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Data-Driven Optimal ILC for Multivariable Systems:
Removing the Need for L and Q Filter Design

Joost Bolder and Tom Oomen

Abstract— Many iterative learning control algorithms rely
on a model of the system. Although only approximate model
knowledge is required, the model quality determines the con-
vergence and performance properties of the learning control
algorithm. The aim of this paper is to remove the need for a
model for a class of multivariable ILC algorithms. The main
idea is to replace the model by dedicated experiments on the
system. Convergence criteria are developed and the results are
illustrated with a simulation on a multi-axis flatbed printer.

I. INTRODUCTION

Iterative learning control (ILC) [1] can significantly en-
hance the performance of systems that perform repeated tasks.
After each repetition the command signal for the next repeti-
tion is updated by learning from past executions. Examples
applications include: additive manufacturing machines [2],
[3], robotic arms [4], printing systems [5], pick and place
machines, electron microscopes, and wafer stages [6]–[8].

Iterative learning control algorithms such as frequency
domain ILC [9], [10] and Optimal ILC [11]–[16] are to
some extend model-based. The convergence and performance
properties of these learning control algorithms hinge on a
model of the controlled system. In particular, robustness
to modeling errors is a key issue, as is evidenced by the
development of robust ILC approaches such as [17]–[20].

Although there are substantial developments in robust
ILC, such approaches drastically increase the modeling
requirements. In particular, these approaches require both
a nominal model and a description of model uncertainty.
Especially in the multivariable situation, such models are
difficult and expensive to obtain. The aim of this paper is to
develop an optimal ILC algorithm for multivariable systems
without the need of a model to design L and Q filters. In
fact, the proposed approach will have no L and Q filters in
the usual ILC sense.

The main difficulty in the development of the presented
approach lies in the multivariable aspect. When the proposed
approach is applied to the special case of single-input single-
output systems, a well-known result is recovered that is closely
related to the commonly used “FiltFilt” approach in Q-
filtering [21, Section 36.3.3.1]. This standard solution is also
well-known and commonly applied in system identification
[22], [23], [24, Section 12.2], as well as in ILC [25]–
[29]. The main contribution of this paper lies in a fully
data-driven optimal ILC approach for multivariable systems.

The authors are with the Eindhoven University of Technology, Dept. of
Mechanical Engineering, Control Systems Technology group, P.O. Box 513,
5600 MB Eindhoven, The Netherlands, j.j.bolder@tue.nl

This is achieved by exploiting recent results in the system
identification approach in [30].

The outline of this paper is as follows. In the next section,
the problem is stated and the contributions are summarized.
Then, in Section III, the data-based ILC algorithm is devel-
oped and convergence criteria are provided. The results are
supported with a simulation example using the model of an
industrial multi-axis flatbed printer in Section IV. Finally,
the conclusions and ongoing research topics are presented in
Section V.

II. PROBLEM DEFINITION AND CONTRIBUTIONS

Many important ILC algorithms hinge on a model of the
controlled system. Due to the increased modeling complexity
in robust ILC approaches for multivariable systems, it is
especially relevant that data-driven ILC algorithms possess
inherent robustness against modeling errors, see [31] for a
survey.

Therefore, the aim of this paper is to present an optimal
ILC algorithm for multivariable systems that does not require
to design L and Q filters. An approach for multivariable
point-to-point problems is presented in [32]. The results in
the present paper are applicable to both point-to-point as well
as tracking problems. The main contributions are as follows:

1) the development of a data-driven adjoint-based ILC
algorithm including analysis of the convergence aspects,
see Section III,

2) the results are illustrated in a simulation on a multi-axis
industrial flatbed printer, see Section IV.

III. DATA-DRIVEN LEARNING: ADJOINT-BASED ILC

This section constitutes contribution 1, see Section II.

