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Abstract

The operation of blood bank systems is characterized by two crucial factors: testing proce-
dures and perishability. We propose a new testing procedure that we term Recycled Incomplete
Identification Procedure (RIIP). In RIIP, groups of pooled blood units which are found contam-
inated in a so-called ELISA test are divided into smaller subgroups and again group-tested by
ELISA, and so forth, until finally a so-called PCR test is conducted for those subgroups which are
found clean. We analyze and optimize the performance of RIIP, maximizing the profit associated
with the procedure. Our numerical results suggest that it may indeed be profitable to do several
cycles at ELISA.

1 Introduction

The operation of blood banks, worldwide, is aimed at the supply of uncontaminated human blood. In
the laboratories of the Central Blood Services (CBS’s), each donated blood unit goes through multiple
tests. These are aimed at determining the unit’s blood type and the presence of various pathogens
which are able to cause transfusion-transmitted diseases, such as Hepatitis B (HBV), Hepatitis C
(HCV), Human Immunodeficiency Virus (HIV) and Syphilis; see, e.g., [16], [19], [20], [24], [25], [27],
[28]. Until recently, the routine testing was done with the ELISA (Enzyme Linked Immuno-Sorbent
Assay) test that detects virus-specific antibodies in the blood. This test has high sensitivity and
specificity but has a lower analytic detection limit, which affects the identification of positive blood
samples very soon after HIV seroconversion, as it takes time to develop a high concentration of
antibodies. The new PCR (Polymerase Chain Reaction) test can detect viral genetic material in the
blood and has a much higher sensitivity and specificity. It increases the chances of early detection
and decreases morbidity and mortality due to post-transfusion infections (see, e.g., [16], [25], [28]).
However, PCR is very expensive relative to ELISA. Therefore, blood banks in the USA, Israel and
some countries in Europe have established a screening protocol whereby all blood units are ELISA
tested in groups and those which tested negative for ELISA are re-tested individually with PCR.

The operation of blood bank systems is characterized by two crucial factors: (i) testing procedures
and (ii) perishability. Testing is necessary, since only clean blood units are used for blood transfusion;
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groups found contaminated at ELISA, and units found contaminated at PCR, are discarded. Thou-
sands of units of donated blood arrive daily at the central blood bank system for screening. Testing
times and testing costs are associated with the screening process. In addition, each blood unit has an
expiration date; after that it is perished. The controller faces a natural and well-motivated operations
management problem. On the one hand, there is the need to make the testing period as short as
possible; on the other hand, careful testing is required, which takes time and is costly. This raises the
need to find more efficient group testing procedures, with the restriction of incomplete identification.

Since ELISA testing is relatively cheap, we propose a new screening process that we term Recycled
Incomplete Identification group testing Procedure (RIIP), by which groups of pooled blood units,
which are found contaminated in the previous ELISA cycle, are divided into smaller subgroups and
again group-tested by ELISA, and so forth, until finally the PCR test is conducted for those subgroups
which are found clean.

The goal of this paper is to provide an analysis and optimization of the performance of RIIP, in
particular minimizing the costs (or maximizing the profit) associated with the test procedure.

In the next subsections we describe some features of a blood bank system. In Subsection 1.1 we describe
the separation process of each blood unit into its three components along with their expiration dates
and associated costs. The concept of group testing is reviewed in Subsection 1.2. In Subsection 1.3
we present the group testing procedures (complete and incomplete identification procedures) that are
currently in use by blood banks. The further organization of the paper is outlined in Subsection 1.4.

1.1 Blood Components

Blood consists of several components: Red blood cells (RBC), plasma and platelets. Processing
the whole blood units into the different components is done in parallel to the testing stage. Whole
blood units are separated into different components, which have different biological functions, storage
conditions and expiration dates. They will be supplied to different patients according to their medical
needs:

1. RBC – This component, which is separated from the whole blood unit within 8 − 24 hours
from collection, can be used within 35 to 42 days, depending on whether additive solution is
added. Mostly, the cost of an unmodified packed RBC unit for the hospitals is $40 and that of
a leukodepleted (solution added) unit is $70.

2. Plasma – Plasma units are automatically made upon the production of an RBC unit. The
corresponding cost for a plasma unit is around $40; hospitals acquire 28% of all the plasma
units produced.

3. Platelets – From each whole blood unit one random platelet unit is separated, which can be
used for at most five days. The cost of producing random platelet units is about $40/unit [7].

With respect to the above expiration dates, the following should be taken into account. On average it
takes about 15 hours till blood samples arrive in the CBS after the moment they have been donated.
The average processing time of an ELISA test is around 1 hour and costs around $2.5 per average
group (of blood units) of size 10, whereas that of the PCR is around 6 hours with an associated cost of
about $85 per blood unit. Such time constraints are vital for platelets’ shelf-life, but less significant for
RBC. However, such processing times should be taken into account in any blood screening procedure.
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1.2 Group Testing

The issue of blood transfusion might be a question of life and death. This means that it is of paramount
importance that all the blood units that enter the shelf are clean. Therefore, a necessary requirement
is a meticulous inspection of all the blood units. However, since thousands of blood units (blood
samples) arrive at the central blood bank every day, a natural screening procedure must be based
on the idea of group testing; otherwise, the screening process will take too long and the costs of this
process will be too high.

Group testing deals with the classification of the items of some population into two categories: ‘good’
and ‘defective’. It is assumed that the items are group testable, i.e., for any subset of the population
it is possible to carry out a simultaneous test (group test) with two possible outcomes: ‘success’ (also
called ‘clean’, or ‘negative’), indicating that all items in the subset are good, and ‘failure’ (also called
‘contaminated’, or ‘positive’), indicating that at least one of the items in the subset is defective –
without knowing which or how many are defective. A contaminated group can be subject to further
screening, or be scrapped. Employing suitably designed procedures of this kind leads to a significant
reduction of the number of required tests and thus of screening costs, under controlled probabilities of
misclassification. A group testing procedure is therefore a cost-efficient technique. It has been applied
in various areas, first and foremost, for blood screening to detect various viruses, for DNA screening,
as well as for quality control for industrial production systems (see, e.g., [3]-[18], [21]-[23], [30]-[36]).

1.3 Complete versus Incomplete Identification

One may currently distinguish two types of identification testing procedures: complete and incomplete.
The purpose of a complete identification group testing procedure is to classify each item in a given
population as either clean or defective. This is done by testing groups of size m (a decision parameter)
in the ELISA station only. If a group is found clean it is aggregated for blood transfusion purposes,
otherwise, if it is found contaminated it is further re-tested by dividing it into subgroups. Such a
procedure continues till each item in a given population is appropriately classified.

One could imagine two managerial reasons in which complete identification procedures are inefficient.
The first one is that the tests are too expensive. Then a complete identification procedure leads to a
high expected number of tests and, as a result, to high expected total testing costs. The second one
is that the shelf-life is short (recall that the shelf-life of platelets is at most 5 days). Then the higher
the number of tests, the shorter the residual shelf-life of clean items on the shelf.

