithm to the squares
of the components as described below.

In the following, for any quantity X relative to the
normalized model of Section I-A, we denote by X̄ the
corresponding quantity related to the unnormalized model.
All of previous results can be shown to hold for this model
as well. As already mentioned, this includes the necessary
and sufficient conditions of [4] (Proposition 10 in Appendix),
but also the lower bound of Theorem 1 (Proposition 11
in Appendix), and sufficient conditions for k-sets and
k-intervals of Propositions 4 and 3 (Proposition 13 in
Appendix). In particular, the procedures associated to the
sufficient conditions can be used with little modifications.

B. The Case of k-Sets

The procedure proposed below combines randomized sub-
sampling with sequential thresholding, in order to capitalize
on the unnormalized model. Consider the second moments
Yi = X2

i . Under the alternative with contaminated set S ∈ C,
Yi is distributed as follows: (a) for i /∈ S, Yi is distributed
according to a chi-squared distribution with one degree of
freedom (that we denote by χ2

1 ), (b) for i ∈ S, Yi is distributed
as (1+ρ) χ2

1 . Note that under our sensing model, it is perfectly
legitimate to sample A1 = {1}, . . . , An = {n}, and thus obtain
independent samples of each of the coordinates of the random
vector. In particular, this allows us to obtain independent
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samples from the coordinates of Y . As a consequence, we can
directly apply ST to detect increased variance over a subset
of the coordinates.

As already mentioned, ST does not require knowledge of k,
which results in a sufficient condition that is independent of k.
This condition can, however, be significantly weakened using
the random subsampling used in last section. As in Propo-
sition 4, this is due to the fact that by subsampling, one
can increase the budget of full vector measurements, while
the decrease in the contaminated set size does not impact
the sufficient condition for detection. This is summarized
in the following result, which can be proved similarly as
Proposition 4.

Proposition 5 (Sufficient Condition for ST+Randomized
Subsampling): Assume k̃/ñ → 0, and

lim inf
ñ→∞

m̃k̃ KL( f0 || f1)

(log log2 ñ)2 > 1,

then the sequential thresholding procedure with randomized
subsampling (p = log log2 ñ) and a budget of 4m̃ full vector
measurements has risk tending to zero as ñ goes to infinity.

Let ñ = n, k̃ = k, and m̃ = m. Let Q0 be the χ2
1

distribution, and Q1 be the (1 + ρ) χ2
1 distribution, both with

respect to Lebesgue’s measure. We consider the associated
sequential thresholding procedure (with randomized subsam-
pling), with the previous modification of sampling independent
single coordinates. We refer to this procedure as variance
thresholding. This leads to the following sufficient condition
for detection.

Proposition 6: Assume that ρ converges to zero and that

ρ
√

km ≥ C2 log log2 n

for some constant C2. Then, the risk of the variance thresh-
olding procedure converges to zero.

Proof: Let g be the density of a χ2
1 -distributed random

variable, such that the density of a (1 + ρ)χ2
1 -distributed

random variable is given by 1
1+ρ g

( ·
1+ρ

)
. Then, using g(x) ∝

x−1/2e−x/2,

KL(χ2
1 || (1 + ρ)χ2

1 )

=
∫

R

log

⎛

⎝
g(x)

1
1+ρ g

(
x

1+ρ

)

⎞

⎠ g(x)dx

= log(1 + ρ) +
∫

R

log

⎛

⎜
⎝

x−1/2e−x/2

(
x

1+ρ

)−1/2
e

−x
2(1+ρ)

⎞

⎟
⎠ g(x)dx

= log(1 + ρ) +
∫

R

log

(
e

−ρx
2(1+ρ)

(1 + ρ)1/2

)

g(x)dx

= log(1 + ρ)

2
− ρ

2(1 + ρ)

∫

R

xg(x)dx .

As the expectation of a χ2
1 -distributed random variable is one,

this leads to

KL(χ2
1 || (1 + ρ)χ2

1 ) = 1

2

[

log(1 + ρ) − ρ

1 + ρ

]

= ρ2

4
+ o(ρ2).