A. Preliminaries

A matrix B ∈ RN×N is defined positive (semi-)definite iff
xTBx ≥ 0,∀x ≠ 0, x ∈ RN and is denoted as B ⪰ 0. For
a vector x, ∣∣x∣∣W = xTWx. Consider a single-input single-
output (SISO) system J11 with transfer function:

J11
(z) =

∞

∑
i=0

hiz
−i,

here hi ∈ R, i = 0, . . . ,∞(z) are the Markov parameters
of J11, and z ∈ C. It is assumed that signals have finite
length N ∈ N. The response of the system y1 = J11u1 for
the finite-time interval 0 ≤ k < N is denoted as:
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Fig. 1. Multivariable ILC setup.
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with y1 ∈ RN , u1 ∈ RN , and J11 ∈ RN×N a matrix
representation of J11

(z).
Consider a multiple-input multiple-output (MIMO) system

J with transfer function matrix J(z) ∈ Cno×ni , with ni the
number of inputs, n0 the number of outputs. The finite-time
response for the MIMO system J is denoted as
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, (2)

where J ij the matrix representation of the ijth entry in J(z),
yi ∈ RN , ui ∈ RN , y ∈ RnoN , u ∈ RniN , and J ∈ RnoN×niN

is the matrix representation of J(z).

B. Optimal adjoint-based ILC

The ILC framework used in this paper is presented in
Fig. 1. The system J ∈ RnoN×niN is a MIMO system with
output yj ∈ RnoN , input uj ∈ RniN and reference r ∈ RnoN .
The trial index is denoted as j. From Fig. 1 follows the
tracking error

ej = r − Juj .

The error propagation from trial j to j + 1 is given by

ej+1 = ej − J(uj+1 − uj), (3)

and follows by eliminating r from ej+1 = r − Juj+1.
Optimal ILC is an important class of ILC algorithms, e.g.,

[14]–[16], where uj+1 is determined by minimizing a cost
function. The optimization criterion used in this paper is
defined as follows.

Definition 1 (Performance criterion). The performance
J (uj+1) is given by

J (uj+1) ∶= ∣∣ej+1∣∣We + ∣∣uj+1∣∣Wf
, (4)

with ∣∣x∣∣W = xTWx, We ∈ RnoN×noN ,Wf ∈ RnoN×noN .

In Definition 1, We ≻ 0, Wf ⪰ 0 are weight matrices. The
following theorem presents a gradient-descent ILC algorithm
for minimizing (4). For similar lines as followed here, see
e.g., [14]–[16], [25], and [26].

Theorem 2 (Gradient descent ILC algorithm). The gradient
descent (or steepest descent) ILC algorithm that minimizes
(4) is given by

uj+1 = (I − εWf)uj + εJ
TWeej , (5)

with 0 < ε ≤ ε̄ the learning gain.

Proof. The gradient of (4) at the current ILC command signal
uj is given by

∂J(uj+1)

∂uj+1
∣
uj+1=uj

= −2JTWeej + 2Wfuj .

The gradient decent algorithm follows by performing the
learning update in the steepest descent direction:

uj+1 = uj − ε
∂J(uj+1)

∂uj+1
∣
uj+1=uj

= uj + εJ
TWeej − εWfuj ,

where the factor 2 is absorbed in the step size ε.

The upper bound ε on the learning gain ε is developed
later, see Theorem 8 in Section III-D. In the following, it is
shown that JT has the interpretation of the adjoint operator
of J .

Definition 3 (Adjoint). Let the inner product of two signals
be given by: ⟨u, g⟩ = uT g, with u, g ∈ RN . Then, for a linear
operator J , the adjoint J∗ is defined as the operator that
satisfies the condition [33, Section 22]:

⟨f, Jg⟩ = ⟨J∗f, g⟩∀ f, g ∈ RN .

Lemma 4 (Adjoint operator). The adjoint J∗ of operator J ,
see (2), is given by J∗ = JT .

Proof. According to Definition 3, for a system J with adjoint
J∗ and signals u1, u2 ∈ RN , the following must hold:

uT1 Ju2 = (J∗u1)
Tu2 = u

T
1 (J∗)Tu2

From the above follows directly that for system J the adjoint
J∗ = JT .

Thus, Lemma 4 reveals that the gradient descent ILC
algorithm (5) can be interpreted as an adjoint-based algorithm.

C. Data-driven learning using the adjoint system

As will be shown, an operation with the adjoint of a linear
time invariant SISO system can be recast to an operation on
the original system and time-reversal of the in- and output
signals. There are many applications that exploit this property,
e.g., system identification [22], [23], [30], [24, Section 12.2]
and iterative learning control [21, Section 36.3.3.1], [27],
[28].