The idea of an Incomplete Identification group testing Procedure (IIP) was first introduced in [3] for
some industrial problem and was subsequently further developed for blood screening (e.g. [4]-[10]).
An IIP starts as above by first testing groups of size m in the ELISA station. However, as opposed
to the previous case, a group found contaminated is scrapped; otherwise, it is aggregated and sent to
the PCR station for individual testing. Such a procedure is cost-wise rather efficient as it significantly
decreases the number of tests (whether grouped or individual). It is particularly efficient when the
prevalence rate of the ”deficiency” (like the prevalence rate of, say, HIV in the population) is rather
small.

In order to give some idea how real data are processed we mention the following. In Western European
countries (as well as in the US, Israel and some other countries) about 35, 000 to 50, 000 blood
donations are needed per 1 million persons per year. The following data for the years 2011 − 2012
have been provided to us by the Israeli Central Blood Bank. The data describe per year the number
of blood donations (blood units), the number of blood units found contaminated at the ELISA station
(including HIV, HBV and HCV) and the number of units found clean at the ELISA station but then
found contaminated at the PCR station (for the two years 2011 and 2012 the population size of Israel

3



was about 7, 800, 000 and 7, 900, 000, respectively).

Donations Year Cases confirmed positive by ELISA
HBV HCV HIV Total

294, 117 2011 126 62 13 201
298, 470 2012 143 62 3 208

The table suggests that the estimated probability of finding a given unit to be contaminated at the
ELISA station is approximately 0.00068 (later on such a probability will be denoted by ε). Note that
this estimated probability is smaller than the prevalence rate of the contaminating virus(es) in the
population as those infected persons who are aware of their situation usually do not donate blood
samples. This means that if the probability of contaminated blood units is not known, for some reason,
then the prevalence rate in the population can be used as an upper bound for such a probability. All
of the positive ELISA units were also judged positive by PCR, but, in addition, there were another
12 units in 2011 and 13 in 2012 that were only found positive by PCR (but not by ELISA). Hence,
the estimated probability of those units found clean by ELISA but then found contaminated by PCR
is 0.00004 for both years 2011 and 2012 (later this probability will be denoted by γ).

1.4 Organization of the Paper

The paper is organized as follows. In Section 2 we describe the RIIP in more detail, including costs
and times involved as well as related stopping times. We also define an appropriate objective function,
aiming at maximizing the profit of the RIIP operation. Sections 3 and 4 are devoted to the derivation
of the distributional behavior of the relevant stopping times and all the functionals occurring in the
objective function. We introduce an underlying unobservable nonhomogeneous Markov chain, whose
distribution will be determined in closed form, and show that all distributions of interest and thus
the complete objective function can be expressed in terms of this Markov chain. It will turn out that
the resulting formulas for these distributions are rather complicated, making the objective function
quite intricate and formidable to handle analytically. Therefore we devote Section 5 to introducing
approximations of the relevant functionals. These approximations ease the numerical evaluation of
the objective function. Numerical examples are presented in Section 6, along with some sensitivity
analysis of the involved parameters and decision variables. Section 7 contains conclusions.

2 The RIIP Model: Description, Stopping Times, Parameters
and Objective Function

In the RIIP, blood samples are tested at two consecutive stations: first the ELISA station and subse-
quently the PCR station. In the sequel, we consider testing on a weekly basis. An initial supply of n
blood units per week (according to the data in Subsection 1.3, n would be around 6000) is divided into
k1 groups of size m1; m1 is a decision variable. These groups are initially group-screened at the ELISA
station. If a group is found clean it is sent to the PCR station for individual screening (i.e., each of
the m1 units in the group is screened individually). Otherwise, if the group is found contaminated,
the m1 units in the contaminated group are divided into k2 subgroups of size m2, all of which are
recycled and resent to the ELISA station for further group-screening. The whole process then repeats
itself for the next recycle (each contaminated subgroup is divided into k3 subgroups of size m3, which
are recycled and resent to the ELISA station for further group-screening), and so forth. The reason
for recycling at the ELISA station is the cost reduction, as the testing cost at the ELISA station is
significantly smaller ($2.5) than that at the PCR station ($85 per blood unit, cf. Subsection 1.1). Such
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a recycling at the ELISA station also makes sense from a time perspective, as the processing time at
this station is around 1 hour per group whereas that at the PCR station is around 5− 6 hours. The
aim of the testing is to satisfy a given demand of d blood units in a cost-efficient manner. For this
one has to decide on the number of cycles at the ELISA station and the group sizes mi.

In the sequel, we shall say that the blood testing process has r cycles if the last subdivision is in kr
groups of size mr – so if one does only one group test, then r = 1. The efficient number of cycles
depends on several factors.

First, the group sizes satisfy m1 > m2 > ..., and after a certain number of cycles, the number of
items in the resulting subgroups becomes too small, making further recycling no longer worthwhile.
Accordingly, the recycling is stopped at the smallest mi ≥ m̂, where m̂ ≥ 2 is the smallest permissible
group size (m̂ will be considered as a parameter of the objective function). There is also an upper
bound m̃ on the number of samples that can be pooled together due to technical restrictions, so that
m1 ≤ m̃; in practice usually no more than 50 samples are taken in one group.

Second, the processing times cause an upper bound on the number of cycles. We require that the
total processing time of all cycles at the ELISA station will not exceed a predetermined time t0. We
assume that every test takes a time interval of fixed (constant) length, regardless of the batch size;
every test takes Telisa time units. Then the testing is terminated at the latest after the (t0/Telisa)-th
test.

Third, we assume that there is a prespecified upper bound c0 for the total cost of the ELISA cycles
and that the cost per test is constant, say Celisa. Accordingly, the cost limit is reached after c0/Celisa
tests.

Let Nh be the total number of tests after h cycles. According to the above constraints, the ELISA
recycling process stops after the τ -th cycle where

τ
.
= sup

{
h : mh ≥ m̂ and Nh ≤

t0
Telisa

and Nh ≤
c0

Celisa

}
. (1)

We can equivalently write this stopping time as

τ = min[τ1, τC ], (2)

where
τ1

.
= sup{h : mh ≥ m̂}, (3)

and
τC

.
= sup{h : Nh ≤ C}, (4)

with

C := min(
t0

Telisa
,

c0
Celisa

). (5)

We now formulate a profit objective function, which has to be maximized with respect to the decision
parameters m1 > m2 > . . . The following notation will be used throughout:

• Probability parameters

ε - the probability that a unit is found contaminated by ELISA.

γ - the conditional probability that a unit is found contaminated by PCR given it was found clean by
ELISA.
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• Counting random variables

Again, the variables are considered on a weekly basis.

M - the total number of group tests at the ELISA station.

N - the total number of units (out of n) found clean by ELISA.

N∗ - the total number of units (out of n) found clean by both ELISA and PCR. Note that N∗ ≤ N ≤ n
and

E (N∗) = (1− γ)E (N) . (6)

• Costs, penalties and rewards

Cpur - the purchasing cost for a single unit (related to acquiring the n initial units).

Celisa - the cost of a test for a batch of arbitrary size m at the ELISA station.

Cpcr - the cost of testing a single unit at the PCR station.

Cpenalty - the penalty cost for not satisfying a demand for a single unit which has been tested clean.