Plugging this expression into the sufficient condition of
Proposition 5 provides the result. �

Assume for the following discussion that ρk → 0. The
necessary condition that we have established previously is that
ρk

√
m goes to infinity. Neglecting the double log factor, the

sufficient condition that we have just obtained is that ρ
√

km
goes to infinity, which is stronger. Hence, there is a gap
between the sufficient and necessary condition. In particular,
that ρk

√
m goes to infinity was shown to be near-sufficient

for detection with k-intervals, and the gap that we observe for
k-sets does not allow us to conclude as to whether structure
helps for detection (as is the case under non-adaptive sensing).

Recall that the unnormalized model is similar to that of
detection in the problem of sparse PCA. The method of
diagonal thresholding (also referred to as Johnstone’s diagonal
method) is a simple and tractable method for detection (and
support estimation) in sparse PCA (with uniform non-adaptive
sensing), which consists in testing based on the diagonal
entries of empirical covariance matrix - that is, the empirical
variances. Hence, it is similar to the method that we consider
here, except that we estimate variances based on independent
samples for each coordinate. Note that this last point is essen-
tial to our method. Indeed, consider the opposite case where
we do not use independent samples for each coordinates.
For the sake of illustration, assume ρ = 1, such that the
contaminated components are exactly equal. In this case, the
probability of throwing away one component is equal to that
of throwing away all contaminated components, and failure
will occur with fixed non small probability due to the use of
dependent samples.

Finally, it is noteworthy that a naïve implementation of the
optimal test in the non-adaptive setting has complexity O(nk),
while with adaptive sensing, we obtain a procedure that can
be carried out in time and space linear in n, and still improves
significantly with respect to the non-adaptive setting.

V. DISCUSSION

We showed that for k-intervals, adaptive sensing allows
one to reduce the logarithmic dependence in n of sufficient
conditions for non-adaptive detection to a mild log log n, and
that this is near-optimal in a minimax sense.

For k-sets, the story is less complete. The sufficient con-
dition obtained in the unnormalized model is still stronger
than the sufficient condition obtained for k-intervals, and does
not match our common lower bounds, which leaves open the
question of whether structure helps under adaptive sensing
for detection of correlations? The analogous question for
detection-of-means has a negative answer, meaning structure
does not provide additional information for detection. How-
ever, for detection-of-correlations a definite answer is still
elusive. Another open question is to what extent adaptive
sensing allows one to overcome the exponential computational
complexity barrier that one can encounter in the non-adaptive
setting.

Aside from the normalized and unnormalized correlation
models, other types of models can be considered. A more
general version of our normalized model has been analyzed



7924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 12, DECEMBER 2014

in [4], where the correlations need not be all the same, leading
to results that involve the mean correlation coefficient ρavg =(∑

i, j∈S : i �= j (�S)i, j

)
/k(k−1). In addition, we assume in most

procedures that ρ and/or k are known, and it would be of
interest to have procedures that do not require such knowledge.

APPENDIX A
PROOFS AND COMPUTATIONS

A. Inequalities and KL Divergences

In this section, we collect elementary inequalities that we
use repeatedly in the computations.

For x > −1, log(1 + x) ≤ x, (3)

For x > 0, log(1 + x) + 1

1 + x
− 1 ≤ x2, (4)

For 0 < x < 1/2, log(1 − x) + 1

1 − x
− 1 ≤ 2x2, (5)

For x < 1, − log(1 − x) − 1

1 − x
+ 1 ≤ x2, (6)

For x ∈ ] − 1, 1], log(1 + x) + 1

1 + x
− 1 ≥ x2

8
, (7)

For x ≥ 1, log(1 + x) (8)

+ 1

1 + x
− 1 ≥ log(1 + x)

5
. (9)

The following expression of the KL divergence is used
throughout the paper.

Proposition 7: We have

KL(P0 || PS) (10)

= 1k≥2

2

[

k

(

−1 + 1

1 − ρ
+ log(1 − ρ)

)

(11)

−
(

1

1 − ρ
+ log(1 − ρ)

)

+
(

1

1 + ρ(k − 1)
+ log(1 + ρ(k − 1))

)]

. (12)

Proof: The KL divergence between P0 and PS can be com-
puted using the standard formula for KL divergence between
two centered Gaussian vectors, with covariance matrices

�0 = In, �1 = �S .