The time-reversal approach only applies to SISO systems.
Indeed, as is shown next, the generalization to MIMO systems
requires significantly more steps. The theory developed here
exploits recent developments in system identification [30].

Before presenting the main results for MIMO systems, note
that for a SISO system J11, the adjoint J11T can be recast
to:

J11T
=RJ11

R (6)
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an involutory permutation matrix with size N × N . Here,
RN is interpreted as a time-reversal operator. Consider the
following operation:

y = J11Tu =RJ11
Ru. (7)

It shows that the operation y = J11Tu can be recast to an
operation on the original system J11, and time-reversing
the input before applying operator J11, and time-reversing
the resulting output afterwards. Note that (6) is only valid
for SISO systems and is exactly the same operation as is
performed using the “FiltFilt” operation in Q-filtering
[21, Section 36.3.3.1]. For a MIMO system J , the adjoint
JT can be written as:
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=
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⎢
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,(8)

here J̃ ∈ RniN×noN , andRni ∈ RniN×niN ,Rno ∈ RnoN×noN

are time-reversal operators for the higher dimensional in- and
output signals. Matrix J̃ is the finite-time representation of
J̃(z) ∈ Cni×no , with

J̃(z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

J11
(z) ⋯ Jno,1(z)
⋮ ⋮

J1,ni(z) ⋯ Jno,ni(z)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

If J a symmetric system then J̃ = J , in this case (6) is valid
and the SISO time-reversal approach in (7) can be applied.
For general MIMO systems J̃ ≠ J .

The main idea of the presented approach is to develop a
data-driven MIMO ILC algorithm by recasting the system
J̃(z) to:

J̃(z) =
ni

∑
i=1

no

∑
j=1

IijJ(z)Iij , (9)

where Iij
∈ Rni×no , is a static system with ni outputs and

no inputs. For the kth and lth entry of Iij holds

Iij
k=i,l=j = 1, (10)

Iij
k≠i,l≠j = 0,

i.e., all entries are of Iij zero, except the ith, jth entry. The
structure of Iij is given by

Iij
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0i−1 × j−1 0i−1 × 1 0i−1×no−j

01 × j−1 1 01 × no−j

0ni−i × j−1 0ni−i × 1 0ni−i × no−j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where 0i×j is the zero matrix with dim(0i×j) = (i, j). The
role of Iij in y(z) = J(z)Iiju(z) is selecting the jth entry

in u(z) and apply it to the ith input of J(z), where the rest
of the inputs to J(z) are zero.

Let Iij be the finite-time representation of Iij , then the
finite-time representation of J̃ , see (9), is given by

J̃ =
ni

∑
i=1

no

∑
j=1

IijJIij .

Substitution of the above in (8) yields the main result:

JT
=Rni

⎛

⎝

ni

∑
i=1

no

∑
j=1

IijJIij
⎞

⎠
Rno (11)

The above equation recasts the evaluation of JT as ni ⋅ no
experiments on J . This approach is used with ILC algorithm
(5), to arrive at the data-driven ILC algorithm for MIMO
systems.

The following procedure provides the learning update for
the ILC algorithm in Theorem 2.

Procedure 5 (Dedicated gradient experiment). The objective
is to compute JT ej by performing experiments on J . This is
achieved by applying the following sequence of steps:

1) Time reverse ej =Rnoej
2) Compute zj by performing ni ⋅ no experiments on J:

zj =
ni

∑
i=1

no

∑
j=1

IijJIijej ,

with Iij the matrix representation of static system Iij

defined in (10).
3) Time reverse again to compute JT ej =Rnizj

The main idea is to replace the model by dedicated experi-
ments on the system. The above approach is visualized in a
diagram for ni = no = 2 in Fig. 2. The complete adjoint-based
ILC algorithm (5) using the data-based learning update in
(11) is summarized as follows.

Summary 6 (Data-driven ILC algorithm for MIMO systems).
Given an initial input u0, set j = 0, perform the following
steps:

1) execute a trial and measure ej = r − Juj ,
2) use Procedure 5 to experimentally determine JTWeej ,
3) apply ILC algorithm (5), set uj+1 = (I − εWf)uj +

εJTWeej ,
4) set j ∶= j + 1 and go back to step 1 or stop if a suitable

stopping criterion is met.

Note that the inclusion of weighting matrix We in step 2 of
Summary 6 is a straight-forward multiplication of ej prior
to using Procedure 11.