Rw - the reward for a satisfied demand unit.

R̂w - the reward for any ‘surplus’ unit beyond the required demand.

This yields the following components of the objective function:

Cost components

• Cpurn - the total cost for purchasing n units.

• CelisaM - the total cost for testing M groups at the ELISA station.

• CpcrN - the total cost for testing N units at the PCR station.

• Cpenalty [d−N∗] I(N∗≤d) - the total penalty for not satisfying the full demand d (here and in
the sequel, I(·) denotes an indicator function).

Reward components

• RwN∗I(N∗≤d) - the total reward for the satisfied (part of the) demand.

• R̂w (N∗ − d) I(N∗>D) - the total reward for the demand surplus.

Thus the total reward is given by

RwN
∗I(N∗≤d) +

[
Rwd+ R̂w (N∗ − d)

]
I(N∗>d). (7)

Combining all of the above, the (random) profit P = P (m1,m2, ...) associated with the procedure is

P = RwN
∗I(N∗≤d) +

[
Rwd+ R̂w (N∗ − d)

]
I(N∗>d)

−
[
Cpurn+ CelisaM + CpcrN + Cpenalty [d−N∗] I(N∗≤d)

]
.

(8)
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The objective function is then given by the expected profit P̃ = E[P (m1,m2, ...)]:

P̃ = E[RwN
∗I(N∗≤d)] + E

[
{Rwd+ R̂w (N∗ − d)}I(N∗>d)

]
−
{
Cpurn+ CelisaE[M ] + CpcrE[N ] + CpenaltyE[(d−N∗)I(N∗≤d)]

}
.

(9)

We rewrite this as
P̃ = P1 + P2 − P3 − P4 − P5 − P6, (10)

where 

P1 = E[RwN
∗I(N∗≤d)],

P2 = E
[
{Rwd+ R̂w (N∗ − d)}I(N∗>d)

]
,

P3 = Cpurn,
P4 = CelisaE[M ],
P5 = CpcrE[N ],
P6 = CpenaltyE[(d−N∗)I(N∗≤d)].

(11)

To maximize this objective function we have to find explicit expressions for all its ingredients, i.e., the
expected values on the right side of (9). This is carried out in the next two sections by deriving the
underlying distributions in closed form.

3 An Unobservable Underlying Markov Chain

In this section we introduce a Markov chain that captures the essence of the testing procedure. We
determine its distribution in closed form, and we show that the distributions of all quantities of interest
(M,N,N∗ featuring in the profit objective function) can be expressed in terms of this Markov chain.

Recall that, after conditioning on the initial supply of a (binomially distributed) number of clean items
in the population of size n, the basic RIIP model can be described as follows. Among n items r are
contaminated and the rest is clean. In the first stage the items are split into k1 groups, each of group
size m1 = n/k1, which are pooled and tested together. Each of the groups found contaminated is then
split into k2 subgroups, each of size m2 = m1/k2, which are then tested together. The procedure is
iterated. Let us first assume that it is iterated until in the final stage only contaminated ‘groups’ of
size 1 are left, which are then tested and the complete picture becomes known. Later we will truncate
this procedure and use stopping times of the form (2), but we will see that this modification can easily
be taken care of. Let p be the number of cycles, so that n =

∏p
j=1 kj and

m1 > · · · > mp−1 > mp = 1.

For j = 1, 2, ..., p let Y jl be the number of groups in the jth cycle that contain exactly l contaminated
items. For j = 0 let Y 0 be the initial number of contaminated items. It is important to note that
the Y jl , l ≥ 1, are not observable during the testing process. Only Y j0 and

∑mj

l=1 Y
j
l , which denote the

number of groups found clean or contaminated in the jth cycle, respectively, become known after this
cycle. We will see that all distributions of interest to us and all cost and reward functionals we may
want to consider can be expressed in terms of the joint distribution of the sequence(

(Y j0 , Y
j
1 , . . . , Y

j
mj

)
)
j=0,...,p

,

where m0 = 0 and Y 0
0 = Y 0. This finite sequence is a nonhomogeneous Markov chain, so to determine

its joint distribution we only have to derive all its one-step transition probabilities. This in turn can
be reduced to some combinatorial considerations.
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3.1 A Combinatorial Urn Problem

We now solve the following auxiliary urn problem. Consider an urn containing r red balls and n− r
white balls. Take out all balls in k groups of size m = n/k according to the equidistribution. For
l = 0, 1, 2, ... let Yl be the number of groups containing exactly l red balls; note that Yl = 0 for l > r.
Compute the probability

p(y0, . . . , yr | n, r,m) = P(Y0 = y0, . . . , Yr = yr).

Solution: We only consider those values of y0, . . . , yr for which the probability is positive. Thus the
yi’s are nonnegative integers satisfying

y0 + · · ·+ yr = k, (12)

y1 + 2y2 + 3y3 + · · ·+ ryr = r, (13)

my0 + (m− 1)y1 + (m− 2)y2 + · · ·+ (m− r)yr = n− r. (14)

These equations indicate that there are k groups in total, the total number of red balls is r and that
of white balls is n− r.

Of course p(y0, . . . , yr | n, r,m) is proportional to the number of ways, say h(y0, . . . , yr | n, r,m), to
split the n balls accordingly.

In a first step, to achieve Y0 = y0, we have to take out y0 groups of size m from the n− r white balls.
For this there are

h0(y0 | n, r,m) =
1

y0!

(
n− r
m

)(
n− r −m

m

)
· · ·
(
n− r − (y0 − 1)m

m

)
(15)

possibilities; we have to divide by y0! since we want an unordered set of groups.

How many possibilities are there to achieve Yl = yl, given that Y0 = y0, . . . , Yl−1 = yl−1? We have to
form yl groups of size m each containing l red balls and m− l white balls, where the white balls have
to be chosen from the n− r− y0m− ...− yl−1(m− l+ 1) remaining white balls and the red balls have
to be chosen from the r − y1 − 2y2 − ...− (l − 1)yl−1 remaining red balls. The unordered number of
ways for this is

hl(yl | y0, ..., yl−1, n, r,m) =
1

yl!

(
r − y1 − 2y2 − ...− (l − 1)yl−1

l

)(
n− r − y0m− ...− yl−1(m− l + 1)

m− l

)
× · · · ×

(
r − y1 − 2y2 − ...− (l − 1)yl−1 − l(yl − 1

l

)(
n− r − y0m− ...− yl−1(m− l + 1)− (yl − 1)(m− l)

m− l

)
.

(16)

Therefore,

h(y0, . . . , yr | n, r,m) = h0(y0 | n, r,m)
r∏
l=1

hl(yl | y0, ..., yl−1, n, r,m).

Note that the terms in Formula (16) are symmetric with respect to the red and white balls (they also
consider all possible arrangements of white balls within a group and all possible arrangements of red
balls). This also holds for (15), as becomes obvious after multiplying (15) by (

(
r
r

)
)y0 .