When k < 2, the divergence is zero, and we will thus assume
k ≥ 2. Up to a simultaneous permutation of rows and columns,

�S =
[

In−k

Jρ(k)

]

where Jρ(k) ∈ R
k×k has unit diagonal and coefficients equal

to ρ everywhere else. Jρ(k) is a symmetric matrix, hence
diagonalizable, and has eigenvalues 1 − ρ with multiplicity
k−1 and 1+(k−1)ρ with multiplicity one. As a consequence,
we have, for k ≥ 2,

log det �S = (k − 1) log(1 − ρ) + log(1 + ρ(k − 1))

trace �−1
S = (n − k) + k − 1

1 − ρ
+ 1

1 + ρ(k − 1)
.

The KL divergence is thus

KL(P0 || PS)

= 1

2

[
trace(�−1

1 �0) − n − log(det �0/ det �1)
]

= 1

2

[

(n − k) + k − 1

1 − ρ
+ 1

1 + ρ(k − 1)
− n

+ (k − 1) log(1 − ρ) + log(1 + ρ(k − 1))

]

= 1

2

[

k

(

−1 + 1

1 − ρ
+ log(1 − ρ)

)

−
(

1

1 − ρ
+ log(1 − ρ)

)

+
(

1

1 + ρ(k − 1)
+ log(1 + ρ(k − 1))

)]

. �

B. Proof of Bound on KL Divergence

Proof: First note since the KL divergences are independent
of n, it is sufficient to use the expressions of Proposition 7 with
a contaminated set of size s = |A ∩ S| ≤ k. As previously, we
assume s ≥ 2, as the result is trivial otherwise. Consider the
expression for the KL divergence given in (10). Using (3), we
obtain

KL(P0|A || PS|A)

= KL(P0 || PS∩A)

≤ 1

2

[

s

(

−1 + 1

1 − ρ
+ log(1 − ρ) + ρ

)

−
(

1

1 − ρ
+ log(1 − ρ)

)

+
(

1

1 + ρ
− ρ

)]

= 1

2

[

s

(

ρ + ρ

1 − ρ
+ log(1 − ρ)

)

+ −2ρ

1 − ρ2 − log(1 − ρ) − ρ

]

≤ ρs

2(1 − ρ)
.

Using (4) and (6), we obtain

KL(P0 || PS) ≤ 1

2

[

(s − 1)2ρ2 + 2sρ2 + ρ2
]

= ρ2

2

[

(s − 1)2 + 2s + 1

]

≤ ρ2s(k + 1)

2
. �

C. Proof of Proposition 2

Proof: We have KL(Q0 || Q1) = k f (ρ) + h(ρ) with

f (ρ) = 1

2

[
(1 − ρ)−1 + log(1 − ρ) − 1

]
,

h(ρ) = 1

2

[

−
(

1

1 − ρ
+ log(1 − ρ)

)

+
(

1

1 + (p − 1)ρ
+ log(1 + (p − 1)ρ)

)]

.
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As previously, using (7), f (ρ) ≥ ρ2

16 . Assume that ρk < 1 and
k > 7, then using (5) and (7),

KL(Q0 || Q1)

≥ ρ2k

16
+ h(ρ)

≥ ρ2k

16
− 1

2

[
1 + 2ρ2

]
+ 1

2

[

1 + ρ2(k − 1)2

8

]

= ρ2
[

k(k − 1)2

16
− 1

]

≥ (ρk)2

32
.

Now assume that ρk > 1, then for k > 32,

KL(Q0 || Q1)

≥ ρ2k

16
− 1

2

[
1 + 2ρ2

]

+1

2

[
1

1 + (k − 1)ρ
+ log(1 + (k − 1)ρ)

]

≥ ρ2
[

k

16
− 1

]

+1

2

[
1

1 + (k − 1)ρ
+ log(1 + (k − 1)ρ) − 1

]

≥ ρ2k

32
+ log(1 + (k − 1)ρ) − 1

2
. �

APPENDIX B
EXTENSIONS TO UNNORMALIZED MODEL

A. Uniform (Non-Adaptive) Lower Bound for Detection
of Positive Correlations

Proposition 8: For any class C, any ρ ∈ [0, 0.9), the
minimum risk in the normalized model (resp. the unnormalized
model) under uniform (non-adaptive) sensing is bounded as

R∗ ≥ 1

2
− 1

4

√

E

[

coshm
(

8ρZ

1 − ρ

)]

− 1

R̄∗ ≥ 1

2
− 1

4

√

E
[
coshm (8ρZ)

]− 1

where Z is the size of the intersection of two elements of C
drawn independently and uniformly at random.