Remark 1. All measured signals contain noise. In principle,
to show that Procedure 5 yields unbiased results requires
computing the expected value of the filtered ej . A full
stochastic proof that JT ej resulting from Procedure 5 is
indeed unbiased is outside the scope of this paper but follows
along the lines of [34].

Remark 2. In this paper the steepest descent algorithm is
used to optimize (4). The approach presented in this section
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Fig. 2. Overview of Procedure 5 for ni = no = 2.

is in principle directly applicable to any other optimization
algorithm that uses first order gradient information. The data-
based approach can also be extend to second order methods,
as long as the optimization step is affine in the first and
second order gradient. The second order gradient of (4) is
given by

∂2J(uj+1)

∂u2j+1
= 2JTWeJ + 2Wf .

This expression can also be determined by performing
experiments on J . Note that if ej contains measurement
noise, a direct estimate of JTWeJej is biased, see [35] for
unbiased estimates.

D. Convergence criteria

Firstly, monotonic convergence is given in Definition 7,
secondly, the conditions for achieving monotonic convergence
of ILC algorithm (5) are presented in Theorem 8.

Definition 7 (Monotonic convergence). The ILC algorithm is
monotonically convergent if and only if the following condition
holds:

∣∣uj+1 − u∞∣∣ < γ∣∣uj − u∞∣∣, ∀uj , uj+1 (12)

with u∞ the unique fixed point of iterative algorithm (5),
the norm ∣∣ ⋅ ∣∣ as defined in Section III-A, and γ ∈ [0,1) a
convergence rate.

See [1] and [10] for equivalent definitions.

Theorem 8 (Criterion for monotonic convergence). Given
weighting matrices We ≻ 0,Wf ⪰ 0, such that and JTWeJ +
Wf has full rank. Let 0 < ε ≤ ε, then ∃ε > 0 such that ILC
algorithm (5) is monotonically convergent with

ε = 2∣∣JTWeJ +Wf ∣∣
−1,

and converged signals

u∞ = lim
j→∞

uj = (JTWeJ +Wf)
−1JTWer,

e∞ = lim
j→∞

ej = (I − J(JTWeJ +Wf)
−1JTWe)r.

Proof. The proof is based on the contraction mapping
theorem, see [33, Theorem 3.15.2]. The ILC trial dynamics
can be recast to

uj+1 = (I − εWf)uj + εJ
TWeej (13)

= (I − εWf)uj + εJ
TWe(r − Juj)

= (I − ε(JTWeJ +Wf)uj + εJ
TWer.

Fig. 3. Océ Arizona 550GT flatbed printer experimental setup. The printer is
normally used to print on rigid media with applications in interior decoration,
product decoration, signage, and art.

Let M = I − ε(JTWeJ +Wf), then, it can be verified that
for the condition for monotonic convergence in Definition 7
holds

∣∣uj+1 − u∞∣∣ − ∣∣uj − u∞∣∣ = ∣∣Muj −Mu∞∣∣ − ∣∣uj − u∞∣∣.

Next, using ∣∣Muj − Mu∞∣∣ ≤ ∣∣M ∣∣∣∣uj − u∞∣∣ to bound
∣∣Muj −Mu∞∣∣ from above it follows that if ∣∣M ∣∣ < 1 then
condition (12) for monotonic convergence is satisfied with
γ = ∣∣M ∣∣.

Following similar lines as in [28] and [16] it follows that ∃ε
s.t. ε < ε⇒ ∣∣I −ε(JTWeJ +Wf)∣∣ < 1 with ε = 2∣∣JTWeJ +
Wf ∣∣

−1 since JTWeJ +Wf has full rank.
If ∣∣M ∣∣ < 1, then M is a contraction and the ILC algorithm

in (5) converges to a unique fixed point u∞. The latter follows
by setting uj+1 = uj = u∞ in (13) and solving for u∞.
Substitution of u∞ in (3) yields e∞.

Remark 3. Model-based gradient-decent algorithms require
additional robustness considerations. In [16] the robustness
properties of (model-based) gradient-descent ILC for SISO
systems are investigated. Essentially, ε determines a trade-
off between convergence rate and robustness for model
uncertainty. For large modeling errors ε << ε, with very
slow convergence as a consequence. A common approach
in improving convergence speed of algorithm (5) is using a
trial-dependent εj , see e.g., [16, Section 8]. Extending the
results to include such a εj is part of ongoing research.