Formula (16) greatly simplifies after canceling out several factors. Notice that the first term of (15)
(for y1) starts with a factor (n − r − y0m)!, which cancels against the (n − r − y0m)! term in the
formula above. In this way, a lot of terms cancel when we consider h =

∏r
j=0 hj , and we get:

h(y0, . . . , yr|n, r,m) =
(n− r)!r!
y0! . . . yr!

1

(m!0!)y0((m− 1)!1!)y1 . . . ((m− r)!r!)yr
. (17)
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Clearly,

p(y0, . . . , yr | n, r,m) =
h(y0, . . . , yr | n, r,m)∑

z0,...,zr
h(z0, . . . , zr | n, r,m)

,

where the sum in the denominator extends over all z0, . . . , zr satisfying (12)-(14). In the ratio all
factors only depending on n, r,m cancel and we arrive at

Theorem 1

p(y0, . . . , yr|n, r,m) =

r∏
i=0

(
m

i

)yi
/yi!

∑ r∏
i=0

(
m

i

)zi
/zi!

, (18)

where the sum in the denominator runs over all values of z0, . . . , zr satisfying (12)-(14).

With hindsight, Formula (18) is very natural; the ith term in the numerator reflects the number of
ways of ordering i red balls in each of yi urns, all urns containing m balls.

Let us denote the distribution on the set of tuples (y0, . . . , yr) satisfying (12)-(14) with probability
function (18) by µ(n, r,m).

3.2 Distribution of the Markov Chain

The Markov chain clearly starts with

P(Y 0 = l) =

(
n

l

)
εl(1− ε)n−l,

since before we begin pooling, there is an initial supply of n items where each of them has, inde-
pendently of the others, probability ε of being contaminated. Write Y j = (Y j0 , Y

j
1 , . . . , Y

j
mj

), yj =

(yj0, y
j
1, . . . , y

j
mj

). The one-step transition probabilities, i.e., the conditional distributions PY j+1|Y j , are
given by

Theorem 2

P(Y j+1 = yj+1 | Y j = yj) =
(∏̃mj

r=1
µ(mj , r,mj+1)∗y

j
r

)
({yj+1}). (19)

Here µ(n, r,m)∗k denotes the kfold convolution of µ(n, r,m) with itself, and the right-hand side of (19)
is the probability of the one-point set {yj+1} under the convolution of the mj probability measures

µ(mj , r,mj+1)∗y
j
r , r = 1, ...,mj . Here

∏̃mj

r=1 denotes the convolution product.

To see (19), argue as follows. To have yj+1
l groups in the (j + 1)th cycle that have exactly l contami-

nated items, yj+1
l must be the sum of the numbers of subgroups with l contaminated items formed by

splitting the groups after the jth testing. At that time the remaining contaminated groups are of size
mj and are split into subgroups of size mj+1. There are yjr groups containing exactly r contaminated
items, r = 0, ...,mj . The numbers of newly formed subgroups with exactly l contaminated items from
all these groups have to be added to obtain the number of such subgroups in the (j+1)th cycle. These
numbers are independent random variables, which explains the convolutions. Eq. (19) is proved.

The joint distribution of the finite nonhomogeneous Markov chain is given by

9



Theorem 3

P(Y j = yj for j = 0, ..., p) =

(
n

y0

)
εy0(1− ε)n−y0

( p−1∏
j=0

∏̃mj

r=1
µ(mj , r,mj+1)∗y

j
r

)
({yj+1}). (20)

4 Exact Distributions of the Stopping Time and of M,N,N ∗

The testing procedures are stopped when the subgroups are getting too small, say after τ1 cycles (this
means that mτ1 ≥ m̂ > mτ1+1, cf. (3)). We consider stopping times τ = min(τ1, τC), as defined in
(1)-(5). Now observe that the total number of tested groups in the first j cycles is given by

j∑
i=1

mi∑
l=0

Y il .

Consequently, cf. (4),

τC = sup{j |
j∑
i=1

mi∑
l=0

Y il ≤ C}. (21)

Thus the distribution of τC can be expressed in terms of the underlying Markov chain, whose distri-
bution was obtained in Theorem 3. The same holds for the distributions of M,N and N∗.

Theorem 4

P(τC > j) = P

(
j∑
i=1

mi∑
l=0

Y il ≤ C

)
, (22)

P(M = q) =

τ1−1∑
j=1

P

(
j∑
i=1

mi∑
l=0

Y il = q,

j+1∑
i=1

mi∑
l=0

Y il > C

)

+ P

(
τ1∑
i=1

mi∑
l=0

Y il = q

)
, q ≤ C, (23)

P(N = h) =

τ1−1∑
j=1

P

(
j∑
i=1

miY
i
0 = h,

j∑
i=1

mi∑
l=0

Y il ≤ C <

j+1∑
i=1

mi∑
l=0

Y il

)

+ P

(
τ1∑
i=1

miY
i
0 = h,

τ1∑
i=1

mi∑
l=0

Y il ≤ C

)
, (24)

P(N∗ = s) =
n∑
z=s

P(N = z)

(
z

s

)
(1− γ)sγz−s. (25)

Proof. Eq. (22) follows immediately from (21). Next, M (the total number of conducted group tests)
can be decomposed as

M =
τ∑
i=1

mi∑
l=0

Y il ,

yielding (23). Similarly, the number of items tested clean at the ELISA station during the iterations
can be represented as

N =
τ∑
i=1

miY
i
0 ,

10



so that its distribution can also be obtained from (20). Eq. (24) is now easily checked. Finally, (25)
follows from the law of total probability.

All the expected values appearing in the objective function P̃ , which was introduced in (9), can now
be expressed in terms of the underlying Markov chain. The resulting formulas are very lengthy.

5 An Approximation for Numerical Purposes

5.1 Some Realistic Assumptions and Related Approximations

The explicit formulas for the components of the objective function, as derived in the previous section,
are very complicated. For the purposes of optimization it is hence important to come up with approxi-
mations for these components. A starting point for such approximations is the following consideration.
Realistic numbers might be (cf. Subsection 1.3):

n = 6720 per week,

ε = P(unit contaminated) = 6.8× 10−4,

γ = 4× 10−5,

m1 = 48.

So we have about 140 initial batches per week, and 7280 per year. The probability that a 48-batch is
not contaminated is (1−ε)m1 ≈ 1−m1ε ≈ 0.97. The probability that a 48-batch has one contaminated
unit is m1ε(1− ε)m1−1 ≈ 0.03. Thus on average this occurs approximately four times per week. The
probability that a 48-batch has two contaminated units is 1

2m1(m1 − 1)ε2(1 − ε)m1−2 ≈ 6 × 10−4.
Therefore, on average this occurs approximately four times per year. From this one gets a feeling for
the proportions.

Now looking at blood units, instead of batches, per week, the number of contaminated units in a
week is binomially distributed with parameters n and ε, and for n = 6720 and ε = 6.8× 10−4 this is
extremely accurately represented by a Poisson distribution with parameter λ = 4.7. This brings us to
our

Approximation Assumption 1:
The distribution of the number of contaminated items per week can be approximated by a Poisson
distribution with parameter λ, which can be considered as the arrival rate of contaminated items (per
week), and which for given n equals λ = nε.

So with X the number of contaminated items in an arbitrary week:

P(X = i) = e−λλi/i!, i = 0, 1, . . . , (26)

where for the present example we may choose λ = 4.7.