Proof: This is essentially a reproduction of the proof of [4]
with minor modifications. The details are omitted. �

B. Uniform (Non-Adaptive) Upper Bound for Detection
of Positive Correlations

Let H (b) = b − 1 − log b for b > 1.
Proposition 9: Under uniform (non-adaptive) sensing, the

localized square-sum test that rejects when

Yscan = max
S∈C

m∑

t=1

(
∑

i∈S

Xt
i

)2

exceeds

1

2

(
ρk2m + H −1(3 log |C|/m) − 1)km

)

is asymptotically powerful when

ρk ≥ c1 max

(√
log |C|

m
,

log |C|
m

)

both for the normalized and unnormalized models.
Proof: This is proved in [4] for the normalized model.

In the case of the unnormalized model, the test statistic is
distributed as kχ2

m under the null, and as (k(1 + ρ) + ρk(k −
1))χ2

m under the alternative, which changes only mildly the
proof with respect to the normalized model. �

C. KL Divergences

Proposition 10: We have

KL(P̄0 || P̄S) = 1k≥2

2

[

−1 + 1

1 + ρk
+ log(1 + ρk)

]

. (13)

Proof: The KL divergence between P̄0 and P̄S can be com-
puted using the standard formula for KL divergence between
two centered Gaussian vectors, with covariances matrices

�0 = In, �1 = �̄S .

When k = 0, the divergence is zero, and we will thus assume
k ≥ 1. Up to a simultaneous permutation of rows and columns,

�̄S =
[

In−k

Ik + Kρ(k)

]

where Kρ(k) ∈ R
k×k has coefficients equal to ρ everywhere.

Like previously, Ik + Kρ(k) is diagonalizable, and has eigen-
value 1 with multiplicity k − 1, and eigenvalue 1 + ρk with
multiplicity one. As a consequence, for k ≥ 1, we have

log det �̄S = log(1 + ρk)

trace �̄−1
S = (n − 1) + 1

1 + ρk
.

This leads to

KL(P̄0 || P̄S) = 1

2

[
trace(�−1

1 �0) − n − log(det �0/ det �1)
]

= 1

2

[

(n − 1) − n + 1

1 + ρk
+ log(1 + ρk)

]

.

�
Proposition 11: For any A ⊂ [n],

KL(P̄0|A || P̄S|A) ≤ min

[
ρ

2
,
ρ2k

2

]

|A ∩ S|.
Proof: First note since the KL divergences are independent

of n, it is sufficient to use the expressions of Proposition 7
with a contaminated set of size s = |A ∩ S|. As previously,
we assume s ≥ 1, as the result is trivial otherwise. Consider
the unnormalized model, with KL divergence given in (13).
Using (3), we obtain

KL(P̄0|A || P̄S|A) = KL(P̄0 || P̄A∩S) ≤ ρs

2
.

Using (4) we obtain

KL(P̄0|A || P̄S|A) = KL(P̄0 || P̄A∩S) ≤ ρ2s2

2
≤ ρ2sk

2
.
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Combining these last two inequalities yields the desired
result. �

Proposition 12: Assume that ρ converges to zero. There
exists numerical constants C3 and C4 such that, when either

ρk → ∞ and m log(1 + ρk) ≥ C3 log log(n/k),

or

ρk → 0 and ρk
√

m ≥ C4
√

log log(n/k),

the sequential thresholding procedure for disjoint k-intervals
has risk converging to zero.

Proof: For the unnormalized model, when ρk > 1,
using (8),

KL(Q̄0 || Q̄1) ≥ log(1 + ρk)

10
.

When ρk < 1, using (7),

KL(Q̄0 || Q̄1) ≥ (ρk)2

16
. �

Proposition 13: Assume that ρ converges to zero. There
exists numerical constants C5 and C6 such that, when
either

ρk → ∞ and ρkm ≥ C5 log log(n/k),

or

ρk → 0 and ρk
√

m ≥ C6
√

log log(n/k),

the modified sequential thresholding procedure for disjoint
k-intervals has risk converging to zero.

Proof: For the unnormalized model with p =
⌈

1
ρ

⌉
, when

ρk > 1, we have
⌈

1
ρ

⌉
< k + 1, and as a consequence,

KL(P̄
p
0 || P̄p

S ) ≥ log 2 − 1/2

2
≥ 1

11
. �
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