IV. SIMULATION RESULTS

The data-driven ILC approach for MIMO systems that is
developed in Section III is simulated using a model of an
industrial flatbed printer as system. The model is a high-
fidelity 44th order state-space model that has been identified
on the true system using experiments.

The flatbed printer is shown in Fig. 3 and an overview
is presented in Fig. 4. The system has four degrees of
freedom: the carriage has translations y and z, the gantry has
a translation x, and a rotation ϕ which is defined around the
point p1 that is fixed to the center of the gantry.

1) System: The subsystem of the Arizona that is considered
for control is the gantry. The gantry is controlled in x and
ϕ direction using force actuators u1 and u2, see Fig. 4.
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Carriage Gantry

x

ϕ

z
y

u2u1

p1

Fig. 4. Overview of the Arizona Setup. The printer has four motion axes:
z and y translations for the carriage, the gantry translates in x direction and
the rotation is ϕ. The gantry is considered for control in the present paper.
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Fig. 5. Bode diagram of the closed-loop system J(z).

The system operates in closed-loop with a given diagonal
controller, hence system J , see Fig. 1, represents the feedback
controlled system y = Ju, with:

y = [
x
ϕ
] , u = [

rx
rϕ

] ,

with rx the reference for x and rϕ the reference for ϕ. A
model of J has been identified using frequency response
measurements. The Bode diagram corresponding to J(z) is
presented in Fig. 5. Analysis of the Bode diagram reveals
that interaction deteriorates performance for frequencies of 2
Hz and above. This is caused by the large ∣J21

∣, hence rx has
a large influence in ϕ. It is therefore expected that MIMO
ILC can achieve a significant performance improvement.

The references for the gantry are presented in Fig. 6. The
reference rx is a smooth step of 40 mm and the reference
rϕ represents a forth and back rotation of the gantry.

2) ILC design: To satisfy the condition for monotonic
convergence in Theorem 8, the learning gain ε = 0.95ε =
0.0013, with ε = 2∣∣JJTWe∣∣

−1. The weighting matrix Wf = 0
and We is a diagonal matrix We = diag(wexI,weϕI) that is
used to compensate for the different units of x and ϕ.

3) Results: The simulation is invoked with initial input
u0 = [rx, rϕ]

T , hence the first trial hence corresponds
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Fig. 6. References: rx (black solid) is a 40 mm smooth step, rϕ (red
solid) a forth and back rotation.
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Fig. 7. Simulation results: tracking errors (left), ILC command signals
(right). Feedback only (red solid), ILC (black solid). The results show a
significant performance improvement in both ex and eϕ when ILC is applied.

to the performance of the system with feedback control
only. Sufficiently many trials for convergence are performed
(5000) using the steps in Summary 6. The time domain
tracking errors and resulting command signals are presented
in Fig. 7. The results show that both ex and eϕ have reduced
significantly. The reduction in eϕ is larger, this is attributed
to the fact that the large initial value of eϕ with feedback
only is much larger than the initial value ex, therefore the
reduction of eϕ is emphasized more in the cost function. The
cost function J has reduced from J (u0) = 6.65 ⋅ 10−3 to
J (u5000) = 1.18 ⋅ 10−6.

The results show a significant performance improvement
using the presented ILC algorithm that does not require a
model of the system in the learning update. The simulations
hence show promising results for the ongoing work towards
experiments on the Arizona setup.

V. CONCLUSIONS AND ONGOING RESEARCH

In this paper adjoint-based ILC algorithm for multivariable
systems is presented. The approach is data-driven in the sense
that it does not require a model for constructing the commonly
used L and Q filters.

The main results show that the learning update with
the adjoint system can be recast to performing multiple
experiments on the original system. Convergence criteria
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are developed. The results are supported with a simulation
of an industrial multi-axis flatbed printer.

Currently, the presented algorithm is being implemented
in an experiment. Subjects of ongoing research include:
signal conditioning in the experiments, using basis functions
for increased convergence speed and robustness against
measurement noise [5], reducing the number of experiments
needed in the data-driven approach, and an automated method
for the selection of ε using the approach in [30].
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