For our objective function (9) we need approximative expressions for the terms

E[N∗I(N∗≤d)], P(N∗ > d), E
[
(N∗ − d) I(N∗>d)

]
, E[M ], E[N ], E[(d−N∗)I(N∗≤d)]. (27)

Now we introduce

Approximation Assumption 2:
One can ignore the event that at least two of the contaminated items are in the same initial batch
(which is an event with probability of order ε2).

11



We claim that both approximation assumptions are extremely accurate for realistic values of the
contamination rate ε.

So now assume that initially there are X = i contaminated items, all belonging to different batches.
In this case there will be i contaminated batches in every recycling (each contaminated by one item)
so that, when there are h cycles, the number of tests in this week equals Nh = n

m1
+ i(m1

m2
+ · · ·+ mh−1

mh
)

(remember that kz = mz−1

mz
is the number of batches being tested in the zth cycle, z = 2, 3, . . . ). It

follows from (2) and (4) that the stopping times τ1 and τC , and thus also τ , are constants (depending
on i and on the batch sizes): we have τ ≡ hi, where hi = min(τ1, τC).

Let us now turn to the distribution of N , for given n. First of all, P (N = n) = (1− ε)n ≈ e−λ; indeed,
this is the case that all items of this week are clean. Secondly, P (N = n−mh1) equals the probability
that this week there is exactly one contaminated item, i.e., P(X = 1). Hence P (N = n−mh1

) ≈ λe−λ.
Indeed, if we test the contaminated batch τ times (in smaller and smaller batches), then the number
of items (out of the original m1) that we do not send to PCR equals mτ . Generally,

P(N = n− imhi
) ≈ e−λλi/i!, i = 0, 1, . . . . (28)

This corresponds to the probability of having X = i ≥ 1 contaminated items in this week; recall that
we ignore the event that at least two of them are in the same initial batch (having probability of order
ε2).

Let us next consider the distribution of M , the number of groups tested in a week. With the same
reasoning as above, again ignoring the event that at least two contaminated items appear in the same
initial batch, we have:

P(M =
n

m1
+ i(k2 + · · ·+ khi

)) = e−λλi/i!, i = 0, 1, . . . . (29)

Finally, the distribution of N∗ can be approximately determined from (25). In view of the fact that
γ ≈ 4× 10−5, we can very accurately approximate

P(N∗ = s) ≈ P(N = s) + (s+ 1)γP(N = s+ 1), (30)

or even P(N∗ = s) ≈ P(N = s); in fact, we propose to use the latter formula in the four terms in
the objective function involving N∗. From (28)-(30) approximations for all terms in (27) are easily
obtained. This yields a simple approach to the objective function that can be used for a tentative
optimization.

The same reasoning can be used in the case when the stopping time is a prespecified constant, say h0.
Then

P(N = n− imh0) ≈ e−λλi/i!, i = 0, 1, . . . . (31)

This again corresponds to the probability of having X = i contaminated items in this week. Taking
means, we get

E[N ] ≈ n− λmh0 . (32)

Furthermore, in this case we get for the distribution of M

P(M =
n

m1
+ i(k2 + · · ·+ kh0)) ≈ e−λλi/i!, i = 0, 1, . . . (33)

In particular,

E[M ] ≈ n

m1
+ λ(k2 + · · ·+ kh0) =

n

m1
+ λ(

m1

m2
+ · · ·+ mh0−1

mh0

). (34)
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5.2 Three Possible Approximation Cases

Consequently, taking into account Approximation Assumptions 1 and 2 above, we may distinguish (at
least) three cases.

1. Case I: the stopping time is a prespecified constant h0

This is a natural and important case. We elaborate on this case in the sequel.

2. Case II: X = i is given
Here, we mean the following. Suppose we do a first cycle with groups of size m1 (a decision
variable). After this cycle, we count the number of contaminated groups. Suppose this number,
X, equals i. Ignoring the possibility of having more than one contaminated item in the same
group or subgroup, if we continue until we have done a total number of hi cycles, we shall have
N = n− imhi . Our decision variables are m1,m2, . . . ,mhi (as well as hi, unless we decide that
we do as many cycles as possible, as long as mh ≥ m̂ and Nh ≤ C).

Now, we claim that there are not so many cases to choose among. In general, the number of
possibilities depends on the prime factorization of n. The numbers of groups, i.e., the ki, can
be generated by any partition of the prime factors of n, resulting in a huge number of grouping
schemes. However, their number is drastically reduced by the upper bound on m1. In our
numerical examples we take n = 6720 and suppose that m1 ∈ {16, 24, 32, 40, 48, 56, 64}, that
m2 ∈ {8, 12, 16, . . . ,m1/2} and that m3 ∈ {4, 6, . . . ,m2/2}. We may allow a fourth and even a
fifth cycle, but that seems not realistic if m1 ≤ 64 and we make new groups always at least twice
as small as the groups of the previous cycle. Furthermore, we cannot consider too small m1-
values, since Nh ≤ C says that n/m1 ≤ C. The small number of cases to be considered makes
it very easy to search among all possible cases. Searching on the one hand means: checking
whether the constraints regarding the stopping times are not violated. Searching on the other
hand means: calculate the profit objective function, and take the largest one among those for
which the stopping time constraints are not violated. In Case II, one has to adapt that profit
objective function, given by formula (9), in an obvious way. We denote it by P̃i to emphasize
its dependence on i, and calculate, e.g., its first term as follows:

RwE[NI(N≤d)|X = i] = Rw(n− imhi
)I(n−imhi

≤d).

In this way we get a value for P̃i, for our given i, and for all combinations of m1,m2, . . . ,mhi

and hi. As explained above, one can now take the combination, among the admissible ones, that
yields the highest profit.

3. Case III: the general case
One way to treat this case is to take case II (but with hi replaced by a decision variable H that
does not depend on the actual value of X = i), and multiply P̃i by P (X = i) and sum over
i = 0, 1, . . . , Z. Here Z might be such that P (X > Z) =

∑∞
i=Z+1 e−λλi/i! ≤ 10−4, with, e.g.,

λ = 4.7. Do this again for all possible combinations of m1,m2, . . . ,mH and number of cycles H,
where we allow H to take the values 1, 2, 3, 4, 5, say, and where we check which combinations do
not violate our stopping conditions.

Below we further elaborate on Cases I and III (Case II may be viewed as a special case of Case III).

Case I: the stopping time is a prespecified constant h0
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For simplicity, we assume that n is divisible by mh0 . All functionals appearing in (11) can be simply
obtained by using the approximations in (32) and (34). Indeed, by letting

k̃
.
=
n− d
mh0

and F (t) = P(X ≤ t) =

[t]∑
i=0

e−λλi/i!

(recall that X has a Poisson distribution with mean λ), the expressions for P1, ..., P6 are obtained as
follows. First,

P1 = E[RwN
∗I(N∗≤d)] ' E[RwNI(N≤d)] = RwE[NI(N≤d)],

and for the righthand side note that E[NI(N≤d)] = E[N ] − E[NIN>d)], where E[N ] = n − λmh0 and
E[NIN>d)] = nP(X = 0) + (n−mh0)P(X = 1) + ...

A straightforward computation yields

E[NI(N≤d)] =


n− λmh0 , if d ≥ n (k̃ ≤ 0)

n(1− F(0))− λmh0 , if d < n and 0 < k̃ ≤ 1

n
[
1− F (k̃ − 1)

]
− λmh0

[
1− F (k̃ − 2)

]
, iif d < n and 2 ≤ k̃ ∈ N

n
[
1− F ([k̃])

]
− λmh0

[
1− F ([k̃]− 1)

]
, if d < n and 1 < k̃ /∈ N.

Next,

P2 = E
[
{dRw + R̂w (N∗ − d)}I(N∗>d)

]
' dRwP(N > d)− R̂wE[(d−N)I(N>d)],

where

dRwP(N > d) '


0, if d ≥ n (k̃ ≤ 0)

dRwF (k̃ − 1), if d < n and k̃ ∈ N
dRwF ([k̃]), if d < n and k̃ /∈ N,

and

E[(d−N)I(N>d)] = E(d−N)− E[(d−N)I(N≤d)] = d− (n− λmh0)− E[(d−N)I(N≤d)].

Combining the above results we find that

E[(d−N)I(N≤d)] '


d− n+ λmh0 , if d ≥ n (k̃ ≤ 0)

(d− n)(1− F (0)) + λmh0 , if d < n and 0 < k̃ ≤ 1

(d− n)
[
1− F (k̃ − 1)

]
+ λmh0

[
1− F (k̃ − 2)

]
, if d < n and 2 ≤ k̃ ∈ N

(d− n)
[
1− F ([k̃])

]
+ λmh0

[
1− F ([k̃]− 1)

]
, if d < n and 1 < k̃ /∈ N

and

E[(d−N)I(N>d) '


0, if d ≥ n (k̃ ≤ 0)

(d− n)F (0), if d < n and 0 < k̃ ≤ 1

(d− n)F (k̃ − 1) + λmh0F (k̃ − 2), if d < n and 2 ≤ k̃ ∈ N
(d− n)F ([k̃]) + λmh0F ([k̃]− 1), if d < n and 1 < k̃ /∈ N

implying that

P2 '


0, if d ≥ n (k̃ ≤ 0)

dRwF (0) + R̂w(n− d)F (0), if d < n and 0 < k̃ ≤ 1

dRwF (k̃ − 1) + R̂w[(n− d)F (k̃ − 1)− λmh0F (k̃ − 2)], if d < n and 2 ≤ k̃ ∈ N
dRwF ([k̃]) + R̂w[(n− d)F ([k̃])− λmh0F ([k̃]− 1)], if d < n and 1 < k̃ /∈ N.
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The other components of the profit function are given by

P3 = Cpurn

P4 = CelisaE[M ] = Celisa

[
n

m1
+ λ

(
m1

m2
+ ...+

mh0−1
mh0

)]
P5 = CpcrE[N ] = Cpcr(n− λmh0)

P6 = Cpenalty(E[(d−N∗)I(N∗≤d)]) ' Cpenalty(E[(d−N)I(N≤d)].

Case III: the general case

For convenience, any possible assignment for the values of h0,m1, ...,mh0
will be called a strategy,

denoted by S = S(h0,m1, ...,mh0
). For any given initial values of parameters involved (n,Rw, R̂w, ...),

the number of strategies is finite. The set of possible strategies is denoted by S.

For every strategy S the expected value of the related profit is given by

P̃ (S) =

Z∑
i=0

P(X = i)× Pi,S , (35)

where X, as defined above, is the random variable counting the number of contaminated blood units
(X ∼ Poiss(λ)), Z is determined by the constraint

P(X > Z) =
∞∑

i=Z+1

e−λλi/i! ≤ 10−4, (36)

and P̃i,S is the conditional expected profit when using strategy S given that X = i.

Before continuing we make the following comments:

1. For any given values of the parameters involved, there are not so many strategies. For example,
for n = 6720, m1 ≤ 64 and minimal batch size m̂ = 4, there are no more than 99 strategies. In
fact, we will provide all of them at the end of Section 6.

2. Following Approximation Assumption 2, we shall ignore the possibility of having more than one
contaminated item in the same group or subgroup. If X = i and we continue recycling until we
have done a total number of hi cycles, we then shall have N = n− imhi

and

M = Mi =

[
n

m1
+ i

(
m1

m2
+ ...+

mhi−1

mhi

)]
. (37)

Our decision variables are m1,m2, . . . ,mhi
(as well as hi, unless we decide that we do as many cycles

as possible, as long as mh ≥ m̂ = 4 and Nh ≤ C).

The small number of cases to be considered makes it easy to search among all possible cases. Searching
on the one hand means: checking whether the constraints regarding the stopping times are not violated.
Searching on the other hand means: calculate the profit objective function, and take the largest one
among those for which the stopping time constraints are not violated.

Accordingly, one has to adapt the profit objective function in (9) in an obvious way. Indeed, for a
given X = i, the expected profit P̃i is
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P̃i = Pi,1 + Pi,2 − Pi,3 − Pi,4 − Pi,5 − Pi,6,

where
Pi,1 ' Rw(n− imhi)I(n−imhi

≤d)

(as X = i is given, the expectation turns out to be a constant), or

Pi,1 '

{
Rw(n− imhi

), if n− imhi
≤ d

0, otherwise
,

Pi,2 ' (Rwd+ R̂w(n− imhi − d))I(n−imhi
>d),

or

Pi,2 '

{
Rwd+ R̂w(n− imhi

− d), if n− imhi
> d

0, otherwise
,

Pi,3 = Cpur × n,

Pi,4 = Celisa ×Mi,

where Mi is given by (37),

Pi,5 = Cpcr(n− imhi
),

Pi,6 ' Cpenalty
[
d− (n− imhi

))I(n−imhi
≤d)

]
or

Pi,6 '

{
Cpenalty(d− (n− imhi

)), if n− imhi
≤ d

0, otherwise
.

6 Numerical and sensitivity analysis

In this section we present a numerical and sensitivity analysis for Cases I and III. Since many different
parameters are involved, one could consider a wide range of parameter values, studying the influence
of each of them on the profit function. We mainly restrict ourselves to particular parameter values
which seem to be realistic in the case of the Israeli Central Blood Bank. This allows us to focus on a
few key aspects, viz.:
(i) For Case I, we study the influence of demand on profit.
(ii) For this case, we also consider the six components P1, . . . , P6 of the profit function to get an
impression of their relative contributions.
(iii) In Case III we study the effect of doing multiple tests (with ever smaller groups) at the ELISA
station on the profit function.
(iv) Case III also allows us to study the effect of group sizes at the ELISA station on the profit
function.
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Figure 1: Profit vs. demand for Rw = R̂w = 250

6.1 Case I

We first plot profit versus demand for h0 = 4 and for four cases of iterated batch sizes, given by the
following table:

Case m1 m2 m3 m4

a 48 24 12 6
b 60 30 15 5
c 64 32 16 8
d 64 16 8 4

Demand changes from 6000 to 6720 and the chosen parameter values are:
n = 6720; ε = 0.00068;Cpur = 180;Celisa = 2.5; Cpcr = 40;Cpenalty = 25.

We consider two cases for Rw and R̂w: Rw = R̂w = 250 and Rw = 250 > R̂w = 230.

Figures 1 and 2 display, respectively, plots of profit vs. demand for the two cases of Rw and R̂w. In
both figures, the black curve displays case a, the red one case b, the green one case c and the blue one
case d. The behavior of the four different strategies seems to be similar and the profit functions do
not intersect.

Various other values of the parameters that have been considered show a pattern similar to the one
presented. In particular, when Rw = R̂w and Cpenalty = 0, the profit stays constant as a function
of the demand (indeed, notice that now P1 + P2 = RwE[N ] does not depend on d, and neither do
P3, . . . , P6).
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Figure 2: Profit vs. demand for Rw = 250 > R̂w = 230

Next, we study the impact on the cost and penalty components of the expected profit P̃ when slightly
lowering the demand.

The parameter values considered are:
ε = 0.00068;Cpur = 180;Celisa = 2.5; Cpcr = 40;Cpenalty = 10; Rw = R̂w = 250.
h0 is taken to be 4 and m1 = 48,m2 = 24,m3 = 12,m4 = 4.

We first consider the case where n = d = 6720, for which the components of P̃ are given in the
following table.

P̃ 197, 148.79
P1 1, 675, 430.40
P2 0.00
P3 1, 209, 600.00
P4 429.97
P5 268, 068.86
P6 182.78

Here, as expected, P2 = 0, while P4 and P6 are almost negligible compared to the profit component
P1.
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Now, for n = 6720 > d = 6715, a similar table gives

P̃ 197, 197.79
P1 1, 578, 520.29
P2 96, 910.11
P3 1, 209, 600.00
P4 429.97
P5 268, 068.86
P6 133.78

Here, too, P4 and P6 are almost negligible whereas the total reward for the satisfied demand and
demand surplus increases significantly (as compared to the previous case). A similar picture has been
observed for other demand values smaller than n.

6.2 Case III

Here, we focus on how the profit depends on the choice of the strategy, without imposing boundary
constraints on the number of ELISA tests. We consider the following parameter values:
n = 6720; d = 6700; m̂ = 4; ε = 0.00068;Cpur = 180;Celisa = 2.5; Cpcr = 40;Cpenalty = 10; Rw = 250;

and R̂w = 240.

Figure 3 displays the expected profit vs. the maximum number of ELISA tests per strategy for
different numbers of iterations h0 = 1, 2, ..., 5. For this figure we use colors to distinguish between
strategies having different numbers of iteration h0 = 1, 2, ..., 5:

• Black points - for one-iteration strategies;

• Red points - for two-iteration strategies;

• Green points - for three-iteration strategies;

• Blue points - for four-iteration strategies;

• Turquoise points - for five-iteration strategies (only one point, corresponding to successive batch
sizes 64, 32, 16, 8, 4).

Each point in the graph presents the expected profit for one strategy.

Table 1 below displays a full list of all 99 possible strategies (without boundary constraints on the
number of ELISA tests) for n = 6720, m̂ = 4,m1 ∈ {64, 56, 48, 42, 40, 32, 28, 24, 21, 20, 16} and h0 =
1, 2, ..., 5. Strategies yielding a profit above 195,000 are boldfaced. It allows us to study the influence
of the group sizes.
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Figure 3: Profit vs. maximum number of ELISA tests

Table 1: Full list of all 99 possible strategies

m1 m2 m3 m4 m5 maximal number profit mean number
of ELISA tests of ELISA tests

1 16.0 0.0 0.0 0.0 0.0 420.0 183277.6 420.0
2 20.0 0.0 0.0 0.0 0.0 336.0 179540.2 336.0
3 21.0 0.0 0.0 0.0 0.0 320.0 178593.5 320.0
4 24.0 0.0 0.0 0.0 0.0 280.0 175733.4 280.0
5 28.0 0.0 0.0 0.0 0.0 240.0 171886.8 240.0
6 32.0 0.0 0.0 0.0 0.0 210.0 168015.5 210.0
7 40.0 0.0 0.0 0.0 0.0 168.0 160228.1 168.0
8 42.0 0.0 0.0 0.0 0.0 160.0 158275.0 160.0
9 48.0 0.0 0.0 0.0 0.0 140.0 152406.0 140.0

10 56.0 0.0 0.0 0.0 0.0 120.0 144564.0 120.0
11 64.0 0.0 0.0 0.0 0.0 105.0 136709.6 105.0
12 16.0 4.0 0.0 0.0 0.0 460.0 195015.7 437.9
13 16.0 8.0 0.0 0.0 0.0 440.0 191119.6 429.0
14 20.0 4.0 0.0 0.0 0.0 386.0 195199.4 358.4
15 20.0 5.0 0.0 0.0 0.0 376.0 194237.7 353.9
16 20.0 10.0 0.0 0.0 0.0 356.0 189355.1 345.0
17 21.0 7.0 0.0 0.0 0.0 350.0 192329.3 333.5
18 24.0 4.0 0.0 0.0 0.0 340.0 195313.5 306.9
19 24.0 6.0 0.0 0.0 0.0 320.0 193390.2 297.9

20



20 24.0 8.0 0.0 0.0 0.0 310.0 191442.1 293.5
21 24.0 12.0 0.0 0.0 0.0 300.0 187521.2 289.0
22 28.0 4.0 0.0 0.0 0.0 310.0 195387.9 271.4
23 28.0 7.0 0.0 0.0 0.0 280.0 192503.0 257.9
24 28.0 14.0 0.0 0.0 0.0 260.0 185647.5 249.0
25 32.0 4.0 0.0 0.0 0.0 290.0 195437.6 245.9
26 32.0 8.0 0.0 0.0 0.0 250.0 191591.0 227.9
27 32.0 16.0 0.0 0.0 0.0 230.0 183749.1 219.0
28 40.0 4.0 0.0 0.0 0.0 268.0 195492.2 212.8
29 40.0 5.0 0.0 0.0 0.0 248.0 194555.3 203.9
30 40.0 8.0 0.0 0.0 0.0 218.0 191670.4 190.4
31 40.0 10.0 0.0 0.0 0.0 208.0 189722.3 185.9
32 40.0 20.0 0.0 0.0 0.0 188.0 179907.5 177.0
33 42.0 6.0 0.0 0.0 0.0 230.0 193613.6 191.4
34 42.0 7.0 0.0 0.0 0.0 220.0 192651.9 186.9
35 42.0 14.0 0.0 0.0 0.0 190.0 185821.2 173.5
36 42.0 21.0 0.0 0.0 0.0 180.0 178940.9 169.0
37 48.0 4.0 0.0 0.0 0.0 260.0 195512.0 193.8
38 48.0 6.0 0.0 0.0 0.0 220.0 193638.4 175.9
39 48.0 8.0 0.0 0.0 0.0 200.0 191715.1 166.9
40 48.0 12.0 0.0 0.0 0.0 180.0 187818.9 157.9
41 48.0 16.0 0.0 0.0 0.0 170.0 183897.9 153.5
42 48.0 24.0 0.0 0.0 0.0 160.0 176031.2 149.0
43 56.0 4.0 0.0 0.0 0.0 260.0 195512.0 182.8
44 56.0 7.0 0.0 0.0 0.0 200.0 192701.6 155.9
45 56.0 8.0 0.0 0.0 0.0 190.0 191739.9 151.4
46 56.0 14.0 0.0 0.0 0.0 160.0 185895.7 137.9
47 56.0 28.0 0.0 0.0 0.0 140.0 172135.0 129.0
48 64.0 4.0 0.0 0.0 0.0 265.0 195499.6 176.7
49 64.0 8.0 0.0 0.0 0.0 185.0 191752.3 140.9
50 64.0 16.0 0.0 0.0 0.0 145.0 183960.0 122.9
51 64.0 32.0 0.0 0.0 0.0 125.0 168226.4 114.0
52 16.0 8.0 4.0 0.0 0.0 460.0 195015.7 437.9
53 20.0 10.0 5.0 0.0 0.0 376.0 194237.7 353.9
54 24.0 8.0 4.0 0.0 0.0 330.0 195338.3 302.4
55 24.0 12.0 4.0 0.0 0.0 330.0 195338.3 302.4
56 24.0 12.0 6.0 0.0 0.0 320.0 193390.2 297.9
57 28.0 14.0 7.0 0.0 0.0 280.0 192503.0 257.9
58 32.0 8.0 4.0 0.0 0.0 270.0 195487.2 236.9
59 32.0 16.0 4.0 0.0 0.0 270.0 195487.2 236.9
60 32.0 16.0 8.0 0.0 0.0 250.0 191591.0 227.9
61 40.0 8.0 4.0 0.0 0.0 238.0 195566.6 199.4
62 40.0 10.0 5.0 0.0 0.0 228.0 194605.0 194.9
63 40.0 20.0 4.0 0.0 0.0 238.0 195566.6 199.4
64 40.0 20.0 5.0 0.0 0.0 228.0 194605.0 194.9
65 40.0 20.0 10.0 0.0 0.0 208.0 189722.3 185.9
66 42.0 14.0 7.0 0.0 0.0 210.0 192676.7 182.4
67 42.0 21.0 7.0 0.0 0.0 210.0 192676.7 182.4
68 48.0 8.0 4.0 0.0 0.0 220.0 195611.3 175.9
69 48.0 12.0 4.0 0.0 0.0 210.0 195636.1 171.4
70 48.0 12.0 6.0 0.0 0.0 200.0 193688.0 166.9
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71 48.0 16.0 4.0 0.0 0.0 210.0 195636.1 171.4
72 48.0 16.0 8.0 0.0 0.0 190.0 191739.9 162.4
73 48.0 24.0 4.0 0.0 0.0 220.0 195611.3 175.9
74 48.0 24.0 6.0 0.0 0.0 200.0 193688.0 166.9
75 48.0 24.0 8.0 0.0 0.0 190.0 191739.9 162.4
76 48.0 24.0 12.0 0.0 0.0 180.0 187818.9 157.9
77 56.0 8.0 4.0 0.0 0.0 210.0 195636.1 160.4
78 56.0 14.0 7.0 0.0 0.0 180.0 192751.2 146.9
79 56.0 28.0 4.0 0.0 0.0 210.0 195636.1 160.4
80 56.0 28.0 7.0 0.0 0.0 180.0 192751.2 146.9
81 56.0 28.0 14.0 0.0 0.0 160.0 185895.7 137.9
82 64.0 8.0 4.0 0.0 0.0 205.0 195648.5 149.8
83 64.0 16.0 4.0 0.0 0.0 185.0 195698.1 140.9
84 64.0 16.0 8.0 0.0 0.0 165.0 191802.0 131.9
85 64.0 32.0 4.0 0.0 0.0 205.0 195648.5 149.8
86 64.0 32.0 8.0 0.0 0.0 165.0 191802.0 131.9
87 64.0 32.0 16.0 0.0 0.0 145.0 183960.0 122.9
88 32.0 16.0 8.0 4.0 0.0 270.0 195487.2 236.9
89 40.0 20.0 10.0 5.0 0.0 228.0 194605.0 194.9
90 48.0 16.0 8.0 4.0 0.0 210.0 195636.1 171.4
91 48.0 24.0 8.0 4.0 0.0 210.0 195636.1 171.4
92 48.0 24.0 12.0 4.0 0.0 210.0 195636.1 171.4
93 48.0 24.0 12.0 6.0 0.0 200.0 193688.0 166.9
94 56.0 28.0 14.0 7.0 0.0 180.0 192751.2 146.9
95 64.0 16.0 8.0 4.0 0.0 185.0 195698.1 140.9
96 64.0 32.0 8.0 4.0 0.0 185.0 195698.1 140.9
97 64.0 32.0 16.0 4.0 0.0 185.0 195698.1 140.9
98 64.0 32.0 16.0 8.0 0.0 165.0 191802.0 131.9
99 64.0 32.0 16.0 8.0 4.0 185.0 195698.1 140.9

Finally, we may draw the following conclusions from the figures and tables:

1. The strategy in which no iterations are used (a single ELISA test) is dominated by strategies
using iterations.

2. A strategy with at most one recycle is frequently dominated by strategies with more iterations.

3. The five-cycle strategy is best, although the difference with respect to second-best is almost
negligible.

4. The correlation between the maximum number of ELISA tests and the profit induced by each
of the iterations (h0 = 1, 2, ..., 5) seems to be strictly positive and rather large.

5. The actual choice of the group sizes makes a significant difference.

6. If we impose an ELISA cost constraint, then we simply need to cut off a part of the graph by
the vertical line x = C0/Celisa.

7. If we impose a time constraint (i.e., a constraint on the total ELISA testing time), we need to
cut off the graph by a vertical line accordingly.
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7 Conclusions

We have proposed a new testing procedure that we called Recycled Incomplete Identification Procedure
(RIIP). In RIIP, groups of pooled blood units which are found contaminated in a so-called ELISA
test are divided into smaller subgroups and again group-tested by ELISA, and so forth, until finally
a so-called PCR test is conducted for all items in those subgroups which are found clean.
We have introduced an underlying unobservable Markov chain that captures the essence of the testing
procedure, and we have determined its complete distribution in closed form. we have shown that the
distributions of the main quantities of interest in the testing procedure, like the number of groups
tested and the number of items found clean, can be expressed in terms of this Markov chain.
In view of the complexity of the resulting expressions, we have proposed simple approximations for the
distributions of the main quantities of interest, based on the observations that the distribution of the
number of contaminated items is approximately (with high accuracy) Poisson and that the probability
that a group contains more than one contaminated item is negligibly small. These observations allow
us to accurately evaluate a profit objective function for a wide range of different testing strategies.
The numerical evaluation gives considerable insight into these strategies. In particular, our numerical
experiments strongly suggest that, for realistic parameter values, it is profitable to do one or more
re-tests of contaminated groups at the ELISA station. The actual group sizes also make a significant
difference.
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